
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

ASL FINGERSPELLING RECOGNITION USING SLOW
FEATURE ANALYSIS

BAKALÁRSKÁ PRÁCA
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN WINKLER
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

ROZPOZNÁVANIE ASL HLÁSKOVANIA POUŽITÍM SLOW
FEATURE ANALYSIS
ASL FINGERSPELLING RECOGNITION USING SLOW FEATURE ANALYSIS

BAKALÁRSKÁ PRÁCA
BACHELOR’S THESIS

AUTOR PRÁCE MARTIN WINKLER
AUTHOR

VEDÚCI PRÁCE Ing. BURGET LUKÁŠ, Ph.D.
SUPERVISOR

BRNO 2014

Abstrakt
Táto práca popisuje proces testovania slow feature analysis ako metódy, ktorá extrahuje
robustné črty z komplexných obrazových dát americkej znakovej reči. Za účelom testova-
nia bol vytvorený systém v programovacom jazyku python, ktorý zjednodušuje testovanie
a ponúka bohatú škálu meniteľných parametrov aby umožnil užívateľovi rôzne testy za
účelom zistenia nakoľko použiteľná je táto metóda na klasifikáciu a rozpoznávanie gest rúk.
Teoretická časť predstaví slow feature analysis, diskutuje o štruktúre systému a popisuje
dáta na ktorých bude metóda pozorovaná. V praktickej časti je metóda podrobená analýze
úspešnosti na videných a nevidených rečníkoch, jej schopnosť adaptovať sa na vyšší počet
gest a zaujímavé formátovanie dát v pokuse vylepšiť jej úspešnosť.

Abstract
This work describes the process of testing slow feature analysis as a method of extracting
rhobust features from complex image data of american sign language. For purposes of
testing a system in python is created that facilitates test runs and offers rich scale of
changable specifications to allow the user run various tests in order to determine how
viable the method is for classification and recognition of hand shapes. The theoretical part
introduces the slow feature analysis, discusses the structure of the system and describes
the dataset on which the method is to be observed. In practical part the method was
subjected to performance analysis on seen and unseen speakers, its viability with higher
number of gestures and some interesting input data formatting in attempt to improve the
performance.

Kľúčové slová
Analýza pomalých komponentú, hierarchická architektra, MDP - Toolkit pro modulárne
spracovanie dát, vlastné čísla a vektory, singulárny rozklad, ASL - Americká znaková reč

Keywords
Slow feature analysis, hierarchical architecture, MDP - Modular toolkit for Data Processing,
eigenvalues and eigenvectors, singular value decomposition, ASL - American sign language

Citácia
Martin Winkler: ASL Fingerspelling Recognition Using Slow Feature Analysis, bakalárská
práca, Brno, FIT VUT v Brně, 2014

ASL Fingerspelling Recognition Using Slow Feature
Analysis

Declaration
I hereby declare that this thesis is my original work and it has been written by me in its
entirety under the supervision of Ing. Lukáš Burget, Ph.D. and Nicolas Pugeault, Dr. Rer.
Nat. . I have faithfully cited all sources used in the thesis.

. .
Martin Winkler
August 7, 2014

Acknowledgments
First and foremost I would like to thank my english supervisor Nicolas Pugeault, Dr. Rer.
Nat. for insightful advice,friendly approach that kept me on the right track and his will
and genuine interest to consult new ideas and improvements at any time. Next I would like
to thank my czech supervisor Ing. Lukáš Burget, Ph.D. not only for his formal correction
of this document but mainly for introducing me to machine learning and recognition as
without his enthusiasm and will to pass his knowledge onto others I highly doubt that I
would have chosen and pursued this thesis.

c© Martin Winkler, 2014.
Táto práca vznikla ako školné dielo na Vysokom učení technickom v Brne, Fakulte in-
formačných technologií. Práce je chránená autorským zákonom a jej užitie bez udelenia
oprávnenia autorom je nezákonné, s výnimkou zákonom definovaných prípadov.

Contents

1 Preface 3

2 Slow feature analysis 4
2.1 The slowness principle . 4
2.2 The optimization problem . 4
2.3 The algorithm . 5

3 Hierarchical network 7
3.1 Relation to Slow feature analyis . 7

3.1.1 Overlapping . 8

4 Dataset 9
4.1 Origin . 9
4.2 Data volume . 9
4.3 Variance accross letter . 9
4.4 Variance accross speakers . 9
4.5 Background noise . 10

5 System design 12
5.1 Goal formulation . 12
5.2 General outline . 12
5.3 Hierarchical network specifications . 12
5.4 Image preprocessing . 13
5.5 MDP Toolkit . 14
5.6 Nodes . 14

5.6.1 Input and output formatting . 14
5.6.2 SFANode . 15

5.7 The core system overview . 15
5.8 Cell composition . 15

6 System implementation 17
6.1 Segmentation . 17
6.2 Preprocessing with PCA . 18
6.3 Hierarchy of SFA units . 18
6.4 Generalized eigenvalue problem . 19

6.4.1 Removing insignificant dimensions 20
6.4.2 Singular value decomposition . 20
6.4.3 Accuracy comparison . 22

1

7 Testing the model 23
7.1 Trained speaker . 23

7.1.1 Trainset size dependency test . 23
7.1.2 Performance accross varying number of letters 24
7.1.3 Extracted feature analysis . 25

7.2 Unseen speaker . 26
7.2.1 Performance changes based on number of training signers 27
7.2.2 Speaker detection . 28
7.2.3 Speaker ordered data . 28

8 Conclusion 30

2

Chapter 1

Preface

The problems of classification and recognition are becoming more and more popular. The
aplications ranging from QR code reading, through OCR, face recognition and voice recog-
nition have flooded the market and people are starting to move away from ever so restricting
keyboards and are actively searching for alternate and more natural ways to communicate
with machines.

Gesture recognition is one of the possible replacements of traditional input as it is easy to
perform for everyone and much closer to innate human behavior than typing. Furthermore
the gestures are easier to remember than shortcut combinations as they involve full body
experience. There are many gesture systems out of which one of the most widely used is
unarguably the sign language which however, brings small variations among letters and
great variation among speakers therefore being one of the more difficult ones to recognize.

