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Abstract 
This thesis deals with the problem of automated classification and recognition of bacteria 
after obtaining their D N A by the sequencing process. In the scope of this work, a new 
classification method based on the 16S r R N A gene segment is designed and described. 
The presented principle is constructed according to the tree structure of taxonomie cat­
egories and uses well-known machine learning algorithms to classify bacteria into one of 
the classes at the lower taxonomie level. A part of this thesis is also dedicated to the im­
plementation of the described algorithm and evaluation of its prediction accuracy. The 
performance of various classifier types and their settings is examined and the setting with 
the best accuracy is determined. The accuracy of the implemented algorithm is also com­
pared to several existing methods. During validation, the implemented K T C application 
reached more than 45 % accuracy on genus prediction on both B L A S T 16S and B L A S T V4 
datasets. At the end of the thesis, there are mentioned several possibilities to improve and 
extend the current implementation of the algorithm. 

Abstrakt 
Tato práce se zabývá problematikou automatizované klasifikace a rozpoznávání bakterií 
po získání jejich D N A procesem sekvenování. V rámci této práce je navržena a popsána 
nová metoda klasifikace založená na základě segmentu 16S r R N A . Představený princip je 
vytvořen podle stromové struktury taxonomických kategorií a používá známé algoritmy 
strojového učení pro klasifikaci bakterií do jedné ze tříd na nižší taxonomické úrovni. 
Součástí práce je dále implementace popsaného algoritmu a vyhodnocení jeho přesnosti 
predikce. Přesnost klasifikace různých typů klasifikátorů a jejich nastavení je prozkoumána 
a je určeno nastavení, které dosahuje nejlepších výsledků. Přesnost implementovaného 
algoritmu je také porovnána s několika existujícími metodami. Během validace dosáhla im­
plementovaná aplikace K T C více než 45% přesnosti při predikci rodu na datových sadách 
B L A S T 16S i B L A S T V4. Na závěr je zmíněno i několik možností vylepšení a rozšíření 
stávající implementace algoritmu. 
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Rozšířený abstrakt 
Když se lidé narodí, jejich tělo obsahuje pouze jejich vlastní eukaryotické lidské buňky. Jak 
ale vyrůstáme a interagujeme s ostatními lidmi a věcmi kolem nás, povrch naší kůže, stejně 
jako naše střeva, jsou kolonizovaný různými bakteriemi, viry a houbami. Komunita těchto 
dalších buněk se nazývá lidský mikrobiom. Může dosáhnout téměř desetkrát vyššího počtu 
buněk, než je počet buněk přirozeně lidských. [40] 

Obvykle jsou tyto mikroby neutrální nebo dokonce prospěšné pro naše tělo, pomáhají 
nám trávit potravu a mají důležitou úlohu pro náš imunitní systém. Nicméně dysfunkční 
lidský mikrobiom byl již spojen s mnoha onemocněními, jako je diabetes, zánětlivé onemoc­
nění střev a infekce rezistentní vůči antibiotikům. [28], [40] 

Po dlouhou dobu bylo možné analyzovat bakterie v lidském mikrobiomu pouze jejich kul­
tivací. Mnohé druhy bakterií jsou však nekultivovatelné, a proto nebyly vůbec zjistitelné. 
Díky nedávnému pokroku v sekvenování s vysokou průchodností je nyní možné účinně 
vyšetřovat mikrobiální komunity a analyzovat druhy bakterií, které se v nich nacházejí. Se 
získanými poznatky se pozornost mnoha vědců zaměřila na výzkum vztahu mezi lidským 
mikrobiomem a lidským zdravím. Vzhledem k tomu, že oblast výzkumu lidského mikro­
biomu je nová, není dobře prozkoumána a týká se lidského zdraví, je to velmi slibné odvětví 
výzkumu. [28], [40] 

Cílem této práce je navrhnout a popsat novou metodu klasifikace bakterií, která je 
založena na genovém segmentu 16S r R N A . Sekvence 16S r R N A je odlišná pro každý rod 
a může obsahovat několik mutací, inzercí a delecí, proto různé sekvence 16S r R N A mohou 
mít různou délku. To by mohlo způsobit nepříjemnosti, jelikož algoritmy strojového učení 
vyžadují, aby jejich vstupní vektory měly stejné rozměry. Pro překonání těchto obtíží je 
nejprve ze vstupní sekvence extrahováno k-merové spektrum, které se následně použije pro 
klasifikaci. S využitím k-merového spektra je možné transformovat každou sekvenci 16S 
rRNA, která je ve formě řetězce, na numerický vektor, kde každá hodnota představuje 
počet výskytů odpovídajícího dílčího řetězce v původní sekvenci. 

Prezentovaný princip klasifikace je postaven na stromové struktuře taxonomických ka­
tegorií. Celý klasifikátor se skládá ze stromu dílčích klasifikátorů s topologií respektující 
taxonomický strom. Klasifikace vstupního vzorku začíná v horním klasifikátorů rozlišujícím 
mezi bakteriemi a archaea a vstupní sekvence sestupuje stromem podle predikovaných taxo­
nomických kategorií. Dílčí klasifikátory představují dobře známé metody strojového učení 
(jako například S V M , rozhodovací strom a k-NN) a jejich cílem je klasifikovat dané bakterie 
a přiřadit j im třídu na nižší taxonomické úrovni. 

Tréninková metoda prezentovaného klasifikátorů může být rozdělena do dvou částí. Nej­
prve proti sobě soutěží všechny typy klasifikátorů s různými nastaveními, aby bylo možné 
určit nastavení klasifikátorů dosahující nejvyšší přesnosti. Pro provedení soutěže je celý 
proces tvorby stromu klasifikátorů, tréningu a validace zabalen do cross-validace. V každé 
iteraci jsou na aktuálním souboru trénovacích dat natrénovány všechny typů klasifikátorů 
v různých konfiguracích a jejich přesnost je pak vyhodnocena na souboru validačních dat. 
Výsledkem každé iterace je součet přesných predikcí získaných během validace. 

Po celém procesu cross-validace je určen klasifikátor, který dosáhl nejvyšší celkové přes­
nosti klasifikace. Ten je poté natrénován na všech dostupných datech a uložen jako finální 
model pro další použití. Díky tomuto přístupu je možné získat pro každou použitou datovou 
sadu ten klasifikátor, který dosahuje nejvyšší přesnosti. 

Díky použití taxonomické stromové struktury a konceptu postupné klasifikace by mělo 
být možné snížit celkovou klasifikační chybu ve srovnání s přímou predikcí nejnižší ta­
xonomické úrovně. Tento přístup také nabízí možnost prezentace kompletní taxonomické 



klasifikace od domény až po rod s hodnotami předpokládané přesnosti pro kategorie na každé 
taxonomické úrovni. 

Během porovnání různých velikostí k-meru bylo dosaženo nejvyšší přesnosti predikce 
při použití k-meru o velikosti 5 a 6. Zkoumání přesnosti predikce s použitím jednotlivých 
hypervariabilních regionů ukázalo, že regiony s nejlepší přesností se významně liší pro obě 
použité datové sady. Celkově byla nejlepší přesnost dosažena při použití regionů V I , V3 
a V8. Během validace dosáhla implementovaná aplikace K T C přibližně 47,3% přesnosti při 
predikci rodu na datové sadě B L A S T 16S a přesnosti 45,5% na datové sadě B L A S T V4. 
Aplikace byla testována také na databázi hub ITS, kde získaná přesnost na úrovni rodu 
byla přibližně 75,3%. 
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Chapter 1 

Introduction 

When people are born, their body contains only their own eukaryotic human cells. However, 
as we grow up and interact with other people and things around us, the surface of our skin, 
as well as our gut, becomes colonized by various bacteria, archaea, viruses, and fungi. 
The community of these additional cells is called the human microbiome. It can reach 
almost ten times higher number of cells than the count of natural human ones. [40] 

Usually, these microbes are neutral or even beneficial for our body, they help us digest 
food and have an important role in our immune systems. However, the dysfunctional human 
microbiome has been also already linked to many diseases, such as diabetes, inflammatory 
bowel disease, and antibiotic-resistant infection. [28], [40] 

For a long time, it was possible to analyse bacteria in the human microbiome only 
by their cultivation. However, many bacteria species are unculturable and therefore were 
not detectable at all. Thanks to recent advance in high-throughput sequencing, it is now 
achievable to efficiently investigate microbial communities and analyse the bacteria species 
found in them. Wi th the obtained knowledge, the attention of many scientists has been 
drawn to the research of the relationship between the human microbiome and human health. 
As the field of human microbiome investigation is quite new, not well explored and concerns 
human health, it is a very promising branch of research. [28], [40] 

The aim of this thesis is to design and describe a new bacteria classification method, 
which is based on the 16S r R N A gene segment. The presented principle is constructed ac­
cording to the tree structure of taxonomic categories and uses well-known machine learning 
methods to classify bacteria into one of the classes at a given taxonomic level. In the scope 
of this project, the described method is implemented and its accuracy is evaluated and 
compared with other existing bacteria classification tools. Lastly, the presented method is 
analysed in order to define its weak points and possibilities for improvement. 

This thesis can be notionally divided into two parts - theoretical and practical. In 
the first category, chapters 2 to 5 could be included, which aim to introduce the basic 
terms and concepts in the areas of bioinformatics and machine learning and to give an in­
troduction into the problem of bacteria classification. Chapter 2 is focused on preliminary 
knowledge regarding the fields of bioinformatics and metagenomics, which is essential for 
understanding the core of this work. The concepts of D N A and R N A are introduced and 
briefly described. The last part of this chapter deals with the explanation of taxonomy. 
Chapter 3 describes other methods of digital processing of sequence data and explains 
the terms k-mer, k-mer spectrum and k-mer similarity. Chapter 4 provides an overview of 
the area of some well-known classification algorithms, which are used in the implemented 
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classifier. Chapter 5 gives information about other existing methods addressing the bacteria 
classification problem. 

The practical part includes chapters 6 to 8 and is devoted to the description of the im­
plemented application. The focus of chapter 6 is on a detailed specification of the proposed 
method ranging from input r R N A sequence processing up to the unknown specimen classi­
fication. Chapter 7 aims to describe the application implementation and to list the required 
libraries and dependencies. Chapter 8 is dedicated to the evaluation of the proposed method 
and presenting the obtained results. 

Chapter 9 concludes this work and contains also the proposal of suggestions for further 
development. 

4 



Chapter 2 

Metagenomics 

Metagenomics is a field of study focused on the microbial world. Its main characteristic 
is the investigation of bacteria, viruses and fungi in complex communities in which they 
usually exist, irrespective of whether they are culturable of not. Metagenomics tries to 
examine the D N A in a sample of a microbial community as a whole. [39], [62] 

The aim of this chapter is to offer a brief introduction into the field of metagenomics and 
explain the major concepts that form the preliminary knowledge needed to fully understand 
the method proposed in the scope of this thesis. 

This chapter is divided into three main parts. Section 2.1 contains basic introduction 
into D N A , such as information about what it consists of and what its structure looks like. 
Section 2.2 includes description of R N A , r R N A and 16S r R N A . There are also listed the dif­
ferences between R N A and D N A . Section 2.3 provides a brief explanation of the taxonomy 
and structure of the taxonomic tree. 

2.1 D N A 

Deoxyribonucleic acid (or shortly DNA) is a macromolecule with hereditary information 
encoded in it describing recipes for making proteins and other functional molecules that 
the organism needs to survive. D N A can be found in almost all known organisms. Most cells 
in the human body share the same D N A . In a cell, D N A can be found in its nucleus (then 
it is called nuclear D N A ) , or in the mitochondria (which is called mitochondrial D N A ) . [22] 

The D N A can be represented as a code consisting of four chemical bases - adenine (^4), 
guanine (G), cytosine (C), and thymine (T). Information in D N A is encoded by combining 
these bases into long sequences. [22] 

The basic building unit of D N A is called a nucleotide. It is composed of one base, 
a sugar and a phosphate. Nucleotides form a long sequence creating one strand and thanks 
to their capability of pairing up with another base (A pairs up with T and C with G), 
a long spiral is built called the double helix. [22] 

D N A sequencing is the process of determining the nucleotide sequence of D N A . The ob­
tained sequence gives the most fundamental knowledge of a gene or a genome. A genome 
is the complete set of D N A of an organism, which includes all of its genes. A l l needed in­
formation on how to build and maintain the organism can be found in its genome. [1], [21] 

Today, it is impossible to sequence an entire genome or a single chromosome. It has to 
be broken down into smaller chunks that are easier to manage. On these partitions, various 
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techniques which label the individual bases are applied to obtain the number of bases and 
their order. [69] 

2.2 R N A 

Ribonucleic acid (shortly R N A ) is a nucleic acid consisting of a long strand of nucleotides. 
Similarly to D N A , each nucleotide contains a nitrogenous base, a sugar, and a phos­
phate. [38] 

The main difference between D N A and R N A is that R N A has only one strand. Fur­
thermore, the sugar found in R N A nucleotides is ribose while D N A nucleotides contain 
deoxyribose. Last important difference between R N A and D N A is in nucleic acids as R N A 
is also composed of nucleotides, however, instead of thymine, a different type of nucleotide 
is present - uracil. [38] 

Comparison of the structure of D N A , which is a double helix, and R N A , which is a single 
helix, and of the nucleotides they are composed of can be seen in figure 2.1. 

