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Abstract 
Today's large vocabulary speech recognition systems are very accurate. However, tens or 
hundreds of hours of manually transcribed speech are needed in order to train such system. 
This kind of data is often unavailable, or they even do not exist for the desired language. 
A possible solution is to use commonly available but lower quality audiovisual data. This 
thesis addresses the methods of processing such data for semi-supervised training of acoustic 
models. Afterwards, it demonstrates how to continually improve already trained acoustic 
models by using these practically unlimited data. In this work is proposed a novel approach 
for selecting data based on similarity with the target domain. 

Abstrakt 
V dnešnej dobe systémy rozpoznávania reči s veľkým slovníkom dosahujú pomerne vysoké 
presnosti. Za ich výsledkami však často stoja desiatky ba až stovky hodín manuálne oan-
otovaných trénovacích dát . Takéto dáta sú často bežne nedostupné alebo pre požadovaný 
jazyk vôbec neexistujú. Možným riešením je použitie bežne dostupných no menej kvalit­
ných audiovizuálnych dát . Táto práca sa zaoberá technikou zpracovania práve takýchto dát 
a ich použitím pre trénovanie akustických modelov. Ďalej tá to práca pojednáva o možnom 
využití týchto dát pre kontinuálne vylepšovanie modelov, kedže tieto dáta sú prakticky 
nevyčerpateľné. Pre tieto účely bol v rámci práce navrhnutý nový prístup pre výber dát. 
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Large vocabulary continuous speech recognition, semi-supervised training, time delay neural 
network, subtitled speech data, acoustic modelling 

Klíčová slova 
Rozpoznávanie reči s velkým slovníkom, trénovanie čiastočne s učiteľom, neuronové siete, 
otitulkovaná reč, akustické modelovanie 

Reference 
K O C O U R , Martin. Automatic Speech Recognition System 
Continually Improving Based on Subtitled Speech Data. Brno, 2019. Master's thesis. 
Brno University of Technology, Faculty of Information Technology. Technical Supervisor 
Dr. Ing. Jordi Luque Serrano. Supervisor Doc. Dr. Ing. Jan Cernocky. 



Automatic Speech Recognition System 
Continually Improving Based on Subtitled Speech 
Data 

Declaration 
Herby I declare that this master's thesis is my own work supervised by Dr. Ing. Jordi Luque 
Serrano and Doc. Dr. Ing. Jan Cernocky. A l l the relevant information sources, which 
were used during preparation of this thesis, are properly cited and included in the list of 
references. 

Martin Kocour 
May 22, 2019 

Acknowledgements 
I would like to thank my both supervisors Jordi Luque from Telefonica R & D and Honza 
Cernocký for their guidance, positive attitude and lots of valuable suggestions throughout 
the work on this thesis. Many thanks belongs also to the researchers from Telefonica R & D 
department for sharing their speech resources as well as hardware power. This master thesis 
would not be done without their support. I would also like to thank all members of B U T 
Speech@FIT group for sharing their knowledge, namely Karel Veselý, Lucas Ondel, Lukáš 
Burget, Igor Szóke, Mireia Diez Sanchez, Ekaterina Egorova, Miroslav Skácel and Bhargav 
Pulugundla. 



Contents 

1 Introduction 4 
1.1 Related work 5 
1.2 Terminology 5 

2 Automatic speech recognition based on D N N 7 
2.1 Feature extraction 8 
2.2 Hidden Markov Model 8 
2.3 Feedforward deep neural network 9 
2.4 Language model 11 
2.5 Decoding network 11 
2.6 Word lattice 12 

3 Realistic data 13 
3.1 Data analysis 13 

3.1.1 Quality of captions 15 
3.2 Data selection techniques 16 

3.2.1 Transcript retrieval with biased language model 16 
3.2.2 Selection based on confidences 17 
3.2.3 Selection based on similarity with target domain 17 

4 Datasets 19 
4.1 TID - Telefonica in-house database 19 
4.2 RTVE2018 20 
4.3 Custom T V - Manually recorded Spanish T V channels 20 

5 Baseline system 21 
5.1 Used tools 21 
5.2 Language modelling 21 
5.3 Acoustic modelling 23 

6 Experiments with iterative training 25 
6.1 Description of the iterative training 25 
6.2 Telephone speech evaluation 27 
6.3 Television speech evaluation 28 
6.4 Comparison with training from scratch 29 
6.5 Other experiments 30 

6.5.1 Word filtering 30 
6.5.2 Speaker adaptation 30 

1 



7 Experiments with adaptation on television speech domain 31 
7.1 Data selection based on utterance-level confidences 31 

7.1.1 Results 32 
7.2 Data selection based on similarity with target domain 32 

7.2.1 Comparison of matrix similarity measuring methods 33 
7.2.2 Results 33 
7.2.3 Generic recipe 34 

7.3 Comparison of both selection metrics 35 
7.3.1 Overall results 35 

8 Conclusion 37 

8.1 Future research 37 

Bibliography 39 

A Manual 43 
A . l Guide for data selection based on similarity with target domain 43 

B Detailed experimental results 45 

2 



List of Acronyms 

A M Acoustic Model 

A S R Automatic Speech Recognition 

C M L L R Constrained Maximum Likelihood Linear Regression 

D N N Deep Neural Network 

G M M Gaussian Mixture Model 

H M M Hidden Markov Model 

L M Language Model 

L D A Linear Discriminant Analysis 

L V C S R Large Vocabulary Continuous Speech Recogniser 

N N Neural network 

M F C C Mel Frequency Cepstral Coefficients 

P L P Perceptual Linear Predictive Coefficients 

R N N Recurrent Neural Network 

T D N N Time-delay Neural Network 

TID Telefonica I+D 

V A D Voice Activity Detector 

W F S T Weighted Finite-state Transducer 

3 



Chapter 1 

Introduction 

Most of the recent state-of-the-art automatic speech recognition systems are based on Hid­
den Markov Models (HMM) to simulate the temporal variability of a speech signal. In the 
past, Gaussian Mixture Models (GMM) were used to evaluate how well each state of the 
H M M fits to the given frame, but relatively recent work by Mohamed et al. [23] showed that 
deep belief networks outperformed the H M M - G M M models. The deep learning approach 
has since became the new standard in various scientific areas such as computer vision where 
it reached state-of-the-art results in the ImageNet [12] competition or in natural language 
understanding via the word2vec [22] embedding model. 

However, in deep learning and machine learning in general, the accuracy of the system 
highly depends on the amount and the quality of used data. The quality and variety of 
data is therefore also of crucial importance in automatic speech recognition (ASR). That is 
the reason why the data has to be manually created for specific A S R tasks. One possible 
solution to avoid manually transcribing speech segments is to use publicly available speech 
data from television broadcast (e.g,. T V news or T V shows) or from the Internet (e.g, 
YouTube). In case of television, the content often comes with closed-captions which can be 
used instead of manual transcriptions. 

This thesis addresses the usage of such data for improving A S R systems. The main 
goal is to use these data to enhance the accuracy of already trained acoustic models as 
well as use them for model adaptation on different speech domains. A large portion of 
the work consists of data cleaning. The idea is to find speech segments, which best match 
the corresponding closed-captions. This work does not study the usage of these data for 
language models enhancement, all effort is put into improving acoustic models. 

Several techniques for selecting the best utterances for training have been also explored 
since the amount of data is very large. This thesis proposes a novel idea for selecting 
utterances based on a covariance matrix estimated on raw D N N outputs. The intent is 
to avoid training a model on data samples which do not have a big impact on a model 
improvement. Therefore, the selection can also save the time and computational resources. 

The thesis is organised as follows. Chapter 2 provides an overview to the theory behind 
essential parts of the automatic speech recognition. In Chapter 3 are discussed properties 
of closed captioned data and several data selection techniques. We used not only publicly 
available corpora but also a manually recorded data from speech, details are described in 
Chapter 4. The findings of both previous chapters are then used in building the baseline 
systems (Chapter 5). Chapter 6 describes the experiment with iterative training of D N N 
acoustic model using closed-caption data. Several adaptation techniques on different speech 
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domains were also tested on closed-caption data (Chapter 7). Finally, the conclusions are 
drawn in Chapter 8. 

1.1 Related work 

The idea of using publicly available data traces back to work done by Jang et al. [30], where 
they tried to improve acoustic models by accurate transcriptions from close-captioned data. 
They aligned the closed-captions with the speech hypotheses and selected sequences where 
numbers of the same words were greater than three. They selected more than 18% of 
data by this method and showed absolute improvement of 1.63% word error rate. Very 
similar idea was also presented in [14, 15], where the authors proposed a new algorithm for 
label alignment. The algorithm is based on dynamic time warping and can find not only 
well-transcribed segments but also imperfect transcripts. 

A slightly different approach was explored in [13], where Lamel et al. simulated a semi-
supervised approach. They trained a system on a small portion of transcribed data and 
used it to transcribe large amount of untranscribed data. Then they optionally removed the 
segments which did not correspond with closed-captions and re-estimated the models. The 
process was repeated until the system converged. This work also showed that the usage 
of filtered close-captioned data should improve a system in comparison with the unfiltered 
one, even if the amount of filtered data is significantly smaller. 

Wessel et al. followed this idea in [37], where they introduced a confidence measure 
for recognized word hypothesis. The filtering process was controlled by word posteriors. 
Words with a posterior probability less then a given threshold were not included in a 
training corpus. The experiments resulted in a better W E R performance on a dataset, 
where the word confidence was relatively high. They also tried to iteratively retrieve larger 
amount of data, while the seed system was trained on a smaller portion of data (1.2 h). 
The results were very close to the system trained on manual transcriptions. On the other 
hand, a similar technique was examined in [16] on YouTube corpora, but without a huge 
success. The problem was that a very large high quality training corpora was mixed with a 
lower quality large adaptation data. The experiments showed small improvement on general 
YouTube test set, but the accuracy on different news domain was degraded. 

