

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

DEPARTMENT OF BIOMEDICAL ENGINEERING

ANALÝZA MOZKOVÝCH DRAH POMOCÍ POKROČILÝCH DIFUZNÍCH METOD

ANALYSIS OF BRAIN TRACKS USING ADVANCED DIFFUSION METHODS

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Martina Daňková

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Lubomír Vojtíšek, Ph.D.

BRNO 2024

Bakalářská práce

bakalářský studijní program Biomedicínská technika a bioinformatika

Ústav biomedicínského inženýrství

Studentka: Martina Daňková Ročník: 3

ID: 238521 *Akademický rok:* 2023/24

NÁZEV TÉMATU:

Analýza mozkových drah pomocí pokročilých difuzních metod

POKYNY PRO VYPRACOVÁNÍ:

1) Proveďte literární rešerši týkající se pokročilých metod difuzního MRI zobrazování (Q-ball, HARDI, CHARMED, NODDI, CSD). 2) Proveďte rešerši existujících softwarových nástrojů pro zpracování dat z těchto metod. 3) Vybrané softwarové nástroje otestujte a na souboru reálných dat ověřte jejich funkčnost. 4) Na základě dostupných nástrojů implementujte funkční řešení pro analýzu dat z pokročilých difuzních metod. Vypracujte náležitou dokumentaci. 5) Zhodnoťte a diskutujte výsledky.

DOPORUČENÁ LITERATURA:

[1] Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625-632.

[2] Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Van Wedeen J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48(4):577-582.
[3] Tournier, JD., Calamante F, Gadian, DG & Connelly A, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage, 2004, 23, 1176-1185

Termín zadání: 5.2.2024

Termín odevzdání: 29.5.2024

Vedoucí práce: Ing. Lubomír Vojtíšek, Ph.D.

doc. Ing. Jana Kolářová, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRAKT

Cílem této bakalářské práce je analýza mozkových drah pomocí pokročilých metod difuzní magnetické rezonance. V rámci literární rešerše jsou popsány principy difuzně váženého zobrazování, metody náběru a zpracování difuzně vážených dat a dostupné softwary pro zpracování a analýzu těchto dat. Praktická část práce se zabývá návrhem funkčního řešení pro analýzu difuzně vážených dat, které je otestováno na zmenšeném datasetu obsahujícím zdravé kontroly a pacienty s roztroušenou sklerózou. Na vzorku subjektů je provedeno kompletní předzpracování, traktografická analýza, sestavení konektomu a analýza odlišnosti konektomů zdravých a nemocných subjektů.

KLÍČOVÁ SLOVA

magnetická rezonance, difuzně vážené zobrazování, mozkové dráhy, traktografie, konektom, MRtrix3, roztroušená skleróza

ABSTRACT

The aim of this bachelor's thesis is to analyze brain pathways using advanced diffusion magnetic resonance methods. The literature review describes the principles of diffusion-weighted imaging, methods of data collection and processing, and available software for analyzing diffusion-weighted data. The practical part of the thesis focuses on designing a functional solution for the analysis of diffusion-weighted data, which is tested on a reduced dataset containing healthy controls and patients with multiple sclerosis. A complete preprocessing, tractographic analysis, and connectome construction are performed on a reduced sample of healthy and ill patients. Additionally, an analysis of the differences between the connectomes of the healthy and the ill is conducted.

KEYWORDS

magnetic resonance, diffusion-weighted imaging, tractography, MRtrix3, connectome, multiple sclerosis

Vysázeno pomocí balíčku thesis verze 4.09; https://latex.fekt.vut.cz/

DAŇKOVÁ, Martina. *Analýza mozkových drah pomocí pokročilých difuzních metod*. Bakalářská práce. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav biomedicínského inženýrství, 2024. Vedoucí práce: Ing. Lubomír Vojtíšek, PhD.

Prohlášení autora o původnosti díla

Jméno a příjmení autora:	Martina Daňková
VUT ID autora:	238521
Typ práce:	Bakalářská práce
Akademický rok:	2023/24
Téma závěrečné práce:	Analýza mozkových drah pomocí pokro- čilých difuzních metod

Prohlašuji, že svou závěrečnou práci jsem vypracovala samostatně pod vedením vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autorka uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušila autorská práva třetích osob, zejména jsem nezasáhla nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědoma následků porušení ustanovení §11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Brno

podpis autorky*

^{*} Autor podepisuje pouze v tištěné verzi.

PODĚKOVÁNÍ

Ráda bych poděkovala vedoucímu bakalářské panu Ing.Lubomíru Vojtíškovi, Ph.D. za odborné vedení, konzultace v kteroukoli denní dobu a trpělivost. Dále děkuji výzkumnému zařízení MAFIL podporovanému projektem MEYS CR (LM2023050 Czech-BioImaging), který je součástí Euro-BioImaging (www.eurobioimaging.eu) ALM a Medical Imaging Node (Brno, CZ), za jejich podporu a poskytnutí dat prezentovaných v této práci.

Obsah

Ú	Úvod		19	
1	Úvo	od do o	difuze a difuzně váženého zobrazování	21
	1.1	Sezna	m základních pojmů	21
	1.2	Difuze	2	22
		1.2.1	Gaussovská izotropní difuze = volná difuze	22
		1.2.2	Negaussovská izotropní difuze	22
		1.2.3	Gaussovská anizotropní difuze = bráněná difuze	22
		1.2.4	Negaussovská anizotropní difuze = omezená difuze \ldots .	22
	1.3	Náběr	difuzně vážených dat	23
2	Pok	cročilé	metody difuzního MRI zobrazování	25
	2.1	Metoo	ly náběru dat \ldots	25
		2.1.1	Základní náběr při jedné b-hodnotě	25
		2.1.2	HARDI	25
		2.1.3	Free waveform gradient	26
	2.2	Metoo	ły zpracování dat	26
		2.2.1	DTI (Diffusion tensor imagining)	26
		2.2.2	CHARMED = composite hindered and restricted model of	
			diffusion \ldots	28
		2.2.3	NODDI = Neurite orientation dispersion and density imaging	30
		2.2.4	DKI - diffusion kurtosis imaging	32
		2.2.5	$IVIM = intervoxel incoherent motion \dots \dots \dots \dots \dots \dots \dots$	33
		2.2.6	Q-ball imagining	34
		2.2.7	CSD = constrained spherical deconvolution	34
2.3 Traktografie		ografie	36	
		2.3.1	Deterministická traktografie	36
		2.3.2	Probabilistická traktografie	36
		2.3.3	Anatomicky omezená traktografie (ACT)	37
3	Sof	twarov	é nástroje pro zpracování dat z pokročilých metod	39
	3.1	MRtri	ix3	39
		3.1.1	Formát mif	39
		3.1.2	MRview	39
		3.1.3	Preprocessing	39
		3.1.4	CSD	40
		3.1.5	Ostatní nástroje pro traktografii	40

		3.1.6 Connectomestats	40
	3.2	FSL (FMRIB Software Library)	41
		3.2.1 FSLeyes	41
		3.2.2 FDT - FMRIB's diffusion toolbox	41
	3.3	Freesurfer	42
		3.3.1 recon-all	42
4	Ově	ření funkčnosti vybraných nástrojů	43
	4.1	Převod do formátu *.mif	43
	4.2	Potlačení šumu	43
	4.3	Odstranění artefaktů	43
5	Imp	lementace funkčního řešení pro zpracování dat z DWI metod	45
	5.1	Popis datasetu	45
		5.1.1 Relaps-remitentní roztroušená skleróza	45
	5.2	Jednotlivé kroky zpracování	46
		5.2.1 Odstranění přebytečných dat	46
		5.2.2 Konverze dat	46
		5.2.3 Preprocessing	47
		5.2.4 Traktografie	48
		5.2.5 Konektom	54
	5.3	Statistické zhodnocení konektomu	57
6	\mathbf{Disl}	kuze výsledků	61
Zá	ivěr		63
Li	terat	ura	65
Se	znan	n symbolů a zkratek	73
\mathbf{A}	Pře	hled použitých skriptů	77
в	Čísl	ování mozkových regionů	79

Seznam obrázků

2.1	Schématické znázornění designu free waveform gradientu	26
2.2	Model DTI elipsoidu	27
2.3	Pojetí dvou oddílů vody ve tkání dle CHARMED	29
2.4	Ukázka modelu CHARMED na vybraném ROI 	30
2.5	NODDI	31
2.6	Vliv IVIM a kurtózy na útlumsignálu při extrémních b-hodnotách $\ .$	32
2.7	Znázornění principu Funk-Radonovy transformace	35
2.8	Konvoluce rozložení vláken a signálové odpovědi na jedno vlákno	35
5.1	Srovnání masek pro ACT	48
5.2	DWI snímky před a po předzpracování	50
5.3	FOD jednotlivých tkání	51
5.4	Maticová vizualizace konektomu \hdots	56
5.5	Základní MR view vizualizace konektomu 	57
5.6	MR view vizualizace konektomu s anatomickým zobrazením uzlů $\ . \ .$	58
5.7	M Rview vizualizace konektomu s anatomickým zobrazením uzlů i traktů	58
5.8	MR view vizualizace konektomu proti anatomickému snímk u $\ \ .\ .\ .$	58
5.9	MRview vizualizace pouze traktů, axiální pohled	59
5.10	MRview vizualizace pouze traktů, sagitální pohled	59
6.1	Heatmapa p-hodnot	62

Seznam tabulek

5.1	Soubory sloužící jako vstupy a výstupy konverze dat	47
5.2	Soubory sloužící jako vstupy a výstupy během preprocessing u $\ .\ .$.	49
5.3	Soubory sloužící jako vstupy a výstupy během traktografie $\ . \ . \ .$	53
5.4	Soubory sloužící jako vstupy a výstupy při vytváření konektomu $\ . \ .$	55

Úvod

Zobrazování pomocí magnetické rezonance (MRI) je moderní neinvazivní zobrazovací technika nevyužívající ionizující záření. MRI je založeno na jevu nukleární magnetické rezonance vodíkových jader. Jejími hlavními výhodami je možnost zobrazit měkké tkáně s velmi dobrým kontrastním rozlišením, čehož se využívá zejména při zobrazování orgánů či kloubů. [1].

Tato bakalářská práce se zabývá konkrétně difuzně váženým zobrazováním (DWI), které má široké uplatnění především v neurovědním výzkumu, ale též v klinické praxi, kde se využívá pro diagnostiku ischemie mozku, nádorů měkkých tkání, schizofrenie či parkinsonovy choroby [2]. DWI využívá vhodně aplikovaných gradientů magnetického pole tak, aby bylo umožněno zobrazení pohybu molekul vody, díky čemuž můžeme zobrazit strukturu tkáně, která je tímto pohybem kopírována. Tento jev je klíčový pro analýzu uspořádání mozkových vláken.

V DWI existuje nespočet metod náběru a zpracování dat, každá se svými specifickými parametry a možnostmi využití. Cílem této práce je seznámit se s problematikou náběru a zpracování DWI dat a pomocí dostupných nástrojů implementovat funkční řešení pro sestavení konektomu pro data pořízená na zdravých subjektech a na pacientech trpících roztroušenou sklerózou.

Tato bakalářská práce je členěna do šesti částí. V první kapitole jsou představeny základní pojmy a principy difuzně váženého zobrazování. Vybrané metody náběru dat a jejich následného zpracování jsou uvedeny v kapitole dva. Ve třetí kapitole jsou popsány nástroje pro zpracování difuzně vážených dat. Čtvrtá kapitola pojednává o testování vybraných softwarových nástrojů pro předzpracování dat. V následující kapitole je popsáno řešení pro analýzu difuzně vážených dat, zahrnující jejich předzpracování, traktografickou analýzu a sestavení konektomu. Výstupy v podobě konektomů jsou vizualizovány s využitím různých nástrojů. Následně jsou porovnány konektomy zdravých kontrol a pacientů s roztoušenou sklerózou. V poslední kapitole jsou diskutovány výsledky.

1 Úvod do difuze a difuzně váženého zobrazování

V této kapitole budou představeny základní pojmy a principy týkající se difuzně váženého zobrazení – podstata difuze a její typy a dále princip náběru difuzně vážených dat.

1.1 Seznam základních pojmů

V této podkapitole jsou uvedeny a vysvěleny některé pojmy, které jsou klíčové pro pochopení dalšího textu.

- **Pixel** základní element 2D obrazu
- Voxel základní element 3D obrazu
- Fixel 5D element reprezentující populaci vláken v daném voxelu. Voxel může obsahovat více fixelů, nebo i žádný jejich počet odpovídá počtu vláken procházejících příslušným voxelem. Fixel nese 3D informaci o poloze (příslušnost k danému voxelu) a dále 2D informaci o příslušném vláknu jeho úhlovou orientaci a velikost. [3] [4]
- **ODF** orientačně-distribuční funkce (orientation distribution function). Jedná se o matematický model používaný k popisu distribuce a orientaci struktur v prostoru.
- **dODF** difuzní orientačně-distribuční funkce (diffusion orientation distribution function). dODF popisuje difuzi v různých směrech.
- fODF vláknová orientačně-distribuční funkce (fibre orientation distribution function). fODF představuje rozložení samotných vláken, nikoli difuzních parametrů. [5]
- Parametrická mapa obraz, kde barva pixelů zobrazuje kvantitativní informaci o měřeném parametru, v MRI to mohou být relaxační časy T1, T2, protonová hustota, míra difuze a jiné. [6]
- **PVE** vliv částečného objemu (partial volume effect). Zkreslení vyskytující se při MRI zobrazování v momentě, kdy je ve voxelu přítomen více než 1 druh tkáně. Velikost výsledného signálu z daného voxelu pak nezáleží jen na typech tkání, ale také na jejich procentuálním zastoupení ve voxelu. [7]
- ROI oblast zájmu (region of interest) při snímání či analýze.[10]

1.2 Difuze

Difuze je neustálý náhodný pohyb molekul vody hnaný jejich vlastní termální energií. [11]. Difuzi rozdělujeme dle míry volnosti a směrového omezení na několik druhů:

1.2.1 Gaussovská izotropní difuze = volná difuze

Popisuje náhodný pohyb částic v dostatečně velkém, symetrickém (ideálně kulovitém) prostoru bez překážek. Difundující molekuly budou rozprostřeny v prostoru rovnoměrně ve všech směrech a jejich koncentrace bude klesat se vzdáleností od středu dle normálního rozložení. Praktickým příkladem jsou částice čaje ve velkém hrnku horké vody, v biologických tkáních můžeme tento typ difuze pozorovat v mozkomíšním moku.[11]

1.2.2 Negaussovská izotropní difuze

Popisuje částice difundující v omezeném prostoru, ve kterém jsou navíc překážky, které ovlivňují směr difuze. Příkladem z biologické tkáně je tentokrát difuze vody uvnitř buněk – v malém prostoru, kde navíc pohybu molekul brání organely.[11]

1.2.3 Gaussovská anizotropní difuze = bráněná difuze

Tento typ difuze popisuje pohyb ve velkém prostoru bez překážek, který je ale výrazně větší v jednom směru (například úzký vysoký válec s vodou). Pravděpodobnost pohybu molekul ve směru delšího rozměru je větší než pravděpodobnost pohybu kolmo na něj.[11]

1.2.4 Negaussovská anizotropní difuze = omezená difuze

Je velmi podobná gaussovské anizotropní difuzi, ale probíhá v mnohem menším prostoru. Příkladem je difuze vody v axonech bílé hmoty mozkové – pro molekuly vody je energeticky výhodnější se pohybovat ve směru vlákna oproti pohybu kolmo na něj. Pohyb mezi vláknem a okolním prostorem je navíc ztížen přítomností lipidové myelinové pochvy. Rozložení difuze molekul vody zde kopírují tvar vláken a negaussovská anizotropní difuze v axonech nám umožňuje jejich zobrazení a je tedy základem traktografie. [11]

1.3 Náběr difuzně vážených dat

Při pořizování DWI snímků pracujeme se dvěma gradienty, které jsou přidány k standartní sekvenci (jako je například spin–echo). Principem náběru difuzních dat je, že po aplikaci prvního gradientu se spiny protonů rozfázují a po aplikaci druhého gradientu se opět sfázují. Pokud protony mezi těmito dvěma gradienty zůstanou na stejném místě, budou jejich spiny dokonale sfázovány, a nedojde k žádnému útlumu signálu. Pokud se ale proton posune, nedojde k opětovnému sfázování spinu, což má za následek útlum signálu, který se projeví jako tmavé místo na snímku. K útlumu signálu ovšem dochází pouze pokud difuze probíhá ve směru gradientu. Existují dvě možnosti jak rozfázování spinů a jejich opětovné sfázování provést. První variantou je použití, dvou gradientů stejné velikosti i stejného trvání, ale opačného směru. Nevýhodou tohoto přístupu je, že výsledek bude zkreslen nehomogenitou magnetického pole. Tomuto problému se můžeme vyhnout použitím druhého přístupu, který je využívaný v praxi. Aplikujeme první gradient, následně inverzní RF pulz, který spiny otočí, a poté opět gradient stejné velikosti, trvání i směru jako první gradient, který otočené spiny převrátí nazpět. [1] [5]

Obdobně jako jsou při klasickém MRI nastaveny různé TE časy, důležitým akvizičním parametrem je b-hodnota. b-hodnota je parametr určující, jak silně se budou projevovat efekty difuze během snímkování. Velikost b-hodnoty se odvíjí od několika parametrů použité sekvence – roste kvadraticky s velikostí použitých gradientů, délkou jejich trvání i časovým rozestupem mezi jejich sepnutím, viz rovnice 1.1.

$$b = \gamma^2 G^2 \delta^2 (\Delta - \delta/3) \tag{1.1}$$

Kde *b* je aplikovaná b-hodnota *G* je síla gradientního pulzu, δ je délka trvání pulzu a Δ je časový interval od začátku prvního pulzu po začátek druhého.

