
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

HEURISTIC METHODS FOR THE MITIGATION OF
DDOS ATTACKS THAT ABUSE TCP PROTOCOL
HEURISTICKÉ METODY PRO POTLAČENÍ DDOS ÚTOKŮ ZNEUŽÍVAJÍCÍCH PROTOKOL TCP

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR PATRIK GOLDSCHMIDT
AUTOR PRÁCE

SUPERVISOR Ing. JAN KUČERA
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav počítačových systémů (UPSY) Akademický rok 2018/2019

Zadání bakalářské práce lllllllllllllllllllllllll
21711

Student: Goldschmidt Patrik
Program: Informační technologie
Název: Heuristické metody pro potlačení DDoS útoků zneužívajících protokol TCP

Heuristic Methods for the Mitigation of DDoS Attacks that Abuse TCP Protocol
Kategorie: Počítačové sítě
Zadání:

1. Seznamte se s problematikou útoků typu odepření služby a zařízením vyvíjeným v rámci sdružení
CESNET pro ochranu před těmito útoky.

2. Nastudujte možnosti potlačení útoků zneužívajících protokol TCP.
3. Navrhněte adaptivní přístup volby parametrů a strategie mitigace DoS v závislosti na vlastnostech

probíhajícího útoku (síla, úspěšnost mitigace).
4. Takto navržený přístup implementujte.
5. Pro potřeby vyhodnocení rozhodovacího mechanismu implementujte také vybranou heuristickou metodu/y

pro potlačení DoS útoku zneužívajícího protokol TCP.
6. Vyhodnoťte implementované řešení z hlediska dosažených vlastností.
7. V závěru diskutujte výsledky a možnosti dalšího pokračování práce.

Literatura:
• Dle pokynů vedoucího.

Pro udělení zápočtu za první semestr je požadováno:
• Splnění bodů 1 až 3 zadání.

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Kučera Jan, Ing.
Konzultant: Žádník Martin, Ing., Ph.D., UPSY FIT VUT
Vedoucí ústavu: Sekanina Lukáš, prof. Ing., Ph.D.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 15. května 2019
Datum schválení: 26. října 2018

Zadání bakalářské práce/21711/2018/xgolds00 Strana 1 z 1

http://www.fit.vutbr.cz/info/szz/

Abstract
T C P S Y N F l o o d is one of the most wide-spread DoS attack types used on computer net­
works nowadays. A s a possible countermeasure, this thesis proposes a network-based mit­
igation method T C P Reset Cookies. The method utilizes the T C P three-way-handshake
mechanism to establish a security association wi th a client before forwarding its S Y N data.
The algori thm can effectively mitigate even more sophisticated S Y N flood attacks at the
cost of 1-second delay for the first established connection. However, the method may not
be suitable for a l l the scenarios, so decision-making a lgor i thm to switch between different
S Y N F l o o d mit igat ion methods according to discovered traffic patterns was also developed.
The project was conducted as a part of security research by C E S N E T . The discussed im­
plementation of T C P Reset Cookies is already integrated into a D D o S protection solution
deployed i n C E S N E T ' s backbone network and Czech Internet exchange point at N I X . C Z .

Abstrakt
T C P S Y N F l o o d sa v súčasnos t i r a d í medzi na jpopu lá rne j š i e ú t o k y typu D o S . T á t o p r á c a
popisuje sieťovú m i t i g a č n ú m e t ó d u T C P Reset Cookies ako jeden z m o ž n ý c h spôsobov
ochrany. S p o m í n a n á m e t ó d a je za ložená na zahadzovan í v še tkých p r i j a tých pokusov o nad­
viazanie spojenia, až p o k ý m s d a n ý m kl ientom nie je u z a t v o r e n á b e z p e č n o s t n á asociác ia
na zák l ade využ i t i a mechanizmu T C P three-way-handshake. Tento p r í s t u p dokáže efekt ívne
odraziť aj sofistikovanejšie ú toky , avšak za cenu sekundového oneskorenia pr i p rvom nadvä -
zovanom spojení d a n é h o klienta. M e t ó d a však nie je v h o d n á vo v še tkých p r í p a d o c h . Z tohto
d ô v o d u t á t o p r á c a ďalej navrhuje a implementuje s p ô s o b d y n a m i c k é h o p r e p í n a n i a rôznych
mi t igačných m e t ó d na zák l ade a k t u á l n e p reb ieha júce j komunikác ie . Tento projekt bo l vyko­
n a n ý ako súčasť b e z p e č n o s t n é h o v ý s k u m u spo ločnos t i C E S N E T . S p o m í n a n á i m p l e m e n t á c i a
m e t ó d y T C P Reset Cookies je už v čase p í san ia tejto p r á c e in t eg rovaná do D D o S r iešenia
n a s a d e n é h o na hlavnej sieti spo ločnos t i C E S N E T , ako aj v českom n á r o d n o m peeringovom
uzle N I X . C Z .

Keywords
D D o S , D D o S mit igat ion, Heurist ic D D o S mit igat ion, T C P abuse, T C P S Y N F l o o d , T C P
Reset Cookies

Klíčová slova
D D o S , D D o S mitigace, Heur i s t i cká mitigate D D o S , T C P zneuži t í , T C P S Y N F l o o d , T C P
Reset Cookies

Reference
G O L D S C H M I D T , Pa t r ik . Heuristic Methods for the Mitigation of DDoS Attacks that Abuse
TCP Protocol. Brno , 2019. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of
Information Technology. Supervisor Ing. Jan Kuce ra

Rozšířený abstrakt
Transmission Con t ro l P ro toco l (T C P) je jednou zo zák l adných súčas t í sady I n t e r n e t o v ý c h

protokolov. V š e t k y webové, súborové , e-mailové s lužby a m n o ž s t v o iných na tejto sade
priamo závisia. Kvôli jeho dôlež i tos t i je v šak T C P t e r č o m m n o ž s t v a k y b e r n e t i c k ý c h ú tokov ,
k to ré v pos ledných rokoch n a b e r a j ú na p o č t e a sile. N a zák l ade predpovede od spo ločnos t i
Cisco m á byť v roku 2022 u s k u t o č n e n ý c h 14.5 mi l ióna ú tokov , p r i čom na zák lade a k t u á l n e h o
trendu je väčš ina ú t o k o v v y k o n á v a n á ako T C P S Y N F l o o d .

A k t u á l n e spôsoby mi t igác ie t ý c h t o ú t o k o v sú voči pokroč i le j š ím variantom čas to neefek­
t ívne , p r í p a d n e nie sú v h o d n é pre ap l ikác iu na sieťových zariadeniach. T á t o p r á c a z to­
hto d ô v o d u navrhuje a implementuje m e t ó d u TCP Reset Cookies, k t o r á sa snaž í tieto
nedostatky ods t r án i ť . H l a v n ý m úče lom p r á c e je teda vytvor iť efekt ívnu m e t ó d u pre mit-
igáciu pokroči le jš ích ú tokov , k t o r ú je m o ž n é jednoducho aplikovať na sieťové zariadenia ako
ha rdvé rové firewally alebo I D S / I P S sys témy.

M e t ó d a T C P Reset Cookies sa z a k l a d á na p r inc ípe vytvorenia bezpečnos tne j asociácie
s kl ientom pred t ý m , ako sú jeho ž iados t i o uzatvorenie spojenia (S Y N správy) p repos ie lané
ich u r č e n é m u ad re sá tov i . Proces asociácie sa z a k l a d á na využ i t í mechanizmu T C P three-
way-handshake, p o č a s k t o r é h o je medzi kl ientom u z a t v á r a n ý k o m u n i k a č n ý k an á l . Stan­
dard R F C 793 definuje p r e s n é hodnoty, k t o r é musia byť o b s i a h n u t é v T C P segmentoch
pre s p r á v n e uzatvorenie relácie . Standard takisto definuje, ako sa m á strana p r i j íma júca
segment s n e o č a k á v a n ý m i hodnotami zachovať. N a zák lade t ý c h t o informáci i m ô ž e m e defi­
novať predpoklad, že ú t o č n í k zasielajúci veľké m n o ž s t v o S Y N sp ráv pomocou špecial izo­
vaného softvéru (typicky z falošných I P adries) n e m á i m p l e m e n t o v a n ý algoritmus T C P
podľa š t a n d a r d u , a t ý m p á d o m p o ž a d o v a n ú odpoveď na neva l idnú s p r á v u neodoš le .

Client R ST cookies Server

F i g ú r e 1: Funkcional i ta a lgori tmu T C P Reset Cookies

Funkcional i ta algori tmu R S T Cookies je z n á z o r n e n á na o b r á z k u 1. A k o m ô ž e m e v i ­
dieť, klient sa p o k ú š a o uzatvorenie spojenia p r o s t r e d n í c t v o m T C P s p r á v y s p r í z n a k o m
S Y N . Tejto sp ráve je automaticky vygene rovaná p s e u d o - n á h o d n á hodnota sekvenčného
čísla (SEQ]) s hodnotou x. Sp ráva s m e r u j ú c a serveru je o d c h y t e n á p r e d r a d e n ý m sieťovým
m i t i g a č n ý m z a r i a d e n í m využ íva júc im m e t ó d u R S T Cookies. M e t ó d a analyzuje p r i j a tý seg­
ment a zašle odpoveď s p r í z n a k m i S Y N + A C K ako definuje š t a n d a r d , avšak namiesto
očakávane j hodnoty vloží do poľa pre potvrdenie (ACK) hodnotu y, p r i čom o č a k á v a n á
hodnota je x + 1. Správa s takouto hodnotou je o d o s l a n á klientovi, k t o r ý podľa š t an ­
dardu m u s í odpovedať sp rávou s p r í z n a k o m R S T a s ekvenčným čís lom r o v n ý m hodnote y.
P r i sp racovan í takejto s p r á v y algori tmom je zdrojová IP adresa odosielateľa p r i d a n á do

asociačnej t a b u ľ k y a v š e t k y o s t a t n é S Y N s p r á v y od d a n é h o klienta sú p repos ie l ané bez
intervencie algoritmu.

Pre zaistenie bezpečnos t i takejto m e t ó d y je n u t n é zaručiť , aby bol i zas ie lané neva l idné
čísla ACK generované n á h o d n e bez možnos t i ich predikcie. Z tohto d ô v o d u je implemen­
tovaný algoritmus na d y n a m i c k ú generác iu a val idáciu h o d n ô t . Pre tento účel sú pod­
porované 2 rež imy - r ež im n á h o d n ý c h h o d n ô t v časových o k n á c h a hash rež im. R e ž i m
n á h o d n ý c h h o d n ô t v časových oknách generuje n á h o d n ú hodnotu pre k a ž d é časové okno
a vracia ACK hodnotu na zák lade času . Hash rež im generuje u n i k á t n u ACK hodnotu pre
každé spojenie na zák lade p o č í t a n i a hash funkcie pre hodnoty, k t o r é d a n é spojenie definujú.

M e t ó d a R S T Cookies poskytuje si lnú ochranu prot i b e ž n ý m a p o k r o č i l ý m S Y N F l o o d
ú t o k o m , avšak jej použ i t i e spôsobuje z n a č n é obmedzenia priepustnosti a citeľné navýšen ie
času u z a t v á r a n i a p rvého spojenia. N a zák l ade naš ich testov je oneskorenie tohto spojenia
zvýšené až o 1 sekundu z d ô v o d u nutnosti jeho resetovania a n á s l e d n é h o o p ä t o v n é h o zaslania
S Y N správy. Použ i t i e r ež imu generác ie n á h o d n ý c h h o d n ô t p r o s t r e d n í c t v o m časových okien
zníži p r i epus tnosť packetov zhruba o 57%, zat iaľ čo hash varianta až o 87%.

N a zák l ade t ý c h t o z is tených nedostatkov m ô ž e m e usúdiť , že využ ívan ie m e t ó d y pre
mi t igác iu bežných ú t o k o v n e m u s í byť vzhľadom na jej n e g a t í v n y vp lyv na sieťovú p r e v á d z k u
efekt ívne. Z tohto d ô v o d u je ďalej n a v r h n u t ý a i m p l e m e n t o v a n ý s y s t é m na d y n a m i c k é
p r ep ínan i e rôznych mi t i gačných m e t ó d na zák l ade a k t u á l n e j sieťovej p revádzky, ale aj iných
faktorov ako úspešnosť mi t igác ie , využ ívan ie sy s t émových zdrojov a pod.

S y s t é m na p r e p í n a n i e m e t ó d bo l v y v i n u t ý špec iá lne pre účely použ i t i a v r iešení C E S N E T
D D o S Protector, k t o r é okrem m e t ó d y RST Cookies obsahuje aj iné m i t i g a č n é s t r a t ég i e ako
SYN Drop a ACK Spoofing. Tie to algori tmy je nás l edne n u t n é pre použ i t i e v rozhodova­
com module regis t rovať. Reg i s t r ác iou sa s y s t é m u na d y n a m i c k é p r e p í n a n i e o z n á m i ich
existencia, ale aj definujú ich parametre. Rozhodovac í modu l na p r e p í n a n i e n á s l e d n e vy­
h o d n o t í kval i tu j edno t l i vých mi t i gačných m e t ó d pomocou fitness jadra . Jadro u r č e n é na
a n a l ý z u p r e v á d z k y z a z n a m e n á v a informácie o p o č t e S Y N , A C K a R S T sp ráv , ako aj poče t
u n i k á t n y c h I P adries zasielajúcich tieto d á t a s v y u ž i t í m š t r u k t ú r y Hype rLogLog . S a m o t n é
rozhodovanie o na jvhodne j še j mi t igačne j m e t ó d e prebieha pomocou rozhodovacieho jadra.
T á t o m n o ž i n a funkcií slúži na a n a l ý z u zozb ie raných š t a t i s t ík , hľadanie rôznych n á z n a k o v
ú tokov a nás l edné pr i raďovanie t ý c h t o n á z n a k o v k d o s t u p n ý m m i t i g a č n ý m m e t ó d a m .

A k t u á l n a i m p l e m e n t á c i a a lgori tmu na d y n a m i c k é p r e p í n a n i e závisí na m n o ž s t v e pra­
hových h o d n ô t , k t o r é sú ča s to volené e x p e r i m e n t á l n e . N a zák lade zozb ie raných d á t sú
hodnoty postupne u p r a v o v a n é a kval i ta mi t igác ie sa tak zlepšuje. N a dosiahnutie op t imá l ­
neho stavu bude n u t n é eš te veľké m n o ž s t v o d á t , avšak v s ú č a s n o m stave je modu l schopný
odhal iť p reb ieha júc i S Y N flood ú t o k na zák lade prahov o p o č t e pos laných S Y N o v , pomere
IP adries zasielajúcich S Y N a A C K segmenty, ale aj č i a s točné rozpoznanie kontextu ú t o k u
na zák l ade jeho h is tór ie . Funkčnosť modulu je op t ima l i zovaná pre s p o m í n a n é 3 mi t igačné
m e t ó d y d o s t u p n é v r iešení D D o S Protector, avšak n á v r h algori tmu p o č í t a s akýmkoľvek
m n o ž s t v o m funkcií, k t o r é b u d ú v b u d ú c n o s t i p o d p o r o v a n é bez nutnosti jeho zmien.

A k o bolo n a z n a č e n é v p redoš lých odsekoch, t á t o p r á c a , ako aj v š e t k y vyví jané algori tmy
sú súčasťou b e z p e č n o s t n é h o v ý s k u m u vedeného spo ločnosťou C E S N E T . M e t ó d a R S T Cook­
ies je v r á m c i projektu už in t eg rovaná a použ ívaná , za t iaľ čo in tegrác ia m e t ó d y na d y n a m i c k é
p r ep ínan i e je p l á n o v a n á v blízkej b u d ú c n o s t i . A lgo r i tmy p o p í s a n é v tomto dokumente b u d ú
ďalej rozš i rované aj v b u d ú c n o s t i v r á m c i projektu D D o S Protector, k t o r ý n e d á v n o o b d r ž a l
grant od Minis ters tva vn i t ra České republiky. Casť p r á c e z a h ŕ ň a j ú c a t eó r iu a popis R S T
Cookies m e t ó d y bola p r e z e n t o v a n á na š tuden t ske j konferencii E x c e l @ F I T 2019, kde bola
ocenená o d b o r n ý m panelom za p r ínos v oblasti poč í tačove j bezpečnos t i .

Heurist ic Methods for the Mi t iga t ion of D D o S
Attacks that Abuse T C P Protocol

Declaration
I hereby declare that I have authored this Bachelor's thesis independently, under the super­
vision of Ing. Jan Kučera. I have not used other than the declared sources and publications
and that I have expl ici t ly marked a l l mater ial which has been quoted either l i teral ly or
by content from the used sources. Accord ing to my knowledge, the content or parts of this
thesis have not been presented to any examinat ion authori ty nor have been published (with
the exception of faculty student's conference E x c e l @ F I T 2019, which took place at B U T
F I T on A p r i l 2019). I am aware that respective work can be considered as plagiarism and
legal actions may be taken i f the above statements are not true.

Pa t r ik Goldschmidt
M a y 16, 2019

Acknowledgements
I would like to express my gratitude towards my supervisor Ing. Jan Kučera, who was
enormously helpful the whole t ime we were co-working on the D D o S Protector project. His
patience wi th my (sometimes) si l ly questions and his wise answers to them have notably
improved the final quali ty of the product and this thesis, but also helped me to gain software
design and development confidence, a crucial quali ty of any junior programmer.

M a n y thanks also go to my consultant, Ing. Martin Zádník, Ph.D., who had introduced
me to the C E S N E T ' s security research projects back i n 2017 and was the light that guided
me through the dark path i n my beginnings wi th network programming.

Contents

1 Introduction 2

2 T C P Security Considerations 3
2.1 Session Establishment 3
2.2 At tacks on T C P 4
2.3 Defense Against T C P F lood ing At tacks 8

3 T C P Reset Cookies 15
3.1 Theoret ical Background 15
3.2 M e t h o d design 16
3.3 M e t h o d Implementation 26
3.4 Results and Clos ing Remarks 34
3.5 Summary and Conclusions 39

4 Dynamic Mit igat ion M e t h o d Management 41
4.1 Theoret ical Concepts 41
4.2 Mechanism Design 45
4.3 Implementation 51
4.4 Testing 54

4.5 Mechanism Conclusion and Clos ing Remarks 56

5 Conclusion 57

Bibl iography 58

1

Chapter 1

Introduction

Transmission Con t ro l P ro toco l (T C P) is an integral part of the Internet protocol suite.
It is a component of underlying architecture which provides functionality for services like
H T T P , F T P , S M T P and many more. A s the importance of T C P is fundamental for the
operation of the Internet, it is often the target of various cybersecurity threats, Dis t r ibuted
Denia l of Service (DDoS) being a popular choice. Report from Q4 2018 by Kaspersky L a b
states that the most frequent target of a denial of service attacks was T C P , targeted by
66.60% of a l l the attacks [18]. Accord ing to [8], the number of DoS attacks w i l l double
to 14.5 mi l l ion p.a. by 2022. These and many other facts should highlight the need for T C P
protection and how specialized techniques are required to achieve it.

Current ly used methods for S Y N F l o o d mit igat ion are mostly designed to be used
on the end hosts themselves. These end-host mi t igat ion techniques like T C P S Y N Cookies
are often effective, but their nature is indeed not suitable in a l l situations. For example,
a high number of segments sent by an attacker may not cause an ordinary S Y N F l o o d DoS
due to mit igat ion method intervention, but its execution may s t i l l cause high processor
ut i l iza t ion of the server. This means that data from legitimate clients are processed wi th
unacceptable delays or are not processed at a l l , effectively creating a DoS si tuation anyway.

To spare the resources of the server, many of the mit igat ion methods are deployed
on specialized intermediary network devices. Th is way, potential D D o S attacks can be mit­
igated before reaching the server, therefore not wasting its resources on processing traffic
from attackers. However, some of these methods, originally intended for end-host mit iga­
t ion, are not op t imal when used on intermediary devices. For this reason, the thesis aims
to implement an effective native network-based mit igat ion method called T C P Reset Cook­
ies. O n top of that, a system to dynamical ly switch between several of these mit igat ion
strategies according to discovered traffic patterns was also designed and implemented.

The project was conducted as a part of the security research for high-speed computer
networks by C E S N E T . The implementat ion of the presented mit igat ion method, developed
as a part of this thesis, is already integrated into the C E S N E T ' s an t i -DDoS solution, which
is actively used on its backbone network and was also recently applied to the Czech national
Internet exchange point at N I X . C Z [6]. The algori thm for dynamic switching is not yet used,
but its integration is planned i n the near future.

