
Mechanical Properties of Geopolymer
Based Composite Thin-plate Reinforced

with Textile Meshes

Disertační práce

Studijní program: P2301 Strojní inženýrství
Studijní obor: Materiálové inženýrství

Autor práce: Ing. Hiep Le Chi
Školitel práce: prof. Ing. Petr Louda, CSc.

Katedra materiálu

Liberec 2020



Prohlášení

Prohlašuji, že svou disertační práci jsem vypracoval samostatně jako pů-
vodní dílo s použitím uvedené literatury a na základě konzultací s vedou-
címmé disertační práce a konzultantem.

Jsem si vědom toho, že na mou disertační práci se plně vztahuje zákon
č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje domých au-
torských práv užitím mé disertační práce pro vnitřní potřebu Technické
univerzity v Liberci.

Užiji-li disertační práci nebo poskytnu-li licenci k jejímu využití, jsem si vě-
dom povinnosti informovat o této skutečnosti Technickou univerzitu v Li-
berci; v tomto případě má Technická univerzita v Liberci právo ode mne
požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich
skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce vložený do
IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má disertační práce bude zveřejněna Technickou uni-
verzitou v Liberci v souladu s § 47b zákona č. 111/1998 Sb., o vysokých
školách a o změně a doplnění dalších zákonů (zákon o vysokých školách),
ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách mohou
vyplývat z porušení tohoto prohlášení.

27. května 2020 Ing. Hiep Le Chi



 

iii 

 

ACKNOWLEDGMENTS 

I take this opportunity with immense pleasure to express my deep sense of gratitude to my 

thesis supervisor Prof. Petr Louda for offering me the opportunity to undertake my PhD 

study after I have completed my master’s program in this University, for providing the 

project for this study, for the trust he put in me during these years and for his urging, 

patience, which motivated me to complete this thesis. I do sincerely acknowledge the 

freedom rendered to me by him for independent thinking, planning and executing the 

research. 

I am also very thankful to Ing. Vladimír Kovačič for many supports during all the time I 

study here. 

I would like to thank to Ing. Vladimír Nosek for helping me in correcting the grammar of 

Czech language, revising and correcting the format of the bibliography, and list of my 

publications.  

I also wish to extend my thanks to PhD. Lukáš Voleský, Ing. David Pospíšil, PhD. Totka 

Bakalová, Ing. Le Van Su and PhD. Pavel Kejzlar for their assistance in handling some of 

the work that is involved in my research. 

I thank profusely all the staff of the department of material science, the Technical 

University of Liberec for their kind help and co-operation throughout my study period. 

Last but definitely not least, I am grateful to my family especially my parents and my wife 

for their boundless support with their patience and prayer for accomplishing this study.  

 

In God I Trust 

 

Hiep Le Chi 

 

 

 

 

 



 

iv 

 

ABSTRAKT 

Je známo, že portlandský cement je stavebním stavebním materiálem, který má 

prokazatelně  velmi dobré mechanické vlastnosti. Proces výroby Portlanského cenmentu 

však vyžaduje vysokou spotřebu energie a vyvolavá velké množství emisí CO2. Tato 

vlastnost je považována jako jedna z hlavních příčin globálního oteplování. Z tohoto 

důvodu se stavební průmysl stále více obrací na používání materiálů šetrných k životnímu 

prostředí, aby splnil cíle udržitelnosti potřebné pro moderní infrastruktury. 

Geopolymery jsou novou třídou stavebních materiálů vyvinutých primárně jako ekologická 

a udržitelná alternativa ke konvenčním stavebním materiálům na bázi cementu. Vzrůstající 

zájem o oblast kompozitních materiálů vyrobených geopolymerní matricí a textilními 

výztuhami. Tato disertační práce popisuje experimentální zkoumání ohybového chování 

tenkovrstvých kompozitů z geopolymerní malty a textilních výztuží, o který lze uvažovat s 

ohledem na jejich možné využití v budoucích budovách. Geopolymerová malta se nejprve 

optimalizuje na základě kombinace geopolymerního pojiva a různých plniv s přiměřeným 

mísícím poměrem, aby se dosáhlo konečného produktu s požadovanou mechanickou 

pevností. Poté jsou vybrány dva typy malty pro použití jako matrice s proměnlivým 

přidáním nasekaných čedičových vláken pro textilem vyztužený geopolymerní kompozit. 

Bylo zkoumáno několik parametrů, jako jsou textilní typy, míra vyztužení, druh malty, 

dávkování a délka nasekaných čedičových vláken, aby se zjistil jejich vliv na ohybové 

vlastnosti kompozitů na tenké desce. Byly provedeny zkoušky čtyřbodovým ohybem a 

rázovou zkouškou Charpyho kladivem a byly prezentovány experimentální výsledky. U 

kompozitů geopolymeru vyztuženého čedičovou textilií výsledky ukazují, že k vyztužení 

vzorků by mělo být použito vícevrstvého a malosíťového typu čedičové textilie, aby bylo 

dosaženo vysoké účinnosti zpevnění. Naproti tomu použití uhlíkových textilií při výrobě 

kompozitů s geopolymerní matricí s vysokou pevností jim umožňuje dosáhnout relativně 

vysoké mechanické pevnosti. Hodnota pevnosti v ohybu a houževnatosti v ohybu je silně 

ovlivněna mírou vyztužení a mechanickými vlastnostmi vláknité příze uhlíkové textilie. 

Navíc přídavek nasekaného čedičového vlákna (BF) hraje důležitou roli jak ve zlepšené 

mechanické pevnosti, tak v režimu porušení geopolymerních textilních kompozitů. 

Experimentální výsledky z nárazového testu Charpyho také ukázaly, že použití jak 

nasekaných čedičových vláken, tak textilních vláken zlepšilo absorpční kapacitu energie 

výsledných vzorků. 
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ABSTRACT 

It is well-known that Portland cement is a construction building material with admirable 

mechanical properties which are proven. However, the Portland cement production process 

requires high energy consumption and it involves a large amount of CO2 emission. This 

binder is attributed to one of the major causes behind global warming. For this reason, the 

construction industry is increasingly turning to the use of environmentally friendly 

materials in order to meet sustainability goals needed for modern infrastructures.  

Geopolymers are a new class of construction materials developed primarily as an eco-

friendly and sustainable alternative to conventional cement-based construction materials. 

Due to the increasing interest in the area of composite materials made by geopolymer 

matrix and textile reinforcements. This dissertation reports on the experimental 

investigation of the flexural behavior of geopolymer composite thin-plates made of 

geopolymer mortar and fiber reinforcements that keeping in mind for their possible use for 

future buildings. Geopolymer mortar is firstly optimized based on a combination of 

geopolymer binder with various fillers that is mixed in various mixing ratios to achieve the 

final product with the desired mechanical strength. Geopolymer mortar is then selected to 

use as a matrix considering varying addition of chopped basalt fibers for producing textile 

reinforced geopolymer composite. Several parameters such as textile types, reinforcement 

ratio, mortar type, and different fiber lengths of chopped basalt fibers inclusion dosage were 

studied to investigate their effect on the flexural properties of the composite thin-plates. 

The four-point bending test and impact Charpy test were performed; and the experimental 

results were presented. For basalt textile reinforced geopolymer composites, the results 

reveal that the multi-layer and small net size type of basalt textile should be used to 

reinforce the specimens in order to achieve high reinforcement effectiveness. In contrast, 

the use of carbon textiles in the production of high-strength geopolymer matrix composites 

makes it possible for them to achieve a relatively high mechanical strength. The value of 

the flexural strength and flexural toughness is strongly influenced by the reinforcement 
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ratio and the mechanical properties of the fiber yarn of the carbon textile. Besides, the 

addition of the chopped basalt fiber (BF) plays an important role in both the improved 

mechanical strength and the failure mode of the geopolymer textile composites. The 

experimental results from the Charpy impact test also showed that using both chopped 

basalt fiber and textile fiber has improved the energy absorption capacity of the resulting 

samples. 

Keywords: geopolymer mortar, textile reinforced geopolymer, four-point bending test, 

failure mode, chopped basalt fiber, carbon textile, basalt textile, mechanical strength, 

impact strength. 
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1. INTRODUCTION 

 

1.1  Background 

For many decades now, the ordinary Portland cement-based concrete (PCC) has been most 

widely used as construction material, due to its outstanding properties, such as high 

durability, high compressiveness, desired mechanical strength concerning economic 

efficiency, ability to be cast into any desired shape, and that its ingredients are available in 

the most places. Besides this, an inherent disadvantage of PCC is that it contributes to 

environmental pollution due to CO2 emission in the Portland cement production process. 

The production of a ton of cement is usually associated with the emission of 0.73 to 0.99 

tons of CO2, and the cement industry is one of the major distributions to the global CO2 

emissions, where these industries emit approximately 7% of the global share [1, 2]. In such 

a context, the development of innovative new building materials is needed to substitute 

Portland cement. A new binding material known as a geopolymer, developed by Davidovits 

in 1978 [3], is being considered as a possible substitute to Portland cement. Geopolymers 

are produced by a combination of rich source materials in silica and alumina such as 

metakaolin, fly ash, etc. with alkali activators that have been emerged as a novel building 

material for civil engineering more than three decades ago, and they are in recent years 

becoming an interesting topic in research for both the international scientific community 

and industrial firms. It is well-known that these materials could potentially offer an 

effective alternative over ordinary Portland cement concrete (OPC) for a variety of 

applications. The main reason for replacing OPC is that OPC contributes to environmental 

pollution due to CO2 emission in the Portland cement production process from the 

calcination of limestone and the combustion of fossil fuel.  

Due to the increasing need for new materials to be produced with low energy consumption 

thatoffer sustainability, economy, feasibility, and particularly good mechanical properties, 

textile-reinforced concrete has attracted the consideration of many scientists over the past 

three decades. Composites resulting from a combination of multi-axial textile 

reinforcement and a fine-grained aggregate-based cementitious matrix named textile 

reinforced concrete (TRC), bring the opportunity to repair/strengthen the old/new 

reinforced concrete structures. This is due to the favorable properties offered by TRC, such 

as its resistance to corrosion, its high strength to weight ratio, its ease and speed of 
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application, and the minimum change in geometry. Furthermore, TRC composites are also 

considered when manufacturing lightweight concrete structures or prefabricated sandwich 

panels with outstanding mechanical performance, thin-wall panels, and high-performance 

concrete construction with free-form designs [4–6]. 

Because of the increasing interest in the area of composite materials made by the 

geopolymer matrix and textile reinforcements, the present study aims to investigate the 

effectiveness of textile reinforcements made of basalt fiber and carbon fiber combined with 

chopped basalt fiber on flexural properties and failure modes of the textile geopolymer 

mortar.  

 

1.2  Research Objectives of Dissertation 

This dissertation deals with the design of the sample manufacturing process and the test the 

mechanical properties regarding four-point bending strength and Charpy impact strength 

of reinforced geopolymer composites – named textile reinforced geopolymer (TRG) – for 

a variety of the applications in civil infrastructure. Specific objectives of this research are 

detailed below: 

- Optimization of the geomortar matrix with the highest mechanical strength based on 

incorporating various reinforcement materials. 

- Experimental investigation of the effect of various parameters such as textile type, net 

size, reinforcement ratio on the mechanical properties and failure behaviour of textile 

geopolymer composite under four-point bending test. 

- Experimental investigation of the effect of various parameters of chopped basalt fiber 

such as different fiber lengths, added dosages, mixing methods on the mechanical 

properties and failure behaviour of textile geopolymer composites under four-point 

bending test. 

- Experimental investigation of the effect of textile types and added dosages of chopped 

basalt fiber on the impact strength of textile geopolymer composite under the Charpy 

impact test. 
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1.3  Organization of Dissertation 

This dissertation is composed of 9 parts: 

Part 1 provides an introduction and background, and objectives of the dissertation. 

Part 2 represents a literature review on textile-reinforced concrete, geopolymers and their 

characterization, fiber geopolymer composites. 

Part 3 describes the raw materials used in this thesis, the process of the geomortar mixing 

and casting samples, and test methods. 

Part 4 evaluates the mechanical strength of the geomortar based on the incorporation of the 

various fillers. 

Part 5 and 6 investigate the flexural behavior of geopolymer composite reinforced with 

basalt fiber and carbon fiber meshes. 

Part 7 investigates the effect of chopped basalt fiber on the flexural behavior of textile 

geopolymer composites. 

Part 8 investigates the impact resistance performance of textile reinforced geopolymer 

composites. 

Part 9 represents the overall conclusion and recommendations for future research. 
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2. LITERATURE REVIEW 

 

2.1  Textile reinforced concrete (TRC) 

Although this thesis is focused on textile-reinforced geopolymer mortar composite, a brief 

review on textile-reinforced Portland cement-based concrete should be considered.  

2.1.1 Introduction to textile reinforced concrete 

Reinforced concrete with steel is the most successful building material in the past and today. 

Typical properties of concrete are high compressive strength and very low tensile strength. 

To improve the tensile strength, steel bar reinforcements are inserted into the concrete. 

Therefore, reinforced concrete with steel is very strong, durable, and cost-effective. But 

adding steel reinforcement to the structure will cause the reinforcement to corrode. 

Therefore, steel reinforcement needs a minimum cover layer between 20 and 70 mm against 

corrosion during the given service life of the structure. However, keeping in mind that some 

places of building structures do not require such strong concrete profiles, the question is 

what type of concrete could be lighter, more efficient, and more elegant. For this reason, 

textile-reinforced concrete was developed.  

Textile Reinforced Concrete (TRC) is a composite material, which has been considered as 

a building material for more than a decade [7]. This composite material is fabricated using 

a fine-grained concrete matrix reinforced by multi-axial textile fabrics [7]. The textile 

reinforcements used as reinforced in concrete are alkali resistance glass, carbon, basalt, or 

aramid fabrics, et. The textile reinforcement plays a key role in carrying the bearing 

capacity and stiffness of composite materials. This type of composite can be used in a 

variety of applications, such as repairing and/or strengthening the structural elements of old 

structures, load-bearing elements in new structures, new thin-wall elements, and the 

lightweight concrete system [4–6]. 

• Cementitious matrix 

Fine-grained concrete is commonly used to improve the bond between the fiber yarns and 

the matrix by increasing the probability of penetration of concrete between filaments. The 

mixture needs to be able to penetrate the fiber yarns and filaments of the textile 

reinforcements. The geometry of the fabrics limits the maximum grain size of the matrix to 

values varying between 2 and 4 mm.  
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• Textile reinforcements 

In TRC applications, bi- or multi-axial 2D and 3D textile meshes can be used as 

reinforcement (see Figure 2.1). For a simple bi-axial case, the mesh comprises two groups 

of textile fiber yarns (threads), warp (0°) and weft (90°), interwoven perpendicularly to 

each other. Yarns are composed of multiple single fibers of continuous length, also 

designed as filaments; a grouping of continuous fibers is primarily done to obtain the 

desired thickness of the yarn. Filament yarns, consisting of drawn parallel fibers, are often 

used for reinforcing applications as they present smaller structural elongation in 

comparison to other forms of yarns, e.g. twisted and bonded. The fineness of yarn is 

measured in tex (g/1000 m) and is a function of the number of filaments, average filament 

diameter, and density. Moreover, the fabrication method and applied sizing to fibers have 

a significant effect on the interaction between the assembled filaments, as such, the 

mechanical properties of a fiber filament decrease when in yarn form [6]. 