A more recent work done by Veselý et al. [35] examined the effect of the granularity of 
the confidences (per-sentence, per-word or per-frame). The conclusion is that data selection 
based on a word confidence is still a good practise, but the selection based on frames can 
easily compete with it. The authors also tried to use the confidences for weighing the data 
during training. This interesting idea turned out to lead to better results. 

1.2 Terminology 

Machine learning can be divided into the following tasks: 

1. Supervised learning - Data are annotated with labels in supervised learning. The 
label defines a class of a corresponding sample. The group of samples with same 
class shares similar features. In case of speech recognition, a transcription of the 
corresponding speech is considered as a label. Common problem covered by supervised 
learning is classification. 
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2. Unsupervised learning - The unsupervised training algorithms do not use any 
supervision on how data should be handled. There is no teacher. Common tasks 
solvable by unsupervised learning are data clustering, novelty detection and dimen­
sionality reduction, see [40]. 

3. Semi-supervised learning - A database consists of both labelled and unlabelled 
samples. The number of annotated samples is significantly less than the number of 
samples without annotation. Common approach is to use labelled data for training 
a small model. The model is then used for annotating unlabelled samples. This 
technique was used in [34]. 

The approach studied in this work could be considered as a semi-supervised learning, be­
cause the utterances are annotated with captions. However, these captions contain a lot 
of mistakes, so it is necessary to use some model to filter them out. Therefore, the stud­
ied approach should be recognized as something between semi-supervised and supervised 
learning according to the classification mentioned above. 
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Chapter 2 

Automatic speech recognition 
based on D N N 

The purpose of automatic speech recognition (ASR) is to correctly recognize a sequence 
of words corresponding to a speech signal. In a simple case, the goal is to recognize just 
a short sentence or a small set of words, i.e. „one", „two", „OK". More often, the aim is to 
recognize whole sentences of natural language. However, the complexity of such a system is 
increasing exponentially. For instance, the spoken English vocabulary contains more than 
6 000 words [26] and each word is pronounced differently by various speakers. Generally, 
the vocabulary used by a recognizer has a size of around 50 000 words and it has to cover all 
possible pronunciations of each word. That is why the system consists of an acoustic model 
(AM), which simulates each word as a sequence of smaller acoustic units called phonemes. 

Moreover, the recognizer has to distinguish words with similar pronunciation but a dif­
ferent transcription. Fortunately, the word occurrence depends on the context. Some words 
never occur side by side in the same sentence. Furthermore, each language has some struc­
ture also known as a syntax, which is part of language's grammar. These basic principals 
are covered inside a language model (LM). 

Figure 2.1 depicts the essential components of a large vocabulary continuous speech 
recognizer (LVCSR). At first, the input speech waveform is converted into a sequence of 
fixed size acoustic vectors in a feature extraction process (sec. 2.1). Secondly, the acoustic 
model generates posterior probabilities of all acoustic units for each vector (sec. 2.3). 
Eventually, the decoder finds the most probable sequence of words based on the posteriors 
and a decoding network (sec. 2.2 and sec. 2.5). 

Feature Neural i 
e extraction *̂  network r 

Recognition Network 

HMM Context Lexicon Grammar 
H o c " L ° I G 

Language 
Model 

HMM 
Decoder TEXT 

Figure 2.1: Scheme of large vocabulary continuous speech recognition system. Figure taken 
from Z R E lecture [33]. 
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2.1 Feature extraction 

The first step in the L V C S R pipeline is signal processing with feature extraction. The pro­
cedure seeks to provide suitable compact representation of a speech signal without losing 
information about spoken words. In A S R tasks, the process suppresses irrelevant informa­
tion in order to reduce the dimensionality of highly dimensional speech signal. The most 
popular features are P L P [10], M F C C [4] and recently good results have been attained using 
bottle-neck features [9]. 

Since the Mel-Frequency Cepstral Coefficients were used in experiments, brief descrip­
tion of the extraction process is given. The speech signal is first segmented into 20-25 ms 
long frames at a rate of 10 ms by the windowing function. Discrete Fourier Transform is 
then computed on the frame. The mel-scale is then applied on the magnitudes by means 
a filter bank. The mel-scale is derived from better human sensitivity on lower frequencies. 
Finally, the discrete cosine transform is computed on log of filter bank energies. Whole pro­
cess is shown on Figure 2.2. Furthermore, some discriminative transforms can be used like 
linear discriminant analysis (LDA) or feature-space maximum likelihood linear regression 
(fMLLR) to achieve more robust features, for more details see [20]. 

Mel-scale Filter Bank 

WYYY\ LogO Cosine 
Transform 

Figure 2.2: Feature extraction scheme of Mel-Frequency Cepstral Coefficients [18]. 

2.2 Hidden Markov Model 

The goal of speech recognition is to find the word sequence W with a maximum posterior 
probability given the sequence of observed input acoustic vectors O = [5i, 0 2 , . . . , on] 

W = a rgmaxP(VF|0) . (2.1) 
w 

However, the probability P ( W | 0 ) is hard to model directly. According to the Bayes Rule, 
equation 2.1 can be rewritten to 

, , , = a l , m a x £ < 2 E p E ) , ( 2 . 2 ) 

W ^(u) 

where the likelihood P ( 0 | W ) is a score for input vector O given the word sequence W gen­
erated by an acoustic model. The term P(W) is the prior probability of word sequence W 
estimated by a language model, see Section 2.4. Assuming the probability for all input 
sequences P(0) is the same, it is not necessary to consider it. So the aim of the decoder is 
to find the maximum likelihood P ( 0 | W ) . 

In L V C S R systems, the likelihood P ( 0 | W ) is modelled by Hidden Markov Models [6], 
where W marks sequence of context dependent phonemes (e.g. triphone) instead of words. 
The Hidden Markov Model, depicted in Figure 2.3, is a generative model, which has the 
features of finite state automaton. It consist of probabilistic transitions from state i 
to state j with left-to-right topology and output probability distributions associated with 
each non-terminal state. The distributions bj(p) are used for scoring the decoding path for 
given sequence of feature vectors O. The model representing a word sequence W is simply 
created by concatenating smaller individual H M M s for triphones. 
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*t>2(°i) *» b2(02) 1 b 3 ( o 3 ) / b 4 ( o 4 ) \ b 4 (o 5 ) 
Jt i L X Jt 

O °1 02 03 04 05 

Figure 2.3: Example of a Hidden Markov Model of context-dependent phoneme with three 
states, i.e. senones or tied-states. 

2.3 Feedforward deep neural network 

Current state-of-the-art L V C S R systems use artificial neural networks for acoustic mod­
elling. They replace the G M M models in estimating how well a feature vector fits the given 
H M M state. However, the G M M models are still used in force-alignment stage of the train­
ing for obtaining more precise phoneme-level transcriptions. Since the aim of this thesis is 
to improve the acoustic model, a brief introduction is provided. 

A neural network is a structured function with trainable parameters. It maps a multi­
dimensional input to an output. The network consist of many units also known as neurons. 
The function of the neuron is to transform its weighted input x T w to a scalar by applying 
some non-linear activation function h (e.g. sigmoid or a p-norm [39]). 

These units are then grouped into larger layers. The feedforward deep neural networks 
(DNN) consist of an input layer, multiple hidden layers and the output layer. It is called 
feedforward because the neurons are connected only between neighboured layers. The 
output is usually normalised to become a true probability distribution. The most often 
used normalization function is the softmax [3]. A feedforward neural network with one 
hidden layer can be represented as: 

y = softmax(W ( 2 )ft.(W ( 1 )o + b ( 1 ) ) + b ( 2 ) ) , (2.3) 

where o is the observed feature vector, W is a weight matrix, where each row is the weight 
vector w for corresponding neuron and b is a vector with bias terms for each neuron. More 
details can be found in [34, Section 2.4]. 

Stochastic gradient descent training 

The trainable parameters are the weight matrices W and bias terms b. These variables 
are adjusted in a backpropagation training. The goal is to find the weight matrices and the 
bias terms which minimize the objective function. For the 1-of-K classification problem of 
n-th data point, the objective function is the multi-class cross-entropy (CE): 

£ « = - E 4 n W n ) , ( 2 . 4 ) 
k=l 

where vector t has the 1-of-K encoding, so the sum always picks up only the k-th output. 
More recent works showed better performance by replacing the cross-entropy with maximum 
mutual information (MMI) or minimum Bayes risk (MBR) objective functions [11]. 
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The idea of stochastic gradient descent training is to minimize the loss by doing small 
steps in the direction of the steepest descent of the loss function, i.e. opposite of its 
gradient —VEn. Due to the practical reasons the parameters are updated after processing 
M input features, where the M vary between 128 and 1024. These input vectors are 
selected randomly from training data and grouped into so called mini-batches. Each batch 
thus contains M data points. The updating formula has a form: 

M 

w r + 1 = w r - i ) 5 ] V £ „ ( w T ) , (2.5) 
n=l 

where r\ is a learning rate, w r is a vector with all trainable parameters included the bias 
terms and VEn(wT) is the gradient of En w.r.t. weight vector w r. The training usually 
ends, when the update is very low or after given number of epochs (the number of times 
the whole training dataset has been observed). 

Time-Delay Neural Network 

Speech is a dynamic signal, that is the reason why we need to model long-range temporal 
dependencies between acoustic events. The architecture of Time-Delay Neural Network 
(TDNN), first introduced by Waibel et al. [36], is inspired by this idea. The output depends 
not only on the current frame but also on its context. In a standard D N N architecture, 
each neuron in hidden layer is fully-connected with all neurons from the previous layer. 
However, in T D N N , the activation of the neuron from the initial layer is estimated on 
a narrow context. The neurons in deeper layers are able to utilize a progressively wider 
context up until the last layer, which has the ability to learn from the whole context, see 
Figure 2.4. 

t 

Figure 2.4: Time-Delay Neural Network with (red color) and without (blue color) sub-
sampling. The figure was taken from [29]. 