Main goal of this thesis is to observe and evaluate how does one of the perspective
methods, slow feature analysis, cope with this problem. In the practical part a system
for learning and testing the extracted knowledge oF features using both seen and unseen
speakers will be created, implemented and conclusions of the usability of the method will
be drawn using variety of tests.

3

Chapter 2

Slow feature analysis

2.1 The slowness principle

Visual data interpreted by brain are received by cones and rods in the eyes. The inputs
alter constantly at very high rate. Color of an object is a manifestation of the light reflected
by the object. Any motion of an object causes displacement which in turn alters the angle
and intesity of the light that hits the surface of the object. Even minimal change in position
causes great variation of the input signal that gets read by our eyes.

How do we then see the objects, their relative positions and movements? The brain
bases its representation on the fact that objects have common structures which then lead
to hidden similarities in the visual input.[6] Based on those similarities the brain processes
the signal and finds patterns that are changing slowly and that we perceive as moving.
Those objects change position in orders of seconds but the visual input varies much faster.

The idea behind the slowness principle is to process the fast changing inputs to find
slowly varying reasons that alter the visual input signal. For our example this would be
trying to find and identify the object that is moving thereby changing the light reflects off
of it causing the signal processed by our eyes to change.[6]

2.2 The optimization problem

The goal of the Slow feature analyis, from now on referred to as SFA, is to find a function
that when received the visual input signal the output signal generated will vary as slow as
possible.[3, 6] However, constant solution, no variation at all, is not sought after and hence
the specification is - Try to find a function that alters the input signal in such a way that
the output is a signal with slowest possible variation that is not constant and still carries
information.

The formulas in this section were taken from [3]. Given the input signal x(t) =
[x1, x2...xt], function g(a) new singal y(t) = [y1, y2...yt] is calculated as:

yj(t) = gj(x(t)) (2.1)

We want to assure that the the output signal y(t) is as slowly varying as possible which
means that for each j ∈ 1...j is the following value minimal:

∆j := ∆yj := 〈ẏ2j 〉 (2.2)

4

Constraints need to be listed as the trivial constant solution is not what we are looking for.

〈yj〉 = 0 (2.3)

Describes zero mean that helps to avoid the unwanted constant solution.

〈y2j 〉 = 1 (2.4)

Unit variance also helps with not finding constant solution.

∀j′ < j〈yj′yj〉 = 0 (2.5)

Makes sure there is no correlation and orders them so that the slowest component is first,
second slowest second and so on and so forth. The resulting optimization however is a
problem of variational calculus that is very difficult to solve. It is possible to simplify the
problem by restricting the components of the function g(v) to be only linear combination
of a finite set of nonlinear functions. This restriction applies for the algorithm outlined in
the next section.

2.3 The algorithm

At start we only have the input signal that x(t) has I dimensions. We are searching for the
input-output function g(x) specified in the optimization problem. Due to the restrictions we
decided to put in place in order to simplify the problem the input-output function contains
gj components which are a weighted sum over a set of K nonlinear functions.[3]

hk(x) : gj(x) :=
∑

k = 1Kwjkhkx (2.6)

Where the wj are the weights that need to be learnt. Applying each of the h1tohk on the
input signal the expanded signal z(t) is created (Step B of figure 2.3:

z(t) = h(x(t)) (2.7)

The new input output function to optimize then becomes:

∆(yj) = 〈ẏ2j 〉 = wT
j 〈żżT 〉wj (2.8)

The expanded signal z signal needs to meet the constraints specified by 2.3, 2.4 and
2.5. All of the conditions are automaticaly met if the wieghts w are orthonormal as stated
in[3] and proven by following equations.

〈yj〉 = wT
j 〈z〉 = 0 (2.9)

Where 〈z〉 is 0
〈y2j 〉 = wT

j 〈zzT 〉wj = 1 (2.10)

where 〈zzT 〉 is an identity matrix

∀j′ < j〈yj′yj〉 = wT
j′〈zzT 〉wj = wT

j′Iwj = 0 (2.11)

The signal needs to be normalized which is done in the stage C of Figure 2.3 by getting
the unit covariance matrix. This is done by applying the sphering matrix S on matrix

5

Figure 2.1: Hierarchical architecture demonstrating overlapping on bottom layer

〈z̃T 〉−〈z̃〉 The first component of the input-output function then is the normed eigenvector
of the smallest eigenvalue of 〈żżT 〉 as it minimizes the ∆y1 in our optimization equation.
The other components are the eigenvectors of eigenvalues of the same matrix ordered from
smallest to greatest.

Once the model has been trained and is tested the algorithm is done the same way as
written above but the normalization has to occur with the same offsets and factors[3] as
the training signal.

6

Chapter 3

Hierarchical network

Hierarchical network is such system where each but one unit of the system is subordinate
to one or more units that are at higher level of the system. Due to the the most common
shape of a hierarchical system it tends to be visualised as a pyramid.

Hierarchical structure has found many uses from power distribution to classification of
species and nomenclature. In computer science it is used to categorize domains, packages
and filesystems to mention a few. It is no surprise that this system also found its place in
machine learning as it can describe increasing level of abstraction with respective levels. [7]

3.1 Relation to Slow feature analyis

The forshadowed capability to represent the higher level of abstraction with each layer of
the hierarchy fits the needs of the slow feature analysis as more and more robust features
are to be extracted by each step. The idea behind the system is to run the SFA in form
of layers where each layer corresponds to one level of the hierarchy. The layers depict
increasing abstraction of the features extracted from the SFA as the size of the receptive
field grows with the layer number starting at zero at the bottom as can be seen in figure
3.1

The zeroth layer represents the image as a set of receptive fields, cells, each covering a
certain segment of the image. From layer to layer multiple neighboring receptive fields are
joined rendering a receptive field with greater area in respect to the processed image. The
final layer containing only one cell is in fact a receptive field covering the entire image.

Thanks to the sequential training of the network’s layers the function space that we
are looking for the function in for can be much higher thanks to dimensionality reduction
in each of the layers. The hierarchical approach therefore allows for expansion of the raw
input data into function space of polynomials of degree of q = ak, where a is the degree to
which the signal is expanded in each layer and k is the number of layers of the system.

