
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

Ú S T A V P O Č Í T A Č O V Ý C H S Y S T É M Ů

FACULTY OF INFORMATION T E C H N O L O G Y

DEPARTMENT OF C O M P U T E R S Y S T E M S

SIMULACE A GENEROVÁNÍ SÍŤOVÉHO PROVOZU
N E T W O R K TRAFFIC SIMULATION A N D G E N E R A T I O N

D I P L O M O V Á P R Á C E

M A S T E R ' S THESIS

A U T O R P R Á C E B c . J I Ř Í M A T O U Š E K

A U T H O R

V E D O U C Í P R Á C E I n g . P A V O L K O R Č E K

S U P E R V I S O R

BRNO 2011

Abstrakt
S rozvojem poč í t ačových sítí umožňuj íc ích p ř enosy dat rychlos t í 1 0 G b / s a vyšší roste t aké
p o t ř e b a vývoje nových síťových zař ízení schopných pracovat na t a k o v ý c h t o rychlostech.
Nově v y v i n u t á síťová zař ízení je t ř e b a p ř e d jejich n a s a z e n í m do r eá lného provozu podrobit
d ů k l a d n é m u te s tován í , k t e r é se p rovád í p o m o c í p ř e h r á v á n í u mě le v y t v o ř e n é h o nebo dř íve
zachyceného síťového provozu na lince vedoucí k t e s t o v a n é m u zař ízení , to vše t a k é na ma­
x imá ln í rychlosti l inky. Současná tes tovac í zař ízení b u ď nejsou d o s t a t e č n ě v ý k o n n á , nebo
k r o m ě svého vysokého v ý k o n u vynika j í t a k é vysokou cenou. Cí lem t é t o d ip lomové p ráce
je tedy navrhnout h a r d w a r o v ě akcelerovanou aplikaci schopnou generování a p ř e h r á v á n í
síťového provozu rychlos t í 1 0 G b / s . P r o akceleraci aplikace je p o u ž i t a kar ta C O M B O v 2
společně s platformou N e t C O P E . Arch i tek tu ra n a v r ž e n é aplikace je m o d u l á r n í , což umožňu je
s v ý h o d o u využ í t j edno t l ivé čás t i aplikace pro implementaci různých funkcí. M e z i ty p a t ř í
generování syn te t i ckého IPv4 nebo IPv6 provozu a dá le pak p ř e h r á v á n í dř íve zachyceného
síťového provozu u loženého v p a m ě t i poč í t a če . G e n e r o v a n á i p ř e h r á v a n á síťová data jsou
vys í l ána do s í tě rychlos t í 1 0 G b / s , p ř i čemž na vys tupuje m o ž n é omezit p řenosovou rychlost
až na hodnotu I M b / s . V závěru p r á c e je provedeno s rovnán í v l a s tnos t í i m p l e m e n t o v a n é
aplikace s g e n e r á t o r e m p a k e t ů i m p l e m e n t o v a n ý m na p l a t fo rmě N e t F P G A , k t e r é vyzn ívá
příznivěji pro popisovanou aplikaci .

Abstract
Development of computer networks able to operate at the speed of 1 0 G b / s imposes new
requirements on newly developed network devices and also on a process of their testing.
Such devices are tested by replaying synthetic or previously captured network traffic on
an input l ink of the tested device. We must be able to perform both tasks also at full
wire speed. Current testing devices are either not able to operate at the speed of 1 0 G b / s
or they are too expensive. Therefore, the a im of this thesis is to design and implement
a hardware accelerated application able to generate and replay network traffic at the speed
of 1 0 G b / s . The application is accelerated i n the F P G A of the C O M B O v 2 card and it
also utilizes the N e t C O P E platform. Archi tecture of the application is modular, which
allows easy implementat ion of different modes of operation. The application implements
both capturing and replaying network traffic at full wire speed, but traffic can be l imi ted to
a specified value of bitrate at the output. The thesis is concluded by a comparison of the
implemented application and the packet generator implemented on the N e t F P G A platform.
Accord ing to this comparison, the implemented application is better than the N e t F P G A
packet generator.

Klíčová slova
gene rá to r p a k e t ů , p ř e h r á v á n í síťového provozu, IPv6 , N e t C O P E , C O M B O v 2 , p s e u d o n á h o d n á
čísla, 10 Gigabi t Ethernet

Keywords
packet generator, network traffic replaying, IPv6 , N e t C O P E , C O M B O v 2 , pseudo-random
numbers, 10 Gigabi t Ethernet

Citace
J i ř í M a t o u š e k : Network Traffic Simulat ion and Generation, d ip lomová p ráce , Brno , F I T
V U T v B r n ě , 2011

Network Traffic Simulation and Generation

Prohlášení
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m Ing. Pavola
Korčeka . Dalš í informace m i poskyt l i kolegové z projektu Liberouter . U v e d l jsem všechny
l i t e rá rn í prameny a publikace, ze k t e r ý c h jsem čerpal .

J i ř í M a t o u š e k
M a y 24, 2011

Poděkování
N a tomto m í s t ě bych r á d poděkova l panu Ing. Pavolu Korčekoví za jeho ak t ivn í p ř í s t u p
k vedení t é t o d ip lomové p r á c e a rady, k t e r é m i př i její t v o r b ě poskytnul . M é poděkován í
p a t ř í t a k é ko legům z projektu Liberouter , k t e ř í m i p o m á h a l i po s t r á n c e o d b o r n é i technické .
Za v ý r a z n o u podporu v m é m snažení bych chtěl p o d ě k o v a t t a k é m é rod ině .

© Jiř í M a t o u š e k , 2011.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Related W o r k 5
2.1 Software-Based Solutions 5
2.2 Hardware Network Testers 5
2.3 N e t F P G A Packet Generator 6
2.4 Summary of Posit ive Aspects 6

3 Prerequisites 7
3.1 OSI Reference M o d e l 7

3.1.1 Network Layer 9
3.1.2 D a t a L i n k Layer 12

3.2 Fami ly of C O M B O v 2 Cards 13
3.2.1 Mothercard 14
3.2.2 A d d - o n Cards 14

3.3 N e t C O P E Pla t form 14
3.3.1 Software 15
3.3.2 Fi rmware 15
3.3.3 P la t form Performance 17

4 Design 19
4.1 Packet Generator 19
4.2 Modes of Operat ion 20

4.2.1 Generat ing Synthetic Network Traffic 20
4.2.2 Loading D a t a to Dynamic Memory 20
4.2.3 Transmission of D a t a F r o m Dynamic M e m o r y 21
4.2.4 Standard N I C Operat ion 21

4.3 Generator Submodules 21
4.3.1 Pseudo-Random Generator 21
4.3.2 Packet Completer 24
4.3.3 M e m o r y Reader /Wr i t e r 25
4.3.4 Packet L imi te r 27
4.3.5 Register Cont ro l and Status F i le 29
4.3.6 M a i n Cont ro l F S M 34

1

5 Implementation 36
5.1 K e y Implementation Topics 36

5.1.1 M L F S R Pseudo-Random Generators 36
5.1.2 Generating IPv4 and IPv6 Network Traffic 37
5.1.3 Replaying Captured Network Traffic 37
5.1.4 Transmission L i m i t a t i o n 38
5.1.5 Modes of Operat ion 38

5.2 Appl i ca t ion Testing 38
5.3 Using the Appl i ca t ion 39

6 Evaluat ion 4 0

6.1 Device Ut i l i za t ion 40
6.2 Appl i ca t ion Properties 41

7 Conclusion 42

2

Chapter 1

Introduction

Dur ing the last two decades, we could register significant development of computer net­
works. This was caused mainly by the development of the Internet and by growing usage
of its services. The most notable development we could see i n the area of technologies for
computer networks. Thei r improvements allowed increasing of data transfer rates. Nowa­
days, we are able — depending on used technology — to transfer data through a computer
network at a speed of tens to hundreds G b / s .

High-speed data transfers through a computer network imp ly increased requirements not
only to transfer medium, but also to t ransmit t ing and receiving devices. If we consider the
Ethernet technology, each two frames are separated by the t ime required for transmission of
96 b of data. Th is period is called the Interframe Gap (IFG) [] and its value i n computer
networks support ing the 10 Gigabit Ethernet (l O G b E) standard is 9.6ns. Dur ing this time,
a t ransmit t ing device has to get ready for transmission of the next frame and a receiving
device has to process an incoming frame and get ready for receiving the next frame. The
I F G at the l O G b E is too short to allow processing network data using only a software
applicat ion. To accomplish this task, we have to accelerate processing of network data in
a hardware or to implement whole processing in hardware.

There are several possibilites of hardware acceleration of processing network data. One
of these possibilities is represented by the Field Pogrammable Gate Array (F P G A) technol­
ogy. The F P G A technology is used for hardware acceleration of processing network data
e. g. at the N e t F P G A project [] or the Liberouter project []. A s a part of the Liberouter
project, the family of hardware acceleration cards called C O M B O v 2 [20] was developed
and the N e t C O P E [] platform for this family of cards was designed and implemented.
The main objective of this platform is to allow rapid development of hardware accelerated
network applications able to transmit or receive network data at the speed of l G b / s or
10 G b / s .

Each newly developed network device requires extensive testing before its deployment
into real operation. D u r i n g this testing, we must ensure verification of the abi l i ty to transmit
and/or receive network traffic at the m a x i m u m speed specified by the supported technology.
If we develop devices for current backbone networks, we have to be able to generate or
replay network traffic at the speed of 10 G b / s . Sometimes we also require transmission of
packets at exact time, which is useful for a simulation of different network topologies and
behaviours.

The a im of this master's thesis is to design and implement a hardware accelerated
network application able to generate synthetic network traffic and to replay previously
captured real network traffic. The designed application must be able to perform both tasks

3

at the speed of l O G b / s . The application w i l l be based on the C O M B O v 2 cards family
u t i l iz ing the N e t C O P E platform.

Content of this master's thesis is as follows. Chapter 2 contains a summary of already
existing solutions, which could be used for generating or replaying network traffic. A t the
end of this chapter, there are highlighted positive aspects of the described solutions. Next
chapter (3) presents a l l information necessary for designing a network aplication based on
the N e t C O P E platform. F i rs t of a l l , basics of the Open Systems Interconnection (OSI)
Reference M o d e l are mentioned. Next , there is a section about the C O M B O v 2 cards family
and the chapter ends wi th description of the N e t C O P E platform. The key part of the the­
sis is i n chapter 4. Th is chapter describes an architecture of the designed applicat ion and
presents details about each module of the design. Chapter 5 contains information about
implementing the application presented i n the previous chapter. The implemented appli­
cation is evaluated i n chapter 6. There is presented an overview of device ut i l iza t ion and
a summary of the key features of the implemented applicat ion. Whole thesis is concluded in
chapter 7, where achievements are summarized and possibilities for the further development
are outlined.

Chapters 2, 3 and 4 are results of the work done i n the term project. For the master's
thesis, these chapters were slightly modified to fit i n the structure of this thesis. Some
sections of these chapters have also been newly added (e. g. the section about the O S I
Reference Mode l) .

4

Chapter 2

Related Work

For testing of network devices, we have to be able to generate synthetic network traffic or
replay previously captured real network traffic on a l ink to a tested device. The testing
is done by monitor ing of the device behaviour under different circumstances impl ied by
incoming network traffic. A s a part of the testing, we also have to verify the abi l i ty to
receive and process network data at full wire speed.

This chapter presents an overview of three different currently applied approaches to
generating and/or replaying network traffic. The first approach is a pure software solution,
while second one is pure hardware implementation. T h i r d approach is based on an accel­
eration card wi th the F P G A chip. Us ing this overview, we w i l l identify positive aspects of
presented solutions, which we w i l l keep i n m i n d during designing of our application.

2.1 Software-Based Solutions

The most common way of generating network traffic is to use open source software tools
for capturing packets and their subsequent replay (e.g. tcpdump [i] for capturing and
t c p r e p l a y [] for replaying). The advantage of this approach is the use of ordinari ly
available software and hardware components. Unfortunately, generic hardware components
can — depending on a vendor — vary i n their behaviour and therefore the output traffic
might be also very inaccurate as shown for example in [10]. Another disadvantage of this
approach is also a very low throughput. For high-speed networks, it is impossible to use this
approach for generating network traffic at full wire speed, mainly because of the operating
system T C P / I P stack.