The work done by Peddinti et. al [29] shows that not all connections are necessary. They 
came out with an idea of sub-sampling the neighbouring activations. The intent is to splice 
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only two frames from previous hidden layers and thus to save time during training. This 
can be done under assumption that the context overlaps between neighbouring activations 
in a typical T D N N architecture and thus their outputs are highly correlated. 

2.4 Language model 

The aim of language model is to estimate a probability of the sequence of words W, see 
equation 2.6. The most popular language model is the iV-gram model, where N — 1 marks 
the number of previous words being considered in the estimation, e.g. the trigram model 
considers two previous words. The model is trained on a large text corpus, where the 
frequency of each iV-gram is divided by the frequency of all iV-grams with same history, 
see equation 2.7. However, some iV-grams might not be included in the training corpus. 
For such case, there is a mechanism like Kneser-Ney smoothing [7], which assigns them a 
non-zero probability. 

k 

p(w)=p(W1,w2,...Wk)« n p ( ^ K = « + i ) ( 2- g) 
t=i 

D , | \ C(Wj-n+i,...,Wi-i,Wi) 
P{Wi\Wi-n+i,...,Wi-i) = ^=—— r (2.7) 

Z^Wj C{Wi-n+1,.. .,Wi-i,Wj) 

The problem of iV-gram models is that they cannot represent patterns over more than 
a few words. In order to prevent this issue, it is possible to cover wider context of words 
by increasing the iV-gram order, although the number of possible parameters increases 
exponentially. Another disadvantage is that the iV-gram models assume exact match of 
history, they cannot model similar histories. 

Therefore, current state-of-the-art language models are based on recurrent neural net­
work (RNN L M ) , where the context is represented by a special hidden layer [21]. The 
hidden layer represents a state of the network also referred as a memory. Despite all dis­
advantages, we decided to use iV-gram language models in this work because they can be 
easily and quickly trained. 

2.5 Decoding network 

A l l mentioned components are included in a single structure- the decoding network. The 
network is represented by a weighted finite state transducer, a special kind of finite state 
automaton, where each transition has an input label, output label and a weight (e.g. a 
probability). The network is a composition of four transducers [24] 

HCLG = H o C o L o G. (2.8) 

The H transducer represents an H M M topology of all context-dependent phonemes. The 
inputs are senones from deep neural network. The context-dependency transducer C ac­
cepts context-dependent phonemes (e.g. triphones) and creates phonemes from them. The 
pronunciation lexicon L maps a sequence of phonemes to words. Finally, the word-level 
grammar G rates the probability of each possible word sequence. 
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2.6 Word lattice 

Each frame of the audio recording is first processed by the neural network. The sequence 
of NN-posteriors are then processed by a decoding network. The outputs from the network 
are the possible word sequences. Each segment might be represented by several hypotheses. 
Modern decoders represent the hypothesis in a compact data structure called word lattice. 
The lattice encapsulates not only the hypothesis but also a cost (e.g. the probability) and 
a time information when a particular word was said as depicted in Figure 2.5. The sum of 
probabilities of all parallel words in a range < U, tj > is equal to 1. 

Figure 2.5: Word Lattice: a compact representation of the search space [2]. 
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Chapter 3 

Realistic data 

In 1972, the National Institute of Standards and Technology first introduced the concept of 
closed-captioned television programs. Until then, deaf people could not watch properly the 
television broadcast without restrictions. The idea was to combine the audiovisual content 
with text files, which contained the spoken words and the corresponding playback times 
such that the texts can be displayed as subtitles to the video. Since then, the concept has 
spread massively and captions have become a legal obligation for television networks in 
many countries. 

Another source of closed-captioned data is the Internet. For instance, YouTube, the 
biggest video platform, recently launched a function, which allows authors to add their own 
subtitles to their video. Thanks to this and to the mentioned law, there is a lot of labelled 
speech data, which can be used to train the acoustic models. 

On one hand, there are many arguments why this data is not suitable for training 
robust A S R systems. One big issue is the quality of the subtitles. The training procedure 
is very error-prone in case of poor timing alignments of the labels. Moreover, subtitles 
often contains advertisement or other unrelated text. Other problems are discussed in 
Section 3.1.1. 

On the other hand, there are few reasons why we should consider them anyway. The 
first strong reason is the cost. Realistic data are publicly available and can usually be 
used for free. This is their main advantage when compared with paid corpora, where the 
prices are still very high. Another reason is their great variety. The data cover the speech 
in different conditions such as noisy street environment or conversations in a crowd of 
people, but also include clean speech from telecasters. The training process profits from 
such natural variability of speech. That is why we should try to extract as much data from 
closed-captions as possible. Section 3.2 discusses some selection techniques for obtaining 
high quality labels. 

3.1 Data analysis 

Figure 3.1 depicts a common Spanish sentence-„Hola, buenos d ias" - in three different 
speech conditions. The first utterance was taken from call-center database, the others two 
are from RTVE2018 database (see Chapter 4). Spectrogram 3.1a clearly shows the word 
boundaries. The first 0.2 s refers to the word „hola". In next 0.25 s, the word „buneos" was 
said. Then there was a silence followed by the word „dias". However, it is much harder to 
find these word boundaries in the other spectrograms. Especially, the silence is not very 
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clear in Figure 3.1c. The reason can be found in the corresponding waveform. The signal 
contains a lot of noise in the background. That is also the reason why higher frequencies 
are not present in the signal. 

A l l three spectrograms are different at first sight, even if they represent the same sen­
tence. But if we look closer, we might notice that the ending of each spectrogram is more 
or less similar. It differs only in the representation of individual frequencies. This positive 
property affects the training of the model. It can learn the acoustics of phonemes from 
different contexts and thus becomes more robust. 

) H 1 1 1 1 1 1 1 ' I 1 1 1 1 1 1 1 -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Time [sec] Time [sec] 

(a) The spectrogram and the waveform of the utterance in clear conditions. 

Time [sec] Time [sec] 

(b) The spectrogram and the waveform of the utterance pronounced by T V moderator. 

Time [sec] Time [sec] 

(c) The spectrogram and the waveform of the utterance pronounced by street reporter. 

Figure 3.1: A comparison of same sentences said by three different speakers in various 
conditions. 
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3.1.1 Quality of captions 

Despite the fact that closed-captions data are mostly created by professional captioners, 
they contain several types of errors. The following mistakes were encountered during anal­
ysis of T V shows in the RTVE2018 database. 

Shifted captions. It was experimentally found that approximately 15 % of subtitles are 
shifted by more than 5 seconds. It is a serious issue because such captions cannot be 
properly aligned with the audio due to incorrect timing. In better case, the automatic 
aligner simply refuses such data while in worse case it tries to align them with wrong audio 
frames. Such data might then cause more damage than if they were not used. It is hard to 
say why they are shifted. In some recordings, the offset is even negative at the beginning 
and positive at the end. Figure 3.2 shows an example how shifted subtitles might look like. 

109 

.2 108 

S 107 
T3 

8 106 

105 

104 

• • • Original captions 

• • • Aligned captions 

8.80s « 

17.28s 

16.23s 

10.43s « 

7.80s 

9.01s « »•_ 

420 430 440 450 460 470 
Recording time [s] 

480 490 500 

Figure 3.2: Example of shifted captions in T V news 20H. 

Partly said captions. Partly said captions are another found occurring feature. This 
issue involves misspelled words and not said parts. It happens mostly in dialogues, when 
two captions overlap. The first caption contains whole sentence said by one speaker, while 
the following caption contains sentence from another speaker. The problem is that the end 
of the first caption is before the start of the second one, while the speech related to the first 
caption ends after the second caption in real time. This type of error is caused mostly by 
the captioner. It is also a very negative phenomenon, but it happens rarely. 

Not said captions. The closed-captions without corresponding speech might be found 
in this kind of data too. They mostly describe various non-speech sounds in the movies or 
in documentaries. This kind of captions might be used for training the model on non-speech 
sounds. In case of the YouTube video, we might come across the captions which contains the 
advertisement. Such data does not contain any relevant information for training. Therefore, 
they should be removed. 

Missing captions. During advertising breaks, the closed-captions are often not broad­
cast. This is not an issue. The audio segments without labels are simply not added into 
training corpora. 
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3.2 Data selection techniques 

In Section 3.1 was described why these data are desirable for acoustic model training despite 
containing several issues. The problems related to the timing can be solved by decoding the 
raw recordings with biased language models. The obtained transcripts are then compared 
with original closed-captions and best-matching sequences are retained for the training. 
This procedure is described in Section 3.2.1. We also explored how to retrieve the data 
with the highest positive impact on training acoustic models. We study two different 
approaches, the first based on confidences and the second based on similarity with domain 
data. This is described in Sections 3.2.2 and 3.2.3 respectively. 

3.2.1 Transcript retrieval with biased language model 

Following lines describe the technique developed by Manohar et. al. [19]. The method was 
used in the M G B challenge on Arabic YouTube videos, which has very similar properties 
as Spanish closed-captioned T V data used in this thesis. The method is implemented in a 
Kaldi [31] recipe1. 

The closed-captions data related to the same segment, i.e. 10 minutes or the whole 
show, are first spliced together according to the time when they occur. This will create 
a text corpus containing a few hundreds of words. The text corpus is used for training a 
biased iV-gram language model with N = 7. We use term biased because the L M is adapted 
only on the currently processed captions. It does not incorporate the information of other 
segments. The purpose is to use the L M in decoding the hypothesis from the given range 
of time. The decoding is done by an acoustic model, which can be trained on different 
domain or on a small amount of transcribed speech. During the decoding, the weight of 
A M is significantly smaller than the weight of L M , because we believe that the captions 
should occur in hypotheses. 