The output of each of the layers is the n of the slowest varying components of the input.
Since each of the cells of higher layer joins the outputs of multiple cells of the lower layer
the input is a set of outputs of covered cells from the previous layer. Putting the features
of multiple receptive fields together this way allows to extract a relationship that cannot
be extracted from either of the signals thanks to the polynomial expansion of the signal

7

Figure 3.1: Hierarchical architecture demonstrating overlapping on bottom layer

3.1.1 Overlapping

Each of the segments represents a receptive field on the image. Overlapping of the segments
provides continuos information flow of the feature from one segment to another. This fact
improves the performance as the feature does not appear only in one segment but in all of
the segments that have overlap and the feature present within this area.

8

Chapter 4

Dataset

4.1 Origin

The dataset on which the system was trained and tested contained exclusively images ex-
tracted using Kinect where the hands were detected and cropped using automated detection
software. The images were not edited or preprocessed in any way before coming to the sys-
tem and therefore were good representation of data that would be extracted in possible real
life applications of the system.

4.2 Data volume

The volume of training and testing data is crucial to just about every classification and
recognition method. The dataset consisted of 5 speakers where each speaker recorded
24 letters. The letters excluded from standard english alphabet were j and z as there is
movement within the letter representation. The system is based around distinguishing
shapes not trajectories of the letters and therefore the above mentioned letters are omitted
from the classifiable set. Each speaker’s video is represented in frames as recorded by the
camera and the length of the video for each letter varies. The average number of images
per letter regardless of speaker is 500.

4.3 Variance accross letter

To simulate real life tests the data captured has considerable variance among images even
for the same speaker and the same letter. Each of the speakers was instructed not to hold
the hand-shape for the entire span of the video but to perform rotations and translations
of the hand. This way the system’s resistance to translation and rotation would be tested.
Furthermore the data recieves more realistic feel as the posture of the letter varies even
within one speaker quite significantly on his current state similar to the speech.

4.4 Variance accross speakers

Just as in speach there are also significant differences among speakers in sign language as
seen in 4.4. This shows as a problem in sign language recognition as the extent to which
one letter’s representation can vary is so great that it might well be considered a different
letter completely. Alterations of the same letter range from the angle of wrist based on

9

Figure 4.1: Variance accross letter E of speaker B - frames 2,81,101,124,193,230.

where the signer stands all the way to changes in positions of fingers - the very gesture
defining features.

The reason why SFA is prone to failing due to big differences among representations of
the same letter is because the sign is represented by the entire hand. As the hand holds
the shape and moves as a unit the features describing it vary at roughly the same rate. An
argument can be made that this leads to conclusion that change in the way the wrist and
forearm and the fingers are held can come to a result where SFA fails to recognize the same
letter from different speakers due to the difference in form beign too great and has no idea
that the letter is the same as the algorithm is unsupervised.

Figure 4.2: Very different representation of letter F by speakers B and E

4.5 Background noise

Even though the background noise is in most cases varying too rapidly for the SFA to be
propagated as one of the slow features[7] due to the nature of the algorithm I found that
there are cases when this is not true. One of such cases presented in data would be the
speaker’s head or face that was moving during the signing as well. As those movements
are done by the same person and the movement is fluid the rate of change is generally very
similar to that of the translation and rotation of the sign. If this is to happen the face must
be presented in all of the images of one letter, this will bind the features of the letter with
the features of the face as they vary at similar rates. ntly on his current state similar to
the speech.

10

Figure 4.3: Head moving in opposite direction as the hand

11

Chapter 5

System design

5.1 Goal formulation

The main goal of the final application is to be able to allow to be capable of running
various tests accross definable letters and speakers in order to supply enough data to draw
conclusions about how reliably is SFA able to extract hand shape dependednt features.
The application has to have a high degree of freedom in alteration of inner structure of
the system to allow for parameter optimization by extensive user testing if required. Since
image preprocessing, including dimensionality reduction on sgements with PCA, takes up
significant part of the run time this part is to be separated from the network training and
evaluation so that multiple network inputs can be prepared and serialized on the disk ahead
of time. Using this separated approach the testing of the system will take shorter.

5.2 General outline

Based on the stated goal the system needs to be split into two distinct parts. First part
is the file preprocessing and segmentation into the PCA units that extract given number
of components. After the segments have been processed the output of has to be available
in order to prepare data for multiple runs if needed as the output of this section is fed
straight to the hierarchical network. Given that the system’s second part’s inputs can be
precalculated a way to set the input externally has to be provided.

This system also needs to have two run modes - one for training the system and one
for running tests on already trained model. In order to be able to project images onto the
responses of the features and therefore be able to deduct roughly what is the feature learnt
the system needs to be able to graph and store all the features accross all of the layers as
well.

The output of the application is the list of all of the features that is then trained to
any classifier if the results are to be compared. The labels for supervised classifiers for the
output data are not to be generated due to expected memory issues with greater amounts
of data.

5.3 Hierarchical network specifications

The structure of the hierarchical architecture was adopted from a similar experiment as it
showed to be successful in the case it was used. [2] That being said the system was not tested

12

Table 5.1: Network architecture summary

Layer Grid size Each segment contains # of previous Overlap
0 24x24 1x1 A 2 pixels
1 11x11 4x4 1/2 of the segment
2 4x4 5x5 2/5 of the segment
3 1x1 4x4 None

on completely real data but on manufactured ones with added noise. The structure of the
architecture is following: The image is sliced to 576 segments, 24x24 already overlapping
grid of 10x10 pixels. The layer on top of that consists of 11x11 grid where each of the
cells is made of 4x4 cells of lower layer. This however doesn’t mean that the receptive field
increases 16times due to overlaps. The next layer consists of 4x4 grid where each of the
cells covers 5x5 window of the previous layer. In the final layer all of the cells are joined
into a single output with a receptive field covering the whole image. This arechitecture is
visualised in 3.1.

In majority of the tests the number of features extracted from each of the cells was 10
excluding the top layer where the number was 20. The higher number of features in the
highest layer was in order to preserve enough information about the signs as if one feature
reacted only to one sign and there were no other features, reacting to more than 1 sign
or so sign at all, the maxim number of classifiable signs would be equal to the number of
features extracted. As majority of the tests were run with 10 or less letters due to memory
restrictions 20 dimensions were considered sufficient. In tests where more dimensions were
required information about the change will be provided.