 

Figure 2.1  Overview of 2D mesh and 3D mesh structures reinforced in concrete. 

 

 

2.1.2 Mechanical behavior of TRC composite 

• Stress-strain behavior of TRC 

Textile reinforced concrete has different mechanical behaviour in tension and compression. 

In compression, the composite can be considered to behave linearly elastic up to fracture. 

In tension however, cracks initiate and propagate in the brittle matrix composite at very 

low-stress levels [8]. Figure 2.2 shows the nonlinear stress-strain behaviour in tension of 

TRC.  
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Figure 2.2 Typical stress-strain diagram of textile reinforced concrete under uniaxial tensile 

loading [8]. 

 

It can be seen that the curve behavior can be divided into three stages, as in Figure 2.2. 

Stage I – This stage is identified by a linear increase in the load until the first crack in the 

matrix happened. This stage is called an elastic linear pre-cracking stage resulting from a 

combination of the geopolymer matrix and textile reinforcement. 

Stage II – Multiple cracking stage occurs when the tensile strength of the cementitious 

matrix is reached as the proven oscillation of the curve when the applied load continues to 

increase, leading to the obvious pseudo-ductility behaviour of the composite. The rate of 

oscillation and slope of this phase depend strongly on the mechanical properties of the fiber 

yarn, reinforcement ratio, and mortar matrix. The number of cracks that each specimen will 

have is originated in this stage. 

Stage III – Post-cracking or crack-widening stage. In this stage the contribution of the 

geopolymer matrix is almost unaffected, the textile reinforcement governs the flexural 

behaviour of the composites. This stage ends once the load-bearing capacity of the 

composite cannot be carried out anymore through the ultimate load achieved.  



Literature Review 

7 

 

Aveston, Cooper and Kelly (1971) developed a theoretical model for these phenomena, 

hereby referred to as the ACK theory. This model is described briefly below and displayed 

in Figure 2.3. 

 

Figure 2.3 Stress-strain curve predicted by the ACK model [9]. 

 

During Stage I – Pre-cracking, the composite is uncracked, and both the matrix and the 

fibers contribute to the global stiffness following the “law of mixtures”, assuming a perfect 

bond. The latter results in an equal strain in the fibers and the matrix, developing the 

following equation 

𝜎𝑐 = 𝜎𝑚 𝑉𝑚 + 𝜎𝑓𝜂𝑉𝑓                                        (2.1) 

                                  𝜎𝑐 = 𝜎𝑚 (1 − 𝑉𝑓) + 𝜎𝑓𝜂𝑉𝑓    

where, 

σc is the composite stress; σm is the matrix stress, Emɛm; σf is the fiber stress, Efɛm; ɛm is the 

matrix strain; 𝐸m is the modulus of elasticity of the matrix; 𝐸f is the modulus of elasticity 

of the fiber; Vf is the volume fraction of fiber; Vm is the volume fraction of the matrix; 𝜂 is 

the efficiency factor (0 ≤ 𝜂 ≤ 1) which accounts for the variation in composite properties 

with fiber architecture, Eq. 2.1. It must be said that these equations apply to the case of the 

one-dimensional direction of the fiber [9]. 
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Stage II – Multiple cracking, the matrix’s tensile failure stress σmu is reached and cracks 

start to initiate and propagate along the composite. The first crack occurs when the strain 

of the composite becomes greater than the ultimate matrix strain 𝜀mu. Thus, the composite 

does not fail if the ultimate load of the fiber is more than the ultimate load of the composite 

(𝜎cu > 𝜎c). 

                                  𝜎𝑓𝑢𝜂𝑉𝑓 > 𝐸𝑚𝜀𝑚𝑢𝑉𝑚 + 𝐸𝑓𝜀𝑚𝑢𝑉𝑓                      (2.2) 

where 𝜀mu is the ultimate strain of matrix; 𝜎fu is the ultimate strength of the fiber. 

After the cracking point, the post cracking behaviour depends on the critical volume 

fraction (𝑉f crit). As a result of the zero stress that can be carried by the matrix at the cracks, 

the volume fraction of fiber is drawn from Eq. 2.1, as follows: 

At cracked section:   σm = 0 

The quantity of the fibers resists the load is:  σf = σfu 

Therefore, 

                                     𝑉𝑓𝑐𝑟𝑖𝑡 =
𝜎𝑐

𝜂𝜎𝑓𝑢
                                                   (2.3) 

Normally, the composite stress is similar to matrix stress before cracking (𝜎c ≈ 𝜎mu), thus:  

                                          𝑉𝑓𝑐𝑟𝑖𝑡 =
𝜎𝑚𝑢

𝜂𝜎𝑓𝑢
                                                    (2.4) 

Therefore, if 𝜂𝑉f ≫ 𝑉f crit, and as a result of the increasing the applying load, the multiple 

cracking region forms. The mechanism of this stage is that the stress on the fibers at the 

first crack is transferred back into the matrix and, with an increase in the applied load, 

another matrix crack forms until the matrix is full of parallel spaced cracks [9]. 

Stage III – Post-cracking, the volume fraction of fibers is much greater than the critical 

volume fraction, the post cracking region forms once no further cracking occurs. In this 

stage, the additional load is completely carried by the fibers which results in pull out or 

rupture of fibers until the composite fails [9] 

              𝜎𝑐𝑢 = 𝜂𝑉𝑓𝜎𝑓𝑢                                           (2.5) 

where σcu is the ultimate composite strength; 𝜎fu is the ultimate fiber strength. 
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• Flexural behavior of TRC 

The behaviour of a reinforced concrete beam under bending performance is normally 

analyzed with respect to load and deflection rather than stress and strain. The typical 

flexural load-deflection curve is depicted in Figure 2.4, along with the indicated loading 

stages. In general, these behavioural stages are similar to those previously described for the 

tensile behaviour.  

 

Figure 2.4 Typical bending load-deflection behaviour for a TRC under four-point bending 

[10]. 

 

It should be noted that the curve response does not always have to follow three distinct 

stages, regardless of any type of test setup. Behaviour of stage 2 and 3 depends strongly on 

textile type, reinforcement ratio, textile structure, etc. [11, 12]. Rambo et al. [11] 

investigated the mechanical behavior of basalt textile reinforced refractory concrete. The 

results showed that in the case of the TRC reinforced with only one fabric layer the stages 

II and III, typically seen in TRC, are absent, whereas the TRC produced with 3 and 5 fabric 

layers showed a strain hardening behavior with three different stages (see in Figure 2.5). 

Peled and Bentur [12] found the flexural behaviour of the TRC composites reinforced by 

crimped structure textile is better than woven fabric, and the woven structure textile is better 

than the straight roving, all at the same volume fraction, as shown in Figure 2.6. This good 

behaviour in crimped geometry can be accounted for by bonding as they found that crimped 
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yarn contributed significantly to the bond due to the anchoring effect. It can be seen that 

the flexural strength of woven fabric is almost double that of straight yarn. 

 

 

Figure 2.5 Effect of basalt textile reinforcement on the tensile behaviour of the TRC [11]. 

 

Figure 2.6 Flexural response of the TRC with fabric woven, untied crimped yarns and 

straight yarns, all from Polyethylene at Vf = 7.5 % [12]. 
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2.2  Geopolymers 

2.2.1 Term geopolymer and geopolymerization process 

Geopolymers are inorganic aluminosilicate polymers belonging to the group of alkali-

activated materials with non-crystalline networks, which are ceramic-like in their structures 

and properties. The term geopolymer was originally introduced by the France scientist Prof. 

Joseph Davidovits in the 1970s [3]. Geopolymers are synthesized from a two-component 

blend, including an alkaline solution primarily based on potassium or sodium and solid 

alumino-silicate materials based on metakaolin or fly ash at the room, or slightly higher, 

temperature. The polysialate terminology was suggested in the early 1980s by Davidovits 

to design the chemical structure of geopolymers. The sialate bond is termed by a Si – O – 

Al linkage-type, whereas a Si – O – Si linkage-type called a siloxo bond. The polysialate 

network is believed to consists of tetrahedral SiO4 and AlO4
 units linked alternatively by 

sharing oxygen atoms, and alkali metal cations (Na+, K+, e.g.). The existence of the cations 

in the framework cavities is responsible for balancing the negative charge of Al3+ in IV-

fold coordination. Polysialate has this empirical formula: 

Mn {-(SiO2)z -AlO2}n, wH2O 

where M is an alkali cation such as potassium or sodium, and n is a degree of 

polycondensation; z is 1, 2, 3. Polysialates are chain and ring polymers with Si4+ and Al3+ 

in IV-fold coordination with oxygen and range from amorphous to semi-crystalline. So, 

based on Si/Al ratio some types of geopolymer were described in Figure 2.7, whereas 

Figure 2.8 showed the overall final structure of geopolymer proposed by Barbosa [13].  
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Figure 2.7  Geopolymer terminology proposed by J. Davidovits [3] 

 

 

Figure 2.8 Semi-schematic structure for Na – polysialate polymer proposed by Barbosa, 

Mackenzie, and Thaumaturgo [13]. 
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The reactions that occur during the geopolymer formation and solidification processes are 

generally named by the overall term geopolymerization. This process is very complicated 

and currently not fully understood. Glukhosky was the first researcher who proposed a 

general mechanism for the alkali activation of materials primarily comprising silica and 

reactive alumina in the 1950s. Gluhhovsky model divides the process into three stages: (a) 

destruction – coagulation; (b) coagulation – condensation; (c) condensation – 

crystallization. More recently, different authors have elaborated on and extended the 

Glukhovsky theories and applied the accumulated knowledge about zeolite synthesis in 

order to explain the geopolymerization process as a whole, leading to Duxson et al. to 

publish a reaction mechanism mode for geopolymerization (Figure 2.9) [14]. In the 

conceptual model by Duxon et al., the geopolymerization process is described in the 

following way. Dissolution of alumina and silica due to contact with alkali activating 

solution leads to the formation of individual alumina and silicate species (probably as 

monomers). It is the first step in geopolymerization. These monomers interact to form 

dimers, and further trimers, tetramers and so on. The aluminosilicate gel precipitates when 

the solution reaches saturation. Since reactive aluminum dissolves faster than silicon, 

initially the precipitated gel (Gel 1) is aluminum-rich. As the reaction progresses, more 

silicon is dissolved from the aluminosilicate source, and the concentration of silicon in the 

gel increasing giving rise to Gel 2. All these stages including dissolution, speciation, 

equilibrium, gelation, reorganization, polymerization, and hardening go on simultaneously.  

It requires an alkaline solution for the dissolution of aluminosilicate source, as well as for 

catalysis of the condensation reaction [15].  
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Figure 2.9 Reaction mechanism model for geopolymerization [14]. 

 

2.2.2 Raw materials and activating solutions 

Various source materials that are rich in silica and alumina can be dissolved in an alkali 

solution that can act as a geopolymer precursor. The possible raw materials include natural 

minerals, calcined clays, metakaolin, industrial and by-products, such as fly ash, slag, red 

mud or waste glass or the mixture of these materials, but the most commonly used alumino-

silicate source materials are class F fly ash and metakaolin, which have the different mass 

content of SiO2 and Al2O3 with a very low rate of CaO. The selection and preparation of 

the raw materials establish the properties of the final geopolymer products. These 
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characteristics may include the good mechanical properties, high compressive strength, low 

shrinkage, high fire resistance, low thermal conductivity and acid resistance [14, 16–19].  

Besides the alumino-silicate source, an alkali solution commonly based on sodium and/or 

potassium is required to induce the geo-polymerization reaction. Therefore, the resultant 

structure of geopolymer depends greatly on both the quantity and concentration of the alkali 

solution. In general, the aluminosilicate materials are activated by an alkali solution with 

high-pH concentration. The influence of alkali solution on the properties of geopolymers 

has been largely studied in the literature. For example, the study of Duxson, et al. in 2007 

presented the effect of the concentration of the alkali, the amount of silica on the strength 

development of geopolymer based metakaolin or fly ash [20]. The results were found that 

the strength increased with the increasing Si/Al molar ratio from 1.15 to 1.90, regardless of 

the alkali ratio. However, the strength value of geopolymer decreased for all the specimens 

beyond Si/Al = 1.90. This finding indicates that the mechanical strength of geopolymer is 

better when alkali solution contains some silicates, and the lowest strength is obtained for 

the Si/Al = 1.15 molar ratio with respect to geopolymers synthesized by alkali hydroxide 

only. However, the amount of silica in the alkali solution is not too high, which cause a 

decrease in strength. Concerning the different alkali contents, geopolymers show the 

similar compressive strength for a given Si/Al ratio, suggesting that the difference in 

mechanical strength between samples having various alkali contents is of 10 – 20%, see in 

Figure 2.10. 
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Figure 2.10 The compressive strength of geopolymer made by five different Si/Al ratios 

from alkali solutions with five different alkali cation ratios Na/(Na + K) = 0.00, 0.25, 0.50, 

0.75 and 1.00 [20].  

 

2.2.3 Mechanical performance and microstructure 

Mechanical performance and microstructure of geopolymers strongly depend on the 

combined effects of SiO2/Al2O3, Na2O/Al2O3, Na2O/H2O, and Na/[Na + K] molar ratios in 

the alumina silicate and alkali solutions compositions. It was found that geopolymer gel 

structures with the desirable properties can be achieved when geopolymers are synthesized 

only at specific ranges of molar ratios [13, 19, 21].  Some researchers [22, 23] have gathered 

data in the literature to estimate the optimum formulation of geopolymers by artificial 

neutral networks resulting in the highest mechanical performance. Kamalloo et al. [22] used 

more than forty data items from the literature to create the filled contour plots which show 

the effect of R2O/Al2O3 (where R = Na or K), SiO2/Al2O3, and H2O/R2O molar ratios on 

the compressive strength of geopolymers based metakaolin (Figure 2.11). The finding 

shows that the optimized value for compressive strength is approximately about 80 MPa 

when the optimized SiO2/Al2O3, R2O/Al2O3, Na2O/K2O and H2O/R2O ratios were 

determined to be 3.6-3.8, 1.0-1.2, 0.6-1 and 10-11, respectively. Also from Figure 2.11 it 

could be obtained that optimum value of H2O/R2O ratio is about 10-11 to achieve high 

compressive strength. In the case of a high H2O/R2O ratio leads to the high amount of OH- 
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groups resulting in the fact that the amount of porosity tends to increase after condensation 

and this phenomenon induce a decrease in compressive strength of geopolymers. In other 

word, water provides the suitable media for geo-polymerization reaction and in low level 

of H2O/R2O ratios the rate of geo-polymerization reaction is low. Therefore, mechanical 

strength of geopolymer is decreased in low level of H2O/R2O ratios. Superposition of these 

mechanism make an optimum value of compressive strength in H2O/R2O =10-11 [22]. 