In the second stage, the best hypotheses are aligned with spliced captions using Smith-
Waterman algorithm [32] to select the best matching sub-sequences. The advantage of the 
algorithm is that it does not treat misaligned sequences on edges as errors. Otherwise, it 
is very similar to the common Levenshtein distance algorithm, assuming the same cost for 
insertions and deletions. 

Since the captions may occur in different order than the hypotheses due to wrong timing 
of the captions, they are split into several parts of 100 words also referred to as documents. 
The transcript retrieval is based on T F - I D F similarity score [1]. A high TF- IDF score is 
reached by a high term frequency of the given document and a low document frequency of 
the terms in all documents. The T F - I D F of a documents is compared with a TF- IDF score 
of the hypothesis. The sequence of words of the best retrieved documents are then aligned 
with corresponding hypotheses using the Smith-Waterman algorithm. 

In order to ensure that the retrieved transcripts are correct, the whole process is repeated 
again using an oracle aligner 2. In this case, the objective is to find the best paths in decoded 
lattices with minimum edit distance w.r.t the reference transcripts. Finally, the retrieved 
transcripts are segmented based on C T M s from oracle alignments. The abbrv. C T M stands 
for time-marked conversation file and contains a time-aligned phoneme transcriptions of the 
utterances. It is a standard file format for phoneme transcriptions used in Kaldi . 

1 Kaldi script segment long utterances.sh. 
2 Kaldi script clean_and_segment_data.sh. 
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3.2.2 Selection based on confidences 

Data selection is very popular in semi-supervised training approach. The work usually starts 
with training the acoustic model on a small portion of transcribed data. This baseline model 
is used for transcribing unlabelled data. The resulting data are then used for training a new 
model. The process is repeated several times, until the achieved improvement is negligible 
or the maximum number of iterations is reached. In [37, 35, 38], the words in hypotheses 
are scored according to the reliability using word-level confidences. The words with a very 
low confidence are not included in the next training stage. The authors showed that this 
approach has an positive impact on the final accuracy. 

The idea of scoring hypotheses is used also in this work. The goal is to find the best 
utterances, which maximize the model improvement during the training. There are at least 
two possible variants how to compute the word-level confidences. One variant is to use 
the statistics from the Minimum Bayes Risk decoding. The confidence is expressed as a 
quantity 7(5, s) of the word s at the position q in all possible decoding hypotheses [35]. 

Another strategy is to use the NN-posteriors of senones. This strategy is based on 
an assumption that if a word is hypothesised correctly, then all the frames should be 
present in word's posteriorgram, hence the confidence should be high [38]. The NN-posterior 
confidence measure is calculated on the sequence of posterior estimations pk, i.e. the softmax 
output of each frame. The word-level confidence score is expressed as an accumulation of 
the log posterior of each frame corresponding to the word Wi. 

where < ts,te > represents the time interval of hypothesised word. The utterance-level 
confidence is defined as the average of all word-level scores in the utterance u. 

where K denotes total number of words in the utterance u. 

3.2.3 Selection based on similarity with target domain 

This work presents a novel method for extracting data. The method is based on selecting 
those data which share the same characteristics as the target domain. It is believed that 
this kind of data should maximally boost the acoustic model training towards the direction 
where the error rate on evaluation data has a decreasing trend. This idea was inspired 
by the work done by Pascanu et. al. [28]. The authors presented the Natural Gradient 
Descent algorithm for training deep neural networks. The main difference between the 
classical gradient and natural gradient is that the classical gradient points to the steepest 
direction of the loss-function, whereas the natural gradient points to the direction, where 
the loss-function has a local minimum. 

A very similar approach was used in the proposed selection method, where the main 
goal is to score utterances according to the similarity with reference evaluation data. The 
data samples with high similarity rating are included into training corpora. It is done by 
comparing a test covariance matrix 5 ] r with a covariance matrix 5 ] c estimated on closed-
caption data. Each covariance matrix 5] is calculated on raw D N N outputs Y , i.e. the 
outputs from hidden layers before normalization and softmax function, see Figure 3.3. 

i=l 
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Figure 3.3: The activations of the simple D N N before the last softmax layer, marked with 
orange colour. 

The output representing silence or other non-speech classes is not included, because it 
can greatly affect the result and obscures the speech classes. The auto-covariance matrix 
is computed as: 

Y = [yi,y2 ,---,yjv] (3.3) 

l N 

i=l 

1 N _ 
my = jj^Zyi (3-5) 

i=l 
£ = A - / j y / J y T , (3-6) 

where [yi, y2, • • •, Yn] is the sequence of D N N outputs before softmax, A is the correlation 
matrix and / j y is the mean vector. 

The last problem is to determine the distance between two matrices by a scalar value. 
There is a plenty of matrix norms which might be suitable for transforming the matrix 
similarity into one value. The problem is that the most of them consist of a trace operator, 
which simply sums only the values on the main diagonal. However, the covariance matrix 
contains a lot of valuable information in other elements. After several experiments, we 
therefore decided to implement a custom norm for this purpose. The norm uses sum 
over all elements instead of the trace operator. The similarity metric is expressed by 
Equation 3.7 and it uses the Frobenius norm. The experiments with other norms are 
described in Section 7.2. 

Jc\\F 
m n 

Jc\\F 
i=l j=l 

(3.7) 

(3.8) 
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Chapter 4 

Datasets 

In this work, three Spanish datasets were used with different properties-TID, RTVE2018 
and Custom T V . TID database was collected by Telefonica Investigation y Desarollo. It 
includes recordings from call centres and phone calls as well as licensed data corpora. 
It contains mostly clean speech without background noise. On the contrary, the R T V E 
database includes Spanish T V shows and T V news with a lot of noisy speech data. The 
database was used in the Ibe rSPEECH-RTVE Speech to Text Transcription challenge, a 
part of the Iberspeech 2018 conference1. The Custom T V database consists of manually 
recorded T V channels. The database shares a similar content with the R T V E database. 
It contains also Spanish movies and documentaries. Table 4.1 shows an overview of the 
content of each database. 

Database Train Dev Eval Total 
TID 186 3 1.5 190.5 
R T V E 433 72 41 546 
Custom T V 2160 - - 2160 
Total 2 779 75 42.5 2 896.5 

Table 4.1: Numbers of hours of speech in individual databases. Custom T V database had 
2160 hours before cleaning. 

4.1 T I D — Telefonica in-house database 

The TID database contains Spanish call centre data. The phone calls were recorded by 
Telefonica Moviles in 2016 with the users consent. The data collection was performed 
taking into account a broad coverage of speaker and dialect variability. It consists of 22 
hours of speech in total. The test dataset comprises 1.5 hours of audio for measuring 
the A S R performance. In addition, the following licensed data corpora are included for 
improving acoustic models and lexicon: 

a) SAL A [25]2 - Phonetically annotated database of separate words in Latin American 
Spanish recorded over telephone network. The database comprises eight different di­
alectal areas in Latin America. The TID database contains only the Chilean dialect 

x

http: / / iber speech2018.talp. cat 
2

http: //universal, elra. info/product _info.php?products_id=199 
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part of S A L A , with 1, 024 Chilean speakers recorded over the Chilean fixed telephone 
network. It comprises a broad range of recordings, sequences of 10 isolated digits, 
questions, time phrases, spelled-out words, etc. as well as a lexicon and a pronuncia­
tion dictionary. 

b) Fisher Spanish Speech [8] 3 - The database developed by Linguistic Data Consortium 
(LDC), comprises recordings covering 163 hours of spontaneous telephone speech from 
136 native Caribbean Spanish and non-Caribbean Spanish speakers with full ortho­
graphic transcripts. The recordings consists of 819 telephone conversations lasting 
around 10 to 12 minutes each. 

4.2 RTVE2018 

The R T V E database [17] comprises 15 different T V programs broadcast between 2015 
and 2018 by the Spanish public T V station called Radiotelevision Espahola (RTVE) . The 
programs comprise a great variety of speech scenarios from read speech to spontaneous 
speech, live broadcast, studio debates, etc. They cover also different Spanish accents, 
including Latin-American ones. The database consists of 569 hours of audio data, from 
which 460 hours are provided with subtitles, and 109 hours have been human-revised. The 
database is provided in 4 different partitions: 

— train, that includes 433 hours of data with closed-captions from 16 T V shows, 

— devl, that consists of 57 hours and human-revised labels, 

— dev2, that contains 15 hours with human-revised labels, 

— test, that comprises 41 hours audio without labels used for evaluation of participants' 
systems. 

The train and devl partitions were used for training the acoustic models and dev2 dataset 
was kept for measuring the performance. 

4.3 Custom T V — Manually recorded Spanish T V channels 

Custom data were obtained by recording Spanish T V channels and corresponding closed-
captions. We recorded two channels for 6 months and obtained 2160 hours of audio together 
with 1 770K subtitles (14M words). The content covers huge variability in speech signal. 
The database comprises not only Spanish T V Shows and T V news but also various movies 
and documentaries. On the other hand, some segments do not contain closed-captions, e.g. 
the advertisement. These data are simply not used. 

The T V stream was recorded via a USB T V tuner. The stream consists of SRT files 
with closed-captions and audio encoded in MP2 format. Due to legal rights, the content 
is not stored directly. The audio is instead subsampled using 8000 Hz and converted into 
M F C C + P i t c h features. The database was first cleaned, because the subtitles were not 
properly aligned with the audio. We keep only 200 hours (10 %) of clean data for training 
acoustic models. 