Jednotkou b-hodnoty je s/mm^2 a v DWI zobrazování standardně nabývá hodnot do $3500s/mm^2$ v klinické praxi a ve výzkumu i vyšší. b-hodnotu volíme s ohledem na věk subjektu (v mozku novorozenců je jiné procentuální zastoupení vody než v mozku dospělých) a důvod měření [12][11]

Velikost naměřeného signálu popisujeme Stejskal-Tannerovou rovnicí:

$$S_k = S_0 \cdot e^{-bD} \tag{1.2}$$

Kde S_k je signál naměřený po rozfázování a sfázování ve směru gradientu k, S_0 je signál naměřený bez difuze (bez gradientů), b zastupuje b-hodnotu a D je difuzivita. Z rovnice je patrné, že signál se zmenšuje s rostoucí difuzivitou a vyšší aplikovanou b-hodnotou.

2 Pokročilé metody difuzního MRI zobrazování

V této kapitole budou představeny pokročilé metody DWI. Na začátku budou představeny metody náběru dat a následně metody zpracování dat.

2.1 Metody náběru dat

2.1.1 Základní náběr při jedné b-hodnotě

Nejjednodušší a nejrychlejší metodou náběru dat je náběr ze 6 směrů při jedné bhodnotě. Nevýhodou této metody je, že takto nabraná data nejsou vhodná jako základ pro pokročilejší metody zpracování. Takto nabraná data slouží pouze jako výchozí pro DTI metodu či vykreslení některých parametrických map. b-hodnoty se používají v rozsahu od $1000s/mm^2$ do $1500s/mm^2$. Mimo tento rozsah metoda selhává kvůli mechanismům, které budou popsány v dalších kapitolách.

2.1.2 HARDI

Zkratka HARDI reprezentuje "high angular resolution diffusion imagining", tedy difuzní zobrazování s vysokým rozlišením, a jedná se o metodu náběru dat, která je výchozí pro řadu metod zpracování dat. Podstatou HARDI je snímání signálu z mnoha různých stran s různými b-hodnotami. Důležitým pojmem při náběru dat metodou HARDI je Q-prostor. Q-prostor je souřadnicový systém, do kterého přiřazujeme naměřené hodnoty signálu. Dle směru aplikovaného gradientu určíme úhlovou pozici v Q-prostoru a dle použité b-hodnoty vzdálenost od středu této pomyslné koule. V rámci HARDI rozlišujeme dva přístupy dle počtu použitých b-hodnot. Při "jednoslupkovém" (single-shell) HARDI měříme gradienty z různých stran, ale všechny při stejné b-hodnotě. Výsledkem jednoslupkového HARDI je pak Q-prostor, kde jsou všechny naměřené hodnoty v souřadnicovém systému umístěny na jedné sféře (mají stejnou vzdálenost od středu). Typicky se provádí 45 až 200 měření při středních b-hodnotách ($1000s/mm^2$ až $4500s/mm^2$). Akviziční čas jedné sekvence se tak pohybuje od 5 do 20 minut.

Pokud naopak provedeme akvizici při více b-hodnotách, získáme data rovnoměrně rozmístěna na několika slupkách, kde poloměr každé z nich bude odpovídat použité b-hodnotě pro dané akvizice a úhlová souřadnice směru gradientu, stejně jako v předchozím případě. Náběr tímto způsobem označujeme jako víceslupkový (multi-shell) HARDI. Provedení víceslupkového HARDI nám poskytuje více možností při následném zpracování dat, ale za cenu delší akvizice. [11][13][14][5][15]

2.1.3 Free waveform gradient

Doposud byly zmíněny metody náběru dat, kdy pro náběr signálu použijeme konstantní b-hodnotu v konstantním směru (HARDI sice používá různé b-hodnoty a různé směry, ale postupně - jeden náběr po druhém). Je-li při akvizici aplikován Free waveform gradient, měníme během jednoho náběru velikost i směr gradientu, což nám umožňuje postihnout více směru difuze při jednom měření. Pro popis jednoduchých gradientů používaných ve výše zmíněných metodách nám postačí jeho směr (úhel) a velikost. Pro popis Free waveform gradientu již potřebujeme b-tenzor, který popisuje tvar gradientu v prostoru. Aplikujeme-li gradient pouze v jedné ose, označujeme jej jako lineární, v případě dvou os planární. Většina designů b-tenzoru využívá gradientů ve všech 3 osách a označujeme je jako sférické. Různé směry gradientu nám umožní zaznamenat difuzi v různých směrech. Použít proměnlivou velikost b-hodnoty je výhodné, protože různé procesy (například difuze v omezených prostorech či přechod vody přes buněčné membrány) jsou dominantní při různých b-hodnotách. [16][17][18]

Na obrázku 2.1 jsou zobrazeny návrhy lineárního, planárního a sférického designu.

Obr. 2.1: Schématické znázornění designu free waveform gradientu, převzato z [16]

2.2 Metody zpracování dat

2.2.1 DTI (Diffusion tensor imagining)

DTI je nejzákladnější metoda pro zpracování difuzních dat. Každý voxel je reprezentován elipsoidem, jehož tvar a velikost sestrojíme na základě diagonálně symetrické matice o rozměrech 3x3 s šesti jedinečnými prvky. Prvky matice reprezentují difuzi v jednotlivých směrech. Pro sestavení této matice a následné určení parametrů je třeba minimálně 6 DWI měření, ovšem pro zvýšení SNR se používá měření více. Po naměření dat pro vyplnění matice jsou pomocí diagonalizace matice vypočteny 3 vlastní čísla ($\lambda_1, \lambda_2, \lambda_3$) a 3 vlastní vektory ($\varepsilon_1, \varepsilon_2, \varepsilon_3$). Vlastní čísla určují velikost difuze v daných směrech a odvíjí se od nich tvar a velikost elipsoidu. Vlastní vektory jsou tři na sebe kolmé jednotkové vektory určující orientaci elipsoidu v prostoru. [19]

Obr. 2.2: Znázornění DTI elipsoidu ve 3D prostoru, převzat z [19]

Z vlastních čísel charakterizujících elipsoid mohou být dopočteny některé užitečné parametry popisující difuzi v daném voxelu:

FA – frakční anizotropie

FA je vypočtena z vlastních čísel a udává, jak moc je difuze v daném voxelu izotropní. Nabývá hodnot od 0 (elipsoid má tvar koule a difuze je dokonale izotropní) do 1 (elipsoid je hodně protáhlý a difuze je velmi anizotropní). Frakční anizotropie je ukazatelem integrity vláken. Obecně platí, že vyšší FA znamená zdravější tkáň, ovšem neplatí to vždy. S některými patologiemi (například demyelinizace či zánět) může FA růst a nemocnou tkáň se pak bude v tomto ohledu jevit jako zdravá. [12][20][6]

Velikost frakční anizotropie vypočteme ze všech vlastních čísel [19]:

$$FA = \sqrt{\frac{1}{2} \cdot \frac{(\lambda_1 - \lambda_2)^2 + (\lambda_3 - \lambda_1)^2 + (\lambda_3 - \lambda_2)^2}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$
(2.1)

AD - axiální difuzivita

Udává velikost difuze v hlavním směru elipsoidu a odpovídá hodnotě prvního vlastního čísla λ_1 . Proměnlivost AD v bílé hmotě může poukazovat na její patologie. [20]

RD - radiální difuzivita

Udává střední velikost difuze ve směru kolmém na hlavní směr a odpovídá průměru vlastních čísel λ_2 a λ_3 . Nárůst RD je spojován s demyelinizací vláken.[20]

MD - střední difuzivita

Odpovídá průměru všech tří vlastních čísel a je to průměrná velikost difuze v daném voxelu. Můžeme ji považovat za obrácenou míru hustoty membrán – čím vyšší hustota membrán, tím nižší střední difuzivita, neboť membrány brání pohybu vody. [20]

Nevýhodou DTI je, že sice dokáže dobře zobrazit pouze jednotlivá vlákna, ale selhává při jejich křížení. Tuto metodu zpracování používáme na datech nabraných základní metodou, ale může být aplikována i na HARDI data.

2.2.2 CHARMED = composite hindered and restricted model of diffusion

V modelu CHARMED považujeme difuzně vážený signál za součet signálů ze dvou různých skupin vody. První skupinou je voda v extraaxonálním prostředí, které představuje prostor vně neuritů, kde se nachází těla neuronů a gliové buňky. Tyto struktury brání pohybu vody, který popisujeme jako difuzi bráněnou (gaussovská anizotropní difuze). Signál z první skupiny je zpracováván DTI modelem. Druhou skupinou jsou molekuly nacházející se v intraaxonálním prostoru, jejichž vlastnosti jsou charakterizovány omezenou difuzí (negaussovská anizotropní difuze) uvnitř axonu, který má vlastnosti nepropustného válce. [21]

Nevýhodou této metody je, že musíme o analyzované tkáni mít předběžné informace a na jejich základně zvolíme počet a druhy oddílů, se kterými budeme při zpracování počítat. Může být použit například 1 extraaxonální oddíl a žádný intraaxonální, což bude přesně odpovídat DTI modelu. Dále lze použít 1 extraaxonální a 1 intraaxonální pro oblast homogenní bílé hmoty (typicky kalózní těleso, které se skládá ze stovek milionů rovnoběžných vláken). Pro oblasti, kde očekáváme křížení vláken volíme 1 extraaxonální a více intraaxonálních oblastí.

Pro modelování difuze uvnitř axonů používá CHARMED takzvaná "párátka", kterými vyjadřuje velmi omezenou difuzi kolmo na vlákna, ale nebráněnou difuzi v

Obr. 2.3: Znázornění vody difundující uvnitř a vně axonů. Převzato z [22].

jejich podélném směru. Oproti DTI elipsoidu je "párátko" výrazně "ostřejší" a užší – modelujeme jej typickým poloměrem nervových vláken. Délka "párátka" vyjadřuje velikost difuze a úhlová orientace vyjadřující její směr. Zatímco DTI elipsoid se v šedé hmotě a CSF stane koulí, CHARMED "párátko" v místech absence vláken nabude malých až nulových rozměrů.

CHARMED je velmi podobný modelu Ball and Stick, který je též založen na signálu ze dvou oddílů (jeden výrazně anizotropní a druhý úplně izotropní). Oproti modelu Ball and Stick, který v práci není podrobněji zmiňován, je CHARMED sofistikovanější a používá komplexnější modely tkáně. Prvním rozdílem je, že modeluje axony jako soubor rovnoběžných nepropustných válců s tloušťkou typickou pro nervová vlákna (nikoli s nulovou tloušťkou). Druhé vylepšení spočívá v tom, že CHARMED předpokládá v extraaxonálním prostoru volnější difuzi ve směru rovnoběžném s axony oproti směru kolmo na ně a narozdíl od Ball and Stick tedy nepracuje s gaussovskou izotropní difuzí vně vláken. [23] [24]

CHARMED protokol (náběr dat) představují difuzně vážené obrazy pořízené při různých b-hodnotách (až do 10 000 s/mm^2) s různými směry gradientů. CHAR-MED poskytuje přesnou charakteristiku analyzované tkáně, bohužel za cenu vysokých akvizičních časů a složitého post-processingu, což je překážkou v klinickém použití této metody. Naopak výhodou je, že reprezentace pomocí "párátek" oproti DTI elipsoidu nabízí lepší dynamický rozsah v rozlišení bílé hmoty, šedé hmoty a mozkomíšního moku.

Obr. 2.4: Na obrázcích A a B vidíme T1 snímek řezu mozkem na úrovni postranních komor a zvětšený vybraný ROI, na kterém byla provedena CHARMED analýza. Na obrázku C je zobrazen výsledek CHARMED pro extraaxonální prostředí, tedy stejné jako DTI zobrazení. Na obrázku D vidíme výsledek pro analýzu intraaxonálního prostředí. Můžeme si všimnout, že tmavé pixely na obrázcích A a B představují výraznou izotropní difuzi, což se na obrázku C projeví kulovými DTI elipsoidy a na obrázku D absencí "párátek". Naopak světlé pixely představují oblasti s výraznou izotropií difuze, což má na obrázku C za následek protáhlé elipsoidy a na obrázku D patrná "párátka", převzato z [10].

2.2.3 NODDI = Neurite orientation dispersion and density imaging

NODDI je metoda fungující na obdobném principu jako výše zmíněný CHARMED či Ball and Stick. NODDI ovšem stojí na tkáňovém modelu, který nepředpokládá 2, nýbrž 3 typy prostředí: intraaxonální, extraaxonální a mozkomíšní mok. Každý z těchto oddílů přispívá k naměřenému MRI signálu jinak a dohromady tyto 3 příspěvky tvoří výsledný signál.

V intraaxonálním oddílu předpokládáme negaussovskou anizotropní difuzi a modelujeme jej souborem "párátek". Extracelulární oddíl obdobně jako u CHARMED modelu reprezentuje prostor vně neuritů, kde pozorujeme gaussovskou anizotropní difuzi. Oddílem, který je u NODDI oproti CHARMED navíc, je mozkomíšní mok, který je svými vlastnostmi podobný vodě a modelujeme jej gaussovskou izotropní difuzí.

Výstupem ze zpracování modelem NODDI jsou následující parametry:

NDI = neurite density index

Neboli index hustoty neuritů je kvantifikátorem hustoty dendritů a axonů a je vypočten jako poměr intraneuritového objemu a součtu intraneuritového a extraneuritového objemu.

ODI = orientation dispersion index

Index směrového rozptylu určuje, jak moc jsou neurity koherentní, představuje alternativu k FA. 0 znamená perfektní koherenci a 1 naprostou nekoherenci – vlákna se stejnou četností směřují do všech úhlů.