Replaces Thymine in RNA 

DNA RNA 
Nitrogenous W*n r \ l ^ * - l Nitrogenous 

Bases _ „ . . . . . Bases 
Deoxy r ibonuc le i c A c i d R ibonuc le ic A c i d 

Figure 2.1: Comparison of the structure of D N A and R N A and of the nucleotides they 
consist of. This image was taken from the article DNA: Definition, Structure & Discovery 
by Rachael Rettner [50]. 

r R N A is one type of R N A called ribosomal ribonucleic acid. It is located in ribosomes, 
which are the catalysts of protein synthesis. Over sixty per cent of the ribosome consists of 
the ribosomal R N A which is a necessary part of all ribosome functions, such as binding to 
m R N A and urging the catalysis of the peptide bond formation between two amino acids. [36] 

16S r R N A is a sequence of D N A which encodes the R N A component of the smaller 
subunit of the bacterial ribosome. It can be found in the genome of all bacteria species 
and a related form can be found in all cells. In the 16S r R N A , two types of regions can be 
determined. There have been detected portions which change very slowly during evolution 
and other parts that are variable and undergo rapid genetic changes. Therefore, they are 
suitable for determining the taxonomic classifications of bacteria. The 16S r R N A gene 
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has been proved to have the most information regarding the examination of evolutionary 
relatedness. [1] 

The number of hypervariable regions and their proportions can be seen in figure 2.2. 
The entire 16S r R N A sequence, which is approximately 1500 base pairs long, contains nine 
variable regions separated by ten conserved regions. [61] 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

V1 V2 V3 V4 V5 V6 V7 V8 V9 

Figure 2.2: Visualisation of the 16S r R N A gene sequence with conserved (white) and vari­
able (red) regions (created according to information found in the article by Singer et al. [61]) 

2.3 Taxonomy 

Taxonomy is the part of science focused on naming and classification of all organisms 
which includes animals, plants, fungi and microorganisms. The system was first intro­
duced in the 18 t h century by Swedish naturalist Carolus Linnaeus. He is the inventor of 
the principle of assigning each organism its genus and species name. He also developed a hi­
erarchical classification system which is still used today (with some changes). The system 
is called the taxonomic hierarchy. Within the system, organisms are organised into groups 
according to morphological, behavioural, genetic and biochemical observations. Each level 
of classification is called a taxon. [11], [64] 

Today, the taxonomic hierarchy consists of eight levels which are (from general to spe­
cific): domain, kingdom, phylum, class, order, family, genus, and species. The first and 
broadest level is domain. There are three domains-archaea, bacteria, and eukarya, and all 
living organisms belong to one of these categories. Within each domain, there are kingdoms, 
each kingdom contains phyla, followed by class, order, family, genus, and species. [11], [64] 

The application proposed and described within this thesis focuses on the classification 
of organisms belonging to two of the mentioned domains - bacteria and archaea, since in eu­
karya, 30S r R N A , which contains the 16S r R N A sub-unit, is not present. Instead, there can 
be found 40S r R N A containing the 18S r R N A sub-unit, which is suitable for classification 
of eukarya. [32] 
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Chapter 3 

Methods of Sequence Data Digital 
Processing 

Sequence data are represented as strings composed of four nucleotides- A, C, G, U (or T for 
D N A sequences). In bioinformatics, a comparison of two gene sequences and measurement 
of their difference is a common task. One way of computing the difference between two 
strings is Hamming distance (the number of positions at which the corresponding characters 
differ). However, it is not typically used to compare R N A or protein sequences as it expects 
the compared sequences to have the same length. In these types of data, the i t h character 
in one sequence corresponds to a symbol at a different and unknown position in the other 
sequence due to D N A replication errors that lead to substitutions, insertions, and deletions 
of nucleotides. While strings AC AC AC AC and CACACACA are considered to be very 
different when using Hamming distance, their distance becomes significantly smaller if 
the sequences are aligned by moving one of them to the right over one place. Therefore, 
another approach of comparison of two sequences is used instead of the Hamming distance. 
It is called sequence alignment. [30] 

The first part of this chapter, represented by section 3.1, describes the term sequence 
alignment, its types and well-known sequence alignment algorithms. The rest of this chapter 
consisting of section 3.2 is dedicated to the description of the k-mer spectrum feature, which 
can be also used for gene sequence comparison, and its characteristics that have the biggest 
impact on machine learning applications. 

3.1 Sequence Alignment 

Sequence alignment is a technique of measuring the similarity of two sequences. It is 
defined as the minimum number of editing operations needed to transform one sequence 
into another. There are three types of the editing operations - symbol insertion, symbol 
deletion, and substitution of one character for another. Another advantage of sequence 
alignment is that, unlike Hamming distance, it allows comparison of strings of different 
lengths. [30] 

There are two types of sequence alignment - global and local sequence alignment. Global 
alignment accepts two sequences, v and w, and a scoring matrix as input and its objective 
is to find the best alignment between the given strings, i.e. to return the alignment with 
the maximal score among all possible alignments. The score is computed using values from 
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the given scoring matrix, which prescribes awards for matching characters and penalizations 
for differing characters and gap character insertion. [30] 

Global alignment searches for similarities between two entire sequences, which is useful 
when the similarity between the strings is expected to extend over their entire length. 
When biologically significant similarities can be found only in certain parts of the gene 
sequences, the objective is to maximize the alignment score over all substrings of v and 
w. This problem is called local alignment as the alignment does not need to extend over 
the entire length of the sequence. The input of local alignment is the same as for global 
alignment - two sequences, v and w, and a scoring matrix, and it returns substrings of v 
and w whose global alignment is maximal among all global alignments of all substrings of 
v and w according to the given scoring matrix. [30] 

3.1.1 Needleman—Wunsch Algorithm 

The Needleman-Wunsch algorithm was introduced in 1970 by Saul B . Needleman and 
Christian D. Wunsch. It is a commonly used approach to compute the optimal global 
alignment of two genetic sequences. [43] 

In order to determine the maximum match of two sequences, A and B, the algorithm uses 
a two-dimensional array to represent all possible pair combinations that can be obtained 
from the input sequences by gap insertions. Let Aj be the j t h symbol of sequence A and Bi 
be the i t h character of sequence B, Aj represents the column and Bi the row of the matrix 
M. Then the cell M j j represents a pair containing Aj and Bi. The initial created array 
has 1(A) + 1 columns and 1(B) + 1 rows, where l(X) represents the length of sequence 
X. A n additional row and column is added at the beginning of the matrix to align with 
the gap. [43], [66] 

Every possible comparison of two gene sequences can now be represented by a path 
through the matrix with every character of the input sequences occurring in every path 
maximally once. Any pathway can be then represented by a sequence of cells, Ma^ to MVjZ, 
where a > 1, b > 1, y < 1(A), and y < 1(B). A pathway can be then displayed as a route 
connecting cells of the matrix. [43], [66] 

Two characters of the aligned sequences can match, mismatch or a gap can be applied 
meaning an insertion or a deletion. Multiple scoring systems can be applied. In the basic 
schema used by Needleman and Wunsch, the cell M j j is assigned value 1 if the nucleotides 
Aj and Bi match and —1 if the two characters differ. The gap penalty is also given as 
- 1 . [43] 

The algorithm of finding the optimal global alignment begins with creating the de­
scribed matrix and then initialising its first row and column with values corresponding to 
the count of consequent inserted gaps. After that, the rest of the matrix is filled starting 
from the upper left corner. To find the maximum score of each cell, it is necessary to know 
the scores of neighbours of the current cell (diagonal, left and right). From these values, 
it is possible to obtain tree different scores-by adding the match or mismatch score to 
the diagonal value and adding the gap penalization to the remaining neighbouring values. 
The maximum among the three resulting values is then filled into the M j j cell. The formula 
for computing the score of cell i,j of a matrix M can be written as follows: [66] 

Mid = m a x ( M i _ i J _ i + Sid, M i > 3 - _ i + W, M ; _ i j + W), (3.1) 
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where Sij represents the score or penalty of the characters Aj and Bi and W is the gap 
penalty. The equation 3.1 is applied to compute the values of the remaining rows and 
columns in the matrix M and (according to the improved version of the Needleman-Wunsch 
algorithm presented in article [66]) back pointers are added pointing to the cell from where 
the maximum score originated. [43], [66] 

The aim of the final step of the algorithm is to trace back and find the best alignment. 
This phase starts in the bottom right corner of the matrix and follows the back pointers 
towards the beginning of the matrix. Every cell can have one or more back pointers so, 
generally, there can be two or more alignments possible between the two aligned sequences. 
By following the pointers to the upper left corner of the matrix, the alignment of the two 
input sequences can be found. The best alignment among all alignments can be determined 
with the use of the maximum alignment score. [66] 

3.1.2 Smith—Waterman Algorithm 

The Smith-Waterman algorithm is a well-known algorithm solving the problem of local se­
quence alignment, which means it finds similar subsequences between two gene sequences. 
The algorithm is a modification of the Needleman-Wunsch algorithm for global sequence 
alignment and it was proposed in 1981 by Temple F. Smith and Michael S. Waterman. 
Instead of aligning the entire sequences, the Smith-Waterman algorithm compares subse­
quences of all possible lengths. It aims to find the optimal local alignment according to 
the used scoring system. [2], [30] 

This algorithm differs from the Needleman-Wunsch algorithm mostly in two aspects. 
Firstly, instead of assigning the matrix cell a negative value, it is set to zero in order to 
highlight the best local alignments. This step can be interpreted as search restarting. And 
secondly, the traceback phase starts from all cells with the highest score and continues until 
a cell with the score of zero is reached. [2] 

In the first step of the Smith-Waterman algorithm for local alignment of two sequences, 
A and B, the matrix with len{A) + 1 columns and len{B) + 1 rows is formed. As this 
algorithm does not assign cells negative scores, the values in the first row and first column 
are set to zero. [2], [67] 

The second step consists of filling the rest of the matrix with scores according to values 
of their neighbouring cells and scores and penalizations defined by the scoring schema. 
The back pointers to the cell from where the maximum score originated are stored for 
every cell of the matrix. The only difference in this step is in setting negative values to 
zero. The formula for computing the score of cell i,j of a matrix M is now in the following 
form: [67] 

Mij = m a x ( M i _ i i i _ i + Sid, M ; j _ i + W, M{_hj + W, 0), (3.2) 

where Sij represents the score or penalty of the characters Aj and Bi and W is the gap 
penalty. [67] 

The final step is to trace back to find the optimal alignment. It starts from the cell 
with the maximum score obtained in the entire matrix. There can possibly be more cells 
containing the maximum value which might lead to more than one alignment. By following 
the back pointers, it is possible to move to the predecessors of the cells until a cell with 
the score of zero is reached. Every cell can have more than one back pointer. In that case, 
both alignments can be taken into account and the best one is determined afterwards by 
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summing up their scores for match and penalizations for mismatch and gaps. The alignment 
with the maximum overall score is the best local alignment of the two sequences. [67] 

3.2 K-mer Spectrum 

K-mer refers to a subsequence of length k found in an input sequence. The term k-mers 
then represents all length k subsequences of a given sequence. The multiplicity of each 
k-mer in an input sequence is shown in k-mer spectrum which represents the abundance 
histogram of individual k-mers. K-mer spectrum is also often used for k-mer visualisation. 
In the field of computational genomics, the sequences that are being processed are often 
composed of nucleotides. [34] 

A sequence of length L contains L — k + 1 k-mers. The number of all possible k-mers 
of a sequence relies only on the k-mer size and the count of characters that can be found 
in the processed string. That means that the length of the input sequence does not affect 
the size of the extracted k-mer spectrum. The length of the k-mer spectrum (the number 
of all substrings that are being counted in the original string) can be computed using 
the formula [34] 

where n is the number of possible characters (size of the alphabet) and k is the k-mer size 
which represents the length of subsequences that are being found. [34] 

To compare two k-mer spectra, k-mer similarity can be applied, which returns the higher 
the value the more alike the k-mer spectra are. For a query sequence q and reference 
database R, let W(q) be the set of all k-mers of q. For each reference sequence r G R, 
k-mer similarity between the sequences q and r is defined as: [17] 

which represents the number of k-mers the two sequences have in common. 
One of the biggest advantages of using k-mer spectra is that the extracted k-mer spec­

trum is of the same size, regardless of the input sequence length. That is important when 
applying machine learning algorithms as they require their input vectors to be of the same 
dimensions. On the other hand, extracting k-mer spectrum from a sequence leads to loss 
of positional information of the subsequences in the original sequence, which could be also 
useful for classification. [34] 

n k (3.3) 

(3.4) 
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Chapter 4 

Methods of Classification 

Classification is the process of assigning a given object to a certain class based on its 
features (attributes). It can be also described as the task of approximating a mapping 
function (/) from input variables (x) to discrete output variables (y). Classification is 
a type of supervised learning, which means that labels of the training and validation data 
are known. Therefore, the input dataset is in the following form: [3] 

where x is one sample and y represents the corresponding label. [3] 
The aim of this chapter is to give the basic introduction to machine learning terms and 

algorithms regarding classification, which are used in the presented bacteria classification 
method. 

This chapter could be logically divided into three parts. The first part consisting of 
section 4.1 explains the term cross-validation and its importance in machine learning appli­
cations. The second part contains section 4.2 which introduces accuracy, a frequently used 
metric used to evaluate how well a classification model works and to compare the predic­
tion performance of various classifier types. The last logical part of this chapter consists 
of sections 4.3 to 4.9, each of which is dedicated to the description of one classification 
algorithm and its features. In section 4.3, the S V M classifier is introduced along with its 
three kernel types. Section 4.4 contains information about the nearest centroid classifier 
and its distance metrics. Section 4.5 is devoted to the description of the k -NN classifier 
and its advantages and disadvantages. Section 4.6 focuses on the decision tree, which is 
a very popular and easy to understand classifier type. In section 4.7, the basic principle 
of a random forest model and the process of its generation are described. Section 4.8 is 
devoted to an explanation of multilayer perceptron, a simple neural network suitable for 
classification. Section 4.9 introduces the naive Bayes classifier and two ways of its extension 
to real-valued attributes. 

4.1 Cross-Validation 

Cross-validation is a method of statistical model validation which aims to estimate how 
well will the model perform in practice, on unseen data. It is also frequently used as a tool 
to compare various models and choose a model for a given predictive problem. During 
cross-validation, the model is tested already in the training phase (on validation dataset) 
in order to minimise problems such as overfitting and underfitting. [9], [16] 
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There are various validation strategies which differ in the number of splits that are 
done in the dataset. One well-known validation strategy is called k-fold cross-validation. 
The process has one parameter, k, which represents the number of groups that the input 
dataset is to be divided into. The entire procedure starts with randomly shuffling the dataset 
and splitting it into k parts, each of which is used for validation in one iteration and the rest 
of the data is used for training. After fitting the model on the training data, the model is 
validated on the portion of data left for validation. After all k iterations, the evaluation 
scores from all loops are summarised to show the performance of the model. [9], [16], [44] 

The schema of cross-validation is shown in figure 4.1. There is an example of 5-fold 
cross-validation which means that the input dataset is split into five parts and the training 
and validation phases are executed five times, every time with a different part of the original 
dataset left for validation. 

Dataset 

Training 

1 s t iteration 

2 n d iteration 

3 r d iteration 

4 t h iteration 

5 t h iteration 

r 

Validation 

Validation 

Validation 

Validation 

Validation 

Figure 4.1: Schema of dataset division during cross-validation using 5 folds (created based 
on the information in the article by Kar l Rosaen [52]) 

4.2 Mode l Evaluation 

In order to evaluate how well a classification model works and to be able to compare 
the performance of multiple classifiers, several performance metrics are defined and used by 
data scientists on an everyday basis. In this work, the best-known metric called accuracy 
is used for this purpose. 

The mentioned performance metric can be computed using values from a confusion 
matrix. The confusion matrix is an N x N table, where N symbolises the number of 
classes. On one axis is the predicted label and the other axis represents the actual label. 
The confusion matrix shows the classification predictions of the model and how successful 
they were. When dealing with a multi-class classification problem, the confusion matrix 
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can be used to determine mistake patterns that occur more often than others. Confusion 
matrix for binary classification is given in table 4.1. [23] 

Table 4.1: Confusion matrix for a binary classification problem 

Positive (predicted) Negative (predicted) 

Positive (actual) True positive False negative 

Negative (actual) False positive True negative 

Accuracy represents the fraction of correctly predicted labels out of all predictions. In 
a binary classification problem, it can be computed using the formula: [23] 

True positives + True negatives 
accuracy = . 