3

https: //catalog.ldc.upenn.edu/LDC2010S01 
4

http: / / catedrartve.unizar.es/reto2018.html 
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Chapter 5 

Baseline system 

This chapter provides details about the used baseline speech recognition systems. 

5.1 Used tools 

K a l d i toolkit 

This thesis used the Kaldi speech recognition toolkit [31], which is an open-source toolkit 
for speech recognition research. Its core is implemented in C++, using mathematical l i ­
brary A T L A S and OpenFST library for working with finite-state transducers. Most of 
the functionality is wrapped into a bash script, which makes work with the toolkit easy. 
The main advantage of the toolkit is that it comes with a number of complete recipes for 
building A S R on popular databases. 

Voice activity detector 

As it was mentioned, the dev2 partition from RTVE2019 database was used for measuring 
the performance on television speech data. However, the audio segments were not properly 
time-aligned with transcript. This issue might cause inaccurate measurement the perfor­
mance. One possible solution was to clean dev2 data with Kaldi scripts, but some data 
would be lost and, moreover, the evaluation would be strongly biased by the model used 
for data cleaning. 

Therefore, we decided to segment the data with voice activity detector developed by 
Veselý et. al. [27]. This detector is based on D N N acoustic model and is able to recognize 
5 different classes: speech, non-speech, bad-speech, unknown, music. The frames with a 
logit posterior higher than a specified threshold are simply considered as a speech. The 
segments consist only of a few speech frames are not counted as a speech segments. The 
recommended value for the logit threshold is —0.5. However, it is desired to obtain as much 
speech segments as possible in this case, so the logit threshold is set to —1.0 (Figure 5.1). 
The final segmented dev2 partition comprises 14 hours of speech segments. 

5.2 Language modelling 

The baseline language model was trained on 90% of Fisher database which is part of TID 
data corpus. This model was introduced in the work done by Egorova [5]. The TID 
language model was used in the experiments, where we tried to improve the models on 
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Figure 5.1: The plot of the score histogram of „La noche en 24 horas" T V show. The frames 
with score value less than —1.0 are recognized as non-speech. 

telephone speech domain. Several language models were also created on top of the combi­
nation of all datasets-TID, RTVE2018 and Custom T V . We decided to combine the text 
transcripts from devl and train from RTVE2018 database together with all transcripts 
from TID database and Custom T V database. We did experiments with both 4-gram and 
5-gram language models smoothed with Kneser-Ney algorithm. We achieved relatively 
good performance with 5-gram L M trained on all available data (see Table 5.1), but the 
HCLG transducer requires a lot of R A M during decoding, hence we could not use parallel 
decoders to accelerate the decoding process. Therefore, we decided to use 4-gram L M in 
further experiments, which was trained on the same portion of transcripts and achieved 
very similar performance. 

Language model propert ies W E R [%] 
Data iV-gram Lexicon size test dev2 
TID 3-gram 36k words 38.12 90.72 
T I D + R T V E + T V 4-gram 36k words 36.05 78.41 
T I D + R T V E + T V 4-gram 46k words 39.35 75.76 
T I D + R T V E + T V 5-gram 46k words 50.02 75.34 

Table 5.1: Results for n-gram language modelling improvements. The test partition from 
TID database contains telephone speech data, while the dev2 from RTVE2018 contains 
television speech data. High W E R on dev2 partition is caused by the decoding problem. 
We tried to decode unsegmented dev2 partition with online decoder from Kaldi , but it did 
not help much. 

22 



5.3 Acoustic modelling 

A l l D N N acoustic models share the same setup configuration. The training script is based 
on Kaldi NNet2 recipe 1 for Switchboard database. We decided to use this script because 
it is based on English telephone speech data, a very similar database to Fisher Spanish 
telephone corpus we used. We preferred the NNet2 implementation because we needed to 
decode online the audio recordings from dev2 partition of R T V E database due to inaccurate 
timing of the segments. Unfortunately, the online decoder does not work properly, so we 
decided to segment the data with V A D described in Section 5.1. 

The model is a feed forward neural network with 4 hidden layers and softmax output 
layer. More specifically, it is a T D N N network [29] with multiple levels of splicing. A l l 9 
frames are spliced together [t — 4, t + 4] at the input layer. The context of t — 5, t — 1 and 
t + 3 frames is spliced in a second layer. Other layers are connected without splicing. The 
output of each hidden neuron is computed by a p-norm function with p = 2. The p-norm 
function is a standard Maxout non-linearity used in the Kaldi toolkit [39]. 

Each frame is represented by 13-dim M F C C and 3-dim pitch features. Therefore, the 
input layer consists of 144 feature vectors. The D N N also contains the L D A transformation 
layer to transform the correlated input in feature space. The output of the D N N represents 
the posteriors of roughly 3700 different senomes. We model the acoustics of 169 Spanish 
phonemes. The phonemes with stressed vowels are represented as independent classes. 

T I D models 

The baseline G M M - H M M model was already built by Telefonica researchers using speaker-
adaptive techniques. The model is trained on 40-dimensional M F C C + Pitch features, on 
which L D A , M L L T and f M L L R transformations are applied. This model was used to align 
the labels with corresponding audio frames for D N N training. We also use it for data 
cleaning. The name of the model is tr i2LDA SAT. The baseline D N N - H M M acoustic 
model was trained for 9 epochs on the same 190 hours of telephone speech used in the 
G M M - H M M training. The model is named as nnet ms a v2. We have built also a 
D N N model, which is trained for 6 of epochs on TID database. This model was used in 
iterative training as a seed model, which was further improved in next iterations. In is 
called nnet ms a v l . The results of all models are shown in Table 5.3. 

R T V E 2 0 1 8 models 

Creating the baseline system on RTVE2018 database was not as simple as in case of TID 
database. The data in devl and dev2 partitions contains a lot of serious issues even though 
they were manually annotated by professional captioners. The problem was with the timing 
of segments (see Section 3.1.1). So we decided to remove the segments and discard the 
speaker information. 

Data cleaning 

The baseline system development began by cleaning the data. The transcripts in devl 
partition were manually extended by non-speech labels (i.e. noise or silence) in order 
to improve the silence model. After the data augmentation, the Kaldi 'segment long ut­
terance' and 'clean and segment' scripts were applied to automatically fix the timing of 

x

https: //github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5b/local/online/run_nnet2_ms.sh 
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Data Before 
partition cleaning [h] 1 s t cleaning [h] 2 n d cleaning [h] % Loss 

devl 57 39.25 41.16 -27.78 
dev2 15 10.54 11.04 -26.40 
train 433 - 82.24 -81.00 

Table 5.2: Number of hours of data before cleaning and after cleaning. 

transcripts (details were described in Section 3.2.1). The data cleaning was performed us­
ing the t r i2LDA SAT model. These scripts also removed utterances which were unlikely 
to occur in the recordings. 

Using the clean devl data, a new SAT model tri4a was trained. Finally, the whole 
cleaning process was performed again, but with the new G M M model. This resulted in 
41.16 hours of data in devl and 11.04 hours of data in dev2 (see Table 5.2). We lost more 
than 81.06% of train data. This is because the model was trained on a very small amount 
of data, but it is not a significant issue. 

D N N models 

Two D N N - H M M models were built. Both models share the same T D N N architecture, de­
scribed above. The nnet ms albayzin v l was trained on 41 hours of devl dataset 
with manually annotated non-speech segments. It was trained for 6 epochs, which corre­
sponds to 24 iterations. The training data of the second version consist both the devl and 
train datasets, which resulted into 123 hours. The model was trained for 15 epochs. By 
incorporating the train set, the overall accuracy decreased by 8.2% relative, from 32.04%. 
to 29.41%. Overall word error rate results are shown in Table 5.3. The best result on 
telephone speech domain was achieved with D N N - H M M model trained on TID database. 
On the other hand, the model trained on the combination of closed-captions and manual 
transcriptions achieved the best result on television speech domain. 

% W E R 
Name Data Type L M Lexicon test dev2 

t r i2LDA_ _SAT train"1" G M M TID 36k words 45.13 68.46 
nnet_ms_ _ a _ v l train"1" D N N TID 36k words 38.12 53.26 
nnet_ms_ _a_v2 train"1" D N N TID 36k words 37.26 53.16 

tri4a devl G M M M I X 46k words 60.37 43.69 
nnet_ms_ albayzin _ v l devl D N N M I X 46k words 58.31 32.04 
nnet_ms_ albayzin _v2 devl + train* D N N M I X 46k words 54.68 29.41 

Table 5.3: Word error rate [%] results for acoustic modelling improvements. The test and 
train+ data (telephone speech) are from TID database, while devl, train* and dev2 data 
(television speech) are from RTVE2018 database. The M I X language model refers to the 
combination of RTVE2018, TID and Custom T V databases. 
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Chapter 6 

Experiments with iterative training 

This chapter describes an experiment with acoustic model retraining using manually re­
corded television speech data (Custom T V database). The idea is to train iteratively 
several models per week of T V data (109 hours on average): in each iteration, we continue 
with training the model from previous iteration but with the data from the next week. The 
goal is to use these data for improving the performance of baseline model. The advantage 
of iterative training is a relative resistance to erroneous data. The inaccurate labels does 
not affect the performance as much as it is in the case of training from scratch because 
the learning rate at higher iterations is significantly lower. Another advantage is that this 
way can save a lot of computational time and resources in comparison with training from 
scratch. 

This chapter contains the description of iterative training procedure in Section 6.1, 
the results from evaluation are provided in Section 6.2. The results for television speech 
domain are interpreted in Section 6.3. Other experiments are described in Section 6.5. The 
experiments follow the findings described in Chapter 3. 