FWF = free water fraction

Zlomek volné vody určuje rozsah kontaminace voxelu mozkomíšním mokem. Jedná se o specifický případ PVE. [25][26][27]

Obr. 2.5: Narozdíl od DTI či DKI, které pohlížejí na voxel jako na homogenní celek, NODDI analyzuje jednotlivé komponenty tkáně zvlášť. V horním řádku jsou naznačeny aproximace jednotlivých typů tkáně v DTI a v NODDI, a ve spodním řádku je znázorněn výpočet výstupních NODDI parametrů, převzato z [26]

NODDI má velký klinický potenciál, neboť informace o přesném rozložení dendritů a axonů nám umožňují zkoumat souvislost struktury mozku a jeho funkce jak na zdravých, tak na nemocných jedincích. Například oblasti kůry s méně komplexní strukturou dendritů se účastní ranných stádií zpracování informací a pozdějších fází se účastní právě oblasti kůry s komplexnější sítí dendritů. Struktura neuritů je i důležitým ukazatelem stárnutí a vývoje mozku. NODDI je testován na řadě neurologických poruch mozku i páteře, jako například amyotrofická laterární skleróza, cervikální spondylóza či Alzheimerova choroba. [27][28][29][30]

NODDI se provádí na multi-shell HARDI datech změřenými alespoň na 3 bhodnotách. I přes velký klinický potenciál není zatím NODDI příliš využíván. Důvody mohou být vysoká výpočetní náročnost, dlouhé akviziční časy a především nízká specificita a dosavadní malé množství zkušeností s touto metodou a interpretací jejich výsledků.

2.2.4 DKI - diffusion kurtosis imaging

Při standartním difuzním zobrazování předpokládáme, že difuzní pohyb částic splňuje normální rozložení pravděpodobnosti (Gaussovské rozložení). Tento předpoklad ovšem platí pro čistou vodu, ale nikoli pro biologickou tkáň, kde buněčné membrány brání pohybu vody a způsobuje negaussovské rozložení, které se výrazně projevuje pro vysoké použité b-hodnoty.

Obr. 2.6: Na obrázku vidíme graf, kde je v semilogaritmickém měřítku vykreslena hodnota útlumu signálu v závislosti na b-hodnotě. Pro střední velikosti b-hodnoty leží hodnoty na přímce, ovšem pro okrajové b-hodnoty se body grafu od přímky odchylují. U nízkých b-hodnot je za odchylku zodpovědná perfuze (bude zmíněno v kapitole IVIM) a u vysokých b-hodnot právě nenulový koeficient špičatosti. Převzato z [31]

Pro popis toho, jak moc se nějaké rozložení pravděpodobnosti odlišuje od rozložení normálního, používáme koeficient špičatosti (coefficient of kurtosis). Gaussovské rozložení má hodnotu koeficientu špičatosti k = 0. "Špičatější" rozložení má koeficient kladný, naopak "oploštělejší" rozložení má koeficient špičatosti záporný. Pro biologickou tkáň je typický kladný koeficient špičatosti, což má za důsledek, že molekuly vody difuzí neproniknou tak daleko, jako by tomu bylo v případě Gaussovského rozdělení. V grafu na obrázku 2.6 tato skutečnost projevuje vyšší hodnotou signálu, neboť menší difuze znamená menší ztrátu signálu. Útlum signálu vlivem difuzivity a kurtózy je popsán upravenou Stejskal-Tannerovou rovnicí:

$$S = S_0 \cdot e^{-bD + b^2 D^2 K/6} \tag{2.2}$$

Kde S je signál naměřený po rozfázování a sfázování ve směru gradientu, S_0 je signál naměřený bez difuze (bez gradientů), b zastupuje použitou b-hodnotu, D je

difuzivita a K je koeficient špičatosti. Můžeme si všimnout, že pokud se jedná o gaussovské rozložení (K = 0), přičítaný člen v exponentu bude nulový a rovnice bude totožná jako pro základní difuzní zobrazování 1.2.

DKI sice přesněji popisuje snímanou tkáň, ale oproti DTI zpracování má výraznou nevýhodu: potřebujeme více měření, neboť tenzor pro DKI má ještě o 1 dimenzi navíc (v rovnici 2.2 je o jednu neznámou více než v rovnici 1.2). DKI tenzor má podobu diagonálně symetrické matice o rozměrech $3x_3x_3x_3$. Musí být provedeno minimálně šest nezávislých měření pro určení difuzního tenzoru, 15 dalších pro odhad kurtózního tenzoru a 1 snímek bez difuze. Pro DKI tedy musí být pořízeno 22 DWI snímků pro každou b-hodnotu, přičemž je třeba naměřit alespoň tři b-hodnoty, což činí z DKI metodu extrémně náročnou na náběr dat. Ze získaných dat můžeme vytvořit parametrickou mapu, kde odstín šedi reprezentuje koeficient špičatosti pro daný pixel. Například pro mozkomíšní mok (stejné jako pro vodu) koeficient nabývá hodnotu K = 0, pro šedou hmotu je to K = 0, 7 a K = 1 pro bílou hmotu. [32][33]

2.2.5 IVIM = intervoxel incoherent motion

Obdobně jako se útlum signálu odchyluje od teoretické hodnoty dané Stejskal-Tannerovou rovnicí při vysokých b-hodnotách, je tomu tak i při hodnotách nízkých (viz obrázek 2.6). Dle Stejskal-Tannerovy rovnice 1.2 znamená nižší b-hodnota nižší útlum signálu. Tento předpoklad platí pro střední rozmezí b-hodnot, ale nikoli pro velmi nízké b-hodnoty. Za těchto podmínek se poměrně silně projevuje intravoxelový nekoherentní pohyb představovaný perfuzí danou mikrocirkulací krve v kapilárách. IVIM model s tímto jevem počítá a popisuje útlum signálu biexponenciální rovnicí:

$$S = S_0 \cdot \left((e^{-b(D+D^*)}) + (1-f)e^{-bD} \right)$$
(2.3)

Kde f je perfuzní frakce – procento tkáně, která je zastoupena kapilárami. Člen (1 - f) pak logicky vyjadřuje zastoupení extravaskulárního prostoru, kde se projevuje pouze prostá difuze s difuzním koeficientem D. Parametr D^* je takzvaný pseudodifuzní koeficient a vyjadřuje rozfázování spinů způsobené perfuzí v kapilárách. V závislosti na hustotě kapilár a perfuzi může být pseudodifuzní koeficient D^* 5 až 10 krát vyšší než koeficient difuze D.

Pořízením dostatečného množství snímků při různých b-hodnotách (typicky 6 až 10 datasetů v rozmezí b-hodnot od 0 do $1000s/mm^2$) a dosazením do rovnice 4 můžeme získat hodnoty f, D a D^* a vykreslit parametrické mapy pro každou z nich. IVIM zobrazování je vhodné pro snímkování nádorů měkkých tkání, jater či prostaty, kdy díky němu můžeme posoudit vaskularizaci v dané oblasti. Tato metoda bohužel zatím není příliš spolehlivá, nebot dopočítávané parametry nejsou ovlivněny pouze kapilární perfuzí, ale též pohybem a některými fyziologickými procesy, například tubulární resorbcí. [31][6]

2.2.6 Q-ball imagining

Další metodou zpracování dat, kterou aplikujeme na data nabraná metodou HARDI je Q-ball imagining (QBI). Výhodou QBI je, že patří mezi bezmodelové techniky, což znamená, že nevyžaduje žádnou předchozí znalost analyzované tkáně a distribuce vláken. Metoda funguje pro křížení libovolného množství vláken, ale pouze na datech pořízených s dostatečným rozlišením. Pro vytvoření modelu vláken z difuzních dat se používá Funk-Radonova transformace (FRT), která je založena na základním principu DWI, že nejvyšší hodnotu difuzní funkce naměříme ve směru kolmém na vlákno (nebot zde dochází k nejmenší difuzi, a tedy nejmenšímu útlumu signálu). Jak již název napovídá, základem modelu je sféra (Q-ball), která je přepočtena na jiný tvar pomocí FRT. FRT vytváří ODF z difuzního signálu tak, že každému bodu na sféře přiřadí hodnotu odpovídající integrálu hodnot přes kružnici okolo daného bodu. Pro lepší představu můžeme uvést analogii se zeměkoulí, kdy by hodnota na severním pólu byla dána součtem hodnot přes celý rovník. Princip Funk-Radonovy transformace je naznačen na obrázku 2.7.

Nevýhodou Q-ball modelu je, že působí až příliš hladce, a oproti předpokládaným skutečným vláknům "nafouknutě". Problém nastává při ostrém úhlu křížení vláken, kdy se může stát, že dvě křížící se vlákna ze zobrazení vyjdou jako jeden svazek.

2.2.7 CSD = constrained spherical deconvolution

Řešením problému s "nafouknutými" modely z QBI je metoda rekonstrukce pomocí omezené sférické dekonvoluce. Vychází z předpokladu, že dODF je výsledkem konvoluce fODF (tedy kýženého výsledku) a signálové odpovědi na jediné vlákno RF (single-fibre response). RF je ideální reprezentací toho, jak by vypadala dODF, pokud by v analyzovaném voxelu byl pouze jeden koherentní axon. V praxi je dODF poskládaná z několika různě orientovaných RF (za každé vlákno jedna).

Jelikož jsme naměřili dODF, známe RF a chceme zjistit fODF, budeme řešit opačnou úlohu ke konvoluci – provedeme sférickou dekonvoluci. Dekonvoluce je však matematický problém s nejistým řešením – obdobně jako některé jiné inverzní operace má více možných řešení. (Analogií může být řešení úlohy odmocnění, kdy možnými řešeními druhé odmocniny jsou dvě čísla stejné velikosti, ale opačného znaménka). Proto musí být zavedeny jistá omezení ("C" reprezentuje ve zkratce názvu slovo "constrained" = "omezený") pro získanou fODF. Funkce popisující rozložení vláken by měla odpovídat předpokladům, které pro sít bílých vláken platí. fODF by

Obr. 2.7: Znázornění Funk-Radonovy transformace. Je patrné, že nízké hodnoty v ODF se projevují jako vysoké hodnoty v Q-ball rekonstrukci, převzato z [14]

Obr. 2.8: Na obrázku je znázorněno, že naměřený HARDI signál je výsledkem konvoluce orientačně-distribuční funkce rozložení vláken a signálové odpovědi na jedno vlákno, převzato z [14]

měla být:

- nezáporná hodnoty by měly být minimálně nulové, neboť vyjadřují pravděpodobnost přítomnosti vlákna v daném místě
- řídká většina hodnot fODF bude blízká či rovná nule, neboť běžně očekáváme jedno vlákno, popřípadě křížení několika málo vláken

hladká - neočekáváme prudké změny ve směru orientace vlákna
[34] [14] [5][35]

2.3 Traktografie

Na předchozích stranách byly probrány metody pro náběr dat a pro zpracování dat ve smyslu zisku informace o rozložení tkání v mozku z pořízených DWI dat. Praktická část bakalářské práce se věnuje traktografii, což je metoda, která přímo modeluje průběh nerových vláken a zkoumá vzájemné propojení různých částí mozku. Rozlišujeme dva základní přístupy ke traktografii, a to deterministickou a probabilistickou traktografii. [8]

2.3.1 Deterministická traktografie

Deterministická traktografie se nejčastěji aplikuje na DTI data. Principem této metody je umístění takzvaných "semínek"do oblastí zájmu. "Semínka"slouží jako začátky předpokládaných mozkových drah a z těchto míst se vlákna postupně rozšiřují. Algoritmus rozšíří vlákno vždy tím směrem, ve kterém byl zaznamenán největší pohyb vody (v případě DTI tedy ve směru největší vlastní hodnoty matice). V tomto směru udělá algoritmus jeden krok a vytvoří tak postupně rekonstruované vlákno. Tento výsledek je následně interpolován. Pro výpočty jsou zavedena určitá omezení, například maximální úhel, o který sledované vlákno během jednoho kroku změní směr. Výhodou deterministické traktografie je její relativně malá výpočetní náročnost. Zásadní nevýhodou je ovšem její nepřesnost. Metoda bere v úvahu vždy pouze jeden možný směr pokračování vlákna, což je problematické ve chvíli, kdy se vlákna kříží. V DTI zpracování se více křížících se vláken může jevit jako izotropní prostředí a rekonstrukce traktu zde může být nesprávně předčasně ukončena.

2.3.2 Probabilistická traktografie

Probabilistická traktografie narozdíl od traktografie deterministické dokáže pracovat s více vlákny v jednom voxelu. Výchozí metodou pro probabilistickou traktografii tedy musí být metoda zpracování dat, která bere v potaz více vláken v jednom voxelu (jako například CSD). Probabilistická traktografie vytváří více variant vláken a pracuje tedy s nejistotou v orientaci vláken v každém voxelu, zvláště v oblastech, kde se vlákna kříží, rozbíhají nebo sbíhají. Velkou nevýhodou této metody je ovšem její značná výpočetní náročnost a velké množství falešně pozitivních traktů. Řešením problému s velkým množstvím generovaných vláken, které ve skutečnosti neexistují je anatomicky omezená traktografie.
2.3.3 Anatomicky omezená traktografie (ACT)

Anatomicky omezená traktografie kombinuje difuzně vážená data s daty anatomickými. Poté, co algoritmus probabilistické traktografie rekonstruuje velké množství vláken, ACT odstraní ty, které nedávají smysl. Jsou zamítnuty například vlákna, která končí v mozkomíšním moku či jsou náhle utnuty uprostřed bílé hmoty.

3 Softwarové nástroje pro zpracování dat z pokročilých metod

3.1 MRtrix3

MRtrix3 je hojně využívaný freeware nabízející velké množství nástrojů pro zpracování, analýzu a vizualizaci obrazů. Kromě řady vlasntích nástrojů implementuje i nástroje jiných softwarů, jako například FSL. MRtrix3 dokáže načíst obrazy v různých formátech (například NIFTI), ale pracuje a výsledky převádí do svého vlastního formátu *.mif. MRtrix nástroje jsou napsány v jazyce C++ a spouští se přes příkazový řádek. [50]

V následujících odstavcích budou představeny některá specifika a funkce tohoto softwaru.

3.1.1 Formát mif

Mif je vlastní formát softwaru MRtrix3. Velkou výhodou formátu mif (oproti například formátu NIFTI) je možnost rozsáhlého ukládání metadat. Součástí souboru jsou například b-hodnoty a směry gradientů, při kterých byly jednotlivé objemy nabrány. Dále spolu s daty ukládáme veškerou historii souboru – například jakým způsobem byl proveden preprocessing (jakými příkazy, dokonce v jaké verzi softwaru). Další výhodou je efektivní práce s fixely, kdy umožňuje velkou úsporu místa. U každého voxelu je vytvořeno místo pro právě tolik fixelů, kolik voxelem prochází vláken. [36] [37][38]

3.1.2 MRview

Díky svému nástroji MRview MRtrix uživateli umožňuje pohodlné zobrazení snímků. Příkazem mrview zavolaným spolu s názvem souboru otevřeme GUI, ve kterém je možné si pomocí šipek a kurzoru zobrazovat jednotlivé řezy v libovolných časových okamžicích. Nevýhodou MRview je, že běží pouze na operačním systému Linux a nelze jej použít ani přes vzdálený přístup.

3.1.3 Preprocessing

MRtrix obsahuje řadu preprocessingových nástrojů, například pro odstranění zkreslení způsobeného nehomogenitami magnetického pole či pro odšumění.

3.1.4 CSD

V MRtrix máme možnost analyzovat DWI data pomocí sférické dekonvoluce. MRtrix nabízí několik různých algoritmů, z nichž ty nejpoužívanější jsou Tournierův (pro jeden druh tkáně a jednu b-hodnotu) a Dhollanderův (pro více druhů tkáně a libovolný počet b-hodnot). K výpočtu orientačně distribuční funkce pro vlákna slouží příkaz dwi2fod, jehož vstupními atributy jsou kromě předzpracovaných difuzně vážených dat i známé signálové odpovědi pro jednotlivé typy tkáně (šedá hmota, bílá hmota, mozkomíšní mok). Výsledek si můžeme zobrazit na celý mozek, kdy získáme barevně značenou mapu, kde je odlišena bílá hmota, šedá hmota a mozkomíšní mok. Oblasti mozku tvořené bílou hmotou ve voxelech obsahují fixely naznačující převažující směr difuze. Tyto samotné modely traktů mají své další barevné kódování, kde barvy určují směr difuze (anterior-posterior, superior-inferior, zleva-doprava).