Beginning of the thesis (Chapter 2) discusses theoretical functionality of the T C P pro­
tocol w i t h the emphasis on aspects related to security. Chapter 3 analyzes, implements
and evaluates the mentioned mit igat ion strategy T C P Reset Cookies. The algori thm for
dynamic method switching is presented i n Chapter 1. Summary of the achieved results and
potential future improvements are discussed i n Chapter 5.

2

Chapter 2

T C P Security Considerations

Specification R F C 793 defines T C P as a highly reliable host-to-host protocol intended for use
between hosts i n packet-switched computer communicat ion networks, and i n interconnected
systems of such networks [21]. To create and mainta in a reliable way of communicat ion, the
protocol implements several techniques for node synchronization. This chapter describes
how this communicat ion channel is established and how it affects the security of the protocol
itself. The chapter also explains various types of T C P attacks as well as mit igat ion methods
that are commonly used to reduce their impact or mitigate them completely.

2.1 Session Establishment

The establishment of a reliable communicat ion channel is done v i a a process called T C P
three-way-handshake. The process is started by an in i t ia t ing host (client), which con­
structs an S Y N segment and sends it to the second node (server) awaiting connection
requests. A s i l lustrated i n Figure 2.1, this segment has a Synchronize (S Y N) flag set and
carries a value of x as its Sequence number (SEQ). Standard does not expl ic i t ly define
an Acknowledgment (ACK) value, so operating systems usually set it to 0.

Client Server

Figure 2.1: T C P three-way-handshake process.

3

U p o n receiving an S Y N from the client, the server generates its own pseudo-random
number to be used as its SEQ while setting the A CK value to the Sequence number of the
previously received S Y N increased by one to signalize that S Y N message from the client
was processed. A segment w i th these values and S Y N + A C K flags set is assembled and
send as a response from the server. W h e n the client receives this packet, and ACK value
is exactly x + 1 , it generates own acknowledgment segment and sends it back to the server.

After this process, the communicat ion channel is considered established, and two end-
points are able to exchange data. The process is not used only for synchronization purposes,
but also for negotiation of different transmission options like T C P window size. The three-
way-handshake is fundamental for T C P operation but is also often misused by attackers
i n various attacks described i n the following section.

2.2 Attacks on T C P

Attacks that abuse weaknesses of the T C P can be differentiated into two main categories:

• F l o o d attacks

• Injection attacks

F l o o d attacks typical ly target a single host or a network. Thei r a im is to exhaust the
target's resources by flooding a large number of bogus packets. These data have to be pro­
cessed by the target server, draining the C P U , memory and network resources i n a fashion
that regular clients cannot be served, or are served w i t h an unacceptable delay, effectively
creating a denial of service si tuation. O n the other hand, injection attacks are based
on eavesdropping the ongoing communicat ion and injecting crafted segments into the T C P
session. Injected data may contain malicious code, compromise the user's privacy [15]
or reset the session [25]. Th is document focuses on the flood attacks, which are mostly
associated wi th a DoS.

Since flood attacks are generally easier to perform, they became a favorite choice for
attackers a iming to create a DoS si tuation. A s mentioned back i n Chapter 1, T C P was
targeted by 66.60% of a l l the D D o S attacks i n the fourth quarter of 2018, meanwhile,
58.20% of a l l the attacks were performed as T C P S Y N F l o o d , the most popular variant for
T C P DoS (Figure 2.2).

The following subsections w i l l briefly describe most common T C P attacks from both cate­
gories.

2.2.1 T C P S Y N Flood

T C P S Y N F l o o d is currently one of the most widespread and most effective T C P DoS
attacks. Its functionality depends on the three-way-handshake mechanism, during which
a server receiving the S Y N message responds wi th an S Y N - A C K segment and waits un t i l the
A C K arr ival to mark the connection as established. The rationale behind a successful DoS
assumes that the v i c t i m allocates a new state for every received S Y N segment and that there
is a l imi t of such states that can be stored. These are described i n R F C 793 as Transmission
Cont ro l B lock (T C B) data structures. T C B structures are used to store necessary state
information for an ind iv idua l connection. They may be implemented differently among the
operating systems, but the key concept is that new memory needs to be allocated upon
every new T C P connection [10].

4

TCP SYN • UDP TCP other • HTTP • ICMP

Figure 2.2: D D o S attacks dis t r ibut ion by type [18].

Operat ing system kernels normal ly t ry to protect host memory from getting exhausted
by implementing a l imi t of contemporary T C B structures called backlog. W h e n the backlog
l imi t is reached, either incoming S Y N segments are ignored, or uncompleted connections
in the backlog are replaced. A s i l lustrated in Figure 2.3, the pr imary goal of S Y N flooding
is to exhaust the target's backlog wi th half-open connections. For this purpose, spoofed I P
addresses that do not generate a reply to S Y N - A C K s are often used.

Attacker Victim

Figure 2.3: T C P S Y N flood attack.

5

2.2.2 Spoofed Session Flood

Spoofed Session F l o o d (SSF) , also known as Fake Session At t ack and its modifications
M u l t i p l e A C K S S F and M u l t i p l e S Y N - A C K S S F are more sophisticated attacks able to
bypass most of the standard security mechanisms. Thei r a i m stays the same as i n the T C P
S Y N F l o o d case - exhaust the target's backlog. However, security systems are typical ly able
to filter out regular S Y N flooding attacks due to the easily detectable pattern of sending
many S Y N segments and no other segment types at a l l . To make themselves harder to be
revealed, Spoofed session attacks usually carry one or mult iple A C K , S Y N - A C K , R S T and
F I N segments to disguise themselves as regular T C P traffic. This way, the attacker is able
to bypass defense mechanisms that rely only on moni tor ing incoming traffic without the
use of advanced heuristics. The low S Y N / A C K rate makes the attack harder to detect
while the attacker is s t i l l able to create enough half-open connections for successful backlog
exhaustion [23].

2.2.3 Session Attack

The most complex, but hardly detectable method is Session attack, which uses a lot of real
clients generating vast amounts of legitimate traffic. For this purpose, a botnet is commonly
used. A t a part icular t ime, a l l computers in the botnet are ordered to establish numerous
T C P sessions wi th the v i c t i m server. These sessions are then stretched out using keepalive
mechanisms and by delaying A C K responses. W h e n a large number of bots establish several
sessions each, the target server may get too busy wi th processing the attacker's requests.
This creates unacceptable delays or may even cause that the legitimate clients are not
served at a l l . Because the attack generates legitimate traffic from existing clients, security
systems usually have no clue about the ongoing attack. Mi t iga t ion of the attack requires
the usage of advanced heuristics combined wi th hosts reputation tables, which might be
able to identify an ongoing attack originating from a botnet and mitigate it appropriately.

2.2.4 Other Flood Attacks

This category comprises attacks like S Y N - A C K F l o o d , A C K / P S H A C K F l o o d , A C K frag­
mentation F l o o d , R S T F l o o d , and F I N F l o o d . These are not as sophisticated as S Y N F l o o d ,
because a l l of them work on the same t r iv ia l principle. Since neither of the listed attacks
uses S Y N to establish a session, exhausting a target backlog is not the goal. A l l methods
in this subsection generate regular T C P segments, which are usually not filtered by security
mechanisms. None of these generated segments are destined for an existing T C P session,
but the target has to process them anyway and eventually send an R S T as a response.
If the attack of this type is distr ibuted, exhaustion of the v ic t im's processor or network
resources may occur, making it irresponsive for regular clients and creating a denial of
service. However, these types of floods are not as effective as previously mentioned attacks
and thus are not used as commonly.

A l though most of the pure T C P DoS threats were already mentioned, other applicat ion
layer DoS attacks like H T T P flood may be used to achieve exhaustion of the target's
resources as well . In these cases, T C P is not misused directly but is s t i l l used as a transport
protocol to conduct these attacks.

I.i

2.2.5 T C P Sequence Prediction

T C P sequence prediction attack (also known as connection hijacking) is based on the as­
sumption that the attacker is able to predict the SEQ number of another host dur ing the
T C P communicat ion process. Th is way, the attacker may impersonate a sender and in­
ject counterfeit packets into the session. The threat was firstly discovered i n 1985 because
Berkeley-derived kernels generated SEQ values incremented by a constant every second,
and by another constant for each new connection. Thus, if an attacker established a session
w i t h a machine, he could easily estimate the SEQ that would be used for its subsequent
session [3]. Since the attacker knew the next SEQ the server would send, a new connection
could be established by impersonating another client and acknowledging the data send by
the server without actually processing them (Figure 2.1). Th i s technique allowed an at­
tacker to establish a T C P session wi th a server while impersonating another client. To avoid
a session to be reset, the impersonated host needed to get silenced. This was commonly
done by D o S . After the connection was established, the attacker was s t i l l not able to see
the output from the session but could execute commands as more or less any user [3].

Attacker A Server S Victim V

Figure 2.4: Or ig ina l T C P sequence predict ion attack.

A l though the part icular problem was addressed by changing the way of In i t ia l Sequence
Number (ISN) generation in Berkeley-derived kernels and by R F C 1948, the problem was
generalized for the whole T C P stack, whose SEQ numbers were s t i l l relatively easy to pre­
dict . Current standard R F C 6528 specifying I S N generation addresses this problem by mak­
ing the former way of sequence prediction impossible. However, an eavesdropper who can
observe the in i t ia l messages for a connection can determine its sequence number state may
s t i l l be able to launch SEQ number guessing attacks by impersonating that connection [13].

7

2.2.6 T C P Veto

T C P veto attack can be considered as a more advanced variant of T C P sequence prediction
attack. Instead of predict ing the sequence number only, an eavesdropping attacker predicts
the correct payload size of the next expected message as well . A crafted segment w i t h these
values is then injected into the T C P session. Later , when the legitimate packet arrives,
it is found to have the same sequence number and length as the packet already received
from the attacker. Th is means that the legitimate packet is „vetoed" by the previously
received segment and so is silently dropped like a regular duplicate. Unl ike the sequence
prediction attack, the connection is never desynchronized, and the communicat ion proceeds
normally. The sender of the legitimate packet sees no evidence of the attack [14]. T C P veto
gives the attacker less control over the session but makes the attack par t icular ly resistant
to detection.

2.2.7 T C P Reset Attack

T C P Reset attack is an injection-like denial of service attack, i n which the perpetrator
attempts to prematurely terminate a v ic t im's active T C P session [25]. The idea behind the
attack is to inject an R S T segment to the session, which causes one of the receiving ends
to close the connection. For this mechanism to work, injected R S T needs to be precisely
crafted wi th specific IP addresses, exact port numbers, and a SEQ value. These values can
be obtained v ia eavesdropping.

The principle is also sometimes used in network security systems to forbid a connection
to the part icular port or a port range. The protection against this threat requires a transport
layer encryption such as IPSec V P N , so the attacker is not able to extract sequence numbers
from an unencrypted T C P header.

2.2.8 S Y N Port Scanning

S Y N port scanning is not an attack itself, but it often precedes other types of cyberse-
curity incidents. The process is used during the reconnaissance phase of the attack when
the attacker is t ry ing to map the target network and reveal open ports on the ind iv idua l
machines. The scanning is done by sending T C P S Y N segments on various ports of the
target. If the system has a part icular port opened, it continues to establish a connection by
responding wi th an S Y N - A C K segment. W h e n a scanner software receives an S Y N - A C K
from the part icular port, it marks it as opened, chooses a different one and repeats the pro­
cess. However, the ac t iv i ty of the scanner is easily detectable and therefore many security
solutions and even antivirus software are typical ly able block it.

2.3 Defense Against T C P Flooding Attacks

This section focuses on the mit igat ion of T C P flooding attacks, which are the main concern
of this document. Some of the practices for injection attacks mit igat ion were already
suggested when the concrete attacks have been presented, and they w i l l not be furthermore
discussed here. The injection attacks can generally be more devastating, but the difficulty
of their execution i n modern computer networks make them an unfavorable choice. O n the
other hand, flooding attacks are popular due to their simplicity, often insufficient counter-
measures and surprisingly effective results.

8

Several commercial solutions and academic research projects a im to provide protection
against these types of attacks, one of these research projects being DDoS Protector de­
veloped by C E S N E T . This solution utilizes a hardware-accelerated traffic filtering using
F P G A technology, own firmware i n conjunction wi th a software-based malicious traffic de­
tection core (Figure 2.5). The product is specialized on mit igat ion of D N S amplification
attacks, but support for T C P S Y N flood attacks mi t igat ion was also recently added. S Y N
floods are mit igated wi th the use of A C K spoofing (Subsection 2.3.6) and S Y N Drop (Sub­
section 2.3.7) algorithms, which are a part of the software detection core. These methods
fall short i n certain situations, so another mit igat ion approach - T C P Reset Cookies was
designed and implemented as a part of this thesis. The details about the approach are
discussed in Chapter 3. More information about the project can be found at [5].

Ethernet

CESNET's DDoS protector

Software for malicious traffic detection

Communication and control interface

Hardware accelerator

FPGA

Ethernet

Figure 2.5: C E S N E T ' s D D o S Protector architecture.

T C P flood mit igat ion methods are classified according to the type of the network node
they operate on. End-host mi t igat ion methods, such as S Y N cookies are executed straightly
on the nodes that are contacted by clients. The i r usage requires modification of the T C P
stack of the hosts, so they are typical ly shipped directly wi th an operating system kernel or
implemented as a kernel add-on. O n the other hand, network-based mi t igat ion methods are
entirely independent of protected clients, because they run on specialized network appli­
ances such as firewalls or I D S / I P S systems. Thei r functionality is typical ly transparent for
the protected device, so no changes to the server's configuration are needed. A s mentioned
in Chapter 1, usage of end-host methods br ing many disadvantages, because the server has
to process data from attackers as well, draining its C P U and network resources. Network-
based techniques eliminate this drawback, but they also tend to add extra latency to the
communicat ion. B o t h end-host and network-based techniques are briefly explained i n the
following subsections.

9

2.3.1 T C P S Y N Cache

S Y N cache is an end-host mit igat ion technique, which utilizes hashing to store a lightweight
fingerprint of the IP address, port number and secret for every incoming T C P connection.
This way, the operating system does not need to allocate the whole T C B , but only a frag­
ment of the original memory required. A device implementing this method is, therefore,
able to queue more requests, becoming harder to exhaust. In the B S D kernel from 2002, this
opt imizat ion reduced the size of the per-connection data by 78% while al lowing up to 15359
entries [19].

2.3.2 T C P S Y N Cookies

In contrast to S Y N cache, S Y N cookies method does not need to store any state informa­
t ion at a l l , requiring no memory per-connection. Essential data defining the connection,
alongside wi th a t imestamp and a secret are hashed into a 32-bit value representing the
SEQ number of the S Y N - A C K segment. A s depicted i n Figure 2.1, the handshake is fin­
ished wi th an A C K message carrying the received S Y N - A C K value + 1. U p o n A C K receipt,
the server can reconstruct original S Y N parameters and successfully establish a connection.
The method is exceptionally effective against S Y N floods, but its nature denies S Y N - A C K
retransmission and restricts usage of the T C P options, such as T C P window size [4].

2.3.3 T C P Random Drop

End-host technique T C P R a n d o m drop works on a principle which replaces a random
pending half-open connection when the T C B queue is full , and another S Y N is received.
Connection replacement is done by sending an R S T segment, discarding corresponding
T C B structure and al locating a new one for the incoming connection. Legit imate clients
dropped wi th R S T are expected to t ry to reestablish a connection again. The rationale for
this approach is that by making queue large enough, a server under attack can s t i l l offer
a high probabil i ty of successful connection establishment, but legitimate sessions may s t i l l
be occasionally denied [22].

2.3.4 Traffic Filtering

Traffic filtering is one of the simplest ways of network-based mit igat ion. A s described
i n [11], the fundamental idea is to deny a l l incoming traffic from IP addresses that do not
match their source network prefix (packets intentionally crafted w i t h false IP) . Th is process
allows discarding a l l of the traffic from forged I P addresses outside of the network prefix the
generating host is currently in , but the attacker is s t i l l able to fake IP addresses from the
same prefix. The method is defined as "Best current practice" and is recommended to be
implemented by a l l Internet service providers (ISP) . Despite this, specialized methods for
flooding mi t igat ion are required, because the usage of the filtering principle does absolutely
nothing to protect against flooding attacks originating from val id prefixes, and one also
cannot rely on the presumption that a l l ISPs w i l l actually implement it.

2.3.5 S Y N - A C K Spoofing

S Y N - A C K spoofing is a network-based mit igat ion technique based on a principle of estab­
lishing a 3-way-handshake between client and the machine running the a lgori thm before
it is actually established wi th the server. Th is principle protects the backlog of the server,

10

because a l l i l legitimate S Y N segments are filtered out by the algori thm, and only clients
that would normal ly establish a session are allowed to communicate w i th the server. Th is
method can be implemented in 2 ways - either by having own backlog, which is much
bigger than the one provided by the server or by combining wi th S Y N cookies to require
no memory for state information at a l l . E i the r way, the client actually creates a session
between itself and the S Y N - A C K spoofing machine and a l l the data sent wi th in the session
are forwarded to the server, which has its own session wi th the S Y N - A C K spoofer.

A s it may be obvious, this process is highly ineffective due to the requirement of map­
ping between different SEQ and ACK values, since the server always generates its own I S N
different from I S N generated by the S Y N - A C K spoofer (Figure 2.6). Another drawback is
the requirement on memory because tables containing a l l the sessions, as well as transla­
t ion tables between the SEQs and ACKs need to be maintained. The method also needs
to process a l l T C P traffic due to mapping and session finalization requirements, disabling
the abi l i ty of hardware-forwarding completely.

Client SYN-ACK spoofing algorithm

i l
Servet

3-way-handshake
S E Q C | = x, SEQalg = y

PSH, ACK (100B data)

3-way-handshake
SEQ a |g = x, S E Q s r v = z

Figure 2.6: S Y N - A C K spoofing algori thm simplified scheme.

Al though providing adequate level security, operation of the method has high memory
requirements and may add a significant delay to the T C P communicat ion. Despite these
reasons, the method is occasionally implemented in various ant i-DoS solutions and even
used on real networks.

2.3.6 A C K Spoofing

A C K spoofing is a method deployed on the intermediary network device, whose pr imary
goal is to prevent the exhaustion of the protected device's backlog. The method operates
by sending a spoofed A C K segment to finish every half-open session and complete the three-
way handshake. Th is way, a l l of the pending connections i n the backlog are completed
before it may get overfilled by an attacker [9]. If the client does not generate an A C K
segment wi th in the specified timeout period, the A C K spoofing mechanism terminates the
connection w i t h an R S T segment. If the expected A C K is received, the a lgori thm marks
the connection as val id and does not interfere in the future T C P communicat ion between
the nodes (Figure 2.7).

11

Client ACK spooler Server Client ACK spooler Server

(a) Legitimate client (b) S Y N flooder

Figure 2.7: A C K spoofing functionality.

This approach protects the server's backlog, prolonging its abi l i ty to serve clients, but
does not mitigate S Y N flooding attacks by itself. It is important to note that a connection is
established for each received S Y N . This means that i f an excessive number of S Y N messages
is received, the connections may s t i l l cause the server's memory to get exhausted. A l so ,
each segment causes the A C K spoofer to send one spoofed A C K immediately during the
connection establishment phase and one more R S T segment after the timeout ticks out.
Therefore, each S Y N segment sent by an attacker generates two addi t ional segments from
the A C K spoofer, eventually amplifying the attack. Another drawback is that the method
requires to software-process a l l segments wi th an A C K flag, disabling their abi l i ty to be
hard ware-forwarded. Accord ing to our traffic analysis captured on C E S N E T ' s network,
pure A C K s make approximately 81% of a l l T C P traffic (Subsection 4.1.2), so the need
of their analysis by the software has a rather significant impact on the performance.

Despite a l l the mentioned disadvantages, the method is quite popular i n IPS systems
and is often used in conjunction wi th other mit igat ion methods.

2.3.7 S Y N Drop

S Y N D r o p is a name of the proprietary method developed especially for C E S N E T ' s D D o S
Protector project. Its functionality depends on soft (S) and hard (H) thresholds, which
are used to l imi t the m a x i m u m throughput of S Y N data that is allowed from a single
client. The module keeps an internal table of I P addresses for a l l active T C P clients.
Each IP address has an associated counter that represents the number of S Y N segments
sent by the client in the actual t ime window. If the number of S Y N s exceeds an active
threshold, a l l other S Y N data sent by that client i n the given t ime window are discarded
(Figure 2.8). The active threshold is determined based on the number of A C K segments
the part icular host sends. If no A C K is sent by the host (Figure 2.8a), the soft threshold
is active. Receipt of at least one A C K activates the hard threshold for current and a l l
consecutive t ime windows (Figure 2.8b). O n the top of traffic l imi t ing , simple protection
against S Y N port scanning is also included. Its functionality is implemented by dropping
the first S Y N from clients w i th no A C K s yet sent.