6.1 Description of the iterative training 

The model was first trained on telephone speech for 6 epochs. It was then retrained in a 
cycle on training data from both cleaned T V database and telephone speech database. The 
retraining continued until the exhaustion of the Custom T V database. A l l iterations used 
the same language model trained exclusively on telephone speech data (see Section 5.2). 
The formal description of iterative training is demonstrated in Algorithm 6.1. 

Data preparation 

Manually recorded television data were collected every day and are organized into buckets, 
where each bucket comprises audiovisual content of one week of recording. The M P E G - 2 
audiovisual broadcast was first converted into W A V audio stream subsampled to 8000 Hz 
frequency. The original audio was compressed using linear pulse-code modulation quanti­
zation on 16 bits. The W A V stream was then converted into M F C C + P i t c h features using 
Kaldi scripts. We did not store the original audiovisual content. The closed-captions were 
streamed in SubRip (SRT) format. Each caption consists of a time stamp and the corre­
sponding text. This text stream was processed and stored in files in Kaldi-like format. 
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Algorithm 6.1: Formal description of iterative training. 
Input: TID database - T I D D A T A 
Input: Clean T V database - T V _ D A T A 
Result: Several D N N acoustic models 

train the model for 6 epochs on T I D D A T A 
data <—TIDDATA 
tvcursor <— createDbCursor(TV_DATA) 
tvcursor.moveToFirst() 
while tvcursor.hasNextWeek() do 

tvdata <— tvcursor.GetNextWeek() 
tvcursor. MoveToNext Week () 
tvdata <— clean tvdata 
data <— combine data with tvdata 
i <— compute the last iteration of the model according to Equation 6.1 
retrain the model for 1 more epoch on data, start the training from iteration i 
evaluate the model 

end 

Data cleaning 

As mentioned in Section 3.1, the data are full of inaccurate transcripts. Consequently, 
not all 109 hours were used in training. These data were first cleaned with 'segment 
long utterances' and 'clean and segment' Kaldi scripts using t r i2LDA SAT G M M model 
(see Section 3.2.1 for details). The implicit parameters were slightly modified because the 
objective was to retain as much data as possible. 

The iV-gram order of biased language model was set to N = 7 because we believed that 
most words should occur in utterances in the same order as it was written in corresponding 
transcripts. We have also changed the maximum number of words for T F - I D F source 
document. The implicit value was adjusted from 1000 to 500 because the captions might 
be rearranged in real time due to a mistake in timing of the caption. Even though, altering 
this parameter meant lowering the accuracy of TF- IDF searching. Finally, the last changed 
parameter was word mismatch error rate, which is used in comparing the transcripts with 
decoded hypothesis. This parameter was set to W M E R = 70% from the implicit value 
of 50%. These changes resulted in 10 hours of clean data per week on average, whereas 
only 5 hours were obtained on average before parameter tuning. A l l results are shown in 
Table 6.1. 

Week 1 2 3 4 5 . . 18 Total 
Original [h] 94.32 102.91 105.63 113.35 105.43 . . . 114.97 1967.05 
Cleaned [h] 6.83 9.16 12.49 10.80 7.01 . . 11.62 181.30 

Table 6.1: Number of hours of original data per each week before and after cleaning. The 
last column shows the total number of hours of all 18 weeks. 
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Data combination 

The clean T V data were split into 10-hour blocks and then they were combined with data 
from previous iterations. In the first iteration, the data were mixed with telephone speech 
data in order to prevent catastrophic forgetting during the retraining of the first model. 
The mixture in the last iteration comprised all 18 weeks of Custom T V and the training 
partition of TID dataset, i.e. 367.3 hours. The audio was also force-aligned with transcripts 
using the G M M model. 

Model retraining 

A l l Kaldi NNet2 models are trained in the same fashion. The training labels are divided 
into archives also called egs. Each archive contains approximately 400 000 frames. The 
models are trained either on C P U or on G P U in parallel. At the beginning, the training 
runs on few processes, e.g. 4 (parameter 'initial jobs') and the number of processes rises 
during the training until it reaches the maximum (parameter 'final jobs'). The training 
is divided into several iterations with each iteration processing only a subset of training 
labels. Training for one epoch comprises minimum number of iterations, where all labels 
were used. The final model consists of the averaged combination of weight matrices trained 
in previous iterations (e.g. 20). 

In iterative training experiment, the first model was trained for a few epochs (e.g. 6) 
from scratch and the following models continued with training using the final iteration of 
the previous model (they are not trained from scratch again). In order to do this, we need 
to know the last iteration of the predecessor. The iteration can be set manually or it can 
be derived as: 

2 x epochs x frames . . 
iters = ; - . (6.1) 

400 000 x (initial jobs + final jobs) v ' 

System evaluation 

In the last step, the retrained model was evaluated using word error rate metric with zero 
insertion penalty. There was no need to recreate the W F S T because the final output layer 
of D N N model remained the same during all iterations. 

6.2 Telephone speech evaluation 

In this experiment we first trained the model on train set of TID database for 6 epochs (see 
nnet_ms_a_vl in Table 5.3) with W E R = 38.12% on TID test set. This model was then 
retrained in the same way as it was described in Section 6.1. 

The overall results of iterative training are demonstrated in Figure 6.1. As the results 
suggest, the impact of incorporating the data from out-of-the domain database - Custom 
T V is significant. The best word error rate result was achieved in 9 t h iteration, in which the 
training data consisted of 180 hours of telephone speech and 90 hours of television speech 
(270 hours in total). In comparison with the baseline model trained on TID database for 9 
epochs, the word error rate was decreased by 3.24% relative, from 37.26% to 36.05%. From 
9 t h iteration the word error rate varies between 36.22% and 36.54%. This phenomenon 
might be caused by the fact that the training data in higher iterations contains a lot of 
out-of-domain data. The model simply started to adapt on different domain and forgot 
some characteristics of telephone speech. 
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nnet_ms_a_v2 (baseline) 
Iterative training 

Figure 6.1: Overall W E R results of iterative training (blue line) evaluated on the test set 
of TID database. The dashed line indicates the W E R result of the baseline model trained 
for 9 epochs on TID database. 

6.3 Television speech evaluation 

Thanks to the assumption made in the previous section we were curious about how the 
models would perform on television speech domain. In this experiment we used the same 
systems (including the baseline) and evaluated them on dev2 dataset from RTVE2018. The 
word error rate was significantly decreased by incorporating Custom T V data as depicted in 
Figure 6.2. It was reduced by 16.23% relative, from 53.16% to 44.54%. This finding is not 
very surprising because the Custom T V database is very similar to the RTVE2018 database. 
The only difference is in the recorded T V channels. The green dashed line demonstrates 
the performance of the model trained on RTVE2018 database (see nnet_ms_albayzin_v2 
in Table 5.3). 
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Figure 6.2: Overall W E R results of iterative training evaluated on the dev2 set of RTVE2018 
database. The black dashed line indicates the W E R result of the baseline model trained on 
TID database, whereas the green dashed line indicates the W E R result of model trained 
only on RTVE2018. The blue solid line presents the performance of trained models. 
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6.4 Comparison with training from scratch 

In this experiment both training approaches were compared in terms of both the accuracy 
and the necessary resources. The older version of processing pipeline was used in the 
experiment, which differs only in the data cleaning step. In this version was extracted only 
5 hours of data per week on average instead of the above mentioned 10 hours. 

The training from scratch was done with a fixed number of epochs. The model in the 
first iteration was trained from scratch for 6 epochs (i.e. 1 + 5), whereas the model in the 
last iteration was trained for 13 epochs (i.e. 8 + 5). The procedure remained the same for 
iteratively trained models. The performance of both procedures is depicted in Figure 6.3. 
The accuracy of models trained from scratch varies between 37.61% and 37.3% except the 
6 t h iteration (drop to 36.76% W E R ) . The overall performance of these models is worse 
than the accuracy of the baseline model. It is caused by mixing two different domain data 
and training first iterations with relatively high learning rates. On the other hand, the 
iteratively trained models outperformed not only other ones but also the baseline model. 
The best result was achieved during 4 t h iteration with W E R = 36.74%. 

4 5 
Iteration 

Figure 6.3: Comparison between iterative training and training from scratch. 

The time consumption was also measured. It includes only the training time because 
both procedures differed only in this step, everything else remained the same. The training 
time of the first six models was measured in this experiment. Table 6.2 shows the measured 
values in hours. The last column presents the sum of all training times. As the experiment 
suggests, the iterative training is faster by 9 hours. In next iterations, the saving per 
training is expected to be even higher. 

Week 1 2 3 4 5 6 Total 
Scratch [h] 4.31 4.51 4.66 4.71 4.96 4.99 28.14 

Iterative [h] 3.33 2.49 3.26 2.72 4.10 3.35 19.25 
Saving [h] 0.98 2.02 1.40 1.99 0.86 1.64 8.99 

Table 6.2: Difference between training from scratch and iterative training in terms of the 
time consumption. The first 6 models were trained for 28 hours in the case of training from 
scratch and for 19 hours in the case of iterative training. The total saving represents almost 
9 hours. 
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6.5 Other experiments 

The iterative training was used to test two other approaches. In the first experiment, we 
tried to filter words based on their frequency and retrained the model on the utterances, 
which contained less frequent words. In another experiment, we tried to use speaker-
adaptive techniques in order to boost the performance of retrained models. 

6.5.1 Word filtering 

The idea of this experiment was to incorporate less frequent phonemes into next iterations of 
the training. The intent was to balance the amount of training data representing individual 
acoustic classes. We tried to do it by counting the word occurrences in the training set. Only 
those utterances were included in next iterations, which contained words with frequencies 
beneath the specified threshold. The results after 3 r d iteration are shown in Table 6.3. The 
best W E R was achieved with threshold equal to 10. The results were still worse than the 
W E R of the iteratively trained model without word filtering. However, there is still a real 
chance to obtain better results by counting phonemes instead of words. 