2.2 Hardware Network Testers

If we are looking for the state of the art devices for testing of network components, we w i l l
find commercial hardware network traffic generators playing this role. They are powerful
devices for generating network traffic at full wire speed. These hardware generators provide
broad options for setting the properties of generated traffic, so they are useful for many
kinds of network tests and experiments. The i r disadvantages include mainly very high
price and also their proprietary nature makes them very inflexible for the research on new
techniques and protocols.

A s the representants of this category, we can mention systems from Spirent [7] or
stochastically based generators from Ixia []. Ix ia systems allow the users to create and

5

save synthetic traces to be rerun i n the future. These systems can be useful, however, they
do not allow replaying of previously captured real traffic. Also , it has been shown that
properties of this k ind of devices are not accurate enough for some experiments [6].

2.3 NetFPGA Packet Generator

To the best of my knowledge, there is only one F P G A - b a s e d network packet generator [8].
This Stanford University Packet Generator (S P G) utilizes so-called the N e t F P G A platform,
which consists of a hardware card wi th the Vi r tex- I I P ro F P G A chip. The card is connected
to a host computer using the P C I bus and we can find 4 x l G b / s network interfaces and
a quite smal l memory integrated on the card.

Packets to be sent by the S P G must first be loaded into the platform's memory from
a P C A P file stored on the host, and only after that they can be t ransmit ted to a network.
This two-stage process means that the S P G can only replay short previously captured
traces. The largest memory on the board is 6 4 M B which is about only 0.5second of traffic
at the speed of 1 G b / s .

Using the on-board memory for buffering network traffic rises from the need of sending
packets to the card over the P C I bus. There is a 33 M H z 32-bit bus on the N e t F P G A
platform wi th a theoretical top transfer rate of 1056 M b / s , but there is a significant overhead
even in the host where the bus is not shared. Mos t importantly, the number of Direct
Memory Access (D M A) transfers between the driver and the platform is l imi ted such that
the to ta l throughput is only 260 M b / s when indiv idual ly transferring 1518 B long packets.
Some software improvements were made to the S P G to increase its abi l i ty to generate longer
sequences at the speed of 1 G b i t / s [10]. However, these improvements caused sending only
zero data in packets.

2.4 Summary of Positive Aspects

Identification of positive aspects of the existing solutions w i l l be useful dur ing specifying
requirements on the designed applicat ion. It is almost for sure that we w i l l not be able to
keep a l l the positive aspects in our application (e. g. because some features are contradictory
and it is necessary to find a reasonable trade-off among them), but their knowledge is
necessary during designing the application. Keeping these features i n mind w i l l ensure
ut i l i ty of the application, because its properties w i l l be at least comparable wi th the best-
known network testing applications today.

We can summarize the main positive features of the presented solutions for generating
or replaying network traffic into the following list (in order of clarification, each feature is
followed by the corresponding above mentioned approach wri t ten i n brackets)

• ease of use {software-based solutions)

• availabil i ty of required software and hardware {software-based solutions)

• abi l i ty to operate at full wire-speed {hardware network testers)

• great number of possible settings {hardware network testers)

• processing in a hardware at a reasonable price {NetFPGA packet generator)

• precise packets emission {NetFPGA packet generator)

6

Chapter 3

Prerequisites

Before we w i l l deal w i th designing the application, we need to clarify details about the
platform used for the development of our application and also about environment, where
the applicat ion w i l l be deployed and used. These information w i l l be presented in following
sections. F i rs t of a l l , the OSI Reference M o d e l for network applications and devices is
described. Next two sections contain information about the platform. Here we can find
description of the C O M B O v 2 cards family and then the N e t C O P E platform consisting of
a software and a hardware part is presented.

3.1 OSI Reference Model

In the area of computer networks, we can find devices of many different vendors. Therefore,
it is inconceivable to use a proprietary protocol for communicat ion among a large group of
network devices and we need international standards for such communicat ion. There are
standardization organizations developing and maintaining network standards. The most
important of them are listed below.

• International Organization for Standardization (ISO)

• International Telecommunication Union - Telecommunication Standardization Sector
(I T U - T)

• Institute of Electrical and Electronics Engineers (I E E E)

• Internet Engineering Task Force (I E T F)

• etc.

A basis for development of communicat ion protocols and network devices is represented
by the O S I Reference M o d e l [], which has been created by the joint effort of the ISO and
the I T U - T . This standard defines an abstract model of an open communicat ing system
and also includes a specification of its features. It is not possible to implement a network
system directly using this standard — the OSI Reference M o d e l is rather intended to be
a theoretical basis for defining other network communicat ion standards and specifying newly
developed network devices. In order to be able to serve as the reference model, the O S I
M o d e l has to be quite general. It is therefore quite common to use different simplifications
of the OSI Reference M o d e l — e. g. the Internet P ro toco l Suite [] (also known as the

7

T C P / I P model). However, the O S I M o d e l is irreplaceable i n its posi t ion of the reference
model.

The main idea brougth by the OSI Reference M o d e l is a principle of layered architecture,
where seven different layers are defined for the open communicat ing system (see Figure 3.1).
For each layer (N) (except the App l i ca t ion Layer) , there is defined one higher layer (N + l)
and for each layer (N) (except the Phys ica l Layer) , there is defined one lower layer (N - l) .
The standard defines for each layer (N) a set of services, which this layer has to provide to
the higher layer (N + l) , however, implementat ion of these services is not specified. Request
for the service of the lower layer and its granting to the higher layer are done using defined
interface called Service Access Point (S A P) .

Open System A

7. App l ica t ion Laye r

6. P resen ta t ion Laye r

5. S e s s i o n Laye r

4. Transpor t Laye r

3. Network Layer

2. Da ta Link Layer

1. P h y s i c a l Layer

P h y s i c a l M e d i u m

Open System B

•I 7. App l i ca t ion Layer

>• 6. Presen ta t ion Layer

5. S e s s i o n Laye r

4. Transpor t Layer

• 3. Network Laye r

2 . Da ta L ink Laye r

• 1. P h y s i c a l Laye r

real commun ica t i on *~ logical commun ica t i on

Figure 3.1: Layered Archi tecture of the O S I Reference M o d e l

Dur ing communicat ion of two different open systems, data are firstly transfered between
layers of the source system using S A P s , then the data are t ransmit ted to the destination
system over physical medium and i n the end, transfers between layers using S A P s take place
at the destination system. Each layer of a system (except the lowest one and the highest
one) can directly communicate only wi th the higher layer and the lower layer. Nevertheless,
logical interconnections are established between corresponding layers of communicat ing
systems. For ensuring these connections, lower layer services are used. Such a system of
logical interconnections allows using a different communicat ion protocol at each layer, so
the way of communicat ion and also data format can differ between the layers. In general,
we refer to the layer-specific data format by term Protocol Data Unit (P D U) . For P D U s at
different layers we also use their common names shown together w i th a principle of data
encapsulation in Figure 3.2.

Next two sections w i l l describe details about two of the O S I Reference M o d e l layers
- the Network Layer and the D a t a L i n k Layer. F r o m the point of view of the designed

application, these two layers are the most important . The applicat ion itself w i l l operate at
the Network Layer and the N e t C O P E platform implements the D a t a L i n k Layer.

8

data

segment

packet

frame

bit

7. Application Layer

6. Presentation Layer

5. Session Layer

4. Transport Layer

3. Network Layer

2. Data Link Layer

1. Physical Layer

Figure 3.2: Layer-Specific P D U Names and the D a t a Encapsulat ion Pr inc ip le

3.1.1 N e t w o r k L a y e r

The ma in task of the Network Layer is to provide services for transparent network data
trasmission over a computer network. Functions providing these services to the Transport
Layer of the OSI Reference M o d e l are in general described i n the standard []. Further
in this section, we w i l l deal w i th the Internet Protocol (IP), which is the most common
protocol of the Network Layer.

The I P was designed as a connection-less communicat ion protocol for data transmissions
over packet-switched networks, i . e. communicat ion without explicit connection establish­
ment. W h e n the IP is i n use, each packet can traverse a network over a different line, which
implies possibil i ty of changing the order of the packets at a receiving device. Since the IP
does not deal w i th establishing the connection, its main purpose is to ensure addressing of
packets (which also includes their rout ing through a network) and their possible fragmen­
tat ion in order of their transmission over links w i th l imi ted maximum transmission unit
(M T U) size. To be able to provide these functions, the IP accompany transmit ted data
wi th control data forming an IP packet header.

The first widely deployed version of the IP was the Internet Protocol version 4 (IPv4)
defined in Request for Comment (R F C) 791 []. Th is document also defines the IPv4
header format, which is shown i n Figure 3.3. Fields of the IPv4 header are described i n the
following definition list.

Version (4b) — version of the I P (value 4 indicates the IPv4) .

I H L (4 b) — Internet Header Length in 32-bit words (min imum value for a correct header
is 5)

T y p e of Service (8 b) — this field contains indicat ion of a service transported by the
packet. In some networks, this can be used for providing the quali ty of service control.
Two least significant bits are reserved for future use (and always set to 0). Use of
other bits is explained in [27].

Total Length (16 b) — value i n this field represents a length of the whole packet (header
+ data) i n octets. The m a x i m u m packet length is 65 535 octets, however, according
to [27], only packets of total length less than or equal to 576 octets are recommended.

9

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
I V e r s i o n | IHL |Type o f S e r v i c e | T o t a l Leng th |
+-+
I I d e n t i f i c a t i o n | F l a g s I Fragment O f f s e t |
+-+
| Time t o L i v e | P r o t o c o l | Header Checksum |
+-+
I Source Addre s s I
+-+
I D e s t i n a t i o n Addres s I
+-+
| O p t i o n s I Padd ing |
+-+

Figure 3.3: Structure of the IPv4 Header [27]

Identification (16 b) — value provided by a sender i n order to help wi th reassembling of
a fragmented packet.

Flags (3 b) — the most significant bit is reserved (must be 0) and next two bits contain
two flags for fragmentation control.

Fragment Offset (13 b) — value of an offset of a fragment from the begining of an
original packet. The offset is measured in units of eight octets (64 b).

T i m e to Live (8 b) — the m a x i m u m time the packet can traverse a network. T ime to
live is measured i n seconds, but during each processing of the header, this field must
be decreased by at least 1.

Protocol (8 b) — identification of an upper layer protocol according to [21].

Header Checksum (16 b) — checksum of IPv4 header fields computed by an algori thm
specified i n [27]. Th is value is verified and recomputed each t ime the header is pro­
cessed by a network device (e.g. because changes in the T ime to L ive field).

Source Address (32 b) — an IPv4 address of the source device.

Destination Address (32 b) — an IPv4 address of the destination device.

Options (varible length) — a place for adding further information to the packet. Th is
field may appear or not. The Options field format is specified i n [27].

Padding (variable length) — field of a variable length wi th each bit set to 0 and ensur­
ing that the IPv4 header ends on the 32-bit boundary.

Due to the insufficient address range of the IPv4 , the Internet Protocol version 6 (IPv6),
described in R F C 2460 [], was presented in 1998. W h i l e the IPv4 addresing scheme allows
2 3 2 different addresses, i n the IPv6 there is possible to assign 2 1 2 8 of different addresses.
The IPv6 also tries to simplify packets processing on routers, so an IPv6 header is of a fixed
size (40 B) and less important header fields were moved to so-called extension headers.

10

Faster routing process is also supported by omission of a header checksum control and
by forbidding packets fragmentation on routers. Format of the IPv6 header is shown in
Figure 3.4, which is followed by description of header fields.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
I V e r s i o n | T r a f f i c C l a s s | F low L a b e l |
+-+
I P a y l o a d Leng th | Next Header | Hop L i m i t |
+-+
I I
+ +
I I
+ Source Addre s s +
I I
+ +
I I
+-+
I I
+ +
I I
+ D e s t i n a t i o n Addres s +
I I
+ +
I I
+-+

Figure 3.4: Example IPv6 Header []

Version (4 b) — verison of the I P (value 6 indicates the IPv6) .