The degrees of freedom mentioned in 5.1 at this stage are the number of segments in
each layer and definable overlap.

5.4 Image preprocessing

As the images were automaticaly cut by external software the dimensions vary greatly. The
detected hand was cut out and since there are letters that have both horizontal and vertical
orientation the amount of dimensionality variation is understandable. It is not possible to
simply crop the images to fit the minimal dimensions of one of the images processed. One
of the reasons is that both test and train data would have to be provided for this operation,
which is managable, but the second and a lot more severe one is that once cropped some of
the images could lose too much valuable data as some of the signs are horizontal and other
are vertical resulting in having only half a hand to train on if both types were mixed which
generally is the case.

In order to preserve as much of the images and meet the needs of the system the images
were scaled to 148x148 pixels. This number was not chosen at random but after careful
calculation of the image segmentation in order to fit the zeroth layer perfectly so that no
parts of the image are lost in the process. The segmenting parameters can be set by the
user as far as the splitting and segmentation on the image is mathematicaly possible.

Concerning if the resizing of the images causes drops in performance I have strong
reason to believe that the performance should stay almonst untouched. This is caused by

13

Figure 5.1: Cropping image of letter Y to have same dimensions as B

the fact that one letter will always have similar if not same aspect ratio and after resizing it
is altered but it is altered by roughly the same way for all of the images of the given letter.
From this it is apparant that the features will still be detectable altered but still detectable
nevertheless as the way they were changed is uniform for each image of given letter.

As the features are not color dependent and we hope that the system learns the outlines
of the gestures concentrating on edges as the siluette of the hand shape is what defines
the letter there is no need to use all of the red, green and blue channels. Not only they
are not that important for this test but would also greatly increase the size of the data
processed taking toll on both time and memory consumption of the test runs. I therefore
decided to convert all of the input images into grayscale before processing. This saves a
lot of computational time and memory and allows to run more complex tests on the same
hardware.

5.5 MDP Toolkit

MDP Toolkit, Modular toolkit for data processing referred as MDP from here on, is a data
processing toolkit written in python.[8] It facilitates the use of data many data processing
algorithms from which I notably used PCANode for principal component analysis, SFANode
for slow feature analysis and PolynomialExpansionNode for expansion of the input singal.

5.6 Nodes

The power of the MDP is it’s ease of use and uniform representation of algorithms and
approaches as Nodes which share the exact same interface. The entire algorithm training
or evaluation can the be done by one simple call. The methods for training the algorithm
and testing it are train and execute respectively. Another great feature worth mentioning
is the use of fortran functions for mathemathical operations to ensure the fastest possible
calculations and guarantee high precision. The names of Fortran routines are automati-
caly generated based on their availability in the host operating system so cross platform
compatibility is assured.

5.6.1 Input and output formatting

The input and output format is essential for correct work with the MDP and points out
certain restrictions worth mentioning. Both input and output are mxn matrices of data that
are ordered such that the columns correspond to dimensions and the rows to observations.

14

In case of our problem that means that each row will contain information about one image
and the columns will be the values of features from this image.

The restrictions for both PCANode and SFANode is the requirement to have the same
number of dimensions, not observations, for each of the testing sets and this number has
to be the same as the number of dimensions the node was trained on. This is one of the
factors why are the images resized as we need to ensure that the dimensionality of the input
is the same.

5.6.2 SFANode

The SFANode from the MDP I used substitues most of the SFA algorithm as it initializes
the covariance and delayed covariance matrices during training and performs sphering and
slowest component extraction during execution. It should be noted that for specific cases
and purposes there is also a SFA2Node that also includes polynomial expansion in poly-
nomial space of degree two. However, I wanted to give the user the freedom to choose
what function space subset, defined by polynomial to used specified degree, is the signal
expanded and thus chose to do expansion and slow feature analysis separately.

5.7 The core system overview

Due to the usage of MDP chosen language was python. The application was designed to
run in separate stages each corresponding to the parts from the introduction. In order to
create a capable and reusable tool the objecct design had to be considered. It had to be
clear and each of the parts needed complete separation not only for aestethics but mainly
because the data processed is generally of very high dimensionality and very hard to read.
If one of the trasnformations was to be wrong it would be borderline impossible to detect
it just by looking at extracted data.

The Segmenter provided list of files and image ranges is designed to extract the over-
lapping segments of the image accross all of the images and prepare them for PCA pre-
processing part of the zeroth layer. Those data are then used by the PCAobject class to
be processed by corresponding PCA unit extracting the user specified number of principal
components as input for the hierarchical architecture of the SFAs. This architecture is
composed of layers represented by the Layer object. The cells contained in the layer cor-
responding directly to receptive fields over the image are described by Processing unit
object. The system as a whole is wrapped in the SFA system object that provides the
interface to configurate and run each of the stages.

5.8 Cell composition

Each of the cells that make up a layer are a system of their own. They are composed of
multiple steps that simluate the SFA by the use of resources from MDP. The cell consists
of input preprocessor in the form of a SFANode to reduce the dimensionality of the input
signal, PolyNomialExpansionNode that performs polynomial epxansion of the input signal
to subset of function space given by the degree of polynomial specified and another SFANode
that finds the slowest varying components of the expanded signal. The final output of the
node is then clipped at ±10 - a value that I experimentaly found that most of the features
never reach. This gets rid of spikes within the output that are generally not useful in
feature’s behaviour as they represent great response to a stimulus in short amount of time.

15

Once the features are exported into files the spikes also scale the maximum y coordinate of
the graph and make the rest of the features reactions unreadable due to the great difference
in values.

The representation of the steps in regards to the SFA algorithm is that the initial
SFANode merely preprocesses the input, the PolynomialExpansionNode expands the input
and the final SFANode spheres the signal and calculates the output signal.