The method provides decent protection against regular S Y N flood attacks from spoofed
addresses which do not generate an A C K reply. However, it can be easily fooled by injecting
an A C K into the flood or by using more sophisticated attacks like Session At tack . The usage

12

is not l imited for end-host nor network-based deployment, and so the method can be used
i n bo th scenarios without significant benefits and drawbacks.

Client

s
S+1

ACK = 0
SYN drop

i
Server Client

111 s
s i

s+ 1 :

ACK >= 1
SYNdrop

i

(a) No A C K recieved (b) A C K recieved

Figure 2.8: S Y N drop functionality.

Server

HI

2.3.8 T C P Anti-DoS Extensions

Alongside specialized techniques to prevent DoS mentioned i n previous subsections, mod­
ifications to the protocol itself were also made. These tweaks were i n the form of T C P
extensions, which were supposed to provide anti-DoS functionalities even without the us­
age of other mit igat ion methods. The first extension - TCP Cookie Transactions, provided
a cryptologically secure mechanism to guard against simple flooding attacks sent w i th bogus
IP addresses or T C P ports. Usage of the extension avoided resource exhaustion on a server
by not allocating any resources unt i l the three-way handshake completion. Unl ike S Y N
Cookies, the approach did not conflict w i t h other T C P options but required support for
both of the communicat ing hosts [24]. Th is restriction has proven to be crucial , because
hardware vendors and software providers mostly ignored to implement it , and so the method
was never popularized.

The second approach - TCP Fast Open replaced Cookie Transaction mechanism i n 2014.
The original intention of the standard was to provide a way to exchange the data between
clients before establishing a 3-way-handshake, thus making the data transfers faster. How­
ever, the usage of the cookies also provided an abil i ty to stop an attacker from t r iv ia l ly
flooding spoofed S Y N packets. O n the other hand, new types of attacks specifically against
T C P Fast Open may be launched. Thei r success may temporari ly disable the mechanism,
so usage wi th t radi t ional S Y N flood mit igat ion methods is s t i l l recommended [7]. A l though
the standard is marked as experimental, L i n u x and F reeBSD kernels, as well as several web
browsers are already support ing i t , though the method is sometimes disabled by default.

2.3.9 Current Trends in T C P DDoS Mitigation

Methods described above are generally a l l used for S Y N flooding attacks mit igat ion. Defense
against other types of T C P floods described in 2.2.4 requires the usage of heuristic methods
wi th state information. The main idea behind these methods is that a l l legitimate T C P
hosts have to establish a T C P session before sending other T C P data. The software would
then block a l l T C P traffic except the one used to establish a T C P session in a fashion, that
a certain number of A C K segments would be allowed to pass if and only i f an S Y N segment

13

from that part icular IP was received wi th in the timeout range. Ideally, this constraint would
be extended by monitor ing outbound traffic as well, and A C K s would then be allowed only i f
the server had previously responded wi th an S Y N - A C K for the given session. Th is principle
would beat a l l types of dummy T C P flooding, which does not rely on establishing a session
before launching the attack. Other mechanisms such as counters and thresholds would then
also be needed i n cases that the flood would be conducted w i t h established sessions. The
proposed mechanism provides an undoubtedly high level of protection, but overall network
performance is considerably degraded because each type of the T C P segment needs to be
processed by the software and hardware-forwarding capabilities such as i n C E S N E T ' s D D o S
protector cannot be used.

More sophisticated D D o S attacks like spoofed session floods or session attacks are fre­
quently able to bypass most of the techniques mentioned i n previous subsections. Thei r
mit igat ion has to be done wi th advanced methods like Deep Packet Inspection (DPI) com­
bined wi th the usage of Ar t i f i c i a l Intelligence (AI) and machine learning. D P I principle is
used to analyze mult iple fields of the packet headers, often up to applicat ion protocols. Its
combination wi th A I may be able to discover traffic patterns that would not be revealed
wi th t radi t ional techniques. Accord ing to these patterns and possible experience of the A I ,
a potential attack may be triggered and part icular data forming it would be dropped.

In real-world situations, bo th end-host and network-based solutions are frequently em­
ployed, and they generally do not interfere when used i n combination [9]. Current trends
in D D o S mit igat ion also uti l ize cloud technologies (e.g. Cloudflare 1) instead of t radi t ional
I D S / I P S systems, but the mit igat ion principles stay mostly the same as those described
in this document.

x h t t p s : //www.cloudflare.com/

14

http://www.cloudflare.com/

Chapter 3

T C P Reset Cookies

This chapter presents T C P Reset Cookies, a heuristic method for T C P S Y N F l o o d mit­
igation. The method was designed and implemented to complement existing algorithms
in C E S N E T ' s D D o S Protector mentioned in the previous chapter. Th is project uses pro­
prietary high-speed F P G A networking technology and custom N D P frame headers, but a l l
concepts mentioned i n this section are not expl ic i t ly t ied to any hardware and can be used
in any T C P / I P network.

The first mention of T C P Reset Cookies can be traced back to 1996 according to the
ci tat ion in [22]. Unfortunately, the method was never officially published, and the original
proposal was only i n the form of e-mail communicat ion. The approach was never popu­
larized because it was not compatible w i t h Windows 95 clients [2] and the execution of
the method had created unacceptable delays due to low speed in computer networks those
days. Ment ioned e-mail communicat ion was probably deleted, and so only a few resources
about this approach exist to this day. For the purpose of our custom implementation,
the method needed to be „re invented" by estimating the behavior of the clients according
to the specification and actually testing various operating systems to confirm the expected
compatibil i ty.

Sections at the beginning explain the theoretical foundations of the strategy, as well
as its design and implementat ion aspects. Lat ter sections summarize the achieved results,
compare the method wi th its adversaries and discuss its usabil i ty in real networks.

3.1 Theoretical Background

T C P Reset Cookies functionality is based on the three-way handshake mechanism and
relies on the client's behavior as defined i n the R F C 793. The main idea is to establish
a security association wi th clients before al lowing their connection requests. Th is is achieved
by intentionally crafting inval id S Y N - A C K responses to S Y N data received from a client.
W h e n an inval id S Y N - A C K is received, the R F C 793, section 3.4 [21] defines the behavior
as follows:

If the connection is in any non-synchronized state (LISTEN, SYN-SENT, SYN-
RECEIVED), and the incoming segment acknowledges something not yet sent (the
segment carries an unacceptable ACK), a reset is sent.

To dist inguish that the R S T segment is associated wi th the receipt of inval id S Y N - A C K ,
R F C 793, section 3.4 [21] also defines requirements on the sent R S T :

15

If the incoming segment has an ACK field, the reset takes its sequence number
from the ACK field of the segment, otherwise the reset has sequence number zero
and the ACK field is set to the sum of the sequence number and segment length
of the incoming segment.

According to these preconditions, the a lgori thm is able to distinguish a legitimate client
from an attacker, supposing that the the client w i l l send an R S T reply w i t h the expected
SEQ value, whereas an attacker w i l l not. W h e n an R S T wi th the correct SEQ field is
received, a security association is established by whitel is t ing the client's I P address. S Y N
traffic originating from whitelisted I P addresses is forwarded to its desired destination
without further tampering (Figure 3.1).

Client RST Cookies algorithm Server

Figure 3.1: R S T Cookies functionality.

3.2 Method design

A s outl ined at the beginning of this chapter, the developed method is supposed to com­
plement existing algorithms i n C E S N E T ' s D D o S Protector solution. Section 2.3 stated
that these algorithms, already provided by the solution, are S Y N Drop and A C K Spoofing.
A s described i n their respective subsections, bo th of the approaches have their pros and
cons. The S Y N Drop algori thm provides adequate protection against regular S Y N flooding
attacks but falls short against attacks carrying spoofed A C K segments. A C K Spoofing pro­
tects the backlog dur ing the attack wi th low packet rate but is easily overwhelmed on high
packet rates and eventually even amplifies the attack in those cases. A s may be seen, the
currently deployed methods are not suitable in certain scenarios and a solution to cover
other variants of S Y N floods is required.

For this purpose, R S T Cookies - a network-based mit igat ion method able to handle
both regular and more sophisticated attacks is designed. Simple S Y N floods are dropped
by default because S Y N sending I P addresses w i l l never be added to the whitelist since
they would not pass the security association phase of the algori thm. This mechanism
is especially effective against attacks from spoofed IP addresses, which can not generate
a val id R S T reply. Spoofed Session Floods meet the same fate, since generating random

16

A C K , R S T , and other segments can not fool the security mechanism because the specific
value i n the SEQ field of the R S T is expected. The only way for an attacker to bypass the
association phase is to monitor the traffic and inject an R S T segment w i th the desired SEQ
to the session. Another way is to use legitimate clients w i th the implemented T C P stack.
Ei ther way, the attacker can not use spoofed I P addresses, because the only way how to get
to the whitelist is by responding to received inval id S Y N - A C K wi th a val id R S T . Proposal
for this method presents an undoubtedly higher level of security than the currently used
techniques.

The following subsections w i l l shortly describe ind iv idua l design concerns of the devel­
oped algori thm.

3.2.1 RST Cookies as a Module

Since the implementat ion is supposed to be part of the way more complex security solu­
t ion, the in i t i a l design has to be adjusted to meet the specific needs. The algori thm w i l l
not be used permanently, but its caller w i l l typical ly switch between different mit igat ion
methods. For this reason, the a lgori thm w i l l not be implemented as a standalone applica­
t ion, but as a module, which needs to be easily activated, disabled or removed on demand.
This requirement also implies that the module w i l l not capture the T C P segments itself,
but w i l l process already-parsed data received directly from the caller. The module w i l l also
not forward nor drop segments, but w i l l only suggest how the packet should be handled v i a
the return value of its functions.

The in i t i a l requirements for the module are rather straightforward. A t first, the module
needs to be ini t ia l ized and be ready to process S Y N and R S T segments, while being able
to generate inval id S Y N - A C K s wi th secure ACK values. Whi te l i s t needs to provide a way
of aging, so older records are considered inval id and are automatical ly removed from the
list. A b i l i t y to clear the module to its in i t i a l state after in i t ia l iza t ion needs to be sup­
ported as well . F ina l ly , the module is required to have proper memory management. This
decomposition leads us to create an in i t i a l draft of the module as shown in Figure 3.2.

The C E S N E T ' s D D o S Protector natively runs on the Scientific L inux , which is based
on R e d Hat Enterprise L i n u x core. For this reason, the module w i l l priorit ize to provide sup­
port for this part icular operating system, although compat ibi l i ty w i th other L i n u x systems
should be achieved as well.

3.2.2 Module Initialization and Finalization

A s mentioned i n Section 3.1, the R S T Cookies a lgori thm requires a whitelist to keep a record
of the clients that have already passed the security association phase. Accord ingly to this
precondition, module requires an in i t ia l iza t ion phase, dur ing which these data structures
w i l l be allocated and other internal variables set. The in i t ia l iza t ion phase is corresponding
wi th the constructor i n the object-oriented (0 0) design. Due to internal polit ics of the
D D o S protector, procedural design needs to be applied for this project. However, we w i l l
t ry to emulate 0 0 design to be able to use its principles like abstraction and encapsulation.
This approach w i l l produce cleaner code while maintaining an easy way to rewrite the
module into 0 0 design when desired.

To sum it up, the module needs to provide a simple interface al lowing the user to in i t ia l ­
ize and finalize the module. Ini t ia l izat ion w i l l allocate data structures posing as whitelist
and set a l l the switches controll ing the behavior of the module. The values used to set up the
module were in i t ia l ly passed as function parameters, but they were eventually transformed

17

Configuration
structure

Allow/Deny
segment

Figure 3.2: R S T Cookies module in i t i a l design.

into the configuration structure as their number increased by the module adjustments. The
module configuration parameters are furthermore explained i n Subsection 3.2.8.

3.2.3 Whitelist

Previous sections have mentioned the need for a whitelist structure, which w i l l be able
to store IP addresses of the hosts that have already passed the security association phase.
For this purpose, two data structures - Hash table and Bloom filter may be considered.

Hash table is a data structure implementing an associative array abstract data type,
providing a mapping of keys to values. The mapping is done by a hash function, which
is computed for the key and as a result, a concrete block of memory representing the value
is returned. For our purpose, the I P address of the packet could be used as a key. This
way, IP addresses contained in the hash table would be considered already-associated, and
IP addresses not contained i n the hash table would be considered unassociated. Usage
of hash tables provides excellent performance, the certainty of the result and most impor­
tantly, the abi l i ty to store addi t ional data for each key. However, this functionality comes
at the cost of high memory requirements, which become unbearable on tens and hundreds
of mill ions of entries.

B l o o m filter is a space-efficient probabil ist ic data structure, which provides an abi l i ty
to test whether a given element is a member of the set. A s a result of its probabilist ic
property, false positives may happen. The filter is thus able to identify whether the ele­
ment is possibly i n the set, or definitely not i n the set [20]. Due to leveraging a property
of uncertainty, the structure can store its results w i t h exceptionally low memory require­
ments (only 114 M i B for 100 mi l l ion entries w i th the 0.01 probabil i ty of false positives [17]).
However, the principle of mapping a key to a value is not possible, so no addi t ional data
could be stored for each I P address. Addi t ional ly , elements added to the structure cannot
be removed. The operation of adding and querying an element is also much slower because
mult iple hash functions need to be computed.

Al though usage of both data structures would be possible, for the purpose of this project
and the needs of the D D o S Protector, a hash table was chosen. The main reason for it is

18

its abi l i ty to store data related to the given element, potential ly al lowing advanced security
tweaks, entries aging and various optimizations discussed later i n this chapter.

Despite the fact that one hash table could be used for both IPv4 and IPv6 hosts, a
disproport ion between the usage of these types of addresses on the Internet s t i l l exists. For
this reason, we decided to use a specialized whitelist for each address type. This way, the
user can specify the size of the hash table for each of the address types separately. This
feature allows memory requirements optimizations and overall better performance of the
module.

The concrete hash table implementat ion 1 was provided by C E S N E T , which maintains
a specialized fast hash table opt imized for the usage w i t h IP addresses. This hash table
is designed wi th constraint that number of its columns must be a power of two. More
importantly, another specific property is a l imi ted row capacity, and so inserting an element
to the full row causes the oldest accessed to be replaced. These features extend the regular
table functionality by a proper memory management and entries aging mechanism, which
is especially significant for the R S T Cookies cause.

3.2.4 S Y N Processing

For the method to function correctly, a caller must ensure that a l l ingress S Y N and R S T
segments originating from outside of the protected network are processed. W h e n such S Y N
is received, the R S T Cookies a lgori thm must determine whether it is from a new client or
a client that is already associated. For this purpose, a source I P address is chosen as a key
in the whitelist to search for. E a c h entry contains a nanosecond t imestamp specifying
when the association has been created (ta), al lowing entries to age. So, upon an S Y N
segment arr ival (ts), the a lgori thm has to check whether the IP address of the source
is contained in the whitelist and its entry t imestamp does not exceed the m a x i m u m specified
age t ime (tm), thus val idat ing the following condition:

ts ta ^ t m

If the preceding condit ion is met, the S Y N segment is forwarded into its desired destina­
t ion. Otherwise, an inval id S Y N - A C K is assembled and sent as a response to the processed
S Y N as defined Section 3.2.

If regular data structures were used, manual removal of the expired entries would be re­
quired. However, our hash table automatical ly replaces the oldest entry when insertion
to the full row is made. A s outl ined i n the Subsection 3.2.3, this process ensures proper
aging mechanism, because oldest entries are systematically removed by default. Another
assurance is the automatic memory management since the size of the table never exceeds
its in i t i a l size at the t ime of the in i t ia l iza t ion no matter how many I P addresses are added
to it.

The system of client val idat ion described previously may stop regular and most of the
sophisticated S Y N floods, but may fall short i n certain si tuation such as when an attacker
manages to bypass the association phase. For this reason, an algori thm enhancement
furthermore discussed i n Subsection 3.2.7 is proposed.

x h t t p s : //github.com/CESNET/Nemea-Framework/tree/master/common/f ast_hash_table

19

http://github.com/

3.2.5 RST Processing

W h e n an R S T segment is being processed, the module has to decide whether the message
is a part of its mechanism or belongs to the regular T C P traffic. This is achieved by looking
at the SEQ value of the analyzed R S T . If its SEQ is equal to the ACK sent i n the previously
generated inval id S Y N - A C K , the R S T is a response to i t . In this case, the processed R S T
segment is dropped and client IP address added to the whitelist . Otherwise, the segment
is not part of the R S T Cookies algori thm, hence gets forwarded to its desired destination.

3.2.6 Invalid A C K Generation and Validation

A s mentioned in previous subsections, the a lgori thm needs to generate an inval id S Y N - A C K
segment and then match a corresponding R S T to i t . Generally, inval id S Y N - A C K is crafted
by viola t ing the three-way handshake process through setting a segment's ACK value dif­
ferently from SEQ + 1 of the S Y N it is responding to. Responding wi th random numbers
is possible, but would not allow the process of client verification.

The in i t i a l design allowing the incoming R S T val idat ion used a constant value, that
was placed i n each S Y N - A C K response and then checked for the match i n the R S T . This
approach was functional, but its security properties were insufficient. A smart attacker that
is able to monitor the traffic could easily inject an R S T segment w i th the given constant
to tr ick the security mechanism. To tackle this issue, a system for dynamic A C K generation
and val idat ion is proposed.

The main purpose of the Dynamic A CK Generator is to provide a secure way to generate
invalid ACK values for S Y N - A C K messages and to validate SEQ numbers in received R S T
segments. The main concerns of the generator are C P U requirements and security of the
generated results. Based on these factors, two generator policies - Random windowed mode
and Hash mode have been designed. Each of the methods focuses on one of these factors
meanwhile weakening the other one. This subsection w i l l furthermore discuss each of these
policies in detail .

R a n d o m Windowed M o d e

The fundamental idea behind this pol icy is to generate random numbers periodical ly and
to assign ACK values from the part icular t ime window to S Y N - A C K segments according
to the t ime of their generation. W h e n an R S T segment is being processed, the a lgori thm
iterates over the structure of these lastly generated values and searches for a match between
the generated ACKs and the SEQ read from the R S T segment. The number of iterated
elements depends on the ACK generation period and the val idi ty of the generated values.
W h e n configured sensibly, this method is faster and allows better message throughput than
its counterpart.

The functionality of this principle depends on a fixed-sized array, having the m i n i m u m
of N = \V/T\ elements. Value V denotes the val idi ty of the generated ACK values while
T represents the new ACK generation period. This structure is used as a r ing buffer (Fig­
ure 3.3), which stores lastly generated values and is iterated when a value val idat ion is
needed. W h e n an inval id S Y N - A C K is requested, the a lgori thm needs to look on a times-
tamp of the lastly generated value and compare this t imestamp wi th the current t ime. If
their difference exceeds the specified ACK generation period, lastly generated value buffer
index is incremented (from the window wi th t ime t to the window t + T), and a new value
is generated on its posit ion. The algori thm then takes a value from the buffer element

20

714793779 4779000 453085934 943817490 50455976 154830603 879143906

t + 6T
t-T

t + T
t-6T

t + 2T
f-5T

t + 3T
t-4T

t + 4T
t-3T

Figure 3.3: Invalid A C K generator - Windowed mode principle.

currently being pointed on and returns it as a generated ACK value. Val ida t ion is done
by i terating these t ime windows i n reverse order, start ing i n the time t and proceeding
up to the t ime t — N • T, where iV is a m i n i m u m size of the array calculated previously.

This pol icy provides a relatively good performance, which is mostly affected by the
speed of the random number generation and the i teration of the r ing buffer. Sensible size
of the buffer is up to 10 elements while respecting the m i n i m u m recommended ACK val idi ty
of at least several seconds. Lower values of the ACK generation period may provide better
security, but its effect can be neutralized by the long val idi ty of ACK values. The main
drawback of this approach is apparent - the same ACK value is used for a l l inval idly
acknowledged S Y N segments i n the given t ime window. This practice allows the attacker
analyzing the traffic to extract the inval id A CK value and place it as a SEQ of the crafted
R S T , which w i l l be injected onto the network to fool the security mechanism and whitelist
the attacker's IP address. However, this scenario is not very l ikely to happen, but the
security concern s t i l l exists, so the hashing method has been developed to provide a higher
level of security.