Traffic Class (8 b) — ^identification of a traffic class, which can be used (like the Type
of Service field i n the IPv4 header) for the quali ty of service control.

Flow Labe l (20 b) — identification of a flow of IPv6 packets, which can be seen as a way
of grouping packets of the same properties.

Payload Length (16 b) — unsigned integer value determining number of octets i n the
packet payload (i . e. between end of this header and the end of the packet).

Next Header (8 b) — this field identifies a type of an extension header immediately
following the IPv6 header. Identifiers are the same as for the Pro toco l field of the
IPv4 header (see [22]).

H o p Limi t (8 b) — the m a x i m u m number of forwarding, which can the packet undergo.
Each forwarding decrements the value in the H o p L i m i t field by one and the packet
is discarded when the value reaches zero.

Source Address (128 b) — an IPv6 address of the source device.

Destination Address (128 b) — an IPv6 address of the destination device.

11

3.1.2 D a t a L i n k L a y e r

The D a t a L i n k Layer of the OSI Reference M o d e l is expected to provide services required by
the Network Layer for accomplishing its tasks. Another objective of the D a t a L i n k Layer is
to detect and t ry to correct errors, which can possibly occur at the Phys ica l Layer. P robab ly
the best-known D a t a L i n k Layer implementat ion is the Ethernet technology designed for
use i n Local Area Networks (L A N) and defined i n a group of the I E E E standards 802.3 [12].

In order to ensure functionality defined for the D a t a L i n k Layer, the standard defines the
Ethernet frame structure containing control data along wi th transferred data of the Network
Layer. Structure of the Eternet frame is shown i n Figure 3.5. The m a x i m u m frame size
(including a l l fields from the Dest inat ion Address to the Frame Check Sequence) is defined
to be 1518 B . Frame transmission is always preceded by t ransmit t ing the Preamble and
the Start Frame Delimiter (S F D) . After transmission of a frame, the next frame cannot be
transmit ted earlier than after t ime equivalent to transmission of 96 b at the m a x i m u m speed
of a l ink. Th is t ime interval is called Interframe Gap (IFG) and its size is for example 96 ns
when the Gigabit Ethernet (G b E) is i n use or 9.6 ns i n case of the l O G b E . The following
list contains the description of part icular Ethernet frame fields.

Preamble

Start Frame Delimiter

Destination Address

Source Address

Length/Type

MAC Client Data

Pad

Frame Check Sequence

Extension

Figure 3.5: Ethernet Frame Structure

Preamble (7 B) — this field consists of seven octets, each containing the data pattern
10101010. Its main purpose is to allow synchronization between a sending device and
a receiving device.

Start Frame Del imiter (1 B) — the last octet before the frame. It contains the bit
sequence 10101011.

Destination Address (6 B) — a Media Access Control (M A C) address of the destination
device. It can be an ind iv idua l (unicast) address or a group (multicast or broadcast)
address.

Source Address (6 B) — a M A C address of the source device. It is always an ind iv idua l
(unicast) address.

L e n g h t / T y p e (2 B) — in case of the value less than or equal to 1 500, it determines the
number of octets i n the M A C Client D a t a field. If the value of the L e n g t h / T y p e

12

field is greater than or equal to 1 536, then it specifies a protocol of the higher layer
encapsulated i n the M A C Client D a t a field.

M A C Client D a t a + P a d (46 -1 500 B) — the field M A C Client D a t a contains data
provided by the higher layer. Th is field can be of the m a x i m u m size of 1 500 B . If it
is shorter than 46 B , the P a d field fills remaining octets.

Frame Check Sequence (4 B) — value i n this field is a 32-bit cyclic redundancy check
(C R C) computed from the content of the fields Dest inat ion Address, Source Address,
Leng th /Type , M A C Client D a t a and Pad .

Extension (variable length) — under special conditions defined i n the standard [12],
this field can extend the Ethernet frame.

3.2 Family of COMBOv2 Cards

The family of C O M B O cards was designed by C E S N E T [] and dedicated for bui lding
hardware accelerated network applications. The main idea of this family of cards is the
max imum flexibility provided both by the mother card extendable by a set of add-on cards
and by the F P G A chip on the mother card. Thanks to using add-on cards, it is possible
e. g. to change a number of network interfaces or to connect an external precise clock
signal generator. O n the other hand, the F P G A chip allows changing of C O M B O card's
functionality while maintaining benefits of hardware acceleration.

Currently, the second generation of the C O M B O cards family (C O M B O v 2) is i n use [30].
Figure 3.6 shows the C O M B O v 2 mother card wi th attached add-on interface card containing
two l O G b / s interfaces. Details about the mother card and the set of add-on cards w i l l be
presented in following sections.

Figure 3.6: C O M B O v 2 Mother C a r d wi th At tached 2 x l O G b i t / s Interface C a r d [31]

13

3.2.1 M o t h e r c a r d

The C O M B O v 2 mothercard is a foundation of the whole family of cards. Th is hardware ac­
celeration card provides high computing power especially for network applicatons. Thanks
to the F P G A chip, processing of network data from l O G b E links can be done in parallel .
Pre-processed data are transfered to the host Random Access Memory (R A M) through
the P C I Express interface. The mothercard also contains a static and a dynamic memory
for storing already processed data or data for further processing. A unique boot system
ut i l iz ing smaller F P G A chip allows on the fly card reboot. Summary of basic mothercard
parameters taken from [30] follows.

• Vi r tex-5 (X C 5 V L X 1 5 5 T) F P G A

• P C I Express x8 interface

• 2x Q D R II R A M

• S O D I M M D D R 2 connector for up to 2 G B memory module

• 4x Low Speed Connector (L S C) w i t h throughput up to 8 G b / s

• 2x InterFace Connector (IFC) wi th bidirectional throughput up to 2 8 G b / s

• Spartan-3E (XC3S1200E) F P G A controll ing on the fly Vi r tex-5 reboot

3.2.2 A d d - o n C a r d s

W h i l e the mothercard provides mainly enough computing power for demanding network
applications, the set of add-on cards ensures flexibili ty of the whole C O M B O v 2 cards family.
Cards from this set usually do not contain the F P G A chip and they are provided wi th a fixed
configuration. The most important subset of the set of add-on cards consists of interface
add-on cards. Fol lowing list presents different configurations of interface add-on cards as
well as other add-on cards.

• C O M B O I - 1 0 G 2 — the interface card wi th two l O G b / s interfaces

• C O M B O I - 1 G 4 — the interface card wi th four 1 G b / s interfaces

• C O M B O L - G P S — add-on card for receiving the G P S signal i n order to provide a pre­
cise clock (C L K) and a pulse per second (P P S) signal

• etc.

3.3 NetCOPE Platform

For rapid development of hardware accelerated network applications on the C O M B O v 2
cards, the N e t C O P E platform [] has been designed. This platform consists of the firmware
for the F P G A chip on the mother card and the software for accessing the card's functionality
from an operating system. These two layers jo int ly handle connection of the mother card to
the P C I Express and fast D M A transfers between the host R A M and this card. The software
and the firmware part of the N e t C O P E platform are described in respective sections followed
by the section summarizing results of D M A transfers test performed on the N e t C O P E
platform.

14

3.3.1 Software

The N e t C O P E platform software layer handles control of the C O M B O v 2 cards and allows
the user to use functionality implemented using this platform i n the F P G A . The software
layer of the N e t C O P E platform is buil t hierarchically and it can be divided horizontally or
vert ically [25].

In a horizontal manner, we can divide the platform software into three levels — drivers,
libraries and software tools. The system drivers are used for the C O M B O v 2 cards control
and they provide a basic interface between the hardware and the software. Above system
drivers, there is a set of software libraries implementing functions based on operations
provided by the drivers. These functions are used for implementing the software tools
deployed to work wi th the card and the platform.

Pla t form software can be also divided vertically into two logical groups. The first
group covers input /ou tput operations w i t h the C O M B O v 2 card, card ini t ia l izat ion, the
boot process for loading a firmware to the F P G A chip, moni tor ing and configuration of
hardware components. The second logical group provides software support for the fast
D M A transfers of user specific data to user applications.

Software provided together w i th the N e t C O P E platform can be used to control any user
application without any futher changes.

3.3.2 F i r m w a r e

Firmware of the N e t C O P E platform comprises three main components — the Generic
Interconnection System (GICS) [], the D M A Modu le and the Network Modu le []. The
user applicat ion is t ied wi th a l l three modules as shown in Figure. 3.7. The main modules
of the N e t C O P E platform are highlighted i n the figure by a blue colour and the user
applicat ion is yellow.

The first main component of the N e t C O P E platform is the G I C S . It provides connection
of a l l other N e t C O P E and application components to the system bus through an intercon­
nection system on the F P G A chip. Th is interconnection system is called the Internal Bus
and it is organized i n a tree topology. D a t a w id th of the Internal Bus is parametric and it
can be chosen in the range from 8 to 128 b. The whole interconnection system is buil t using
only four different components — the Root , the Switch, the Transformer and the Endpoin t .
The Root is the main component of the interconnection system and it controls connection
to the system bus. O n the C O M B O v 2 cards, the Root is the P C I Express endpoint. The
Switch and the Transformer components are used to create the G I C S tree structure. The
Switch divides the Internal Bus into two new branches, each wi th different address range.
The Transformer ensures transformation of bus signals between two parts of a different data
wid th . The last component of the G I C S is the Endpoin t . This component terminates each
G I C S branch and it provides an interface for connection of components outside the G I C S .

Second main part of the N e t C O P E platform firmware layer is the D M A Module . Th is
component takes care about fast D M A transfers between the host memory and the F P G A
chip and it can be divided into three submodules — the Buffer separate for each receiving
(R X) and transmitting (T X) channel, the Dr iver and the Descriptor Manager. In the R X
direction, data from a hardware accelerated application are received and stored i n the
Buffer, which is considered to be circular. W h e n new data are present i n the Buffer, the
Driver obtains descriptors of a circular buffer in the host memory from the Descriptor
Manager and after that, the Dr iver initializes a D M A transfer from the F P G A chip to
the host memory. D a t a are sent off to the host memory v i a the Internal Bus interface.

15

C O M B O L - G P S card D D R 2 S D R A M

N e t C O P E Architecture

T imestamp Module D D R 2 Controller

I T

PCI Express
Interface

Network
Interface

Network
Interface

Figure 3.7: Fi rmware of the N e t C O P E Pla t form

Real izat ion of D M A transfers i n the T X direction is similar to D M A transfers in the R X
direction and it also uses the Buffer, the Dr iver and the Descriptor Manager.

The last main component of the platform is the Network Modu le . The a im of deploying
this module is to provide simplified access to network interfaces. For each R X and T X
direction of each network interface, there is one buffer — input buffer (I B U F) in the R X
direction or output buffer (O B U F) i n the T X direction. These buffers are transforming
data between the FrameLink protocol [I] at the user application side and the G M I I or
the X G M I I protocol at the network side. Beside this, both the I B U F and the O B U F
incorporate different counters of processed frames (e. g. to ta l processed frames, correct
frames and discarded frames). Moreover, i n the I B U F , numerous statistics are calculated
for each incoming frame and frames can be discarded based on these statistics.

So far described modules of the N e t C O P E platform are the most important ones. They
are also sufficient for bui lding a basic network interface card. However, the platform contains
also some expansion modules, higlighted by a green colour i n Figure 3.7. In this group,
we can include the Times tamp Module , which can optionally provide very precise 64 b
timestamps. This module uses a P P S signal from the C O M B O L - G P S card (if present) or
an internal P P S signal. Based on the selected P P S signal, t imestamps wi th nanosecond
resolution are generated and provided to other components implemented in the F P G A chip.
Another example of en expansion module is the Double Data Rate (D D R 2) Controller , which
allows read and write operations on a dynamic memory i n the Small Outline Dual In-line
Memory Module (S O D I M M) D D R 2 connector.