3.1.5 Ostatní nástroje pro traktografii

MRtrix nabízí mnoho dalších pokročilých nástrojů pro analýzu mozkových traktů. Příkladem je ACT, kdy je předem třeba nadetekovat ohraničení jednotlivých typů tkáně a následně začít probabilistickou traktografii, kdy zvolíme začátek traktu, který rozšiřujeme ve směru největší difuze. [9] Další důležitou možností je nástroj pro sestavení konektomu . Při sestrojování konektomu v prvním kroku rozdělíme mozek do několika oblastí, neboli uzlů (každý voxel přiřadíme od jednoho) a pomocí příkazu MRtrix tck2connectome lze vytvořit konektom, který lze vizualizovat buď pomocí matice konektivity či pokročileji pomocí výše zmíněného nástroje mrview. [39]

3.1.6 Connectomestats

Connectomestats je nástroj pro skupinovou statistiku vytvořených konektomů. Tato metoda pracuje s hranami a zaměřuje se tedy čistě na spojení jednotlivých částí mozku. Connectomestats je založena na neparametrickém testování permutací, které spočívá v opakovaných výpočtech permutací hodnot mezi testovanými skupinami a opakovaným výpočtem testovací statistiky. Jelikož je tento statistický nástroj neparametrický, nevyžaduje normální rozložení dat. Díky Connectomestats můžeme určit, zda se konektomy dvou skupin subjektů (například zdravých a nemocných či mužů a žen) statisticky významně liší.[40]

3.2 FSL (FMRIB Software Library)

FSL je knihovna nástrojů pro analýzu MRI dat vyvinutá na Oxfordské univerzitě. FSL běží na macOS, Linuxu i Windows (přes Windows subsystém pro Linux). Níže jsou uvedeny vybrané funkce.

3.2.1 FSLeyes

FSLeyes je GUI pro prohlížení obrazů primárně z magnetické rezonance ale i z jiných zobrazovacích modalit (například CT či PET). Nabízí prohlížení 3D obrazů s nastavitelnými polohami prohlížených řezů ve všech 3 osách. Při prohlížení obrazů pomocí FSLeyes můžeme pro lepší zobrazení nastavit mnoho parametrů, jako například kontrast, jas a opacitu, či můžeme nastavovat různé barevné mapy. FSLeyes nabízí i pokročilejší možnosti pro lepší zobrazení, například použití interpolace pro hladší obraz. Kromě samotných obrazových dat je možné jednoduše zobrazit i metadata snímku. Dále můžeme díky FSLeyes provádět mnoho další operací, například zobrazování funkčních snímků přes anatomické, analýzu snímků v časové sérii či vytváření korelačních map. [41][42]

3.2.2 FDT - FMRIB's diffusion toolbox

FDT je softwarový nástroj pro analýzu difuzně vážených obrazů. Primárně se spouští přes příkazový řádek, ale některé nástroje mají pro spuštění i GUI. FDT nabízí nástroje pro preprocessing, lokální modelování difuze a traktografii. Níže jsou uvedeny některé FDT nástroje a jejich stručný popis.[43]

Eddy Current Correction

Při vypínání a zapínání gradientních cívek vznikají vířivé proudy vedoucí ke vzniku artefaktů v obraze. Eddy Current Correction je nástrojem pro odstranění těchto artefaktů. [44]

Bedpostx

Název je zkratka, která znamená Bayesian Estimation of Diffsuion Parameters (Bayesovský odhad difúzních parametrů), znak X naznačuje, že metoda pracuje s křížícími se vlákny. Bedpostx používá Monte Carlo metodu pro odhad difuzních parametrů v každém voxelu. Pro odhad difuzních parametrů tento nástroj používá rozšíření modelu Ball and Sticks pracující s Gamma distribucí difuzivit. Vstupem funkce je 3D snímek nabraný bez difuze, série difuzně vážených snímků a soubory s informacemi o parametrech akvizice. Výstupem je pak několik souborů, které jsou následně potřebné pro probabilistickou traktografii. [45][46]

Probtrackx

Probtrackx je metoda pro probabilistickou traktografii s křížícími se vlákny. Vstupními daty pro tuto analýzu je výstup z výše zmíněného nástroje bedpostx. Probtrackx algoritmus začíná od startovních bodů, tzv. semínek, která zadává uživatel a může jich být jedna i více. Následně nástroj pracuje iterativně – dle orientace distribuční funkce v okolních voxelech udělá krok vhodným směrem a zkontroluje, zda nejsou naplněny podmínky ukončení (například dosažení okraje oblasti vymezené ACT). Výstupem algoritmu je pak 3D obraz, kde je každý voxel reprezentován počtem vláken, které přes něj prochází. Probtrackx je důležitým nástrojem pro mapování bílých vláken, což je základem pro studium struktury a konektivity mozku.[47]

3.3 Freesurfer

Freesurfer je open-source balíček pro analýzu a vizualizaci funkčních, difuzních a především anatomických dat. Freesurfer zahrnuje zejména nástroje pro anatomickou segmentaci, rekonstrukci povrchu mozkové kůry či registraci obrazů. Freesurfer je pro segmentaci nejpoužívanějším nástrojem. [48]

3.3.1 recon-all

Recon-all je hlavním nástrojem ve Freesurferu, který provádí celý proces samotné rekonstrukce mozku z MRI dat. Tento proces zahrnuje mnoho kroků, jako je například korekce zkreslení, normalizace, segmentace jednotlivých tkání a získání povrchových modelů mozkových struktur. Výstupem procesu recon-all je sada souborů a povrchových modelů reprezentujících strukturu mozku. Při spouštění tohoto příkazu si uživatel může zvolit, které procesy vyžaduje a to včetně možnosti -all, která provede všechny úkony.

4 Ověření funkčnosti vybraných nástrojů

V praktické části jsou zpracovávána data poskytnutá výzkumným zařízením MAFIL. Jako nejlepší software pro zpracování dat se mi jeví MRtrix3 a důvodů je hned několik. Používá nejpokročilejší metody, implementuje a využívá užitečné nástroje z ostatních softwarů a má nejlepší podporu. V této kapitole jsou podrobněji popsány metody přezpracování dat, které byly zvoleny pro celkovou analýzu.

4.1 Převod do formátu *.mif

Prvním krokem předzpracování dat je jejich převedení do formátu *mif, jelikož nejlépe uchovává metadata a nejlépe se s ním při pozdějším zpracování pracuje. K tomuto kroku byl použit příkaz mr_convert. K vytvoření souboru *mif jsou potřeba obrazová data ve formátu nifti a dále textové soubory popisující gradient magnetického pole při náběru dat (b-hodnoty a b-vektory).[11]

4.2 Potlačení šumu

Pro potlačení šumu byl použit MRtrix3 příkaz dwidenoise. Potlačení šumu je třeba v rámci předzpracování provést jako první - algoritmus neproběhne správně, je-li před ním provedena jiná úprava dat. dwidenoise používá pro odhad hladiny šumu a pro následné potlačení šumu Marčenko-Pasturovu analýzu hlavních komponent. Potlačení šumu je volitelným krokem předzpracování, ovšem používá se téměř vždy nebot zpřesňuje následnou analýzu dat. [49][11]

4.3 Odstranění artefaktů

Dalším důležitým krokem je odstraněn artefaktů v obraze. Prvním typem jsou artefakty způsobené rozdílnou susceptibilitou tkáně, které se projevují geometrickým zkreslením pořízeného obrazu. Dále je nutné provést korekci vířivých proudů a pohybových artefaktů. Pro odstranění susceptibilních artefaktů slouží FSL nástroj *topup*, pro vířivé proudy se používá FSL nástroj *eddy*. Tyto FSL nástroje jsou implementovány v softwaru MRtrix, který je umožňuje použít jedním společným příkazem dwifslpreproc. [11]

5 Implementace funkčního řešení pro zpracování dat z DWI metod

5.1 Popis datasetu

Postup zpracování dat popsaný v této práci byl aplikován na dataset studie pacientů s roztroušenou sklerózou. Původní dataset zahrnuje 134 subjektů ve věkovém rozmezí 19 až 65 let. Dataset zahrnuje pacienty s různými úrovněmi vzdělání, praváky i leváky, muže i ženy. Mezi subjekty je zahrnuto 65 zdravých osob a 69 pacientů trpících různými formami roztroušené sklerózy. V původním datasetu nalezneme pacienty s více druhy roztroušené sklerózy. Pro účely bakalářské práce byl zvolen menší dataset, obsahující celkem 12 subjektů – 6 zdravých osob a 6 pacientů s diagnostikovanou RS-RR formou roztroušené sklerózy. Pro každý subjekt z této studie bylo pořízeno velké množství snímků různými technikami MRI. Pro každý subjekt byly k dispozici data z funkční magnetické rezonance (BOLD), anatomické snímky (T1 a T2 vážené snímky a FLAIR) a difuzně vážená data (HARDI, IVIM a FWF).

5.1.1 Relaps-remitentní roztroušená skleróza

Roztroušená skleróza je choroba, při které imunitní systém napadá nervovou soustavu a způsobuje demyelinizaci vláken. Důsledkem tohoto poškození je, že axony nemohou přenášet vzruchy, což má za následek svalovou slabost, obtíže s pohybem, rovnováhou, řečí, polykáním a dalšími základními svlaovými úkony. Až 85% pacientů trpících roztoušenou sklerózou byla diagnostikována právě RR-RS. Jak již název napovídá, tato forma roztroušené sklerózy se projevuje střídáním období ataky, kdy se projevují výše popsané příznaky, a obdobím remise, kdy dojde k vymizení příznaků. Tato forma roztroušené sklerózy je jako jediná dobře ovlivnitelná léky. [52] [53]

Diagnostika roztroušené sklerózy je velmi obtížná, neboť svými symptomy je podobná mnoha jiným onemocněním. Klíčovým nástrojem pro diagnostiku je právě MRI, kdy lze pomocí DWI rozpoznat demyelinizaci tkáně a na anatomických snímcích (nejlépe za použití gadolinia jako kontrastní látky) lze pozorovat léze, které při roztroušené skleróze typicky vznikají.[54][55]

Data jednotlivých pacientů jsou příliš objemná a proto nebylo možné je vložit do přílohy a mohou být poskytnuty na požádání.

5.2 Jednotlivé kroky zpracování

V rámci mé bakalářské práce bylo implementováno řešení pro zpracování difuzně vážených dat. Řešení se skládá celkem z 11 skriptů (8 pro samotné zpracování, 2 pro vizualizaci a 1 pro statistické zhodnocení dat), které je třeba postupně spouštět. Přehled těchto skriptů včetně krátkého popisu a pořadí pro spuštění je uveden v příloze A. V následujících podkapitolách jsou popsány jednotlivé procesy, kterými data při zpracování prošla. Jednotlivé podkapitoly jsou doplněny o vizualizaci vybraných výstupů a tabulky s přehledem výstupních souborů a použitých příkazů. Samotné skripty jsou náležitě okomentovány a jsou k přiloženy v elektronické příloze.

5.2.1 Odstranění přebytečných dat

Prvním krokem při práci s datasetem bylo odstranění, respektive přemístění dat, které nebudeme pro naši analýzu potřebovat. Za tímto účelem byly vytvořeny skripty deleting.sh a moving.sh. Oba skripty jsou napsány v jazyce bash a pracují na bázi jednoduchých for cyklů a základních příkazů tohoto jazyka pro vytváření složek, mazání souborů, přesouvání souborů a výběr souborů obsahujících v názvu vybrané řetězce. Byla odstraněna převážně anatomická a funkční data a některá data z po-kročilých difuzních metod (IVIM a FWF) byla přesunuta do stejnojmenných složek za účelem možné pozdější analýzy.

5.2.2 Konverze dat

Jak již bylo zmíněno v kapitole 4.1, pro další zpracování dat (jako je předzpracování dat či samotná traktografická analýza) je nezbytné mít data převedená do formátu *.mif, o jehož výhodách je pojednáno v téže kapitole. V surových datech byly ovšem k dispozici pouze data ve formátu *.nifti, a je tedy nutné spojit tato obrazová data s metadaty uloženými ve formátech *.txt a *.mat (matlab file). Za účelem konverze dat z *.nifti do *.mif se používá příkaz mrconvert, jehož argumenty jsou obrazový soubor (*.nifti), údaje o použitých b-hodnotách a b-vektorech (*.txt) a hlavička snímku (*.json). Jelikož mám hlavičky k dispozici ve formátu *.mat, je nutné tato data před samotnou celkovou konverzí převézt do formátu *.json. Za tímto účelem byl použit skript Mat_to_json_whitelist.m, jehož jediným úkolem je právě převod hlavičky na požadovaný formát. Skript prochází jednotlivé atributy metadat a přepisuje je do výstupního *.json souboru. Díky takto konvertovaným metadatům již můžeme provézt kompletní konverzi dat do formátu *.mif, k čemuž slouží skript convert.sh. V tomto skriptu jsou specifikovány očekávaná označení metadat pro jednotlivé subjekty, je provedena konverze do formátu *.mif a pro každý subjekt je vytvořena podsložka **Preprocessing_file**, kam je snímek uložen. Přehled souborů, které do těchto skriptů vstupují, či jsou jejich výstupy je uveden v tabulce 5.1

název sou-	popis sou-	výstup ze skriptu	výstup z	odvozeno	umístění
boru	boru		funkce	ze souboru	
ID_20d_dwi_	hlavička AP	počáteční soubor	-	-	raw/Diffusion
dir99_AP_	snímku				
CMRR_dicom_					
header.mat					
ID_20d_dwi_	b vektory	počáteční soubor	-	-	raw/Diffusion
dir99_AP_	pro AP sní-				
CMRR.bvec	mek				
ID_20d_dwi_	b hodnoty	počáteční soubor	-	-	raw/Diffusion
dir99_AP_	pro AP sní-				
CMRR.bval	mek				
ID_20d_dwi_	hlavička AP	počáteční soubor	-	-	raw/Diffusion
dir99_AP_	snímku				
CMRR.nii					
ID_20d_dwi_	b vektory	Mat_to_json_	-	-	raw/Diffusion
dir99_AP_	pro AP sní-	whitelist.m			
CMRR_dicom_	mek				
header.json					
ID_dwi_raw_	konvertovaný	Convert.sh	mrconvert	.bvec, .bval,	analysed/
AP.mif	AP snímek			header.json,	Preprocessing_
				.nii	file

Tab. 5.1: Soubory sloužící jako vstupy a výstupy konverze dat

V tabulce jsou pro stručnost uvedeny pouze soubory pro AP snímky. Pro PA snímky je postup naprosto analogický, pouze je ve všech názvech zaměněno AP za PA.