Hash M o d e

The second approach is somewhat inspired by the S Y N Cookies principle. A s il lustrated
in Figure 3.4, a unique hash is computed for every connection according to its parame­
ters. Segment source IP, a 32-bit secret, T C P source port, destination port, and a 32-bit
t imestamp are hashed into a 128-bit string. The first 32-bits are taken, and 12 least signif­
icant are replaced wi th a modulo of the shifted t imestamp w i t h 4-second precision. Th is
technique provides a reasonable trade-off between security and performance because the
attacker would have to guess 2 2 0 possibilities from the hash alongside four different times-
tamps. Four-second precision was chosen because it would take 2 2 s ~ 194 days to perform
a replay attack due to the t imestamp repetit ion. Though not yet implemented, this dura­
t ion could be prolonged by a pool of secrets, which would prolong the possibil i ty of a replay
to the previously calculated value mul t ip l ied by their number. To verify a received R S T ,
the a lgori thm reconstructs the t imestamp by deriving its value before modulo applicat ion,
shifting it back to 1-second precision, and computing the hash function for every possible
second i n the given t ime window, because perfect precision was lost due to the previous
shift. If the reconstructed t imestamp is wi th in the timeout range and first 22-bits of the
computed hash match the first 22-bits of the SEQ in analyzed R S T , the client is considered
legitimate.

21

This method provides undoubtedly stronger security since an unique ACK is generated
per every connection instead of the one value for a l l segments i n the given t ime window.
O n the other hand, the C P U is ut i l ized significantly more because hash functions need
to be calculated for every processed segment. For this reason, latency may be slightly
increased, and packet throughput could also be fairly reduced. Compar ison of both ACK
generation/validation policies is furthermore discussed i n the results section.

Src IP _|_ Secret + Src port + Dst port + Timestamp
32/128-bits 32-bits 16-bits 16-bits 32-bits

Hash
128-bits

Time data
12-bits

— ACK value
[32-bits

1-sec timestamp
32-bits » 2 4-sec timestamp

30-bits mod 2 1 2

Figure 3.4: Invalid A C K generator - Hash mode.

A C K Generator as a Submodule

To provide an adequate level of flexibility and abstraction, the A C K generation algori thm
was designed as an independent module. It w i l l be used for the internal calls of the R S T
Cookies algori thm, providing the functionality of inval id ACKs generation and validation.

Adapt ive way of generation is achieved by an abi l i ty to switch between different policies
during the program execution. For this reason, both of the generation algorithms need
to be used to determine the val idi ty of the analyzed value. For the opt imizat ion purposes,
each of the generators contains an internal nanosecond-precision t imestamp that indicates
the t ime when the generator was lastly used. T h i s way, evaluating a single condit ion tells
the a lgori thm whether the part icular generation method has to be used for verification.

A s it emerged from the previous paragraphs, the functionality of the A C K generator
requires state information to be kept. Each of the generators contains own internal data
(Figure 3.5), while the main generator structure wraps these two generators and provides
a switch defining which of the generator policies is currently active.

Random windowed generator

+ bufGener[]
+ bufSize
+ bufldx
+ ackPeriod
+ ackTimeout
+ lastGener

[uint32, uint64]
uint32
uint32
uint64
uint64
uint64

Hash generator

+ secretsQ : uint32
+ secSize : uint32
+ ackTimeout : uint64
+ lastGener : uint64

Figure 3.5: A C K generators internal structure.

The random windowed generator requires a mentioned r ing buffer of lastly generated
values (buf Gener []) . For the opt imizat ion purposes, each generated value is internally

22

stored as a pair of a 32-bit value and a 64-bit t imestamp denoting its generation time.
This way, the a lgori thm does not need to iterate whole r ing buffer but stops at the first
value wi th expired t imestamp. Index to the buffer (buf Idx) defines the i tem corresponding
to the current t ime window. The generator also requires to know the generation period
(ackPeriod) and val idi ty of the generated values (ackTimeout). The last i tem (lastGener)
represents a t imestamp of the last generator usage. The hash generator contains a buffer
of secrets (secrets []) that are used to calculate a hash. Other elements have the same
meaning as in the random windowed generator.

The interface of the submodule aims to provide a simplist ic way to achieve a l l the re­
quirements from the A C K generator. F i rs t of a l l , functions to ini t ial ize, finalize and clear
the module are needed. Ini t ia l izat ion constructs both types of the generators and sets them
to the in i t i a l state, clearing sets the module to the state after ini t ia l izat ion, and fmalization
destroys the generators and deallocates the memory. The requirement to switch between
different generation policies is addressed by another separate routine, which takes a gener­
ator instance and the pol icy to be switched to. Funct ion to generate an ACK value accepts
the A C K generator instance and returns the generated value according to the active policy
as described in the paragraphs above. Funct ion for val idat ion processes two conditions,
each checking t imestamp of lastly generated value from the part icular generator and call ing
the corresponding generator routine i f the t imestamp does not exceed the timeout. Since
the hashing variant requires to obtain I P addresses and port numbers, I P and T C P headers
are also passed to these methods.

3.2.7 Enhancing the Security — S Y N Limiting

The original proposal of the a lgori thm considers a client to be trustworthy after the security
association phase is completed. A l t h o u g h this approach may stop most of the attacks,
a si tuation when an attacker successfully bypasses the mentioned association phase may
occur. Reca l l that when an R S T wi th the expected value is received, the IP address of the
source is added to the whitelist . F r o m this moment, the part icular host is able to freely
send any number of S Y N segments which w i l l not be intervened by the T C P Reset Cookies
algori thm. This behavior may be abused by attackers, who may be smart enough to util ize
a regular T C P stack at the start of the attack or somehow inject an R S T segment w i th the
desired SEQ value.

Our proposal tries to address this problem addresses by enhancing the regular algo­
r i thm functionality. This is achieved by adding a counter and t imestamp to the hash table
data alongside the existing association t imestamp. The counter is used for counting S Y N
segments from the associated clients, and the t imestamp denotes the start of a 1-second
time window. B y using these two extra variables, the a lgori thm can l imi t the number
of S Y N segments sent by already-associated clients. Th is approach might stop even more
sophisticated attacks that successfully pass through the security association phase. W h e n
combined wi th a blacklist, the abi l i ty to detect these smart attackers and deny their traffic
completely is available.

The enhanced variant of S Y N processing wi th S Y N l imi t feature is depicted i n Algo­
r i thm 1. The mechanism firstly looks for the data related to the Source I P address (line 1).
If the entry exists, the check for an entry val idi ty is performed (line 5). W h e n the S Y N
counter is enabled and a 1-second t ime window is already started, the S Y N l imi t is checked
if it has not been reached. W h e n that is the case, the a lgori thm proceeds accordingly
(line 11 - 18). If the t ime window is not i n progress, the counter is set to 0 and a new

23

A l g o r i t h m 1: R S T cookies - S Y N processing.
1 entry Source IP data from association table;
2 i f entry == NIL t h e n
3 send invalid SYN-ACK;
4 Drop packet and exit;

5 else i f ts — ta < tm t h e n
6 Delete src IP from association table;
r Send invalid SYN-ACK;
8 Drop packet and exit;

9 e n d
10 i f SYN limiting enabled t h e n

if ts t entry .window start *C 1 S t h e n
i f entry.syn cnt > SYN limit t h e n

i f Blacklist enabled t h e n
Add IP to blacklist;

e n d
Delete src IP from association table;
Drop packet and exit;

e n d

else

11

12
13
14
15
16
17
18
19
20
21
22
23

entry .window start ts
entry, syn cnt 4— 0;

e n d

entry.syn_cnt <— entry.syn_cnt + 1
24 e n d
25 Allow packet and exit;

t ime window is started (lines 19 - 22). Segment that has not been dropped yet has its S Y N
counter incremented, and gets forwarded (lines 23 - 25).

3.2.8 Putting It Al l Together

W i t h most of the major design concerns already discussed, a final version of the R S T
Cookies internal structure may be revealed (Figure 3.6). This data w i l l be hidden from
the external access and are supposed to be merely visible by functions of the module itself
and no other entity. The module utilizes two whitelist tables for IPv4 and IPv6 , comprises
a dynamic ACK generation submodule and stores user-entered arguments of max imum
whitelist entries age time, S Y N l imi t ing status, and the actual S Y N l imi t . These settings
are specified by the user i n the ini t ia l iza t ion function v i a a configuration structure, which
mostly copies the content of the internal module's structure w i t h a difference, that the user
specifies the size of whitelist tables and includes configuration structure for the Dynamic
A C K generator.

Because the module makes use of the specialized hash table discussed in Section 3.2.3,
only four entries per row may be stored. O n account of this behavior, a si tuation when
a legitimate client is removed from the table before its age time expires may occur. This
event happens when the chosen size of the hash table is not respecting the properties
of a protected network. To tackle this issue, the module offers a statistics logging mechanism
that may help to detect this s i tuat ion and adjust the hash table size appropriately. These
statistics are stored i n the internal structure and can be obtained v i a the corresponding
function.

24

Reset Cookies module

+ wlist_ip4
+ wlist_ip6
+ maxAge

hashTable
hashTable
uint64
boolean
uint32
ackGenerator
rstCookiesStats

Reset Cookies statistics

+ synLimit
+ ackgen
+ stats

+ synLimitEn + hostsWIisted : uint64
+ validHostsRem : uint64

Figure 3.6: R S T Cookies module internal structure.

Alongside the features discussed in previous subsections, the module also needs to pro­
vide an interface to manipulate ACK generator by using R S T Cookies functions. Since the
generator is used internally in the module, its behavior cannot be changed by direct calls,
and so the R S T Cookies interface has to provide wrapper functions to control generator
behavior like setting the current generation policy.

3.2.9 Module Wrapper for Testing Purposes

For the purpose of verifying functionality and performance of the module, it needed to be
used as a part of a more robust program. Since the module interface and features were
adapted for the needs of D D o S Protector, it heavily depends on its caller. For this reason,
it cannot be used as a standalone program by itself, but a specialized applicat ion providing
environment the module requires needs to be used.

One of the possible solutions is to integrate the module straightly into the D D o S Pro­
tector and test it like that. However, this approach would not allow detailed debugging and
would make executing the performance tests harder. A l so , the functionality of the method
was questionable from the beginning, so we needed to ensure compat ibi l i ty w i th various
operating systems (Subsection 3.4.1) before developing the module further. Th is approach
led to design and development of a smal l program that represented a wrapper u t i l iz ing the
R S T Cookies module while providing D D o S Protector-l ike interface and features to make
the module functional. A sequential evolution of this smal l applicat ion created a standalone
program, that may be used on the intermediary device to provide R S T Cookies functionality
by itself.

The main concern of the wrapper is to provide or simulate an interface the module
depends on while being able to uti l ize the functionality of the module itself. T h i s means
that the wrapper needs to read a l l the incoming data from the given interface and pass
al l S Y N and R S T segments to the wrapped module. Other data the R S T Cookies does
not process should be forwarded to their destination. The wrapper then needs to respect
decisions made by the module, so S Y N and R S T segments are forwarded or dropped as the
R S T Cookies a lgori thm suggests. One the of most important responsibilities of the wrapper
is to simulate the D D o S Protector 's system for queuing and sending packets. Us ing this
system, modules wi l l ing to send a segment need to "ask" for the memory to load the segment
into. After this process, the data are automatical ly sent. Modules using this approach also
do not need to include data l ink (L2) headers, which are automatical ly prepended by the
system when the packet is sent. T h i s approach allows greater flexibil i ty of the modules
because they do not need to rely on low-level layers for their functionality.

25

3.3 Method Implementation

A s mentioned back i n 3.2.2, the D D o S Protector pol icy forbids the usage of 0 0 design,
because of the required implementat ion i n C, a procedural language. The chosen language
disables various 0 0 functionalities but allows us to write remarkably fast programs, which
is indeed the pr imary concern of the software that processes and filters real-time data.

The development of the module and the wrapper was performed using evolutionary
prototyping development methodologies. Fol lowing these principles, the in i t i a l program
confirming theoretical assumptions of the method's functionality was rebuilt into several
prototypes as new features were added. Ex tend ing and verifying the last prototype formed
the final product described i n this document.

The following subsections w i l l provide a high-level overview of the module implementa­
t ion, describe interesting facts and minor deviations from the in i t i a l design related to the
method implementation.

3.3.1 Memory Management

A l l the required memory for the correct module functionality is allocated using a mallocO
cal l dur ing the phase of the module in i t ia l iza t ion and deallocated w i t h a free() ca l l when
the module is finalized. The module would normally also allocate a buffer that would
serve as a place to assemble inval id S Y N - A C K s to. However, as a module for the D D o S
Protector, a different approach needs to be taken. The Protector 's A P I provides a function
packet_queue_get_data() , which returns an allocated buffer of a requested size to its
caller and automatical ly sends the data after the buffer is filled. The algori thm is thus not
supposed to allocate its own buffers, but rather to request a memory buffer from the main
application when an inval id S Y N - A C K needs to be sent.

This mechanism is employed due to opt imizat ion purposes, because the core of D D o S
Protector would need to copy the module's buffer contents into the interface buffers, drain­
ing resources unnecessarily. W h i l e the system packet queuing is being used, the module
straightly obtains desired memory it can write into, requiring no extra buffer copies.

3.3.2 Invalid S Y N - A C K s Assembling

Invalid S Y N - A C K segments are sent for every analyzed S Y N whose IP address is not con­
tained i n the whitelist . The routine for S Y N analyzing is thus required to find out the
IP address family of the analyzed packets to choose an appropriate whitelist to search source
IP address in . Since IP headers of both families are different, two internal procedures -
rst_cookies_respond_ ip4() and rst_cookies_respond_ ip6 () were implemented. B o t h
of them ask for the memory as described in the previous subsection and fi l l the buffer w i th
the appropriate information forming a T C P S Y N - A C K segment. B o t h of these functions
accept the same parameters, so the S Y N analyzer chooses the appropriate one the same
way as i n the case of whitelists.

Forming the S Y N - A C K

S Y N - A C K segment is assembled wi th the use of system in-buil t networking header struc­
tures. E a c h structure represents a concrete protocol header used at a specific layer of the
OSI model. These structures are then stacked onto themselves to form a va l id T C P seg­
ment. Normal ly , each of the layers from L 2 up to L 4 would need to be included, but i n our

26

case, only I P (L3) and T C P (L4) headers are required. Since the module uses a specialized
function to obtain a buffer to fil l the data into, Ethernet (L2) and proprietary N D P headers
are automatical ly prepended by the internal mechanisms of the D D o S Protector before the
packet is sent. This way, the Protector 's modules are isolated from handling low-level data
and thus provide better flexibil i ty and cleaner code.

After the S Y N - A C K segment is formed, its fields need to be filled w i th the I P and
T C P data to form a legitimate network message. For this purpose, source IP address, des­
t inat ion I P address and T C P port numbers are taken directly from the received S Y N while
swapping their source destination fields. To provide a desired functionality, ACK val­
ues are generated w i t h the rstcks_ackgen_getack() ca l l , which returns a value from
the ACK generator based on the currently active policy. SEQ values of the S Y N - A C K s
play no role in the R S T Cookies mechanism, but they are also generated pseudorandomly
to make produced segments look like legitimate traffic. Other fields for IPv4 and IPv6
header are filled according to R F C 791 and R F C 2460 standards. T C P header fields com­
ply to R F C 793.

Checksum calculation

A n integral part of the S Y N - A C K assembling process is an I P and T C P headers checksum
computat ion. The segments without val id checksums may be dropped by intermediary de­
vices or ignored at their destination. The computat ion process is typical ly handled by oper­
ating systems when programming wi th networking A P I using sockets, but since the module
is assembling whole segments from scratch, a checksum computat ion needs to be executed
manually. The required way of checksum computat ion is defined in each R F C separately,
but each of them follows the algori thm in i t ia l ly described in R F C 791 [1]:

The checksum field is the 16 bit one's complement of the one's complement sum
of all 16 bit words in the header. For purposes of computing the checksum, the
value of the checksum field is zero.

A s this definition is not so straightforward, several Internet sources needed to be con­
sulted to understand and implement the required algori thm at last. Actual ly , a l l the check­
sum function has to do is to compute a sum of 2-byte blocks, add the left-over byte in odd
data sizes and fold a possible 32-bit sum to a 16-bit checksum by taking the 16 least signif­
icant bits and adding them to bits on the posit ion 16 to 31. Final ly , a bitwise negation of
the computed value is performed and the result is returned. Th is process is the same for
both IPv4 and T C P headers. The header for IPv6 does not contain a checksum field, so the
calculation process is not performed.

A specialized calculat ion needs to be performed for T C P header, which requires to exe­
cute a checksum algori thm for both T C P header and pseudo-header composed of source and
destination IP addresses, length of the T C P segment and a protocol identifier. Structure
of this pseudo-header is described i n R F C 793, section 3.1 [21] for IPv4 and i n R F C 2560,
section 8.1 [16].

Algor i thms for checksum calculation found on the Internet are typical ly implemented
in a generic way, al lowing computat ion of the a lgor i thm for any data they receive without
other functionalities. Th is approach is, indeed the variant w i t h the biggest flexibility, but
does not provide a performance our module requires. Usage of the generic approach would
require al locating the dynamic memory, copying the header contents to it , appending and
filling a pseudo-header and then passing it to the computat ion method. Even i f the buffer

27

would be already preallocated, the process of copying the header for every processed packet
is rather ineffective. Instead, our functions for checksum computat ion - chksum_calc_ip()
and chksum_calc_tcp() specialize on calculating the checksum for the respective type
of the header, being able to create and calculate checksum values of pseudo-headers on the
stack, avoiding unnecessary memory allocation and data copying. These functions provide
better performance at the cost of less flexibil i ty since each of them is expl ici t ly t ied to the
part icular header and cannot be used for any other one.

The problem wi th this specific approach was actually experienced during the compilat ion
wi th the last version of G C C - gcc 8.2.1 using the -03 opt imizat ion flag. A n error in the
compiler caused a part of the created pseudo-header structure assignments to be ignored
(the first 5 lines in Figure 3.7a). Because of this, a l l the necessary data in pseudo-header
were not included, and so the checksum was computed improperly. Compi la t ion wi th lesser
optimizations using flag -02 d id not trigger the error, and the checksum was computed
validly. However, D D o S protector required the usage of the -03 flag, so a hack to disable
part icular opt imizat ion which caused the problem was needed. The issue was resolved by re­
placing a direct structure ini t ia l izat ion wi th two memcpyO calls (first half of Figure 3.7b),
which apparently do not trigger the opt imizat ion, and so the checksum calculat ion returns
a correct result.

/* Prepare the pseudo-header structure. */
tcp_pheader6_t pseudohdr = {

.len = htonl(tcpdata_len),

.next.hdr = htonl(IPPR0T0_TCP),
};

memcpy(pseudohdr.ip6_src, &(((struct ip6_hdr *)
ipdata)->ip6_src), IP6_ALEN);

memcpy(pseudohdr.ip6_dst, &(((struct ip6_hdr *)
ipdata)->ip6_dst), IP6_ALEN);

/* Prepare the pseudo-header structure. */
unsigned int proto_tcp = htonl(IPPR0T0_TCP);
unsigned int payload_len = htonl(tcpdata_len);
tcp_pheader6_t pseudohdr6;

memcpy(&pseudohdr6.next_hdr, &proto_tcp,
sizeof(unsigned int)) ;

memcpy(&pseudohdr6.len, &payload_len,
sizeof(unsigned int)) ;

memcpy(pseudohdr6.ip6_src, &(((struct ip6_hdr *)
ipdata)->ip6_src), IP6_ALEN);

memcpy(pseudohdr6.ip6_dst, &(((struct ip6_hdr *)
ipdata)->ip6_dst), IP6_ALEN);

/* Process the pseudo-header. */
uintl6_t *pdata_ptr = (uintl6_t *)(&pseudohdr6);
for (unsigned int i = 0;

i < sizeof(tcp_pheader6_t); i += 2) {
sum += *pdata_ptr++;

}

/* Process the pseudo-header. */
uintl6_t *pdata_ptr = (uintl6_t *)(&pseudohdr6);
for (unsigned int i = 0;

i < sizeof(tcp_pheader6_t); i += 2) {
sum += *pdata_ptr++;

}

(a) Original code (b) Modified code

Figure 3.7: Pseudo-header checksum computat ion G C C opt imizat ion bug fix.

