
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2021 Bc. Filip Šmatlo



BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF ELECTRICAL AND ELECTRONIC
TECHNOLOGY
ÚSTAV ELEKTROTECHNOLOGIE

EFFECT OF ENVIRONMENT ON THE PHOTOCATALYTIC
PROPERTIES OF COPPER OXIDES
VLIV PROSTŘEDÍ NA FOTOKATALYTICKÉ VLASTNOSTI OXIDŮ MĚDI

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Filip Šmatlo

SUPERVISOR
VEDOUCÍ PRÁCE

prof. RNDr. Petr Vanýsek, CSc.

BRNO 2021



Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Master's Thesis
Master's study program Electrical Manufacturing and Management

Department of Electrical and Electronic Technology
Student: Bc. Filip Šmatlo ID: 173757
Year of
study: 2 Academic year: 2020/21

TITLE OF THESIS:

Effect of environment on the photocatalytic properties of copper oxides

INSTRUCTION:

Become familiar with the issues of photocatalysis of copper oxides as related to decomposition of simple organic
compounds. Focus on the effect of aqueous environment on the chemical stability of the catalytic material.
Prepare  an experiment  verifying  chemical  stability  in  different  aqueous media.  Process  the  obtained data,
interpret them and compare the results with similar ones in the literature.

RECOMMENDED LITERATURE:

Dle doporučení vedoucího práce.

Date of project
specification: 8.2.2021 Deadline for submission: 24.5.2021

Supervisor:     prof. RNDr. Petr Vanýsek, CSc.

 doc. Ing. Petr Bača, Ph.D.
Chair of study program board

WARNING:
The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property  rights of  third persons were not  subjected to derogatory treatment.  The author  is  fully  aware of  the legal  consequences of  an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll.  on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.



 

 

Abstract 
In this work the principle of photocatalysis has been described. The main focus are the 

metal oxide photocatalysts as they are widely used in photocatalytic applications. Various 

applications of photocatalytic materials have been also described. The most described 

application is the water treatment as a focus of this work is photocatalytic degradation of 

organic water pollutants. The discussed photocatalyst was cuprous oxide as it has good 

photocatalytic degradation properties. The photocatalytic properties of the cuprous oxide 

for degradation of an organic water pollutant were defined on degradation of a methyl 

orange dye. 

Keywords 
Photocatalysis, Cuprous oxide, Water treatment, Methyl orange, Synthesis 

Abstrakt 
V této práci byl popsán princip fotokatalýzy. Práce se soustřeďuje na kovové oxidy, které 

mají široké využití ve fotokatalytických aplikacích. Bylo také popsáno různé použití 

fotokatalytických materiálů. Tato práce se zaměřuje zejména na využití fotokatalytických 

materiálů pro rozklad organických vodu znečisťujících látek. Popsaný fotokatalyzátor je 

oxid měďný, který má velmi dobré vlastnosti pro rozklad organických látek pomocí 

fotokatalýzy. Schopnost rozkladu organických látek oxidu měďného byla popsána na 

rozkladu organického barviva methylová oranž. 

Klíčová slova 
Fotokatalýza, Oxid měďný, Úprava vody, Methylová oranž, Syntéza 

  



 

Rozšířený abstrakt 
V teoretické části semestrální práce jsou vysvětleny základní principy fotokatalýzy. Jsou 

popsány různé typy fotokatalýz, mezi nejdůležitější z nich patří heterogenní fotokatalýza. 

Heterogenní fotokatalýza a její zákonitosti jsou popsány podrobněji, jelikož je to typ 

fotokatalýzy, ke které dochází na povrchu oxidů kovů. Tato práce se podrobněji zabývá 

oxidy kovů s největším důrazem kladeným na oxid měďný. V práci jsou také popsány 

nejčastější způsoby využití fotokatalýzy. Mezi tato využití patří štěpení vody, degradace 

oxidu uhličitého, výroba uhlovodíkových paliv z oxidu uhličitého a úprava vody. Úprava 

vody pomocí fotokatalýzy byla popsána více detailně, jelikož jedním z cílů práce je 

rozklad vodu znečisťujících látek a vliv vodného prostředí na fotokatalytické vlastnosti a 

chemickou stabilitu fotokatalyzátoru. V praktické části této práce je teoreticky popsána 

syntéza oxidu měďného. Z velkého množství postupů syntézy oxidu měďného byla 

vybrána metoda syntézy oxidu měďného redukcí síranu měďnatého pomocí kyseliny 

askorbové. Hlavní faktory pro výběr této metody byly proveditelnost, dostupnost 

materiálů a úroveň znalosti chemické přípravy autora. Pro zjištění fotokatalytických 

vlastností oxidu měďného byla popsána metoda měření absorpce roztoku pomocí UV/vis 

spektrometru. Absorpce roztoku se mění v závislosti na míře rozkladu barviva methylová 

oranž, čímž je dostatečně dokázána schopnost fotokatalyzátoru oxidu měďného rozkládat 

organické sloučeniny. 
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INTRODUCTION 

In modern world the demand for innovation of reusable and renewable technologies is 

ascending more rapidly than ever. The use of fossil fuel as the main source of energy is 

not ecological and from this process a lot of toxic substances are generated. From the 

various toxic substances, we can take for example carbon dioxide; a very known 

greenhouse gas which has been recognized as the main cause of global warming. Another 

environmental problem is to have enough fresh tap water. As it is the most important need 

in human life, it is crucial to have effective methods for water treatment and reclamation. 

For the clean and fresh water, we need to recycle the used water and make it clean again. 

We need an effective water treatment method to achieve a drinking grade of water. 

Methods for cleaning the water and the environment must be ecological and economical, 

as it is also important to have such methods available for poorer countries. 

To solve all of these environmental problems a few solutions are already available. 

For example, photovoltaic plants are used to cover part of the daily energy consumption. 