Figure 5.2: Cell structure

16

Chapter 6

System implementation

6.1 Segmentation

There were two distinct ways to approach the image segmentation regardless of the segment
overlaping and segment size. Approach number one segments the entire image in at the
same time and stores the output. In spite of great time performance this approach has
proven utterly useless in respect to the amount of data used. The critical problem is that
entire structure containing segments accross all of the files needs to be stored in memory
at the same time. Considering the fact that the system usually runs on more than 5 letters
and trains, at least in my tests, on more than 200 images the amount of memory used up
by this operation is simply overwhelming.

On the other hand the second approach processes only one sgement at a time and thus
decreases the total memory requirements of the network during this stage by

drop in memory requirements in percent =
number of segments− 1

number of segments
∗ 100 (6.1)

If default values are used there are 576 segments in each image by default so the memory
requirement drops roughly by 99.83%. The disadvantage this effect produces is that the run
time increases gradually based on the number of segments as well. This can be expressed
as number of segments ∗ original run time. In spite of this huge increase I used this
segmentation method due to severe memory restrictions.

The class that takes care of this process is Segmenter. Upon reciving information on
list of files folders and files to be segmented in format of array of folders, starting image
number and ending image number, the segmentation process occurs one of the two above
mentioned ways. In spite of rare cases that allow the usage of the first listed approach
I still decided to include it as the speed increase is significant. There are no checks that
prevent memory error however, so the system is prone to crashing in case of insufficient
memory with generic python Memory error. The full image scanning and segmentation can
be invoked by calling the segment method of a Segmenter instance. The second approach
is equally easy to invoke by calling get one segment method. Both methods check if the
required parameters have been set.

This is the first door into user model customization in order to perform alternate tests.
The object contains information about number of segments to be created from the image
in variable segment count, segment size in pixels in dim0 for height and dim1 for width.
Overlapping is introduced by instance variables x step and y step that describe by how
many pixels does the shifting window move for each subsequent segment. The behavior is

17

such that the number of segments represents an axa grid. With that in mind I calculate
the number of segments to be extracted for each row. Since the number of segments per
collumn will be the same as the one per row the variables describing those values are bound
to be equal. The reasoning behind the axa grid of the zeroth layer is that quantified amount
of useful information is roughly the same due to letters being positioned both horizontally
and vertically. The amount overlap is then defined by the relationship of the x step and
y step, collectively referred to as step in this case, and dimensions of the extracted image.
There are several possibile outcomes:

• step < dimensions resulting in overlap

• step = dimensions resulting in no overlap at all and no gaps between segments

• step > dimensions resulting in gaps between consecutive segments

• step <= 0 causing an error and no segmentation

6.2 Preprocessing with PCA

Once the segments have been created dimensionality reduction is required before the signal
can be passed to the hierarchical network. This dimensionality reduction is done on each
segment separately and is approach dependant. If the first approach is chosen the entire
segment array is extracted at the same time and the dimensionality reduction in PCA is
done afterwards. However, if there is only one segment extracted at a time it is essential
to pass it through PCA straight away as when next segment is read the old one is replaced
in order to conserve memory.

The class that handles the PCA processing from creation of the units through processing
to storing output is PCAobj. For easy use entire PCA preprocessing can be done by one
method call - do 0th layer PCA in the wrapper object, SFA system. The parametrization
available at this stage is not great as the number of PCA nodes is directly dependent on
the number of segments as each receptive field needs just one PCA node to decrease its
output’s dimensionality. The number of output dimensions of the PCA unit however, can
be adjusted to a user defined value. It is important to note that polynomial expansion in
the zeroth layer of the hierarchy might cause significant memory issues given high number
of dimensions provided by this stage.

This is the first stage of the implementation where the difference between training and
testing of the system can be noticed. During training the PCA units are trained and output
is stored within the object in order to provide the user with chance to serialize the object
to a disk for later analysis of output components accross the images. The training phase
ends by testing the trained data so that inputs for the hierarchical network are generated.

During testing however, the data are merely passed through already trained units to
generate outputs. Furthermore the output in case the unit is tested is returned outside of
the object by the method thus conserving the original output for comparison.

6.3 Hierarchy of SFA units

As the core of the application this is where the slow feature analysis and continuous ex-
traction of more abstract features describing greater receptive fields happens. As such this
system is implemented over multiple classes each describing certain part.

18

The Processing unit class represents a cell within the layer with contents as described
in 5.8. The cells with some additional data contruct a layer that is represented by the
Layer class. The wrapper for the whole system is SFA system class. this is the main point
with which the user interacts and on which methods correspoding to each of the main parts
of the system are invoked.

The inputs passed from one layer to another are calculated first within units and then
added to the layer output as a list of all unit outputs. This step is significant as they are
effectively the features extracted at given layer of the system and need to be stored in order
to be used as a resource for analysis of extracted features and their relations to the image
sequence. Since the system calculates the layers iteratively from bottom up the output of
one layer, stored in output instance variable, is directly fed to the input of the next layer,
stored in full layer input variable. Upon change of the input for the layer all of the units
remap their inputs based on the layer rules. This step is crucial in separating the training
from testing as the units store their inputs. As the input to the layer changes during testing
new input data has to be mapped on units. The default mapping based on the rules of the
layer occurs already on their creation when full layer input is provided for training.

Mapping rules for the layers can also be provided by the user in order to map n cells from
lower layer into one cell of higher level that is currently processed. Furthermore number of
slow components can be specified for each cell but has to be the same accross the whole
layer as the grid of cells representing a layer is homogenous. If the dimensions were to differ
it would cause issues in the upper layers of the hierarchy as the same testing and training
dimensions would not have been met (as required by 5.6.1).

6.4 Generalized eigenvalue problem

The slow feature extraction algorithm contains a generalized eigenvector problem that needs
to be solved during sphearing part of the algorithm and is formulated as following:

Ax = λBx (6.2)

Where A is the delayed covariance matrix, B is the covariance matrix, λ are the eigenvalues
and x are the eigenvectors. In order to get the sphered signal we need to assure that the
signal of which the eigenvalues and eigenvectors were calculated has unit covariance matrix.
Hence we want to get the following equation.

A′x = λIx (6.3)

The equation actually represents the specific eigenvalue problem that can be solved by
eigenvalue decomposition. To achieve this knowing the fact that AA−1 = I it is in theory
sufficient to multiply the equation by B−1 hence by inverse of B.