Threshold 10 25 50 100 oo Baseline 
% W E R 36.98 37.15 37.06 37.03 36.82 37.26 

Table 6.3: W E R results of the word filtering experiment after 3 iteration of iterative 
training. A l l systems outperformed the baseline model. The best W E R was achieved with 
tr = 10, however it is still worse than the W E R of the system without filtering. The W E R 
result with tr = oo refers to the experiment where no filtering was performed. 

6.5.2 Speaker adaptation 

Another experiment was done with speaker adaptation. The objective was to annotate 
speaker turns in audio in order to transform the features with feature-space M M L R trans­
formation. We believed that the adapted features should provide more information during 
the training, hence the accuracy should improve. However, the closed captions do not con­
tain any speaker information. Therefore, we made an assumption that the speakers were 
changing every T V show without repetition, i.e. each segment of t minutes was said by one 
unique speaker. We experimented with 15 minute and 30 minute long segments according 
to the average duration of a T V show. However, this experiment simply did not work. 
After 20 iterations of iterative training the W E R differed from 40.3% to 39.5% in both 
cases. The results were much worse than the W E R of the baseline model trained on much 
smaller TID database. Such bad results were caused by the inaccurate speaker adaptation. 
The duration of one speaker turn was too long. 
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Chapter 7 

Experiments with adaptation 
on television speech domain 

In Section 6.3, we found that incorporating the Custom T V into training corpus had a 
positive effect on overall accuracy of the acoustic model. This fact motivated us to improve 
the acoustic model training process. The idea was to select the data from Custom T V 
database, which would enhance the most the baseline system trained on a telephone speech. 
A l l experiments used the clean 180 hours of data extracted from manually recorded T V 
database. The nnet_ms_a_vl acoustic model was chosen as the baseline model. These 
experiments simulated the adaptation on television speech domain while we did not have 
proper in-domain data for training. 

In the first experiment, the data were split into buckets according to the utterance-level 
confidences of the baseline model. Several acoustic models were then trained separately 
on each bucket. Details are described in Section 7.1. In the next experiment, we tried to 
incorporate the information about the target evaluation dataset. The goal was to include 
the utterances into the training corpora with similar characteristics to the target television 
speech domain. More information are provided in Section 7.2. 

Finally, both methods were compared in the last experiment, where we built several 
models using different numbers of hours of training data. We also tried to combine the 
data from both techniques. Details are provided in Section 7.3. 

7.1 Data selection based on utterance-level confidences 

This experiment is based on findings in Section 3.2.2. A l l 180 hours of T V data were divided 
into buckets according to the confidence score. The score was estimated for each utterance 
using the word lattice from data cleaning step. We used the 'lattice-scale', 'lattice-to-nbest' 
and 'nbest-to-linear' commands from Kaldi to compute the score. The output of the last 
command consists of two floating point values. The first value is the graph cost, i.e. a sum 
of the L M cost for words in the utterance. The second value stands for the acoustic cost. 

The score was represented as: 

Cutt = -(VJLM + WAM), (7.1) 

where cutt is a utterance-level confidence score, WLM is the cost of the language model 
and WAM is a the cost of the acoustic model. The score improves along with the model's 
confidence in the utterance. The utterances were sorted according to the score and split 
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into 20 buckets of 9 hours each. Subsequently, each bucket was combined with training 
corpora from TID database. Finally, 20 acoustic models were trained for each training 
dataset. 

7.1.1 Results 

Figure 7.1: Word error rates according to the confidence score. The x-coordinate represents 
the average confidence score per bucket. The labels mark the bucket number. The bucket 
with high confidence score is annotated with label „1". 

The models were trained iteratively like in the previous experiments. The training 
continued from the last iteration of nnet_ms_a_vl for next 3 epochs. They were evaluated 
on both television and telephone speech domain. The word error rates are depicted in 
Figure 7.1. 

The models trained on the buckets with averaged confidence score between —700 and 
— 1300 obtained better accuracy on television speech domain (Figure 7.1a) than the other 
models. This discovery was quite surprising, so we decided to analyse the data. We found 
that these buckets contained longer utterances than the buckets with higher confidence 
score. The short double-word utterances with ordinary words like „el", did 
not improve the model as much as the utterances with wider context. On the other hand, the 
model trained using these utterances obtained the best result on telephone speech domain 
(Figure 7.1b). We found that the original model did a lot of substitutions on these words, 
so it makes sense that incorporating them into training dataset enhanced the performance. 

7.2 Data selection based on similarity with target domain 

In this experiment, the goal is to find similar data with target domain from Custom T V 
database. It is possible to search for them in whole database. However, since we are not 
sure about the transcripts, we decided to do this experiment on clean 180 hours of television 
speech. The goal is to find covariance matrices estimated on raw D N N posteriors, which 
are similar with the covariance matrix estimated on test dataset from target domain (e.g. 
RTVE2018). 

At the beginning, the covariance matrix was estimated on the raw outputs of the base­
line model for RTVE2018 dev2 dataset, i.e. the outputs from the last affine transform layer 
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before the normalization layer and the softmax function of the D N N model (see Figure 3.3). 
The rows and columns related to the silence classes were removed from the matrix. Af­
terwards, the covariance matrices were estimated for each bucket arranged according to 
the confidence score from the previous experiment. Eventually, each covariance matrix was 
compared with the dev2 matrix. The objective was to rank each bucket according to the 
similarity with dev2 dataset. 

7.2.1 Comparison of matrix similarity measuring methods 

We compared two different ways of measuring the similarity between two matrices. The idea 
was to represent the similarity by a scalar. In the first case, the similarity was measured 
according the equality between their eigenvalues. Mathematically, two similar matrices 
have similar eigenvalues. Therefore, the similarity was estimated as: 

n n 
£

a
« £

b
^ ] T A

a i
- ^ A b i ^ 0 , (7.2) 

i=l i=l 

where A
ai

 and A^ denotes the i-th eigenvalue of covariance matrix 5]a and X!b respectively. 
Since the sum of eigenvalues is the same as the trace of original matrix, the equation can 
be rewritten as: 

S a « S b t r a c e ( £ a ) - t r a c e ( £ b ) 0. (7.3) 

In the second case, the similarity was measured as a Frobenius norm of a matrix subtraction 
according to the Equation 3.7. 

7.2.2 Results 
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Figure 7.2: The comparison between similarity based on the trace and the Frobenius norm. 
The labels indicate the buckets rated according to the confidence. 

The results of both techniques are depicted in Figure 7.2. Since we did not change data 
in the buckets from previous experiment, both figures shows the same word error rates. 
The objective was to compare both matrix similarity metrics. Figure 7.2a refers to the 
similarity based on the trace, while Figure 7.2b refers to the similarity based on Frobenius 
norm. The bucket with the lowest confidence score (20) can be easily filtered out using both 
methods, while the bucket with the highest confidence score (1) can only be distinguished 
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using the Frobenius norm. It is desirable to filter both buckets out because both of them 
obtained very high word error rates. Consequently, we decided to use the Frobenius norm 
for measuring similarity. 

Figure 7.3 depicts the difference between covariance matrices estimated on the best 
(Figure 7.3a) and the worst bucket (Figure 7.3b). The matrix estimated on 14 t h bucket 
is denser than the other one. It means that the 14 t h bucket covers greater variability in 
speech signal. 

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 

(a) Covariance matrix estimated on 14 t h bucket, (b) Covariance matrix estimated on 1 s t bucket. 

Figure 7.3: The comparison between covariance matrices. Both matrices are plotted using 
the qualitative color mapping to highlight the differences. 

7.2.3 Generic recipe 

Finally, we present the generic recipe for finding the best utterances according to similarity 
with the target domain: 

1. Silence removal Silence can be removed from closed-captioned data with V A D . 
This step is optional because the silence classes are not used in the covariance matrix 
estimation. 

2. Splitting data into buckets The closed-captioned data are split into several buck­
ets. The granularity of the buckets is constrained by the quality of the covariance 
matrix estimation. If the buckets contain more data, the covariance matrix will be 
estimated better. But there is a chance that better utterances will be mixed with 
some worse ones and thus the metric will not work properly. 

3. Covariance matrix estimation The covariance matrix is estimated for each bucket 
as well as on the whole target domain dataset. The silence classes are removed from 
the DNN's raw output vector before the estimation. 

4. Computation of the similarity metric The target domain covariance matrix is 
compared with each matrix estimated on the buckets using Frobenius norm similarity, 
i.e. according to Equation 3.7. 
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5. Building the training corpus The utterances from buckets with low dissimilarity 
are included in the training corpus. 

6. Acoustic model training Eventually, the A M is trained on the created corpus. 

7.3 Comparison of both selection metrics 

In the final experiment, both techniques for data selection were compared. The closed-
captioned data were split into 10, 25, 50, 75 and 100 hours long datasets according to the 
confidence score and the similarity with dev2 dataset from R T V E database. Random data 
selection was also used to provide a baseline for comparison. 

In the case of the confidence splitting, the data from the best buckets were taken. That 
means that the first lOh dataset contained the data from 12 t h bucket, the 25 hours dataset 
contained the data from 11 t h , 12 t h and 13 t h bucket and the 100 hours dataset contained 
the date from buckets [7... 17], other datasets were created using the same procedure. 

In case of datasets split based on the similarity, the covariance matrices were estimated 
on 1 minute long buckets and then compared with the matrix estimated on the dev2 dataset. 
The datasets contained the utterances from the most similar buckets. 