This method is not very effective yet but has big potential to change the energy production 

market. Water treatment can be also accomplished by nature friendly processes. One of 

the processes is the use of plant roots and bacteria that clean wastewater without need for 

any additional chemicals. 

These environmental healing processes have one main thing in common. The sun is 

the source of energy that fuels these systems. The sun is most ecological energy source 

in the world, and it can be used at any place in the world. How much solar energy can be 

used only depends on the geographic location. All the described environmental problems 

can be solved by various methods, but there is still one method that can be used to solve 

all of the different types of these environmental problems at once. This remarkable 

method is called photocatalysis. 

Use of photocatalytic method can be very important in future to solve global 

environmental crisis. In case of substitution for fossil fuels, the photocatalysis of water 

can be used for water splitting and we can produce oxygen and hydrogen only from water 

and solar irradiation. Hydrogen then can be used in fuel cells to produce energy. The toxic 

substances generated by burning the fossil fuels can be degraded by photocatalytic active 

materials to basic harmless substances as water, carbon, and oxygen. In case of water 

treatment the same method can be used for degradation of the various pollutants, such as 

heavy metals, organic and inorganic compounds, to make perfectly clean water only from 

using solar irradiation. 
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1. THEORY OF PHOTOCATALYSIS  

Catalysis is a process that is commonly used in worldwide applications. Use of this 

process expanded exponentially over the last few centuries and mostly in the last few 

decades. It is the backbone of the most of chemical industries and it has its everyday use 

in various basic and even complex applications. For example, the most known use of 

catalysis is in the so called catalysts in cars. The main purpose of the car catalyst is to 

reduce toxic gases and pollutants from engine into less toxic pollutants. This is just one 

application from the broad use of catalysis.  

1.1 Principle of catalysis 

Catalysts are materials that can accelerate specific reactions and as the reaction occurs, 

they participate and can change its own state, but when the reaction ends, their state is the 

same as before the reaction. There is overall change in the free Gibbs energy of the 

reactants as they are converted to products, but there is no overall change in the free Gibbs 

energy of the catalyst. So, the catalyst does not and cannot change the energy equilibrium 

of any reaction. The overall energy needed to initiate the reaction to occur and to products 

to be developed is decreased with the use of photocatalyst. It is illustrated in Figure 1-1 

that the reaction starts at the same energy level with catalyst but the barrier energy 

(activation energy) that must be crossed for the products to form is lowered with the 

catalyst [1]. 

 

Figure 1-1 Potential energy diagram for a reaction with and without a catalyst [2] 

1.2 Historical approach of photocatalysis 

As the catalysts were more developed and the new materials with catalytical properties 

were discovered, also the research of the new catalytic processes and methods were 

approached. One of the new methods of catalysis is photocatalysis, that is basically the 
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use of catalytic materials, but they themselves do not activate the reaction or decrease the 

activation energy required for the reaction to occur. Rather, they must be activated by a 

photon of light to start the reaction. 

The first significant breakthrough in photocatalysis was in 1972. In the paper 

published by Fujishima and Honda the fact that the water photolyzed by illumination of 

TiO2 electrode was demonstrated [3]. What followed after publishing this paper in Nature 

was a series of studies in search of the photocatalytic holy grail. That was to produce H2 

fuel as part of the beginning of the hydrogen economy, a result of the 1973 oil crisis [4]. 

In the 1980s there was an exponential growth of heterogeneous photocatalysis, with 

particular emphasis on the use of nanosized TiO2 particles, which in 2010 alone saw 

several thousand related publications. Other photocatalysts were developed as well, but 

the use of TiO2 as a photocatalyst was in the main interest to all photocatalysis 

researchers [4]. 

1.3 Principle of photocatalysis 

Catalytic reaction takes place on an active site of the catalyst surface. The substrate is 

changed, and the product of this catalytic reaction is formed. In Figure 1-2 the difference 

between a catalyst and a photocatalyst is illustrated. Both of these catalytic reactions are 

heterogeneous (catalyst is in a different phase than reactant). The difference between 

catalytic and photocatalytic reaction is that in a photocatalytic reaction there is no active 

site. The reaction occurs on the surface of the photocatalyst, but the substrate does not 

react with surface. The substrate reacts only with electrons or holes that travelled through 

the volume of the photocatalyst and that were generated by light. What do these two 

catalysis materials have in common is that they did not change during the reaction. 

Eventual degradation of these materials can affect the efficiency of these materials, but 

this depends only on stability of these materials [5]. 

 

Figure 1-2 Difference in mechanism of catalytic and photocatalytic reactions [5] 



13 

 

In photochemistry various reactions are driven by light. For example, in photolysis 

light of high enough energy can be used without any catalyst to activate chemical bonds. 

Photocatalysis is the use of a photon-excited catalyst to accelerate a thermal reaction, in 

which the catalyst should not undergo a permanent transition but is restored to its initial 

configuration. The wavelength of the light should be of high enough energy to excite the 

catalyst, but not necessarily of enough energy for photo-activation of the reactant [6]. 

There are basically two types of photocatalysis, homogeneous photocatalysis and 

heterogeneous photocatalysis. 

1.3.1 Homogeneous photocatalysis 

Homogeneous photocatalysts are materials that have photocatalytic properties and are in 

the same phase as the reactant. One of the homogeneous photocatalysis process is called 

the photo-Fenton reaction and was described for the first time by Henry Fenton in 1894 

[7]. Fenton process is basically degradation of organic substances in the presence of 

ferrous salts. In the presence of inorganic and organic substances, the reaction pathways 

are complicated as the organic substances react in many ways with the OH* radicals 

generated by the photo-Fenton process [8]. 

This very complex photocatalytic reaction is among the most efficient methods to 

generate OH* radicals. Equations (1) and (2) describe the real reaction processes in a very 

simplified manner. Complexes and hydroxides of iron play an important role in these 

reaction cycles [9]. 