5.2.3 Preprocessing

Po převedení dat do potřebného formátu následuje výpočetně velmi náročná fáze zpracování dat - jejich předzpracování. Prvním krokem je odšumění snímků pomocí nástroje denoise, který byl testován zvlášť a byl již popsán v kapitole 4.2. Dalším krokem je použití nástroje mrdegibbs , který slouží pro odstranění Gibbsových artefaktů, které se projevují jako proužky rovnoběžné s výraznými hranami v obraze. Všechny dosavadní kroky byly provedeny jednotlivě na objemech nabraných ve směru AP i PA a následně byly tyto předzpracované objemy spojeny pomocí příkazu mrcat. Dalším krokem zlepšující kvalitu dat je použití nástroje dwifslpreproc, který byl též testován již dříve a je popsán v kapitole 4.3. Dále

je v rámci skriptu **preproc.sh** provedena korekce nehomogenit magnetického pole

pomocí příkazu dwibiascorrect ants. Porovnání surového DWI snímku s kompletně předzpracovaným snímkem je na obrázku 5.2. Ze snímku očištěného od všech možných artefaktů (ID_dwi_den_unr_preproc_unbiased.mif) je následně extrahován první objem snímku (ze 4D časové sekvence je získán potřebný 3D objem) ID_dwi_den_unr_preproc_unbiased_first_vol.nii, ze kterého je poté vytvořena maska mozku pomocí příkazu bet2. Parametr -f označuje práh intenzity, který má představovat hranici pro mozku. Parametr -f by se měl standardně pohybovat v rozmezí 0.2-0.7 [51] a pro tento dataset byl empiricky stanoven na hranici 0.35. Na obrázku 5.1 je porovnání masky vytvořené s vhodně zvoleným parametrem -f jako 0.35 a nevhodně zvoleným prahem 0.7. Extrahovaný první objem je poté odstraněn a v preprocessingové složce nám zůstává finální soubor masky ID_fsl_mask_035.nii.gz|, který bude dále použit pro traktografii.

Obr. 5.1: Srovnání binárních masek pro anatomicky omezenou traktografii vytvořených v rámci preprocessingu pro subjekt 4406B. Maska se správně zvoleným prahem 0.35 je zobrazena nahoře a maska s nevhodně zvoleným prahem 0.7 dole. Zobrazeno pomocí nástroje FSLeyes.

5.2.4 Traktografie

Po odstranění nadbytečných dat a vhodném preprocessingu je možné přistoupit k traktografii. Pro tento krok analýzy byly vytvořeny dva skripty: pretractography.sh a tractography.sh. V rámci skriptu pretractography.sh je v adresářích jednotlivých subjektů vytvořena potřebná struktura podsložek a je zde zvolen vhodný T1

název souboru	popis souboru	výstup z	odvozeno ze souboru
		funkce	
ID_dwi_raw_AP.mif	raw AP snímek	mrconvert	.bvec, .bval, header.json, .nii
ID_dwi_den_AP.mif	odšuměný AP sní-	dwidenoise	ID_dwi_raw_AP.mif
	mek		
ID_noise_AP.mif	odhad šumu v AP	dwidenoise	ID_dwi_raw_AP.mif
	snímku		
ID_dwi_den_unr_AP.mif	AP očištěný od gi-	mrdegibbs	ID_dwi_den_AP.mif
	bbsových artefaktů		
ID_dwi_den_unr_AP_PA.	spojení AP a PA	mrcat	${\tt ID_dwi_den_unr_AP.mif} \ a \ {\tt ID_}$
mif	snímku		dwi_den_unr_PA.mif
ID_dwi_den_unr_preproc.	kompletně	dwifslpreproc	ID_dwi_den_unr_AP_PA.mif
mif	předzpracovaný		
	DW snímek		
ID_dwi_den_unr_preproc_	snímek po korekci	dwibiascorrect	ID_dwi_den_unr_preproc.mif
unbiased.mif	nehomogenit mag-	ants	
	netického pole		
ID_bias.mif	odhad nehomogenit	dwibiascorrect	ID_dwi_den_unr_preproc.mif
	pole	ants	
ID_mask_den_unr_	odhad masky pro	dwi2mask	ID_dwi_den_unr_preproc.mif
preproc.mif	snímek bez korekce		
	nehomogenit		
ID_mask_den_unr_	odhad masky pro	dwi2mask	ID_dwi_den_unr_preproc_
preproc_unbiased.mif	snímek s korekcí ne-		unbiased.mif
	homogenit		
ID_dwi_den_unr_preproc_	extrahovaný první	mrconvert	ID_dwi_den_unr_preproc_
unbiased_first_vol.nii	snímek v sérii		unbiased_first_vol.nii
ID_fsl_mask_035.nii.gz	výsledná maska	bet2	ID_dwi_den_unr_preproc_
			unbiased.mif

Tab. 5.2: Soubory sloužící jako vstupy a výstupy během preprocessingu

Obdobně jako v tabulce 5.1 jsou pro stručnost uvedeny pouze soubory pro AP snímky. Pro PA snímky je postup naprosto analogický, pouze je ve všech názvech zaměněno AP za PA. Všechny soubory kromě ID_dwi_raw_AP jsou výstupy skriptu preproc.sh a všechny soubory uvedené v této tabulce (pochopitelně kromě těch, které byly odstraněny) jsou uloženy ve složce analysed/Preprocessing_file

Obr. 5.2: Srovnání surového DWI snímku (vlevo) se snímkem po kompletním předzpracování (vpravo). Snímky patří subjektu 4915B, zobrazeno pomocí FSLeyes

vážený snímek.

Pro traktografii je nutné mít vybraný správný T1 vážený snímek, jehož označení je ovšem u jednotlivých subjektů odlišné. V anatomických datech každého pacienta jsou obsaženy dva soubory s označením _ID_XXs_t1_mpr_sag_eja.nii (kde XX je dvouciferné číslo). Snímek po korekci jasu je označen číslem o jedno větším než snímek surový. Je tedy nutné pro každý subjekt projít všechny anatomické soubory a vybrat ty, které nesou vyhovující označení, a z nich vybrat ten, který nese nejvyšší číslo. Po určení správného souboru je tento soubor přejmenován na ID_T1_raw.nii a přesunut do složky pro ukládání zpracovaných dat, neboť bude potřeba pro další analýzu.

Druhý skript z této fáze zpracování, tractography.sh, již slouží k samotnému sestavení traktogramu.

V prvním kroku je proveden odhad dODF pomocí příkazu dwi2response a jako algoritmus je zvolen -dhollander. Výstupem jsou textové soubory popisující signálovou odpověď na jednotlivé typy tkáně. [56]

Následně je možné provézt výpočet fODF pomocí příkazu dwi2fod [57], který pracuje na principu sférické dekonvoluce. Jako algoritmus je zde zvolen msmt_csd, (multi-shell, multi tissue constrained spherical deconvolution), což znamená, že pracujeme s daty pořízenými pomocí víceslupkového HARDI a bereme v potaz více druhů tkáně. Vstupem algoritmu je DWI snímek, binární maska mozku a dříve vzniklé textové soubory se signálovými odpověďmi na jednotlivé druhy tkáně. Výstupem jsou potom signálové odpovědi jednotlivých typů tkání ve formátu .mif, jak je zobrazeno na obrázku 5.3

Následně jsou tyto snímky normalizovány (z pohledu úrovně jasu) příkazem

Obr. 5.3: Signálová odpověď jednotlivých tkání subjektu 4406B v axilárním řezu. Zleva: bílá mozková hmota, šedá mozková hmota a mozkomíšní mok. Zobrazeno pomocí FSLeyes

mtnormalise a vhodný anatomický snímek je převeden z formátu nifti na mif. Následně je použit příkaz 5ttgen , který generuje obraz segmentovaný na pět typů tkáně, který je potřebný pro anatomicky vymezenou traktografii [58]. Jako algoritmus je nastaveno -fsl, což znamená, že segmentovaný obraz bude generován na základě T1 váženého obrazu ve formátu nifti či dicom. Následně je z předzpracovaného DWI snímku 5.2.3 extrahován b0 objem a stejně jako segmentovaný 5tt obraz je zkonvertován z formátu mif do formátu nifti. Tyto soubory budou později potřeba pro koregistraci. Následně je pomocí příkazu fslroi vysegmentována oblast zájmu. Parametry 0 a 1 znamenají, že se začíná s indexací na nultém indexu a že je vybrán právě jeden index. Nejedná se ovšem o indexaci v časové posloupnosti ale přes jednotlivé tkáně. Tímto způsobem tak byla extrahována šedá hmota, neboť v případě 5tt segmentovaného obrazu je právě pod prvním indexem.

Následně byl použit FSl nástroj flirt, který slouží pro lineární registraci obrazu. Pomocí tohoto nástroje je zarovnán b0 snímek (DWI - pohybová data) se segmentovaným 5tt snímkem (anatomická - statická data) a jako metoda interpolace je zvolena metoda nejbližšího souseda s šesti stupni volnosti. Výstupem zarovnání je transformační matice uložená do souboru ID_diff2struct_fsl.mat. Tato matice je následně převedena do formátu mif a aplikována na segmentovaný 5tt obraz. Následně je pomocí příkazu 5tt2gmwmi vytvořena maska, která stanovuje body, ze kterých budou začínat vlákna.[59] Následně již může být spuštěna samotná probabilistická traktografie; pomocí příkazu tckgen [60] jsou v koregistrovaném segmentovaném obrazu generovány trakty. Základními parametry tohoto příkazu jsou:

- algorithm volba algoritmu pro traktografii, zde zvolen algoritmus iFOD2 dvojitý integrál přes FOD
- maxlength maximální délka traktu nastavená na 25 cm
- cutoff práh pro zamítnutí vytvořeného traktu, který byl nastaven na 0.06

(standardní nastavení pro ACT)

• select - udává množství vytvářených vláken a byl nastaven na jeden milion.

Množství vytvořených traktů je následně redukováno pomocí nástroje tcksift2, který využívá SIFT (Spherical-deconvolution Informed Filtering of Tractograms, tedy filtrace traktů na základě sférické dekonvoluce). SIFT je metoda používaná k filtraci a optimalizaci traktografických dat. Využívá odhady na základě sférické dekonvoluce, čímž filtruje trakty. Cílem algoritmu je upravit počet a hustotu vláken tak, aby odpovídaly odhadované hustotě vláken získané z FOD. Výstupem jsou pak redukované trakty a textový soubor udávající váhy jednotlivých traktů.

Přehled jednotlivých souborů vzniklých v průběhu traktografie je v tabulce 5.3

název souboru	popis souboru	výstup z funkce	odvozeno ze souboru	umístěno ve složce
ID_response_wm.txt	signál z bílé hmoty	dwi2response dhollander	ID_dwi_den_unr_preproc_unbiased.mif	analysed/Tractography
ID_response_gm.txt	signál z šedé hmoty	dwi2response dhollander	ID_dwi_den_unr_preproc_unbiased.mif	analysed/Tractography
ID_response_csf.txt	signál z mozkomíšního moku	dwi2response dhollander	ID_dwi_den_unr_preproc_unbiased.mif	analysed/Tractography
voxels.mif	finální výběr voxelů (pro jednotlivé tkáně)	dwi2response -voxels	ID_dwi_den_unr_preproc_unbiased.mif	analysed/Tractography
ID_gmfod.mif	signál z šedé hmoty	dwi2fod msmt_csd	ID_dwi_den_unr_preproc_unbiased.mif,	analysed/Tractography
			ID_fsl_mask_035.nii.gz,	
			ID_response_gm.txt	
ID_wmfod.mif	signál z bílé hmoty	dwi2fod msmt_csd	ID_dwi_den_unr_preproc_unbiased.mif,	analysed/Tractography
			ID_fsl_mask_035.nii.gz,	
			ID_response_wm.txt	
ID_csffod.mif	singál z mozkomíšního moku	dwi2fod msmt_csd	ID_dwi_den_unr_preproc_unbiased.mif,	analysed/Tractography
			ID_response_csf.txt	
ID_gmfod_norm.mif	normalizovaný signál z šedé hmoty	mtnormalise	ID_gmfod.mif, ID_fsl_mask_035.nii.gz	analysed/Tractography
ID_wmfod_norm.mif	notmalizovaný signál z bílé hmoty	mtnormalise	ID_wmfod.mif, ID_fsl_mask_035.nii.gz	analysed/Tractography
ID_csffod_norm.mif	normalizovaný signál z mozkomíšního moku	mtnormalise	ID_csffod.mif, ID_fsl_mask_035.nii.gz	analysed/Tractography
ID_09s_t1_mpr_sag_ejaL.nii	T1 anatomický snímek	počáteční soubor		raw/anat
ID_T1_raw.nii	T1 anatomický snímek	rn, cp	ID_09s_t1_mpr_sag_ejaL.nii	analysed/Anat
ID_T1_raw.mif	T1 anatomický snímek	mrconvert	ID_T1_raw.nii	analysed/Anat
ID_5tt_norecog.mif	snímek modelovaný na 5 typů tkáně	5ttgen fsl	ID_T1_raw.mif	analysed/Anat
ID_mean_b0_preprocessed.mif	b0 obraz extrahovaný z předzpracovaných dat	dwiextract	ID_dwi_den_unr_preproc_unbiased.mif	analysed/Prerpocessing_file
ID_mean_b0_preprocessed.nii.gz	b0 obraz extrahovaný z předzpracovaných dat	mrconvert	ID_mean_b0_preprocessed.mif	analysed/Prerpocessing_file
$ID_5tt_norecog.nii.gz$	snímek modelovaný na 5 typů tkáně	mrconvert	ID_5tt_norecog.mif	analysed/Prerpocessing_file
ID_5tt_vol0.nii.gz	extrhovaná šedá hmota	fslroi	ID_5tt_norecog.nii.gz	analysed/Anat
ID_diff2struct_fsl.mat	matice transformace	flirt	ID_5tt_vol0.nii.gz,	analysed/Anat
			ID_mean_b0_preprocessed.nii.gz	
ID_diff2struct_mrtrix.txt	matice transformace v mrtrix formátu	transformconvert, flirtimport	ID_diff2struct_fsl.mat,	analysed/Anat
			ID_5tt_norecog.nii.gz,	
			ID_mean_b0_preprocessed.nii.gz	
ID_5tt_coreg.mif	koregistrovaný snímek	mrtransform	ID_5tt_norecog.mif,	analysed/Anat
			ID_diff2struct_mrtrix.txt	
ID_gmwmSeed_coreg.mif	maska se začátky vláken	5tt2gmwmi	ID_5tt_coreg.mif	analysed/Anat
$ID_tracks_10mio.tck$	primární soubor s trakty	tckgen	ID_gmwmSeed_coreg.mif,	analysed/Tractography
			ID_5tt_coreg.mif, ID_wmfod_norm.mif	
ID_sift_1mio.txt	soubor s reduovaným množstvím traktů	tcksift2	ID_wmfod_norm.mif,	analysed/Tractography
			ID_gmwmSeed_coreg.mif, ID_tracks_10mio.tck	
				-

Tab. 5.3: Soubory sloužící jako vstupy a výstupy během traktografie

5.2.5 Konektom

Na rozdíl od předchozích kroků, kdy byly využívány nástroje softwarů FSL a MRtrix, je pro sestavení konektomu použit software freesurfer. Výpočetně nejnáročnějším krokem je opět preprocessing, tentokrát T1 váženého obrazu. Ten je proveden příkazem **recon-all**, který zajišťuje automatizovanou rekonstrukci kortikálního povrchu a segmentaci mozkových struktur. Jako parametr byl nastaven -all, což znamená, že bude spuštěna kompletní rekonstrukce. Tento krok je výpočetně velmi náročný, pro jeden subjekt trval 9 až 57 hodin.

Následně byly pomocí nástroje mri_surf2surf namapovány anatomické atlasy pro levou a pravou hemisféru na snímky subjektu. K mapování jsou využívány atlasy z Projektu lidského konektomu (Human Connectome Project)[61]. Poté byl z anotované parcelace mozku vytvořen jeho segmentovaný objem pomocí příkazu mri_aparc2aseg. Jako maska kortexu je zvolen soubor hemi.ribbon.mgz pomocí volby --old-ribbon. Segmentovaný objem je poté v následujícím kroku zkonvertován do formátu mif. Příkazem labelconvert je dříve vytvořený segmentovaný objem přeanotován. Získaný anotovaný anatomický snímek je nyní třeba koregistrovat s difuzními daty. To je provedeno pomocí příkazu mrtransform, který provede koregistraci metodou nejbližšího souseda. Ke koregistraci je inverzně využita transformační matice, která byla vytvořena v rámci traktografie (konkrétně soubor ID_diff2struct_mrtrix.txt).