 

  

Figure 2.11 Filled contours plot of compressive strength that shows the effect of 

R2O/Al2O3, SiO2/Al2O3, Na2O/K2O and H2O/R2O ratios on compressive strength. The 

contours are in units of MPa [22]. 
 

It was observed that these molar ratios affect the mechanical performance of geopolymers, 

and also other properties, such as the microstructure and the porous network. Duxson et al. 

[19] have studied the relationship between microstructure and mechanical properties of 

metakaolin based geopolymers containing Si/Al molar ratios between 1.15 and 2.15 (2.3 < 

SiO2/Al2O3 < 4.3). The authors published SEM images of geopolymers exhibiting 

essential changes in microstructure by varying Si/Al molar ratio (Figure 2.12). The change 

in microstructure appears most dramatic between Si/Al ratios of 1.40 and 1.65. Specimens 

with Si/Al ≤ 1.40 exhibit a microstructure comprising large interconnected pores, loosely 

structured precipitates and unreacted material. Specimens with Si/Al ≥1.65 are classified 
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by a largely homogeneous microstructure containing unreacted particles and some smaller 

isolated pores. Moreover, geopolymers with Si/Al ratio ≥1.65 do not change significantly 

in microstructure with increasing Si/Al ratio. However, the specimens with Si/Al ratio of 

1.90 show a slight decrease in the observed porosity. Therefore, improvement in 

microstructural homogeneity provides strong reasoning for the increase in mechanical 

properties at lower Si/Al ratios, but there is nothing directly observable in the SEM 

micrographs that can explain what is responsible for the decrease in strength above the 

maximum. Theoretically, Si-O-Si linkages are stronger than Si-O-Al and Al-O-Al bonds 

[21], meaning that the strength of geopolymers should increase with Si/Al ratio since the 

density of Si-O-Si bonds increases with Si/Al ratio [24]. The decrease in mechanical 

strength between specimens with Si/Al ratio of 1.90 and 2.15 suggests that other factors 

begin to affect the mechanical properties.  

 

Figure 2.12 SEM micrographs of Na-geopolymers: Si/Al ratio of (a) 1.15, (b) 1.40, (c) 1.65, 

(d) 1.90 and (e) 2.15 [19]. 

2.3  Geopolymer matrix composites. 

As previously outlined in the above section, the reasonable choice of molar ratios is a key 

factor to synthesis geopolymer binder with the desired mechanical properties. A basic 

understanding of these parameters for the fabrication of geopolymer binder should be 
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known when studying this material. However, this thesis does not focus on the production 

of geopolymer binder but focuses on the production of geopolymer matrix-based composite 

by incorporating reinforcement materials. It is well-known that the brittle nature of 

geopolymers, like most ceramics, make them difficult to be accepted as an engineering 

material. Although they show high compressive strength, their tensile strength and flexural 

strength are so low. Moreover, a pure geopolymer presents many defects and micro-cracks 

in its microstructure due to high shrinkage during the curing process. They are very 

sensitive to crack formation under loading [24]. Cracks continue to propagate as the load 

increases; as a result, geopolymers fail when faced with extra loads. Consequently, 

geopolymers should exist in the system of the multi-component materials through the 

addition of a variety of reinforcements into them, to form the geopolymer composites with 

improved mechanical properties and structures.  

The particle reinforcements provide several advantages when being incorporated in 

geopolymer composites, particularly as they offer desirable material properties while 

geopolymer resin acts as a binding intermediate essential for structural applications. 

Depending on their properties, the addition of a new type of filler materials could improve 

one or more properties of geopolymer through chemical reaction or physical changes. 

Compared to fiber reinforcements, particle reinforcements in composites are less effective 

in flexural and tensile strengthening; but they mainly achieve gains in stiffness, 

compression, and wear-resistance, et. Moreover, the other benefit of these reinforcements 

is their low cost and ease of production and forming. The mortar prepared with 

geopolymerization process is known as geopolymer mortar. The core reinforcement of 

geopolymer mortar is sand. The sand acts as a filler material in making of mortar and also 

increases crushing strength and reduces shrinkage [25].  Sand also increases the volume of 

mortar which results in a reduction of the cost of the final products. In other words, micro 

or nano-grained fillers are often considered to be added to mortar to enhance its physico-

mechanical properties since they act as both an excellent pore-filling material and a highly 

reactive pozzolanic material [26–32]. Silica fume (SF) is a by-product from ferrosilicon 

industry which contains extremely small particle sizes that act as micro-fillers. The average 

particle size of SF is relatively small, with good filling effect and can be filled between the 

cement particle gaps which improves the microstructure and decreases the porosity. 

Moreover, SF is comprised of amorphous spherical particles that enhance the rheological 

properties of the fresh mixture. At the fresh state of the mixture, silica fume reduces the 
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bleeding and segregation rate. At the same time, it contains a high percentage of amorphous 

silicon dioxide making it a highly reactive pozzolanic material. However, the overdose of 

silica fume had hindered the geopolymerization due to an increase in Si/Al affecting to 

mechanical and durability properties of the final product, accompanied by microstructures 

with high porosity. This high porosity, which is responsible for weaknesses in the specimen, 

is related to the amount of unreacted silica fume [30, 32, 33]. At the same time, the overdose 

of micro or nano-grained fillers had also engaged too much water, denying aluminosilicate 

sources around them water enough, resulting in decrease geo-polymerization reaction; thus 

so the porosity is relatively increased [34]. The experimental results from references [35, 

36] showed that the porosity, bulk density, and pore size distribution were significantly 

impacted by the amount of sand added to geopolymer paste.  

The main objective of incorporation of fiber reinforcements in brittle materials can help to 

improve the plastic cracking characteristics, the tensile or flexural strength, the impact 

strength and toughness and to control cracking and the mode of failure by means of post-

cracking ductility and to improve durability [37]. In other words, there are three major 

requirements to be considered in the selection of fiber as reinforcement in concrete: i) 

compatibility of material properties with the application; ii) sufficient fiber-matrix 

interaction to transfer stresses; iii) optimum aspect ratio to secure effective post-cracking 

behavior [38]. The addition of fiber reinforcements in geopolymer matrix composites was 

first investigated in the 1980s by Davidovits et al. with the objective to manufacture 

molding tools and patterns for the plastic processing industry [39–41]. Up to date, a wide 

variety of fiber reinforcements (both organic and inorganic types) have been used to 

reinforce geopolymers with the aim of improving mechanical properties suitable for 

specific types of engineering application, including nanofibers [42], short fibers [43–51], 

continuous fibers [52–55], woven fabrics [56–60], among others. In the following sections, 

only basalt short fibers and fibers in the form of textile which are used as reinforcements in 

production of geopolymer matrix composites are summarised and discussed in some more 

details due to their involvement in this thesis work.  

 

2.3.1 Basalt short fibers geopolymer composites 

Short fiber reinforced composites are an important group of materials for engineering 

applications due to their adaptability to conventional manufacturing techniques and low 
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cost of fabrication. When mixed into concrete, randomly distributed fibers can bridge these 

cracks and arrest their development. By this mechanism, it has been well established that 

the addition of fibers can enhance the mechanical behaviour of plain concrete. The 

difficulty that fiber inclusion causes during the initial mixing, including balling of fibers 

and compacting problems, results in inadequately compacted and air-entrapped concrete. 

Nevertheless, the increase in fiber quantity results in a significant increase in strain energy 

density and thus imparts increased ductility to the composite.  

Basalt fibers are environmentally friendly material made from natural volcanic basalt rocks 

through their melting process at a high temperature of about 1500 ºC. The quality and 

strength characteristic of basalt fiber depends mainly on the type of raw material and the 

manufacturing conditions [61]. Chemical compositions of basal fiber are rich in oxides of 

alumina and silica along a small amount of magnesium, calcium, sodium, potassium, silicon 

and iron [62]. It is observed that basalt is an inorganic fiber that is like glass fiber, has better 

tensile strength than the glass fiber, broader failure strain than the carbon fiber. Basalt fiber 

is a novel type of inorganic fiber that is considered as an effective alternative material for 

glass fiber. Both of these products have a similar manufacturing process, but basalt fiber 

obtains more economical and improved mechanical properties. Alkaline resistance of basalt 

fiber under accelerated aging or short-term aging conditions was investigated by some 

authors in previous studies [63–66]. Jongsung Sim et al. assessed the alkali resistance of 

the basalt fiber. Three different types of fibers including basalt, glass, and carbon were 

immersed in a 1M NaOH solution for 7, 14, 21, and 28 days. The experimental results 

showed that the basalt and the glass fibers lost their volumes significantly under alkali 

conditions. On the surface of these two fibers, reaction products developed and fell apart 

as the immersion period increased, consequently, decreasing a sound part or volume of the 

fibers. Those reaction products were assumed to be from the reaction between SiO2 in the 

fibers and alkali solution [63]. In the carbon fiber, no such reaction product was observed, 

and the calculated volume reduction was less than 20% at 28 days of immersion. The basalt 

and the glass fibers lost their strength about more than 80% at 28 days of the immersion 

period, whereas about 13% of the strength reduction was measured for the carbon fiber 

after 28 days [63]. C. Scheffler et al. [64] also investigated the influence of the chemical 

composition of the aging solution (NaOH, cement) on the corrosion process of AR-glass 

and basalt fibers. The results show that the rate of this corrosion depends on the chemical 

constitution of the fiber and the alkaline solution as well as on the time and temperature. 
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Both solutions finally lead to highly corroded states after a few days at raised temperatures, 

but the manner of failure stress reduction strongly differs. In NaOH solution the failure 

stress steadily decreases, being interrupted by phases of increasing stresses. In contrast, the 

filaments in cement solution do not reveal decreasing failure stresses over a vast interval of 

temperature and time [64]. Portal et al. [66] investigated tensile behavior of textile 

reinforcements (AR-glass, basalt and carbon textile) under accelerated ageing conditions. 

Their study showed that the tested carbon textile reinforcement has a superior alkali and 

temperature resistance, while the standard conditions were found to be too aggressive for 

the tested basalt and AR-glass products causing them to have nearly unmeasurable capacity 

after ageing. 

From the review of literature it was concluded that when basalt fiber is treated in the 

alkaline environment, although it is proved to have partial loss of strength, it is less likely 

to be damaged than glass fiber. However, reports that evaluate the alkaline resistance of 

basalt fiber under realistic alkali environments (fiber embedded directly in the cement 

composite for long-term aging) are scarce.  

The investigation of the effectiveness of the chopped basalt fibers on the mechanical 

properties of geopolymer based composites was studied by some authors. Study based on 

a geopolymer paste matrix made of metakaolin with the addition of 1, 3, 5, 7 and 10% by 

weight of geopolymer paste were carried out in terms of flexural strength [67]. The fibers 

had about 6.4 mm length and 13 µm diameter. The strength properties increased with the 

fiber addition. For non-fiber geopolymer paste, the flexural strength was 1.7 MPa and 

increased with the addition of basalt fibers - it was respectively: 1% - 3.6 MPa, 3% - 8.6 

MPa, 5% - 13.5 MPa, 7% - 16.5 MPa and 10% - 19.5 MPa. Anil Ronad et al. [68] 

investigated a study on mechanical properties of geopolymer concrete reinforced with 

chopped basalt fibers. Geopolymer concretes made of fly ash class F with the addition of 

slag, plasticizer, basalt fiber and two types of aggregates (fine and coarse) were prepared. 

The strength tests were carried out on geopolymer concretes with fiber addition of 0.0%, 

0.5%, 1%, 1.5%, 2%, 2.5% by the weight of material (fly ash + slag). The experimental 

results showed that all the geopolymer concretes with basalt fiber addition has always 

higher mechanical strength compared to plain one. The compressive strength of plain 

concrete gains 30.82 MPa at 7 days and 43.35 MPa at 28 days. The best result was achieved 

for 2% fiber addition with compressive strength at 7 days of 40.1 MPa and at 28 days of 



Literature Review 

23 

 

58.4 MPa. For the split tensile test, the strength values of the plain concrete were 2.2 MPa 

at 7 days and 2.4 MPa at 28 days. Best values were also achieved for concrete with 2% 

fiber addition: 3.2 MPa and 3.6 MPa. Arunagiri et al. [69] conducted a study concerning 

the mechanical properties of basalt fiber reinforced geopolymer concrete. They have 

achieved the highest compressive strength of geopolymer concrete at 2% basalt fiber 

addition. They have said that basalt fiber acts as a crack arrestor and prevents sudden failure 

of structures. They also confirmed that incorporating of basalt fiber within the geopolymer 

concrete can improve compressive as well as tensile strength at optimal dosage. Xiaolu Guo 

et al. [70] studied the mechanical properties of geopolymer mortar with the addition of short 

basalt fibers. The compositions of geopolymer mortar consists of fly ash class C, steel slag, 

sand and basalt fibers (diameter: 7 – 30 µm, lengths: 12 mm). The mechanical strength of 

geopolymer mortar was estimated based on various content of fibers: 0.0, 0.1, 0.2, 0.3, 0.4, 

0.5 % by volume. The mortar specimens were tested at the age of 3, 7 and 28 days. From 

the experimental results, it was found that at the early ages of 3, 7 days the incorporation 

of basalt fiber decreased the compressive strength of the geopolymer mortars regardless of 

the added fiber content. However, all the specimens with fiber addition achieved higher 

compressive strength than control specimens at the age of 28 days. The highest compressive 

strength was obtained for 0.4% addition of basalt fibers, it was 40.3 MPa, which is 18.5% 

higher than the control sample. For bending strength, the highest value of 7.3 MPa at the 

age of 28 days was obtained for 0.3% addition, which improving 12.3% compared with the 

control sample. Based on the data, the authors concluded that the basalt fiber can improve 

the compressive and flexural strength to a certain extent, and the enhancement at the later 

stage is more obvious. Its suitable content is 0.3–0.4% according to the data. Giulia Masi 

et al. [45] has published an article on the effect of chopped basalt fibers on the mechanical 

and thermal properties of aluminate activated geopolymers. Short basalt fibers have a 

length of 5 mm and a diameter of 16 µm. Fiber reinforced geopolymers were synthesized 

by adding different dosages of fibers (0.5%, 1.0 % by volume). According to experimental 

results he stated that the presence of chopped basalt fibers in the geopolymer matrix was 

not found to affect the flexural strength and compressive strength of the geopolymer paste. 