 Fe2+
aq + H2O2 → Fe3+

aq + OH− + OH∗ (1) 

 Fe3+
aq + H2O + ℎ𝑣 → Fe2+

aq + H+ + OH∗ (2) 

1.3.2 Heterogeneous photocatalysis 

When a photocatalyst absorbs UV/vis light energy, a transition in electronic state occurs, 

yielding a photo-excited state. Mostly used heterogeneous photocatalytic materials are 

metal oxide semiconductors. These materials are crystalline and possess a so called “band 

gap” which is the energy difference between the highest level of a valence band and the 

lowest level of the conduction band. These bands contain so called electrons and holes. 

Electron is a negatively charged particle. When the electron is excited from its ground 

state a less negative or positive particle will appear in the same place. Hole is often called 

a virtual particle, because it is not a physical particle; it is just a place that lacks an 

electron. These two particles, hole or electron, are often called the charge carriers. The 

nature of active sites (valence and conduction band) created by excitation of crystalline 

catalysts is typically described by holes which are capable of oxidizing a substrate by 

accepting an electron, and electrons which are able to reduce a second substrate. One can 

thus state that two active sites are created upon absorption of one photon [6]. 
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In Figure 1-3 the illustration to describe heterogeneous photocatalysis is presented. 

When photon is absorbed by photocatalytic material, a few events occur. First of all, 

excitation of electron from the valence band to the conduction band takes place and as a 

result a hole is created in the place of its initial state. These particles can travel through 

material and cause different reactions. Bulk or surface recombination can occur and end 

with loss of these active particles. The main purpose for these particles is so that they can 

travel through material separately and cause the oxidation and reduction reactions on 

surface of a crystalline material [6]. 

 

 

Figure 1-3 Heterogeneous semiconductor photocatalysis [10] 

1.4 Applications of photocatalysis 

The focus on development of photocatalysis has brought a huge variety of use for 

photocatalysts. Photocatalysts found its use across a broad range of research areas, 

including especially environmental and energy-related fields, which some of them 

penetrated to the industrial and commercial use [11]. 

Semiconductor photocatalysis with a primary focus on transition oxides as a durable 

photocatalyst has been applied to a variety of problems of environmental interest in 

addition to water and air purification. It has been shown to be useful for the destruction 

of microorganisms such as bacteria and viruses, for the inactivation of cancer cells, odour 

control, photosplitting of water to produce hydrogen and oxygen gas, reduction of 

greenhouse gases such as CO2, fixation of nitrogen, clean-up of oil spills or for production 

of the hydrophobic and self-cleaning substrates [12]. 
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1.4.1 Photocatalytic water splitting 

As stated in Chapter 1.2 the significant breakthrough in photocatalysis found its source 

in the year 1972 and was caused by publication about photolysis of water by illuminating 

TiO2 electrode. 

In the Fujishima and Honda’s [3] pioneering work, the electro-chemical cell they 

constructed for the decomposition of water into hydrogen and oxygen is shown in 

Figure 1-4. When the surface of the TiO2 electrode was irradiated by UV light, as a result 

of a water oxidation reaction, oxygen evolution occurred at the TiO2 electrode. 

Concomitant reduction led to hydrogen evolution at the platinum black electrode. This 

concept, which emerged from the use of photoelectrochemical cells with semiconductor 

electrodes, was later applied to the design of a photocatalytic system using semiconductor 

particles or powders as photocatalysts (Figure 1-3). The electrodes were separated by 

ceramic diaphragm that prevents the unwanted flow of ions. [10] [3] 

 

Figure 1-4 Schematic of "Honda - Fujishima effect" experiment [10] 

Honda and Fujishima then suggested that water can be decomposed by visible light 

into oxygen and hydrogen, without the application of any external voltage, according to 

the following reactions: 

 TiO2 + 2 ℎν → 2 e− + 2 p+ (3) 

 (excitation of TiO2 by light)  

 2 p+ + H2O → ½ O2 + 2 H+ (4) 

 (at the TiO2 electrode)  

 2 e− + 2 H+ → H2 (5) 

 (at the platinum electrode)  
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The overall reaction is: 

 TiO2 + 2 ℎν → ½ O2 + H2 (6) 

To facilitate both the reduction and oxidation of H2O by photoexcited electrons and 

holes, the match of the band gap and the potentials of the conduction and valence bands 

is important. Both the reduction and oxidation potentials of water should lie within the 

band gap of the photocatalyst. The bottom level of the conduction band has to be more 

negative than the reduction potential of H+/H2 (0.00 V vs. normal hydrogen electrode 

(NHE)), whereas the top level of the valence band has to be more positive than the 

oxidation potential of O2/OH- (1.23 V). Figure 1-5 shows the conduction band edge and 

valence band edge of some oxide- based semiconductor materials at pH 0. For correcting 

the values to show valence and conduction band of shown semiconductors at pH 7, it is 

needed to add to y-axis values approximately 0.1 eV. We can see that there are many 

semiconductor systems whose electronic structures match well with the redox potential 

of water into hydrogen and oxygen molecules. The band structure requirement is a 

thermodynamic requirement for water splitting [10]. 

 

Figure 1-5 Energy positions of conducting band and valence band edges at pH 0 for 

selected metal oxide semiconductors [10] 

1.4.2 Photocatalytic reduction of CO2 

CO2 emissions mostly from combustion of fossil fuels have been widely recognized as 

the main source of global warming. The reduction of CO2 has recently been regarded as 

an important research area, not only for solving problems resulting from environmental 

pollution but also for finding ways to maintain carbon resources that are being depleted 

by fossil fuel combustion. The high fuel consumption in modern society will lead to an 

energy crisis if suitable alternative energy sources cannot be found. One possible solution 

for this problem is photocatalytic CO2 reduction which offers a promising way for low 
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cost, clean and environmentally friendly production of fuels by solar energy, with lower 

energy input. [13] 

CO2 is a chemically stable compound due to its carbon oxygen bonds. Its conversion 

to carbon-based fuels requires substantial energy input for bond split. Renewable carbon 

free sources like solar energy provide readily available and continuous energy supply 

required for driving this conversion process. CO2 photocatalytic reduction offers the 

possibility of utilizing captured CO2 to synthesize chemicals and fuels with the aid of 

semiconductor catalysts under light irradiation. Figure 1-6 illustrates the typical 

photocatalytic process [14]. 