Následně je vytvořen samotný konektom a to za použití nástroje tck2connectome s následujícími parametry:

- symetric výsledný konektom bude symetrický hodnota konektivity mezi regionem x a y bude stejná, jako mezi regionem y a x
- **zero_diagonal** diagonála konektomu (tedy hodnoty reprezentující spojení oblasti se sebou samotnou) jsou nastaveny na nulu
- scale_invnodevol hodnoty konektivity jsou normalizovány dle objemu uzlů (velikost regionu)

Konektom je sestaven na základě traktografických výstupů. Vstupy MRtrix3 příkazu tck2connectome jsou konkrétně ID_tracks_10mio.tck a

ID_hcpmm1_parcels_coreg.mif. První z těchto souborů poskytuje informaci o tom, jak silně jsou vzájemně propojeny jednotlivé regiony (jsou v něm uloženy váhy jednotlivých traktů). V druhém souboru jsou přímo konkrétní trakty přiřazeny k uzlům a tedy odpovídajícím oblastem mozku.

V posledních dvou krocích jsou vytvořeny soubory potřebné pro přesnější vizu-alizace konektomů pomocí MRview.

Příkazy použité ve skriptu create_connectome.sh a jejich výstupy jsou shrnuty

v tabulce 5.2.5

název	popis	výstup z	odvozeno ze souboru
		funkce	
ID_hcpmmp1.mgz	segmentovaný	mri_aparc2aseg	anotace freesurferu
	objem mozku		
ID_hcpmmp1.mif	segmentovaný	mrconvert	ID_hcpmmp1.mgz
	objem mozku		
ID_hcpmmp1_	přeanotovaný	labelconvert	hcpmmp1_ordered.txt,
parcels_	$neregistrovan \acute{y}$		$hcpmmp1_original.txt,$
nocoreg.mif	anatomický		
	obraz		
ID_hcpmmp1_	registrovaný	mrtransform	ID_hcpmmp1_parcels_nocoreg.mif,
parcels_coreg.	anatomický		ID_diff2struct_mrtrix.txt
mif	obraz		
ID_hcpmmp1.csv	konektom	tck2connectome	ID_sift_1mio.txt,
			ID_tracks_10mio.tck,
			ID_hcpmmp1_parcels_coreg.mif
ID_	soubor s při-	tck2connectome	ID_sift_1mio.txt,
assignments_	řazenými uzly		ID_tracks_10mio.tck,
hcpmmp1.csv	k traktům (pro		ID_hcpmmp1_parcels_coreg.mif
	zpětnou rekon-		
	strukci traktů)		
ID_hcpmmp1_	soubor pro ana-	label2mesh	ID_hcpmmp1_parcels_coreg.mif
mesh.obj	tomickou vizu-		
	alizaci regionů		
ID_anatomical_	soubor pro ana-	connectome2tck	ID_tracks_10mio.tck,
edges.tck	tomickou vizu-		ID_assignments_hcpmmp1.csv
	alizaci traktů		

	1 1 1	1 . 1		/ /	ו		1 1/
Tab. 5.4: So	oubory slouzio	ei jako	vstupy a	a vystupy	pri	vytvareni	konektomu

Vizualizace konektomu pomocí matice

Základní možností, jak lze vytvořený konektom vizualizovat je matice vykreslená na základě .csv souboru konektomu pomocí skriptu show_connectome.m v matlabu. Tato metoda slouží pouze k vytvoření hrubé představy o konektivitě mozku a vizualizace tímto způsobem je vhodná pro kontrolu smysluplnosti výsledků. Na obou osách matice jsou čísla odpovídající jednotlivým regionům v rozsahu 0-360. Každá

hemisféra je tedy na základě atlasu rozdělena na 180 oblastí a příslušná homologní oblast v pravé hemisféře má o 180 větší číslo než daná oblast v levé hemisféře. Tabulka oblastí a jejich odpovídajících čísel je uvedena v příloze B. Barva každého pixelu v matici vyjadřuje, jak silně jsou dané oblasti propojeny.

Obr. 5.4: Vizualizace konektomu jako matice pro subjekt 4406B.

Pokročilejší vizualizace pomocí MRview

Vizualizace konektomu jako 3D struktury je možná pouze pomocí MRtrix nástroje MRview, který nabízí hned několik možností.

Nejzákladnější variantou zobrazení je pouze zobrazení uzlů jako "kuliček" a spojení mezi nimi je představováno přímkami. Toto zobrazení neuvažuje velikost a tvar jednotlivých regionů ani sílu jednotlivých spojení. Výsledek tohoto zobrazení je na obrázku 5.5.

Pomocí anatomických atlasů je možné zobrazit jednotlivé mozkové regiony v jejich odpovídající velikosti a tvaru, nastavíme-li parametr geometrie vizualizace uzlů na "Mesh". Je ovšem nutné zobrazit pouze některé regiony, neboť vizualizace všech uzlů by způsobila, že by přes uzly nebylo nic vidět. (Selektivní vizualizace některých regionů byla realizována pomocí vektoru jedniček a nul, kdy byl vizualizován přibližně každý desátý region). Výsledek tohoto zobrazení je na obrázku 5.9.

Pokud nastavíme vizualizaci spojů dle síly traktů, která je uložena v souboru ID_tracks_10mio.tck, získáme nejpřesnější vizualizaci konektomu, který je vykres-

Obr. 5.5: Vizualizace konektomu pomocí MRview v základní variantě. Mozkové regiony jsou představovány kuličkami a trakty přímkami stejné tlouštky.

len s ohledem nejen na velikost regionů, ale i na sílu traktů (viz obrázek 5.10). Díky předchozím koregistračním krokům je možné zobrazit konektom i ve vztahu k anatomickému podkladu, jak je zobrazeno na obrázku 5.8

5.3 Statistické zhodnocení konektomu

Úplně posledním krokem je statistické zhodnocení vytvořených konektomů. Pro porovnání konektomů zdravých a nemocných osob byl použit softwarový MRtrix nástroj Connectomestats a jeho implementace je provedena ve skriptu **con_stat**. Pro správný průběh analýzy je třeba vytvořit soubor s cestami ke všem vyhodnocovaným konektomům. Dále je potřeba pro analýzu ručně sestrojit design matrix, která pomocí jedniček a nul určuje, které subjekty patří mezi zdravé kontroly, a které mezi pacienty s roztroušenou sklerózou. Dále je třeba statistickému nástroji poskytnout matici kontrastů, která má podobu 2x2 a skládá se z čísel 1 na hlavní diagonále a -1 na vedlejší diagonále. Výstupem Connectomestats je řada .csv souborů se statistickými parametry.

Obr. 5.6: Vizualizace konektomu pomocí MRview s uzly vizualizovanými s ohledem na tvar a velikost jednotlivých regionů.

Obr. 5.7: Vizualizace konektomu pomocí MRview s uzly vizualizovanými s ohledem na tvar a velikost jednotlivých regionů a spoji vizualizovanými dle síly traktů.

Obr. 5.8: Vizualizace konektomu pomocí MRview proti anatomickému podkladu.

Obr. 5.9: Trakty v axiální rovině se zobrazením zdola nahoru. Při tomto zobrazení lze pozorovat výrazné vzájemné spojení pravé a levé hemisféry.

Obr. 5.10: Vizualizace traktů v sagitální rovině se zobrazením zprava doleva.

6 Diskuze výsledků

V praktické části práce byl zpracován menší dataset dvanácti subjektů a na základě jejichž difuzních dat byly pro každý subjekt vytvořeny konektomy. Na základě vypočtených konektomů (konkrétně základní vizualizace maticí 5.4) lze vyvodit několik obecných poznatků o konektivitě mozku. Co do síly spojení mezi regiony je v maticové vizualizaci konektomu velmi výrazná oblast v okolí hlavní diagonály, která indikuje výrazné propojení mezi regiony, které leží blízko sebe. Dále je pozorovatelné výraznější propojení mezi homologními oblastmi z opačných hemisfér. Dále si v matici konektomu můžeme všimnout vyšší konektivity podél obou os. Jedná se o spojení subkortálních oblastí téměř s většinou oblastí kůry. Pouze na základě vizuálních výstupů nelze vyvodit žádné závěry o rozdílech mezi zdravými kontrolami a pacienty.

Pro statistické porovnání konektomů zdravých osob a pacientů s roztroušenou sklerózou byl použit p-hodnotový výstup z Connectomestats. Obdobně jako při základní vizualizaci zde byla použita vizualizace pomocí heatmapy. Jelikož byla anlýza provedena na nedostatečně velkém datasetu, nejsou z výsledných p-hodnot přímo patrné žádné souvislosti a pro žádný trakt nenabývá p-hodnota menšího čísla než 0,05 (standardně používaná hladina významnosti) a žádný rozdíl mezi dvěma skupinami nelze tedy považovat za statisticky významný. Na takto přísné hladině významnosti tedy bohužel nelze pro zmenšený dataset získat žádné výsledky.

Je-li ovšem heatmapa naprahována na extrémně vysokou hladinu významnosti 0,51 (tedy vše, co je větší než 0,51 je nastaveno na 0), lze pozorovat, že konexe mezi některými regiony mohou být skutečně odlišné pro zdravé a nemocné subjekty. Větší množství spojů s "relativně nízkou"p-hodnotou (pod prahem empiricky zvoleným jako 0,51) spojuje regiony s čísly okolo 160 s většinou regionů z opačné hemisféry, viz obrázek 6.1.

Dle číslování regionů z tabulky v příloze B se jedná o spojení regionů z inferiornífrotnální oblasti z levé hemisféry s téměř všemi regiony z opačné hemisféry. Levý inferiorní frontální kortex je oblast vykonávající řadu kognitivních funkcí, jako je například řeč [62]. Další výrazné odchylky jsou pozorovatelné pro regiony s čísly okolo 20, což odpovídá mediálnímu temporálnímu kortexu, který je zodpovědný za vizuální vnímání pohybu [63]. Jak již bylo zmíněno výše, z takto malého vzorku pacientů nelze vyvodit věrohodné závěry, ovšem rozdílnosti v oblasti právě mediálního temporálního kortexu by korespondovaly se studií, kdy byly u pacientů s RS-RR pozorovány výraznější změny mimo jiné i v této oblasti [64].

Přesnějších výsledků bohužel nemůže být na úrovni této bakalářské práce dosaženo z důvodů malého množství zpracovaných dat kvůli vysokým výpočetním časům. V současné době běží výpočty podle znavržených skriptů pro zbývajících

121 subjektů studie a výsledky budou publikovány později.

Obr. 6.1: Vizualizace statistického výstupu z Connectomestats. Na obrázku je heatmapa p-hodnot naprahovaných na hodnotu 0.51. Můžeme se všimnout statisticky významných rozdílů u regionů s čísly kolem 160 a 25, které jsou vyznačeny červenými obdelníky.

Závěr

Tato bakalářská práce se věnuje možnostem analýzy mozkových drah pomocí pokročilých difuzních metod.

V první části práce je pojednáno o jevu difuze, o jejich druzích a principu pořizování difuzně vážených obrazů. V této části jsou též představeny základní pojmy nutné k pochopení později zmíněných principů a metod.

Ve druhé kapitole jsou představeny pokročilé metody difuzního zobrazování. Tyto metody je nutné rozdělit na metody náběru a zpracování dat. Jsou zmíněny celkem tři metody náběru dat lišící se svou složitostí i možnostmi následného zpracování a sedm metod zpracování dat.

Další část je zaměřena na dostupné softwarové nástroje pro zpracování dat z výše popsaných metod, které byly použity v praktické části. Popsána je řada nástrojů z několika různých softwarů.

V praktické části bylo navržen postup pro analýzu dat pořízených na skupině zdravých subjektů a pacientů s relaps-remitentní roztroušenou sklerózou. Měření bylo provedeno na 3T MRI skeneru v laboratořích výzkumného zařízení CEITEC. Pro vysokou výpočetní náročnost bylo možné pro účely bakalářské práce otestovat navržený postup pouze na zmenšeném vzorku dvanácti subjektů. Jednotlivé kroky se věnují předzpracování dat, analýze traktů a následnému sestavení konektomu. K analýze jsou použity nástroje MRtrix3, FSL a Freesurfer. Výstupem jsou konektomy pro zdravé i nemocné subjekty, které byly vizualizovány několika způsoby pomocí Matlabu a MRtrix3 nástroje MRview. Pomocí nástroje Connectomestats byla provedena statistická analýza vytvořených konektomů, kdy bylo cílem zjistit, zda se liší konektivita mezi některými regiony pro zdravé kontroly a pro pacienty.

Na zmenšeném datasetu jsou při vysoké hladině významnosti naznačeny mírné odlišnosti v oblasti inferiorního frontálního kortexu a mediálního temporálního kortexu. Není ovšem jisté, zda tyto výsledky odpovídají realitě a zda budou potvrzeny či vyvráceny po dokončení výpočtů na celém datasetu.

Literatura

- [1] Diffusion weighted magnetic resonance imaging and its recent trend a survey. Quantitative Imaging in Medicine and Surgery [online]. 2015 [cit. 2023-11-29]. Dostupné z: https://qims.amegroups.org/article/view/5938/html
- [2] BALIYAN, Vinit, Chandan J DAS, Raju SHARMA a Arun Kumar GUPTA. Diffusion weighted imaging: Technique and applications. World Journal of Radiology [online]. 2016, 8(9) [cit. 2023-12-20]. ISSN 1949-8470. Dostupné z: doi:10.4329/wjr.v8.i9.785
- [3] Diffusion MRI, Tractography, Connectomics and their applications [online]. [cit. 2023-10-29]. Dostupné z: https://www.youtube.com/watch?v=emfNQpQuzVo
- [4] DHOLLANDER, Thijs, Adam CLEMENTE, Mervyn SINGH, et al. Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. NeuroImage [online]. 2021, 241 [cit. 2023-11-27]. ISSN 10538119. Dostupné z: doi:10.1016/j.neuroimage.2021.118417
- [5] USC Stevens Neuroimaging and Informatics Institute. MRillustrated [online].
 [cit. 2023-11-29]. Dostupné z: https://www.youtube.com/playlist?list=
 PLQN7oTTjz44SVSnMXDy66cFQrkm9a-jbw
- [6] MARTINEZ-HERAS, Eloy, Francesco GRUSSU, Ferran PRADOS, Elisabeth SOLANA a Sara LLUFRIU. Diffusion-Weighted Imaging: Recent Advances and Applications. Seminars in Ultrasound, CT and MRI [online]. 2021, 42(5), 490-506 [cit. 2023-11-27]. ISSN 08872171. Dostupné z: doi:10.1053/j.sult.2021.07.006
- [7] GONZALEZBALLESTER, M. Estimation of the partial volume effect in MRI. Medical Image Analysis [online]. 2002, 6(4), 389-405 [cit. 2023-11-27]. ISSN 13618415. Dostupné z: doi:10.1016/S1361-8415(02)00061-0
- [8] SCIENCEDIRECT. Tractography [online]. [cit. 2023-11-27]. Dostupné z: https://www.sciencedirect.com/topics/neuroscience/tractography
- [9] SMITH, Robert E., Jacques-Donald TOURNIER, Fernando CALAMANTE a Alan CONNELLY. Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage [online]. 2012, 62(3), 1924-1938 [cit. 2023-11-27]. ISSN 10538119. Dostupné z: doi:10.1016/j.neuroimage.2012.06.005
- [10] ASSAF, Yaniv a Peter J. BASSER. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage

[online]. 2005, 27(1), 48-58 [cit. 2023-11-10]. ISSN 10538119. Dostupné z: doi:10.1016/j.neuroimage.2005.03.042