16

3.3.3 P l a t f o r m P e r f o r m a n c e

Since related documents about the C O M B O v 2 cards family and the N e t C O P E platform
(e.g. [17] and [20]) describe only high performance operation i n the R X direction, we had
to examine its performance i n the T X direction, mainly between the host and the card.
The reachable throughput from the R A M on host computer to the C O M B O v 2 internal
memory has been tested using D M A transfers over the P C I Express x8 l ink. Two different
configurations of the host computer were chosen, as shown i n Table 3.1. The first one is
a standard server platform and the second is a powerful gaming platform.

Parameter 1st configuration 2nd configuration

C P U 2 x Xeon(R) C P U E5420
@ 2.50 G H z

Intel(R) C o r e (T M) i7 C P U 920
@ 2 . 6 7 G H z

Ma inboa rd Supermicro X 7 D B 8 Supermicro X 8 S T E
Chipset I n t e l ® 5 0 0 0 P I n t e l ® X 5 8

Table 3.1: Configurat ion of Tested Host Computers

A l l other parameters not shown i n Table 3.1 were kept unchanged. It is especially
the host R A M memory (4 G B) and the operating system version (32-bit Linux-2.6.26.3).
D M A engine runs in our test design at 218.75 M H z , and one data transfer bulk consists of
20 • 10 3 transfers. E a c h test was performed wi th a different data block size from 4 B up
to the P C I Express m a x i m u m of 4 k B (4 0 9 6 B) . Measurement was performed by ut i l iz ing
a F P G A internal counter, which started to count before and stopped immediately after a l l
the transfers were done. Results of tests are shown i n Figure 3.8. It clearly demonstrates
that two different configurations reached highly different results. B y this test, it was shown
that it is not possible to reliably generate packets from software on an arbi trary server
platform. For higher packet rates it is necessary to use the D D R 2 memory on the C O M B O v 2
card for storing packets to be later sent to a network (capture & replay scenario). Another
possibility, i f there is no sufficient platform, is generating packets synthetically without
fruitless loading of the P C I Express.

17

Data throughput

4 8 16 32 64 128 256 512 1024 2048 4096

Figure 3.8: R A M to F P G A Throughput — F P G A Design Work ing Frequency: 218.75 M H z ,
MaxReadRequestSize (P C I Express Parameter): 2 0 4 8 B

18

Chapter 4

Design

This chapter represents the core of the master's thesis. The main a im of the theoretical
work on this thesis is to design the hardware accelerated network applicat ion ut i l iz ing
the N e t C O P E platform. This applicaton should be able to generate synthetic network
traffic and also to replay previously captured real network traffic at the speed of l O G b / s .
Architecture of the application is discussed in the following sections.

Dur ing the design phase, we w i l l need to use the knowledge presented i n chapters 2 and 3.
Based on the functionality provided by the C O M B O v 2 family of cards and by the N e t C O P E
platform, we can sketch the outlines of the designed applicat ion. The knowledge of the
Internet P ro toco l and the Ethernet technology allows us to fine-tune details of the design.
If we compare this draft of the application wi th positive aspects of other similar applications,
we get a final specification of the designed application, which can be summarized as follows

• abi l i ty to generate synthetic network traffic

• abi l i ty to replay previously captured real network traffic

• possibil i ty to use common software tools for capturing and replaying network traffic

• abi l i ty to operate at full wire speed (i .e. at the speed of l O G b / s)

• support of the IPv4 and the IPv6

• possibil i ty to l imi t network data transmission

• abi l i ty of precise packets emission

4.1 Packet Generator

Al though generating packets is just one of many proposed functions of the application, it
is considered to be the main function. Because of its importance, the whole applicat ion is
sometimes reffered to as the packet generator.

Proposed packet generator w i l l be based on the N e t C O P E platform and it w i l l fully use
the functionality provided by the platform modules. The generator is designed to be a user
application for the N e t C O P E platform and it consists of newly implemented modules shown
in Figure 4.1. Th is is the architecture for one network interface. In designs wi th multiple
network interfaces, the basic architecture w i l l be repeated for each network interface and
some other minor changes w i l l be made.

19

4
From/To

G I C S

P S E U D O - R A N D O M
G E N E R A T O R

4
4

R E G I S T E R
C O N T R O L

A N D
S T A T U S F I L E

F r o m
T imes tamp Modu le

P A C K E T
C O M P L E T E R

M A I N C O N T R O L
F S M

To
Network
Modu le

C O N T R O L L I N G
O P E R A T I O N

G E N E R A T I N G
T R A F F I C

From/To
D M A Modu le

4
4

M E M O R Y
R E A D E R / W R I T E R

F r o m
Network
Modu le

R E P L A Y I N G
T R A F F I C

From/To
D D R 2 Contro l ler

Figure 4.1: Modu la r Archi tecture of the Proposed App l i ca t i on for One Network Interface
(Distinct Colours Show Usage of Submodules for P rov id ing Different Functional i ty)

4.2 Modes of Operation

It is clear, that a l l functions of the proposed packet generator — as they were described
earlier in this chapter — cannot be active at the same time. Therefore, the application w i l l
be able to operate in distinct modes, providing different functionality i n each of them. In
total , there w i l l be four possible modes of operation. Switching the modes w i l l be done by
wr i t ing an appropriate 2-bit value into a control register of the generator. Value of these
two bits w i l l be reflected by the M a i n Con t ro l F S M , which w i l l ensure correct operation
of other submodules. Each of four different modes of operation is described i n the further
text.

4.2.1 G e n e r a t i n g Synthe t i c N e t w o r k Traffic

This mode of operation provides the main function of the application — generating synthetic
I P v 4 / I P v 6 network traffic at wire speed. Content of part icular IPv4 or IPv6 header fileds
is generated using a pseudo-random number generator. After that, the packet header is
assebled from the generated values and a whole packet (including an attached payload) is
t ransmit ted to a network.

4.2.2 L o a d i n g D a t a to D y n a m i c M e m o r y

Before it is possible to transmit previously captured real network traffic, network data
have to be loaded into the dynamic memory on the C O M B O v 2 mothercard. This task

20

is accomplished in the second mode of operation. Content of the dynamic memory can
be loaded either from a P C A P file stored i n the host memory or directly from a network
interface.

4.2.3 T r a n s m i s s i o n of D a t a F r o m D y n a m i c M e m o r y

If the previous mode of operation was used to load data into the memory, this mode ensures
transmission of stored network traffic to the network. Based on an attached interface add­
on card, the transmission can be done at the speed of 1 G b / s or l O G b / s . Transmission of
data can be l imi ted to a specified bitrate or the l imi ta t ion process can be based on precise
64-bit t imestamps (if they were provided together w i th data).

4.2.4 S t a n d a r d N I C O p e r a t i o n

W h e n this mode of operation is set, the application works as a standard network interface
card. Par t icu lar submodules of the design operate i n this mode as less as possible or even
do not operate at a l l . Therefore, we can describe this si tuation as that the appl icat ion is
not in operation.

In this mode of operation, it is possible to use common software tools for capturing
and replaying network traffic (tcpdump, tcpreplay). A s we have shown i n section 3.3.3,
on some platforms it is possible to transfer data from the host memory to the C O M B O v 2
card wi th a bit rate higher than 10 G b / s . Thanks to this, we could transmit data v i a one
10 G b / s network interface at full wire speed. Unfortunately, this mode of operation cannot
guarantee wire speed for both 10 G b / s interfaces of the add-on card. To overcome this, the
dynamic memory must be used as described above.

4.3 Generator Submodules

The modular architecture of the generator shown in Figure 4.1 and discussed i n details in
this section allows less complex design phase of the whole application. Thanks to divis ion
the architecture into submodules, the design of the application is straightforward and easily
understandable. Moreover, it reduces complexity i n designing part icular submodules and
allows their faster and more comfortable development (e. g. by possibil i ty to test sepa­
rately each submodule). F r o m the functional point of view, it is convenient that different
submodules can be activated or deactivated i n distinct modes of operation presented in
section 4.2.

4.3.1 P s e u d o - R a n d o m G e n e r a t o r

This section is d ivided into two parts. Firs t ly , different hardware implementations of
a pseudo-random number generator are discussed and compared. There are also few words
about transformation of generated sequences of numbers into the predefined range. Sec­
ondly, this section specifies reqiurements on pseudo-random number generators imposed by
their application i n generating synthetic I P traffic.

Generating Pseudo-Random Numbers in Hardware

The simplest to implement hardware pseudo-random number generator is based on linear
feedback shift register (L F S R) , which can also effectively be implemented i n F P G A s [5].

21

This type of generators are based on a shift register w i t h a feedback function. The input
of the feedback function is driven by two or more bits from the register. B i t positions
are given by the pr imit ive polynomia l coefficients, also called taps. The computed output
value is fed to the input of the whole shift register (Fibonacci scheme) or alternatively to
the input of the next register (Galois scheme). For more details see []. A s the feedback
function, exclusive-OR or its negation is often chosen.

L F S R s are easily implementable in the F P G A , but, on the other hand, a generated
sequence of numbers has not very good properties, which can be shown e. g. by the so-
called serial test []. To overcome this issue, a new architecture of multiple LFSR used in
parallel (M L F S R) was proposed and firstly introduced in [15]. Th is improved version of
L F S R can successfully pass even the Diehard battery test of randomness [16]. Table 4.1
shows effective score from the Diehard test of simple L F S R , M L F S R and also a true random
generator, where the randomness comes from an atmospheric noise []. Because of these
very good properties, M L F S R w i l l be used as the pseudo-random number generator in the
proposed application.

Generator type Effective score

true 22
M L F S R 154
L F S R 756

Table 4.1: Score from the Diehard Test (Lower is Better)

In our application, we w i l l often require generating values from a predefined interval
(typically for IP addresses). For this purpose, equation 4.1 w i l l be used for number conver­
sion to the desired interval.

X _ a + N ± ^ (4 ,)

The pseudo-random number generator output N is i n the range (0,Nmax> and X is
a new transformed number in the <a,b> range. For fast F P G A implementation, division
by the Nmax value w i l l be done by shifting. For mult ipl icat ion, the application w i l l util ize
hard D S P 4 8 slices available i n Vi r tex-5 F P G A s used on the C O M B O v 2 cards. It is also
important to note, that M L F S R is capable of generating zero values. Th is could not be
normally reached wi th standard L F S R (not allowed state).

Generating Synthetic IP Packets

Generating values of IP header fields can be done in three different modes

1. constant value of the field is specified by the user

2. the field is filled by the next value from a sequence of numbers

3. value for the field is randomly generated from the specified range

In order to ensure a l l three modes of generating header field values, we have to store
information about the currently selected mode (separately for each header field) and also
some special values requested in the selected mode. In the first mode, we have to store

22

the value of the field specified by the user. The second and the th i rd mode share values
of boundaries of the numeric sequence, but in the second generating mode we also have to
specify a step size.

Before we w i l l describe details about the way of generating part icular IPv4 and IPv6
header fields, it has to be mentioned that the proposed application w i l l not allow generating
the Options filed of the IPv4 header and also generating of IPv6 extension headers w i l l
not be supported. This restriction means, among others, that a generated IP header w i l l
always be of a constant size (2 0 B in case of the IPv4 and 4 0 B i n case of the IPv6) . The
last restriction of the generating process w i l l take place during generating the IPv4 header,
when generating fragmented packets w i l l not be allowed.

Tables 4.2 and 4.3 present an overview of possibilities i n generating distinct IPv4 and
IPv6 header fields.