 

Figure 1-6 Schematic of semiconductor photocatalysis of CO2 [14] 

Possible CO2 photocatalytic reduction reactions and its products: 

 CO2 + 2e− + 2H+ → HCOOH (7) 

 CO2 + 2e− + 2H+ → CO + H2O (8) 

 CO2 + 4e− + 4H+ → HCHO + H2O (9) 

 CO2 + 6e− + 6H+ → CH3OH + H2O (10) 

 CO2 + 8e− + 8H+ → CH4 + 2H2O (11) 

A suitable photocatalyst for CO2 reduction must fulfil the following several demands: 

(1) multiple electrons must easily migrate from photocatalyst to CO2; (2) photocatalyst’s 

conduction band bottom level must be more negative than the redox potentials of CO2 

and its reduced products (Figure 1-7); (3) reactants such as H2O, CO2 or carbonated 
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species should be adsorbed on the catalyst, so the product molecules could desorb and 

diffuse into the system after the CO2 reduction process; (4) the photogenerated holes on 

the valence band of a semiconductor should be consumed by oxide species such as 

additional sacrificial reagents or H2O. Otherwise, the accumulated holes could be 

annihilated by the photogenerated electrons or force the chemical reactions that consume 

the reduced products of CO2 [15]. 

 

Figure 1-7 Energy diagram of semiconductor photocatalysts used for CO2 reduction [14] 

1.4.3 Photocatalytic water purification 

Due to the environmental importance, variable methods for the removal of contaminants 

from wastewater are required. Traditional methods of removal include coagulation, 

membrane separation and secondary pollutant generation. Recently, one of the major 

problems of water pollutants is the dyes from various industries such as paper, tannery or 

pharmaceutical. These dyes are very hazardous to the biotic organisms. Industrial 

wastewater usually may also contain heavy metals, pesticides, and other organic and 

inorganic compounds. Photocatalysis has emerged promising technology for wastewater 

treatment and is becoming an important part of the degradation process [16]. 

Degradation of pollutants consists of many kinds of reactions after illumination of 

semiconductor particles. Figure 1-8 shows electron reduction of oxygen to OH* radical 

and two-electron oxidation step of water to H2O2 observed in the TiO2 photocatalyst [5]. 

It is clear that photocatalytic water purification process involves a series of steps, which 

includes generation of OH* radicals. These radicals have strong oxidizing power and 

could degrade many organic pollutants as well as convert bioresistant materials into 

harmless products [17]. 
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Figure 1-8 Schematics of TiO2 reduction of oxygen and oxidation of water to H2O2 [5] 

As stated, photocatalytic water treatment involves various pollutant degradation 

processes. A few methods of removal of contaminants from wastewater are listed below. 

 

Water treatment methods: 

 

• Removal of trace metals 

Trace metals including lead, chromium and mercury are considered to be 

highly hazardous to health and thus, the removal of these toxic metals is 

important for human health and water quality. Water treatment-based 

photocatalytic processes include the removal of these heavy metals. The 

photoreduction ability of photocatalysis has also been used to recover 

expensive metals, such as platinum, gold and silver from industrial effluent. 

Heavy metals can be removed from wastewater as small crystallites deposited 

on the surface of the photocatalyst according to the redox process [13]. 

  M𝑛+ + H2O → M0 + 𝑛H+ +
𝑛

4
O2 (12) 

• Removal of inorganic compounds 

Some inorganic compounds are sensitive to photochemical transformation on 

the photocatalytic surface. A wide range of inorganic species, such as nitric oxide, 

bromate, chlorate, halide ions, cyanides, ammonia, nitrites, metal salts and 

organometallic compounds can be removed from water by photocatalytic process. 

TiO2 photocatalytic reactions for removal of toxic inorganics [13]: 

 5O2 + 4H+ + 4CN− → 2H2O + 4CO2 + 2N2 (13) 

 5O2 + 6NH3 → 2N2 + N2O + 9H2O (14) 
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• Degradation of organic pollutants 

Photocatalysis has been used for the transformation of organic compounds 

(carboxylic acids, alcohols and chlorinated aromatics) into harmless products 

including carbon dioxide, water and simple mineral acids. Water contaminated by 

oil substances can be treated with high efficiency by photocatalytic reaction. 

Herbicides and pesticides that may contaminate water, for example 1,1,1-

trichloro-2,2di(4-chlorophenyl)ethane (DDT), have also been successfully 

removed. TiO2 photocatalytic reactions for degradation of organic pollutants 

include [13]: 

 2HOC6Cl5 + 7O2 + ℎ𝜈 → 4HCO2H + 8CO2 + 10HCl (15) 

 (degradation of pentachlorophenol)  

 CCl4 + 2H2O + ℎ𝜈 → CO2 + 4H+ + 4Cl− (16) 

 
(degradation of carbon tetrachloride) 

 
 

Photocatalytic oxidation of organic compounds is of considerable interest for 

environmental applications and in particular for the control and eventual 

destruction of hazardous wastes. Hoffmann et al. [18] reported in their papers the 

completed mineralization (oxidation of organic compounds to CO2, H2O and 

associated inorganic components such as HCl, HBr, SO4
2-, NO3

-, etc.) of a variety 

of aliphatic and aromatic chlorinated hydrocarbons via heterogeneous 

photooxidation on TiO2 and other semiconductor photocatalytic materials. For 

example, ZnO photocatalytic degradation of acetic acid proceeds as follows [18]: 

 CH3COOH + 2O2 + ℎ𝜈 → 2CO2 + 2H2O (17) 

 

Photocatalytic water treatment is very dependent on environmental effects. The 

several environmental effects that affect photocatalytic properties of photocatalyst are 

listed below. 