B−1Ax = λBB−1x (6.4)

B−1Ax = λIx (6.5)

B−1A = A′ (6.6)

This is the way the MDP SFANodes implement this algorithm as well. I found the problem
to be that many of the segments of the image contain almost no relevant information and
therefore their extracted components are small. After polynomial expansion those values

19

get even smaller. The result of those incredibly small values is that the values are either
rounded down to 0 or even reach negative values due to computational errors that are
system dependent. I realized that due to this development certain orders of matrix B
became either rounded to 0 or even negative rendering the matrix singular and thus not
being able to perform the inversion and the algorithm fails.

6.4.1 Removing insignificant dimensions

I came to conclusion that when the determinant is calculated to find out if eigenvalue of
given order is positive the calculation multiplies number of elements of the matrix equal to
the length of the diagonal. This means that if the matrix is of order greater than 308 it
is enough for the values to be of 10−1 to underflow the minimum recognisable float value
in python as its magnitude is 10−308 [1]. Understanding this fact, having matrices, after
the expansion of course, of higher diensionality than 400 and seeing values smaller than
10−17 among them I understood that one of the reasons the eigenvalue is not positive is
that those values underflow the float precission and are rounded to 0.

I decided to preprocess all of the matrices in such a way that I would remove the
insignificant dimensions by either static or dynamic threshold, based on the dimensionality
of the matrix. In the end, however its implementation failed to resolve the issue as the
problem of singularity of theB matrix persisted. I understood that the reason the eigenvalue
comes close enough to 0 to be rounded down is because of the numerical errors resulting
from multiplication and subsequent substraction. This problem couldn’t be solved by a
threshold as the numbers can be of any size and differ only in the 1020 range for example.

6.4.2 Singular value decomposition

A great alternative for eigenvalue decomposition that under certain restrictions provides the
same output is the singular value decomposition, referred as SVD from here on. Singular
value decomposition breaks a matrix down into three matrices UsV T . Matrix s is diagonal
and contains singular values of the original matrix. Matrices U and V T are orthonormal.

If SVD is applied on a symmetrical matrix its results are equivalent to the ones of
eigenvalue decomposition. The eigenvalues are the diagonal of the s matrix and the eigen-
vectors are contained in both U and V T matrices. Both covariance and delayed covatiance
matrices are symmetric but once we find inverse of the matrix B and calculate the result
on the left side we find out that the matrix is no longer symmetric and thus the SVD in
its original form cannot be used anymore. However, there are ways to express generalized
eigenvalue decomposition in terms of singular value decomposition.[4] The method is called
simultaneous diagonalization and one such algorithm has already been developed for SFA
for matlab as well.[4]

The algorithm is based on finding a transformation for the delayed covariance matrix B
to become an identity matrix transforming the general eigenvalue problem into a specific
case when the SVD can be applied.

We start with general eigenvalue problem:

Ax = λBx (6.7)

We find and introduce the transformation S and its transpose ST to both sides so that they
can be turned into an identity matrix having no influence on the outcome at all. Given

20

that dot product is commutative their positioning within each of the sides is irelevant.

SASTx = λSBSTx (6.8)

In order to be able to use the SVD the matrix decomposed needs to be symmetric and
therefore we add the restriction to the S transformation. With the previous mentioned one
the full set of conditions for S is as following.

SBST = I (6.9)

SAST = I (6.10)

Where I represents diagonal matrix. If all of the above conditions are met we get a regular
eigenvalue problem that is solvable by the SVD and the solution is numericaly stable. The
goal is to find transformation S so that it meets the conditions. We start from eigenvalue
decomposition of B as it yields a diagonal matrix of eigenvalues that can be easily converted
to an identity matrix.

FBF T = Λb (6.11)

Multiplying the equation by the inverse of Λb results in identity matrix on right side which
is just what is required.

FBF TΛ−1b = ΛbΛ
−1
b (6.12)

From this form we can derive the transformation to be S = FΛ
−1/2
b by substituting into

the original equation 6.8 we get the following.

FΛ
−1/2
b BF T (Λ

−1/2
b)T = I (6.13)

Since Λ
−1/2
b is a diagonal matrix it is the same as its transform thus by rearranging we get:

FBF TΛ−1b = I (6.14)

We can then create the new transformed matrix for the eigenvalue problem as:

A′ = SAST (6.15)

We solve the eigenvalue problem by SVD again and get the correct egienvalues yet the
eigenvectors are altered due to the transformation matrix. They therefore need to be
transformed back:

wj = w′jS
T (6.16)

Where wj are the eigenvectors of the original matrix A and w′j are the eigenvectors of
the transformed matrix A′. This algorithm then completely substitutes the numericaly
unstable one provided by the MDP. The changes were written directly in the MDP’s file as
the call is nested very deep in the architecture and would require extensive copying of the
original code. The file MDP HOME/nodes/sfa nodes.py needs to be replaced by the file
provided on the disc supplied with the thesis. The only modification is the way eigenvalues
are calculated and the rest of the file is untouched.

21

6.4.3 Accuracy comparison

Due to very different approaches to the same problem there are completely different numeri-
cal operations involved. This however, has minimal impact on the results as the eigenvectors
extracted are exactly the same and eigenvectors are calculated with maximum error of 10−10

which has very little effect on the future calculations as they are only used to calculate the
output by multiplying them with the data afterwards. It is important to note that some of
the eigenvectors have opposite signs. This is not a mistake as eigenvectors are not unique
and if each of the components of an eigenvector has its sign inverted the calculation is not
affected - which is the case of this system as well.[5] Also the results of each of the SVD
runs needs to be rearranged as the SVD provides reults in descending order but ascending
one is needed since only the smallest eigenvalues are used in sink with their eigenvectors.

22

Chapter 7

Testing the model

The following tests are to observe and conclude how effective is slow feature analysis if
applied on real data. The problem itself branches into two distinct categories. First is how
well does the algorithm cope with the speaker it has been trained on. However, none of the
tests will be run on data very similar to the ones the system has already seen in order to
see if the system is resistant to translation and rotation of the image. Tests will be run also
on different numbers of letters to see how well is the system able to differentiate between
very similar letters if put into such position.