However, adding 1 % of basalt fibers to the geopolymer matrix showed a slight increase in 

the energy absorbed during the three-point bending test. Basalt fiber geopolymer 

composites at elevated temperatures were also carried out. The basalt fibers did not degrade 

until 1000 ºC and the composites increased in flexural strength with increasing heated 
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temperature due to the improved bonding with the matrix after sintering. Their study 

confirmed that although chopped basalt fibers did not significantly improve mechanical 

properties of the geopolymer composites at low temperatures, they are more suitable for 

thermal applications in a range of higher temperatures from 600 ºC to 1000 ºC. In another 

study on behavior of chopped fibers reinforced fly ash geopolymer paste at elevated 

temperatures is observed by Faiz Shaikh et al [71]. In their study, basalt fibers with 12.7 

mm length, 13 µm diameter were added in various dosages of 0.5, 1.0 and 1.5% by weight 

of fly ash. The tests were carried out at an ambient temperature and elevated temperatures 

of, 200 °C, 400 °C, 600 °C, 800 °C. The experimental result showed that the geopolymer 

containing 1 wt.% of basalt fibers displayed better compressive strength, lower volumetric 

shrinkage and mass loss than other fiber contents. No significant damage and change in 

fiber diameter at elevated temperatures are observed in SEM analysis. So, the results 

confirmed the resistance of basalt fiber at elevated temperatures. Daming Ren et al. [72] 

investigated geopolymer composites made of metakaolin with three mineral fillers: 

wollastonite, thermolite particles and chopped basalt fibers. The geopolymer composite 

with metakaolin replacement of 12% (5% WS + 5% TR + 2% SBF) is the optimum group, 

which leads to the most effective improvement in the compressive strength of the resulting 

product. The compressive strength of this composite increased to 33.5 MPa, compared to a 

value of 13 MPa for the pure geopolymer. Then, this geopolymer composite was tested for 

strength after 3, 7, 28 and 90 days for resistance against aggressive environments, i.e. 15% 

Na2SO4 solution and 15% NaCl solution. The results showed that fibre geopolymer 

composites maintained higher mechanical properties than pure geopolymer. Chopped 

basalt fibers with 12 mm length and 20 µm diameter were also used as fiber reinforcement 

in production of boron waste additive metakaolin based geopolymer mortar composite [73]. 

Basalt fiber was added as a volume fraction ratio of 0.4%, 0.8% and 1.2% and its addition 

effect on the geopolymer composites behavior was carried out. The experimental results 

showed that both flexural strength and compressive strength increased with increasing fiber 

content and the samples reinforced with 1.2% basalt fiber had the best value of mechanical 

strength. Their study revealed that addition of basalt fibers also improves the other 

characteristics of the geopolymer composites such as water absorption, voids ratio, flexural 

toughness factor and abrasion resistance. For example, the basalt fiber composites raised 

from 154.55% to 287.01% in terms of flexural toughness factor or reductions of between 

2% and 18% in abrasive wear, compared to control samples. The behaviour of geopolymer 
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materials at high temperatures were also be researched, i.e. 300 °C, 600 °C and 900 °C. 

Significant degradation of mechanical properties was found at temperatures of 600 °C and 

900 °C, however basalt fiber reinforced samples still had higher values than the control 

samples. Weimin et al. [74] investigated the impact of mechanical properties of basalt fiber 

reinforced geopolymer concrete (BFRGC). Geopolymer concrete is made from fly ash/slag, 

limestone rubble, river sand, sodium-based activator and chopped basalt fiber (18 mm 

length, 16 µm diameter). Some parameters such as dynamic compressive strength, 

deformation and energy absorption capacity, were studied using a 100 mm diameter split 

Hopkinson pressure bar (SHPB) system. The SHPB system is an apparatus for testing the 

dynamic stress-strain response of materials. Impact properties of BFRGC exhibit strong 

strain rate dependency and increase approximately linearly with the strain rate. The addition 

of basalt fiber can significantly improve deformation and energy absorption capacities of 

geopolymer concrete (GC), while there is no notable improvement in dynamic compressive 

strength. In addition, the optimum volume fraction of basalt fiber of 0.3 % was presented 

for BFRGC. Dias and Thaumaturgo conducted a study on the basalt fiber reinforced 

geopolymer concrete in terms of fracture toughness. They compared to geopolymer 

concrete with ordinary Portland cement concrete, their study revealed that using basalt 

fibers proved to in benefit of improving the characteristics of the resulted concretes in terms 

of deformation and energy absorption [75]. 

From the review of literature it has been explored that the effect of adding chopped basalt 

fibers on the mechanical properties of geopolymers appears to depend on the type of 

geopolymer matrix (metakaolin, fly ash, or slag, et.) and with or without any aggregates. 

As reviewed literature above, some researchers confirmed the chopped basalt fibers do not 

positively affect on flexural and compressive strength of resulting samples. Others revealed 

that the mechanical strength of samples after adding these fibers improved significantly. It 

can be seen that the effect of the addition of chopped basalt fiber to geomortar should be 

continued to study.  

2.3.2 Textile fabric geopolymer composites 

Textile reinforcements have many advantages over short fiber reinforcements because only 

a certain small amount of short discrete fibers can be added to the cementitious materials 

due to the clustering effect and uneven distribution of fibers in the mixture. Textile 

reinforcements provide a higher amount of fibers incorporated in cementitious materials 
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compared to short fibers and show significantly greater load capacity as fibers are arranged 

in the form of bundles or yarns and due to easy position where the required load. These 

materials can be used for applications in load-bearing structural members such as structural 

panels, impact and blast-resistance structures, repair and retrofit and strengthening of 

unreinforced masonry walls. Textile reinforcements combined with geopolymer matrix are 

simply named textile reinforced geopolymer (TRG). Up to date, many works have been 

performed to evaluate the effectiveness of the use of a textile reinforced geopolymer matrix 

composite for the external strengthening layer of existing structure members [76–83]. For 

example, Vasconcelos et al. [79] carried out a study on the use of reinforcing carbon fiber 

sheets and metakaolin based geopolymer mortar as an external strengthening layer for 

concrete prisms. The carbon fiber sheets were pre-impregnated with epoxy resin and placed 

within the geopolymer mortar before the setting of the resin. The use of geopolymer mortars 

as a binding agent to bond the carbon reinforced polymer sheets to the concrete substrate. 

Their study observed that metakaolin geopolymer mortars show a high mechanical 

resistance and a relevant adhesion to the concrete substrate. Although their adhesion 

strength is lower than the one present by commercial pre-pack repair mortars, they are very 

cost-effective (5–10 times less expensive). On the other hand, the adhesion strength 

between CFRP and geopolymer mortars proved to be lower than expected which could be 

due to the fact that the composition of the geopolymer mortars was not optimized and also 

to the fact that the CFRP used was not prone to this kind of application. Costantino Menna 

et al. [80] observed poor adhesion of the geopolymer carbon fabric composites so that a 

negligible strengthening of the reference reinforced concrete beams was obtained. The poor 

performance of the CFRG system could be due to the sizing of the used carbon fibers, that 

was designed to have an optimal adhesion with epoxy resin. Sergio Tamburini et al. [78] 

performed an experiment on the use of metakaolin based geopolymer mortar combined 

with different types of textile reinforcements for the strengthening layers of brick masonry 

substrates. Excellent adhesion of all fiber reinforced geopolymers on soft mud clay bricks 

was found. Very interesting pull-off strength values were also found for fiber reinforced 

geopolymers coupled to strong extruded clay bricks. Hai Yan Zhang et al. [83]  investigated 

the mechanical behavior of reinforced concrete beams shear strengthened with carbon 

textiles reinforced geopolymer mortar through static load tests. From the experimental 

results it was observed that textile reinforced geopolymer mortar is a very promising 

solution for retrofitting and strengthening RC members, due to its superior fire resistance, 
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excellent corrosion resistance and good weatherability. It is worth to notice that the reason 

for choosing geopolymer matrix composites is that they are more stable at elevated 

temperatures than a polymeric resin, while compared to a Portland cement matrix, they are 

better at anticorrosion in a chemical environment and have a lower CO2 footprint [84].  

It can be concluded that the research results in the current literature on TRG composites are 

presented in terms of the strengthening layers for reinforced concrete. Moreover, the 

majority of studies prefer to use carbon fiber reinforcement instead of other fibers. The 

reason may be that although carbon fibers are expensive, they have been found to promote 

a good load-bearing capacity of the reinforced composite due to the high tensile strength 

and Young’s modulus. In other words, basalt is another type of fiber that has been used to 

some extent for geopolymer composites, however, mostly in the form of short fiber 

reinforcement. Only a few studies have used basalt textiles in combination with geomatrix 

as the strengthening layers. Despite many efforts in using the TRG composites as the 

strengthening layers for reinforced concrete, no research work reported on the experimental 

investigation of mechanical properties of geopolymer composites which are produced by 

textile reinforcements and geomortar in the current literature.  This approach of research is 

quite interesting because it is possible more easily to assess the effectiveness of some key 

parameters including textile type, net size, reinforcement ratio, geomortar type, additional 

reinforcements on mechanical properties of resulting composites. Finally, for each specific 

application consideration can be given to the appropriate selection of reinforcement type as 

well as geomortar matrix.    
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3. RAW MATERIALS AND METHODS OF THE 

EXPERIMENTATION 

 

This part provides information about the raw materials and their properties, molds used for 

producing the samples, curing regime of the samples, the testing methods used in the 

research. The whole work of this thesis was carried out in the geopolymer lab of Technical 

University of Liberec, Czech Republic. 

 

3.1  Raw materials 

3.1.1 Geopolymer binder  

Commercial geopolymer binder Baucis LNa based on metakaolin provided by České 

Lupkové závody, Czech Republic was used as the aluminosilicate source for producing 

geopolymer mortar (in weight percent: SiO2—47.4; Al2O3—29.7; CaO—14.5; MgO—2.6; 

TiO2—1.8; Fe2O3—0.5; K2O—0.3; Na2O—1) along with sodium silicate activator of 

modul 1.73 (in weight percent: SiO2—20.72; Na2O—12.33; H2O—66.68) (see in Figure 

3.1). Geopolymer cement was synthesized from calcined kaolin and shale fly dust burnt in 

a rotary kiln (for 10 h at 750 °C) with a Si/Al molar ratio of 2.0. In order to prepare 

geopolymer paste, the mixing ratio of two components (solid, liquid) was taken out 

according to the requirement of the manufacturer. 

3.1.2 Sand  

Two different types of silica sand, supplied by Sklopísek Střeleč, a.s. Czech Republic, were 

used as the fine aggregates for geopolymer mortar matrix (grain size in mm: ≤ 0.063 and 

0.6–1.25) (see in Figure 3.1). 

3.1.3 Silica fume 

Powder additive (microsilica or silica fume) based on amorphous SiO2 for concrete and 

mortar was purchased from Kema Mikrosilika-sanační centrum s.r.o., Sviadnov Czech 

Republic (see in Figure 3.1). The chemical composition of microsilica as follows (wt.%): 

SiO2 – 90, CaO – 0.8, MgO – max. 1.5, Al2O3 – max. 1, Na2O – 0.5. This additive was 

added into geopolymer mortar to improve both the workability of the fresh mortar and the 

mechanical strength of the hardened mortar. 
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Figure 3.1 Raw materials used in this work. 

3.1.4 Chopped basalt fiber 

The chopped basalt fiber (BF) was provided by Kamenny Vek, and the three types with the 

approximate lengths are 6 mm. 12 mm, 24 mm, respectively, which have individual fiber 

diameters of 13 µm, a density of 2.67 g/cm3, tensile strength in the range of 2700–3200 

MPa, and tensile modulus of 85–95 GPa, as shown in Figure 3.2. Basalt has a softening and 

melting point of 1060 ºC and 1250 ºC, respectively. It is non-combustible, making it useful 

for high-temperature applications.  

 

Figure 3.2 Three types of the chopped basalt fibers (BF) with different fiber lengths used 

in this work, from left to right: fiber length of 24 mm (24 mm BF), the fiber length of 12 

mm (12 mm BF), the fiber length of 6 mm (6 mm BF). 
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3.1.5 Textile reinforcements 

Two types of textiles were used in this study. One is the basalt fiber mesh corresponding to 

three net sizes (10 x 14 mm, 22 x 22 mm, 36 x 36 mm) (see in Figure 3.3a) and the second 

is the carbon fiber mesh corresponding to three net sizes (10 x 15 mm, 21 x 21 mm, 34 x 

34 mm) (see Figure 3.3b). These textiles were provided by Aligard company, Czech 

Republic and their mechanical properties are shown in Table 3.1. 

 

(a) 

 

(b) 

 

Figure 3.3 Images of textile reinforcements: (a) basalt fiber meshes; (b) carbon fiber 

meshes 
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Table 3.1 Material characteristics of textile reinforcements provided by the manufacturer. 

Form Carbon Fiber Mesh 

Fiber type Carbon HTC 10/15–40 Carbon HTC 21/21–40 Carbon HTC 34/34–40 

Fiber density 1.77 g/cm3 1.77 g/cm3 1.77 g/cm3 

Number of threads/m 
78 (lengthways); 

55 (crossways) 

39 (lengthways); 

39 (crossways) 

26 (lengthways); 

26 (crossways) 

Weight 350 g/m2 330 g/m2 212 g/m2 

Tex 3200 g/km 3200 g/km 3200 g/km 

Stitch spacing 

10 × 15 mm2 

(center to center 

distance) 

21 × 21 mm2  

(center to center 

distance) 

34 × 34 mm2  

(center to center 

distance) 

Tensile strength 
2847 MPa (lengthways);  

2551 MPa (crossways) 

2531 MPa (lengthways); 

2841 MPa (crossways) 

2544 MPa (lengthways);  

2720 MPa (crossways) 

Young’s Modulus  
252 GPa (lengthways) 

228 GPa (crossways) 

229 GPa (lengthways) 

252 GPa (crossways) 

242 GPa (lengthways) 

250 GPa (crossways) 

Elongation 
1.17% (lengthways) 

1.24% (crossways) 

1.71% (lengthways) 

1.47% (crossways) 

1.47% (lengthways) 

1.34% (crossways) 

Form Basalt fiber mesh 

Fiber type Basalt HBT 10/14–40  Basalt HBT 22/22–40  Basalt HBT 36/36–40  

Fiber density 2.75 g/cm3 2.75 g/cm3 2.75 g/cm3 

Number of threads/m 
84 (lengthways) 

61 (crossways) 

43 (lengthways) 

42 (crossways) 

26 (lengthways) 

25 (crossways) 

Weight  375 g/m2 229 g/m2 153 g/m2 

Tex 2400 g/km 2400 g/km 2400 g/km 

Stitch spacing 10 x 14 mm2 22 x 22 mm2 36 x 36 mm2 

Tensile strength 
1335 MPa (lengthways) 

1251 MPa (crossways) 

1068 MPa (lengthways) 

1347 MPa (crossways) 

1141 MPa (lengthways) 

1279 MPa(crossways) 

Young’s Modulus 
81.20 GPa (lengthways) 

84.50 GPa (crossways) 

75.10 GPa (lengthways) 

74.20 GPa (crossways) 

83.40 GPa (lengthways) 

85.61 GPa (crossways) 

Elongation 
1.86 % (lengthways) 

1.50 % (crossways) 

1.61 % (lengthways) 

1.63 % (crossways) 

1.62 % (lengthways) 

1.54 % (crossways) 

 

3.2  Sample preparation process 

3.2.1 Mixing process of the geomortar 

Geopolymer mortars are a mixture that consists of geopolymer binder and different fillers 

including rough silica sand, micro-milled silica sand, silica fume and chopped basalt fiber. 