True positives + True negatives + False positives + False negatives 
(4.2) 

The generalised form of the previous formula, which can be used for computing accuracy 
in multi-class classification, is defined as: [23] 

Number of correct predictions 
accuracy = —— : ; . (4.3) 

Total number oj predictions 

4.3 S V M 

S V M (Support Vector Machine) is one of the supervised algorithms used for machine learn­
ing problems such as classification and regression. In the basic version, it is linear (similarly 
to perceptron). S V M tries to find the line or hyper-plane that differentiates the two classes 
of objects the best, that means to find the line (or hyper-plane) which generates the largest 
margin between the two classes. The principle is shown in figure 4.2. [49] 

Support Vectors are the data points which are the closest to the hyper-plane, and there­
fore influence its shape the most. [20] 

(a) Small margin ( b) L a r S e m a r S i n 

Figure 4.2: Visualisation of S V M maximizing the distance margin (created based on infor­
mation in the article by Rohith Gandhi [20]) 
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S V M classifier has two major advantages - it is effective in high-dimensional spaces and 
it is also memory efficient as it uses a subset of training points in the decision function. 
Both of the advantages can be of great importance especially when working with larger 
k-mer sizes. On the other hand, S V M classifiers tend to be susceptible to over-fitting so it 
is important to tune the regularization parameter. [5] 

4.3.1 Kernel Types 

So far, only linear S V M has been introduced. However, the real world data are often 
not linearly separable. S V M is capable of converting any data into linearly separable by 
a method called the kernel trick. The method, which takes low-dimensional input space and 
maps it into a higher-dimensional space turning a non-separable problem into a separable 
one, is called a kernel, which is a mathematical function replacing the standard dot product 
operation. The three most commonly used kernel types are linear, R B F and sigmoid. [49] 

The first mentioned kernel type, which has already been introduced, is the linear kernel. 
It is the basic kernel type and it is defined as: [59] 

k(x,y) = xTy, (4.4) 

where x and y are column vectors. [59] 
The R B F (Radial Basis Function) kernel can be described using the following for­

mula: [59] 

k(x, y) = exp(-7 | |x - y\\2), (4.5) 

where x and y are the input vectors and 7 is the "spread" of the kernel. [59] 
The sigmoid kernel (also known as hyperbolic tangent or multilayer perceptron) is de­

fined as: [59] 

k(x,y) = tanh (7xTy + c 0), (4.6) 

where x and y are the input vectors, 7 represents slope and Co is known as intercept. [59] 

4.4 Nearest Centroid Classifier 

The nearest centroid classifier is built on a similar basis to the k-means algorithm. The main 
idea behind both mentioned algorithms is that each class is represented by its centroid, 
which is the centre of mass of its members or their vector average. Test samples are then 
assigned to the class which centroid is the nearest to the analysed sample. [47] 

The visualisation of the classification process in two-dimensional space can be seen in 
figure 4.3. There are shown three classes of objects (represented by circles, diamonds and 
squares) with their corresponding centroids marked with an "x" symbol. The individual 
classes are separated by straight lines called decision boundaries. They are formed of points 
with the same distance from two nearest centroids. A new test input is shown as a filled 
circle in the centre of the image. It is connected to the centroids and the shortest line leads 
to the centroid of the final classification, in this case, it would be class 2. 

A class centroid is computed as an average of the members of the given class. Let C 
be the examined class, S be the set of all samples with their corresponding classifications, 
Sc be the subset of samples in S which belong to class C (Sc = {(x,C) \ (x,C) G S}). 
The centroid jlc can be then computed with the use of the following equation: [47] 

15 



o 

o 

Class 1 

o 

o 
Class 2 

Class 3 

Figure 4.3: Visualisation of nearest centroid classification (created based on the information 
in the article on the Stanford N L P Group website [47]) 

When classifying a test sample, the distances from centroids of all classes are computed. 
The classified input is then assigned to the class with the lowest computed distance. [47] 

Nearest centroid classifier is based on a simple to understand algorithm. Moreover, 
there are no parameters to tune which makes it very easy to start with. On the other hand, 
it has a problem when dealing with non-convex classes and classes with extremely different 
variances. [58] 

4.4.1 Distance Metrics 

When defining the nearest centroid classifier, the distance between a test sample and a cen­
troid has been so far referred to as the Euclidean distance of two vectors. However, the use 
of various distance metrics is possible and its choice can have a huge impact on the predic­
tion accuracy. In this section, some of the distance metrics will be introduced, specifically 
five metrics which are provided by the sklearn.neighbors.DistanceMetric library and 
a correlation coefficient transformed into a form of a distance metric. 

Euclidean Distance 

The first described is the widely used and well-known Euclidean distance. It is based 
on the Pythagorean theorem and can be described as the root of squared differences of 
coordinates of two sample objects. The Euclidean distance between two points in an n-
dimensional space can be computed using the following formula: [4] 

{x,y) e Sc 

(4.7) 
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Manhattan Distance 

The Manhattan distance represents the distance needed to be travelled from one point to 
the other while following a grid-like path. 

The Manhattan distance between two points is computed as the sum of absolute dif­
ferences of their corresponding coordinates. The distance between two points, x and y, 
represented by a vector of their coordinates can be obtained by using the following for­
mula: [29] 

n 
d(x,y) = ^ \ x i -yi\. (4.9) 

i=i 

Chebyshev Distance 

Similarly to Manhattan distance, Chebyshev distance also uses the absolute values of coor­
dinate differences. However, Chebyshev distance, instead of summing up the values, returns 
the maximum of all differences among the coordinates of two objects. [65] 

Chebyshev distance is computed as the biggest value of absolute differences along 
an axis. It can be obtained using the formula: [65] 

d(x,y) = max\xi - yi\. (4.10) 
i 

Minkowski Distance 

The Minkowski distance is a metric defining a distance between two points in a normed 
vector space. It can be considered as a generalised metric including other metrics as special 
cases of the generalised form. [56] 

The generalisation in the Minkowski distance is created by comprising a parameter, p. 
The formula to compute Minkowski distance is: [10] 

d(x,y) = (X>i-2/i| pr• (4.11) 
^ i=i ' 

The value of the parameter p has a huge impact on the representation of the distance, 
for example: [56] 

• for p = 1 it equals the Manhattan distance, 

• for p = 2 it equals the Euclidean distance and 

• in the limit that p —>• +oo, the distance equals the Chebyshev distance. 

Standardized Euclidean Distance 

When computing the Euclidean distance, the squared differences along all axes are summed 
up. In real life applications, the variables can be on completely different scales of measure­
ment. A n example of vast difference could be a database of people in a two-dimensional 
space with the number of children on one axis and annual salary on the other. In this case, 
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the difference in the number of children would contribute minimally to the distance of two 
points in the plane. 

The aim of the standardized Euclidean (shortly Seuclidean) distance is to make all 
variables contribute to the overall distance equally. Therefore, it features data preprocessing 
in the form of normalization to standardize the variable variance to 1. The Seuclidean 
distance is then computed with the use of the same formula as for Euclidean distance. [24] 

Correlation Coefficient 

The last introduced metric is built on the basis of correlation of two objects, which can 
be obtained with the use of the Pearson correlation coefficient. The Pearson correlation 
coefficient is a measure of the linear relationship of two variables. Its values can range 
from -1 to 1, where 1 indicates a perfect positive linear correlation, -1 represents a perfect 
negative correlation and 0 indicates no linear relationship between the two variables. [33] 
Scatter plots visualising the mentioned significant values can be seen in figure 4.4. 

2 4 6 

(a) Correlation coefficient 1 (b) Correlation coefficient —1 

(c) Correlation coefficient 0 

Figure 4.4: Significant values of Pearson correlation coefficient (created based on the infor­
mation in the article by David M . Lane [33]) 

In order to use the Pearson correlation coefficient as a distance metric, it is necessary 
to transform it into a true metric. The value of Pearson coefficient can range from —1 to 
1, therefore, it is possible to transform the correlation coefficient into a distance metric by 
applying the following formula: [53] 
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Pearson_distance(x,y) = 1 — correlation^, y). (4.12) 

The defined Pearson distance falls between 0 and 2 and its value is the greater the less 
correlated the objects are. 

The k-Nearest Neighbors (shortly k-NN) algorithm can be used to solve both classifica­
tion and regression problems. The principle of this method is similar to nearest centroid 
with the difference that in k-NN, the classes are not represented by their centroids yet 
by members of the classes themselves. When classifying an unknown sample, its k near­
est neighbors are determined, which are the samples with the lowest vector distance from 
the unknown sample, and the object is assigned to the class which is the most common 
among its neighbors. [7] 

The principle of k -NN classification is visualised in figure 4.5, which shows assigning 
a class to an unknown sample for k equal to 1 and 3. 

Figure 4.5: Classification with k -NN classifier for k equal to 1 and 3 (created on the basis 
of the article by Adi Bronshtein [7]) 

k-NN belongs to the category of lazy algorithms which means that it does not create any 
generalizations of the input data and instead it keeps all the training data for classification. 
Therefore, the training phase is very fast. [7] 

The right value of the k parameter is very data-dependant. The best approach is to 
experiment with various values and find the one, which reaches the smallest error rate. In 
general, the smaller the value of k is, the more susceptible the classification is to noise and 
overfitting. On the contrary, increasing the value of k results in less distinct boundaries of 
the classification. [5], [26] 

The biggest advantage of the k -NN classifier is that its algorithm is simple to understand 
and to implement. Another plus of this method is its lack of multiple parameters, which 
would need to be tuned. Its significant disadvantage is its high memory requirements as 
it stores most of the training data. Moreover, the prediction phase can be slow because 
the distances to all training samples are computed. [7], [26] 

4.5 k - N N 
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4.6 Decision Tree 

Decision tree is another example of a very popular and easy to understand model. Similarly 
to k-NN, it can be also used for classification and regression tasks as well. The decision 
tree uses a tree-like model in which nodes represent attributes of the input data, branches 
are created from decision rules and leaf nodes mean categories (assigned labels). [25], [54] 

During the training phase, the model is created by inferring simple decision rules from 
the attributes of input data. The creation of decision tree starts in its root node. A l l data 
attributes are taken into account and the training data is split into groups according to 
the chosen attribute. In the next step, the resulting accuracies of all possible splits are 
computed and the split with the best outcoming accuracy is chosen. Then, the algorithm 
repeats itself in the created sub-nodes recursively until the entire tree has been built. [5], [25] 

A n example of a decision tree for a simple problem of deciding whether to play given 
the input data on outlook, humidity and rain can be seen in figure 4.6. 

Figure 4.6: Decision tree solving a problem whether to play or not based on current weather 
conditions (created according to a model in the article by Madhu Sanjeevi [54]) 

Advantages of a decision tree model are its simplicity to understand and even visualize 
the model, its ability to handle both numerical and categorical data, and the fact that 
it requires little to no data preparation. The biggest disadvantages of this model are its 
susceptibility to overfitting, therefore it is important to involve pruning, instability as small 
variations in the data might result in creation of a completely different tree, and generation 
of biased trees if the classes are not balanced. [5], [25] 

4.7 Random Forest 

Random forest is another example of a very simple to understand and easy to use machine 
learning algorithm, which can also be used for both classification and regression tasks. As 
can be deduced from its name, it consists of multiple decision trees. The main idea behind 
random forest is to build various decision tree models and combine them in order to obtain 
more accurate prediction. [15] 

The process of decision tree creation is deterministic, therefore, it is necessary to add 
some additional randomness to tree generation. Randomness is incorporated in two phases -
a random subsample drawn from the training dataset is used to construct each tree in 
the ensemble and instead of finding the attribute which offers the best accuracy when 
splitting a node, the random forest searches for the most suitable attribute in a random 
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subset of features. This approach results in creating a robust model with generally better 
accuracy. [6], [15] 

The classification with the use of a random forest model can be seen in figure 4.7. There 
is an example of random forest consisting of three randomly created decision trees. The in­
put data are presented to all the decision trees and classified by them. On the resulting 
labels, majority vote (for classification) or averaging (for regression) is then applied to get 
the final label for the input. 

Input features 

Tree 1 Tree 2 Tree 3 

0 0 * 
Class A Class B Class A 

^ *• Majority voting ^ 

Final class 

Figure 4.7: Process of classification with the use of a random forest classifier consisting 
of three random decision trees (created according to information in the article by W i l l 
Koehrsen [31]) 

A n advantage of the random forest algorithm is that it is easy to use thanks to the small 
number of parameters to tune. Moreover, even default parameter values often lead to 
satisfactory results. Another pro of this method is its bigger resistance to overfitting in 
comparison to a simple decision tree algorithm. On the contrary, with increasing number 
of trees decreases the speed of training and prediction. Random forest can be quite slow 
especially during predictions, which can make them unusable for applications requiring 
real-time classification. [15] 

4.8 Multi layer Perceptron 

Multilayer perceptron (shortly M L P ) , also known as artificial neural network, is based on 
a joint net of perceptron layers. A single-layer perceptron is a well-known method capable 
of solving simple problems with data that is linearly separable into n dimensions for n being 
the number of attributes of the input data. The accuracy rapidly decreases, however, for 
data that are not linearly separable. The solution can be found in adding other layers and 
creating the multilayer perceptron. [51] 

Multilayer perceptron consists of a net of multiple connected neurons. There is one 
input layer, which is represented by a set of neurons, each corresponding to one input 
feature. Then, there are one or more hidden layers. The neurons in the hidden layer 
apply a weighted linear summation on the outputs of the previous layer and then transform 
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the results by a non-linear activation function. Lastly, there is one output layer, which 
converts the outputs of the last hidden layer into output variables. [5] 

The schema of the structure of a single hidden layer M L P model can be seen in figure 4.8. 