Second and more challenging series of tests will observe how well is a nonspecialised and
quite generic slow feature analysis model able to abstract the letters across unseen speakers.
I will observe if the performance increases with more trained speakers or if the system fails
to identify the same letter presented by different people due to their signing styles.

To try and analyse what data were actually extracted and if they represent the gestures
well an analysis of the features corresponding to different images will be done with primary
goal to identify the stimuli that the features responded to.

For decission making linear support vector machine classifier was used as I focused on
the overall performance of the method and if the method was actually extracting useful
information.

The architecture for all of the below tests is the one described in 5.3 unless stated
otherwise.

7.1 Trained speaker

The following series of tests was trained and tested on the same speaker. The train and
test sets were kept the same and usualy at 250 images each.

7.1.1 Trainset size dependency test

This test is to illustrate and evaluate how train-size dependent the slow feature analysis
is. Multiple tests were run involving the same letters but different trainset sizes on the the
same testset. The testset parameter was kept constant in order to eliminate the posibility
of certain parts of the testset altering the results by being removed and being the extremes
on either side of the performance spectrum. For testing purposes the second half of the
video was used (frames 250-500). To keep the video fluid the decrease of the trainset was
done by removing images from the start of the video. Output dimensions are 10 for each
but the top layer that has 20. The testset size also varies for trainsets with imagecount

23

greater than 250 as there are only 500 images available. An argument can be made that
this affects the performance but I believe that the testset is still large enough to correctly
represent the trend of the performance even if it doesn’t provide the exact performance it
should given the proper size. The system was trained on first 12 letters of the alphabet.

Figure 7.1: Graph of how performance varies based on number of input images per letter

The results are very pleasent for big enough train set and keep dropping at reasonable
rate until about 100 images per letter trained. The linear decrease in performance indicates
several things. Firstly - that the features extracted are indeed robust as they are resistant
to translation and rotation in spite of the testing set being up to 2.5times greater than
the training one. Secondly - the important features are extracted rather quickly. If we
omit other factors such as change in the actual gesture, as some speakers tend to do so as
shown in 4.4, it only takes about 100 frames to extract the most significant features of a
sign. The performance peaked at 93.3% for 400 segments trained (and only 100 tested per
letter). The important point to note here is that the hierarchical SFA shows good potential
to recognise at least seen speakers.

7.1.2 Performance accross varying number of letters

It is quite obvious that the higher the number of supposedly learnt patters the lower the
performance should be. The question is how fast will the performance drop sheding light
on for what range of gestures is this system viable. When letters s,t,u were part of the
trainset, being the last 3 tests, the train set were 178 images. For all other tests the sets
were 250 images each. The decreased number in the testing set was caused by lower number
of frames for the 3 mentioned letters. I decided to keep the training data the same in order
to keep the extracted features the same (for letter that have previously been tested that
is).

24

Figure 7.2: Graph of how performance varies with varying numbers of letters classified

The trend of the performance in this test was surprising. Even though the number of
output dimensions was set to only 20 the performance stayed rougly constant and dropped
only when similar looking letters were introduced as the performance for them is obviously
the worst. The graph indicates that the SFA performed about the same no matter what
the number of letters meaning that the features extracted are descriptive enough to cover
all of the letters that were tested and that the SFA is a sufficient method to recognize all
of the letters of the ASL, excluding the ones that were not tested - j and z. Considering
the actual performance percentages one would say that they are not all that high. Keep in
mind that the system was trained only on 250 images per letter. If we refer to graph 7.1.1
we can estimate that performance over 90% should be reached if trained on 400 images. In
order to test if the performance develops the same it does in the figure 7.1.1 I ran a test
on 20 letters and 350 train frames. I found the performance to be 85.24% which fits the
referred figure perfectly.

7.1.3 Extracted feature analysis

The features correspond to stimuli from the image. Based on patterns of how much the
feature reacts to which image conclusions can be drawn concerning what part of the image
is the feature actually reacting to. The greater the deviation from zero for presented image
the more is the feature present or recognisable.

Figure 7.1.3 shows an exemplary feature. The model was trained on only 2 letters
when this feature was exracted. The letters were A and B and each had 350 frames. The
receptive field of the feature is noted in the figure as well. From looking at the feature
graph we can see that the feature reactions almost exclusively to letter A. In figure ??
images from this session are shown. From the images and especially the content of the
receptive field of the feature I deduced that this particular feature reacts to knuckles of a

25

Figure 7.3: Feature response graph

Figure 7.4: Images: A123, A320, A372, A396, B51, B100, B137, B200, B281 and B369

closed hand. Since letter A is such a compact letter the knuckles are almost always visible
in the segment except for after picture 300 when they start to move away. As for image
B there are no knuckles in corresponding region of the picture. I also included the images
in letter B that cause some sort of weak response. In those cases the tilted tips of fingers
look somewhat like the knuckes in letter A and therefore result in some response. Their
similarity is not too great explaining why the magnitude of the response is low.

7.2 Unseen speaker

This group of tests was based on the question if the method is capable of extracting robust
enough features or if it gets beaten by the great variation in speakers’ signing styles and
habits.

Intresting factor concerning the learning process in this case are the different styles of

26

organisation of training data. Multiple tests will be analyzed in order to determine the best
way to present the data to the system in order to maximize the performance if there is a
differnce in performance at all. For each of those tests there are data from two speakers
present and first four to eight letters of the alphabet are used to get a better understanding
of how does the performance evolve. Testing and training sets of 150 images per letter are
used and system architecture as well as output dimensions are set to standard values.

The baseline test that gives us an idea if the method is viable for different speakers with
limited number of training subjects, since my dataset has only five signers, is a test that
compares the performance based on the number of trained speakers.

7.2.1 Performance changes based on number of training signers

Probably the most important test of the method is to see if increasing the signer pool helps
to improve the performance. This test also shows how robust the features extracted are
on small sets of data. Only exemplary set of first six letters of the alphabet was used due
to memory and time restrictions. The train and test sets are the standard 250 images for
both. The input was organised based on speakers - full sequence of images of speaker A
was shown before any of the images for speaker B were shown and so on.