In addition, we also experimented with combination of both approaches. For instance, 
the 10 hours long dataset contained the randomly picked utterances from both the 10 
hours dataset based on the confidence and the 10 hours dataset based on the similarity. 
The overlapping between the datasets is displayed in Table 7.1. The Conf and Frob lOh 
datasets contain only 5.72% of common utterances, whereas the lOOh dataset contains 
55.32% shared utterances. The reason is that the 100 hours of data were selected from 180 
hours long close-captioned database. 

Dataset [h] 10 25 50 75 100 
Conf vs. Sim 
Conf vs. ConfSim 
Frob vs. ConfSim 

5.72 
52.39 
51.45 

14.74 
54.23 
54.12 

27.99 
62.41 
54.77 

41.75 
68.36 
64.70 

55.32 
71.84 
71.74 

Table 7.1: Overlapping between the datasets. The numbers show the percentage of common 
utterances in both datasets. The abbrv. Conf stands for datasets arranged based on the 
confidence, the Sim stands for datasets arranged according to the Frobenius norm similarity 
and the ConfSim stands for datasets with the combination of both approaches. 

7.3.1 Overall results 

A l l datasets were combined with the original training partition from TID database. The 
acoustic models were trained on each training corpus. Moreover, we compare both training 
from scratch and the iterative training. The models were trained for 8 epochs in case of 
training from scratch. The transfer-learning was done by continuing from the last iteration 
of nnet_ms_a_vl D N N model (5 epochs). The retraining was stopped after 3 additional 
epochs. The baselines were trained using all 180 hours of clean close-captioned data. A l l 
models were evaluated on both television speech domain and telephone speech domain. 

As the results from Figure 7.4 suggest, the models trained from scratch outperformed 
the models trained iteratively. It turns out that the most efficient way is to select utterances 
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based on the confidences in the case of iterative training. However, the other models also 
performed well. The biggest difference between both metrics is illustrated on 70 hours long 
adaptation dataset, where the similarity metric outperformed other techniques with the 
model trained from scratch. The same trend continued until the last dataset except the 
one with 75h, where the model performed a slightly better using the confidence metric. 
Surprisingly, the combination of both metrics performed consistently worse in all scenarios. 
Detailed results are provided in Table B.5. 

Adaptation data [h] 

Figure 7.4: Overall results of both selection metrics evaluated on television speech domain 
(dev2 from RTVE2018). The dashed lines presents the W E R results using the iterative 
training, while the solid lines presents the results using training from scratch. The x-axis 
shows the number of hours of each dataset not counting the hours from TID database. 
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Chapter 8 

Conclusion 

In this thesis, we have dealt with the application of subtitled data in an automatic speech 
recognition task. More precisely, we focused on audiovisual content with close-captions from 
a television broadcast. The main idea was to incorporate these data into a training cor­
pora in order to enhance the original automatic speech recognizer. This was accomplished 
by improving the acoustic models. We analysed the closed-captioned data for commonly 
occurring problems. These findings were then used in the following research. 

Great effort was dedicated to data cleaning because of imperfections in the transcripts. 
We managed to successfully extract 180 hours of high quality labels. The clean data were 
then used in two experiments. The goal of the first one was to enhance acoustic models 
using transfer learning techniques. The initial model was first trained on clean telephone 
speech data from the TID database. The model was then iteratively retrained using the 
clean close-captioned data. Based on the results, all models managed to achieve lower 
word error rate in comparison with the model trained only on telephone speech database. 
Moreover, the accuracy improved on the television speech evaluation dataset as well. 

In the next experiment, we investigated these findings more closely. Our goal was to 
detect the close-captioned data samples which provide the greatest model improvement. We 
proposed a novel method for selecting data based on similarity with the target domain. The 
method was compared with selection based on sentence-level confidence. The results suggest 
that both selection methods show similar performance across the experiments. On one hand, 
the accuracy was higher in case of models iteratively trained on utterances selected based on 
confidence. On the other hand, the models achieved lower word error rates using similarity 
metric in case of training from scratch. It is noteworthy that both described methods 
achieved better results than the models trained on randomly selected data. Furthermore, 
incorporating the closed-captioned data had a positive effect on accuracy in all experiments. 

In the thesis, we also managed to create very accurate A S R system trained on the 
RTVE2018 database with W E R = 29.41%. To our best knowledge, this system can easily 
compete with the models presented in the Albayzin Challenge of the IberSpeech 2018 con­
ference (provided that we improved the language model as well, which was not the intent 
of this work). 

8.1 Future research 

We did not cover some other aspects, which could affect the overall performance. The 
obtained results could be improved by tuning the parameters of the deep neural network. 
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We did not experiment with larger T D N N models consisting of 5 or more hidden layers. 
Using a wider context of input features could also increase the overall accuracy as well 
as the number of neurons in the hidden layers. However, the greatest improvement could 
be achieved by tuning the language model in all scenarios. We also did not research the 
impact of softmax activations on covariance matrix estimation as well as the impact of 
log-posteriors or other D N N outputs in the experiment with similarity selection. In the 
near future, I would like to continue working on this research. 
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Appendix A 

Manual 

The attached C D contains the source codes for each experiment. The codes are divided 
into following directories: 

• exp-albayzin - This directory provides all necessary scripts for data cleaning and 
model training using RTVE2018 database. A reader may find here also the script for 
dev2 dataset segmentation. The script uses V A D developed by Karel Veselý [27]. The 
V A D itself is not provided. The directory also contains the script for downloading 
the data. However, the user have to know the credentials because the database is not 
publicly available. 

• exp-data-selection - This is the main directory with the source code for the adap­
tation experiments. The directory contains also R E A D M E file, which should help a 
reader to understand how the experiments were done. 

• exp-filtering - This directory contains scripts to run the experiments using word 
selection. The older version of the experiment is in exp-fiTtering-all. The difference 
is that the new version uses datasets of equal size while the other one do not. 

• exp-iterative-training - This directory contains the main script (i.e. run_tv_-

recordings. sh) for iterative training on top of Custom T V database. 

• internal - This directory includes miscellaneous scripts for data preprocessing. 

A . l Guide for data selection based on similarity with target 
domain 

This section provides detailed instructions how to obtain the results presented in Chapter 7. 
The process can be described as follows: 

1. Clean data using segment_long_utterances. sh and clean_and_segment_data. sh 
(see script exp-iterative-training/prepare_data. sh). 

2. Sort data by sentence-level confidences and train the models: 

(a) Tag each utterance with its confidence with get_conf idence. sh script. 

(b) Split utterances into 20 buckets based on the confidence with 
split_utt_conf.sh. 
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(c) Combine each bucket with TID database. 

(d) Train the model for each bucket with train_iter_general. sh and 
train_scratch_general.sh 

3. Find similar data to target domain (dev2) with Frobenius norm similarity metric: 

(a) Use voice activity detector to remove the silence 
(e.g. by vad_remove_silence.sh). 

(b) Split data into 1 minute long chunks divide_utt .py. 

(c) Estimate covariance matrix on target domain data with 
compute_covariance_mat.sh. 

(d) Compute the similarity with the target domain for each data chunk with 
compute_frobenius_metric.sh. 

(e) Merge data into 20 buckets according to the similarity using 
merge_frobenius_buckets.sh. 

(f) Combine each bucket with TID database. 

(g) Train models with train_iter_general. sh and 
train_scratch_general.sh 

or train one model on top of iV-best buckets with train_klc_best. sh. 
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Appendix B 

Detailed experimental results 

In this appendix are provided the detailed results for all experiments, which do not fit into 
the main text of this thesis. 

Week 
W E R [%] 

1 2 3 4 5 6 7 8 9 
37.08 37.11 36.82 36.68 36.56 36.17 36.38 36.29 36.05 

Week 
W E R [%] 

10 11 12 13 14 15 16 17 18 
36.34 36.41 36.43 36.22 36.34 36.49 36.27 36.38 36.54 

Table B . l : The word error rates of the models presented in Section 6.2 

Week 
W E R [%] 

1 2 3 4 5 6 7 8 9 
49.13 48.16 47.44 47.11 46.81 46.50 46.24 45.94 45.75 

Week 
W E R [%] 

10 11 12 13 14 15 16 17 18 
45.53 45.58 45.40 45.23 44.95 45.02 44.82 44.66 44.54 

Table B.2: The word error rates of the models presented in Section 6.3 

Week 1 2 3 4 5 6 7 8 
Iterative training 37.59 36.88 37.00 36.74 36.84 36.83 36.88 36.79 

Training from scratch 37.43 37.30 37.43 37.34 37.31 36.76 37.61 37.35 

Table B.3: The word error rates [%] of the models presented in Section 6.4 
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Bucket 1 2 3 4 5 6 7 8 9 10 
dev2 50.52 49.85 49.78 49.69 49.49 49.37 49.37 49.24 49.14 49.41 
test 36.97 37.03 37.06 37.34 37.42 37.14 37.21 37.18 37.07 37.43 

Bucket 11 12 13 14 15 16 17 18 19 20 
dev2 49.20 49.13 49.29 49.09 49.31 49.15 49.62 49.50 49.70 50.23 
test 37.50 37.27 37.62 37.22 37.26 37.53 37.63 37.47 37.44 37.44 

Table B.4: The word error rates [%] of the models presented in Section 7.1 

Iterative training 

Data [h] 10 25 50 75 100 
Random 

Similarity 
Confidence 

ConfSim 

49.26 48.17 47.24 46.63 46.29 
49.20 48.06 47.12 46.45 46.18 
49.11 47.86 47.03 46.43 46.03 
49.27 48.05 46.97 46.56 46.13 

Training from scratch 

Random 
Similarity 

Confidence 
ConfSim 

47.91 46.77 45.82 45.19 45.11 
47.82 46.43 45.64 45.17 44.83 
47.88 46.61 45.75 45.07 44.90 
47.77 46.91 45.76 45.32 44.96 

Table B.5: The word error rates [%] of the models presented in Section 7.3 
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