Thus, geopolymer mortar was prepared according to the following steps. Firstly, 

geopolymer cement and activator solution with a given ratio were mechanically stirred for 

about 5 min to gain a homogenous binder. Geopolymer binder is preferably mixed 

separately to ensure the best possible dissolution of alumina and silica in the alkali 

environment leading to the attainment of the good geopolymerization process of 

geopolymer paste. Secondly, fine-particle reinforcements such as silica fume and micro-

milled sand, were added to the slurry, and mixture was stirred for about 3 min more. Finally, 

the addition of chopped basalt fibers to geomortar is performed in two ways depending on 

the fiber dose level. With a low dose level, the BFs were added after step 2 completed, and 
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the mixture was mixed for about a minute so that the fibers were evenly distributed in the 

geomortar, followed by the rough sand being added and mixed. After adding sand, the 

geomortar must be mixed at a slow speed to minimize breaking the initial length of the BFs. 

This approach of mixing is to assess the effect of the fiber length of the BF on the 

mechanical properties of the geomortar. With a high dose level, the rough silica sand along 

with chopped basalt fibers was added simultaneously to the prepared mixture followed by 

mixing for a few minutes depending on various BF dosages to ensure a homogenous mortar. 

It should be noted that due to the high dose level of the BF added into the geomortar, to 

achieve the homogeneous mixture and good workability, the initial length of the BF must 

be changed, and it was chopped into smaller dimensions during mixing. Thus, in this 

approach the original length of the BF does not affect the mechanical strength of the 

geopolymer mortar, but the fiber dosage does. During the mixing process of the geomortar 

containing the chopped basalt fibers, observing by the naked eye is seen that the fresh 

geomortar with a low dose level has the worse workability than one with a high dose level. 

So, it should be manually vibrated after casting the geomortar into the molds in order to fix 

the compacting problems, results in inadequately compacted and air-entrapped mortar. 

Geomortars were mixed using either of the two mixers depending on the amount of mortar 

produced that is shown in Figure 3.4.  

  

  

Figure 3.4 Two mixers are available for the geomortar mixing, TUL-KMT 
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3.2.2 Fabrication of the geomortar samples  

The selection of a suitable mortar composition for use as a matrix to manufacture the 

geopolymer composite reinforced with the textile reinforcements should be carried out. The 

geomortar must ensure two desired criteria: i) having good workability, which is able to 

help a good penetration of the mortar between fiber yarns of textile layers; ii) it must also 

achieve the highest mechanical strength as well as possible. After preliminary trials, a 

number of the different geomortars were selected for further work to identify the most 

suitable geomortar composition for the fabrication of the textile reinforced geopolymer 

composite (Table 3.2). The content of rough silica sand in geomortar is fixed at a constant 

ratio of 1.5 by weight mass of geopolymer cement. Its higher content is not considered 

because of both low workability of mortar and limiting the incorporation of other fillers. 

So, an optimized matrix composition will be determined based on varying mixing ratios 

between the three different fillers such as silica fume, micro-milled silica, and chopped 

basalt fiber. Next, the various dosages of the chopped basalt fibers were added to geomortar 

to estimate the effect of the BF on the mechanical properties of the geomortar (Table 3.3). 

Three kinds of chopped basalt fiber with different lengths (6 mm, 12 mm, 24 mm) were 

used. As mentioned above, they were added to gemortar in two dose levels. The low dose 

level is applied to all three kinds of the BF with an increment of 0.25 % and up to 0.75%, 

except for the 6 mm BF up to 1.00 %. It is worth to notice that while the 6 mm BFs are 

dispersed easily in the mixture, by using 12 mm BFs and 24 mm BFs the difficulty of 

mixing has occurred due to the fiber entanglement that results in the presence of several 

clusters of fibers in the mixture as the BF content starts at 0.5 %. The high dose level is 

only applied to 6 mm BF with an increment of 2.50 % and up to 7.5 %. This is due to the 

fact that the fiber length has no impact on the mechanical properties as the BF used at a 

high dose level.  

The specimens were produced by pouring the readily homogenized geomortar into 30 x 30 

x 150 mm3 prismatic molds, manually vibrated for a while followed by covering by 

polypropylene film and subsequent curing at the laboratory temperature. The label of 

geomortar was defined as following: GM means the geopolymer mortar, while S, F, B 

imply the micro-milled sand, the silica fume, and the chopped basalt fiber, respectively. 

For example, GM means that geopolymer mortar without the addition of the 

reinforcements, whereas GM-0.2S0.1F5B means that geomortar contains the micro-milled 
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sand and silica fume by mass ratio of 0.2 and 0.1 regarding geopolymer cement, 

respectively, and 5% of the BF by weight percentage regarding geopaste.  

Table 3.2 Mixture of geomortar containing various doses of the fillers (by weight ratio). 

No. sample Cement Activator 
Rough 

silica sand 

Micro-milled 

sand 
Silica fume BF (*) 

GM 1 0.8 1.5 0.0 0.0 0 

GM-0.2S 1 0.8 1.5 0.2 0.0 0 

GM-0.2S0.1F 1 0.8 1.5 0.2 0.1 0 

GM-0.2S5B 1 0.8 1.5 0.2 0.0 5 

GM-0.2S0.05F5B 1 0.8 1.5 0.2 0.05 5 

GM-0.2S0.2F5B 1 0.8 1.5 0.2 0.2 5 

GM-0.1S0.1F5B 1 0.8 1.5 0.1 0.1 5 

GM-0.2S0.1F5B 1 0.8 1.5 0.2 0.1 5 

GM-0.3S0.1F5B 1 0.8 1.5 0.3 0.1 5 

GM-0.4S0.1F5B 1 0.8 1.5 0.4 0.1 5 

 (*) chopped basalt fiber dosage by mass percentage of geopolymer paste. 

Table 3.3 Mixture of geomortar containing various dosages of the BF (by weight ratio). 

No. sample 

 

Cement Activator 
Rough 

silica sand 

Micro-

milled 

sand 

Silica 

fume 
BF (*) 

GM-0.2S0.1F0B  1 0.8 1.5 0.2 0.1 0.00 

GM-0.2S0.1F0.25B 

L
o

w
 d

o
se

 1 0.8 1.5 0.2 0.1 0.25 

GM-0.2S0.1F0.50B 1 0.8 1.5 0.2 0.1 0.50 

GM-0.2S0.1F0.75B 1 0.8 1.5 0.2 0.1 0.75 

GM-0.2S0.1F1.00B 1 0.8 1.5 0.2 0.1 1.00 

GM-0.2S0.1F2.50B 

H
ig

h
 

d
o

se
 1 0.8 1.5 0.1 0.1 2.50 

GM-0.2S0.1F5.00B 1 0.8 1.5 0.2 0.1 5.00 

GM-0.3S0.1F7.50B 1 0.8 1.5 0.3 0.1 7.50 
(*) chopped basalt fiber dosage by the mass percentage of geopolymer paste. 

 
(a) (b) 

Figure 3.5 (a) 30 x 30 x 150 mm3 molds used to cast geomortar; (b) 28-day samples ready 

for test. 
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3.2.3 Fabrication of textile reinforced geopolymer samples for four-point bending test 

The specimens are molded in the rectangular form with the dimensions of 400 × 100 × 15 

mm3. The textile layers were used as reinforced with geomortar matrix, and the specimens 

were manufactured by hand lay-up method. A mortar layer with desired thickness was 

poured on the bottom of the mold, followed by placing a textile layer. This operation is 

performed alternatively and ends up with a mortar layer on the mold top. The textile layers 

were positioned in the mold with the desired distance by using the thin metal plates at the 

ends of the mold. Next, the nut bolts were tightened together in order to fix the thin metal 

plates. The mold was manually vibrated for a while to ensure the good penetration of the 

fresh mortar between textile layers. Next, each fiber bundle will be stretched as well as 

possible using the adjustable wrench for the purpose of composite that ensuring tension 

state of fiber yarn embedded in mortar. Finally, the mold was manually vibrated again for 

a while, adding mortar into the mold if it is missing and it is covered by polypropylene 

plastic film for 24h. Figure 3.6 describes the detail components of the mold system 400 x 

100 x 15 mm3, whereas the manufacturing process of textile reinforced geopolymer mortar 

composites is described in Figure 3.7.  

 

Figure 3.6 Photograph showing the detail components of the mold system of dimension 

400 x 100 x 15 mm3.  
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Figure 3.7 The manufacturing process of textile reinforced geopolymer mortar composites. 

 

Geopolymer mortar reinforced with three different types of basalt fiber meshes (BRG 

specimens) 

The arrangement of textile layer in the mold was clearly described in Figure 3.8. It was 

found that four reinforcing layers were the eligible number in order to ensure easy 

penetration of geopolymer mortar between textile layers when the total thickness of the 

specimens was 15 mm. For instance, the distance between two adjacent layers should be 

bigger than the size of sand grains, so this distance was 2 mm in the case of four reinforcing 

layers because the distance from center to center between two adjacent layers was 3 mm 

while self-thickness of fiber yarn was about 1 mm. It should be said clearly that the number 

of fiber yarns per one textile layer in the bearing direction is: eight yarns for the B-10x14 

mesh, four yarns for the B-22x22 mesh and three yarns for the B-36x36 mesh. In this work, 

the four-point bending performance of textile geopolymer composite was carried out based 

on the textile type and the different number of reinforcement ratios. The geopolymer mortar 

containing 5% of chopped basalt fiber (the label GM-0.2S0.1F5B) was selected for a 

matrix.  
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Figure 3.8 Schematic drawing of the arrangement of the basalt textile in the specimens 

(unit: mm). 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3.9 Schematic drawing of the arrangement of carbon textile in the specimens (unit: 

mm). 

 

Geopolymer mortar reinforced with three different types of carbon fiber meshes (CRG 

specimens) 

The layout of carbon textile in the mold was clearly described in Figure 3.9. Unlike basalt 

fiber meshes, because the self-thickness of carbon fiber yarn was about 2 mm, it was found 

that three reinforcing layers were the eligible number in order to ensure easy penetration of 

geopolymer mortar between textile layers when the total thickness of the specimens was 15 

mm. Similar to basalt fiber meshes, the number of the fiber yarns per one textile layer in 

the bearing direction is: eight yarns for the C-10x15 mesh, four yarns for the C-21x21 mesh 

and three yarns for the C-34x34 mesh. Similar to the BRG specimens, the four-point 

bending performance of textile geopolymer composite was carried out based on the textile 
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type and the different number of reinforcement ratios, position of textile layer in the 

specimens, and used the same geopolymer mortar as used for the BRG specimens.  

Geopolymer mortar reinforced with carbon meshes and containing various doses of 

chopped basalt fibers 

When compared to basalt textiles, carbon textiles have been found to promote a better load-

bearing capacity of the reinforced composite due to the high tensile strength and Young’s 

modulus. So, one layer of C-10x15 mesh was considered to investigate the influence of the 

BF dosages on the flexural performance of the textile geopolymer composite. Figure 3.10 

shows the experimental program of carbon textile geopolymer composite that demonstrates 

what type of sample is used regarding each key factor.  

 

Figure 3.10 Schematic drawing of the experimental program of carbon fiber mesh 

reinforced geopolymer mortar. 
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Reinforcement ratio 

The reinforcement ratio could be defined as the ratio of the area of the textile reinforcement 

to the area of the specimens. It can be expressed by the following Equation (1):  

                                         𝜌𝑓 =
𝐴𝑓

𝐴𝑐
                                                       (1) 

Where ρf is the reinforcement ratio, Af is the cross-sectional area of the fiber yarn of the 

carbon textile in mm2, Ac is the cross-sectional area of the BRG specimens in mm2. 

The cross-sectional area of the fiber yarn can be calculated by the following Equation (2): 

                                         𝐴𝑓 =
𝑇𝑒𝑥

𝐷𝑓
                                                       (2) 

Where Df is the fiber density in g/cm3, Tex is the linear density of the fiber yarn in g/km. 

So, the BRG specimens that are reinforced with 1 – 4 layers of the basalt fiber meshes will 

have a reinforcement ratio of 0.47%, 0.93%, 1.40%, 1.86% for B-10x15 textile mesh; 

0.23%, 0.47%, 0.70%, 0.93% for B-22x22 textile mesh; 0.17%, 0.35%, 0.52%, 0.70% for 

B-36x36 textile mesh, respectively. 

The CRG specimens that are reinforced with 1 – 3 layers of the carbon fiber meshes will 

have a reinforcement ratio of 0.96%, 1.93%, 2.89% for C-10x15 textile mesh; 0.45%, 

0.96%, 1.45% for C-21x21 textile mesh; 0.36%, 0.72%, 1.08% for C-34x34 textile mesh, 

respectively. 

 

3.2.4 Fabrication of textile reinforced samples for Charpy impact test 

The samples with dimension of 15 x 50 x 120 mm3 were cut off from the full samples that 

were formerly prepared to test the four-point bending strength. Due to the limited size of 

the samples for Charpy impact test, only textile fiber meshes with small net size were used 

(Figure 3.11). The samples were cut using the machine shown in Figure 3.12. 
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Figure 3.11 The sample size of textile geopolymer composites for Charpy impact test (unit: 

mm). 

 

 

Figure 3.12 The cutting machine with diamond blade. 
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3.2.5 Curing regime of the test samples 

After casting, all the specimens were wrapped using a polypropylene film and cured at 

room temperature, ~22 ºC, with 45% relative humidity for 24h. Afterward, the specimens 

were demolded, and wrapped again using a polypropylene film, and kept at room 

temperature until testing.  

 

3.3  Test methods 

3.3.1 The compressive strength and three-point flexural strength test  

The compressive strength and three-point flexural strength tests of the 30 x 30 x 150 mm3 

samples were used to evaluate the mechanical strength of various geopolymer mortars. 

Three specimens for each mixture were prepared for the flexural test, and then the 

compressive strength was measured on both residual pieces obtained from flexural strength 

which is assumed according to EN 196-1 standard showing Figure 3.13 and were tested on 

universal testing machine LabTest II shown in Figure 3.14. The compressive strength and 

flexural strength can be calculated as per the Equation (3) and (4), respectively.  

                                𝜎𝑐 =  
𝐹

𝐴
                                    (3) 

where σc is the compressive strength in MPa; F is the applied load at the fracture point in 

N; A is the area of the tested sample in mm2. 

                               𝜎𝑓 =  
3𝐹𝑙

2𝑏𝑑2                                 (4) 

where σf is the flexural strength in MPa; F is the applied load at the fracture point in N; l is 

the length of the support (outer) span in mm; b is the width of the tested sample in mm; d 

is the thickness of the tested sample in mm.  
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Figure 3.13 Three-point flexural test and uniaxial compressive test. 

 

 

Figure 3.14 Universal testing machine P 100-LabTest II, TUL-KMT. 
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3.3.2 Four-point bending test 

The four-point bending test method was used to evaluate the flexural performance of textile 

reinforced in geopolymer composites. The detailed description about the specimen 

arrangement and testing process was shown in Figure 3.15. The testing machine with a load 

cell capacity of 100 kN (FP Lab Test II, from LABORTECH s.r.o Opava, Czech Republic), 

located at the Technical University of Liberec Laboratory, with the applied load under 

displacement control at a loading rate of 4 mm/min, was used (see in Figure 3.14). The 

four-point flexural strength in the special case where the outer support span is equal to three 

times the inner support span can be calculated as per the Equation (5): 

                                    𝜎𝑓  =  
𝐹𝑙

𝑏ℎ2                                           (5) 

where σf is the four-point flexural strength in MPa; F is the load at a given point on the 

load–displacement curve in N; b is the width of the tested sample in mm; h is the thickness 

of the sample in mm; and l is the support span in mm. 