Bias 

Figure 4.8: Schema of a simple M L P with one hidden layer (created on the basis of an image 
listed in the scikit-learn documentation on neural network models [57]) 

Neural networks are trained in cycles called epochs. One epoch has two phases-feed­
forward and back propagation. During the feed-forward phase, a sample is presented to 
the input layer. The values received are passed onto connected neurons in the first hidden 
layer, multiplied with the weights and a bias is added to the result. On the obtained values, 
an activation function is applied, which can be a step function, sigmoid function or relu 
function. After that, the computation process is repeated until the output layer is reached. 
The values obtained in the last, output, layer are the outputs of the feed-forward stage. [51] 

The resulting values rarely achieve satisfactory accuracy. In order to improve prediction 
performance, the second, back propagation, phase is involved. During back propagation, 
the weights of neurons are updated to make the difference between the predicted and 
expected output as small as possible. [51] 

Back propagation consists of two steps. First, the loss is computed, which is the differ­
ence between the predicted and the desired output. The function used to calculate the loss 
is called the loss function and it can be a mean squared error or a cross entropy function. 
The aim of the second step is to minimize the calculated error. This is done by computing 
the gradient, which is a partial derivative of the error function. According to the deriva­
tives, values of the individual weights are increased or decreased to reduce the overall error. 
The function, which aims to reduce this error, is called the optimization function. [51] 

A n advantage of the M L P classifier is its capability to solve non-linear problems. On 
the other hand, its notable disadvantage is the number of its hyperparameters (such as 
the number of hidden neurons and layers) which need to be tuned, and its sensitivity to 
feature scaling. Moreover, in M L P with hidden layers, there is a non-convex loss function 
which means that there exists more than one local minimum. That can lead to different 
validation accuracy for different random weight initializations. [5] 
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4.9 Naive Bayes 

Naive Bayes is a set of simple yet powerful supervised learning algorithms based on the Bayes' 
theorem which provides a way to calculate the probability of a hypothesis given our prior 
knowledge. It is called naive because of the assumption of conditional independence between 
every pair of attributes. The Bayes' theorem can be written as: [8] 

P ( m _ f C f f i ^ W , ( 4 , 3 ) 

where P(h\d) is the probability of hypothesis h under the condition of data d, P{d\h) 
is the conditional probability of observing data d given that the hypothesis h is true, P{h) 
and P(d) are the prior probabilities of the hypothesis h and of the data respectively. [8] 

Training of a naive Bayes model, which consists in deriving conditional probabilities from 
training data, is fast and there are no parameters to be fitted. Even though the assumptions 
of the Bayes model are simplified, it has proven to work well in many real-life applications. [8] 

The naive Bayes classifier can be extended to data with real-valued attributes. This can 
be achieved by applying a function to estimate the data distribution. The easiest way to do 
so is to use the Gaussian distribution. The classifier is then called Gaussian naive Bayes. 
Another possibility is to use multinomial naive Bayes, which is the naive Bayes algorithm 
for data with the multinomial distribution. [81 
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Chapter 5 

Existing Tools 

Some methods of bacteria classification, which have already been implemented, are de­
scribed in more detail in this chapter. A l l of the methods introduced in this chapter extract 
k-mer spectra from the input sequences before applying the classification models. 

Section 5.1 is devoted to the description of the R D P classifier which utilises the naive 
Bayesian classifier. Section 5.2 introduces a set of tools implemented within a bioinformatic 
pipeline called QIIME. Most of the techniques are built on the basis of k -NN classifier and 
apply various approaches to search for the nearest neighbours. In section 5.3, another solu­
tion named microclass, which is based on the naive Bayes classifier, is presented. Section 5.4 
is focused on the 16S Classifier that creates a random forest classification model. The aim 
of section 5.5 is to describe the S I N T A X algorithm, which also utilises the principle of 
nearest neighbours. The last section, 5.6, introduces the I D T A X A method which is based 
on the principle of tree classification. 

Some of the introduced algorithms are used for comparison with the proposed method 
and the results can be seen in chapter 8. 

5.1 R D P Classifier 

One approach of solving bacteria classification has been introduced by Wang et al. in their 
article Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New 
Bacterial Taxonomy [68]. In this work, they described the R D P classifier which extracts k-
mer spectra from the input sequences and then applies the naive Bayesian classifier to assign 
the unknown specimens their genera. Regarding k-mer size, they achieved the best accuracy 
with k set to 8 and 9 and decided to use k-mer size 8 to reduce memory requirements. 

5.2 Q I I M E and Q I I M E 2 Pipelines 

Some other existing solutions are implemented as a part of QIIME, a bioinformatic pipeline 
designed for analysing microbiome from raw D N A sequencing data. [48] 

One of the methods implemented within QI IME is called U S E A R C H L C A . This method 
is based on the k -NN classifier. It uses a sequence database search algorithm that seeks 
high-scoring global alignments named U S E A R C H [19] for finding k sequences which are 
the most similar to the given sequence and whose taxonomy is known. Then, on their 
taxonomie classifications, the L C A [35] algorithm is applied to obtain the taxonomy of 
the unknown sequence. 

24 



Another approach is implemented in QI IME 2 and it is named B L A S T L C A . The prin­
ciple of this method is the same as in the previous algorithm with the only change in 
the search algorithm. In this method, the B L A S T [42] search algorithm is used. 

Last mentioned method is QI IME B L A S T T O P HIT, which basically represents the k-
N N algorithm with k set to 1. It uses the B L A S T algorithm for finding the nearest neighbour 
and assigns the unknown sequence the taxonomy of the nearest sample. [12] 

5.3 microclass 

Another solution called microclass is available as an R package and while it has a standard 
R interface, its computational core is implemented in C+-1- (for example the extraction 
of k-mer spectra) to reduce time consumption. After experimenting with various k-mer 
spectra based classification methods, the authors decided to use the naive Bayes classifier. 
The same classifier type is used in the R D P method, however, while R D P only considers 
the presence of k-mers, in microclass, the abundance of k-mers is used. [37] 

The package offers the possibility of creating a custom model by training a new model 
on an input dataset and classification of unknown samples by the previously created model. 
It also offers a ready-to-use pre-trained classification tool, which uses k-mer size 8 and 
has been trained on full-length 16S r R N A sequences. K-mer of size 8 was chosen since its 
increase to 9 or 10 results in a high cost in memory consumption and computation time 
while the gain in accuracy on the genus level is small. [37] 

The authors have compared the presented method to classification based on the B L A S T 
algorithm. The executed experiments proved that this method is both slower and less 
accurate than the proposed method. [37] 

5.4 16S Classifier 

16S Classifier is an example of more recent approaches. It is based on a random forest 
classification model and uses only the hypervariable regions of the 16S r R N A in order to 
increase speed and prediction accuracy. [13] 

The authors decided to use random forest classifier for its quick and easy implementa­
tion, ability to deal with large datasets thanks to its robust classification algorithm, and 
high accuracy it can offer. Furthermore, it offers the possibility to be presented a large num­
ber of input variables and still prevent overfitting. The authors also applied bootstrapping 
to grow classification trees in the random forest with the use of the training data. [13] 

During optimisations, the authors came to a conclusion that performances of 2-mer 
and 3-mer models offered the lowest accuracy. 5-mer and 6-mer models gave results with 
the lowest error, however, the 4-mer model needed significantly less time to prepare a model 
and smaller size of training data. Therefore, the authors decided to use 4 as the k-mer size. 
The authors also examined the impact of the number of decision trees on the resulting 
accuracy. To do so, they gradually increased the number of trees up to 1,000 and noticed 
a gradual increase in prediction accuracy, therefore, they decided to generate 1,000 trees 
when creating a random forest model. [13] 
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5.5 S I N T A X 

The S I N T A X taxonomy classifier, which is introduced in article SINTAX: a simple non-
Bay esian taxonomy classifier for 16S and ITS sequences by Robert C. Edgar, is focused 
on the classification of ribosomal 16S gene and fungal ITS (Internal Transcribed Space) 
regions. Similarly to other existing methods, it also extracts k-mer spectra from the input 
sequences and uses k set to 8 by default. The basic principle of this algorithm is simple, 
after the k-mer spectrum has been obtained, it uses k-mer similarity to find the top hit 
in a reference database. Along with the predicted taxonomy, it provides also bootstrap 
confidence for all taxonomic ranks in the predicted classification, which can be represented 
as a list of reference taxonomies with their k-mer similarities to the classified sequence. [17] 

During the comparison of the S I N T A X algorithm to the R D P classifier, it achieved 
better accuracy on full-length 16S and ITS sequences and comparable results on the V4 
region of 16S r R N A . Moreover, S I N T A X features a simpler algorithm than the R D P naive 
Bayesian classifier and does not require training. [17] 

5.6 ID T A X A 

The I D T A X A algorithm was presented by Murali et al. in their article IDT AX A: a novel 
approach for accurate taxonomic classification of microbiome sequences. It aims to propose 
a different approach to the taxonomic classification which utilises machine learning princi­
ples and manages to reduce overclassification errors. The I D T A X A algorithm consists of 
tho phases - training and new input sequences classification. [41] 

Training takes reference sequences and their corresponding taxonomic classifications as 
input and starts with extracting k-mer spectra from them. By default, the value of k is 
chosen according to the length of input sequences. For example for an input dataset of full-
length 16S r R N A gene sequences, the k would be set to 8. During k-mer spectra generation, 
the non-nucleotide characters are omitted. After that, the top 10% of k-mer spectra that 
distinguish among the subgroups at each taxonomic rank the best are determined according 
to the differences of the frequency of each k-mer relative to other k-mers in a subgroup and 
the frequency of the same k-mer relative to other k-mers in its parent group which is 
computed based on the cross-entropy. [41] 

The output object of training is taken as the input of input sequence classification 
together with a set of unknown sequences to be classified. From these sequences, the k-
mer spectra are extracted and then classifier by descending through the taxonomic ranks. 
After finishing the classification process, the classification process returns the predicted 
classification for each input sequence in the form of the taxonomic assignment together 
with confidences for the corresponding taxonomic ranks. [41] 

The authors managed to obtain higher accuracy with the I D T A X A algorithm than other 
popular classifiers, such as B L A S T , QIIME, S INTAX, and the R D P Classifier. 
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Chapter 6 

Proposed Bacteria Classification 
Method Specification 

This chapter contains a detailed description of the proposed bacteria classification method. 
In each section, a part of the whole algorithm is specified, starting with k-mer spectra 
extraction from the input 16S r R N A sequences and continuing to classification tree creation, 
training and evaluation. 

Section 6.1 focuses on k-mer spectra extraction and the importance of this step for 
further processing. It also addresses the impact of the value of k on classification. In 
section 6.2, the process of generation of the tree of classifiers is introduced together with 
the reason for using this structure of classifiers. Section 6.3 is devoted to the specification 
of a new type of classifier, the N M D K classifier, which is proposed and implemented as 
a part of this work. Section 6.4 features algorithm of the presented N M D K classifier. 

6.1 K-mer Spectra Extraction 

This method is designed to classify bacteria according to the sequence of their 16S r R N A 
gene. The 16S r R N A sequence can be found in the genome of all bacteria species and it 
differs enough among various genera so that it could be a good candidate for determining 
the type of bacteria. The 16S r R N A sequence can contain multiple mutations, insertions 
and deletions, therefore, various 16S r R N A sequences can be of different length. This could 
cause inconvenience as machine learning algorithms require their input vectors to be of equal 
dimensions. To overcome these difficulties, a k-mer spectrum is extracted from the input 
sequence and used for classification afterwards. Wi th the use of k-mer spectra, it is possible 
to transform every 16S r R N A sequence, which is in the form of a string, into a numeric 
vector, where each value represents the number of occurrences of the corresponding k-mer 
in the original sequence. 

K-mer spectra extracted from the 16S r R N A sequences of all bacteria species have 
the same predetermined length, which only relies on the k-mer size and number of nu­
cleotide characters used (in the equation 3.3 in section 3.2, the count of nucleotides would 
represent the variable n). There are four nucleotides, which are being found in an R N A 
of a bacteria - adenine (A), cytosine (C), guanine (G), and uracil (U). However, other 
characters are also frequently present in the r R N A sequences in various databases. These 
characters (similarly to regular expressions) represent two or more bases, e.g. Y, which can 
mean either cytosine or uracil [63]. To include also these characters and avoid unneces-
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sary loss of information, the proposed classifier deals with substrings which contain one 
or more non-nucleotide characters by transforming them into all possible real nucleotide 
sequences (created according to substitution table defined by the I U P A C federation [63]) 
and incrementing the count of occurrences of the corresponding k-mers. 

Moreover, transforming the 16S r R N A gene sequences into k-mer spectra offers the pos­
sibility of experimenting with various k-mer sizes. The smaller size of k-mer is capable of 
extracting less information than larger k-mer size, on the contrary, the extracted k-mer 
spectrum is less affected by the mutations in genes (explanation of this statement can be 
found in section 6.1.1). 

6.1.1 Impact of K-mer Size 

As mentioned in the previous section, smaller k-mer size leads to extracting less information 
from the sequence in comparison to bigger k-mer sizes, meaning there are fewer distinct 
subsequences being counted in the gene sequence when using a smaller k-mer size and it is 
not possible to capture the occurrence of that many subsequent characters. For example, 
consider two subsequences of " C A G C " and " G C C A " . When using a k-mer spectrum with 
size 4, one sequence motif is extracted from each subsequence and the two subsequences 
are easily distinguishable. However, for a k-mer spectrum of size 2, there are two sequence 
motifs found in each subsequence ( "CA" and "GC") and the obtained k-mer spectra are 
the same for both subsequences. 

The second idea mentioned was that the bigger the k-mer size is, the more the extracted 
k-mer spectrum is affected by a single gene mutation. The idea behind this statement is 
explained in figure 6.1, which shows a comparison of k-mer sizes 2 and 4. The example 
contains a part of a genome sequence in which the fifth base has been mutated from cytosine 
to guanine. For the k-mer size of 2, the mutated gene changes only two values (for subse­
quences " G C " and "CU") by one. When using the k-mer size of 4, however, there is a total 
of four affected values (for subsequences " C A G C " , " A G C U " , " G C U A " , and " C U A C " ) by 
this single mutation. 

A C A G C U A C G A C A G C U A C G 

A C A G G U A C G A C A G G U A C G 

(a) K-mer size 2 (b) K-mer size 4 

Figure 6.1: Impact of mutations using various k-mer sizes 
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6.2 Classification Tree 

This classification tool is designed to assign unknown bacteria to their most probable gen­
era. In order to minimise the classification error, the presented method is based on a tree 
structure of classifiers corresponding to the taxonomic tree. The whole classifier is decom­
posed into multiple classifiers (referred to as partial classifiers) on all levels of taxonomy 
from domain down to genus. Thanks to the use of the taxonomic tree structure and the con­
cept of successive classification it should be possible to decrease the overall classification 
error in comparison to direct classification on the lowest taxonomic level since every clas­
sifier distinguishes only among a few classes on the lower level of the taxonomy. This may 
contribute to increased accuracy since with an increasing number of predicted classes in­
creases the probability of overlapping of the individual classes. The comparison of accuracy 
obtained by the tree structure of classifiers and direct genus assignment with the use of only 
one classifier can be seen in section 8.4. The introduced approach also offers the possibility 
of presenting the whole taxonomic classification from domain down to genus with values of 
reliability for predicted labels on every taxonomic level. 