3.3.3 Using Networking Header Structures

A s mentioned i n Section 3.3.2, inval id S Y N - A C K segments are formed using operating
system in-buil t networking header structures. These structures are also used for packet
parsing - e.g., obtaining an IP address of the sender. In L i n u x operating systems, two
variants of networking headers exist. The original netinet headers were historically included
from the first versions of B S D and *nix operating systems. L i n u x subsequently added own
linux networking headers to its kernel, and consequently, bo th header types are currently
available to be used i n L i n u x programs. They mostly consist of the same content, providing
identical structures and constants.

28

Al though both header types can be used, P O S I X standard recommends the usage
of netinet networking headers for appl icat ion programs, while reserving the linux head­
ers for internal usage wi th in the kernel. However, a problem related to these different types
of headers emerges because they historically implemented own structures w i th different
names and structure members. Th is phenomenon was not a problem i n the past because
each header file declared only its corresponding structure, and so the applicat ion developer
specified which type of structure was desired by including a part icular header file. However,
this was changed and netinet headers now include both its original and L i n u x structures
in modern L i n u x kernels. Merging the different headers declarations into one worked fine
for most structures, but combining both T C P and both U D P headers created a dubious
situation.

A s stated, structures i n both header files define the same networking headers, but under
a different name, so they d id not come into the conflict when a linux to netinet headers
merging was made. However, T C P and U D P headers were historically defined under the
same name (struct tcphdr, and struct udphdr respectively) but names of their members
were different. Th is fact indeed created a conflict and a problematic si tuation lasting
up to this day. W h e n a programmer includes the netinet/tcp .h header file and uses one
of the available T C P structures, a mechanism able to determine which of the headers was
used is needed during the compilat ion. A n d this part icular behavior is the cause of many
problems related to T C P / U D P L i n u x network programming.

A typica l problem arises when the program tries to uti l ize former netinet T C P / U D P
headers. Most L i n u x systems priori t ize native linux headers by default, and so the er­
ror 'struct tcphdr has no member named . . . ' is issued dur ing the compilat ion phase.
However, the t r icky part is that some systems s t i l l priorit ize former netinet structures,
hence the compilat ion proceeds without errors on a few systems. The best cross-system
compatible solution we discovered so far is to include netinet header files and use L i n u x
structures (ending wi th "hdr"). Alternat ively, netinet structures can be chosen, but macros
-D_BSD_SOURCE, -D__BSD_SOURCE, and -D__FAVOR_BSD have to be used during compilat ion
to tel l the system to priori t ize original netinet structures.

Ini t ia l versions of the program used original netinet structures w i t h the mentioned
macros included. This version of the module is also submit ted as a pract ical part of the
thesis on the attached C D / D V D medium. However, a newer policy of the D D o S Protector
suggests the usage of linux headers, so the module was ported to these types of header
structures and integrated to the solution in that part icular state.

3.3.4 Invalid A C K Generation

According to the in i t i a l design, the ACK generator was implemented as a standalone mod­
ule, providing a standardized way to be ini t ial ized, finalized, and cleared. Alongside these
functions, two calls - rstcks_ackgen_getack() and rstcks_ackgen_validate () , provid­
ing the main functionality of the module, are available.

ACK generation is controlled by the switch, which determines the part icular genera­
t ion type based on the internal state of the module. ACK val idat ion is done by checking
last generation timestamps of both generators and cal l ing their val idat ion routine i f the
t imestamp is wi th in the ACK t imeout range. The analyzed ACK is thus considered val id,
if at least one generator acknowledges that the given value was generated by it w i th in the
ACK t imeout range. This subsection w i l l furthermore describe implementat ion specifics
of each of the generator types.

29

Security Considerations

In order to minimize the chances of generated ACK values to be estimated, the ACK gen­
erator module utilizes the libsodium2 cryptographic library. Its A P I provides a generation
of cryptographical ly secure random numbers, which are used as ACK values while the ran­
dom windowed generation policy is active. R a n d o m numbers are also used as secrets for
hash generation policy, which combines session parameters, a t imestamp, and a 32-bit secret
to generate a hash used as an ACK value. To make this way of the generation even more
secure, hashes are computed wi th the cryptographic one-way hash function BLAKE2b, also
provided by libsodium. W i t h a l l these security measures, a possible attacker is not able
to estimate the generated ACK sequence, as well as decipher the values used to create
a hash, making both policies resistant against various cryptoanalyt ic attacks.

R a n d o m Windowed Generator

Generation of random ACKs w i t h windowed policy is rather straightforward. A l g o r i t h m
checks whether the current t imestamp subtracted by lastly generated value's t imestamp is
less than the ACK generation period. If this condit ion is true, new value is not generated
and lastly generated value is returned. Otherwise, the randombytes_random() cal l to
libsodium is used to obtain a block of 32-bit random data. Th is value forms a pair w i th the
current t ime t imestamp and is inserted into the internal data structure, as well as returned

newly generated value.

1 bool rstcks_randgen_check(uint32_t ackval, uint64_t timestamp, const rstcks_randgen_t *randgen) {
2 unsigned idx = randgen->q_end; /* Index for iteration purposes. */
3
4 /* Iterate through the buffer to find match and check timestamps for validity. */
5 while ((idx + 1) '/, randgen->q_size != randgen->q_start) {
6 i f (timestamp - randgen->data[idx].tstamp < randgen->ack_timeout) {
7 /* Entry in the queue has i t s timestamp s t i l l valid. */
8 i f (ackval == randgen->data[idx].ackval) {
9 return true;
10 }
11
12 /* If match was not found on the current index - proceed to the next. */
13 idx = (idx != 0) ? idx - 1 : randgen->q_size - 1;
14 } else {
15 /* Entry is not valid -> a l l other the un t i l end are not as well. */
16 break;
17 }
18 }
19
20 return false;
21 }

Figure 3.8: R a n d o m windowed generator value validation.

The process of value val idat ion is depicted i n Figure 3.8. For various opt imizat ion
purposes, the internal data structure is implemented as a fake queue, which is ini t ia l ized
as already full and contains one extra element that is used as a sentinel value. A s can
be seen, the i teration process starts on the last added element defined by the generator
structure member q_end. The data structure is traversed backward up to the second
elements before the latest generated one (line 5). The first element before the latest is

2 h t t p s : //libsodium.gitbook.io/

30

the sentinel value, which is not used i n this function, and so is skipped. L ine 6 evaluates
the condi t ion of the element t imestamp validity. If the t imestamp on the current index
is invalid, a l l other elements w i l l have their t imestamp only older, so there is no reason
to iterate further. For this reason, the a lgori thm signalizes that the ACK match was not
found by returning false. If the t imestamp is val id, the a lgori thm compares its value wi th
the analyzed one and returns true i f they match (line 8 - 10). Since the data structure is
iterated as a r ing buffer, simple decrementation to the iterator variable cannot be made,
but we have to move to the end of the queue i f the current index is 0.

The described mechanism and other adjustments provide a relatively fast way to work
w i t h the internal data structures, providing adequate security and decent performance.

Hash Generator

Instead of returning the same value for mult iple requests i n a certain t ime window, the
ACK hashing method returns a unique value for every processed connection. This is achieved
by fill ing the buffer w i th IP addresses, port numbers, current t imestamp and a 32-bit se­
cret. The prepared buffer is passed into the crypto_generichash() function, which returns
a 128-bits long cryptographic hash computed from the given data. Th is process is demon­
strated on the code snippet included i n Figure 3.9. The cryptographic hash function takes
a pointer to the buffer data, specified by its size datalen, and saves 128-bit hash string
into the result buffer named hash. The 12 least significant bits are then taken and replaced
wi th a shifted t imestamp wi th a 4-second precision modulo 2 1 2 to make sure that the time
data w i l l fit into 12 bits.

crypto_generichash(hash, 16, data, datalen, NULL, 0);

uint32_t ack_result = (hash & OxFFFFFOOO I ((timestamp » 2) '/. (1 « 12));

Figure 3.9: Hash generator value generation.

A s in the case wi th the random windowed generation, the validat ion of the results is ac­
tual ly more complicated than generating them. Dur ing the hash mode value val idat ion, the
algori thm needs to reconstruct the original t imestamp used to compute the hash wi th . The
process of value val idat ion is demonstrated in Figure 3.10. The function firstly computes
a modulo of the shifted t imestamp and extracts the ACK value to be analyzed. A difference
between the calculated and extracted moduled timestamps is computed. E a c h point i n its
result represents a 4-second block. Since original t imestamp has 32-bits and a modulo ver­
sion in ACK only 12, an overflow may occur. For this reason, line 10 performs a check and
a potential fix i f such si tuation occurs. L ine 11 uses the computed delta to determine the
start of the 4-second time window that was used i n the computat ion of the extracted hash
value. The algori thm then needs to t ry a l l different timestamps from the part icular time
window to determine whether an ACK match occurs. The hash function computat ion for
al l t imestamps in a given window would be ineffective, so the condit ion on line 15 is firstly
evaluated for every t imestamp before the cryptographic hashing occurs. If the currently
processed t imestamp exceeds the ACK val idi ty timeout, the computat ion is interrupted and
false is returned. If the t imestamp is val id, the hashing occurs, and the result is compared
to the analyzed ACK to determine a match.

Optimizat ions wi th a t imestamp explained previously improved the overall module per­
formance significantly, but the need for cryptographic hash calculat ion s t i l l negatively im-

31

1 bool rstcks_hashgen_check(uint32_t timestamp, const void *ip_hdr,
2 const void *tcp_hdr, const rstcks_hashgen_t *hashgen) {
3 /* Calculate current timestamp as i t would be in a part of the ACK. */
4 uint32_t tstamp_mod = (timestamp » 2) "/, (1 « 12);
5 /* Obtain analyzed ACK from the header and calculate difference between timestamps. */
6 uint32_t their_ack = ntohl(((struct tcphdr *) tcp_hdr)->th_seq);
7 int time_delta = tstamp_mod - (their_ack & OxFFF);
8
9 /* Correct the possible overflow and calculate beginning of the hashed timestamp. */
10 i f (time_delta < 0) { time_delta += 1 « 12; }
11 uint32_t tstamp_hashed = ((timestamp » 2) - time_delta) << 2;
12
13 for (unsigned i = 0; i < (1 « 2); i++) {
14 /* Check i f the calculated timestamp is within acceptable time window. */
15 i f ((timestamp - (tstampjiashed + i)) * 1000000000ULL <= hashgen->ack_timeout) {
16 uint32_t our_ack = rstcks_hashgen_generate(tstampjiashed + i , ip_hdr, tcp_hdr, hashgen);
17
18 i f (our_ack == their_ack) { return true; }
19 } else {
20 break;
21 }
22 }
23
24 return false;
25 }

Figure 3.10: Hash generator value generation.

pacts the speed of the method, as well as its data processing abilities. The pol icy provides
undoubtedly stronger protection, but its other drawbacks prove improper in certain situ­
ations. For this reason, a caller using the module has to determine, whether the security
of the applicat ion is the pr imary concern or a trade-off between security and performance
is acceptable.

Note: Code snippets included in this section were partially modified for better readability and
fewer space requirements. The code in the source files respects best coding style practices,
like using macros for timestamp shifting, masking, etc., instead of magic numbers shown
here.

3.3.5 RST Cookies as a Standalone Program

The wrapper providing a standalone R S T Cookies functionality was in i t ia l ly developed for
regular Ethernet networks by employing the libpcap^ l ibrary. In order to test i n the C E S -
N E T ' s 100 Gbps environment, the program was also ported into the proprietary N D P frame
headers. The simulation of the D D o S Protector 's environment was achieved by adapting
several header and source files w i th macros, return values, and fast hash table from the
D D o S Protector git repository.

The execution of the wrapper program starts by b inding to the specified interface,
in i t ia l iz ing the module and entering an infinite packet reading loop. Each received packet
is processed i n a packet handler function, which sets the action flag to forward at its start.
If the IP address of the parsed packet is not contained on the blacklist and its content
is classified to be either S Y N or R S T T C P segment, it is passed to a respective R S T
Cookies function. Its return value replaces the previously set flag so that the R S T Cookies

3 h t t p s : //www.tcpdump.org/

32

http://www.tcpdump.org/

algori thm ul t imately defines the fate of its processed segments. A t the end of the packet
handler function, a subroutine to process the packet according to its action flag is called.
Its execution causes the packet to be either forwarded or dropped. If the discarded packet
has an S Y N flag, the wrapper knows that the wrapped module has created an invalid
S Y N - A C K and filled the buffer w i th a packet_queue_get_data() cal l . The filled buffer
is sent, and thus processing of a single packet ends and the wrapper is ready to process
another one. The infinite loop is terminated wi th the ut i l iza t ion of signal handling. W h e n
the wrapper receives Ctrl'C sequence, the packet reading process is interrupted, resources
properly deallocated and wrapper exits w i t h the exit code 0.

To provide or simulate the functionality of an intermediary device, the L 2 header needs
to be changed so that M A C addresses correspond to the predefined ones - the M A C of the
intermediary device running R S T Cookies as a source, and the M A C of the server or other
network device wi th a path to the server as a destination. Simulat ion of Protector 's packet
queuing is done by al locat ing a buffer of static size and preparing Ethernet header by fill ing
it w i th desired M A C addresses. Each cal l to the packet_queue_get_data() function then
returns a pointer to the buffer right after the end of the pre-filled Ethernet header, just
as the D D o S Protector does.

Alongside providing the interface and features the wrapped module needs, the wrap­
per also supports various informational and debugging outputs. A s a consequence of the
encapsulation, structures forming the module are hidden wi th in its source files, hence the
caller cannot access them. Th i s is okay i n most cases, but for the purpose of debugging,
one needs to see the internal contents of the module, ideally without modification of its
source files. This behavior was achieved by a hack, which redefined the module's internal
structure under a different name, but w i th the same fields. This way, the internal structure
of the module i n the form of a void pointer is cast to a redefined structure pointer, and
so the access to private module data is available. In addi t ion to pr int ing the internal state
of the module, the wrapper is also able to provide a processed S Y N / R S T status reporting
system (Figure 3.11). W h e n the S Y N or R S T segment is processed, the message i n the
form of "Source IP -> Destination IP : Action." is printed to the standard output.

147.229.182.8 -> 147.229.12.222
147.229.182.8 -> 147.229.12.222
147.229.182.8 -> 147.229.12.222
2001:67c:220:0c:cf:fd29:aa9b:d96
147.229.182.8 -> 147.229.12.222
147.229.182.8 -> 147.229.12.222

SYN dropped.
RST dropped.
SYN forwarded.
-> 2a00:le50:4017:80d::17ab
SYN forwarded.
SYN forwarded.

SYN dropped.

Figure 3.11: R S T Cookies wrapper - S Y N / R S T status reporting.

Debugging outputs are controlled dur ing the compilat ion phase. User a iming to re­
ceive debugging information needs to compile w i th -DDEBUG flag. Verbosi ty is controlled
v ia macros C0NFIG_PRINT (shows module internal data) and STATS_PRINT (periodically
prints module statistics). These and other settings controll ing the wrapper functionality
are contained wi th in the rst_cookies_test .h file.

A l though a considerable part of the wrapper code is the same for both P C A P and N D P
variants, they are implemented i n separate source files. T h i s is done mainly due to the
readability of the code, which contains a large amount of #if def . . . #endif compilat ion
conditions already due to debugging outputs. Por t ing the wrapper from P C A P to N D P
was not problematic at a l l since both A P I s provide quite a similar way of network interface

33

handling and packet processing. The most significant difference between the two approaches
is a style of how the received are data obtained. P C A P A P I provides a comfortable way
by cal l ing pcap_loop(), which blocks the applicat ion un t i l the packet is received and calls
a specified packet handler function when such an event occurs. O n the other hand, the
approach using the N D P A P I is not as straightforward. A packet is obtained v i a the
ndp_rx_burst_get () cal l , which does not block but returns NULL when there are no data
to be read. This behavior creates a problem because when the function is executed i n a loop,
it keeps repeating itself as fast as possible, consuming a l l the available processing power.
The issue is solved wi th the nanosleepO cal l , used to put a thread into sleep before pol l ing
the hardware packet queue again. This approach saves C P U resources while having li t t le
to no impact on the packet processing speed.

The applicat ion created by wrapping the module represents a standalone software that
provides the R S T Cookies functionality for intermediate devices running the L i n u x oper­
ating system. The current state of the applicat ion accepts only one parameter - network
device to listen and send traffic on. A l l other features are controlled wi th macros defined
in the wrapper header file. These values could be easily parametrized, and so a flexible
and scalable software solution could be created. However, the purpose of the wrapper
is to provide a way to verify and debug the module, flexibili ty not being one of the pr imary
concerns. The wrapper is currently able to simulate only intermediary device mode, but
w i th l i t t le tweaks to both the wrapper and the host O S , the usage as a host-based network
mit igat ion method could be supported as well . The functionality of this software solution
as a whole, alongside several tests and experiments, is described in Section 3.4.

3.4 Results and Closing Remarks

The R S T Cookies module undoubtedly provides a high level of security able to stop most
of the S Y N flooding attacks found on the computer networks nowadays. However, ut i ­
l izat ion of the session reset, hashing, and software packet processing may increase a delay
in T C P communicat ion or significantly decrease traffic throughput. Th is section w i l l cover
the val idat ion of the module functionality as well as describe various tests used to reveal its
impact on the overall network performance. For this purpose, the wrapper able to provide
a standalone R S T Cookies functionality, as described i n Subsection 3.3.5, was used.

3.4.1 Compatibility

A s one of the first steps of the R S T Cookies method analysis was to ensure its compat ibi l i ty
wi th modern operating systems. A compatible O S is a system wi th a properly implemented
T C P stack respecting the standard. More precisely, it always responds wi th an R S T segment
when an inval id S Y N - A C K is received. O u r tests w i th a prototype have proved, that
al l tested systems, namely Windows XP, Windows 7, Windows 8(.l), Windows 10, Linux
kernels 3, Linux kernels 4 (including Android), FreeBSD 11, Apple iOS 12, and macOS 10.14
are a l l compatible w i th the R S T Cookies technique.

The testing was performed using a peer-to-peer network established between Fedora 28
and a v i r tua l machine wi th a tested operating system (Figure 3.12). The Fedora host was
running the R S T Cookies applicat ion while having a port 80 opened. In the cases when the
P C A P wrapper is used, the program is bound to the part icular network interface i n promis­
cuous mode, so a l l the received packets are forwarded to it before they are processed by the
kernel. Passing the packet into the kernel would mean, that it could interfere w i t h the

34

T C P communication, which is undesirable for our tests. To disable this behavior, a rule
to drop a l l inbound T C P segments for the specified port dur ing the PREROUTING stage
needs to be applied. Th is rule is normally added to iptables or f irewalld based on the
host O S . W h e n the N D P A P I is used, received packets are not forwarded to the kernel,
so no addi t ional settings are necessary.

Since the wrapper was implemented to simulate network-based mit igat ion, forwarding
of allowed T C P S Y N s and T C P R S T s to the other system processes was not achieved. For
this reason, a web server on port 80 was not actually launched. The main goal was to make
the tested operating system t ry to establish a T C P session, send an inval id S Y N - A C K wi th
the R S T Cookies and examine how the client w i l l react.

Tested OS
192.168.56.1/24

TCP SYN

I3
Fedora 28

192.168.56.10/24

Figure 3.12: R S T Cookies compat ibi l i ty testing topology.

After entering the IP address of the Fedora machine to the second node's web-browser,
it started by establishing a T C P session wi th a three-way-handshake process. A s can
be seen i n Figure 3.13, the R S T Cookies mechanism responded w i t h an inval id S Y N - A C K
carrying ACK value of 0. Its receipt caused the tested O S to respond wi th an R S T segment
(data w i t h the red background) which carried the same SEQ equal to 0. A t this moment,
the a lgori thm has processed the R S T message and added the client's IP address to the
whitelist . After this process, the mechanism d id not respond wi th inval id S Y N - A C K s
to other T C P S Y N s sent by the part icular client I P address again. Since the web server
is not launched, the client receives no response but keeps t ry ing to establish a session without
the intervention of the R S T Cookies algori thm. This specific test was performed wi th a l l
mentioned operating systems, which a l l behaved similarly. Based on these findings, we can
conclude that a l l tested operating systems have their T C P stack implemented correctly and
thus are compatible w i th the R S T Cookies technique.