 

 

 

Figure 3.15 Four-point bending test for the 15 x 100 x 400 mm3 specimens. 

 

3.3.3 Charpy impact test 

The Charpy impact test was carried out on the Charpy testing machine designed according 

to ČSN EN 10045 in order to evaluate the impact mechanical strength of textile reinforced 

geopolymer mortar. A Charpy impact tester with a 18kg pendulum hammer was employed 

to determine the impact strength (Figure 3.16). The specimen with size of approximately 

15 x 50 x 120 mm3 was used in this test. The impact strength can be calculated as per 

Equation (6): 

                             𝐾𝑈 =  
𝐾

𝑆
                                                     (6) 
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where σi is impact strength in MPa; E is impact energy required to break the tested sample 

in Joule (J); A is the cross-section area of the tested sample in m2. 

 

 

  

Figure 3.16 Left showing schematic of Charpy impact test: (a) schematic of Charpy 

machine, (b) sample shape and impact direction; Right showing Charpy tester, TUL-KMT 
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4. MECHANICAL STRENGTH OF THE GEOPOLYMER 

MORTAR 

 

The main goal of doing this part was to find out the geomortar sample with the strongest 

mechanical strength performance, which will be used as a matrix in production of the 

geopolymer composite reinforced with the textile reinforcements in further work. Besides, 

it also assessed the mechanical strength of geomortar containing various dosages of 

chopped basalt fiber. Geomortar is made by combining geopolymer paste, rough silica 

sand, and the different fillers such as micro-milled sand, silica fume and chopped basalt 

fiber (BF). The optimization process was conducted based on varying the mixing ratios 

between these three fillers.  

4.1  The effect of the different fillers on mechanical properties of the 

geomortar  

The compressive strength test and three-point bending strength test were the methods of 

the choice for evaluation of the mechanical strength of the geomortar. Three samples with 

dimensions of 30 × 30 × 150 mm3 for each recipe were used for the flexural test, and then 

the compressive strength was measured on both residual pieces obtained from flexural 

strength, which described clearly in section 3.3. 

Table 4.1 shows the effect of incorporating the fillers on mechanical strength of geomortar. 

After preliminary trials, the five different recipes of geomortar were selected to clarify the 

difference in strength between them (see in Table 4.1). The plain geomortar (GM mix) that 

contains geopolymer paste and rough silica sand shows the weakest mechanical strength 

with a value of 9.47 MPa in flexure and 60.05 MPa in compression at the age of 28 days. 

It was observed that the addition of micro-milled sand to geomortar (GM-0.2S mix) leads 

to a decent increase in strength, on the other way, this causes flowability of fresh geomortar 

to be significantly reduced, which was confirmed by the author’s naked eye during mixing. 

When considering the 28-day mechanical strength, the GM-0.2S mix increases flexural 

strength by 11.40 % and compressive strength by 13.54 % respectively, compared to plain 

geomortar. However, when silica fume filler continues to be added to this geomortar (GM-

0.2S0.1F mix), the flowability of fresh geomortar, as well as the mechanical strength of 

hardened geomortar, has increased significantly. The increase in mechanical strength of 
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geomortar incorporating silica fume, on the one hand, may be related to denser 

microstructure stems from the packing effect of the fine spherical particles of silica fume 

behave as micro-aggregate filler, which disperses in geopolymer paste and fills the inner 

space inside the microstructure of geopaste [30]. On the other hand, silica fume, as a highly 

reactive pozzolan, offers the active SiO2 which helps to form siloxo bridges during 

geopolymerization leading to improvement in the mechanical strength of geomortar [30], 

[33]. When considering the 28-day mechanical strength, the GM-0.2S0.1F mix increases 

flexural strength by 23.39 % and compressive strength by 32.49 % respectively, compared 

to plain geomortar. For the GM-0.2S5B mix, this geomortar that replaced silica fume by 

chopped basalt fibers also showed significant improvement in strength, compared to the 

plain geomortar. Also, this geomortar showed a slight rise in bending strength and this 

increased to 8.4 % at the age of 28 days, compared to geomortar with silica fume addition 

(GM-0.2S0.1F mix), despite its compressive strength not being higher. This is due to the 

fact that the bridge effect of the BF is more useful in bending strength. For the GM-

0.1S0.1F5B mix that contains all three fillers simultaneously, the geomortar strength 

continues to increase dramatically. When considering the 28-day mechanical strength, the 

average mechanical strength of the GM-0.2S0.1F5B mix increases flexural strength by 

55.44 % and compressive strength by 61.32 % respectively, compared to plain geomortar. 

So, we can be concluded that geomortar containing different fillers with reasonable 

proportion can achieve relatively high mechanical strength. The mechanical strength results 

showed in Table 4.2 – Table 4.4 will be reported on how the sample strength will change 

when considering the change in mixing ratio by varied content of each type of the fillers.  

Table 4.1 Mechanical strength of geopolymer mortar containing various types of fillers. 

No. sample 
Flexural Strength [MPa] Compressive Strength [MPa] 

7 days 28 days 7 days 28 days 

GM 8.79 ± 0.61 9.47 ± 0.88 52.24 ± 3.40 60.05 ± 2.64 

GM-0.2S 9.76 ± 0.45 10.55 ± 0.25 58.63 ± 2.99 68.18 ± 1.76 

GM-0.2S0.1F 9.46 ± 0.35 11.78 ± 0.48 60.84 ± 2.34 79.56 ± 3.32 

GM-0.2S5B 10.64 ± 0.43 12.77 ± 0.51 69.63 ± 3.81 78.52 ± 2.94 

GM-0.2S0.1F5B 11.80 ± 0.67 14.72 ± 1.17 76.62 ± 5.74 98.87 ± 1.59 

 

The effect on the mechanical strength of the geomortar aged 7 days and 28 days with varied 

micro-milled sand additions is shown in Table 4.2. These geomortar samples contain a 
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constant content of the BF and silica fume while varying the content of micro-milled sand 

from 0.1 to 0.4 by mass ratio regarding to geopolymer cement (see in Table 3.2). When the 

mass ratio increases from 0.1 to 0.2, the sample strength at the age of 28 days increases to 

9.77 % in flexure and to 15.82 % in compression, however when mass ratio goes up from 

0.2 to 0.3, the rate of strength development drops to 5.23 % in flexure and 6.36 % in 

compression; and this rate continues to drop to 17.2 % in flexure and 11.07 % in 

compression when mass ratio rises up from 0.3 to 0.4. It was observed that the highest 

mechanical strength found in GM-0.2S0.1F5B sample with mass ratio of 0.2. The decline 

in strength with increasing content of micro-milled sand is related to the increasing water 

demand with increasing filler content which resulted in a loss of mortar packing. Table 4.3 

reported the results of the mechanical strength of the geomortar with varied silica fume 

additions. The results showed that no significant change in the mechanical strength of 

geomortar when the mass ratio of silica fume to geopolymer cement ranges from 0.05 to 

0.2. However, it was found that the mass ratio of 0.1 (GM-0.2S0.1F5B mix) was an 

optimum level of silica fume added in geomortar; later on, the silica fume content increases 

leading to the decrease in sample strength. As previously reported, an overdose of silica 

fume has shown inauspicious effects on strength properties of geopolymer and also hinders 

the geopolymerization process. This is due to the increase of SiO2 content present in the 

silica fume results in an increase of Si/Al ratio in the combination of binder [30].  

Table 4.2 Mechanical strength of the geomortar with varied micro-milled sand additions. 

No. sample 
Flexural Strength [MPa] Compressive Strength [MPa] 

7 days 28 days 7 days 28 days 

GM-0.1S0.1F5B 10.75 ± 0.89 13.41 ± 1.09 58.36 ± 5.40 83.64 ± 2.51 

GM-0.2S0.1F5B 11.80 ± 0.67 14.72 ± 1.17 76.62 ± 5.74 98.87 ± 1.59 

GM-0.3S0.1F5B 9.27 ± 0.62 13.95 ± 0.53 69.41 ± 4.30 90.71 ± 2.45 

GM-0.4S0.1F5B 8.29 ± 0.59 11.55 ± 1.09 55.26 ± 5.10 80.67 ± 3.45 

 

Table 4.3 Mechanical strength of the geomortar with varied silica fume additions. 

No. sample 
Flexural Strength [MPa] Compressive Strength [MPa] 

7 days 28 days 7 days 28 days 

GM-0.2S0F5B 10.64 ± 0.43 12.77 ± 0.37 69.63 ± 3.81 78.52 ± 2.94 

GM-0.2S0.05F5B 10.59 ± 0.53 13.69 ± 0.50 73.86 ± 3.70 94.07 ± 2.46 

GM-0.2S0.1F5B 11.80 ± 0.67 14.72 ± 1.17 76.62 ± 5.74 98.87 ± 1.59 

GM-0.2S0.2F5B 12.89 ± 0.39 13.69 ± 0.39 75.84 ± 3.78 93.79 ± 6.72 
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Table 4.4 represented the mechanical strength of the geomortar containing the varied 

percentage of the BF at high dose level. The 6 mm BF added to geomortar with three 

various dosages of 2.5 %, 5.0 % and 7.5 % by mass percentage of geopaste was used while 

the content of the remaining fillers was constant. The results showed that there is a 

significant difference in both bending strength and compressive strength between 

geomortars without the BF and those with the BF adding. When the BF content goes up 

from 0.0 % to 2.5 %, the sample strength increases to 17.49 % in flexure and 23.27 % in 

compression. When the BF content continues to increase from 2.5 % to 5.0 %, at the same 

time the sample tends to increase slightly in both compressive strength and bending 

strength. When the BF content continues to rise to 7.5 %, results showed that there is no 

significant difference in mechanical strength between 5% BF samples and 7.5% BF sample. 

It must be noted that at the sample preparation point of view, the more BF content the 

sample contains, the more time it will take to produce the samples. Also, the flowability of 

fresh geomortar, despite a large amount of the BF added to geomortar is still quite good.  

 

Table 4.5 shows the geomortar containing varied dosages of the BF at low dose level. The 

low dose is applied to all three kinds of the BF with an increment of 0.25 % and up to 0.75 

%, except for the 6 mm BF up to 1 %. As a general comment, using the BF at low dose 

level can clearly improve the flexural strength of geomortar, but there is no clear effect on 

compressive strength, compared to using the BF at high dose level. In some cases, the 

addition of the BF causes an increase in compressive strength, in other cases this induces a 

decrease in strength. All the samples also show a poor flowability of fresh mixture and this 

property is worse with increasing BF content accompanied by fiber clumping in mixture 

especially for geomortar using 12 mm BF and 24 mm BF. This result is consistent with 

findings from Santarelli et al. [85] that by increasing fiber content, a degradation in 

compressive strength is observed. This is mainly attributed to difficulties related to the 

dispersion of the fibers, which resulted in the marked occurrence of clusters of fibers. 

Another issue to be considered is linked to the increasing water demand with increasing 

fiber content which resulted in a loss of mortar packing [85]. The influence of the chopped 

basalt fiber on the microstructure of geopolymer mortar is clearly shown in Figure 4.1. The 

fibers are evenly distributed in all volumes of the material. It is clearly visible that they are 

oriented in different directions. The material is probably anisotropic, and the fiber 

distribution was regular. The fiber distribution in the matrix influences the properties of the 
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specific composite. It can be seen that the BF was randomly distributed in matrix and bridge 

over the micro-cracks resulting in enhancement of mechanical strength. In addition, there 

are matrix particles attached to the fibers, which indicates a sufficient level of adhesion 

between the fiber and matrix. 

Table 4.4 Mechanical strength of the geomortar with varied BF additions. 

No. sample 
 Flexural Strength [MPa] Compressive Strength [MPa] 

 7 days 28 days 7 days 28 days 

GM-0.2S0.1F0.0B 

H
ig

h
 d

o
se

 

9.46 ± 0.35 11.78 ± 0.48 60.84 ± 2.34 79.56 ± 3.32 

GM-0.2S0.1F2.5B 11.20 ± 0.49 13.84 ± 0.55 72.08 ± 3.75 92.37 ± 2.27 

GM-0.2S0.1F5.0B 11.80 ± 0.67 14.72 ± 1.17 78.85 ± 5.74 98.87 ± 1.59 

GM-0.2S0.1F7.5B 12.77 ± 0.59 14.92 ± 1.74 78.18 ± 4.88 98.35 ± 3.39 

 

 

Table 4.5 Mechanical strength of the geomortar with respect to different fiber lengths, 

inclusion dosage at the age of 28 days. 

Fibre length 

[mm] 

 
No. sample 

Flexural Strength 

[MPa] 

Compressive Strength 

[MPa] 

6 mm BF 

L
o

w
 d

o
se

 

GM-0.2S0.1F0.25B 11.96 ± 0.27 80.05 ± 5.67 

GM-0.2S0.1F0.50B 13.43 ± 0.85 77.01 ± 3.13 

GM-0.2S0.1F0.75B 12.28 ± 0.33 76.56 ± 4.68 

GM-0.2S0.1F1.00B 13.33 ± 0.56 75.24 ± 4.01 

12 mm BF 

GM-0.2S0.1F0.25B 12.96 ± 0.50 77.18 ± 1.27 

GM-0.2S0.1F0.50B 11.85 ± 0.13 83.37 ± 1.31 

GM-0.2S0.1F0.75B 12.65 ± 0.15 83.77 ± 1.06 

24 mm BF 

GM-0.2S0.1F0.25B 12.25 ± 0.78 81.82 ± 1.08 

GM-0.2S0.1F0.50B 13.05 ± 0.65 82.47 ± 3.10 

GM-0.2S0.1F0.75B 14.10 ± 0.77 78.51 ± 2.25 
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Figure 4.1 SEM microstructure of the 28-day geomortar with the 5% BF additions. 

 

4.2  The development of the mechanical strength of the geomortar 

Figure 4.2 – Figure 4.3 provide the information about the development of the mechanical 

strength of geomortar at the various periods of aging time. Figure 4.2 describes the strength 

development of the geomortar without the BF addition, whereas the geo-mortar filled by 

the 5% BF is shown in Figure 4.3. The 28-day specimens were named as a reference sample. 

A number of these specimens were then kept at the lab room (~26 °C, with 45% relative 

humidity) in order to observe the strength development at the further ages, such as 60 days, 

90 days, 150 days, 180 days and 365 days. From Figure 4.2, after 28 days of curing age it 

can be observed that both bending strength and compressive strength show a constant trend 

with increasing aging time. This behavior is believed that the geomortar strength without 

the BF addition is almost stable over time. In the contrast, the strength development of 

geomortar with the BF addition shown in Figure 4.3 is strongly dependent on this fiber.  