The tree structure of partial classifiers is shown in figure 6.2. Every rectangle represents 
a single classifier of one of the well-known classifier types, such as S V M , nearest centroid, 
decision tree and random forest. The labels in them show the classification of the input 
gene sequence on the corresponding level of the taxonomy. A n example classification of Es­
cherichia coli is given. The partial classifiers are connected with arrows indicating the order 
of sequence classification through the whole tree of classifiers. 

Life 

Domain 

Phylum 

Class 

Order 

Family 

Genus 

Figure 6.2: Tree structure of partial classifiers created according to the taxonomic tree with 
emphasised classification order 

Wi th this method, it is possible to obtain a complete taxonomic classification from 
domain to genus and, in case of an unsuccessful classification, determine the exact partial 
classifier which caused the error. 
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Diagram of training of the presented tree structure of classifiers can be seen in fig­
ure 6.3. The training method consists of two phases. The aim of the first phase is to 
determine the best performing classifier setting among all evaluated settings. In order to 
compare the accuracies of the individual settings, all types of classifiers with various settings 
compete against each other. To execute the competition, the entire process of tree creation, 
training and validation is wrapped inside cross-validation, which represents the outer loop 
of the entire training method. In the diagram, the outer loop is represented by the five divi­
sions of the input dataset, each of which is the input for one outer loop iteration. The inner 
loop, which takes place inside every outer loop iteration and is visualised as the rectangle at 
the top of the diagram, represents the grid search. It is executed iteratively for every classi­
fier setting in all available settings and consists of three steps - building a tree of classifiers 
of the given type, training and validation. The outcome of validation in every inner loop 
iteration is a list of accuracies achieved by the current classifier setting on every taxonomie 
level. These values are then used for comparison of multiple classifier settings. 

After the entire cross-validation process, the best performing classifier is determined, 
which is the output of the first training phase and input of the second training phase. In 
the second training phase, which can be seen at the bottom of the diagram, a new classifier 
tree composed of the determined classifier type is generated, trained on all available data 
and stored as the final model for further use. Wi th this approach, it is possible to obtain 
the best performing classifier for every dataset used. 

Phase 1 

Iteration 1 

Training 
data 

Best 
j v classifier 
~ l / setting 

determination 

Iteration 2 

Phase 2 

Classifier tree ^ r-̂  T r a i n i n „ , i \ Storing the 
generation draining final model 

Entire " / \ 
dataset 

Figure 6.3: Diagram of of the two-phase training method of the presented tree classifier 

Training of each partial classifier is executed separately and independently on other 
partial classifiers and it should be executed on a subset of training data, only on those 
r R N A sequences, which belong to the taxon of the classifier. 
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To train the model as well as to validate the accuracy of specimen taxonomy pre­
diction, a reference database containing sequences with taxonomy annotations is required. 
The databases used to train models and validate their accuracies are described in section 8.2. 

The process of r R N A gene sequence classification can be seen in figure 6.4, in which 
arrows show the order of processing and dashed arrows represent alternative routes. 

Unknown 16S 
rRNA sequence 

I K-mer spectrum 
extraction 

K-mer spectrum 

Normalization 

Normalized k-mer 
spectrum 

Root classifier 

Bac te r i a ^ 

Proteobacteria 

Gammaproteobacteria 

Enterobacteriales 

Enterobacteriaceae 

Escherichia 

I 

Tree classification 

Assigning the sequence 
its classification 

Bacteria, Proteobacteria, Gammaproteobacteria, 
Enterobacteriales, Enterobacteriaceae, Escherichia 

Figure 6.4: Diagram of unknown input sequence classification with the use of the presented 
K T C classifier 
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The procedure of classification is initiated by obtaining a k-mer spectrum from the input 
sequence. After that, the k-mer spectrum is optionally normalized and presented to the top 
classifier, which categorises it as either a bacteria or an archaea. Afterwards, the chosen one 
of the two classifiers on the domain level is used to assign the input spectrum its phylum. 
Then, the classifier belonging to the assigned phylum is used to classify the input into one 
of the connected classes and this process repeats itself until the final classification, genus, 
is assigned, which consists of the path from the root classifier to the bottom classifier. 

6.3 N Most Distinguishing K-mers ( N M D K ) Classifier 

The N Most Distinguishing K-mers ( N M D K ) classifier is the proposed type of classifier 
which aims to offer a solution with good accuracy and to achieve a significant decrease in 
memory requirements and time consumption thanks to dimensionality reduction. The basic 
principle of the introduced classifier is very similar to the nearest centroid algorithm. Every 
taxonomie classification in the classifier tree is represented by the N most distinguishing 
positions of an average k-mer spectrum of the given taxon. 

In machine learning, the curse of dimensionality is a commonly known issue resulting in 
slow training and evaluation phases as well as extremely large memory requirements. It can 
also make the final classifier too complex without a notable increase in accuracy as shows 
the Hughes Phenomenon. It states that with an increasing number of attributes, the clas­
sifier performance also increases, however, only until the optimal number of attributes is 
reached. Including additional features then only decreases the classifier's performance. [60] 

The N M D K classifier tries to combat this problem by selecting only a given number of 
the input features and in order to increase prediction accuracy, it omits attributes that are 
not of great importance for distinguishing among the given classes. 

Training an N M D K node classifier starts with computing the average k-mer spectra 
of the node and of all classes on the lower level of the taxonomy. These k-mer spectra 
are computed from those samples in the training data which belong to the given taxon. 
The average k-mer spectrum of a class is computed using one of the two methods. It is 
either represented by the mean k-mer spectrum of the given class or by its median, which is 
not as susceptible to extreme values as mean. Then, the average k-mer spectra are reduced 
to only the N most distinguishing positions. To do so, two principles are applied-joint and 
separate. 

In the first (joint) approach, only one set of the N most distinguishing positions of 
the k-mer spectra is determined for the current node. That means that the absolute differ­
ences among the k-mer spectrum of the node and all k-mer spectra of the lower taxonomie 
classifications are summed for each feature and the N attributes, which have the highest 
overall difference, are chosen as the most distinguishing ones. The differences for each 
attribute can be computed using formula 6.1, where L is the length of a k-mer spectrum 
(number of all features), n is the count of classes at the lower level of taxonomy, x\ to xn 

are the average k-mer spectra of classes at the lower taxonomie level and y is the average 
k-mer spectrum of the current node. 

The second (separate) approach is to determine the N most distinguishing positions sep­
arately for every category at the lower taxonomie level. The differences among the k-mer 
spectrum of the node and all k-mer spectra of lower taxonomie classifications are computed 
separately and for every lower taxonomie class, the N attributes which have the highest 
difference from the average k-mer spectrum of the upper node are chosen as the most distin­
guishing ones for the given taxonomie category. The difference between the average k-mer 
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spectrum of the current node and of one of its subclasses is computed using the formula 6.2, 
where L is the length of a k-mer spectrum, and x and y are the examined average k-mer 
spectra. 

n 
Vi G (1, L) : differences^, x2, • • • , xn,y) = ^ \xjt - yi\ (6.1) 

i=i 
Vi G (1,L) : differencesi(x,y) = \xi - yi\ (6.2) 

Classification of an unknown sample is then done by computing the absolute difference of 
values in the N most distinguishing positions and the N M D K spectra of all lower taxonomie 
classifications, and the classified sample is assigned to the class of the lower taxonomie label 
with which it obtained the lowest summed difference. The index of the class which will be 
assigned to the unknown specimen can be computed using the following formula: 

k-mersDi fference(x,y) = arg min ( \ . \xi ~ Ui\): (6-3) 
x£{xi, ... ,Xn} ^ ' 

where x\ to xn are the N M D K spectra of classes at the lower taxonomie level and y is 
the N M D K spectrum of the classified sample. 

Evaluation of all variations of the N M D K classifier prediction accuracy can be found in 
section 8.5. 

6.4 The N M D K Classifier Algori thm 

In order to implement and be able to utilise the proposed N M D K classifier, two functions 
need to be specified - one for training, which is called train, and another one for classifi­
cation of unknown input sequences named classify. 

Algorithm of the first mentioned function of the N M D K classifier, train, can be seen 
in algorithm 1. It takes two parameters - X representing the input data for training, and y 
in which are passed labels corresponding to the training data. First, the shapes of data and 
labels are checked whether they are valid in function check_X_y. In the next step, the av­
erage k-mer spectrum of the current node is computed using the chosen metric-mean or 
median. After that, unique labels are stored as names of classes at the lower taxonomie 
level. Next, in function ComputeAverageSpectra, the average k-mer spectra for nodes at 
the lower taxonomie level are computed. In function DetermineDivergentlndices, the 
most divergent indices in k-mer spectra are obtained and the corresponding most distin­
guishing k-mer spectra for every subclass are acquired in function GetDivergentKmers. 
Finally, the created classifier instance is returned. 

The second mentioned function of the N M D K classifier is called classify and its algo­
rithm is listed in algorithm 2. This function accepts only one parameter -X, which contains 
the unknown 16S r R N A sequences. Firstly, it is checked whether this classifier object has 
been previously fitted. After that, the shape of input samples is validated in function 
check_array. In the next step, the input k-mer spectra are reduced to the most diver­
gent k-mer spectra. Subsequently, for every input specimen, the differences from classes on 
the lower taxonomie level are computed and the class which is the closest to the currently 
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Algorithm 1 Training of the N M D K classifier 

1: procedure train(X, y) 
2: X , y = check_X_y(X, y) 
3: averageKmer = averageMetric(X, axis=0) 
4: classes = unique_labels(y) 
5: averageSpectra = ComputeAverageSpectra(X, y) 
6: divergentlndices = DetermineDivergentlndices (averageKmer, averageSpectra) 
7: divergentKmers = GetDivergentKmers(averageSpectra) 
8: return classes, divergentlndices, divergentKmers 

examined sample is added to the list of predicted labels. When all input samples have been 
classified, the list of predicted labels for all classified specimens is returned. 

Algorithm 2 Unknown specimens classification using the N M D K classifier 

1: procedure classify (X) 
2: check_is_fitted(['classes', 'divergentlndices', 'divergentKmers']) 
3: X = check_array(X) 
4: divergentKmers = ExtractDivergentKmers(X, divergentlndices) 
5: predictedLabels = [] 
6: for specimen in divergentKmers do 
7: differences = ComputeDifferencesFromSubclasses(specimen) 
8: closest = GetLowestDifferenceldx(differences) 
9: predictedLabels. append(classes [closest]) 

10: return predictedLabels 
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Chapter 7 

Implementation of the K-mer Tree 

This chapter focuses in detail on the description of the final implementation of the K T C 
(K-mer Tree Classifier) application introduced in chapter 6. The application is implemented 
with the use of object-oriented programming. The entire application consists of multiple 
classes, each of them is implemented in a dedicated module. There are also some additional 
modules which are used for Cython compilation. A n overview of the modules, their purpose 
and noteworthy methods implemented in them can be seen in appendix B. 

The N M D K classifier, which was introduced and described in section 6.3, is implemented 
with the same interface as other classifiers imported from the scikit-learn library so that it is 
possible to handle all classifier types the same way. Therefore, it was necessary to implement 
the f i t method for training and the predict method for unknown samples classification 
and to preserve the methods' declarations given by scikit-learn classifiers. The f i t method 
is implemented according to algorithm of the train function and the predict method is 
written based on the classify function, both of them listed in section 6.4. 

In section 7.1, there are mentioned requirements and dependencies, which includes pri­
marily the used tools and libraries. The next section 7.2 is devoted to the way the input 
parameters of the application are solved and to the specification of the format of input files 
containing the 16S r R N A sequences. The schema of communication of the classes imple­
mented within these modules is shown in section 7.3. Finally, two extensions of the appli­
cation, which have been implemented beyond specification and aim to increase prediction 
accuracy, are introduced and described in section 7.4. 

7.1 Requirements and Dependencies 

The described K T C application is implemented in Python 3 scripting language and compiled 
using Cython static compiler [14] to increase its performance. 

Another necessity is the numpy library providing an efficient implementation of a multi­
dimensional array object and advanced broadcasted operations. [45] 

The last required component is scikit-learn, which is an open source library implement­
ing simple and efficient tools for data analysis [46]. From this library, classes of the men­
tioned classifier types are imported. 

Classifier 
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7.2 Applicat ion Inputs 

On the basis of the application design, controlling of the K T C application is implemented 
through the values of the parameters with which the application is executed. There are three 
main parameters, each representing one of the tree phases - preprocessing (—preprocess), 

training (—train) and evaluation (—evaluate). Parameter —dataset sets the location 
of the file with 16S r R N A sequences to train on or to classify, depending on which one of 
the previous parameters is set. The name of the model to be stored after training or loaded 
for classification is given with the —model parameter. K-mer size used for training a model 
is specified using the —kmer-size parameter. If the last parameter, —subsample, is set, 
only a given number of samples chosen randomly from the dataset is used for preprocessing 
or training. 

Default values of the mentioned parameters, valid parameter options and examples of 
the application's usage are listed in R E A D M E file which can be found on the attached 
storage media. 

The input datasets containing 16S r R N A samples for training can be in one of the two 
formats- JSON and FASTA, and the input for evaluation is expected in plain text format 
with every unknown sequence on a new line. 

7.3 Schema of Class Communication 

Schema of communication of the implemented classes can be seen in figure 7.1. There are 
three diagrams, each representing communication during one of the phases: preprocessing, 
training and evaluation. 

During preprocessing, the KTCBacteriaClassif ier class instance asks the Dataset-
Processor to open file with input dataset (GetData) and process its content (GetSequences) 
After the dataset has been loaded into its inner representation, the GetKmerSpectra method 
of KmerSpectraExtractor is evoked in order to extract k-mer spectra from the input 16S 
r R N A gene sequences. Then, the created k-mer spectra and their corresponding labels are 
stored to persistent files in StoreCVBatches method. The last three steps are executed in 
a for loop iterating over all used k-mer sizes. 

:KTCBacteriaClassifier : DatasetProcessor : KmerSpectraExtractor 
} 

Preprocess _ i GetData 

return Data 

GetSequences 

Loop J GetKmerSpectra 

for kmerSize in range(MIN_KMER_SIZE, MAX_KMER_SIZE): 
self.kSE = KmerSpectraExtractor(kmerSize) 
self.kmerSpectra = self.kSE.GetKmerSpectra(sequences) 
self.StoreCVBatches(args) 

return KmerSpectra for kmerSize in range(MIN_KMER_SIZE, MAX_KMER_SIZE): 
self.kSE = KmerSpectraExtractor(kmerSize) 
self.kmerSpectra = self.kSE.GetKmerSpectra(sequences) 
self.StoreCVBatches(args) ~—-~-^StoreCVBatches 

(a) Preprocessing 
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: KTCBacteriaClassifier 

Train 

Loop 7 
for batch in range(self.kf.n_splits): 

self.treeClassifier.Train() 
self.treeClassifier.ValidateO 

:TreeClassifier 

LoadData 

Train 

Validate 

Train 

Sto reModel 

(b) Training 

: KTCBacteriaClassifier :KmerS pect ra Extractor :TreeClassifier 

Evaluate ' GetKmerSpectra 

return KmerSpectra 

LoadModel 

Evaluate 

(c) Evaluation 

Figure 7.1: Sequence diagrams of communication of implemented classes 

During the training phase, the entire training procedure is executed. First, the k-fold 
cross-validation takes place, every iteration of which consists of training (Train) and vali­
dation (Validate) evoked from the TreeClassif ier class instance. After that, the results 
from validation are combined to determine the most accurate classifier type and setting, 
which is then used for final training and validation only of the winning classifier. The final 
step is then storing the model into a persistent file in the StoreModel method. 