Name Size (bits) Position
Generated

or Constant Value (decimal)

Version 4 0 to 3 constant 4
I H L 4 0 to 3 constant 5

T y p e of Service 8 0 to 5 generated 0 to 2 6 - 1 T y p e of Service 8
6 to 7 constant 0

To ta l Length 16 0 to 15 generated 21 to 1500
Identification 16 0 to 15 constant 0

Flags 3
0 constant 0

Flags 3 1 generated 0 to 1 Flags 3
2 constant 0

Fragment Offset 13 0 to 12 constant 0
T ime to L ive 8 0 to 7 generated 1 to 2 8 - 1

Pro toco l 8 0 to 7 generated 0 to 2 s - 1
Header Checksum 16 0 to 15 constant 0

Source Address 32 0 to 32 generated 0 to 262 - 1
Dest inat ion Address 32 0 to 32 generated 0 to 2 3 2 - 1

Table 4.2: Overview of Generat ing IPv4 Header Fields

Since some parts of fields T y p e of Service and Flags can be generated and some parts
cannot, there is the column Posi t ion for specifying a bit range i n the field, for which values in
the last two columns of the same row hold. Another surprising information can be found in
the row designated for the field Header Checksum, which is considered to be constant. The
value of this fild w i l l be computed i n the submodule Packet Completer and an algori thm
for its computat ion requires an in i t i a l value of this field to be zero [27].

If we look in the column Value, the range specified for the Tota l Length field may look
strange. This value is based on following considerations. A payload of a packet should be
of a length at least 1 B (which implies the to ta l length of 21 B) and the length of the packet
should not exceed the m a x i m u m allowed size of higher layer data i n the Ethernet frame
(which is 1 5 0 0 B — see section 3.1.2). It is also important to note, that the m i n i m u m
allowed value for the field T ime to L ive is one, because the value zero would not make
sense.

23

Name Size (bits)
Generated

or Constant Value (decimal)

Version 4 constant 6
Traffic Class 8 generated 0 to (2 s - 1)
F low L a b e l 20 generated 0 to (2 2 U - 1)

Payload Length 16 generated 1 to 1460
Next Header 8 constant 0

Hop L i m i t 8 generated 1 to (2 8 - 1)
Source Address 128 generated 0 to (2 1 2 8 - 1)

Dest inat ion Address 128 generated 0 to (2 1 2 8 - 1)

Table 4.3: Overview of Generat ing IPv6 Header Fields

Simi lar ly to generating fields of the IPv4 header, i n Table 4.3 we can see extraordinary
allowed values at rows designated for fields Pay load Length and H o p L i m i t . In case of
the field Payload Length, we can use the same reasoning for deriving the range of allowed
values as for the field Tota l Length of the IPv4 header. Different final range is caused by
different semantics of this field in the IPv6 header, where this field specifies a length of data
without the header of the size 40 B . The range of allowed values for the field Hop L i m i t is
absolutely the same as for the field T ime to L ive of the IPv4 header.

Generating the IPv4 or IPv6 header is ini t ia ted by the Packet Completer submodule,
which sets a request signal. Based on the active value of this signal, the Pseudo-Random
Generator starts generating IP header fields. W h e n the generating process is complete, the
Pseudo-Random Generator pass data to the Packet Copleter together w i th an active va l id
signal. The whole packet header is transferred at once and the further processing is left to
the Packet Completer.

4.3.2 Packet C o m p l e t e r

This module of the generator ensures forming of an appropriate IP header from values
generated in the Pseudo-Random Generator. These values represent content of the IPv4
or IPv6 header fields shown in Figure 3.3 or 3.4. The mechanism of passing data between
the Pseudo-Random Generator and the Packet Completer has been described at the end of
the previous section.

The first operation on generated data is a computat ion of header fields checksum. Since
the field Header Checksum is a part of only the IPv4 header, this computat ion is done only
when the IPv4 header was generated. The algori thm for computing the header checksum
is described in [27] using following two sentences.

The checksum field is the 16 bit one's complement of the one's complement
sum of all 16 bit words in the header. For purposes of computing the checksum,
the value of the checksum field is zero.

For the next task of the Packet Completer, a value of the Tota l Length field (in case of
generating the IPv4 header) or the Payload Length (when the IPv6 header was generated)
is very important . Th is field determines the number of octets of a payload, which w i l l be
appended to the already formed header i n order to form the whole packet. The payload is
filled by a 1 byte long data pattern specified by the user i n a corresponding register.

24

Before transmission of the packet, it has to be encapsulated i n an Ethernet frame. The
packet is preceded by he Ethernet frame fields Dest inat ion Address, Source Address and
Leng th /Type . A content of the address fields is specified by the user by wr i t ing selected
values into specified registers. The L e n g t h / T y p e field is filled by a value derived from the
knowledge of the total length (IPv4) or the payload length (IPv6).

In the end, the complete IP packet extended by three fields of the encapsulating Ethernet
frame is sent to the Packet L imi te r , which takes care about its transmission to a network
through an output network buffer. The transmission between the Packet completer and the
Packet L imi t e r is done using the FrameLink protocol.

4.3.3 M e m o r y R e a d e r / W r i t e r

This module of the generator is dedicated to take care mainly about communicat ion wi th
the dynamic memory on the C O M B O v 2 mother card using the D D R 2 Control ler module of
the N e t C O P E platform. The memory is used for storing real network traffic and therefore
communicat ion wi th the memory takes place in two modes of operation of the application.
Another task of this part is to ensure a correct interconnection between three different types
of data interface — a Network Modu le interface, a D M A Modu le interface and a D D R 2
Controller interface — al l of them full-duplex (see Figure 4.2).

From/To
D M A

Modu le

S W I T C H I N G L O G I C
J \ To

) Packe t
v Limiter

F r o m
Network
Modu le

F R A M E L I N K - D D R 2
T R A N S F O R M E R

To /F rom
D D R 2 Control ler

Figure 4.2: Internal structure of the M e m o r y Reader /Wri te r module

The Switching Logic is the part providing the possibil i ty of a flexible interconnection
reflecting requirements imposed by the modes of operation specified i n section 4.2. A n
input part of the D D R 2 Control ler interface can be connected to both the D M A Module
and the Network Module , because storing real network traffic to the memory is possible
from the host memory as well as directly from the network interface. A n output of the
D D R 2 Controller is always connected to the Network Modu le interface through the Packet
L imi te r i n order to transmit stored real network traffic to the network. W h e n the generator
is not in operation, the D M A Modu le interface is connected direct ly to the Network Modu le
interface.

25

Between the Switching Logic and the D D R 2 Control ler interface, there is a component
transforming data from the FrameLink protocol to a protocol used at a user interface of
the D D R 2 Controller . The F rameLink protocol was designed as a part of the N e t C O P E
platform and its detailed description is available i n [26]. In order to design the FrameLink-
D D R 2 Transformer we w i l l need to shortly remind signals of the FrameLink protocol (see
Table 4.4), because their simplified version w i l l be stored into the dynamic memory together
w i th network data. Descr ipt ion of the D D R 2 Controller user interface as well as the whole
controller can be found i n [28].

Signal W i d t h (bits) Direct ion

C L K 1 input
D A T A 64 source —> destination
S O F _ N 1 source —> destination
E O F . N 1 source —> destination
S O P . N 1 source —> destination
E O P _ N 1 source —> destination

R E M 3 source —> destination
S R C _ R D Y _ N 1 source —> destination
D S T _ R D Y _ N 1 destination —> source

Table 4.4: Overview of F rameLink Signals

The use of the D D R 2 Controller imposes some requirements on the F r a m e L i n k - D D R 2
Transformer and we w i l l need to keep these requirements in m i n d during designing the
transformer. Two main restrictions are a requirement on wri t ing two 64 b blocks of data in
one clock cycle and performing write operations i n bursts of the size of four data blocks, i . e.
wr i t ing 256 b of data i n two successive clock cycles. Since a data w id th of the FrameLink
protocol w i l l be set to 64 b, it w i l l be possible, under usual circumstances, to init iate the
write operation to the dynamic memory only once i n four clock cycles.

Based on the above mentioned facts about the F rameLink protocol and on the restric­
tions impl ied by the use of the D D R 2 Controller , it seems to be the best solution to initiate
write operation on the user interface of the D D R 2 Control ler not earlier than four 64 b
data blocks w i l l be available. To sake of s implic i ty of the transformer, F rameLink data w i l l
be stored i n the dynamic memory together w i th the simplified version of the FrameLink
protocol transporting these data. Therefore, in the memory we w i l l recognize three types
of blocks, each of the size of 64 b.

• data block

• control block

• padding block

The data block contains data transported by the F rameLink protocol and the Cont ro l
block is dedicated for storing important values of F rameLink signals. These values are
stored on seven least significant bits of the control block i n the following order: S O F _ N -
S O P _ N - EOPJST - E O F _ N - R E M (the R E M value occupies three least significant bits).
Remaining sixty one bits are filled by a sequence of alternating values 0 and 1 starting wi th

26

0 at the most sifnigicant bit . The whole padding block is filled by a similar alternating
sequence, but start ing wi th 1 at the most significant bit .

Transformation of the FrameLink protocol to the defined types of block to be stored in
the dynamic memory is driven by the following set of rules

1. a sequence of F rameLink data inside a F rameLink frame is stored to the dynamic
memory as a sequence of data blocks

2. if the combinat ion of values E O P _ N = ' 0 ' & S R C _ R D Y _ N = ' 0 ' & D S T _ R D Y _ N = ' 0 '
occurs, the control block is stored to the memory

3. the control block is always stored during the same clock cycle as the corresponding
data block

4. the to ta l number of blocks representing one F rameLink frame must be divisible by
the burst length (i.e. by 4)

5. padding blocks are used for filling gaps between data /control blocks of the same frame
or for padding the number of blocks to the burst length boundary

D a t a transported by the F rameLink protocol can thus be transformed into several dif­
ferent sequences of da ta /cont ro l /padding blocks. A l l possible sequences are shown in F i g ­
ure 4.3, where the least significant block is the leftmost one and the most significant bloc
is the rightmost one.

D A T A D A T A D A T A D A T A D A T A P A D D A T A C T R L

D A T A D A T A D A T A P A D D A T A C T R L D A T A D A T A

D A T A D A T A D A T A C T R L D A T A C T R L P A D P A D

Figure 4.3: Al lowed Combinat ions of the D a t a B lock (D A T A) , the Cont ro l B lock (C T R L)
and the Padding B lock i n a Burs t

4.3.4 Packet L i m i t e r

This part of the applicat ion plans and controls data transmission. In this case, the data
consist of a Network Layer packet extended by three fields of the Ethernet frame — two
of them are the address fields and the last one is the L e n g t h / T y p e field. Based on the
selected mode of opreration of the generator, da ta can come from the Packet Completer
module or the M e m o r y Reader /Wri te r module. A n output of the Packet L imi t e r is always
interconnected wi th the Network Module , as shown i n Figure 4.4.

27

F r o m
T i m e s t a m p M o d u l e

F r o m
P a c k e t

C o m p l e t e r
or

M e m o r y
R e a d e r

T i m e s t a m p F I F O

T I M E S T A M P
E X T R A C T O R

T I M E S T A M P
C O M P A R A T O R

P a c k e t F I F O

C L O C K
C Y C L E

C O U N T E R

L IMIT ING
A L G O R I T H M

To
Network
Modu le

Figure 4.4: Internal structure of the Packet L i m i t e r module

L i m i t a t i o n of data trasmission can be done i n three different ways

• no l imi ta t ion

• l imi ta t ion to a specified bit rate

• l imi ta t ion based on 64-bit hardware timestamps

Operat ion of the Packet L i m i t e r is the simplest when no l imi ta t ion is applied to data
transmission. In such settings, data are s imply t ransmit ted to the Network Modu le as early
as they are available. This way of l imi ta t ion can take place in each mode of operation of
the application.

Limitat ion to the Specified Bi t Rate

L i m i t a t i o n to the specified value of the bit rate can be applied i n each mode of operation.
It is implemented by the L i m i t i n g A l g o r i t h m part of the Packet L imi te r , which controls
reading data from the Packet F I F O . A n algori thm of the l imi ta t ion requires the selected
bit rate to be set in a corresponding register. The value in the register specifies the bit rate
in M b / s , but internally it is used as b/fis. These two values are equivalent and we do not
have to perform any conversion.