While the samples show a slight decrease in compressive strength, the increasing aging 

time affects samples to have a more pronounced decrease in their flexural strength. This 

phenomenon is believed to be due to the degradation of basalt fiber in alkaline environment 

[63, 64, 66]. When degradation of basalt fiber occurs, bond strength at the matrix/fiber 

interface will decrease; as a result, it can lead to poor bending resistance of the sample due 

to the reduction of bridge effect of the chopped fiber in the matrix. However, the result also 
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showed that degradation of basalt fiber appears to occur only in a certain period of time up 

to 150 days, beyond this time the sample strength remains almost unchanged. When 

compared to reference 28-day samples, the average mechanical strength of the samples with 

the BF additions with the increasing aging time of 60 days, 90 days, 150 days, 180 days, 

360 days decreases the compressive strength by 4.72%, 5.74%, 7.90%, 8.35%, 6.38% 

respectively, whereas decreases the flexural strength by 11.07%, 11.41%, 22.42%, 22.48%, 

21.54%, respectively.  

 

 

Figure 4.2 The development of mechanical strength of geopolymer mortar without chopped 

basalt fiber addition (GM-0.2S0.1F0B mix) at the different periods of time. 
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Figure 4.3 The development of mechanical strength of geopolymer mortar with chopped 

basalt fiber addition (GM-0.2S0.1F5B mix) at different periods of time. 
 

4.3  Summary 

It can be seen that geomortar containing different fillers with reasonable proportion can 

achieve relatively high mechanical strength. The best mix causes samples to increase 

flexural strength approximately by 55.44 % and compressive strength by 61.32 % 

respectively, compared to plain geomortar. 

The fact that the BF addition at low dose level to geomortar does not indicate a marked 

increase in mechanical strength compared to that at high dose level.  

The reported data on the strength development of the geomortar revealed that the geomortar 

without the BF additions almost remains unchanged strength over time up to 365 days. In 

contrast, the mechanical strength of the geomortar with the BF addition has been reduced. 

However, a decrease of the sample strength lasts only up to 150 days, beyond this time the 

mechanical strength is almost unchanged.   

Finally the GM-0.2S mix and GM-0.2S0.1F along various dosages of the BF will be used 

as a mortar matrix in production of textile reinforced geopolymer composite in the 

following parts. 
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5. FLEXURAL PERFORMANCE OF VARIOUS BASALT FIBER 

MESHES REINFORCED GEOPOLYMER MORTAR 

 

This part investigates the effect of basalt fiber meshes on the flexural performance of textile 

geopolymer composites. Three types of basalt fiber meshes as described in the previous 

materials section are used as reinforcement materials in production of textile reinforced 

geomortar composites. The GM-0.2S0.1F5B mix is selected as geomortar matrix. The 

flexural behaviour of the BRG specimens was analyzed based on a different number of 

textile layers and various types of basalt fiber meshes.  

5.1  The flexural behavior of the basalt fiber mesh reinforced geomortar 

(BRG specimens). 

The BRG specimens made of geomortar reinforced with one to four layers of each type of 

basalt mesh were tested at the age of about 40 days after casting by the four-point bending 

test method. Figure 5.1 represents the typical curves of flexural load-displacement 

behaviour of textile reinforced concrete composite under the four-point flexural test, 

whereas the response of the flexural load-displacement curves of all the tested BRG 

specimens was described in Figure 5.2 – Figure 5.5. As demonstrated in Figure 5.1, there 

are two distinctly different types of the load-displacement response of the specimens under 

flexure which consist of displacement-softening behavior and displacement-hardening 

behavior. In the field of fiber reinforced concrete, the materials refer to displacement-

softening behavior (Figure 5.1a); when the first crack initiates, the specimen is then 

destroyed due to localization of this crack. As further load continues to increase, the 

presence of the fiber is unable to produce the post-crack strength higher than the first-crack 

strength, however, it helps to restrict sudden brittle failure. Depending on the number of 

fiber yarns, fiber characteristics, and fiber alignment, the figure of the load-displacement 

curves softens down differently. In this case, BRG 10 × 14-1 L, BRG 22 × 22-1 L, BRG 22 

× 22-2 L and BRG 36 × 36-1-4 L produced a displacement-softening behavior with low 

load-bearing capacity, see in Figure 5.2 – Figure 5.5. The remaining reinforced specimens, 

in contrast, show a displacement-hardening behavior, see in Figure 5.1b. This kind of 

behavior is accompanied by multiple cracks and further load-bearing capacity after the 

formation of the first crack. In this behavior, the first crack stress is maintained, and the 

load is transferred to the other weak parts of the matrix through the fiber yarns. So the first 
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crack does not localize to the increasing applied load. Instead, new cracks will be developed 

somewhere else in the matrix. Consequently, the increase in applied load results in 

formation of multi-cracks and higher load-bearing capacity. For these specimens, load-

displacement curves were illustrated in three obvious parts corresponding to the stages in 

the bending test, which demonstrated clearly in the introduction part. The first stage is the 

elastic-linear pre-cracking stage which is established by the combination of geopolymer 

matrix and reinforcement through a linear increase in load until the first crack appears. The 

second stage is a multiple-cracking phase, as proven fluctuation of the curve when the load 

continues to apply. The number of cracks in each specimen almost results in this stage and 

the profile of this phase strongly relates to the number of textile layers, the stiffness of 

matrix, the organization of textiles in the matrix, and the bond strength at the interface 

between fiber yarn and matrix. The third stage is the post-cracking or crack-widening 

phase. It is indicated by the expansion of the cracks; the present cracks continue to become 

broader until the specimens break down by rupturing or slipping of the fiber yarns of the 

textile. 

 

Figure 5.1 Flexural load – displacement behavior of textile reinforced concrete composite 

under flexural test: (a) displacement-softening behavior; (b) displacement-hardening 

behavior. 



Flexural Performance of Various Basalt Fiber Meshes Reinforced Geopolymer Mortar 

55 

   

 

Figure 5.2 Flexural load-displacement curves of the B-10x14 composites reinforced with 

the basalt textile having a net size of 10 x 14 mm. 

 

 

Figure 5.3 Flexural load-displacement curves of the B-22x22 composites reinforced with 

the basalt textile having a net size of 22 x 22 mm. 
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Figure 5.4 Flexural load-displacement curves of the B-36x36 composites reinforced with 

the basalt textile having a net size of 36 x 36 mm. 

 

 

Figure 5.5 The comparison of flexural load-displacement curves between the BRG 

specimens reinforced with one textile layer and geomortar. 

 

The effect of different layers of basalt textile having a small net size on the flexural 

performance of the BRG specimens is described over the flexural load-displacement curves 
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in Figure 5.2. With the increasing reinforcement ratio in the composite, its bearing load 

capacity obviously increases. The figure of the curves changed positively when the textile 

layer increased from one layer to four layers. While specimens reinforced with one textile 

layer broke down due to localization of the first crack, the increasing number of textile 

layers affect specimens having the failure manner into a more brittle fracture, i.e., a sudden 

loss of bearing load capacity after reaching the maximum load. Moreover, the dropping 

length of the second stage is also precisely related to the reinforcement ratio, and the figure 

of this stage of the curve is significantly different. The higher the number of the 

reinforcement ratio, the less fluctuation of the curve. This leads to a higher slope and 

flexural stiffness of specimens in this second stage. A similar conclusion is also represented 

for specimens reinforced with basalt textile having a middle net size, as seen in Figure 5.3. 

On the other hand, the specimens are required to be reinforced with a minimum of three 

layers in order to achieve a clear displacement-hardening behavior. Figure 5.4 exhibits the 

flexural load-displacement curves of specimens which are reinforced with basalt textile of 

a big net size. Unexpectedly, even when using reinforcing four layers; the specimens could 

not produce a displacement-hardening behavior. At this point, we can be concluded that the 

number of fiber yarns per each textile layer plays a key role in the composite behavior of 

the specimens. For instance, with the same reinforcement ratio in the specimen, B-22x22 

composite with reinforcing three layers showed a displacement-hardening behavior, 

whereas B-36x36 composite with reinforcing four layers was unable to do so. Figure 5.5 

gives a clear view of the effect of the net size on the response of flexural load-displacement 

curves of the BRG specimens, in which specimens reinforced with one textile layer are 

taken as a representation. Although these specimens show a displacement-softening 

behavior, the specimens reinforced with basalt textile having higher reinforcement ratio 

restrict the longer failure as well after the end of the first stage.  

 

5.2  The mechanical properties of the BRG specimens 

Table 5.1 detailed the results of the mechanical properties of the tested BRG specimens 

obtained from the four-point bending test, such as first-crack load, first-crack stress, 

ultimate-crack load, ultimate-crack stress, ultimate displacement, the number of cracks, 

flexural toughness and reinforcement ratio, whereas Figure 5.6 – Figure 5.10 show a few 

graphs representing the mechanical properties of these BRG specimens. 
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It should be noted that at this kind of composite material, mechanical properties extremely 

depend on both the arrangement of textile layer in matrix and direction of the applied load. 

For instance, the specimens reinforced with one layer do not always gain a stable value of 

flexural strength assuming that this textile layer is changed the position of the arrangement, 

and it would bring higher bearing load capacity in case that textile layer is positioned closer 

to tension edge with respect to ensuring the anchoring capability of textile [86]. 

Subsequently, the first-crack stress depends in part on the process of specimen production. 

Due to the insertion of textile layer in specimens, the fresh mixture should be carefully cast 

into the mold in order to gain a good penetration of matrix between textile layers. As shown 

in  Figure 5.6, the green dashed line shows the significant variation of first-crack stress 

between the tested specimens. The B-22x22 composites with 2 – 3 reinforcing layers show 

the worst values in strength, for this reason it can be explained by the fact that those 

specimens were badly produced which resulted in the formation of many cavities 

surrounding the fiber yarn over the remaining specimens, as shown in Figure 5.6. The 

specimens reinforced with a greater number of reinforcement ratios, on the other hand, 

obviously lead to higher ultimate-crack stress, expect for those reinforced with basalt textile 

of a big net size, as shown in Figure 5.7. For basalt textile of a small net size, the specimens 

reinforced with two, three, four layers increased in ultimate-crack stress by 61.40% MPa, 

110.75% MPa, 172.99% MPa, respectively, compared to one-layer reinforced specimens. 

For basalt textile of a middle net size, the specimens reinforced with three to four layers 

increased in ultimate-crack stress by 23.11% MPa, 72.09% MPa, compared to one-layer 

reinforced specimens. For the basalt textile of a big net size, although four textile layers 

were applied, the specimens were still unable to obtain the ultimate-crack stress over first-

crack stress. This can be explained from three reasons: i) due to bigger net size makes the 

insufficient distribution of fiber yarns in the specimens, i)) low tensile strength of fiber yarn 

reflected the composite behavior (see in Table 1), iii) insertion of basalt textile in 

geopolymer mortar during aging has caused a partial reduction in its mechanical strength 

due to alkaline environment [22, 37]. Figure 5.8 shows the correlation between bending 

strength and reinforcement ratio of all the BRG specimens. Assuming that the fiber yarns 

of basalt textiles have the same mechanical properties, the use of the reinforcement ratio in 

the range of 0.17 to 0.7 is not able to improve the bending strength of the BRG specimens. 

However, the bending strength has changed markedly when the reinforcement ratio is 

above 0.7. 
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 Table 5.1 The results of flexural behavior of the BRG specimens. 

Value 

Samp. 

F1  

[kN] 

F2  

[kN] 

Rmo1  

[MPa] 

Rmo2  

[MPa] 

y 

[mm] 

Toughness 

[kN.mm] 

Cr. 

[-] 

Rr. 

[%] 

B
-1

0
x
1

4
 

co
m

p
o

si
te

 

1L 0.80 ± 0.05 0.80 ± 0.05 10.70 ± 0.07 10.70 ± 0.07 0.74 ± 0.04 0.30 ± 0.02 2 0.47 

2L 0.84 ± 0.01 1.29 ± 0.10 11.17 ± 0.07 17.27 ± 1.20 8.02 ± 0.07 7.18 ± 0.40 6 0.93 

3L 0.79 ± 0.07 1.69 ± 0.05 10.56 ± 0.90 22.54 ± 0.72 8.15 ± 0.14 8.37 ± 0.67 9 1.40 

4L 0.82 ± 0.10 2.19 ± 0.09 10.93±1.32 29.21 ± 1.22 8.30 ± 0.97 11.74±0.13 13 1.86 

B
-2

2
x
2

2
 

co
m

p
o

si
te

 

1L 0.74 ± 0.01 0.74 ± 0.01 9.82 ± 0.15 9.82 ± 0.15 0.67 ± 0.15 0.23 ± 0.04 2 0.23 

2L 0.65 ± 0.07 0.69 ± 0.04 8.62 ± 0.93 8.65 ± 0.56 1.06 ± 0.41 0.40 ± 0.14 2 0.47 

3L 0.57 ± 0.03 0.91 ± 0.04 7.53 ± 0.35 12.09 ± 0.52 6.43 ± 0.55 4.30 ± 0.41 5 0.70 

4L 0.59 ± 0.04 1.27 ± 0.06 7.86 ± 0.53 16.89 ± 0.79 7.45 ± 0.30 6.49 ± 0.48 8 0.93 

B
-3

6
x
3

6
 

co
m

p
o

si
te

 

1L 0.75 ± 0.10 0.75 ± 0.10 9.98 ± 1.43 9.98 ± 1.44 0.84 ± 0.18 0.27 ± 0.02 2 0.17 

2L 0.67 ± 0.07 0.67 ± 0.07 8.88 ± 0.98 8.88 ± 0.98 0.73 ± 0.02 0.24 ± 0.03 2 0.35 

3L 0.74 ± 0.10 0.74 ± 0.10 9.88 ± 1.35 9.88 ± 0.35 0.70 ± 0.06 0.29 ± 0.08 2 0.52 

4L 0.72 ± 0.01 0.72 ± 0.01 9.57 ± 0.10 9.57 ± 0.10 0.69 ± 0.08 0.27 ± 0.04 2 0.70 

Note: The symbols such as F1, F2, Rmo1, Rmo2, y, Cr., Rr. stand for first-crack bending load, ultimate bending load, first-crack bending 

strength, ultimate bending strength, ultimate displacement, number of cracks and reinforcement ratio, respectively.  

 

Figure 5.6 Average value of first-crack bending strength of basalt fiber meshes reinforced 

geomortar. 
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Figure 5.7 Average value of ultimate bending strength of basalt fiber meshes reinforced 

geomortar. 