Source Destination Protocol Length Info
192.168.56.1 192.168.56.10 TCP 66 57341 - 8G [SYN] Seq-427B1B6261 Win=64240 Len=S MSS=1460 WS=256
192.168.56.10 192.168.56.1 TCP 54 [TCP ACKed unseen segment] 80 - 57341 [SYN, ACK] Seq=999 Ack=0
192.168.56.1 192.168.56.10 TCP 60 57341 - 80 [RETJ Seq=0 Win=0 Len=0
192.168.56.1 192.168.56.10 TCP 66 57342 - 80 [SYN] Seq=25606B3974 Win=64240 Len=0 MSS=1460 WS=256
192.168.56.1 192.168.56.10 TCP 66 57341 - 80 [SYN] Seq=4278186261 Win=64240 Len=S MSS=1460 WS=256
192.168.56.1 192.168.56.IS TCP 66 [TCP Retransmission] 57342 - 80 [SYN] Seq=2560683974 Win =64240
Qa:00:27:00:00 S9 PcsCompu_el:5f 3b ARP 60 Who has 192.168.56.10? T e l l 192 168.56.1
PcsCompu_el:5f 3b 0a:O0:27:BB:SS 09 ARP 42 192.168.56.10 i s at 08 ; 00 ; 27 ; el 5f :3b
192.168.56.1 192.168.56.IB TCP 66 [TCP Retransmission] 57341 - 80 [SYN] Seq=4278186261 Win -6424U
192.168.56.1 192.168.56.10 TCP 66 [TCP Retransmission] 57342 - 88 [SYN] Setp2568683974 Win ̂64240

Figure 3.13: R S T Cookies compat ibi l i ty testing packet capture.

3.4.2 Reset Cookies in Practice

W h e n the R S T Cookies technique is deployed on a real network, different approaches to look
on and evaluate the method can be taken. The algori thm behaves differently for clients
and a protected network, but intermediary devices running the method need to be taken

35

into account as well . Th is subsection w i l l analyze the behavior of the method from various
perspectives, discussing the important aspects related to each of them i n detail .

Protected Network's Perspective

W h e n deployed on an intermediary device, the a lgori thm behaves transparently for a l l
protected systems. M e t h o d blocks a l l received S Y N segments unt i l a security association
is established. After this process, the T C P communicat ion is not intervened anymore.
A s a result of this behavior, the protected server does not know about the client's intention
to establish a session and thus does not need to allocate any state information. Th is way,
al l the devices in the protected network are not vulnerable to most of the S Y N flooding
attacks, while not requiring their configuration to be changed.

Client's Perspective

From the perspective of a client, the first attempt to establish a session always fails.
A s demonstrated i n Subsection 3.4.1, this is not a problem i n modern operating systems
which send an R S T segment and t ry to reestablish the session. However, the durat ion
of the reestablishment process is dependent on the host O S . O u r tests have measured this
t ime to be roughly 250 ms on A p p l e systems, whereas L i n u x and Windows kernels tried
to reestablish the session after approximately 1 second. Accord ing to these findings, we can
conclude that the first connection through R S T Cookies is delayed by up to 1 second, but
al l consecutive connections experience no significant delay (Figure 3.14, last two columns).

TCP data transmission duration per host [ms]
0 200 400 600 800 1000

HW forwarding 114,19

SW forwarding 114,72

RST Cookies (validated) 114,73

RST Cookies (non-
validated)

1 016,21

Figure 3.14: Transaction t ime performance comparison - Scientific L i n u x 7.4.

Another interesting result obtained from the analysis is a difference between the hard­
ware and software processing speed. A s may be seen, the H W forwarding value of 14.19ms
is lower than S W forwarding, but the difference is not so drastic. This result convinces us
that the hardware processing is s t i l l a preferred way, but the end user w i l l most probably
not notice the change since the difference is lower than 1ms. However, one needs to keep
in m i n d that hardware is able to process several times more data, providing much favorable
packet throughput when necessary.

Though measured delay of the first connection caused by the a lgori thm seems horrific,
it is important to realize that the method should only be active during the ongoing attack.
For example, the D D o S Protector can detect abnormal traffic and tu rn on the mit igat ion
mechanisms when necessary. Therefore, no delays are caused dur ing regular operation, and

36

when the method is active, a 1-second delay is definitely an acceptable trade-off for service
availabil i ty dur ing the attack.

Intermediary Device's Perspective

W h e n considering an intermediary device running R S T cookies, the most significant factors
are memory requirements and packet throughput l imitat ions. The usage of hash tables
as whitelists plays a notable role in both of them. Every entry i n the whitelist requires 8B
of data for a t imestamp and an addi t ional 12B if S Y N l imi t ing is enabled. Considering
2 2 0 whitelist rows, 4 clients per row, we obtain 4 . 2 M client entries taking up to 8 0 M B
of memory. This result could be considered as a reasonable outcome. In the context
of packet throughput, the most important metrics is the number of processed hash functions.
Our implementat ion contains at least one hashing per T C P segment. W h e n the hashed
A C K mechanism is used, two hashes per S Y N and up to five hashes per R S T are needed.

R:S ratio
Method throughput (Mfps)

R:S ratio
SW forwarded RCks (window) RCks (hash)

0 17.97 7.30 2.02

0.1 17.33 7.36 2.12
0.2 17.07 7.37 2.24

0.3 16.64 7.40 2.42

0.4 16.52 7.61 2.61
0.5 16.56 7.61 2.77

0.6 16.49 7.62 2.91
0.7 16.54 7.76 3.03
0.8 16.35 7.85 3.22

0.9 16.40 7.87 3.34

1.0 16.48 7.90 3.47

Table 3.1: M i l l i o n of frames per second per thread throughput comparison. Based
on R S T : S Y N segments traffic ratio. l M f p s ~ 680 M b p s .

Table 3.1 illustrates the R S T Cookies a lgori thm frame processing abi l i ty dur ing a sim­
ulated attack. In this case, SEQ values i n R S T segments were randomized. W h e n the
t imestamp of the received SEQ does not fit into the specified t ime window, no hashing
occurs, and the segment is straightly forwarded. Tha t is why the actual module through­
put was increasing as the ratio between R S T and S Y N segments was growing. In the real
network, legitimate clients would send R S T s fitting into the t ime window, so at least one
extra hashing would need to occur, and the actual throughput would decrease.

3.4.3 Limitations and Drawbacks

In addi t ion to considerations discussed i n the previous subsection, other aspects resulting
from the method itself or our specific implementat ion should be examined. The following
paragraphs present other factors that not are as significant as those mentioned previously,
but need to be consulted for the sake of completeness.

37

Simulating real traffic

A s mentioned previously, an attacker who utilizes real T C P stack or is somehow able
to inject an expected R S T segment into the session is granted the right to establish T C P
connections. O f course, that this right is allowed only unt i l the whitelist entry timeout
ticks out (commonly dozens of seconds up to several minutes), but this gives the attacker
enough time to perform an S Y N flood anyway. Also , when the attacker was able to bypass
the mechanism once, he probably w i l l not have any problems i n bypassing it again.

Our implementat ion provides par t ia l protection against this phenomenon because each
unique IP address is given a counter of how many S Y N segments can it sent each second.
This approach does not deny the attacker to flood S Y N segments, but can considerably l imi t
the amount of data he is able to send. Because R S T Cookies requires clients to pass the
security phase by responding, spoofed I P addresses cannot be used to perform the attack.
For this reason, the attacker would require a large number of real computers (botnet)
to successfully perform an S Y N flood when the S Y N counters are set sensibly. S Y N flooding
clients typical ly t ry to send as many S Y N s as possible i n most cases. If the R S T Cookies
wi th the S Y N counter is used i n conjunction wi th a blacklist, I P addresses of the S Y N
flooding computers can be temporari ly cut off, thus mit igat ing the attack entirely.

Acknowledgment number match

Since the a lgori thm generates random S Y N - A C K ACK values, a si tuation when the suppos­
edly invalid S Y N - A C K segment is accidentally val id may happen. This incident happens
when the generated ACK value is exactly equal to the SEQ + 1 of the acknowledged S Y N .
In this case, the sender of the S Y N w i l l not generate R S T but w i l l t ry to finish session estab­
lishment by sending an A C K segment. Th is message w i l l not be blocked by R S T Cookies,
and so it w i l l be forwarded to the server that w i l l generate R S T according to R F C 793,
section 3.4. [21]:

If the connection does not exist (CLOSED) then a reset is sent in response to
any incoming segment except another reset.

W h e n the client receives an R S T , it w i l l t ry to reestablish the session wi th a new S Y N
having different SEQ number. Because the host is s t i l l not contained on the whitelist, the
R S T Cookies a lgori thm w i l l generate another S Y N - A C K wi th supposedly inval id A CK, and
the process w i l l continue as usual (Figure 3.15). Th i s si tuation w i l l cause one more con­
nection reset, but the host w i l l be eventually added to the whitelist , and its next attempts
to establish a session w i l l be successful. The probabil i ty of this phenomenon is 1 /2 3 2 while
having no significant impact on the regular T C P operation.

The explained problem can be addressed by adding one more condit ion when generating
the ACKs, but this would require extra processing to both S Y N analyzer and R S T analyzer
routines. Because the probabil i ty of the event is low and there are no significant conse­
quences when it happens, we decided not to implement this addi t ional check to achieve
as high segment processing rate as possible.

Whitel ist E n t r y Deletion Before Expirat ion

A s outl ined back i n Subsection 3.2.8, the proprietary implementat ion of the hash table
used by the module allows only 4 entries per row. Because of this, the hash table entries
are not getting chained, but the oldest one is replaced when the part icular row is full, and

38

Client RST Cookies Server

Figure 3.15: R S T Cookies - accidental A C K match situation.

a new entry is being added. This behavior provides many useful features like entries aging
and proper memory management but may cause an undesired behavior when the a lgori thm
has to process more unique I P addresses than its available whitelist capacity. In these
scenarios, legitimate clients that already passed security association may be removed from
the whitelist sooner than defined timeout, requiring them to perform the association again.
The process of resetting the session takes some time, therefore slowing the entire communi­
cation. In extreme cases, records may get replaced so often that effect of whitelist is almost
nullified and clients have their S Y N connections reset so often, that unacceptable delays or
overall inabi l i ty to establish a session may occur.

This behavior is, indeed not typical , though possible i n situations when the chosen size
of the hash table does not respect the properties of a protected network. O u r implemen­
tat ion offers a statistics logging that provides information about the number of hosts that
were whitelisted and the number of them that were removed before their supposed expira­
t ion t ime. These data may help to detect the discussed si tuation and help to adjust the
hash table size appropriately, preventing the phenomenon from happening i n the future.

3.5 Summary and Conclusions

This chapter has presented a network-based mit igat ion method T C P R S T Cookies. The
motivat ion behind its design and implementat ion was to provide an alternative way to mit­
igate T C P S Y N F l o o d attacks i n C E S N E T ' s D D o S protector. The method has proven
to be especially effective against regular S Y N floods from the spoofed I P addresses. Its
capabilities were expanded wi th our custom security extensions like Dynamic ACK Gen­
erator, S Y N Counter and blacklist ing mechanisms. This enhanced version of the module
is able to repel even most of the more sophisticated S Y N floods used by the attackers
nowadays.

39

Despite a l l the advantages the technique provides, it is not suitable i n a l l cases. It
is mainly due to the effect of direct ly impact ing the clients w i th extra 1-second delay
upon a new connection establishment. Other considerations include significant throughput
decrease and relatively high memory requirements. Accord ing to these properties, the
algori thm should be used alongside other mit igat ion methods wi th different attributes.
The methods wi th a lesser impact on the network should be deployed against regular S Y N
floods, while R S T Cookies should be used to defend against more sophisticated attacks that
cannot be mit igated using other strategies.

The current approach towards the mit igat ion i n D D o S Protector is based on rules. These
specify which mit igat ion method should be used for the part icular protected prefix. Defined
mit igat ion techniques are used when the ongoing attack is present, but the implemented
system does not allow the methods to switch, even i f they are used ineffectively or their
mechanisms are not able to mitigate the attack. This inflexible approach wastes resources
of the intermediary device and requires a manual intervention of the administrator to change
the mi t igat ion strategy when required. For this reason, an S Y N F l o o d Dynamic Mi t iga t ion
M e t h o d Management system discussed in Chapter 4 is proposed.

40

Chapter 4

Dynamic Mitigation Method
Management

S Y N F l o o d Dynamic Mi t iga t ion M e t h o d Management mechanism proposed i n this chapter
is aimed to provide a flexible way to switch between different S Y N F l o o d mit igat ion meth­
ods. The module was designed and implemented especially for the needs of C E S N E T ' s
D D o S Protector, which currently supports three mit igat ion methods - SYN Drop, ACK
Spoofing, and RST Cookies. However, the design of the module was aimed to be as general
as possible, providing support for any number of mit igat ion methods and any environment
it may be deployed in .

The main motivat ion behind the development of the technique was the need for D D o S
Protector 's adaptabi l i ty to the different types of S Y N F l o o d attacks. Current ly used ap­
proach is based on rules, which specify mi t igat ion settings for the part icular protected
prefix. One of these settings is a specific mi t igat ion method, which is activated during the
ongoing attack. Us ing this system, the same method is used every t ime the attack is tr ig­
gered. Also , when the mit igat ion method needs to be switched, a rule has to be manually
changed. This inflexible approach cannot effectively uti l ize system resources while its mit­
igation capabilities may be weakened as well . For this reason, a dynamic approach able
to detect properties of the traffic and choose an appropriate mit igat ion algori thm is needed.

The beginning of the chapter provides an overview of the design and implementat ion
concerns related to the developed dynamic management mechanism. Subsequent sections
evaluate the approach, consider its usabil i ty on real networks, and suggest possible future
enhancements.

4.1 Theoretical Concepts

This section describes important theoretical concepts that needed to be taken into account
during the design and implementat ion phases. Since the design is closely t ied to the theory
in this case, the section may contain concepts the reader may find more suitable to be in ­
cluded i n the design section and vice versa. The following subsections w i l l take a look
on the evaluation process of the used mit igat ion methods and T C P traffic and w i l l explain
a HyperLogLog probabil ist ic data structure, which was a suitable choice to be used by the
mechanism.

41

4.1.1 Mitigation Method Evaluation

A s outl ined i n Chapter 2, many different types of S Y N flooding attacks exist, and their
mit igat ion methods have different pros and cons. The purpose of the Dynamic M e t h o d
Management mechanism is to differentiate these unique characteristics and choose the ap­
propriate mit igat ion method to deflect an ongoing attack. For this reason, a generalization
of different a lgori thm properties and the creation of the evaluation system for them was
required.

This task proved to be rather problematic because common patterns i n fundamentally
different algorithms needed to be distinguished. For this purpose, we used inductive tech­
niques to describe three currently available mit igat ion methods in detai l and then tried
to generalize their properties. Accord ing to the information from Section 2.3, a summary
Table 4.1 was created.

S Y N D r o p R S T C o o k i e s A C K Spoof ing

A d v a n t a g e s

• Processes only 1 segment
type

• Low memory require­
ments per host

• Effectively cuts high-rate
SYN senders

• Repels more sophisti­
cated SYN floods

• Comprises SYN Drop
functionality

• Minimum extra latency

D r a w b a c k s

• Ineffective against large
number of spoofed IPs
with low footprint

• Higher memory require­
ments

• Significant throughput
decrease

• First session establish­
ment time

• Does not mitigate the at­
tack itself

• Amplifies high-rate at­
tacks

• Cannot identify high-rate
SYN senders

Processes • ingress SYNs
• ingress SYNs

• ingress RSTs

• ingress SYNs

• ingress ACKs

• egress SYN-ACKs

Table 4.1: Available methods analysis in D D o S Protector.

B y examining these data, the induct ion process could be started. Every mit igat ion
method is defined by a set of ingress and egress T C P segment types it processes. The
performance of the method is also defined by its memory and C P U requirements, where
the number of hash functions plays the most significant role. These functions should be fur­
thermore divided into regular hashes (hash table access) and cryptographic hashes (R S T
Cookies), which both have different C P U requirements. A l l of the mi t igat ion methods need
to retain state information, usage of hash tables being a t radi t ional choice. For this reason,
the a lgor i thm should keep a track about how these hash tables are filled and act if there
is a chance they may get overfilled. Other specific aspects of methods such as whether it
creates an S Y N retransmit, causes a session reset or generates traffic need to be reckoned
wi th as well.

42

The information described i n this subsection were the essential bui ld ing blocks of the
mit igat ion method evaluation process described i n 4.2.2.

4.1.2 Traffic Evaluation

A s mentioned i n the previous subsection, different mit igat ion algorithms process different
types of T C P segments. D a t a that are not processed by the software can be hardware-
forwarded. This process is much faster, al lowing better packet throughput and lower
T C P communicat ion delays. For this reason, methods that process fewer packets provide
generally better performance.

W h e n the opt imal mi t igat ion method is being chosen, its performance plays a crucial
part. Therefore, choosing an ideal method for the given si tuat ion requires information about
how the processed types of traffic actually impact the overall network performance. How­
ever, no such data are publ ic ly available, so own traffic analysis result had to be conducted
at first.

In particular, the a im of this research was to determine the proportions of T C P segment
types used on regular networks. Since this thesis is a part of the C E S N E T ' s security
research project, we managed to obtain captured data from the communicat ion l ink between
C E S N E T and A C O N E T 1 , two nat ional research and academic networks. The analyzed file
had 367GB, containing over 500M packets. Its contents represented common network traffic
captured on 14th November 2018. After filtering out the T C P communicat ion only, a sample
of 4 5 0 M segments was obtained. These data were analyzed further w i th the tcpdump L i n u x
uti l i ty. Th is tool was used to strip and count the segments w i th various combinations
of T C P flags.

Table 1.2 shows the results of the performed analysis, displaying most common T C P flags
and their combinations that may be interesting for the module performance evaluation. A c ­
cording to the results, S Y N segments, analyzed by a l l modules take only 0.89% of a l l the
traffic, making potential performance degradations caused by S Y N analyzer modules rather
insignificant. O n the other hand, A C K segments and their combinat ion are the most preva­
lent type of T C P network traffic. Other non-standard combinations or ind iv idua l flags
wi th an irrelevant number of entries (F I N , U R G , P S H) are listed under others, which make
up 3.91% of to ta l analyzed traffic.

T C P flags Segment count Rat io [%]
a l l 450 649 793 100.00
A C K 365 496 097 81.10
P S H + A C K 56 582 935 12.56
F I N + A C K 4 388 605 0.97
S Y N 4 024 870 0.89
S Y N + A C K 1 833 904 0.41
R S T 601 030 0.13
E C E + C W R 97878 0.02
others 17 624474 3.91

Table 4.2: C E S N E T <—• A C O N E T l ink traffic analysis.

x h t t p s : //www.aco.net/

43

http://www.aco.net/

Traffic analysis results presented i n this section provided an overview of the ratios of dif­
ferent T C P segments types used i n modern computer networks. A l though these results
come from only one dataset and may par t ia l ly vary depending on the network properties,
it can be assumed that segment ratios captured i n other networks would not be drastically
different. Analys is of this data indicates that software-processing S Y N segments and alter­
natively R S T s , does not have a high impact on the overall T C P communicat ion. However,
A C K segments and their combinat ion represent the majority of a l l T C P communicat ion,
so algorithms analyzing them may cause a significant traffic performance decrease.

4.1.3 Probabilistic Data Structures Utilization

Probabi l is t ic data structures, more precisely LogLog and its enhanced variant HyperLogLog
were chosen as suitable alternatives for counting the number of unique IP addresses pro­
cessed by the Dynamic M e t h o d Management algori thm. These considerations are described
later in the chapter. The following subsection focuses on the description of the H y p e r L o g L o g
algori thm, its functionality, and the consequences of its u t i l iza t ion i n method manager soft­
ware.

H y p e r L o g L o g is an algori thm able to approximate the number of distinct elements
(cardinality) in the multiset, providing a solution for a count-distinct problem [12]. A stan­
dard way to calculate exact cardinali ty requires an unacceptable amount of memory for
large data sets. For this reason, probabil ist ic cardinali ty estimators, such as H y p e r L o g L o g
can estimate this value demanding significantly lower memory. For example, cardinalities
of 10 9 elements or lesser can be calculated using 1.5 k B memory wi th only 2% error [12].

The fundamental idea behind the a lgor i thm is based on the observation that the cardi­
nali ty of the multiset of uniformly distr ibuted values can be estimated by calculat ing the
max imum number of leading zeros of each number i n a set. Simulat ion of the uniform
distr ibut ion is achieved by hashing each element and logging its result to one of the mul­
tiset subsets (buckets). Est imate of distinct elements is then calculated as 2 ^ , where N is
a harmonic mean of the m a x i m u m values of observed leading zeros of each subset [12].