 

• Wavelength of the used light 

The variation of the reaction as a function of the wavelength follows the 

absorption spectrum of the photocatalyst and corresponds to the photocatalyst 

band gap energy [13]. 

 

• Light intensity 

The apparent rate constant of photodegradation increases with an increase in 

UV irradiation because more photons fall on the photocatalyst, thereby enhancing 

the production of hydroxyl radicals. At low illumination intensity 

(0 - 20 mW/cm2), the degradation rate is of the first order intensity, while at 
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moderately high intensity, the reaction rate increases with an increase in the square 

root of the intensity level because charge carrier (electron-hole pair) separation 

competes with the recombination process [13]. 

 

• pH of polluted solution 

The operating pH affects the isoelectric point and the surface charge of the 

photocatalyst used. The point of zero charge is a condition at which the surface 

charge is zero or neutral and lies in the pH range of 4.5 – 7.0, depending on the 

photocatalyst used. At the point of zero charge there are no electrostatic forces at 

the surface of the photocatalysts and thus, interactions between the photocatalyst 

particles and water contaminants are at a minimum. When the operating pH is 

lower than the point of zero charge, the surface charge for the photocatalyst 

becomes positively charged, thereby increasing electrostatic attraction toward the 

negatively charged compounds. Such polar attractions between the photocatalysts 

and charged anionic organic compounds can intensify adsorption onto the 

photocatalyst surface [13]. 

 

• Temperature 

Because of the photonic activation, the photocatalytic systems do not require 

heating and are operating at room temperature. The true activation energy is nil, 

whereas the apparent activation energy is often very small (a few kJ/mol) in the 

medium temperature range (between 20 and 80 °C). However, at very low 

temperatures (below 0 °C) the apparent activation energy increases. On the other 

hand, when temperature increases above 80 °C and is approaching the boiling 

point of water, the exothermic adsorption of reactants becomes disfavoured and 

tends to become the rate limiting step. Correspondingly, the activity decreases, 

and the apparent activation energy becomes negative. The optimum temperature 

is generally found between 20 and 80 °C. This absence of heating is attractive for 

photo-catalytic reactions carried out in aqueous media and in particular for 

photocatalytic water purification [19]. 

 

• Dissolved oxygen 

In semiconductor photocatalysis for water purification, the pollutants are 

usually organic. The photomineralization of pollutant does not occur unless O2 is 

present. Oxygen is necessary for complete mineralization and does not seem to be 

competitive with other reactants. According to Malato et al. [20] and references 

therein the concentration of oxygen affects the reaction rate, but it seems that the 

effect of concentration is not significant [20]. 
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• Concentration of contaminants 

A high concentration of pollutants in water saturates the photocatalyst surface, 

and thus reduces the photocatalytic efficiency, and in the consequence deactivates 

the photocatalyst [13]. 

1.5 Cuprous oxide as a photocatalyst 

The majority of photocatalytic processes use the TiO2 semiconductor as a photocatalysts. 

In the first breakthrough article published by Honda and Fujishima in Nature 1972 [3] 

they used TiO2 as a photocatalyst. Since then, the TiO2 was and is still used as a major 

photocatalyst in most of photocatalytic applications and processes. Throughout the years 

of research of photocatalysis and development of new photocatalysts a lot of different 

semiconductor (in terms of semiconductor heterogeneous photocatalysis) photocatalysts 

were discovered. These semiconductors have a huge variety of slightly different 

parameters. The main difference of these photocatalysts being band gap and the positions 

of valence and conductive bands in energy diagrams. As seen in Figures 1-5 and 1-7 the 

position of valence and conductive band is important in photocatalytic processes. 

Different photocatalysts may have better properties for use in photocatalytic water 

splitting than in CO2 reduction. 

From the copper metal oxides, the highest potential of use has the monovalent cuprous 

oxide (Cu2O). Cu2O is among the numerous transition metal semiconducting oxides of 

intense interests and has been extensively investigated for its distinctive properties. Cu2O 

is a reddish p-type semiconductor with a direct bandgap of 2.0 - 2.2 eV, which has been 

often researched for application in solar energy converting devices. It has the potential to 

form a solar cell by combination with a suitable n-type semiconductor. A major attraction 

of Cu2O is that it has low toxicity and good environmental acceptability, is relatively 

inexpensive, plentiful, and readily available. Cu2O has been widely exploited for use in 

the fields of photocatalyst, solar energy conversion, antifouling coatings, photoelectrode 

in electrochemical cells, water-splitting, and water treatment materials [21]. 
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Figure 1-9 Cu2O powder 

Band gap of cuprous oxide corresponds to wavelength 563 nm. That means the 

wavelength of photon must be 563 nm and lower to generate an electron-hole pair. In 

solar spectrum it is in part with highest fraction of solar energy and goes down to UV part 

of spectrum with higher energy irradiation. For comparison with TiO2 which has the band 

gap energy 3.2 eV and must be irradiated by light with wavelength of 387 nm. So, we can 

use larger part of solar spectrum by using Cu2O as a photocatalyst. Instead of TiO2 which 

works more in UV part of solar spectrum. [22]  

Based on the Pourbaix diagram of copper the Cu2O solid phase is very stable as it is 

in the water stability region and does not corrode or passivate. Cu2O is most stable in 

neutral and alkaline water solutions. At a higher potential Cu2O oxidizes to CuO. CuO is 

also semiconductor but has negative influence on photocatalytic behaviour of Cu2O. 

 

Figure 1-10 Pourbaix diagram of copper at 25 °C [23] 
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Cu2O is known to be the only stable copper metal oxide with the oxidation state +1. 

Cu2O has the mineral cuprite crystal structure, in which the copper (I) cations, Cu+, are 

arranged into a face centred cubic sublattice and the oxygen anions, O2−, reside on the 

sites of a body-centred cubic sublattice. Each O2− is tetrahedrally coordinated by Cu+, 

whereas the coordination of Cu+ ions is linear [24]. 