Evaluation phase starts with evoking the GetKmerSpectra method of KmerSpectraEx-
tractor class which extracts k-mer spectra from the unknown sequences. In the next 
step, the previously stored model is loaded in the LoadModel method evoked from Tree-

Classifier class instance. When the k-mer spectra to be classified have been obtained 
and the model to classify the k-mer spectra with has been loaded, the Evaluate method 
is evoked, where the unknown samples are classified by descending through the tree of 
classifiers. 

37 



7.4 Extensions Implemented Beyond Specification 

During the implementation phase, additional extensions have been proposed which are now 
part of the application. Both of them are realised as added parameters and the application 
can be run both with their use and the standard way. In this section, the parameters will 
be introduced and their importance and principle of work will be explained. 

7.4.1 Parameter normalize 

The first introduced extension is the normalize parameter which was designed to improve 
the accuracy of the classification. When it is set, the values of all k-mer spectra are 
normalized to the range (0,1). 

Normalization is most important when dealing with samples whose features are on 
different scales. In this case, the values among features could vary since some subsequences 
might be more frequent than others. Normalization could, therefore, increase the accuracy 
of methods which are susceptible to different ranges of variables, such as S V M . 

The examination of the impact of k-mer spectra normalization can be seen in section 8.7. 

7.4.2 Parameter regions 

The second described extension is the regions parameter. The entire 16S r R N A consists 
of two types of regions, some are highly variable and others are conserved and change 
very slowly. Therefore, creating k-mer spectra only from one or more extracted variable 
regions without the impact of the conserved portions might lead to an increase in prediction 
accuracy. 

The proposed application can be presented an input dataset containing only one or 
more variable regions, then the specification of no additional parameter is needed, or it 
can have entire 16S r R N A sequences as input and when the regions parameter is given, 
the application extracts the defined variable regions with the use of the V-Xtractor tool, 
which is an open-source library for identifying and extracting hypervariable regions with 
the use of Hidden Markov Models to detect the conserved boundaries [27]. 

Since there are nine variable regions in a 16S r R N A sequence [1], it is possible to use only 
one at a time and then determine the variable region, which offers the best distinguishing 
capabilities or experiment with various combinations of the regions. 

The impact of the regions extraction and examination of the best performing regions is 
described in detail in section 8.8. 
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Chapter 8 

Evaluation of the K T C Application 

The aim of this chapter is to evaluate the implemented K-mer Tree Classifier (KTC) appli­
cation and to examine the impact of the values of its parameters on the prediction accuracy. 
This chapter also features a comparison of the proposed classifier with existing tools and 
its final expected accuracy evaluated on a validation dataset. 

Section 8.1 presents an overview of all classifier settings which take part in the com­
petition of classifiers during the first training phase of the proposed K T C application. In 
section 8.2, there are briefly introduced the reference 16S r R N A databases that were used 
to train and evaluate the K T C classifier and to obtain the results listed in this chapter. 

In each of sections 8.3 to 8.8, the impact of one aspect of the K T C application on pre­
diction accuracy is examined. Section 8.3 is dedicated to the examination of approaches 
for solving the problem of non-nucleotide characters. Section 8.4 is devoted to the compar­
ison of prediction accuracy of the tree structure of classifiers presented in section 6.2 and 
direct genus assignment using only one classifier. Section 8.5 focuses on the N M D K classi­
fier introduced in section 6.3 and on the evaluation of its accuracy using various averaging 
metrics, count of most divergent attributes extracted from k-mer spectra and of joint and 
separate approaches. Section 8.6 presents the impact of the used k-mer size on prediction 
accuracy. In section 8.7, the impact of applying normalization is examined. Section 8.8 
features an examination of accuracies obtained with the use of individual variable regions 
of the 16S r R N A gene. 

Section 8.9 presents the comparison of accuracies of the classifier types used within 
the K T C application. In section 8.10, there is a comparison of the presented application with 
other existing tools. Lastly, section 8.11 describes the resulting accuracy of the implemented 
classifier for multiple reference databases. 

The box plots listed in this chapter were created (if not explicitly stated otherwise) 
with values that were obtained as the resulting accuracies of validation during 5-fold cross-
validation. The output of every iteration of the cross-validation was a list of accuracies - six 
values representing accuracies on corresponding taxonomic levels for every classifier setting. 
For every classifier setting, the six values representing accuracies on individual taxonomic 
levels were used to compute the Area Under a Curve (AUC) value using the following 
formula: 

AUC (classifier_setting) = — • > j accuracy(classifier_setting) 
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where classifier_setting represents the classifier setting whose A U C value is being 
computed, k is the number of predicted taxonomie levels (in this work, k is set to six as 
labels from domain to genus are being predicted) and accuracy is an array of accuracies of 
the given classifier in one iteration of the cross-validation. 

Wi th the use of the described process, it was possible to obtain five A U C values for every 
classifier setting-one for every iteration of the cross-validation. Then, for every iteration of 
the cross-validation separately, the mean of the A U C values of all classifiers was computed. 
This resulted in five A U C values, each corresponding to one iteration of the cross-validation, 
which were used to create one box plot. 

The A U C metric is used since it is a suitable mean of comparison of accuracies of various 
classifiers. In the ideal case, accuracies on all levels would be equal to 1 resulting in the A U C 
value of 1. Therefore, the higher the final A U C value of a classifier is, the more accurate 
predictions were obtained by the model. 

8.1 Used Classifier Settings 

During the first phase of the K T C application training, which uses cross-validation to 
determine the best performing classifier settings, ten types of classifiers altogether in one 
hundred and three configurations, which have been determined using grid search, are trained 
and validated in every iteration. The overview of all used classifier types and their settings 
can be seen in table 8.1. 

Table 8.1: Classifier types and their settings used in the classifier competition 

Classifier type Classifier settings 

S V M kernel = {linear, rbf, sigmoid} 

Nearest centroid 
metric = {euclidean, manhattan, chebyshev, 

minkowski, seuclidean, correlation} 

k-NN n neighbors = {1, 2, . . . , 12} 

Decision tree max_depth = {2,3, . . . , 20} 

Random forest 

max_depth = {7, 10, 15} 

estimator_count = {10, 15} 

max_features = {auto, sqrt, log2} 

M L P 
penalty = {0.01, 0.1, 0.15} 

max_iterations = {200, 300, 500} 

GaussianNB -
MultinomialNB -

NMDKJoin t 
position_count = {100, 200, . . . , 1000} 

average_metric = {mean, median} 

NMDKSeparate 
position_count = {100, 200, . . . , 1000} 

average_metric = {mean, median} 
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8.2 Description of Used Datasets 

A reference database containing sequences with taxonomy annotations is required to train 
a model as well as to validate the accuracy of taxonomy prediction. For evaluation of 
the implemented method, three datasets have been used. The first and the largest one 
is SILVA r R N A database1. It contains more than 530,000 samples of entire 16S r R N A of 
bacteria and archaea together with their taxonomic classifications from domain to genus. 
The SILVA dataset is so large since the majority of its taxonomy annotations are predicted 
using computational and manual analyses that are based on trees predicted from multiple 
alignments [17]. The second used dataset is the B L A S T 16S dataset2 consisting of more 
than 7,500 16S r R N A sequences of well-known and examined bacteria in F A S T A format. 
This dataset contains only sequences with authoritative names and, therefore, is much 
smaller tan SILVA. [18] The last dataset used for evaluation of the implemented algorithm 
is the B L A S T V 4 2 dataset, which contains region V4 sequences extracted from the 16S 
r R N A genes in the B L A S T 16S dataset. Another dataset has been used for validation of 
the final application, which is described in detail in section 8.11. It is the ITS dataset2 of 
the fungal internal transcribed spacer (ITS) region that contains more than 16,000 fungal 
specimens. This dataset is used to show the possible reusability of the presented classifier 
for other databases for which the model was not originally designed. 

Every gene sequence is a string composed of four nucleotides -A, C, G, U, and for every 
sequence, there is its complete taxonomic classification. The entire 16S r R N A sequence 
consists of approximately 1,500 nucleotides. 

8.3 Examination of Weight of Possible Real Sequences in K -
mer Spectra Extraction 

The first examined aspect of the proposed K T C classifier is the weight of generated se­
quences during k-mer spectra extraction. As was mentioned in section 6.1, the non-
nucleotide characters in 16S r R N A sequences are being replaced by all possible real nu­
cleotide characters. A single k-mer, which contains a non-nucleotide symbol, then leads to 
the generation of multiple possible real k-mers, whose count of occurrences is incremented 
by some value. This section inspects the impact of the value which is added to the count of 
occurrences of all possible real gene sequences after replacing the non-nucleotide characters 
with the nucleotides they can represent. 

The comparison of various weights of the generated real sequences can be seen in box 
plots presented in figure 8.1. Six values have been experimented w i t h - 1 , 0.5, 0.3, 0.25, 
Number of generated sequences' w h i c h i s labelled as "Jen" in the graphs, and 0, which represents 
omitting sequences containing non-nucleotide characters. 

The graphs in figure 8.1 were created using two datasets-the results obtained with 
the use of B L A S T V4 dataset can be seen in figure 8.1a and the results acquired on SILVA 
dataset are displayed in figure 8.1b. The presented values were obtained using k-mer size 
5 as it is the average of used sizes of k-mer and it proved to be time and memory efficient 
and offer a quite good accuracy at the same time. It has been experimented also with 

l rThe SILVA database is available at www.arb-silva.de. 
2The BLAST 16S and V4 datasets and the ITS dataset are available on site https: //drive5.com/taxxi/ 

doc/i: asta_index.html 
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the border k-mer sizes, 2 and 8, and the differences among the individual weights were 
almost the same. 

1 0.5 0.3 0.25 0 len 
Weight of possible real sequences 

(a) Using BLAST V4 dataset 

0.705 

0.704 

& 0.703 

i 0.702 

5 0.701 
2 

0.700 X 
1 0.5 0.3 0.25 0 len 

Weight of possible real sequences 

(b) Using SILVA dataset 

Figure 8.1: Comparison of prediction accuracy using various weights of possible real gene 
sequences 

According to the results in figures 8.1a and 8.1b, the best results seem to be the ones 
obtained using the "len" option. The results acquired with the B L A S T V4 dataset show 
it as clearly the best option. The value 1 also gave satisfactory results. A l l the remaining 
values performed significantly worse and the least successful value seems to be 0, which is 
used in some other existing solutions, such as I D T A X A [41]. 

When using SILVA dataset, the differences among the performances of the given weights 
are rather small, the differences might not be significant as the individual boxes overlap. 
This can be caused by the size of the dataset. Here, the values 1 and 0.5 seem like the worst 
performing options. The best accuracy has been reached when using values 0.3, 0.25 and 
"fen". 

The weight "fen" reached the best overall performance and therefore is currently used 
in the K T C application. A l l other experiments presented in this chapter are executed with 
this weight of the generated sequences as well. 
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8.4 Comparison of Tree Structure and Direct Assignment 

This section aims to prove the benefits of the tree structure of classifiers in comparison to 
direct assignment on the genus level. The hypothesis, that the successive assignment of 
taxonomic categories leads to an increase in prediction accuracy thanks to the fact that 
every classifier distinguishes only among a few categories on the lower taxonomic level 
and therefore can learn different patterns for every partial classification, is the core of 
the presented algorithm and thus is very important to prove to be true. 

The box plots presented in figure 8.2 compare the accuracy of the described K T C 
algorithm, which is labelled in the graphs as "successive", and direct genus assignment 
marked in the figure as "direct". This approach uses only one classifier distinguishing 
among all genera present in the dataset. 

The comparison was evaluated on two datasets-the results acquired on B L A S T V4 
dataset can be seen in image 8.2a and the results obtained with the use of SILVA dataset 
are displayed in figure 8.2b. The displayed results were obtained using k-mer size 5 and 
weight of generated gene sequences of the type "len". 
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u 0.325 

Direct Successive 
Method of assignment 

(a) Using BLAST V4 dataset 
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>0.33 

u 0.32 

o 0.31 

£ 0.29 
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0.28 

0.27 
Direct Successive 

Method of assignment 

(b) Using SILVA dataset 

Figure 8.2: Comparison of accuracy of tree structured and direct assignment 
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In both graphs, the prediction accuracy on the genus level is better when using the tree 
structure of classifiers (by circa 1 % on B L A S T V4 dataset and by approximately 4 % better 
on SILVA dataset). On the two used datasets, the hypothesis of the accuracy increase 
achieved by utilizing the tree structure of classifiers seems to have been confirmed. 

The difference between the two approaches, however, may be smaller than expected. 
This might be influenced by the fact that during the successive assignment, every unknown 
sequence is classified six times, by six classifiers, and therefore there are more classifications 
that can possibly be wrong. For example, if we had one classifier with 90 % accuracy and 
six subsequent classifiers with an accuracy of 98%, the overall accuracy of the successive 
classification is 0.986 which equals approximately 0.89, which is 89 %. Thus the one classifier 
with 90 % accuracy reaches better overall accuracy than the listed successive approach. This 
effect applies to the tree structure of predictions in the K T C algorithm as well, therefore, 
even if the accuracy of every single partial classifier can be notably higher than the accuracy 
of the one classifier present in the direct assignment approach, the overall accuracy of 
the entire successive classification is not so high. 

8.5 Examination of Performance for Various N M D K Classi­
fier Settings 

The N M D K classifier proposed and described in section 6.3 contains three variable pa­
rameters-metric used to compute the average k-mer spectrum, count of attributes that 
are extracted from every k-mer spectrum and joint or separate approach. The aim of this 
section is to inspect all of the mentioned aspects and their impact on prediction accuracy. 

8.5.1 Examination of Averaging Metric Impact 

The first examined variable of the N M D K classifier is the averaging metric which is used to 
compute the average k-mer spectrum of a class. In the application, two averaging metrics 
have been implemented and experimented with-mean and median. Mean is the best-
known and simple way to compute an average and median has the advantage of not being 
as susceptible to extreme values as mean. 