For our purpose, a multiset can be considered a number of source addresses, and the
goal is to determine the number of unique hosts. These statistics may then be used to tr ig­
ger various mit igat ion techniques as described i n 4.2.4 or s imply used for statistics logging.
However, a caller u t i l iz ing the a lgori thm needs to realize that obtained results are not pre­
cise, but rather wi th in the range of the standard error based on the a lgori thm properties.
The standard error is defined by the number of subsets used to store counting informa­
t ion. Thus, more available memory for the a lgori thm allows the creation of more buckets,
resulting i n lower error.

The use case of Dynamic Mi t iga t ion Management a lgori thm does not require extremely
low error rates. However, errors above 10% may produce undesired results by activating
triggers too early or too late, effectively weakening the mit igat ion abilities. For this reason,
the caller should always consider properties of the protected network (number of possible
unique IP addresses, etc.) and choose the size of the H y p e r L o g L o g structure appropriately.
The idea is to obtain the best memory to standard error ratio as possible, but also to keep
the error rate low, ideally not exceeding 5% - 10%.

44

4.2 Mechanism Design

Similar ly to the R S T Cookies, Dynamic M e t h o d Management a lgori thm is also supposed
to be a part of the C E S N E T ' s D D o S Protector i n the future. For this reason, the same
constraints as described i n Section 3.2 need to be respected. The mechanism has to be de­
signed without an object-oriented approach, providing flexibili ty and expected behavior
of the module.

The pr imary concern of the a lgori thm is to provide a way of dynamic mit igat ion method
switching based on the current mit igat ion effectiveness, statistics and system resources.
Considering these requirements, the design process may be started. The following subsec­
t ion discusses the design aspects related to integration of the module to the m a i n D D o S
Protector applicat ion. Subsequently, the 3 ma in logical parts of the module - fitness, traffic
analysis and decision-making cores are described i n detail .

4.2.1 Dynamic Method Manager as a Module

Like a l l algorithms that a im to extend D D o S Protector 's core, the D y n a m i c M e t h o d M a n ­
agement technique needs to be designed modularly, providing an abi l i ty to be ini t ia l ized,
finalized and cleared. After the in i t ia l iza t ion process is completed, the caller has to inform
the module of the available mit igat ion algorithms. After a l l desired mit igat ion methods
are registered, the module may receive T C P segments i n order to generate statistics of the
current T C P traffic. The mit igat ion method is then switched according to these statistics
and discovered traffic patterns.

The required functionality may be achieved by the following two approaches:

• T igh t ly integrated module (Figure 4.1)

• Loosely integrated module (Figure 4.2)

SYN Flood Adaptive Mitigation Module

TCP data
Logger Logic Logger Logic

Mitigation
strategy

SYN
Drop

RST
Cookies

ACK
Spoofing

allow/deny
—>

Figure 4.1: S Y N F l o o d Adapt ive Mi t iga t ion module (tight integration).

A s shown i n Figure 4.1, the t ight ly integrated version of the module would comprise a l l
existing mit igat ion modules and be solely responsible for their management. Th is pr inci­
ple would allow simple usage since the Protector would only pass the T C P data into the
function and straightly receive an answer i f the packet should be forwarded or dropped.
The mentioned approach is easier to use and provides better performance. O n the other
hand, its low flexibility, the difficulty of implementat ion and integration make it a quite
unfavorable choice.

Loosely integrated version (Figure 4.2) is designed as an autonomous module, which
processes T C P traffic, logs it and waits un t i l a request to determine the best available option

45

TCP data allow/deny

Mitigation
strategy

DDoS Protector - SYN Module

Figure 4.2: S Y N F l o o d Dynamic Management

is issued. This request causes the a lgori thm to fetch logged information and search for traffic
patterns. Found patterns are processed by various predefined rules and thresholds, and an
opt imal mi t igat ion method is suggested. S t i l l , it is important to realize that the module
does not actually make a mit igat ion method switch, but rather only suggests which method
should be used. This suggestion may be accepted or ignored by the caller. The Dynamic
M e t h o d Management module is thus designed independently of a l l the mit igat ion methods.
In contrast to tight integration, the mechanism does not manage the mit igat ion methods
itself, but their management is purely dependent on the caller. Th i s approach provides
undoubtedly better flexibility, easier integration, and overall cleaner design. However, more
responsibilities are left to the D D o S Protector, making the module harder to use. The
nature of the approach also provides slightly lower performance, because data are processed
by more routines and more function calls are required.

After considering a l l the pros and cons of both mechanisms, the loose integration variant
was chosen as a more suitable approach wi th respect to future works and improvements
of the module and D D o S Protector solution. This means that a loosely integrated module
w i l l be easier to maintain, extend and debug. A l so , its presence w i l l not require the existing
code of the Protector to be changed that rapidly as i n the case of tight integration.

4.2.2 The Fitness Core

A s mentioned at the beginning of this section, the module is composed of three ma in logical
parts. Th is subsection describes the fitness core, a set of procedures aimed to evaluate
and store the information about available mit igat ion methods. Its name comes from the
purpose of calculat ing a rat ing of the method, thus determining how "fit" the method is.
These data are then used i n decision-making core (Subsection 4.2.4) dur ing the process
of op t imal mit igat ion method estimation. This subsection w i l l describe how the mit igat ion
methods are handled and evaluated.

Mitigat ion Methods Management

According to the loose integration design, the Dynamic M e t h o d Manager is not dependent
on any mit igat ion modules. In regard to this system, the methods that can be used during
the a lgori thm decision-making phase need to be specified. Modu le management is done

46

v ia registration, update and unregistration routines. The registration function informs the
algori thm of the method's availability. The registration is done by specifying technique I D
and its properties (Figure 4.3). D a t a of the mi t igat ion method property structure corre­
spond to the information obtained v i a induct ion in Subsection 4.1.1. These data are crucial
for the method evaluation process described further in this subsection.

Mitigation method properties

+ memTotal unsigned int
+ memPerHost unsigned int
+ regularHashCnt float
+ cryptoHashCnt float
+ ingressTfcFlags unsigned int
+ egressTfcFlags unsigned int
+ newEntryTfcFlags unsigned int
+ newEntryPolicy whitelistPolicy
+ newEntryChance float
+ remEntryTfcFlags unsigned int
+ remEntryChance float
+ dropsSyns bool
+ genTraffic bool
+ causesRetransmit bool
+ causesReset bool

Figure 4.3: Mi t iga t ion method property structure contents.

Meaning of some fields was already explained in the regarding theoretical section. The
number of hash functions regularHashCnt and cryptoHashCnt is proposed to be stored
as a floating number. Th is is because some data processing functions may require several
hashes, while others may not require hashing at a l l . For this reason, the user defining
the properties of the mechanism is supposed to estimate the average number of hashes
per processed segment. Fields containing TfcFlags specify types of T C P segments that
cause certain events. Ingress and egress define T C P segment types that the algori thm
analyzes on input or output from the protected network. Entries newEntryTfcFlags and
remEntryTfcFlags specify which T C P segment types cause new entry to be added or re­
moved from the internal data structures. These are complemented wi th newEntryChance
and remEntryChance specifying the chance of the insertion or removal event. Some mit iga­
t ion methods may fill their internal structures per every received segment, some per every
unique IP address and some may not use whitel is t ing principles at a l l . For this purpose, the
newEntryPolicy field specifying this behavior exists. Other fields determine if the method
generates traffic, drops S Y N s , etc.

Registrat ion of the method is done by fil l ing the previously described data structure and
call ing a corresponding function. W h e n the properties of the method change, an update
routine may be used. If the mit igat ion method is no longer desired to be used, the module
should provide a way to unregister it , so it is no longer available during the decision-making
algori thm execution.

Mitigat ion M e t h o d Evaluation

The mit igat ion method evaluation process is triggered every t ime a mit igat ion module
is registered or updated. The purpose of the evaluation is to obtain an approximate quali ty
of the method's performance. These data are then used to choose the most suitable mit-

47

igation method based on the analyzed traffic. The overall rat ing of the function consists
of three components:

• Entries growth indicator

• Throughput l imi ta t ion indicator

• Latency l imi ta t ion indicator

Each of the indicators is impacted by its corresponding method properties. In some
cases, a single attr ibute may impact more ratings, e.g., the number of calculated hashes
impacts the throughput the most, but it may cause smal l addi t ional latencies as well.

The entries growth indicator represents how the mi t igat ion method's internal structures
(typically whitelists) are likely to get filled. This value defines the abi l i ty of the method
to process a certain amount of data before its whitelists capacity is reached. This rat ing is
mostly influenced by newEntry* and remEntry* fields.

The throughput limitation indicator defines how the ut i l iza t ion of the method im­
pacts the packet throughput of the overall system. Its value is determined by the num­
ber of hashes computed per segment, processed T C P data types (ingressTf cFlags and
egressTf cFlags) and traffic generation predicate.

The latency limitation indicator reflects how the u t i l iza t ion of the method impacts end-
hosts, whose only concern is how fast the communicat ion through the active mit igat ion
method w i l l be. Comput ing an excessive amount of hash functions may impact this rat­
ing, but causesReset, causesRetransmit and generatesTraff i c predicates have a more
significant impact on this indicator.

The indicators are then combined to form a final rat ing of the method. The process
of combining is done by a weighted sum, each of the indicators having a different weight.
We decided that the latency indicator, representing a direct impact on the clients, w i l l
have the biggest weight of 2.5. Another important indicator is throughput w i th the weight
equal to 1.5. Entries growth indicator is assigned the weight of 1.0. These values were set
experimentally and are probable to be changed i n the future.

According to the current design, the lowest calculated rat ing represents the mit igat ion
method wi th the best performance, al lowing the highest traffic throughput and lowest
delays. A s mentioned previously, this value is used to determine the performance of the
method, rather than the actual mit igat ion strength.

The previous paragraphs have mentioned the calculation process, but haven't discussed
what is actually calculated and where do the values come from. A l l of the variables used
in indicators and ratings computations were given values used as weights. Thus, the indi­
cator computat ion consists of mul t ip ly ing values from the method property structure wi th
their corresponding weights and then creating a sum of these values to form an indicator.
Most of the weights are currently experimental, but the data defining T C P segments types
ratios were taken direct ly from the traffic analysis research included i n Subsection 4.1.2.

4.2.3 The Traffic Analysis Core

The traffic analysis core (logger) is a set of routines and data structures used for traffic
logging, sampling and statistics gathering. Th is information is ut i l ized for attack pattern
searching and opt imal mit igat ion method estimation. The module accepts a T C P segment,
furthermore parsing it and extracting data like IP addresses and T C P flags. T C P flags

18

are used to count the occurrence of different data types on the network using S Y N , A C K
and R S T counters. Other interesting entries include the numbers of unique I P addresses
sending these types of segments. A s outl ined i n Subsection 4.1.3, usage of the standard
data structures would be ineffective. Therefore, three H y p e r L o g L o g instances to track the
number of unique IP addresses of T C P S Y N , A C K and R S T segments, are also employed.

However, some information that may be helpful for the decision-making process cannot
be obtained directly by the module itself. These comprise the number of allowed and
denied S Y N s and whether the attack is currently ongoing. Information about the active
mit igat ion approach needs to be supplied as well, because the module only suggests the
part icular method, but receives no acknowledgment from the caller whether it was actually
applied. Accord ing to these facts, the caller should specify this information manually. This
process provides a necessary context that could be used by the op t imal mit igat ion method
estimator. B y put t ing these things together, a statistics structure shown in Figure 4.4
is obtained.

SYN Flood Dynamic Method
Management module - statistics

+ synCnt : unsigned int
+ ackCnt : unsigned int
+ rstCnt : unsigned int
+ syn Hosts : unsigned int
+ ackHosts : unsigned int
+ rstHosts : unsigned int
+ synAllowed : unsigned int
+ synDenied : unsigned int
+ ongoingAttack : bool
+ stratSuggested : syn_strategy

Figure 4.4: Dynamic Modu le Management - Statistics structure.

A n important concept of the statistics logging and module functionality is t ime window­
ing. A time window is a period between the start t ime and the end t ime. For the purpose
of this module, windows are used to divide t ime into periodic blocks and save collected
statistics in them. Statistics are thus not collected per whole module lifespan, but rather
per each window. This approach allows to view changes i n t ime, providing various traffic
patterns analysis options, creation of traffic logs, charts, etc.

Because the module does not provide a mechanism to track the t ime by itself, the re­
sponsibil i ty of keeping t ime windows synchronized is left to the caller. The cal l ing program
is therefore supposed to periodical ly invoke a part icular function of the module, which cre­
ates a new time window and rotates the logs. Per iodica l t ime windowing is thus crucial
to preserve the correct module functionality. Smal l deviations from the period are accept­
able, but longer may cause inefficient method suggestions or even overall inabi l i ty to provide
an appropriate mit igat ion strategy. The situation, of t ime windows desynchronization, may
occur, and so a function to invalidate a l l logs in the history is also provided.

4.2.4 The Decision-making Core

A s indicated in the previous subsections, the decision-making core is responsible for match­
ing discovered traffic patterns to suitable mit igat ion methods. Th is process is done by look-

49

ing at the statistics provided by the traffic analyzer core and choosing a mit igat ion technique
according to its properties and ratings obtained from the fitness core. The decision-making
process is launched by a direct ca l l from the user. It is important to note that the decision­
making process works pr imar i ly w i th the current t ime window, so the request for mit igat ion
method should be issued just before the t ime window ends. Statistics in the previous time
windows (history) is taken into the account as well, but when the current t ime window
contains no data, the a lgori thm may struggle to provide a reasonable outcome.

The process of estimating the most suitable mit igat ion method is composed of 2 inde­
pendent phases. The first phase - Action determination is used to find out how the module
should react based on the traffic statistics and current mit igat ion state. Act ions returned
by this phase (NONE, MITIGATE, LOWER_MITIGATION) determine the action for the second
phase - Strategy determination. Th is phase returns a part icular mit igat ion strategy based
on the received action while respecting the current state of the module and traffic.

B o t h phases are controlled by a set of thresholds, which trigger a respective event
when exceeded. E a c h threshold represents a certain traffic pattern. The current threshold
values (patterns) and the weights of ind iv idua l statistic entries are often set experimentally,
but are expected to be changed as more data about the attacks w i l l be collected i n the
future. The threshold triggers may be too sensitive i n some cases, which may lead that the
method switch is suggested unacceptably often. To tackle this issue, the module defines
four switch policies that control how significant the pattern needs to be before the threshold
corresponding to is triggered. One of the switch policies is even able to disable the method
switching mechanism completely, that the cal l to determine strategy w i l l always return the
same mit igat ion method.

A s outl ined in the traffic analysis core subsection (4.2.3), some statistics cannot be ob­
tained by the module but have to be specified manual ly by the user. Processing of some
thresholds often requires these statistics to be present, so the user is advised to provide
them right before the request for the mi t igat ion method is issued. O n the other hand,
other thresholds are based on history, so they can never be triggered if statistics from
previous t ime windows are not present. The mechanisms of the a lgori thm try to predict
these situations and t ry to uti l ize types of thresholds that are available based on the data
currently available. For this reason, the a lgori thm may provide reasonable suggestions even
if the user d id not specify statistics manually. However, relying on this system and inten­
t ional ly omit t ing the manual ly inputted statistics may significantly decrease the mit igat ion
capabilities of the module.

Event type History needed Stats needed
S Y N / A C K unique host ratio > S Y N / A C K ratio
threshold

false false

Ongoing attack (manual) false true
S Y N allowed > S Y N threshold false true
S Y N allowed > S Y N threshold (lowered) AND
weighted history S Y N sum > S Y N threshold (his­ true true
tory modifier)

Table 4.3: Thresholds triggering mit igat ion example.

For the i l lustrat ion purposes, few of the currently active thresholds used to determine
next action are included in Table 1.3. A s can be seen, the user is able to specify that the

50

ongoing attack is i n process manually, and thus the a lgori thm w i l l provide a mit igat ion
method without further pattern searching.

The strategy determination phase aims to provide the most efficient mit igat ion method
wi th the lowest impact on performance. For this reason, the registered mit igat ion methods
are ordered by the rat ing determined by the fitness core. A t the beginning of the attack,
the a lgori thm tries to return the method wi th the lowest impact on performance. If this
method proves to be unable to mitigate the attack i n future t ime windows, the a lgori thm
searches for traffic patterns and tries to suggest the method wi th possible better mit igat ion
capabilities, but also higher requirements on the performance. This way, the a lgori thm tries
to gradually increase the mi t igat ion capabilities for the higher impact on the performance.
However, method switching is not always gradual. The algori thm tries to predict the future
effectiveness of the method by looking at its properties and evaluating them wi th current
patterns found i n the traffic. If the ut i l iza t ion of the technique would not be sufficient
to mitigate the ongoing attack, the posit ion of the strategy is skipped and the process of
determining future effectiveness is applied to another method in the list.

Using the mentioned approaches, the decision-making core is able to recognize different
traffic patterns according to thresholds. Triggering a threshold value determines an action
which should be taken. If no threshold is reached or an insufficient amount of data is
collected, a N0_ACTI0N is issued. This special value tells the a lgori thm to suggest the exact
same mit igat ion method that is currently active. Other actions determine if the a lgori thm
needs to suggest a method to mitigate, lower the currently used mit igat ion method or
inform that no mit igat ion method is necessary.

4.2.5 Module Wrapper

A s i n the case of R S T Cookies (Subsection 3.2.9), a wrapper software needed to be designed
to test and debug the Dynamic M e t h o d Management module as a standalone program. The
design of the wrapper is mostly the same as i n the mentioned subsection. The wrapper needs
to listen to a l l network traffic, filter T C P segments and pass them to the module. However,
before entering an infinite packet-reading loop, the wrapper has to register the available
S Y N F l o o d mit igat ion methods. Since D D o S Protector currently supports 3 methods -
SYN Drop, RST Cookies and ACK Spoofing, properties from a l l of them were gathered and
these 3 methods are used i n the wrapper for testing purposes.

After the methods are registered, the wrapper also needs to provide a way to periodical ly
cal l the module's function to mark the beginning of new time windows. F r o m time to t ime,
the wrapper w i l l also ask for the mit igat ion method suggestion. Since the wrapper w i l l not
comprise mi t igat ion modules itself, the result of this suggestion w i l l be wri t ten to standard
output and the wrapper w i l l simulate that the switch t ru ly happened and the suggested
mit igat ion method is now being used. Since the mit igat ion module is not actually used,
statistics of the number of allowed and discarded S Y N segments need to be set manually
or randomized.

The usage of this wrapper should be able to provide enough information to test the
module and eventually even tweak threshold values when needed.

4.3 Implementation

Similar ly to R S T Cookies (3.3), the used implementat ion language was C. 0 0 functional­
ities could not be applied, but the module simulated encapsulation principles, h iding the

51

internal structure into the source file and let t ing the caller work wi th void pointers instead.
Based on the good quali ty of the in i t i a l design, only m i n i m u m number of adjustments were
need to be made, thus developing the module in almost waterfall model principles. This
section describes implementat ion considerations related to each of the cores and the wrap­
per.

4.3.1 The Fitness Core

The module management and evaluation is provided by the fitness core, which is represented
by the synf_dmgmt_register(), synf_dmgmt_update() and synf_dmgmt_unregister()
calls. Funct ional i ty of these functions was mostly described in back in the core design phase
(Section 4.2.2).

Since the mit igat ion methods are ordered by their rat ing, from lowest to highest, an
insertion or a move needs to be made to reorder the methods when necessary. This could
be addressed by the array of pointers, which would provide a fast and flexible way or re­
arranging any number of mit igat ion methods. However, the quanti ty of registered methods
is typical ly not high and reordering them is not a standard operation, so we decided to do
reordering directly wi th the memory storing method properties, so no extra pointer array
needs to be maintained. The reordering is thus done v ia memmoveO ca l l because of the
moved methods represented by overlapping memory blocks in most cases.

4.3.2 The Traffic Analysis Core

Traffic statistics creation and storing is handled by the traffic analysis core, which provides
five external functions:

• synf. _dmgmt _data_process()
• synf. _dmgmt _start_new_window()
• synf. _dmgmt _set_syn_stats()
• synf. _dmgmt _get_stats()
• synf. _dmgmt _clear_history()
The first function is used to process (log) the data. The function takes a pointer to

IP and T C P headers and updates the statistic counters described i n Figure 4.4. Each
processed segment updates its respective counter type (synCnt, ackCnt or rstCnt) and is
then passed to the H y p e r L o g L o g (H L L) module corresponding to its segment type. The
unique IP counters are not updated straightly but at the end of the t ime window during
which the values from H L L structures are fetched. The concrete H L L implementat ion was
obtained from the G i t h u b repository of the user avz2.

A new time window is started by synf _dmgmt_start_new_window() cal l . This function
causes the H y p e r L o g L o g data to be evaluated and stored into the current t ime window
statistics structure. H L L structures are then cleared, preparing it to count new time window
and logs are shifted.