 

Figure 1-11 Crystallographic structure of Cu2O [24] 

Table 1-1 Crystallographic data for Cu2O [24] 

Formula Space group Lattice parameter [Å] Ion Position x y z 

Cu2O Pn3̅m, No. 224 a = 4.30 O2- 2a 0 0 0 

 cubic  Cu+ 4b 1/4 1/4 1/4 

1.5.1 Cu2O synthesis 

For basic synthesis of Cu2O the reduction of CuSO4 method is described. Zhang et al. [25] 

prepared Cu2O nanoparticles by reducing CuSO4 using ascorbic acid at room temperature. 

Most of the synthetic strategies to preparation of Cu2O involve surfactants or template 

reagents. Zhang et al. successfully prepared Cu2O nanoparticles without using any 

template or surfactant [25]. 

All reagents used in Zhang et al. work were of analytical grade and were used without 

any further purification. In a typical procedure, 40 ml (0.5 mol/l) aqueous solution of 

NaOH were added into 20 ml of aqueous solution of CuSO4 (0.5 mol/l) with stirring. 

Then, 50 ml (0.1 mol/l) of ascorbic acid aqueous solution was dropwise added into the 

above solution with vigorous stirring at room temperature. After 30 minutes a red 

precipitate was observed. The precipitate particles were separated from the solution by 

centrifugation at 1000 rpm for 15 min. The product was washed by distilled water and 

absolute ethanol. The final product was dried in vacuum at 60 °C (more than 6 h) [25]. 
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2. PRACTICAL PART AND EXPERIMENTS 

Main focus of the practical part of this thesis was to synthesize Cu2O powder and do a 

various analytical methods to prove the quality of synthesized Cu2O powder. The analysis 

were XRD, EDX and SEM. To prove the photocatalytic activity of synthesized powder 

the UV/vis spectroscopy was used to measure the absorption of polluted water. 

2.1 Synthesis of Cu2O 

The synthesis of Cu2O was based on Zhang et al. method (Chapter 1.5.1). The Cu2O 

powder was synthesized from CuSO4 by a reduction reaction. During the work on this 

diploma thesis a few batches of Cu2O were prepared with all of them proceeding with the 

same preparation method. 

2.1.1 Used chemicals 

The amount of used chemicals was determined based on approximated value of the 

required amount of the product Cu2O. Chemicals listed in Table 2-1 were used for 

preparation of 5g of the Cu2O powder. 

Table 2-1 List of chemicals and their concentrations used for Cu2O preparation 

 Volumes Weight of raw material Molar concentration 

NaOH 400 ml 24 g 0.5 mol/l 

CuSO4 200 ml 25 g 0.5 mol/l 

Ascorbic acid 500 ml 8.8 g 0.1 mol/l 

2.1.2 Synthesis process 

All the used chemicals listed in Table 2-1 were mixed before the preparation. NaOH and 

CuSO4 are very stable chemicals and do not need to be dissolved just before the 

preparation, but the ascorbic acid is oxidized in water so it cannot be prepared long before 

the Cu2O preparation. 

As in Zhang et al. paper the aqueous solution of NaOH was added into CuSO4 solution 

with stirring. Formation of the precipitate was observed immediately (Figure 2-1 A, B). 

The precipitate seen on Figure 2-1 B is most likely a form of CuOH. 

  

Figure 2-1 Mixing NaOH solution with CuSO4 solution 

(B) (A) 
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After the precipitate was mixed, homogeneous ascorbic acid aqueous solution was 

dropwise added into the above solution with vigorous stirring at room temperature. The 

bluish solution started to change colour from blue to green to orange and after 20 minutes 

the red precipitate was observed (Figure 2-2 A-F).  

  

  

  

Figure 2-2 Mixing the solution with ascorbic acid 

After 30 minutes the stirring was stopped, and the red precipitate immediately went 

to the bottom of the beaker. The residual solution with the precipitate was filtered with 

a glass sinter filtration funnel and washed with distilled water and absolute ethanol. 

Washed powder was then dried in vacuum at 60 °C for 8 hours. The synthesized powder 

was then weighted and ready for further analysis. 

2.2 Analysis of synthesized cuprous oxide powder 

Various analytical methods were used to determine the purity of the photocatalyst, the 

efficiency of synthesis and the photocatalytic activity of the synthesized Cu2O powder.  

(A) (B) 

(C) (D) 

(E) (F) 
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2.2.1 XRD (X-ray powder diffraction) 

The XRD analysis shows that the cuprous oxide powder is pure. Comparing the measured 

spectrum with database of XRD spectra of various materials it was confirmed that the 

synthesized material was 100 % Cu2O (mineral cuprite). The crystallographic data 

measured by XRD analysis are the same as the theoretical crystallographic data 

mentioned in Chapter 1.5. Cubic facet with space group Pn3̅m, No. 224. Lattice parameter 

a=b=c=4.268 Å. Size of crystallites was 1.55 µm and the powder was crystalline with 

absence of any nanoparticles. None other crystalline phases are significantly visible so it 

is obvious that other crystalline phases could be present only at a maximum of few 

percent. [The XRD spectra were measured by Ing. L. Chladil, Ph.D. on X-ray 

diffractometer Rigaku] 

 

 

Figure 2-3 XRD spectrum of Cu2O powder 

2.2.2 SEM (Scanning electron microscope) 

SEM image (Figure 2-4) shows the structure of Cu2O powder. The size of the Cu2O 

particles varies from 200 nm to 2 µm. From the analysis of SEM image, it is clear that 

the particles seem round but after further investigation it is visible that the particles are 

actually edge- and corner-truncated (Figure 2-5 A, B). 