The l imi t ing algori thm w i l l uti l ize two counters — the counter of active clock cycles (cy­
cles, when the F rameLink protocol transmit data) and the counter of a l l clock cycles. These
counters are in Figure 4.4 represented by the Clock Cycle Counter part. Each FrameLink
frame is t rasmit ted separately to the Network Modu le . Dur ing its transmission, bo th coun­
ters are incrementing their values. After the transmission of the frame, the transmission
of further frames is delayed, but the counter of a l l clock cycles is s t i l l incrementing its
value. A s soon as the value determined by equation 4.2 gets below the specified bitrate,
both counters as well as the algori thm are reseted and the transmission of the next frame

28

starts. The mult ipl ier 10 000 is a result of converting the number of active clock cycles to
the number of t ransmit ted bits in the numerator and the number of a l l clock cycles to the
length of the transmission in microseconds i n the denominator. Dur ing each active clock
cycle, 64 b of data are t ransmit ted and this transmission takes 0.0064 [is. The fraction Q qq 6 4

gives us the mult ipl ier 10 000 and it also determines the unit b/fis of the value computed
using equation 4.2.

number of active clock cycles i n n n n / . 0%
number of a l l clock cycles

The above described algori thm performs the l imi ta t ion based on whole frames. F i rs t
of a l l , a whole F rameLink frame is t ransmitted. This frame is followed by a gap ensuring
the average bit rate to be the same as the specified bit rate. Chosen approach reflects the
architecture of O B U F s , where we can find buffers placed close to the input of the O B U F .
Th is would significantly reduce the effect of the l imi ta t ion inserting gaps inside FrameLink
frames, so the l imi ta t ion based on whole frames was addopted.

The last note related to the l imi t ing algori thm should be made about size of the counters.
Let us consider the worst case, which is specified by a frame of the m a x i m u m size (16 k B)
and the m i n i m u m allowed bit rate (I M b / s) . Since the speed of transmission is 64 b per
clock cycle, we are able to transmit the frame i n 2048 cycles. The value of the specified
bitrate in M b / s is the same as i n b//j,s. Based on these facts we can compute that for the
transmission of the m a x i m u m sized frame at the m i n i m u m allowed bitrate we w i l l need
20480 000 clock cycles. Th is implies the size of the counters to be at least 25 bits.

Limitat ion Based on Timestamps

W h e n transmission l imi ta t ion based on timestamps takes place, particular F rameLink
frames are released from the Packet F I F O at the moment specified by a corresponding
t imestamp. This way of transmission l imi ta t ion can be applied only when previously cap­
tured real network traffic is replayed back to a network and the traffic is accompanied by
timestamps.

Timestamps are usually assigned to frames direct ly at the t ime they are received. In
order to use the timestamps for transmission l imi ta t ion , it is necessary to edit them in
software (shift them forward i n time) before the frames are loaded back to the C O M B O v 2
card memory. In the Packet L imi te r , the timestamps are extracted from the frames and
each component is stored in the separate F I F O . The frame is then kept i n the F I F O un t i l the
corresponding t imestamp does not match the currently generated one. If a l l the timestamps
were shifted the same time, this mechanism ensures transmission of the frames wi th exactly
the same time drift as they were captured.

4.3.5 Reg i s ter C o n t r o l a n d Status F i l e

A set of registers included in this module serves as a place to store a l l control and status
information of the generator. The most of generator modules use the information stored in
registers belonging to this component. Th is section consists of detailed description of a l l
registers.

In order to clearly present register descriptions, the set of a l l registers is divided into
three groups. The first group consists of general registers, i . e. registers not included i n the
header fields generating process. The second group contains an overview of registers used

29

for generating values of fields for the IPv4 header. The last part of the register set contains
registers storing values necessary for generating IPv6 header fields.

Each register is considered to uti l ize 32 b, even when a value stored i n the register is
not of the size of 32 b. This is often the case and the description of part icular registers w i l l
focus mainly on clarifying the ut i l iza t ion of bits i n the register and specifying meaning of
possible values. Not used bits in each register w i l l be considered as reserved for future use
and they w i l l be set to 0 by default.

General Register Set

A n overview of this set is presented in Table 4.5 and the following description of each
register. Except the name of registers, the table also contains a description of the address
space.

Address Register

0x00 Con t ro l Register
0x04 Number of Packets to Be Generated
0x08 Source M A C Address - L o w
OxOC Source M A C Address - H i g h
0x10 Dest inat ion M A C Address - L o w
0x14 Dest inat ion M A C Address - H i g h
0x18 Payload Pat tern
O x l C B i t Rate
0x20 Header Fields Generat ing M o d e Register

Table 4.5: Overview of General Registers and Thei r Address Space

Contro l Register — there are only two registers storing more than one type of infor­
mation and the Cont ro l Register is one of them. It contains information related to
controll ing the operation of the aplication. Six least significant bits are used for stor­
ing these information and remaining bits of the register are set to 0. Descr ipt ion of
used bits and possible values is i n Table 4.6.

N u m b e r of Packets to Be Generated — content of this register specifies i n binary the
number of frames, which w i l l be generated by the applicat ion. The m a x i m u m possible
number of frames is 2 3 2 — 1 (all bits set to 1). B y default, a l l bits are set to 0, which
means unl imi ted generating of frames.

Source M A C Address — Low and H i g h — since a M A C address consists of 48 bits, it
has to be stored i n two 32-bit registers. The first one w i l l be fully ut i l ized and the
second one w i l l store sixteen highest bits of the M A C address. Div i s ion of the M A C
address between registers L o w and H i g h is summarized i n Table 4.7. In a case of
storing the source M A C address, register names are prefixed by the word Source.

Destination M A C Address — Low and H i g h — storing a destination M A C address
is the same as i n the case of the source M A C address (for details see Table 4.7).
The only one difference is i n the name of registers, which is prefixed by the word
Destination.

30

Name Position Values Meaning Default

00 standard N I C /
M o d e of 0 to 1 01 loading data to the memory

Opera t ion 10 transmission of data from the memory
11 generating network traffic
00 no l imi ta t ion /

M o d e of 2 to 3 01 l imi ta t ion to the specified bit rate
L i m i t a t i o n 10 l imi ta t ion based on 64-bit t imestamps

11 reserved for future use
I P v 4 / I P v 6 4 0 generating IPv4 headers /

1 generating IPv6 headers
D M A / N E T 5 0 loading data from the host /

1 loading data from the network

Table 4.6: Ut i l i za t ion of B i t s i n the Con t ro l Register

M A C Address Bits Register N a m e Position in Register

0 to 31 M A C Address - L o w 0 to 31
32 to 47 M A C Address - H i g h 0 to 15

Table 4.7: Div i s ion of the M A C Address Between Two Registers

Payload Pattern — this register contains an 8-bit data pattern used by the Packet C o m ­
pleter for filling a packet payload. The pattern is soterd on eight least significant bits
of the register and by default, a l l pattern bits are set to 0.

Bit Rate — the value i n this register specifies a bit rate to which the Packet L imi t e r
w i l l l imi t t ransmit ted network traffic (see section 4.3.4). The bit rate is specified in
M b / s and its value can be from the range 1 to 10 000. A l l other values are not taken
into account and i n such a case, the bit rate is considered to be set to the max imum
allowed value.

Header Fields Generating M o d e Register — the second register dedicated to store
more than one information is the Header Fields Generat ing M o d e Register. Values
in this register specifies the way of generating the corresponding IP header field. For
each header field, there are two bits whose value define the mode of generating as
follows

• 00 — constant value

• 01 — next value from a sequnce of numbers wi th a given increment

• 10 — random value from a sequence of numbers

Dis t r ibu t ion of a register space to different IPv4 and IPv6 header fields is summarized
in Table 4.8. B y default, a l l bits of the register are set to 0.

31

Name Position

IPv4 Type of Service 0 to 1
IPv4 Tota l Length 2 to 3
IPv4 Flags 4 to 5
IPv4 T ime to L ive 6 to 7
IPv4 Pro toco l 8 to 9
IPv4 Source Address 10 to 11
IPv4 Dest inat ion Address 12 to 13
IPv6 Traffic Class 14 to 15
IPv6 F l o w Labe l 16 to 17
IPv6 Payload Length 18 to 19
IPv6 H o p L i m i t 20 to 21
IPv6 Source Address 22 to 23
IPv6 Dest inat ion Address 24 to 25
Reserved for future use 26 to 31

Table 4.8: Dis t r ibu t ion of the Header Fields Generat ing M o d e Register Space A m o n g Dif­
ferent Header Fields

IPv4 Header Fields Registers

This part presents an overview of registers dedicated for storing values necessary for gen­
erating IPv4 header fields. A list of registers together w i th their addresses is i n Table 4.9.

Base Address Register G r o u p

0x24 IPv4 Type of Service Registers
0x30 IPv4 Tota l Length Registers
0x3C IPv4 Flags Registers
0x48 IPv4 T ime to L ive Registers
0x54 IPv4 Pro toco l Registers
0x60 IPv4 Source Address Registers
0x6C IPv4 Dest inat ion Address Registers

Table 4.9: Register Groups Used for Generat ing IPv4 Header Fields

Since we need to store three important values for each generated IP header field, the
set of registers contains three different registers for each field. In order to reduce the size
of Table 4.9, each line of the table represents three distinct registers. We can imagine
a register schema shown in Table 4.10 to be behind each row of the table.

IPv4 T y p e of Service Registers — as was shown in Table 4.10, this group of registers
consists of three registers distinguished by a suffix of their name. Values necessary
for generating the Type of Service field occupy six lowest bits of each register. A l l
remaining bits are set to 0 by default.

32

Address Offset Register

0x00 < Field Name> - F r o m
0x04 < Field Name> - To
0x08 < Field Name> - Step

Table 4.10: Register Schema W h i c h is Beh ind Each R o w of Tables Summariz ing Registers
for Generat ing IP Header Fields

IPv4 Total Length Registers — each register i n this group reserves eleven lowest bits
for storing values to be used for generating the Tota l Length field of the IPv4 header.
Al lowed values are specified i n Table 4.2. Values above the m a x i m u m w i l l be consid­
ered as the m a x i m u m value and values below the m i n i m u m w i l l be considered as the
min imum value.

IPv4 Flags Registers — since there is only one generated bit of the Flags header field, it
is sufficient to store only one value, wich w i l l be used i n a case of generating constant
value of this bi t . Th is value is stored on the lowest bit of the register F rom. Remaining
bits of this register as well as both remaining registers are not ut i l ized and their bits
are set to 0.

IPv4 T i m e to Live Registers — values for the T i m e to L ive header field are stored on
eight lowest bits of each register. Al lowed values are specified i n Table 4.2.

IPv4 Protocol Registers — a structure of registers i n this group is the same as the
structure of the previous group of registers. The only one difference is that any
possible value on eight lowest bits is considered to be correct.

IPv4 Source Address Registers — since an I P address is 32 bits long, a l l registers in
this group are fully ut i l ized.

IPv4 Destination Address Registers — this group of registers has the same structure
as IPv4 Source Address Registers, but these registers store values for generating the
Dest inat ion Address field of the IPv4 header.

IPv6 Header Fields Registers

A s well as in Table 4.9, each of the first four rows of Table 4.11 represents three distinct
registers, as was shown i n Table 4.10. For registers used in generating the Source Address
and the Dest inat ion Address fields, the schema is expl ici t ly shown. This is because of
the need to clarify an order of four registers necessary for representation of each address
register. The order is shown in Table 4.12.

IPv6 Traffic Class Registers — eight lowest bits i n each register of this group are dedi­
cated for storing values for generating the Traffic Class field of the IPv6 header. Each
value representable i n binary on eight bits is acceptable.

IPv6 Flow Label Registers — twenty lowest bits of each register are fully ut i l ized by
one of three values important i n generating the F l o w L a b e l header field. A l l remaining
bits are reserved for future use and set to 0 by default.