Box plots visualising the comparison of the averaging metrics can be seen in figure 8.3. 
It has been experimented with k-mer sizes from 2 to 11. According to the results obtained 
using the individual k-mer sizes, the better performing metric was different for different 
k-mer sizes. Therefore, the presented graphs show the comparison of the two metrics for 
various k-mer sizes ranging from 2 to 11. 

The comparison of the two mentioned averaging metrics has been evaluated on two 
datasets-the results obtained using B L A S T V4 dataset are displayed in figure 8.3a and 
the results acquired on SILVA dataset can be seen in image 8.3b. 

From both the presented graphs can be deduced that neither of the metrics performed 
generally better than the other one. In many cases, the results differ also for a given k-mer 
size. For example, when we consider k-mer size 11, median performs better than mean on 
B L A S T V4 dataset, however, significantly worse than mean when using SILVA dataset. 

Overall, it seems that the better performing metric for B L A S T V4 dataset is median 
since it achieved higher accuracies for all k-mer sizes except 5. On the other hand, when 
using SILVA dataset, mean can be considered as the better performing metric as its accu­
racies are surely higher for k-mer sizes 5, 8 and 11. This leads to the hypothesis that some 
of the classes in B L A S T V4 dataset contain extreme values, while the specimens of a class 
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Figure 8.3: Comparison of prediction accuracy on genus level using mean and median as 
the averaging metric for various k-mer sizes 

in SILVA dataset are rather close to each other, which can be caused by the smaller size of 
B L A S T dataset. 

8.5.2 Examination of Impact of the Size of N 

The second evaluated aspect of the N M D K classifier is the impact of the value N, that 
means the number of the most divergent attributes which are extracted from every av­
erage k-mer spectrum. This step aims to dramatically reduce memory requirements and 
increase the speed of classification as instead of using an input consisting of a large number 
of attributes (1,024 when using k-mer size 5 and 65,536 for k-mer size 8), only a frac­
tion of the number of attributes is applied. Moreover, these features are determined with 
an approach which aims to omit attributes that contribute minimally to the differences of 
the given distinguished subclasses. 

Results of the evaluation can be seen in box plots presented in figure 8.4. It has been 
experimented with the values of N ranging from 10 to 1,000 and with k-mer sizes from 2 
to 8. For every k-mer size, the accuracy increased with an increasing number of extracted 
attributes, however, only until a certain threshold was reached. After reaching the thresh-
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old, the accuracy began to drop again. The threshold value was the greater, the larger 
the k-mer size. The results displayed in this section have been obtained with the use of 
k-mer size 5. 

The experiments have been evaluated using two datasets - the comparison created using 
B L A S T V4 dataset can be seen in figure 8.4a and the results acquired on SILVA dataset 
are presented in image 8.4b. 
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Figure 8.4: Comparison of various numbers of the extracted most distinguishing features 

In both graphs, there is an increase in accuracy with an increasing number of extracted 
features. The threshold, which reached the highest accuracy for k-mer size 5, was around 
300 or 400 features on both evaluated datasets, which results in the decrease in input vector 
size of approximately 70 % or 60 % . 

8.5.3 Examination of Impact of Approach 

The third inspected element of the N M D K classifier is the approach used during determining 
the N most distinguishing k-mer spectra, that means whether only one set of the N most 
distinguishing positions of k-mer spectra is determined for every partial classifier or if 
a separate set of positions is chosen for every class on the lower taxonomie level. The first 
and the second mentioned approaches are called "joint" and "separate" respectively. 

The comparison of the two approaches is visualised in box plots in figure 8.5. It has 
been experimented with k-mer sizes ranging from 2 to 11. The results obtained using 
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the individual k-mer sizes were not consistent in determining the approach with higher 
prediction accuracy. Therefore, the presented graphs show the comparison of the two 
approaches for various k-mer sizes from 2 to 11. 

The experiments have been executed on two datasets - the figure 8.5a presents the results 
obtained using B L A S T V4 dataset and in the image 8.5b, there can be seen the results 
acquired on SILVA dataset. 
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Figure 8.5: Comparison of the joint and separate approaches 

Considering the results presented in the graphs in figure 8.5, a generally better per­
forming approach cannot be clearly determined. A n interesting outcome is that even for 
every k-mer size, the better approach differs. For example, when we take a look at k-mer 
size 5, the separate approach obtains significantly higher accuracy than joint on B L A S T 
V4 dataset. On the contrary, when using SILVA dataset, the joint approach reaches higher 
accuracy. 

The two compared principles reach seemingly equal accuracy when using k-mer 2. This is 
caused by the fact that the k-mer spectra are composed only of 16 attributes and, therefore, 
for most values of N remain the k-mer spectra unchanged, in their full length. 

Apart from k-mer size 2, the approach with the higher prediction accuracy on B L A S T V4 
dataset was separate. Moreover, the differences between joint and separate approaches are 
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significant. On the other hand, the differences between the two approaches are rather small 
when using SILVA dataset and the joint approach managed to reach the higher accuracy 
for the remaining k-mer sizes. 

Considering the results presented in this section, it can be deduced that the approach 
reaching the higher prediction accuracy depends on both k-mer size and dataset used. 
Similarly, the results listed in section 8.5.1 point out that the better averaging metric 
depends on the k-mer size as well as the dataset used. This shows how different these 
datasets are and also proves the benefits of the two-phase training method of the K T C 
application described in section 6.2, which chooses the highest accuracy obtaining classifier 
specifically for the input training dataset. 

8.6 Examination of Impact of K-mer Size 

Another evaluated element of the K T C application is the impact of the k-mer size used 
when extracting the k-mer spectra from the input gene sequences. The impact of the size 
of k-mer and its meaning were described in detail in section 6.1, which says that smaller 
size of k-mer is capable of extracting less information than larger k-mer size, however, 
the extracted k-mer spectrum is less affected by the mutations in them. 

K-mer sizes ranging from 2 to 8 have been experimented with and evaluated. Larger 
k-mer size leads to a significant increase in both memory and time requirements. The com­
parison of various k-mer sizes used for k-mer spectra extraction can be seen in box plots 
presented in figure 8.6. A l l the k-mer sizes, which have been experimented with, are in­
cluded in the graphs. 

The graphs in image 8.6 were created using two datasets-the results acquired on B L A S T 
V4 dataset can be seen in figure 8.6a and the results obtained with the use of SILVA dataset 
are displayed in figure 8.6b. 

Comparisons evaluated on both datasets show that with increasing k-mer size, the accu­
racy increases as well, however, only until a certain threshold is reached and then decreases 
again. This threshold, i.e. the k-mer size reaching the highest accuracy, differs on both 
datasets - when using B L A S T V4 dataset, the best performing k-mer size was 5 and on 
SILVA dataset was the highest accuracy obtained when using k-mer size 6. 
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Figure 8.6: Comparison of various k-mer sizes 

On both datasets, the worst performing k-mer size was 2, which was slightly predictable 
as the extracted k-mer spectrum contains only 16 attributes. The second worst accuracy 
was reached by k-mer size 3, also most likely due to the small number of attributes. When 
using B L A S T V4 dataset, the best performing k-mer sizes were 4, 5 and 6, for SILVA 
dataset worked k-mer sizes 6, 7 and 8 the best. 

8.7 Examination of the Impact of Normalization 

Next inspected aspect of the K T C application is the impact of normalization. The indi­
vidual elements of a k-mer spectrum, which is extracted from an input gene sequence, can 
be seen as separate attributes that can generally be on different scales as some k-mers are 
present in the gene sequences more often than others. This can be problematic for some 
classifiers which are susceptible to different ranges of various parameters. To overcome 
the problem of the major influence of variables with bigger ranges of values, normalization 
is applied to the extracted k-mer spectra to unify the influence of the individual attributes. 
The focus of this section is on experimenting with normalization and exploring its impact 
on the prediction accuracy of the K T C application. 

The comparison of prediction accuracy with and without the use of normalization can 
be seen in figure 8.7. It has been experimented with k-mer sizes ranging from 2 to 8 and 
the differences between the two approaches were very similar for all used k-mer sizes. To 
create the box plots presented in the image 8.7, the results obtained by using the k-mer 
size 5 were used. 

The experiments have been executed on two datasets-the image 8.7a presents the re­
sults obtained using B L A S T V4 dataset and in the figure 8.7b, there can be seen the results 
acquired on SILVA dataset. 

On both used datasets, the prediction accuracy was significantly higher when using k-
mer spectra without normalization. This may be caused by the fact that while normalization 
increases the prediction accuracy of some classifier types, it notably decreases the accuracy 
obtained by other types of classifiers. 

Therefore, another exploration of the impact of normalization was done, which aims 
to determine the influence of normalization for every classifier type separately. These ex-
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Figure 8.7: Comparison of prediction accuracy using normalization 

periments were executed only on B L A S T V4 dataset and also used k-mer size 5. Results 
of the comparison are presented in box plots in figure 8.8, which contains comparison of 
accuracy obtained with (labelled as "y" in the graphs) and without (marked with "n") 
the use of normalization for all used classifier types. 
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Figure 8.8: Comparison of prediction accuracy using normalization for all used classifier 
types separately 

Notably better prediction accuracies without normalization were achieved by multino­
mial naive Bayes, S V M , nearest centroid and N M D K classifier with the joint approach. 
Only slightly better results without normalization were obtained by Gaussian naive Bayes 
and k-NN. On the other hand, applying normalization led to better results when using 
the random forest classifier. Almost the same results with and without normalization were 
acquired by multilayer perceptron, decision tree and N M D K classifier with the separate 
approach. 

8.8 Examination of the Impact of Variable Regions 

As was mentioned in section 2.2, the 16S r R N A gene sequence consists of two types of 
segments - conserved and variable regions. The conserved regions do not change during 
evolution and variable regions are the ones suitable for distinguishing among various genera. 
Many existing solutions described in chapter 5 work on the basis of only one variable 
region to increase prediction speed as the input gene sequence of a variable region contains 
significantly fewer characters than entire 16S r R N A . This section aims to experiment with 
all nine variable regions and try to determine the variable region which achieves the highest 
accuracy. 

The comparison of accuracies of the individual variable regions is visualised in box plots 
in figure 8.9. The image shows the comparison of all nine variable regions the 16S r R N A 
gene sequence consists of. The displayed values were obtained with the use of k-mer size 5. 

Two datasets were used to create the presented g raphs -BLAST 16S dataset was used 
to create the box plot in figure 8.9a and the results acquired when using SILVA dataset 
can be seen in image 8.9b. Both of these datasets contain entire 16S r R N A sequences 
and the variable regions were extracted from them using the V-Xtractor tool described in 
section 7.4.2. 

The results are extremely different on both datasets. While the best accuracy for 
B L A S T 16S dataset was reached when using region V9, the results from SILVA dataset 
display this region as the least successful one. Moreover, the best performing region for 
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;ure 8.9: Comparison of prediction accuracy of the individual variable regions 

SILVA dataset, V I , was also one of the worst when using B L A S T 16 dataset. Overall, good 
results considering both datasets were achieved by regions V I , V3 and V8. 

These discrepancies in the results may be caused by the fact that even though both 
of these datasets are large, the variable region extraction using the V-Xtractor tool is 
not always successful and therefore the resulting dataset contains approximately 60% of 
the input specimens. Other aspect affecting the results could be the error of the V-Xtractor 
tool itself. This might have a significant impact since even the best obtained accuracies are 
bellow 25%. 

Nowadays, the most commonly used hypervariable regions for microbial community 
profiling are V4, V 3 - V 4 and V 4 - V 5 thanks to the high accuracy that can be reached with 
their use [61]. On the contrary, in these experiments, neither of regions V4 and V5 offered 
the highest accuracy. 

8.9 Best Performing Classifier Setting 

The goal of this section is to determine the classifier setting which reaches the highest pre­
diction accuracy separately for every examined classifier type and to compare the individual 
classifier types by comparing prediction accuracies of their best performing settings. 
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The results presented in this section were acquired using k-mer size 5 and the compar­
ison was done for two datasets - B L A S T V4 and SILVA. To obtain the values which were 
used to create the graphs in this section, the 5-fold cross-validation was executed. From 
the resulting accuracies, five A U C values were computed for each classifier setting (one for 
every iteration) and then mean of the obtained values was calculated to acquire one average 
A U C value for every classifier setting. After that, these values were compared to determine 
the setting with the highest overall prediction score for every classifier type separately. 
For every type of classifier, the setting which reached the highest prediction accuracy on 
individual datasets can be seen in table 8.2. 

The comparison of the chosen classifier settings is presented in figure 8.10. The graphs 
for the individual classifier settings were created using the mean of accuracies (of five cross-
validation iterations) on every taxonomie level separately. 

Table 8.2: Classifier setting reaching the highest accuracy for every classifier type 

Classifier type 
Best classifier setting 

Classifier type 
For B L A S T V4 dataset For SILVA dataset 

S V M kernel = linear kernel = linear 

Nearest centroid metric = correlation metric = euclidean 

k-NN n neighbors = 1 n neighbors = 1 

Decision tree max depth = 20 max_depth = 17 

Random forest 

max depth = 10 

estimator_count = 15 

max_features = sqrt 

max depth = 10 

estimator_count = 15 

max_features = auto 

M L P 
penalty = 0.15 

max iterations = 300 

penalty = 0.15 

max iterations = 300 

GaussianNB - -
MultinomialNB - -

NMDKJoin t 
position count = 700 

average_metric = median 

position count = 400 

average_metric = mean 

NMDKSeparate 
position count = 120 

average_metric = mean 

position count = 140 

average_metric = mean 

The comparison of the best results every classifier type has reached can be seen in 
figure 8.10. The results obtained on B L A S T V4 dataset can be seen in image 8.10a and 
the results acquired with the use of SILVA dataset are displayed in figure 8.10b. Both 
graphs show the dependence of mean prediction accuracy, represented by mean A U C value, 
of the individual classifier types on predicted taxonomie level. 

From graph 8.10a, the Gaussian naive Bayes and N M D K Joint classifiers reached 
the worst accuracies. Slightly better accuracies were reached by N M D K Separate classifier 
and multinomial naive Bayes, whose accuracy was good from domain to family, however, 
significantly decreased on genus level. Decision tree and nearest centroid performed quite 
good, although worse than the four most successful classifier types-random forest, k -NN, 
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M L P and S V M . Three of them, k-NN, M L P , and S V M , gave the best results, almost indis­
tinguishable on all levels except genus, where S V M slightly stands out. 

Graph 8.10b notionally divides the classifiers into two groups. The worse predicting clas­
sifiers are N M D K Joint and N M D K Separate classifiers, Gaussian naive Bayes and decision 
tree. The group of better-performing classifiers consists of the remaining six t y p e s - S V M , 
nearest centroid, k -NN, random forest, M L P , and multinomial naive Bayes. Multinomial 
naive Bayes obtained a good accuracy on most levels except for family and genus. The best 
performing two classifier types on this dataset are S V M and k-NN, which reached almost 
the same score on most levels, only on order and genus S V M performs better. 