Edge- and corner-truncated octahedra have more edges and corners which could 

improve photocatalytic activity. Because the Cu2O crystals have a strong adsorption 

capacity for oxygen molecules, the electrons available on the facets of the Cu2O crystals 

may be scavenged by adsorptive O2 to yield O2-, which further reacts with H2O and 

electrons to produce hydrogen peroxide (H2O2) and the hydroxyl radical (OH*) which 

can fuel any photocatalytic process [26]. 
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Figure 2-4 SEM image of Cu2O powder 

 

  

Figure 2-5 Cu2O particles and its morphology 

 

 

(1 1 1) 

(1 0 0) (1 1 0) 

(A) (B) 

(1 0 0) (1 1 0) 

(1 1 1) 
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2.2.3 EDX (Energy-dispersive X-ray spectroscopy) 

EDX analysis is complementary analysis to SEM. Based on EDX measurement the purity 

and elemental structure was achieved. Figure 2-6 B, C shows the distribution of the 

elements copper and oxygen. It is clearly visible that the element distribution corresponds 

with the SEM image of the same area (Figure 2-6 A). From EDX analysis calculations 

the atomic percentage of copper and oxygen elements was determined. Copper with 

atomic percentage 67.9 % and oxygen with 32 %. The rest 0.1 % could be carbon as it is 

ubiquitous element. This detection corresponds with XRD analysis and shows that the 

ratio of copper and oxygen is 2:1 which represents the Cu2O molecule. 

   

Figure 2-6 EDX images of Cu2O powder 

 

Figure 2-7 EDX spectrum of Cu2O powder 
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2.3 Photocatalytic activity 

The photocatalytic properties of synthesized Cu2O powder were measured on 

photocatalytic degradation of methyl orange dye. Methyl orange dye serves as model of 

organic pollutant. Water purification photocatalysis process is described in 

Chapter 1. 4. 3. Methyl orange dye degradation reactions are described below [26]. 

 Cu2O + ℎ𝑣 →  e−(CBCu2O) + h+(VBCu2O) (18) 

 2H2O →  O2 + 4H+ + 4e− (19) 

 O2 + e− →  O2
− (20) 

 O2 + 2H2O + 2e− → H2O2 + 2OH− (21) 

 H2O2 + O2
− → OH∗ + OH− + O2 (22) 

 OH∗ + MeO → degradation products (23) 

For the photocatalytic activity measurement, the UV/vis spectroscopy method was 

used. The spectrophotometer Helios Delta by ThermoFisher Scientific was used to 

measure the visible absorption spectrum of the methyl orange solution. The degradation 

rate of the methyl orange was measured by the decrease of absorption. 

2.3.1 Photocatalytic reactor 

The whole measurement system contains a beaker with methyl orange dye solution, a 

pipette for taking the samples, a cuvette that holds the sample of a solution for the 

measurement of absorption and a light source that drives the photocatalytic reaction. The 

light source was assembled from a LED light strip that contained 30 LEDs with the total 

power of 7.2 W, which approximately corresponds with the power of a 70 W incandescent 

lightbulb.  

The concentration of methyl orange solution was 10 mg/l. With continuous stirring 

the Cu2O powder with concentration of 4 g/l was poured into the solution. All those steps 

of measurement were done in dark as to not start the photocatalytic reaction 

unintentionally. First sample was taken and the absorption of methyl orange solution with 

Cu2O powder was measured. The first absorption spectrum of methyl orange was used as 

a reference. Simultaneously with the absorption measurement the source of light was 

turned on and the photocatalytic degradation of methyl orange was started. The 
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measurement of absorption of methyl orange solution was done every 30 minutes for 

3 hours.  

2.3.2 Photocatalytic activity measurement results 

For the determination of photocatalytic activity, the peak of methyl orange dye at 464 nm 

was observed. Figure 2-8 shows clearly the descent of the whole absorption spectra in 

time. The last two (the lowest two) absorption spectra were taken after the measurement. 

The second lowest absorption spectrum was measured after the Cu2O powder suspended 

in methyl orange dye solution sank to the bottom of the beaker. It is seen that the dissolved 

Cu2O powder affects the measured absorption spectra, but when the Cu2O powder settles 

down, the purified solution of methyl orange is purer. The last absorption spectrum was 

taken after filtration of the residual Cu2O powder.     

 

Figure 2-8 Absorption spectra of methyl orange dye with Cu2O photocatalytic powder 

A better presentation of the photocatalytic degradation of methyl orange is a 

degradation ratio. It is calculated from absorption data at 464 nm by following formula: 

 

 𝐷 =
𝐴0 − 𝐴𝑡

𝐴0
∙ 100% (24) 

 

Where A0 is the original absorption of methyl orange dye solution and AT is the 

absorption of methyl orange dye after irradiation for a certain time. Table 2-2 shows the 

degradation data that were calculated from absorption data shown in Figure 2-8 at the 

wavelength of 464 nm. 
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Table 2-2 Calculated degradation data 

Time [min] 0 30 60 90 120 150 180 Settled Filtered 

Absorption [-] 1.42 1.05 0.74 0.53 0.41 0.29 0.22 0.096 0.032 

Degradation [%] 0 25.9 48.0 62.4 71.1 79.3 84.2 93.2 97.7 

 

 

Figure 2-9 Methyl orange dye before (A) and after (B) photocatalytic degradation 

2.3.3 Concentration of photocatalyst dependence 

Photocatalytic reaction rate is highly dependent on concentration of used photocatalyst. 

As seen in Figure 2-10 this dependence should initially increase linearly with 

photocatalyst concentration, as depicted from point A to B. This initial linear behavior is 

due to the more absorbed photons. When transitioning from B to C, the maximum rate is 

reached and stays constant, which corresponds to the optimal light absorption. In some 

cases, the photocatalytic rate may decrease due to the reduced penetration depth of the 

incident light [27]. 