Funct ion synf _dmgmt_set_syn_stats () sets the S Y N mit igat ion statistics (synAllowed),
synDenied and ongoingAttack). Since these stats cannot be obtained by the module, the

2 h t t p s : //github.com/avz/hll

52

caller needs to set them manually, ideally just before the t ime window ends. These data
provides a valuable information for the decision-making process.

Stats from the current t ime window or a window i n the history can be obtained wi th
synf_dmgmt_get_stats() cal l . Th is function accepts a parameter specifying which time
window should be returned from the current t ime window back to the history. For example,
0 represents a current window, 1 a window before the current window, etc. The function
returns a pointer to the desired statistics structure.

The synf _dmgmt_clear_history() cal l is typical ly used when the t ime windows get
desynchronized for some reason, and usage of the history would cause the method to provide
incorrect suggestions.

4.3.3 The Decision-making Core

Functions related to the decision-making core include following:

• synf_dmgmt_determine_strategy()

• synf_dmgmt_set_current_strategy()

• synf_dmgmt_set_switch_policy()

• synf_dmgmt_get_switch_policy()

According to the design of the module discussed earlier, the a lgori thm does not know
whether the suggestions it gives are actually taken into account or not. For this rea­
son, the caller has to inform the module about currently active mi t igat ion strategy using
synf_dmgmt_set_current_strategy() . This allows the decision-making algori thm to de­
termine the effectiveness of the currently used mit igat ion approach and decide accordingly.

Switch pol icy discussed i n the design section defines the value of different thresholds
that are used to trigger various events in the internal mechanism logic. Values of the
switch policies - SWITCH_ALWAYS, SWITCH_SMARTLY, SWITCH_SPARINGLY, and SWITCH_NONE
are defined, "always switching" mode provides the lowest thresholds that are easier to
trigger, while "none switching defines triggers that are impossible to trigger. The logic
behind this approach is that when no threshold is reached, no action is triggered and thus
the module does return currently used mit igat ion method set by set_current_strategy ()
call . This system provides better performance because frequent method switching takes
memory resources on al locat ion/deal locat ion calls at the host lesser flexibility provided by
the module.

A l l functions presented so far were supportive routines a iming to provide the necessary
environment for the main routine providing the functionality the whole module needed to -
synf_dmgmt_determine_strategy(). A t the beginning, the functions checks i f module
switch pol icy is not set to none. If that is true, the function straightly returns the currently
used mit igat ion method. Otherwise it firstly determines an action to be taken and then
chooses an appropriate mit igat ion method according to i t .

The action is chosen by processing a number of IF conditions representing various
thresholds. Triggering a threshold is thus execution of the condit ion body i f its evaluation is
true. The mit igat ion strategy is chosen from the internal structure of the ordered registered
strategies i n a way that the mechanism starts at the method wi th the lowest rat ing (index
0) and evaluates the method properties according to the available traffic statistics. If the
properties of the strategy on the current index indicate that it may be able to mitigate

53

the ongoing attack, the I D of the strategy is returned. Otherwise, the internal structure
index is incremented and the process is repeated. This way, the a lgori thm ensures that the
method wi th the best performance is always active.

4.3.4 Wrapper

The implementat ion of the wrapper was very similar as i n case of the R S T Cookies. The
wrapper needed to provide an environment s imulat ing the D D o S Protector. In this case,
no special functions were needed, only the mit igat ion method identifiers were included in
the separate header file. The main wrapper function ini t ia l ized and bound the interface,
either using P C A P or N D P A P I , entered an infinite packet loop and waited for packets.
Instead of the R S T Cookies, the received data were parsed using L i n u x networking headers
included from netinet header files. Th is change was made due to internal polit ics of the
D D o S Protector, which forced the usage of L i n u x headers. Keeping the t ime windows
synchronized is done by alarm () cal l .

S imi lar ly to R S T Cookies wrapper, the Dynamic M e t h o d Management wrapper also
offers a way of debugging wi th the mult iple levels of verbosity. These can be changed in
the corresponding header file, which contains other settings like S Y N attack threshold or
t ime window durat ion. These values may be changed for the purpose of experimentations.

4.4 Testing

This section describes the testing process that was taken to verify the functionality of the
module and determine its mi t igat ion capabilities. The following subsections describe the
phase of the environment and test preparation, as well as the process of various tests that
the Dynamic Mi t iga t ion Management module had taken.

Environment and Tests Preparat ion

The testing of the module was done w i t h the prototype described in previous sections. N D P
variant of the wrapper was used to test the behavior under C E S N E T ' s N D P environment.
Th is way, a specialized software (Spirent TestCenter 3) to generate forged packets at the
rate 100 Gbps could be used. This environment allowed the s imulat ion on real network
packet rates wi th the advanced options of packet analysis.

For the sake of simplicity, the wrapper was set to generate new time window every
10 seconds and the S Y N F l o o d attack threshold was set to 100 000. Thus, when the 100 000
T C P S Y N segments were processed i n a 10-second time window, a Dynamic M e t h o d M a n ­
agement module would detect an ongoing attack and provide appropriate mit igat ion. Note
that an active attack can be set also manual ly by the caller. For the purpose of dynamic
method switching, three mit igat ion algorithms available i n the D D o S Protector were reg­
istered for the module to use. Properties of these used algori thm that were used during
the testing are shown in Figure 4.5. A l l mit igat ion methods were simulated to have 2 2 0

whitelist rows, support ing up to 4 . 2 M clients. Float values (hash counts, new/remove entry
chance) i n a l l three cases were calculated using weighted sums according to the ratios of
the data as mentioned in Table 3.1. However, these value are experimental and are likely
to be changed when the module w i l l be integrated to the real D D o S Protector solution.

3 h t t p s : //www.spirent.com/products/testcenter

54

http://www.spirent.com/products/testcenter

SYN Drop properties

+ memTotal 20 971 520
+ memPerHost 5
+ regularHashCnt 1.0
+ cryptoHashCnt 0.0
+ ingressTfcFlags SYN
+ egressTfcFlags NONE
+ newEntryTfcFlags SYN
+ newEntryPolicy PER_CLIENT
+ newEntryChance 0.1
+ remEntryTfcFlags NONE
+ remEntryChance 0.0
+ dropsSyns true
+ genTraffic false
+ causesRetransmit true
+ causesReset false

RST Cookies properties

+ memTotal 83 886 080
+ memPerHost 20
+ regularHashCnt 1.18
+ cryptoHashCnt 0.0357
+ ingressTfcFlags SYN, RST
+ egressTfcFlags NONE
+ newEntryTfcFlags RST
+ newEntryPolicy PER_CLIENT
+ newEntryChance 0.9
+ remEntryTfcFlags NONE
+ remEntryChance 0.0
+ dropsSyns true
+ genTraffic true
+ causesRetransmit true
+ causesReset true

ACK Spoofing properties

+ memTotal 4 194 304
+ memPerHost 4
+ regularHashCnt 1.0
+ cryptoHashCnt 0.0
+ ingressTfcFlags SYN, ACK
+ egressTfcFlags SYNACK
+ newEntryTfcFlags RST
+ newEntryPolicy PER_CONN
+ newEntryChance 1.0
+ remEntryTfcFlags ACK
+ remEntryChance 0.025
+ dropsSyns false
+ genTraffic true
+ causesRetransmit false
+ causesReset false

Figure 4.5: Dynamic M e t h o d Management testing - methods properties.

4.4.1 Method evaluation results

After the properties of the methods have been set, the method evaluation process could
be started. Since we want to analyze how the methods are actually evaluated, we wanted
to keep an eye on the internal structure storing mit igat ion methods. More importantly,
we wanted to know the rat ing of these methods and their posi t ion in the list. For this
purpose, the wrapper was compiled and run DEBUG and INTERNAL_PRINT macros active.
After running the program, the result as shown i n Figure 4.6.

Registered methods order:
- 0. — > 1 Rating: 127.013626
- 1. — > 3 Rating: 149.100006
- 2 . — > 2 Rating: 491.927094

Figure 4.6: R S T Cookies wrapper - S Y N / R S T status reporting.

The method wi th the number 1 represents an S Y N D r o p module, which was evaluated
as the best because it processes only S Y N segments and does not have that drastic impact
on the traffic. The first index was taken by the R S T Cookies method. The th i rd , but the
shocking result was A C K spoofing, which was rated very high due to our previous traffic
analysis discovering that 81% of the T C P traffic consists of A C K segments. Th is indicator
played a huge part i n the overall method rating.

4.4.2 Method suggestion results

W h e n a l l the mit igat ion methods were ready, the process of generating the T C P traffic and
monitor ing output of the module could be started. Fi rs t ly , we generated traffic of 5 000
S Y N segments per second (half of the threshold). Since the specified S Y N threshold has
not been reached, a request for the mit igat ion method suggestion returned N0_STRATEGY,
signalizing that no mit igat ion is needed. W h e n the ongoing attack was manually specified,
the method returned SYN_DR0P method as the best match, because it is stored at the first
index of the internal mi t igat ion methods list.

Wi thou t providing addi t ional statistics about the mit igat ion efficiency, the method keeps
returning SYN_DR0P value because it detects no required change. W h e n the manual ongoing
attack switch is removed, the function starts to suggest to not mitigate, but not suddenly.

55

This happens because there is a mechanism that keeps track of the past mitigations and so
if the mi t igat ion was active past N t ime windows, it w i l l be activated again in this version.
However, this condit ion cannot be used on its own, because mitigations i n the past would
always trigger mitigations i n the current t ime window, and so it may get "looped" and
would return a mit igat ion method infinitely, even i f no other patterns would be present.
Because of this, the past mi t igat ion threshold is also combined wi th various others (like
S Y N counter, unique IP count, etc.).

Considering an active attack cause by triggering S Y N threshold without further infor­
mation, the module would always suggest SYN_DR0P to be used. However, i f the caller
specifies efficiency of the mit igat ion by specifying a high number of allowed S Y N segments
above the threshold while keeping the dropped S Y N segments value low, the a lgori thm
w i l l consider the currently used mit igat ion method to be ineffective and w i l l t ry to suggest
another i n the list. In our case, the next method is RST Cookies, which would satisfy
the requirements to be chosen and so the next ca l l to determine strategy would return i t .
Fol lowing this pattern, if the caller specifies that the R S T Cookies is ineffective, a mecha­
nism would t ry to employ other mit igat ion methods than currently active. S Y N Drop was
marked as ineffective in the past, so the a lgori thm would temporari ly skip it and proceed
on the t h i rd posit ion of the internal structure, where ACK Spoofing resides. However, this
method would not pass satisfy the checks and so would not be chosen. More precisely, when
the S Y N threshold is exceeded and the tested method does not drop segments, it is never
chosen because it can not reduce the number of segments on the already congested l ink.

According to this phenomenon, the ACK Spoofing method would always never be cho­
sen, because most of the S Y N attacks tend to exceed the threshold. Th is behavior is caused
by bad rat ing estimation of the mit igat ion method, which was placed too high i n the method
hierarchy (according to the A C K segments weight). For this reason, the chosen experimen­
ta l weights are probably set a bit inappropriately. O n the other hand, as mentioned in
Subsection 2.3.6, the A C K spoofing is not that effective anyway, so the a lgori thm may just
actually work perfectly.

4.5 Mechanism Conclusion and Closing Remarks

This chapter has presented a mechanism able to dynamical ly switch between different S Y N
Flood ing mit igat ion methods. Switching is based on various aspects like traffic, system
resources, and mit igat ion efficiency. The method can be currently classified more as a the­
oretical concept rather than a usable module. However, many aspects presented in this
chapter w i l l definitely be ut i l ized when dynamic manager version for the D D o S Protector
w i l l be created. A l though many modifiers and thresholds are marked as experimental, the
module was already able to provide reasonable mit igat ion method suggestions as described
i n 4.4.2. Nevertheless, the presented technique needs to be developed and tuned out a l i t t le
more to provide relevant information when used on the real network.

56

Chapter 5

Conclusion

This thesis has provided an overview of the most common attacks on the Transmission
Cont ro l Pro toco l . A l l were analyzed quite i n detail , but the special focus was put on one
part icular type - the TCP SYN Flood. Th is attack is currently the most popular performed
D o S / D D o S attack type, posing as a significant threat to modern computer networks. M a n y
methods used for its mi t igat ion are either ineffective against more sophisticated variants
or cannot be effectively deployed on intermediary devices. For this reason, the thesis aimed
to design and implement a mit igat ion method able to deflect advanced S Y N floods, while
being efficient when used as a part of the intermediary network mit igat ion device.

One of the methods wi th these parameters is TCP Reset Cookies, a specialized network-
based S Y N F l o o d mit igat ion technique. This method provides an efficient way to block a l l
S Y N flooding attacks from spoofed IP addresses. Regular attacks from legitimate hosts are
blocked as well, but other methods are often more suitable when dealing wi th this variant
of the attack. The main advantage of the R S T Cookies is the abi l i ty to mitigate more
sophisticated S Y N floods that are typical ly able to bypass other defense mechanisms. This
is achieved by establishing a security association wi th the client before forwarding its S Y N
data. Th is mechanism stops a l l attacks that rely on dummy segment flooding, however
it may be fooled by employing or s imulat ing a legitimate T C P stack. This vulnerabi l i ty
is addressed by enhancing the method wi th S Y N counters and blacklist ing mechanism.
However, u t i l iza t ion of this method causes an approximate 1-second delay for the first
connection and significantly l imits segment throughput due to its higher C P U requirements.

Unfortunately, this method is not suitable for a l l attack vectors due to the performance
degradation it causes. Because of this, the Dynamic M e t h o d Management a lgori thm was
developed to provide a way to choose the op t imal mit igat ion method according to the
current traffic and other factors like mit igat ion efficiency. The method consists of three
separate parts - the Fitness, Traffic analysis, and Decision-making cores. The mechanism
evaluates available mi t igat ion functions, analyzes traffic and statistics, and chooses the most
suitable method. This approach aims to provide an automatic method switching technique,
which should be able to respond to the dynamic environment of modern S Y N F l o o d attacks.

Ment ioned algorithms were developed as a part of the C E S N E T ' s D D o S Protector se­
curity research project. The R S T Cookies method is already integrated and used, whereas
the method management module is planned to be integrated i n the near future. These al­
gorithms w i l l be further developed as a part of the D D o S Protector, which recently received
a grant from the M i n i s t r y of the Interior of the Czech Republ ic . Par t of the thesis com­
prising theory and the R S T Cookies a lgori thm was presented at the student's conference
E x c e l @ F I T 2019, where it was awarded for a contr ibution in the computer security field.

57

Bibliography

[1] R F C 791 Internet Pro toco l - D A R P A Inernet Programm, Pro toco l Specification.
R F C 791. September 1981.

[2] T / T C P : S Y N and R S T Cookies. Archive for L i n u x Ke rne l M a i l i n g L i s t . A p r i l 1998.
(online). Retr ieved on 12.03.2019.
Retrieved from: https://lists.gt.net / l i n u x/kernel / 1 2 8 2 9

[3] Bel lovin , S.: Defending Against Sequence Number At tacks . R F C 1948
(Informational). M a y 1996. obsoleted by R F C 6 5 2 8 .

[4] Bernstein, D . , J . ; Schenk, E . : S Y N Cookies proposal. September 1996. (online).
Retr ieved on 12.03.2019.
Retrieved from: http://cr.yp.to/syncookies/archive

[5] C E S N E T : D D o S Protector, (online). Retrieved on 04.05.2019.
Retrieved from: https: //www.liberouter.org/technologies/ddos-protector/

[6] C E S N E T : N á r o d n í p ropojovac í uzel N I X . C Z bude testovat D D o S ochranu vyvinutou
ve sd ružen í C E S N E T . Press release (czech). M a r c h 2019. (online). Retr ieved on:
02.05.2019.
Retrieved from: https:
//www.cesnet.cz/sdruzeni/zpravy/tiskove-zpravy/narodni-propojovaci-
uzel-nix-cz-bude-testovat-ddos-ochranu-vyvinutou-ve-sdruženi-cesnet/

[7] Cheng, Y . ; C h u , J . ; Radhakr ishnan, S.; et a l . : T C P Fast Open. R F C 7413
(Experimental) . December 2014.

[8] Cisco: Cisco V i s u a l Networking Index: Forecast and Trends, 2017-2022 W h i t e Paper.
Technical report. 70 West Tasman D r . , San Jose, C A 95134 U S A . January 2017.
updated on February 27, 2019.

[9] Eddy, W . , M . : Defenses Against T C P S Y N F lood ing At tacks . In The Internet
Protocol Journal, vol . 9. Cisco Systems Inc.. December 2006.

[10] Eddy, W . , M . : T C P S Y N F lood ing At tacks and C o m m o n Mit igat ions . R F C 4987
(Informational). August 2007.

[11] Fergusson, P.; Senie, D . : Network Ingress F i l te r ing: Defeating Denia l of Service
At tacks which employ IP Source Address Spoofing. R F C 2827 (Best Current
Pract ice) . M a y 2000.

58

https://lists.gt.net/linux/kernel/12829
http://cr.yp.to/syncookies/archive
http://www.liberouter.org/technologies/ddos-protector/
http://www.cesnet.cz/sdruzeni/zpravy/tiskove-zpravy/narodni-propojovaci-

[12] Flajolet , P.; Fusy, E . ; Gandouet, O. ; et al . : Hyperloglog: The analysis of a
near-optimal cardinali ty estimation algori thm. In In AOFA '07: Proceedings of the
2007 International Conference on Analysis of Algorithms. 2007.

[13] Gont , F . ; Bel lovin , S.: Defending against Sequence Number At tacks . R F C 6528
(Standards Track) . February 2012.

[14] Hagen, J . T . ; Mul l i n s , B . E . : T C P veto: A novel network attack and its App l i ca t i on
to S C A D A protocols. In ISGT. I E E E . February 2013. I S B N 978-1-4673-4894-2. pp.
1-6.

[15] Harr is , B . ; Hunt , R . : T C P / I P security threats and attack methods. Computer
Communications, vol . 22. June 1999: pp. 885-897.

[16] Hinden, B . ; Deering, D . S. E . : Internet Protocol , Version 6 (IPv6) Specification. R F C
2460 (Standards Track) . December 1998.

[17] Hurst , T . : B l o o m Fi l t e r Calculator , (online). Retr ieved on 05.05.2019.
Retrieved from: https : / / h u r.st/bloomfilter/

[18] Kupreev; Badovskaya; Gutn ikov: D D o S attacks i n Q4 2018. Technical report.
Kaspersky L a b . February 2019. (online). Retr ieved on: 01.05.2019.
Retrieved from: https: //securelist.com/ddos-attacks-in -q4-2018/89565

[19] Lemon, J . : Resist ing S Y N F l o o d DoS At tacks w i th a S Y N Cache. In Proceedings of
the BSD Conference 2002 on BSD Conference. B S D C ' 0 2 . Berkeley, C A , U S A :
U S E N I X Associat ion. January 2002. pp. 10-10.

[20] L u , Y . ; Prabhakar , B . ; Bonomi , F . : B l o o m Fi l ters : Design Innovations and Novel
Appl ica t ions . In 43rd Annual Allerton Conference on Communication, Control and
Computing 2005, vol . 2. Publ isherUnivers i ty of Illinois at Urbana-Champaign ,
Coordinated Science Labora tory and Department of Computer and Elec t r ica l
Engineering. January 2005. pp. 1006-1015.

[21] Postel , J . : Transmission Cont ro l Pro toco l . R F C 793 (Standard). September 1981.
updated by R F C s 1122, 3168.

[22] R i c c i u l l i , L . ; L inco ln , P. ; K a k k a r , P. : T C P S Y N F lood ing Defense. In In Comm. Net.
and Dist. Systems Modeling and Simulation Conf. (CNDS' 99). Computer Science
Laboratory S R I International. January 1999.

[23] Riorey: Taxonomy of D D o S At tacks , (online). Retrieved on 11.03.2019.
Retrieved from: http://www.riorey.com/types-of-ddos-attacks

[24] Simpson, W . , A . : T C P Cookie Transactions (T C P C T) . R F C 6013 (Experimental) .
January 2011.

[25] Watson, A . , Pau l : Sl ipping in the Window: T C P Reset At tacks . A p r i l 2004.
Retrieved from: https://www.researchgate.net/publication/
240246042_Slipping_in_the_Window_TCP_Reset_Attacks

59

https://hur.st/bloomfilter/
http://securelist.com/
http://www.riorey.com/types-of-ddos-attacks
https://www.researchgate.net/publication/