33

Base Address Register G r o u p

0x78 IPv6 Traffic Class Registers
0x84 IPv6 F l o w L a b e l Registers
0x90 IPv6 Payload Length Registers
0x9C IPv6 H o p L i m i t Registers
0 x A 8 IPv6 Source Address - F r o m
0xB8 IPv6 Source Address - To
0xC8 IPv6 Source Address - Step
0xD8 IPv6 Dest inat ion Address - F r o m
0xE8 IPv6 Dest inat ion Address - To
0xF8 IPv6 Dest inat ion Address - Step

Table 4.11: Register Groups Used for Generat ing IPv6 Header Fields

Address Offset Range of Bits Register

0x00 0 - 3 1 < Register Name> - 0
0x04 3 2 - 6 3 < Register Name> - 1
0x08 6 3 - 9 5 < Register Name> - 2
OxOC 9 6 - 1 2 7 < Register Name> - 3

Table 4.12: Order ing of Four 32-bit Registers Representing One 128-bit Register i n Case of
IPv6 Header Fields

IPv6 Payload Length Registers — allowed values for these registers are specified in
Table 4.3. The m a x i m u m allowed value can be represented i n binary on eleven bits,
so the same number of bits is reserved for its storing i n each register of this group.
Values above the m a x i m u m w i l l be considered as the m a x i m u m value and values
below the m i n i m u m w i l l be considered as the m i n i m u m value.

IPv6 H o p Limi t Registers — these registers reserve eight lowest bits for storing values
important in generating the H o p L i m i t field of the IPv6 header. Values allowed on
these eight bits are specified i n Table 4.2. A l l remaining bits are set to 0 by default.

IPv6 Source Address Registers — since an IPv6 address consists of 128 bits, it has to
be stored in four fully ut i l ized registers. The order of registers is specified i n Table
4.12.

IPv6 Destination Address Registers — t h e structure of registers dedicated for storing
values necessary for generating the Dest inat ion Address header field is the same as
the structure of IPv6 Source Address Registers group.

4.3.6 M a i n C o n t r o l F S M

To control the operation of the whole application, the M a i n Con t ro l F S M uses values stored
in the Con t ro l Register (see section 4.3.5) and dynamical ly changes application behaviour
based on these values. The most important value specifies the mode of operation of the
applicat ion. Based on this value the M a i n Con t ro l F S M ensures act ivation and deactivation

34

of part icular generator submodules. The detailed description of a l l modes of operation is
in section 4.2.

Other values stored in the Con t ro l Register are used for controll ing the specific operation
of generator submodules. The M a i n Con t ro l F S M takes these values into account and
ensures a proper setting of corresponding submodules.

The value stored i n the M o d e of L i m i t a t i o n part of the Con t ro l Register defines the way
of l imi t ing transmit ted network traffic. Some modes of l imi ta t ion are allowed i n each mode
of operation, some of them can be applied only in specific modes of operation. The M a i n
Cont ro l F S M ensures that only allowed modes of network traffic l imi ta t ion are applied in
chosen mode of operation of the application.

The choice whether to generate IPv4 or IPv6 network traffic has an effect on the Pseudo-
R a n d o m Generator module and the Packet Completer module. The effect takes place only
in the generating mode of operation, when the M a i n Cont ro l F S M ensures correct setting
of bo th previously mentioned submodules.

The last part of the Con t ro l Register specifies an interconnection inside the M e m o r y
Reader /Wri te r module. Th is value applies i n the loading data to the dynamic memory
mode of operation, when it is necessary to determine whether data form the network or
from the user w i l l be loaded to the memory. The M a i n Cont ro l F S M ensures the correct
interconnection based on the value i n the Con t ro l Register.

35

Chapter 5

Implementation

The architecture of the applicat ion has been thoroughly described in chapter 4. The appli­
cation was designed wi th specification requirements (listed at the begining of chapter 4) in
mind and i n order to provide a l l specified functions. Th is chapter describes implementat ion
of the above described design.

Since the appl icat ion is a firmware for the F P G A chip on the C O M B O v 2 mother
card, the implementat ion has been done using the VLSI Hardware Description Language
(V H D L) .

Sections wi th in this chapter discuss details of the implementat ion of distinct submodules
and describe decisions made during implementing the generator. A t the end of this chapter,
there is also a section about tesing of the implementat ion performed both in a s imulat ion
and i n real hardware. The chapter is concluded by a section about using the application.

5.1 Key Implementation Topics

The a im of this part is to describe i n details a l l important aspects of the implementation,
which would not be clear from the text of chapter 4. Sometimes it was necessary to make
a decision not discussed during designing the applicat ion or to implement some parts differ­
ent from the proposal. A l l these key implementation topics should covered and explained
in the following sections.

5.1.1 M L F S R P s e u d o - R a n d o m G e n e r a t o r s

Discussion about choosing a pseudo-random number generator able to generate a sequence
of pseudo-random numbers w i th good statist ical properties and easy to implement i n hard­
ware has been done i n section 4.3.1. Based on arguments provided in the discussion,
a M L F S R has been chosen as the pseudo-random generator for the application.

Implementation of the M L F S R requires specifying of several attributes. W h i l e an in­
terconnection of part icular L F S R s into the M L F S R is quite clear, attributes of each L F S R
have to be chosen very carefully. These attributes include

• a length of each L F S R wi th respect to a length of the M L F S R

• a pr imit ive polynomia l specifying a feedback function (also called taps)

• in i t i a l value of a shift register (also called seed)

36

There are different opinions on the min ima l length of L F S R s necessary for bui ld ing the
M L F S R wi th the m a x i m u m period. A l though [15] claims, that at least one L F S R must be
of at least the same length as the M L F S R , in our applicat ion we have implemented each
M L F S R of the length n using n L F S R s of the length n. W i t h this choice done, it is for sure
that the sequence generated by the M L F S R w i l l have the m a x i m u m possible period.

If we t ry to maximize a period of the L F S R , we have to use the suitable feedback func­
t ion. For example, feedback functions specified by the pr imit ive polynomials (with respect
to the length of the L F S R) can be treated as suitable. Coefficients of such pr imit ive poly­
nomials (taps) can be found e.g. i n [5]. These taps were addopted also for this application.
The feedback function is implemented using the X N O R function and its output is fed to
the input of the whole L F S R (Fibonacci scheme).

Since we use the same taps for each L S F R included i n the M L F S R , we have to init ial ize
these L F S R s by different seeds. In order to reduce the number of seeds, there is one seed
for each M L F S R . This basic seed is used for computat ion of seeds for part icular L F S R s
using bit rotat ion. The basic seed for each M L F S R has been obtained from [11].

5.1.2 G e n e r a t i n g I P v 4 a n d I P v 6 N e t w o r k Traffic

The M L F S R implemented as described i n section 5.1.1 generates the sufficiently random
sequence of numbers, but it utilizes a great number of resources growing wi th the square
of a length of a M L F S R output.

The rapidly growing device u t i l iza t ion is not cr i t ica l when implementing the M L F S R
wi th the output of the length less than 16 bits. E v e n for the 32-bit long M L F S R (the
length of an IPv4 address) the implementat ion is not a problem. However, problems arise
when implementing the 128-bit long M L F S R for generating an IPv6 address. The device
ut i l iza t ion by such M L F S R is too high to be implemented together w i th M L F S R s for other
IP header fields.

The above mentioned problem is solved by moving the choice whether to generate IPv4
or IPv6 traffic from run t ime to design time. This choice is made by setting a generic
parameter controll ing the application synthesis. The structure of the Cont ro l Register de­
scribed i n Table 4.6 stays the same, but the I P v 4 / I P v 6 field is no longer affecting behaviour
of the application.

5.1.3 R e p l a y i n g C a p t u r e d N e t w o r k Traffic

Implementation of replaying captured network traffic is quite different from the proposed
design, so it is important to show what has not been implemented and why.

The design of the applicat ion expected ut i l iza t ion of the platform's dynamic memory
for storing and subsequent raplaying of network traffic. Th is memory is connected to the
F P G A chip, so it should be possible to access it through the D D R 2 Controller module [28].
Correct operation of the controller was shown in a s imulat ion, but accesing the memory
through the controller is not working in hardware. Therefore, it is not possible to perform
read and write operations on the memory and this part of the application had to be leaved
out a this moment.

Since replaying of network traffic from platform's memory could be done without any
delays arising from processing network data i n the operation system IP stack and trans­
ferring them to the moher card over the P C I Express, by not implementing it we loss the
most powerful way of replaying previously captured real network traffic. However, it is s t i l l
possible to use standard software tools for replaying network traffic (tcpreplay) when the

37

application is operating as a standard network interface card. Moreover, the N e t C O P E
software layer provides tools for fast D M A transfers between the host R A M and the card.
This tools can be also used for replaying of previously captured network traffic stored in
a P C A P file.

To conclude this section, the implementat ion of the applicat ion allows the user to replay
prviously captured real network traffic. It is not possible to accomplish this task by loading
data to the platform's dynamic memory and their subsequent raplaying, but it is possible
to use standard software tools for packet replaying or the N e t C O P E software tools for fast
D M A transfers. W h e n using the platform software tools, on some platforms it is possible
to replay network traffic at a speed higher than l O G b / s (see section 3.3.3).

5.1.4 T r a n s m i s s i o n L i m i t a t i o n

The design proposes three possible modes of l imi t ing data transmission to a network. In
the first mode, the Packet L i m i t e r performs no l imi ta t ion at a l l . Th is mode has been
implemented. W h e n the last mode of l imi ta t ion is active, l imi ta t ion of transferred data
is driven by timestamps provided together w i th t ransmit ted packets. Since this mode of
l imi ta t ion can be active only when transmit ted data come from the dynamic memory, it
has not been implemented (data to be transmit ted cannot come from the dynamic memory

- see section 5.1.3).
The last mode to be mentioned provides transmission l imi ta t ion based on the specified

bit rate. In order to accomplish this task, the Packet L i m i t e r should implement the algo­
r i thm presented in section 4.3.4. The algori thm is based on two counters of clock cycles and
the equation 4.2. In order to map this equation into hardware, divis ion had to be replaced
by shifting to the right. The shifting size is determined by a value of the closest integer
lower than binary logar i thm of the counter value. Th is approximation underestimates the
specified bit rate, so its real value is lower than the bit rate specified by the user.

5.1.5 M o d e s of O p e r a t i o n

Proposed modes of operation of the application can be found i n section 4.2. A s was already
mentioned i n section 5.1.3, the implementat ion does not support storing data to the dy­
namic memory and their subsequent replay to a network. Not implementing read and write
operations on the dynamic memory also implies leaving out two of four proposed modes
of operation since functionality designed to be provided i n these modes is not available.
Because functionality of currently leaved out modes of operation is expected to be imple­
mented i n the future, it is s t i l l possible to select these modes in the Con t ro l Register (see
Table 4.6). In such a si tuation, the application behaves as a standard network interface
card. Remain ing two modes of operation have been fully implemented.

5.2 Application Testing

The ma in a im of application testing was to identify and remove as many as possible bugs
of the implementation.

Testing the implementat ion in the s imulat ion was performed during the whole imple­
mentation process (testing of part icular submodules) as well as after it (testing of the whole
application). Testing environments including a connection of a tested unit and a description

38

of a testing scenario are available i n respective directories of an implementat ion directory
structure.

Unfortunately, similar test descriptions cannot be provided for testing the implementa­
t ion in hardware. Since basics of the implementat ion were tested in the simulation, testing
in hardware was focused on proving the correct operation of the applicat ion i n a target
environment. Th is task was done using software tools described i n the next section.

5.3 Using the Application

Since any user applicat ion based on the N e t C O P E platform can be controlled using only
software tools provided together w i th the platform, no software for controll ing operation of
the applicton has been implemented.

The whole application is driven by values stored i n registers of the Register Con t ro l and
Status F i l e module presented in section 4.3.5. These registers are accessible using the csbus
tool . The base address of the application's address space is 0x80000. In the standard N I C
mode of operation, network data can be captured and replayed back to a network using the
applicat ion. These tasks can be accomplished either using standard software tools (tcpdump
for capturing and tcpreplay for replaying) or by N e t C O P E platform tools for fast D M A
transfers (sze2read for capturing network traffic and sze2write for its replaying back to
the network).

39

Chapter 6

Evaluation

This chapter contains evaluation of the application implemented as described i n chapter 5.
The chapter comprises of two sections. The first one summarizes typica l device ut i l iza t ion
by the implemented applicat ion. The second section discusses properties of the application
from the design point of view as well as from the implementat ion point of view. These
key features of the applicat ion are also compared wi th properties of the packet generator
implemented on the N e t F P G A platform [8].