 

Figure 2-10 Experimental reaction rate of the photocatalyst vs. the concentration of a 

photocatalyst [27] 

Measurement of degradation ratio dependence on concentration of photocatalyst 

confirms the theoretical reaction rate. Figure 2-11 shows the calculated degradation ratio 

values of four different concentrations of Cu2O powder. As said in Hoque work [27] the 

experimental photocatalytic reaction rate should be linear. The measured dependence is 

(B) 

(A) 
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linear with lower concentrations of photocatalyst, and the logarithmic regression curve is 

being flattened at the higher concentrations of photocatalyst. 

 

Figure 2-11 Degradation ratio dependence on concentration of Cu2O photocatalyst 

2.3.4 Recyclation of photocatalyst 

To prove the chemical stability of Cu2O powder in water environment the same sample 

of powder was used 4 times. Every recyclation cycle the absorption was measured and 

the degradation ratio was calculated. 

The recyclation cycle was composed of a few steps. After the initial measurement of 

photocatalytic activity, the used catalyst was filtered via glass sinter funnel and vacuum 

dried at 85 °C for 3 hours. After the drying the photocatalytic measurement was repeated. 

This procedure was used for every recyclation cycle.  

 

Figure 2-12 Recyclation of Cu2O powder 

Figure 2-12 shows the degradation ratio of methyl orange dye with 3 recyclation 

cycles of Cu2O powder. It is clear that the first 3 measurements end with mostly same 

value of degradation ratio. The fourth cycle is starting to decrease the degradation ratio 
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of methyl orange dye. This measurement proves that the photocatalytic Cu2O powder is 

very stable in water environment. 

2.4 Photocatalytic system design 

For more effective measurement of photocatalytic degradation of methyl orange dye, the 

photocatalytic system was designed. The photocatalytic system contains described 

photocatalytic chamber, lamp with fixed light spectrum, UV/vis spectrometer connected 

with the computer for later analysis, beaker with mixer that contains water solution of 

methyl orange dye and a pump that drives the analyzed water through the whole 

measurement system. 

 

Figure 2-13 Photocatalytic system schematic 

Photocatalytic chamber from Figure 2-13 is the most important part of the whole 

photocatalytic system. The photocatalytic chamber serves as the reactor for 

photocatalysis. This chamber holds substrate with the deposited layer of photocatalyst. 

The whole chamber consists of 3 parts: cover, gasket and the holder for the substrate. All 

of the parts were 3D printed. In Figure 2-14 the photocatalytic chamber is shown. The top 

part also holds a glass substrate that has to be transparent so the photons of light can react 

with the photocatalytic layer. 
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Figure 2-14 Photocatalytic chamber 

 

This system was proven wrong after whole development as it is not large enough to 

achieve any reasonable high degradation ratio of methyl orange dye. The better method 

of deposition of photocatalytic material or enlargement of the photocatalytic chamber 

must be developed to achieve higher degradation ratio. The largest amount of 

photocatalyst for this photocatalytic system was still 10 times lower to show any 

significant degradation ratio results. 
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3. CONCLUSION 

This thesis is divided into two parts. The first part of the thesis contains theoretical study 

of photocatalysis. The principle of photocatalysis is described with two main types of 

photocatalysis, homogeneous and heterogeneous. Heterogeneous photocatalysis is 

explained in more detail as it is the process that the metal oxide photocatalysts in further 

work use. In theoretical part of this thesis the applications of photocatalysts are 

represented. Those applications are water splitting, CO2 reduction to fuel and 

photocatalytic water treatment. Water treatment application is described more explicitly 

because the practical part of this thesis is focused on photocatalytic organic pollutants 

degradation. Next section of theoretical part characterizes the environmental effects on 

photocatalytic properties of photocatalytic materials. At the end of the theoretical part, 

the properties of cuprous oxide as a photocatalyst are defined. The advantages of cuprous 

oxide in contrast to other copper oxides and titanium dioxide as the most used 

photocatalyst in the world are covered. 

Section of the theoretical part that describes the photocatalytic properties of cuprous 

oxide also describes synthesis of cuprous oxide that is used in the first part of the practical 

part and experiments. The cuprous oxide used as the material of interest in this thesis was 

synthesized by reduction of cupric sulfate. As the reduction reagent an ascorbic acid was 

used. The synthesized cuprous oxide powder was very pure and good quality as the results 

of the conducted analysis show. XRD and EDX analysis confirms that the synthesized 

powder does not contain any impurities. SEM images of cuprous oxide powder show the 

morphology of the powder and with comparison to Tang et al. work [26] the synthesized 

cuprous oxide powder has the best morphology for organic pollutants degradation. The 

last used analysis was UV/vis spectroscopy and with this analysis the previous statement 

about high potential of organic pollutants degradation was proven. Results from UV/vis 

spectroscopy shows high degradation ratio of methyl orange dye. Methyl orange dye 

serves as a model to organic pollutants. The highest degradation ratio of methyl orange 

dye was at 97.7 %, which is comparable to the degradation ratio achieved by Zhang et al. 

[25] that uses the same synthesis method. UV/vis spectroscopy analysis also proved that 

the synthesized powder is very stable in water environment. After 4 cycles of use of same 

sample of cuprous oxide powder the degradation ratio decreased only about 

approximately 10 %. 

Last section of this thesis was a brief introduction to photocatalytic system. This 

system was designed as an experimental equipment to an effective measurement of the 

photocatalytic degradation of methyl orange. Unfortunately, after the whole development 

of this equipment the use of the photocatalytic system was proven wrong. The designed 

system was not efficient enough to achieve any significant degradation ratio of methyl 

orange dye. The main problem was the deposition of cuprous oxide powder in the base 

of the reaction vessel. The amount of deposited photocatalyst was not high enough.  
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SYMBOLS AND ABBREVIATIONS 

Abbreviations: 

CB Conduction Band 

VB Valence Band 

NHE Normal Hydrogen Electrode 

XRD X-ray Powder Diffraction 

EDX Energy-Dispersive X-ray Spectroscopy 

SEM Scanning Electron Microscope 

LED Light-Emitting Diode 

Symbols: 

D degradation ratio (%) 

A0 original absorption (-) 

AT absorption after certain time (-) 