- [11] BARTOŇOVÁ, Michaela. Everything you ever wanted to know about PRO-CESSING of DWI data, but you were afraid to ask. CF MAFIL, 2022.
- [12] Introduction to DTI Workshop [online]. [cit. 2023-10-29]. Dostupné z: https: //www.youtube.com/watch?v=kvBUzR5bKCs
- [13] BERMAN, J.I., M.R. LANZA, L. BLASKEY, J.C. EDGAR a T.P.L. RO-BERTS. High Angular Resolution Diffusion Imaging Probabilistic Tractography of the Auditory Radiation. American Journal of Neuroradiology [online]. 2013, 2013-08-14, 34(8), 1573-1578 [cit. 2023-11-26]. ISSN 0195-6108. Dostupné z: doi:10.3174/ajnr.A3471
- [14] DESCOTEAUX, Maxime. HIGH ANGULAR RESOLUTION DIFFUSI-ONIMAGING (HARDI) [online]. 1-25 [cit. 2023-11-29]. Dostupné z: doi:10.1002/047134608X.W8258
- [15] UCH, David S., Timothy G. REESE, Mette R. WIEGELL, Nikos MAKRIS, John W. BELLIVEAU a Van J. WEDEEN. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine [online]. 2002, 48(4), 577-582 [cit. 2023-10-30]. ISSN 0740-3194. Dostupné z: doi:10.1002/mrm.10268
- [16] SZCZEPANKIEWICZ, Filip, Carl-Fredrik WESTIN a Markus NILSSON. Gradient waveform design for tensor-valued encoding in diffusion MRI. Journal of Neuroscience Methods [online]. 2021, 348 [cit. 2023-11-27]. ISSN 01650270. Dostupné z: doi:10.1016/j.jneumeth.2020.109007
- [17] SZCZEPANKIEWICZ, Filip, Scott HOGE a Carl-Fredrik WESTIN. Linear, planar and spherical tensor-valued diffusion MRI data by free waveform encoding in healthy brain, water, oil and liquid crystals. Data in Brief [online]. 2019, 25 [cit. 2023-11-27]. ISSN 23523409. Dostupné z: doi:10.1016/j.dib.2019.104208
- [18] CHAKWIZIRA, Arthur, Carl-Fredrik WESTIN, Jan BRABEC, Samo LASIČ, Linda KNUTSSON, Filip SZCZEPANKIEWICZ a Markus NILSSON. Diffusion MRI with pulsed and free gradient waveforms: Effects of restricted diffusion and exchange. NMR in Biomedicine [online]. 2023, 36(1) [cit. 2023-11-27]. ISSN 0952-3480. Dostupné z: doi:10.1002/nbm.4827
- [19] ELSTER, Allen D. [online]. CHRISTIAENS, Daan, Jelle VERAART a J-Donald TOURNIER. [cit. 2024-01-02]. Dostupné z: https://mriquestions. com/diffusion-tensor.html

- [20] JAHN, Andrew. Introduction to Diffusion Tensor Imaging and NODDI [online]. [cit. 2023-11-29]. Dostupné z: https://www.youtube.com/watch?v= GwnuckqaiC4
- [21] DE SANTIS, S., Y. ASSAF, C. J. EVANS a D. K. JONES. Improved precision in CHARMED assessment of white matter through sampling scheme optimization and model parsimony testing. Magnetic Resonance in Medicine [online]. 2014, 71(2), 661-671 [cit. 2023-11-27]. ISSN 0740-3194. Dostupné z: doi:10.1002/mrm.24717
- [22] DE SANTIS, Silvia, Tobias GRANBERG, Russell OUELLETTE, Constantina A. TREABA, Elena HERRANZ, Qiuyun FAN, Caterina MAINERO a Nicola TOSCHI. Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. NeuroImage: Clinical [online]. 2019, 22 [cit. 2024-05-26]. ISSN 22131582. Dostupné z: doi:10.1016/j.nicl.2019.101699
- [23] SCIENCEDIRECT. Ball-and-Stick Model [online]. [cit. 2023-11-22]. Dostupné z: https://www.sciencedirect.com/topics/ biochemistry-genetics-and-molecular-biology/ball-and-stick-model
- [24] YANG, Sheng, Kaushik GHOSH, Ken SAKAIE, Satya S. SAHOO, Sarah J. Ann CARR a Curtis TATSUOKA. A Simplified Crossing Fiber Model in Diffusion Weighted Imaging. Frontiers in Neuroscience [online]. 2019, 2019-5-22, 13 [cit. 2023-12-13]. ISSN 1662-453X. Dostupné z: doi:10.3389/fnins.2019.00492
- [25] PASTERNAK, Ofer, Nir SOCHEN, Yaniv GUR, Nathan INTRATOR a Yaniv ASSAF. Free water elimination and mapping from diffusion MRI. Magnetic Resonance in Medicine [online]. 2009, 62(3), 717-730 [cit. 2023-11-27]. ISSN 0740-3194. Dostupné z: doi:10.1002/mrm.22055
- [26] UCL MICROSTRUCTURE IMAGING GROUP. Overview of NODDI. NODDI Matlab Toolbox [online]. 2009 [cit. 2023-11-29]. Dostupné z: http://mig.cs. ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
- [27] ZHANG, Hui, Torben SCHNEIDER, Claudia A. WHEELER-KINGSHOTT a Daniel C. ALEXANDER. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage [online]. 2012, 61(4), 1000-1016 [cit. 2023-10-29]. ISSN 10538119. Dostupné z: doi:10.1016/j.neuroimage.2012.03.072
- [28] Radiopaedia.org: Apparent diffusion coefficient [online]. 16.2.2013. Radiopaedia.org, 2005 [cit. 2023-11-27]. Dostupné z: doi:10.53347/rID-21759

- [29] KAMIYA, Kouhei, Masaaki HORI a Shigeki AOKI. NODDI in clinical research. Journal of Neuroscience Methods [online]. 2020, 346 [cit. 2023-11-27]. ISSN 01650270. Dostupné z: doi:10.1016/j.jneumeth.2020.108908
- [30] MITCHELL, Trina, Derek B. ARCHER, Winston T. CHU, et al. Neurite orientation dispersion and density imaging (NODDI) and free-water imaging in Parkinsonism. Human Brain Mapping [online]. 2019, 40(17), 5094-5107 [cit. 2023-11-27]. ISSN 1065-9471. Dostupné z:doi:10.1002/hbm.24760
- [31] IVIM Imaging: What is intravoxel incoherent motion (IVIM)? Is this the same as diffusion? [online]. [cit. 2023-11-11]. Dostupné z: https://mriquestions. com/ivim.html
- [32] SCIENCEDIRECT. Kurtosis [online]. [cit. 2023-10-27]. Dostupné z: https: //www.sciencedirect.com/topics/mathematics/kurtosis
- [33] Coefficient of Kurtosis. In: The Concise Encyclopedia of Statistics [online]. New York, NY: Springer New York, 2008, s. 91-92 [cit. 2023-11-27]. ISBN 978-0-387-31742-7. Dostupné z: doi:10.1007/978-0-387-32833-1₆3
- [34] MOREZ, Jan, Jan SIJBERS, Floris VANHEVEL a Ben JEURISSEN. Constrained spherical deconvolution of nonspherically sampled diffusion MRI data. Human Brain Mapping [online]. 2021, 42(2), 521-538 [cit. 2023-11-27]. ISSN 1065-9471. Dostupné z: doi:10.1002/hbm.25241
- [35] TOURNIER, J.-Donald, Fernando CALAMANTE, David G. GADIAN a Alan CONNELLY. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage [online]. 2004, 23(3), 1176-1185 [cit. 2023-10-12]. ISSN 10538119. Dostupné z: doi:10.1016/j.neuroimage.2004.07.037
- [36] MRTRIX. Fixel image (directory) format [online]. 2017 [cit. 2023-11-29]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/fixel_based_ analysis/fixel_directory_format.html
- [37] UUNIVERSITY OF MICHIGAN. Andy's Brain Book [online]. 2023 [cit. 2023-11-22]. Dostupné z: https://andysbrainbook.readthedocs.io/en/latest/
- [38] JAHN, Andrew. Diffusion Analysis with MRtrix [online]. [cit. 2023-11-10]. Dostupné z: https://www.youtube.com/playlist?list= PLIQIswOrUH68Zi9SVDAdcUExpq2i6A2eD

- [39] SOTIROPOULOS, Stamatios N. a Andrew ZALESKY. Building connectomes using diffusion MRI: why, how and but. NMR in Biomedicine [online]. 2019, 32(4) [cit. 2023-11-27]. ISSN 0952-3480. Dostupné z: doi:10.1002/nbm.3752
- [40] TOURNIER, J. D. Connectomestats [online]. [cit. 2024-05-10]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/reference/commands/ connectomestats.html
- [41] JAHN, Andrew. Using FSLeyes, Part 1: Display and View Functions [online]. [cit. 2023-12-04]. Dostupné z: https://www.youtube.com/watch?v= VVYHFQedAXA
- [42] JAHN, Andrew. Using FSLeyes, Part 2: Overlays, Time Series, and Correlation Maps [online]. [cit. 2023-12-04]. Dostupné z: https://www.youtube.com/ watch?v=7ZiQ-1-ezFw
- [43] JOHANSEN-BERG, H. a T. BEHRENS. UNIVERSITY OF OXFORD. FDT
 FMRIB's Diffusion Toolbox [online]. [cit. 2023-12-04]. Dostupné z: https://users.fmrib.ox.ac.uk/~behrens/fdt_docs/
- [44] Eddy [online]. [cit. 2023-12-05]. Dostupné z: https://fsl.fmrib.ox.ac.uk/ fsl/fslwiki/eddy
- [45] JBABDI, Saad, Stamatios N. SOTIROPOULOS, Alexander M. SAVIO, Manuel GRAÑA a Timothy E. J. BEHRENS. Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magnetic Resonance in Medicine [online]. 2012, 68(6), 1846-1855 [cit. 2023-12-05]. ISSN 0740-3194. Dostupné z: doi:10.1002/mrm.24204
- [46] FDT User Guide [online]. [cit. 2023-12-05]. Dostupné z: https://fsl.fmrib. ox.ac.uk/fsl/fslwiki/FDT/UserGuide#BEDPOSTX
- [47] FDT User Guide [online]. [cit. 2023-12-05]. Dostupné z: https: //fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#PROBTRACKX_-_ probabilistic_tracking_with_crossing_fibres
- [48] FreeSurfer software suite [online]. [cit. 2024-04-06]. Dostupné z: https:// surfer.nmr.mgh.harvard.edu/
- [49] [online]. CHRISTIAENS, Daan, Jelle VERAART a J-Donald TOURNIER. [cit. 2024-01-02]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/ reference/commands/dwidenoise.html

- [50] MRTRIX. Welcome to the MRtrix3 user documentation! [online]. 2017 [cit. 2023-11-27]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/index. html
- [51] JAHN, Andrew. MRtrix Tutorial 4: Preprocessing [online]. [cit. 2024-03-22]. Dostupné z: https://andysbrainbook.readthedocs.io/en/latest/MRtrix/ MRtrix_Course/MRtrix_04_Preprocessing.html
- [52] MLČOCH, Zbyněk. Roztroušená skleróza mozkomíšní (RS), demyelinizace příznaky, léčba, recidivy [online]. 2008, 5.1.2008 [cit. 2024-05-20]. Dostupné z: https://www.zbynekmlcoch.cz/medicina/neurologie-nemoci-vysetreni/ roztrousena-skleroza-mozkomisni-rs-demyelinizace-priznaky-lecba-recidivy
- [53] LUBLIN, Fred D. a Stephen C. REINGOLD. Defining the clinical course of multiple sclerosis. Neurology [online]. 1996, 46(4), 907-911 [cit. 2024-05-26].
 ISSN 0028-3878. Dostupné z: doi:10.1212/WNL.46.4.907
- [54] DAVOUDI, Yasmin, Mohsen FOROUGHIPOUR, Reza TORABI, Parvaneh LAYEGH, Nassim MATIN a Ali SHOEIBI. Diffusion Weighted Imaging in Acute Attacks of Multiple Sclerosis. Iranian Journal of Radiology [online]. 2016, 2016-02-15, 13(2) [cit. 2024-04-05]. ISSN 1735-1065. Dostupné z: doi:10.5812/iranjradiol.21740
- [55] BAO, Jianfeng, Hui TU, Yijia LI, Jubao SUN, Zhigang HU, Fengshou ZHANG a Jinghua LI. Diffusion Tensor Imaging Revealed Microstructural Changes in Normal-Appearing White Matter Regions in Relapsing–Remitting Multiple Sclerosis. Frontiers in Neuroscience [online]. 2022, 2022-3-2, 16 [cit. 2024-04-05]. ISSN 1662-453X. Dostupné z: doi:10.3389/fnins.2022.837452
- [56] SMITH, Robert E. Dwi2response [online]. [cit. 2024-04-06]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/reference/commands/ dwi2response.html
- [57] TOURNIER, Donald J. a Ben JEURISSEN. Dwi2fod [online]. [cit. 2024-04-06]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/reference/ commands/dwi2fod.html
- [58] SMITH, Robert E. 5ttgen [online]. [cit. 2024-04-06]. Dostupné z: https:// mrtrix.readthedocs.io/en/dev/reference/commands/5ttgen.html
- [59] SMITH, Robert E. 5tt2gmwmi. [online]. [cit. 2024-04-06]. Dostupné z: https: //mrtrix.readthedocs.io/en/dev/reference/commands/5tt2gmwmi.html

- [60] SMITH, Robert E. a Donald J. TOURNIER. Tckgen [online]. [cit. 2024-04-06]. Dostupné z: https://mrtrix.readthedocs.io/en/dev/reference/ commands/tckgen.html
- [61] HUANG, Chu-Chung, Edmund T. ROLLS, Jianfeng FENG a Ching-Po LIN. An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas. Brain Structure and Function [online]. 2022, 227(3), 763-778 [cit. 2024-05-17]. ISSN 1863-2653. Dostupné z: doi:10.1007/s00429-021-02421-6
- [62] Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organisation in the left inferior frontal gyrus: evidence from taskfree and task-based functional connectivity. bioRxiv [Preprint]. Dostupné z doi: 10.1101/2023.02.02.526818
- [63] DUKELOW, Sean P., Joseph F. X. DESOUZA, Jody C. CULHAM, Albert V. VAN DEN BERG, Ravi S. MENON a Tutis VILIS. Distinguishing Subregions of the Human MT+ Complex Using Visual Fields and Pursuit Eye Movements. Journal of Neurophysiology [online]. 2001, 2001-10-01, 86(4), 1991-2000 [cit. 2024-05-22]. ISSN 0022-3077. Dostupné z: doi:10.1152/jn.2001.86.4.1991
- [64] NARAYANA, Ponnada A., Koushik A. GOVINDARAJAN, Priya GOEL, et al. Regional cortical thickness in relapsing remitting multiple sclerosis: A multicenter study. NeuroImage: Clinical [online]. 2013, 2, 120-131 [cit. 2024-05-15]. ISSN 22131582. Dostupné z: doi:10.1016/j.nicl.2012.11.009
Seznam symbolů a zkratek

ACT	anatomicky omezená traktografie - Anatomically Constrained Tractography	
AD	axiální difuzivita	
AP	anterior - posterior	
BOLD	Zobrazování dle hladiny kyslíku v krvi - Blood Oxygenation Level Dependen	
CEITEC	středoevropský výzkumný technický institut - Central European Institute of Technology	
CSD	omezená sférická dekonvoluce - Constrained Spherical Deconvolution	
\mathbf{CT}	výpočetní tomografie - Computerized Tomography	
DKI	zobrazování s ko eficientem špičatosti - Diffusion Kurtosis I maging $% \left({{{\rm{T}}_{{\rm{T}}}}} \right)$	
DTI	zobrazování difuzním tenzorem - Diffusion Tensor Imaging	
dODF	difuzní orientačně-distribuční funkce - diffusion orientation distribution function	
DWI	difuzně vážené zobrazování - Diffusion Weighted Imaging	
FA	frakční anizotropie	
FDT	FMRIB nástroj pro difuzní data - FMRIB´s diffusion toolbox	
FLAIR	zobrazování s potlačením vody - Fluid-Attenuated Inversion Recovery	
FMRI	Funkční magnetická rezonance	
FSL	FMRIB Software Library	
fODF	vláknová orientačně-distribuční funkce - fibre Orientation Distribution Function	
FRT	Funk-Radonova transformace	
FWF	zlomek volné vody - Free Water Fraction	
GUI	grafické uživatelské rozhraní - Graphical User Interface	