For every classifier, there is a notable decrease in accuracy with increasing taxonomie 
level, as expected. While the domains bacteria and archaea separated millions of years 
ago (and their 16S r R N A sequences differ significantly), two genera could have been split 
no longer than a decade ago and, therefore, their 16S r R N A sequences are very similar. 
Additionally, any misclassification at any taxonomie level is passed further to the lower 
levels, which means that the classification accuracy at a given taxonomie level can be at 
most as good as the accuracy obtained at the previous level. 

8.10 Comparison with Exist ing Tools 

The goal of this section is to compare the prediction accuracy of the proposed K T C ap­
plication to other existing solutions. Accuracy of the K T C algorithm was evaluated using 
the leave-one-out cross-validation. During every run, entire dataset except one specimen 
was used for training and the left out sample was then used for validation. By utilizing this 
principle, it was possible to obtain the overall mean accuracy of the presented algorithm 
on a reference dataset. 

In graph 8.11, there is a comparison of the results obtained by the proposed method 
to other existing solutions, namely S INTAX, RDP, TOP, K T O P , CT1 , and CT2 . The first 
three methods were described in chapter 5, the remaining three algorithms are described in 
the article Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences [18]. 
Both graphs display the dependence of mean prediction accuracy of a classification method 
on predicted taxonomie level. The presented results of the K T C method for B L A S T V4 
dataset have been obtained with the use of the M L P classifier with a penalty of 0.1 and 
500 iterations and for B L A S T 16S dataset with the use of S V M with a linear kernel, which 
are the classifier settings that have reached the best overall accuracies on the individual 
datasets. The displayed results of the K T C application were acquired with the use of 
k-mer size 6 and the accuracies of other solutions were taken from results of the leave-
one-out cross-validation executed on the same datasets that are presented in the mentioned 
article [18]. The article contains the evaluation of the S I N T A X and R D P classifiers for three 
bootstrap thresholds-80%, 50% and 0%. The results obtained with the threshold of 80% 
are presented in this section as it is recommended by authors according to the article [18]. 

The comparison has been evaluated on two datasets - B L A S T V4 dataset was used to 
create the graph in figure 8.11a and the results acquired when using B L A S T 16S dataset 
can be seen in image 8.11b. 

The outcome of both graphs is very similar. The worst accuracy was achieved by 
the CT2 and CT1 methods. The K T C classifier reached significantly better accuracy than 
the previous two methods, however, S INTAX, T O P and K T O P classifiers managed to 
obtain ever higher accuracies. On both datasets, the T O P and K T O P methods proved 
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Figure 8.11: Comparison of results of the proposed K T C application with other existing 
solutions 

to be the most accurate with almost indistinguishable accuracies on all taxonomie levels 
except genus, which shows that the highest accuracy was obtained by the T O P classifier. 

8.11 Validation 

The last section of this chapter is dedicated to the validation of the implemented K T C 
application. Its aim is to estimate the application accuracy in practice, on unseen data. 
For this purpose, 10% of an evaluated dataset was stored for validation and excluded from 
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the entire cross-validation, training and evaluation process. First of all, the best performing 
classifier was determined by cross-validation, trained on the remaining 90 % of the dataset 
and stored as the final model. After that, the 10% of the dataset previously left aside was 
used to evaluate the final expected prediction accuracy of the created model. 

The obtained accuracies can be seen in table 8.3. For every dataset, the resulting values 
for two k-mer sizes, 5 and 6, are presented since according to results presented in section 
8.6, these two k-mer sizes were able to reach the highest overall prediction accuracies. 

The validation has been executed on three datasets - table 8.3a presents the expected 
accuracy of the model trained on B L A S T 16S dataset and 8.3b shows results obtained with 
the use of B L A S T V4 dataset. Table 8.3c contains accuracies acquired on fungal internal 
transcribed spacer (ITS) dataset. Its aim is to show the possible reusability of the presented 
classifier for other databases for which the model was not originally designed. 

Table 8.3: Prediction accuracy of the K T C application on validation datasets 

(a) BLAST 16S dataset (b) BLAST V4 dataset 

Taxonomie level 
K-mer size 

Taxonomie level 
5 6 

Domain 1.0 1.0 

Phylum 0.99871 0.99871 

Class 0.94057 0.94057 

Order 0.77003 0.77132 

Family 0.59819 0.60207 

Genus 0.46899 0.47287 

Taxonomie level 
K-mer size 

Taxonomie level 
5 6 

Domain 1.0 1.0 

Phylum 0.99738 0.99476 

Class 0.94102 0.93971 

Order 0.77588 0.77195 

Family 0.60157 0.60026 

Genus 0.45478 0.44954 

(c) ITS dataset 

Taxonomie level 
K-mer size 

Taxonomie level 
5 6 

Domain 1.0 1.0 

Phylum 1.0 1.0 

Class 0.98629 0.98567 

Order 0.91340 0.91340 

Family 0.82243 0.82368 

Genus 0.75265 0.75265 

The model trained on B L A S T 16S dataset managed to reach approximately 47.3 % 
accuracy on genus prediction when using k-mer size 6. On B L A S T V4, the best obtained 
accuracy when predicting genus was approximately 45.5 % and it was acquired with the use 
of k-mer size 5. Surprisingly, on the ITS dataset, both used k-mer sizes reached the same 
accuracy of approximately 75.3% on genus level, which is significantly higher than on 
the two previous datasets. This may be caused by the fact that while the B L A S T datasets 
contain a large range of organisms, the ITS dataset consists only of fungi and, therefore, 
does not contain that many categories on every level. 
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Chapter 9 

Conclusion 

At the beginning of this thesis, the basic principles in the field of bioinformatics, metage-
nomics and bacteria classification were introduced. Moreover, other methods of digital 
processing of sequence data were presented. Several machine learning algorithms used for 
classification were described together with their parameters influencing the prediction ac­
curacy and some other existing methods solving the bacteria classification problem were 
presented. The practical part of this work started with a detailed description of the design 
of the proposed bacteria classification method. Afterwards, the implementation of the cre­
ated application was previewed and the implemented modules and their notable methods 
were listed. The last chapter was focused on application testing and presenting the results 
of experiments executed with the implemented application. The evaluations were aimed 
at examination of prediction accuracy when using different k-mer sizes, various types of 
classifiers and region selection. 

The classification method presented within this work was built on the basis of the tree 
structure of taxonomie categories. The whole classifier consisted of a tree of partial clas­
sifiers with topology respecting the taxonomie tree. Classification of an input specimen 
started in the top classifier distinguishing between bacteria and archaea and the input se­
quence descended through the tree according to the predicted labels. The partial classifiers 
were well-known machine learning methods (such as S V M , decision tree, and nearest cen-
troid) and their aim was to classify the given bacteria and assign it a label at the lower 
taxonomie level. 

Furthermore, a new type of classifier was introduced and described called N M D K classi­
fier. Its aim is to offer a solution with good accuracy while achieving a significant decrease 
in memory requirements and time consumption thanks to dimensionality reduction, which 
consists of selecting only a given number of the input features and (in order to increase 
prediction accuracy) omitting attributes that are not of great importance for distinguishing 
among the given classes. 

During the comparison of various k-mer sizes, the highest prediction accuracy was ob­
tained when using k-mer of sizes 5 and 6. Examination of prediction accuracy with the use 
of individual hypervariable regions showed that the best performing regions differ signifi­
cantly for the two used datasets. Overall, the best performance was obtained when using 
regions V I , V3 and V8. During validation, the implemented K T C application reached 
approximately 47.3% accuracy on genus prediction on B L A S T 16S dataset and 45.5% ac­
curacy on B L A S T V4 dataset. The application was tested also on fungal ITS database, 
where the acquired accuracy was approximately 75.3% on genus level. 
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During the implementation of this application, a few of its constraints, and several ways 
in which the application could be extended in the future, have emerged. 

The first suggestion is to use different classifier types and their settings for different 
levels. As was shown in section 8.9, the best performing classifier instance differs for 
various taxonomic levels. Therefore, one approach to increase the classifier accuracy is to 
thoroughly explore the relations between classifier accuracy and taxonomic level and pick 
the best classifier instance for every level, or even for every node in the tree of classifiers. 
A similar principle could be applied to k-mer size as well. Prediction accuracy could be 
also increased by inspecting the influence of k-mer size on each level, determining the best 
working k-mer size on every taxonomic level and utilising it. 

Time consumption and memory requirements could be further improved by some ad­
ditional profiling, which would lead to reimplementing some methods in order to decrease 
the time complexity. Another way to improve the speed of the application would be to 
provide variables with their static types from the Cython library. That way it would not be 
necessary to deduct their types while executing the application. According to experiments 
presented in the article Speeding Up Python With Cython by Gigi Sayfan [55], adding static 
types to code can speed it up approximately 190 times. 

Lastly, new types of classifiers or new settings of already available classifiers could be 
added to the classifier competition, which takes place in the first training phase. The classi­
fier types and settings, which are part of the implementation, were the most accurate ones 
for the datasets that have been tested. For a different dataset, however, other classifier 
settings could theoretically reach better accuracy. 
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Appendix A 

Contents of the Attached Storage 
Media 

On the attached storage media, the following files can be found: 

• this thesis in digital form, 

• source codes of this thesis in DT^X, 

• source codes of the K T C application together with additional files necessary for 
Cython compilation, 

• R E A D M E file with detailed description of the application usage and some example 
commands for testing the application, 

• script i n s t a l l . sh for installing all required libraries and dependencies, 

• subfolder Datasets containing the four used datasets: 

— ten_16s.100.txt-the B L A S T 16S dataset, 

— ten_16s_v4.100.txt-the B L A S T V4 dataset, 

— silva.json-the SILVA dataset, 

— rdp_its.100.txt-the fungal ITS dataset, 

• subfolder Models containing six pre-trained models: 

— model_16s_ks_5.sav and model_16s_ks_6.sav trained on B L A S T 16S dataset, 

— model_v4_ks_5.sav and model_v4_ks_6.sav trained on B L A S T V4 dataset, 

— model_its_ks_5.sav and model_its_ks_6.sav trained on ITS dataset, 

• file evaluationlnput containing sample 16S sequences for classification, 

• subfolders KmerSpectra and Labels containing already preprocessed k-mer spectra 
and their corresponding labels. 
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Appendix B 

Description of Implemented 
Modules and Classes 

Makefile The first important file for Cython compilation is Makefile. The main aim 
of this file is to allow the user to compile the code regardless of their Cython skills. Typing 
make to the command line triggers the copy of files with ".py" extension to files with ".pyx" 
extension which is required by Cython. The process of file duplication is implemented 
in the copy_files.py script. After that, the Cython compilation is executed for which 
the details and parameters are implemented in the compile.py module. The compilation 
creates multiple additional ".c" and ".so" files that contain the compiled code. By typing 
make clean, all of these extra files are deleted. 

main.py Another notable auxiliary file is main.py which is a very simple file added as 
an entry point file for the application. This file is required as Cython does not generate 
executable binaries by default. The ktc module is imported in this file and an instance of 
the KTCBacteriaClassif ier is launched from it. 

ktc .py The ktc .py module contains implementation of the main KTCBacteriaClassif ier 
class which has three significant methods corresponding to the tree phases: preprocessing, 
training and evaluation. The Preprocess method creates subfolders for storing persistent 
files and uses the DatasetProcessor class to load and process the input dataset. After 
that, it executes k-mer extraction from the loaded data and storing the k-mers to persistent 
files. This is done iteratively for every k-mer size from 2 to 8. Within the Train method, 
the k-fold cross-validation takes place. In every iteration, the training and validation data 
are loaded and all classifier settings, which are involved in the competition, are trained 
and validated using the Train and Validate methods from tree_classif ier .py module. 
After the entire cross-validation process, the StoreBestPerf ormingClassif ier method is 
called in which the accuracies of all classifiers in all iterations are combined to determine 
the best performing classifier settings which is then trained on all available data and persis­
tently stored. The Evaluate method starts with loading the unknown sequences and using 
the kmer_spectra_extractor .py module to extract k-mers from them. Then, the classifi­
cation model is loaded using the LoadModel method of TreeClassif ier class and used to 
classify the input specimen in the Evaluate method of the same class. 
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dataset_processor .py This module contains the DatasetProcessor class, the goal of 
which is to load the content of an input database in JSON or F A S T A format and process 
it to obtain two separate arrays, one with the loaded sequences and the second one with 
extracted labels of the specimens. This format is suitable for training since the machine 
learning algorithms used accept the sequences and their corresponding labels as two separate 
parameters. 

kmer_spectra_extractor.py Within this module, the KmerSpectraExtractor class is 
impelemented which takes care of k-mer extraction from the input 16S r R N A sequences. 
Specifically, the GetKmerSpectra method accepts the sequences as input and returns an ar­
ray of k-mers extracted from them. Another notable method is called StoreKmerSpectra 

and its purpose is to store the created k-mers to a persistent file using joblib from the scikit-
learn library. Previously, the k-mer files and models were stored using cPickle, however, 
problems with too large data were soon encountered. 

tree_classif ier .py The tree_classif ier .py module implements the core functional­
ity of tree classification. The first important method is BuildTree in which the tree of 
partial classifiers is generated on the basis of labels of the given training data. The tree is 
created using the depth first search algorithm. Another notable method is Train in which 
the classifier tree is traversed and all partial classifiers are trained using the f i t method. In 
the method called Validate, labels of all validation data are predicted and their accuracy 
is computed. The classification of an input sample is done in PredictLabel method, which 
descends through the tree according to assigned labels. Last noteworthy method is named 
Evaluate and takes care of unknown data classification. It also uses the PredictLabel 
method to assign labels to the data and then outputs the obtained classifications. 

nmd_classif ier .py This module implements the proposed classifier type-the N M D K 
classifier. There are three classes implemented-BaseNMDKClassif ier, which is the base 
class implementing the core functionality that is the same for both types of this classifier, 
and NMDKClassif ier Joint and NMDKClassif ierSeparate classes inheriting from the base 
class. 

classif ier_instances .py The aim of the classif ier_instances .py module is to im­
plement the classes representing every type of classifier. Every class then contains the at­
tributes which are specific for the given classifier type. For example, the kNNClassif ier 
class has two attributes-the classifier type and the neighbour count. 

common.py The module common.py contains methods and attributes which are used by 
more than one of the mentioned modules and do not logically belong to any other module. 
There are statically defined the classifier settings that are evaluated within the classifier 
competition. Regarding methods, there is the TransposeMatrix method implementing 
matrix transposition, PrintError method for printing the given error message to standard 
error output, and CreateFilename method, which returns a filename created on the basis 
of passed argument values. 
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