Figure 7.5: Unseen speaker number effect on performance

The performance increases considerably as the number of the speakers increases. Even
though the system was trained only on 3 letters for this case based on the trend of the
performance the improvement depends on if a similar speaker has been seen before. If not
then the improvement is better. The best way would be to train the network on as many
different speakers as possible as it increases the chances that the tested speaker will be
somewhat similar to one of the training ones. The test prooves that the method has the
capacity to improve with more speakers.

27

7.2.2 Speaker detection

The system might also extract features describing the signing style of the speaker. This
test is trying to distinguish two speakers from each other. The test and train sets are set
to 250 images per letter and an exemplary set of six letters was used - g,h,i,k,l,m Network
architecture and output dimensions are default.

Figure 7.6: Graph of speaker classification

As figure 7.2.2 indicates that the performance is much higher than for letters. This is
to be expected the signer being the slowest changing variable in all of the multiple speaker
test runs with speaker ordered data. The speaker identification may be done from specific
features of his or her hand such as ratio of the length of the fingers to the size of the palm.
Other option is that there are behavioral patterns of signers extracted as features.

7.2.3 Speaker ordered data

One of the possible input data ordering for training is the natural way the video would
be presented to the system. One speaker signing all of the letters, leaving the camera and
another speaker presenting his data. This method of training is the most intuitive and was
used in all other tests. As such this test is used as a baseline in order to estimate how much
worse the performance gets if the speaker has not been seen before.

As seen in figure 7.2.3 for unseen speakers the performance drops rapidly with each
added letter in spite of being trained on 350 images per letter (corresponding to 85%
performance in single speaker scenario). There are several reasons behind this. Firstly
the same letter signed by a different speaker sometimes look completely unrecognizable, as
mentioned in 4.4. Another problem is that when only one speaker is trained the variation in
each of the letters doesn’t matter too much because the letter is at least somewhat specific.
Once we add another speaker that has different signing style the error from malformed

28

Figure 7.7: Unseen speaker development with more letters

letters starts to add up and the performance drops fast.

29

Chapter 8

Conclusion

The goal of the thesis was to observe and evaluate how well does the slow feature analysis
cope with sign language data with high dimensionality and complexity. The goal was
achieved by creating functional systems for various tests that inspected the performance
in different scenarios that will most likely be requested in real life implementations. The
method showed great promise in case of seen speakers where in spite of great differences in
provided data caused by translation, rotation and sign deformation results over 90% were
achieved. Adding the patterns, at least to maximum extent of the problem solved in the
thesis - the ASL alphabet, the method managed to perform at generaly the same level for
all of the letters in spite of some of the signs being very similar. The method has shown
that it is fully capable to extract features that are robust enough to describe 20 signs in just
20 features. Some of the features extracted were also analyzed and a general idea what was
the pattern that exemplary features were describing was obtained. Concerning the unseen
speaker reasults I am not too confident about this method. Because of different signing
styles and malformed letters that even a human would clasify incorrectly the method’s
performance drops quickly. The solution might be adding more speakers to the training as
features extracted from more training data might be more descriptive. I see this having
significant impact on performance once the system has been trained with every style of
signing so that the unseen speaker can be generalized more easily.

In the first part of this text I got introduced to the slow feature analysis, the aspects
of the data and the possible the possible system to apply the method on high dimensional
data. The way of obtaining more robust features that can describe complex patterns was
achieved by extracting locac features on smaller portion of the image and then using them
to create new features by binding more parts of the image into one receptive field.

During the second part a testing application was created as a biproduct in order to
facilitate testing on alternate letters and frames allow quick dimension changes and segment
sizes. A part of the MDP framework had to be reworked as well due to numericly unstable
algorithm to calculate the eigenvalues. This algorithm was replaced and everything else
was untouched.

As for the future development I would definitely advise to use the slow feature analysis in
case of high dimensional and complex visual data if high enough trainig set is provided. The
method is able to abstract virtually any patterns that describe objects or actions varying
slowly in time. I see the possibility to use the method to detect and learn emotions, more
difficult gestures that also involve movement along a trajectory. As the performance of
the computers increases so will the possibilities of this method as the data processing and
training is resource intensive. On the other hand I see a big problem with the method.

30

As the process of learning is unsupervised if there is more than one object present in the
image as the method has not been tested for this yet. The solution might be preprocessing
algorithms that cut out only the parts of input data that contain the information to be
learnt. This prohibits the method to learn from full visual input to find more abstract
patterns.

31

Bibliography

[1] Python Software Foundation. System-specific parameters and functions, August 2014.

[2] Mathias Franzius, Niko Wilbert, and Laurenz Wiskott. Invariant object recognition
and pose estimation with slow feature analysis. Neural Computation, 23(9):2289–2323,
2011.

[3] Laurenz Wiskott Mathias Franzius, Niko Wilbert. Artificial Neural Networks -
ICANN 2008. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-87535-2.

[4] Thomas Melzer. Svd and its application to generalized eigenvalue problems, June
2004.

[5] Jarkko Isotalo Simo Puntanen, George P. H. Styan. Matrix Tricks for Linear
Statistical Models. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-10472-5.

[6] L. Wiskott, P. Berkes, M. Franzius, H. Sprekeler, and N. Wilbert. Slow feature
analysis. 6(4):5282, 2011. revision 137965.

[7] Laurenz Wiskott and Terrence Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural Computation, 14(4):715–770, 2002.

[8] T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data processing,
April 2012.

32

	Preface
	Slow feature analysis
	The slowness principle
	The optimization problem
	The algorithm

	Hierarchical network
	Relation to Slow feature analyis
	Overlapping

	Dataset
	Origin
	Data volume
	Variance accross letter
	Variance accross speakers
	Background noise

	System design
	Goal formulation
	General outline
	Hierarchical network specifications
	Image preprocessing
	MDP Toolkit
	Nodes
	Input and output formatting
	SFANode

	The core system overview
	Cell composition

	System implementation
	Segmentation
	Preprocessing with PCA
	Hierarchy of SFA units
	Generalized eigenvalue problem
	Removing insignificant dimensions
	Singular value decomposition
	Accuracy comparison

	Testing the model
	Trained speaker
	Trainset size dependency test
	Performance accross varying number of letters
	Extracted feature analysis

	Unseen speaker
	Performance changes based on number of training signers
	Speaker detection
	Speaker ordered data

	Conclusion