HARDI	difuzní zobrazování s vysokým rozlišením - High Angular Resolution Diffusion Imagining		
CHARME	${\bf D}$ Composite Hindered and Restricted Model of Diffusion		
IVIM	Intravoxel Incoherent Motion		
lh	levá hemisféra - left hemisphere		
MAFIL	Laboratoř multimodálního a funkčního zobrazování - Multimodal And Functional Imaging Laboratory		
MD	střední difuzivita - Mean Diffusivity		
MRI	zobrazování magnetickou rezonancí - Magnetic Resonance Imaging		
NDI	index hustoty neuritů - Neurite Density Index		
NIFTI	Neuroimaging Informatics Technology Initiative		
NODDI	Neurite Orientation Dispersion and Density Imaging		
ODF	orientačně-distribuční funkce - Orientation Distribution Function		
ODI	index směrového rozptylu - Orientation Dispersion Index		
PA	posterior - anterior		
\mathbf{PET}	pozitronová emisní tomografie - Positron Emission Tomography		
PVE	vliv částečného objemu - Partial Volume Effect		
QBI	Q-ball Imaging		
RD	radiální difuzivita		
\mathbf{RF}	radiofrekvenční		
\mathbf{RF}	odpověď vlákna - response fibre		
rh	pravá hemisféra - right hemisphere		
RS-RR	Relaps-remitentní roztroušená skleróza		
ROI	oblast zájmu - Region of Interest		
SIFT	filtrace traktů na základě sférické dekonvoluce - Spherical-deconvolution Informed Filtering of Tractograms		

SNR Poměr signál-šum - Signal to Noise Ratio

A Přehled použitých skriptů

V níže uvedené tabulce je k dispozici přehled skriptů, které jejich sekvenčním spuštěním provádí analýzu DWI dat.

pořadí	název skriptu	oblast	jazyk	účel skriptu
1	deleting.sh	předpříprava dat	bash	odstranění nepo-
				třebných souborů
2	moving.sh	předpříprava dat	bash	vytvoření složek a
				přesun souborů
3	$mat_to_json_whitelist.m$	předpříprava dat	matlab	konverze metadat
				na potřebný data-
				typ
4	convert.sh	předpříprava dat	bash	konverze dat na mif
5	preproc.sh	preprocessing	bash	preprocessing
6	pre_tractography.sh	traktografie	bash	předpříprava složek
				a souborů pro trak-
				tografii
7	tractography.sh	traktografie	bash	traktografická ana-
				lýza
8	pre_connecome.sh	konektom	bash	vytvoření struktury
				složek pro konek-
				tom
9	$create_connectome.sh$	konektom	bash	vytvoření konek-
				tomu
10	show_connectome.m	konektom	matlab	základní zobrazení
				konektomu jako ma-
				tice
11	con_stat.sh	konektom	bash	statistická analýza
				konektomu
12	show_stats.m	konektom	matlab	zobrazení výsledků
				statistické analýzy

B Číslování mozkových regionů

V rámci bakalářské práce je sestaven konektom, který je v kapitole 5.2.5 vizualizován jako matice konektivity. Pro jednoduchost nejsou na osách vyneseny přímo názvy příslušných regionů, ale jejich čísla, která byla regionům přiřazena na základě anatomického altasu Projektu lidského konektomu. V této příloze je uvedena tabulka s oblastmi mozku a jejich čísly v levé (lh), repsektive pravé hemisféře (rh). Tabulka převzata z [61]

ID lh	ID rh	Název regionu	Kortikální oblast
ID lh	ID rh	Název regionu	Kortikální oblast
1	181	Primární zraková kůra	primární zraková
2	182	Druhá zraková oblast	raná zraková
3	183	Třetí zraková oblast	raná zraková
4	184	Čtvrtá zraková oblast	raná zraková
5	185	Oblast intraparietálního zářezu	dorsální zrakový proud
6	186	oblast V3A	dorsální zrakový proud
7	187	oblast V3B	dorsální zrakový proud
8	188	šestá zraková oblast	dorsální zrakový proud
9	189	oblast V6A	dorsální zrakový proud
10	190	sedmá zraková oblast	dorsální zrakový proud
11	191	oblast rozpoznávání obličejů	ventrální zrakový proud
12	192	posteriorní inferotemporální komplex	ventrální zrakový proud
13	193	osmá zraková oblast	ventrální zrakový proud
14	194	Ventromediální zraková oblast 1	ventrální zrakový proud
15	195	Ventromediální zraková oblast 2	ventrální zrakový proud
16	196	Ventromediální zraková oblast 3	ventrální zrakový proud
17	197	Ventrální zrakový komplex	ventrální zrakový proud
18	198	FST oblast	mediální temporální k. a přilehlé zrakové oblasti
19	199	Oblast laterálního okcipitálního pole 1	mediální temporální k. a přilehlé zrakové oblasti
20	200	Oblast laterálního okcipitálního pole 2	mediální temporální k. a přilehlé zrakové oblasti
21	201	Oblast laterálního okcipitálního pole 3	mediální temporální k. a přilehlé zrakové oblasti
22	202	Mediální superiorní temporální oblast	mediální temporální k. a přilehlé zrakové oblasti
23	203	střední temporální oblast	mediální temporální k. a přilehlé zrakové oblasti
24	204	PH oblast	mediální temporální k. a přilehlé zrakové oblasti
25	205	V3CD oblast	mediální temporální k. a přilehlé zrakové oblasti
26	206	oblast V4t	mediální temporální k. a přilehlé zrakové oblasti
27	207	oblast 1	Somatosensorická a motorická
28	208	oblast 2	Somatosensorická a motorická
29	209	oblast 3a	Somatosensorická a motorická
30	210	Primární senzorická kůra	Somatosensorická a motorická
31	211	Primární motorická kůra	paracentralní lalůček, střední cingulární
32	212	oblast 23c	paracentralní lalůček, střední cingulární
33	213	dorsální oblast 24d	paracentralní lalůček, střední cingulární
34	214	ventrální oblast 24d	paracentralní lalůček, střední cingulární
35	215	oblast 5L	paracentralní lalůček, střední cingulární
36	216	oblast 5m	paracentralní lalůček, střední cingulární
37	217	oblast 5m ventrální	paracentralní lalůček, střední cingulární
38	218	oblast 5m anteriorní	paracentralní lalůček, střední cingulární
39	219	oblast 6mp	paracentralní lalůček, střední cingulární
40	220	oblast 55b	paracentralní lalůček, střední cingulární
41	221	anterorní oblast 6	Premotorická
42	222	dorsální oblast 6	Premotorická
43	223	rostrální oblast 6	Premotorická
44	224	ventrální oblast 6	Premotorická
		Pokračování na další straně	

ID lh	ID rh	Název regionu	
45	225	přední oční pole	Premotorická
46	226	Přídavné a cingulární oční pole	Premotorická
47	227	Promotorové oční pole	Premotorická
48	228	oblast 43	Posteriorní operkulární
49	229	operculum 1	Posteriorní operkulární
50	230	oblast OP1-SII	Posteriorní operkulární
51	231	Oblast OP2-3VS	Posteriorní operkulární
52	232	oblast OP4-PV	Posteriorní operkulární
53	233	oblast 52	raná sluchová
54	234	primární sluchová kůra	raná sluchová
55	235	laterální belt komplex	raná sluchová
56	236	mediální belt komplex	raná sluchová
57	237	parabelt komplex	raná sluchová
58	238	PFcm oblast	raná sluchová
59	239	retroinsulární kůra	raná sluchová
60	240	Sluchový komplex 4	oblast sluchových asociací
61	241	sluchový komplex 5	oblast sluchových asociací
62	242	STGa oblast	oblast sluchových asociací
63	243	anteriorní STSd oblast	oblast sluchových asociací
64	244	oposteriorní STSd oblast	oblast sluchových asociací
65	245	anteriorní STSv oblast	oblast sluchových asociací
66	246	posteriorní STSv oblast	oblast sluchových asociací
67	247	TA2 oblast	oblast sluchových asociací
68	248	Komplex přední agranulární insuly	Frontální operkulární insula
69	249	oblast anteriorní ventrální insulv	Frontální operkulární insula
70	250	operculum 2	Frontální operkulární insula
71	251	operculum 3	Frontální operkulární insula
72	252	operculum 4	Frontální operkulární insula
73	253	operculum 5	Frontální operkulární insula
74	254	komplex granulární insuly	Frontální operkulární insula
75	255	střdní insulární oblast	Frontální operkulární insula
76	256	parainsulární oblast	Frontální operkulární insula
77	257	pyriformí kůra	Frontální operkulární insula
78	258	posteriorní oinsulární oblast 1	Frontální operkulární insula
79	259	posteriorní oinsulární oblast 2	Frontální operkulární insula
80	260	hippocampus	Mediální temporální
81	261	presubiculum	Mediální temporální
82	262	Entorhinální kůra	Mediální temporální
83	263	peririnální entorhinální kůra	Mediální temporální
84	264	TF oblast	Mediální temporální
85	265	parahippocampální oblast 1	Mediální temporální
86	266	parahippocampální oblast 2	Mediální temporální
87	267	parahippocampální oblast 2	Mediální temporální
88	268	PHT oblast	Laterální temporální
89	269	přední TE1 oblast	Laterální temporální
90	203	etřední TE1 oblast	Laterální temporální
01	210	zadní TE1 oblast	Laterální temporální
02	211 979	nřední TE2 oblast	Laterální temporální
02	212	zadní TE2 oblast	Laterální temporální
0/	210	TC dorsální oblast	Laterální temporální
94	214	TC vortrální oblast	Laterální temporální
90	210	Porievlyjánská jazyková oblast	Tamporo parioto okcipitální iunkco
90	210	i cuporiorní tomporální gralová oblast	Temporo-parieto-okcipitalii julikce
91	211	Oblast tempora parieta akcinitálního anaimí 1	Temporo parieto okcipitalili junkce
90	210	Obiasi temporo-parieto-okcipitamino spojeni 1	тетрого-рането-окстриани јинксе

ID lh	ID rh	Název regionu	
99	279	Oblast temporo-parieto-okcipitálního spojení 2	Temporo-parieto-okcipitální junkce
100	280	Oblast temporo-parieto-okcipitálního spojení 3	Temporo-parieto-okcipitální junkce
101	281	laterární oblast 7A	superiorní parietální
102	282	mediální oblast 7A	superiorní parietální
103	283	oblast 7PC	superiorní parietální
104	284	laterální oblast 7P	superiorní parietální
105	285	mediální oblast 7P	superiorní parietální
106	286	Anteriorní intraparietální oblast	superiorní parietální
107	287	Dorsální laterární intraparietální oblast	superiorní parietální
108	288	ventrální laterární intraparietální oblast	superiorní parietální
109	289	mediální intraparietální oblast	superiorní parietální
110	290	ventrální intraparietální oblast	superiorní parietální
111	291	intraparietální oblast 0	inferiorní-parietální
112	292	intraparietální oblast 1	inferiorní-parietální
113	293	intraparietální oblast 2	inferiorní-parietální
114	294	PF komplex	inferiorní-parietální
115	295	PFm komplex	inferiorní-parietální
116	296	PF operculárni oblast	inferiorní-parietální
117	297	PFt oblast	inferiorní-parietální
118	298	PGi oblast	inferiorní-parietální
119	299	PGp oblast	inferiorní-parietální
120	300	PGs oblast	inferiorní-parietální
121	301	23d oblast	posterior-cingulární
122	302	31a oblast	posterior-cingulární
123	303	31pd oblast	posterior-cingulární
124	304	ventrální 31p oblast	posterior-cingulární
125	305	7m oblast	posterior-cingulární
126	306	dorsální oblast 23 a+b	posterior-cingulární
127	307	Dorzální přechodová zraková oblast	posterior-cingulární
128	308	Zraková oblast precuneu	posterior-cingulární
129	309	Oblast parieto-okcipitálního sulku 1	posterior-cingulární
130	310	Oblast parieto-okcipitálního sulku 2	posterior-cingulární
131	311	area prostriata	posterior-cingulární
132	312	ertrospleniální komplex	posterior-cingulární
133	313	ventrální oblast 23 a+b	posterior-cingulární
134	314	oblast 10r	anteriorní-cingulární a mediální prefrontální
135	315	oblast 10v	anteriorní-cingulární a mediální prefrontální
136	316	oblast 25	anteriorní-cingulární a mediální prefrontální
137	317	primární oblast 33	anteriorní-cingulární a mediální prefrontální
138	318	oblast 8BM	anteriorní-cingulární a mediální prefrontální
139	319	prostřední oblast 9	anteriorní-cingulární a mediální prefrontální
140	320	oblast a24	anteriorní-cingulární a mediální prefrontální
141	321	primární oblast 24	anteriorní-cingulární a mediální prefrontální
142	322	anteriorní primární oblast 32	anteriorní-cingulární a mediální prefrontální
143	323	dorsální oblast 32	anteriorní-cingulární a mediální prefrontální
144	324	posteriorní oblast 24	anteriorní-cingulární a mediální prefrontální
145	325	posteriorní primární oblast 24	anteriorní-cingulární a mediální prefrontální
146	326	oblast p32	anteriorní-cingulární a mediální prefrontální
147	327	primární oblast p32	anteriorní-cingulární a mediální prefrontální
148	328	posteriorní OEC kompley	anteriorní-cingulární a mediální prefrontální
140	320	oblast 32s	anteriorní-cingulární a mediální prefrontální
150	320	oblast 10d	orbitální_polární_frontální
151	221	polášní oblast 10p	orbitální-polární-frontální
151	220	oblast 11	orbitální polární frontální
102	JJ2		oronami-polarm-nontami

ID lh	ID rh	Název regionu	
153	333	oblast 13l	orbitální-polární-frontální
154	334	oblast 47m	orbitální-polární-frontální
155	335	oblast 47s	orbitální-polární-frontální
156	336	anteriorní oblast 10p	orbitální-polární-frontální
157	337	Orbitální frontální komplex	orbitální-polární-frontální
158	338	posteriorní oblast 10p	orbitální-polární-frontální
159	339	oblast 44	inferioriorní-frontální
160	340	oblast 45	inferioriorní-frontální
161	341	oblast 47 laterální	inferioriorní-frontální
162	342	anteriorní oblast 47r	inferioriorní-frontální
163	343	oblast IFJa	inferioriorní-frontální
164	344	oblast IFJp	inferioriorní-frontální
165	345	oblast IFSa	inferioriorní-frontální
166	346	oblast IFSp	inferioriorní-frontální
167	347	posteriorní oblast 47r	inferioriorní-frontální
168	348	oblast 46	dorsolaterální-prefrontální
169	349	oblast 8Ad	dorsolaterální-prefrontální
170	350	oblast 8Av	dorsolaterální-prefrontální
171	351	laterální oblast 8B	dorsolaterální-prefrontální
172	352	oblast 8C	dorsolaterální-prefrontální
173	353	oblast 9-46d	dorsolaterální-prefrontální
174	354	anteriorní oblast 9	dorsolaterální-prefrontální
175	355	posteriorní oblast 9	dorsolaterální-prefrontální
176	356	anteriorní oblast 9-46v	dorsolaterální-prefrontální
177	357	inferiorní přechodová oblast	dorsolaterální-prefrontální
178	358	posteriorní oblast 9-46v	dorsolaterální-prefrontální
179	359	superiorní 6-8 přechodová oblast	dorsolaterální-prefrontální
180	360	superiorní frontální řečová oblast	dorsolaterální-prefrontální