6.1 Device Utilization

The application has been implemented for the C O M B O v 2 mother card wi th attached
C O M B O I - 1 0 G 2 interface add-on card. Device u t i l iza t ion by the N e t C O P E platform for
this configuration of C O M B O v 2 cards and by the application is shown i n Table 6.1. Since
the architecture of the application depends on a generic parameter specifying the abi l i ty
of generating IPv4 or IPv6 network traffic, we have to eximine device u t i l iza t ion for both
configurations. Values presented i n the table were obtained from results of synthesis for the
F P G A chip Vir tex-5 L X 1 5 5 T , speed grade -2. The synthesis was done using X i l i n x X S T ,
Release 13.1.

Resource Registers L U T s

Implemented application (one interface, generating IPv4) 4 276 14 875
N e t C O P E platform (2 x l O G b i t / s interfaces) 24 383 25 420

Summary 28 659 40 295
Available 97280 97 280
Ut i l i za t ion (%) 29.46 41.42

Resource Registers L U T s

Implemented application (one interface, generating IPv6) 35 975 50 348
N e t C O P E platform (2 x l O G b i t / s interfaces) 24 383 25 420

Summary 60 358 75 760
Available 97280 97 280
Ut i l i za t ion (%) 62.05 77.89

Table 6.1: Device Ut i l i za t ion of the Vi r tex-5 L X 1 5 5 T , Speed Grade -2

40

From values presented i n the table, we can clearly see, that the application, when gen­
erating IPv6 traffic, utilizes more than 75 % of available L U T s . These values are therefore
another argument support ing the decision to prohibit dynamic selection of generating IPv4
or IPv6 traffic, as disscussed i n section 5.1.2.

6.2 Application Properties

Al though the requirements imposed on this master's thesis were met, the application has
been designed to be more general and to be capable of fulfill the set of requirements specified
at the begining of chapter 4. Unfortunately, not a l l of these requirements were met by the
implementation, so there is a difference between properties of the design and properties of
the implementation. Properties of both the design and the implementat ion are summarized
i n Table 6.2.

Property Design Implementation N e t F P G A

10 Gigabi t Ethernet support / / X
S W based traffic replaying / / X
D R A M based traffic replaying / X /
Synthetic traffic generation / / X
IPv4 support / / /
IPv6 support / / /
Output rate l imi ta t ion / / /
Timestamp based transmission / X X

Table 6.2: Compar ison of Properties of the Design, the Implementation and the Packet
Generator on the N e t F P G A Pla t form

The table also shows properties of the Packet Generator implemented on the N e t F P G A
platform. Since it is the only existing packet generator based on a hardware acceleration
card w i t h the F P G A chip, by comparison of our application wi th this solution we can show
benefits of our solution.

W h e n comparing the N e t F P G A packet generator w i th the implementat ion of our appli­
cation, we can see the main contr ibution in support ing l O G b E standard and i n possibil i ty
of generating synthetic network traffic. O n the other hand, the N e t F P G A solution al­
lows replaying of previously captured network traffic using a dynamic memory, but the
same functionality w i t h even higher performance can be achieved i n our applicat ion using
replaying of network traffic direct ly from software.

If we compare the N e t F P G A generator w i th the design of our application, it is clear
that the application is designed to be a state of the art packet generator for a hardware
acceleration card wi th the F P G A chip. We must remind, that we are comparing imple­
mented solution w i t h only the design of our application, which is not yet fully implemented.
However, this comparison shows a promising future for our application.

41

Chapter 7

Conclusion

The a im of this master's thesis was to design and implement the hardware accelerated
network application able to generate synthetic network traffic and to replay previously
captured real network traffic. The designed application should be able to perform both tasks
at the speed of l O G b / s . It was required to implement this applicat ion for the C O M B O v 2
family of cards using the N e t C O P E platform.

Firs t of a l l , a short survey of current existing solutions for generating and replaying net­
work traffic has been done. The survey showed promising possibilities i n generating network
traffic using hardware acceleration cards wi th the F P G A chip and thereby confirmed the
ut i l i ty of this thesis. The best parameters of surveyed approaches have been summarized
for later use at a design phase of the thesis.

In order to be able to design the applicat ion providing specified features, it was necessary
to study the O S I Reference M o d e l for network systems, especially the Network and the
D a t a L i n k layers of this model . It was also important to get acquainted wi th the family of
C O M B O v 2 cards and the N e t C O P E platform, since the C O M B O v 2 cards are target device
family for the proposed applicat ion and the N e t C O P E platform provides means for rapid
development of hardware accelerated network applications.

A l l the knowledge from previous parts of the thesis have been used for designing the
applicat ion. The design respects a l l requirements specified by the thesis itself and it also
fulfill some addi t ional requirements, taken mainly from the list of the best parameters of
surveyed approaches.

Implementation of the application has been done using V H D L and it meets a l l basic
requirements and also the most of addi t ional ones. The implementat ion has been tested in
a s imulat ion and also i n hardware.

It has been shown that a current state of the implementat ion provides features of at
least the same quali ty as the only existing similar applicat ion implemented on the N e t F P G A
platform. Moreover, some features of our application are even better.

The future work on the applicat ion should be focused mainly on allowing the usage of
a platform's memory for loading of captured network traffic and its subsequent replaying
back to a network. After that, it would also make sense to implement l imi ta t ion of network
data transmission based on timestamps. There are also some parameters of the current so­
lut ion, which should be improved i n the future (device ut i l iza t ion and inaccurate l imi ta t ion
to a specified bit rate). Implementing a l l proposed improvements and a better software
support for using the application would make it a state of the art solution in its category.

42

Bibliography

[1] Information technology — Open Systems Interconnection — Basic Reference Model:
The Basic Model, second edit ion. I S O / I E C 7498-1:1994(E).

[2] Internet Pro toco l Suite. Available online [May 2011]:
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / I n t e r n e t _ P r o t o c o l _ S u i t e .

[3] N e t F P G A . Available online [May 2011]: h t t p : / / w w w . n e t f p g a . o r g / .

[4] Programmable hardware. Available online [May 2011]:
h t t p : / / w w w . l i b e r o u t e r . o r g / .

[5] P . A l i k e . Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random
Sequence Generators. X i l i n x , Inc., Ju ly 1996. Available online [May 2011]: h t t p :
/ / w w w . x i l i n x . c o m / s u p p o r t / d o c u m e n t a t i o n / a p p l i c a t i o n _ n o t e s / x a p p 0 5 2 . p d f .

[6] N . Beheshti , Y . Ganjal i , M . Ghobadi , N . M c K e o w n , J . Naous, and G . Salmon.
Performing Time-Sensit ive Network Experiments . In Proceedings of the J^th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, A N C S '08, pages 127-128, 2008.

[7] Spirent Communicat ions . Spirent - a leader in test, measurement and service
assurance solutions. Available online [May 2011]: h t t p : / / w w w . s p i r e n t . c o m / .

[8] G . A . Covington, G . G i b b , J . Lockwood, and N . M c K e o w n . A Packet Generator on
the N e t F P G A Pla t form. In 17th IEEE Symposium on Field Programmable Custom
Computing Machines, 2009. FCCM '09, pages 235-238, A p r i l 2009.

[9] S. Deering and R . Hinden. Internet Protocol, Version 6 (IPv6) Specification,
December 1998. R F C 2460.

[10] G . Salmon et a l . N e t F P G A - b a s e d Precise Traffic Generation. In Proc. of NetFPGA
Developers Workshop'09, 2009.

[11] M . Haahr. Random.org - true random number service. Available online [May 2011]:
h t t p : / / w w w . r a n d o m . o r g / .

[12] The Institute of Elec t r ica l and Electronics Engineers, Inc. Part 3: Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, I E E E std 802.3-2005 edition, December 2005.
I S B N 0-7381-4741-9.

[13] Ixia . Ix ia - leader in converged I P testing. Available online [May 2011]:
h t t p : / / w w w . i x i a c o m . c o m / .

43

http://en.wikipedia.org/wiki/Internet_Protocol_Suite
http://www.netfpga.org/
http://www.liberouter.org/
http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
http://www.spirent.com/
http://Random.org
http://www.random.org/
http://www.ixiacom.com/

[14] P . Korček . Pseudorandom Number Generat ion in F P G A . Bachelor 's Thesis, F I T
B U T , Brno , 2007.

[15] P . L ' E c u y e r and F . Panneton. A New Class of Linear Feedback Shift Register
Generators. In Winter Simulation Conference Proceedings, 2000, pages 690-696,
2000.

[16] G . Marsagl ia . Diehard Bat te ry of Tests of Randomness. Available online [May 2011]:
h t tp ://www.s ta t .fsu .edu /pub /d iehard / .

[17] T . M a r t í n e k and M . Košek . N e t C O P E : P la t form for R a p i d Development of Network
Appl ica t ions . In 11th IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems, 2008. DDECS 2008, pages 1-6, A p r i l 2008.

[18] J . M a t o u š e k . Implementation and Verif icat ion of Network Interface Blocks.
Bachelor 's Thesis, F I T B U T , Brno , 2009.

[19] T . Málek , T . M a r t í n e k , and J . K o ř e n e k . G I C S : Generic Interconnection System. In
International Conference on Field Programmable Logic and Applications, 2008. FPL
2008, pages 263-268, September 2008.

[20] J . N o v o t n ý and M . Zádn ík . C O M B O v 2 - Hardware Accelerators for High-Speed
Networking, 2008. Available online [May 2011]:
h t t p ://www . l i be rou te r . o rg /docs /2008-02 -10_C0MB0v2 .Academic_Forum.pdf .

[21] J . Postel . Assigned Numbers. U S C - Information Sciences Institute, 4676 A d m i r a l t y
Way, M a r i n a del Rey, Cal i fornia 90291, September 1981. R F C 790.

[22] J . Postel and J . Reynolds. Assigned Numbers. U S C - Information Sciences Institute,
4676 A d m i r a l t y Way, M a r i n a del Rey, Cal i fornia 90292-6695, October 1994. R F C
1700.

[23] Tcpdump. Web site of tcpdump and l ibpcap. Available online [May 2011]:
http://www.t cpdump.org / .

[24] tcpreplay developers, tcpreplay website. Available online [May 2011]:
h t t p : / / t c p r e p l a y . s y n f i n . n e t / t r a c / w i k i / t c p r e p l a y .

[25] The Liberouter Project Team. N e t C O P E Pla t form Handbook. Available online [May
2011]: h t t p ://www . l i b e r o u t e r . o r g / n e t c o p e / h a n d b o o k . h t m l .

[26] J . Tobola. P la t form for rapid development of network devices. Master 's thesis, F I T
B U T , Brno , 2007.

[27] U S C - Information Sciences Institute, 4676 A d m i r a l t y Way, M a r i n a del Rey,
Cal i fornia 90291. Internet Protocol — DARPA Internet Program Protocol
Specification, September 1981. R F C 791.

[28] X i l i n x , Inc. Memory Interface Solutions, September 2010. Available online [May
2011]:

h t t p ://www . x i l i n x . c o m / s u p p o r t / d o c u m e n t a t i o n / i p _ d o c u m e n t a t i o n / u g 0 8 6 . p d f .

[29] C E S N E T z. s. p . o. C E S N E T . Available online [May 2011]: http://www .cesnet.cz/.

44

http://www.stat.fsu.edu/pub/diehard/
http://www.liberouter.org/docs/2008-02-10_C0MB0v2.Academic_Forum.pdf
http://www.t
http://t
http://www.liberouter.org/netcope/handbook.html
http://www.xilinx.com/support/documentation/ip_documentation/ug086.pdf
http://www.cesnet.cz/

[30] C E S N E T z. s. p. o. Our Hardware — www.liberouter.org. Available online [May
2011]: h t t p : / / w w w . l i b e r o u t e r . o r g / h a r d w a r e . p h p ? f l a g = U .

[31] C E S N E T z. s. p. o. DSC_5459.jpg. Photo from the directory
/home/data/foto/Combo-cards/New photos/card 3 / .

45

http://www.liberouter.org
http://www.liberouter.org/hardware.php?flag=U