 

 

Figure 5.8 Correlation between bending strength and reinforcement ratio of the BRG 

specimens. 
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Figure 5.9 shows the average value of ultimate displacement of basalt fiber meshes 

reinforced geomortar. It can be observed that the large difference in displacement between 

samples led to a significant difference in energy absorption capacity between samples (see 

in Figure 5.10). The flexural toughness, so-called absorption energy capacity, is defined as 

the resistance of a material to failure or crack propagation. Toughness implies the amount 

of energy the specimen is able to absorb under loading up to a specified displacement, 

which clearly described in Standard ASTM/C 1609 [87]. In this work, it is measured as the 

area under the respective load-displacement curves up to peak load (ultimate load). Material 

with large energy absorption capacity obviously has higher energy to maintain crack 

propagation. Flexural toughness of the tested specimens is measured as area under 

respective load-displacement curves up to the peak load. According to the graphical 

representation of the toughness values in Figure 5.10, it was found that using basalt mesh 

of big net size results in very poor resistance of the BRG specimens to failure and their 

toughness value is almost the same with all BRG specimens. A similar conclusion is also 

represented for the BRG-10x14-1L, BRG-22x22-2L and BRG-22x22-2L. By contrast, the 

toughness value of the remaining BRG specimens improved obviously with the increasing 

number of textile layers and type of net size. For example, the BRG 10x14-2L has 

toughness value in 7.18 kN.mm, this value increased to 11.55% (8.36 kN.mm) with BRG 

10x14-3L and increased to 63.61% (11.74 kN.mm) with BRG 10x14-4L. On the other hand, 

BRG 10x14-4L has toughness value in 1.17 kN.mm, this value decreased to 44.67% (6.49 

kN.mm) with BRG 22x22-4L and decreased to 97.71% (0.27 kN.mm) with BRG 36x36-

4L. 

Figure 5.11 showed the strength development of the BRG specimens at different periods of 

time. In general, with increasing time the bending strength tends to decrease, but the 

difference in strength between the CRG specimens at the time after a half-year is not 

negligible. The reduction in strength of the BRG specimens is attributed to the presence of 

basalt fiber. As shown in Figure 5.11, compared to the 28-day samples the bending strength 

of the 180-day samples decreased by 21.46%, but the difference in strength between the 

180-day samples and the 180-day samples was not significant. This result is consistent with 

the results of the mechanical strength development of geomortar samples shown in part 4.  
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Figure 5.9 Average value of ultimate displacement of basalt fiber meshes reinforced 

geopolymer mortar. 

 

 

Figure 5.10 Average value of flexural toughness of basalt fiber meshes reinforced 

geopolymer mortar. 
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Figure 5.11 Development of flexural strength of the BRG specimens at various periods of 

time. 

 

5.3  Failure mode of the BRG specimens 

The imprint of fiber yarn embedded in geomortar matrix was clearly shown in Figure 5.12. 

It can be observed that good specimen production leads to better penetration of fresh mortar 

between textile layers resulting in a denser matrix structure with less cavities at the interface 

between mortar matrix and fiber yarn (Figure 5.12a). Additionally, the presence of 

filaments separated from fiber yarn indicates that there is a good bonding strength at the 

interface between fiber yarn and mortar matrix. In contrast, the image shown in Figure 

5.12b points out a different view of the mortar matrix – fiber interface, which shows many 

cavities. 

Figure 5.13 shows the failure modes of the BRG specimens under the four-point bending 

test. In general, all of the specimens had the same failure mode by the flexural failure due 

to the rupture of basalt fiber yarn in matrix, and no debonding of the fiber yarn or a gradual 

peeling process of mortar matrix happened during the testing. The difference can be seen 

clearly in the number of cracks and crack spacing between the reinforced specimens. With 

the increasing number of reinforcing layers, the BRG specimens displayed more cracks and 

narrow crack spacing, for this reason it is because the amount of energy that the specimens 
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absorb will be greater and accumulates faster during the multiple cracking stage. Moreover, 

the number of cracks also depends significantly on the number of fiber yarns per each layer 

(Figure 5.13). The failure with single crack results in the specimens BRG 10x14-1L, BRG 

22x22-1L, BRG 22x22-2L, and all of the specimens reinforced with basalt textile of big net 

size. It can be said that using basalt textile of a big net size (shown in Figure 5.13c), even 

when using four strengthening layers also makes it impossible to help the BRG specimens 

achieving a multiple cracking behavior. The failure of these specimens is characterized by 

the widening of the first crack. 

 

Figure 5.12 Geopolymer matrix/fiber yarn interface: (a) B-10x14 composite with 

reinforcing four layers; (b) B-22x22 composite with reinforcing three layers (500x 

magnification). 
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Figure 5.13 Photographs of the failure modes of the BRG specimens: (a) basalt textile of a 

small net size of 10 x 14 mm2; (b) basalt textile of a middle net size of 22 x 22 mm2; (c) 

basalt textile of a big net size of 36 x 36 mm2; (d) rupture failure of the tested BRG 

specimen. 
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5.4  Summary 

 

• The specimen production phase also plays an important role in the first-crack strength 

of these composite. The subjectivity in the specimen production can lead to the BRG 

specimens having many cavities at the interface between mortar matrix and fiber yarn 

which result in a decrease of the mechanical strength of the BRG specimens. 

• With the increasing number of textile layers, the mechanical properties of the BRG 

specimens were improved significantly, especially with the BRG specimens reinforced 

with basalt mesh having a small net size.  

• There is no impact on the mechanical strength of the BRG reinforced with basalt mesh 

of big net size, failure of these BRG specimens is due to localization of the first-crack. 

It can be concluded that using basalt mesh of big net size as reinforcement is not helpful. 

So, the author suggests that only basalt textile of small net size should be used to 

reinforce in specimens due to reinforcement effectiveness; or in case of using basalt 

mesh of big net size, fiber yarn should be resized to its size by the way that such fiber 

yarn should be made of more filaments to improve its low tensile strength. 

• All the BRG specimens have the same failure mode by flexural failure due to rupture 

of fiber yarn in mortar matrix and no debonding of fiber yarn or a gradual peeling 

process of mortar matrix happed during testing.  

• When the BRG specimens were exposed at longer ageing times (60, 90, 150, 180, 365 

days), degradation of the mechanical strength with the increasing ageing time was 

revealed. The obvious loss of durability is after 150 days of ageing time. This reduction 

happed in both the mortar specimens and the BRG specimens, so it can be attributed to 

the presence of basalt fiber in geopolymer.  
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6. FLEXURAL PERFORMANCE OF VARIOUS CARBON FIBER 

MESHES REINFORCED GEOPOLYMER MORTAR. 

 

This part investigates the effect of carbon fiber meshes on the flexural performance of 

textile reinforced geopolymer mortar. Three types of carbon mesh described in the previous 

part are used as a reinforcement in geopolymer mortar, and the flexural performance of 

textile geopolymer mortar composite was analyzed based on several key factors as follows: 

three different types of textile reinforcement inclusion various reinforcement ratio, 

geomortar type and arrangement of the position of textile mesh layer in the specimens. 

 

6.1  The effect of textile type and reinforcement ratio on flexural 

performance  

6.1.1 The flexural behavior of the CRG specimens 

The influence of the textile type and the reinforcement ratio on the flexural behavior of the 

CRG composites is shown through means of flexural load-displacement curves in Figure 

6.1–Figure 6.3. In general, geopolymer composite reinforced with carbon fiber meshes 

produced a displacement-hardening behavior and the load-displacement response of these 

specimens varies differently which depends on mechanical properties of the fiber yarn and 

reinforcement ratio.  

The effect of the different layers of the C-10x15 textile on the flexural performance of the 

composites over flexural load-displacement curves is described in Figure 6.1. For one-layer 

reinforced specimens, the curve response with three different stages was clear. After 

reaching maximum load-bearing capacity, the specimens were broken down smoothly 

characterized by a gradual decrease of the curve in load and reduced to roughly 0.6 times 

of their maximum load capacity. Then theses composites can still maintain load capacity 

with increasing displacement after being. This phenomenon is attributed to the gradual pull 

out of the BF in a matrix, which allowed for the ductile failure of the composite. When 

using two to three reinforcing layers, the stiffness of the CRG specimens improved 

significantly as seen through the absence of stage 2 and higher slope of stage 3. Using a 

high reinforcement ratio is one of the factors causing the absence of stage 2 which was 

mentioned in previous literature [88]. The ending of stage 3 is marked by a sudden drop in 
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load almost to zero along with loud noise. This was found that the C-10x15 composites 

with higher reinforcement ratio lead to more catastrophic brittle failure, this means that the 

geomortar cover thickness between textile layers is not thick enough and strong to avoid 

the catastrophic failure despite the presence of the BF in the matrix. The reason for this 

failure mode is that the amount of energy that specimens absorb will be released as much 

as when the specimens are destroyed; thus the greater the amount of accumulative energy, 

the more catastrophic failure of the specimens. In this case it can be concluded that the 

stiffness of the composites was governed by the stiffness of the geopolymer matrix, material 

characteristic of fiber yarn, and reinforcement ratio. It found that the absence of stage 2 

results in the maximum flexural strength and stiffness. Similar to the C-10x15 composites, 

the positive effect of the different layers of the two remaining types of carbon textiles on 

the flexural behavior of the CRG specimens can generally be seen in Figure 6.2 – Figure 

6.3. With the increasing reinforcement ratio, the CRG specimens obviously have a higher 

load-bearing capacity. On the other hand, by comparing the flexural behavior between C-

21x21 composites and C-34x34 composites, it was found that the mechanical properties of 

the fiber yarn have a strong effect on the response of flexural load-displacement curves 

which leads to interesting results of the mechanical properties of the TRG composites 

(Figure 6.4Figure 6.6). As mentioned in Table 3.1, although the tensile strength of the fiber 

yarns has similar values (only considering fiber yarns in the lengthways direction – the 

load-bearing direction), the fiber yarns of the C-21x21 textile show a lower Young’s 

modulus and higher elongation than those of the C-34x34 textile; thus, as a result, the C-

21x21 composites will tend to exbibit more pseudo-ductile behavior in bending, compared 

to those reinforced with C-34x34 textile, as proven by lower slope and less oscillation in 

stage 2. In addition, in stage 3, soon before and after reaching maximum load-bearing 

capacity, the C-21x21 composites almost maintain the unchanged load-bearing capacity 

with the increasing displacement (see in Figure 6.2). In other words, it should be noted that 

by comparing the development of stage 1 between tested specimens, the slope of the first 

stage of the curve is nearly the same for all tested CRG specimens but the first-crack load 

value does not follow a logic rule. This phenomenon is attributed to the presence of textile 

reinforcement in the matrix. The stiffness and the value of the first-crack load in this stage 

are governed predominantly by the stiffness of the matrix. However pre-existing micro-

cracks, especially at the matrix/fiber interface, that can be formed during manufacturing, 

curing, and setting-up of the specimens also contribute to the reduction in the first-crack 
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load. The higher the reinforcement ratio, the greater the probability of the presence of more 

micro-cracks in the matrix. 

 

 

 

Figure 6.1 Flexural load-displacement curves of the specimens reinforced with the carbon 

fiber textile having a net size of 10 x 15 mm. 
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Figure 6.2 Flexural load-displacement curves of the specimens reinforced with the carbon 

fiber textile having a net size of 21 x 21 mm. 

 

Figure 6.3 Flexural load-displacement curves of the specimens reinforced with the carbon 

fiber textile having a net size of 34 x 34 mm. 
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6.1.2 Mechanical properties of the CRG specimens 

 

Table 6.1 The results of flexural behavior of the CRG specimens corresponding to 

reinforcement ratio and textile type. 

 

Sample  

F1  

[kN] 

Rmo1 

[MPa] 

F2  

[kN] 

Rmo2 

[MPa] 

y  

[mm] 

Toughness  

[kN.mm] 

Cr.  

[-] 

Rr.  

[%] 

C
-1

0
x
1

5
   1L 0.79 ±0.05 10.55 ±0.90 3.03 ±0.14 40.36 ±1.88 15.89 ±1.76 31.12 ±0.87 14.67 0.96 

2L 0.79 ±0.03 10.53 ±0.52 4.79 ±0.52 63.94 ±6.88 14.19 ±0.71 38.71 ±3.22 15.33 1.93 

3L 0.89 ±0.06 11.87 ±0.76 6.47 ±0.72 86.30 ±5.65 13.10 ±0.43 46.92 ±2.95 16.00 2.89 

C
-2

1
x
2

1
 1L 0.65 ±0.08 8.67 ±0.84 1.44 ±0.21 19.18 ±2.77 15.48 ±1.73 12.99 ±0.36 3.66 0.45 

2L 0.69 ±0.02 9.24 ±0.79 1.99 ±0.10 26.62 ±1.33 23.86 ±7.09 34.82 ±14.2 6.33 0.96 

 3L 0.74 ±0.03 9.89 ±0.47 3.13 ±0.27 41.76 ±3.61 18.21 ±0.25 72.80 ±8.07 8.67 1.45 

C
-3

4
x
3

4
  1L 0.64 ±0.06 8.56 ±0.84 1.61 ±0.15 21.41 ±2.05 17.48 ±2.91 17.93 ±3.89 6.66 0.36 

2L 0.61 ±0.06 8.13 ±0.76 2.33 ±0.21 31.07 ±2.77 18.83 ±0.78 25.65 ±1.38 9.33 0.72 

3L 0.78 ±0.09 10.43 ±1.20 3.29 ±0.17 43.88 ±2.26 17.85 ±2.42 66.98 ±5.61 11.33 1.08 

 

The effect of the reinforcement ratio and the textile type on the flexural strength, the 

flexural toughness, the displacement, and the crack number of the TRG specimens is 

presented in Table 6.1and Figure 6.4 – Figure 6.7. It should be noted that due to using the 

geopolymer matrix with the same recipe for all the tested specimens, the different 

comparison of the first-crack strength between tested specimens is not mentioned, and a 

difference in the first-crack strength observed between tested specimens was discussed 

above. In general, the mechanical strength improved significantly with the increasing 

reinforcement ratio. The superiority of the reinforcement ratio in the C-10x15 composites 

makes them achieve remarkably higher flexural strength, compared to those reinforced with 

C-21x21 textile and C-34x34 textile (Figure 6.4). Even the composites reinforced with three 

layers of the C-21x21 and C-34x34 textiles almost have the similar flexural strength 

achieved by the C-10x15 composites reinforced only with one-layer. When comparing 

flexural strength between C-21x21 composites and C-34x34 composites, the mechanical 

properties (Young’s modulus and elongation) of the fiber yarn have a significant influence 

on the composite strength. Although the C-21x21 composites apparently have a higher 

reinforcement ratio than the C-34x34 those (considering for the same reinforcing layer), 

they could not produce a higher value in flexural strength. At this point, we can confirm the 

fact that a higher reinforcement ratio does not necessarily result in higher composite 

strength. For the C-10x15 textile, the specimens reinforced with two and three layers 
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increased in flexural strength by 58,42% MPa, 113.83% MPa, respectively, compared to 

the one-layer reinforced specimens. For C-21x21 textile and C-34x34 textile, specimens 

reinforced with two and three layers increased in ultimate flexural strength by 38.79%, 

45.12%, and 117.73%, 102.62%, respectively. Figure 6.5 shows the results of the flexural 

toughness of the CRG specimens. It was observed that when the specimens reinforced with 

three layers of the textile are considered, the C-21x21 composites show the highest value 

of the flexural toughness. It can be explained by the fact that the high elongation of the C-

21x21 textile affected positively to the CRG composite ductility (see in Figure 6.6), which 

compensates for the low flexural strength; as a result, the flexural toughness was improved. 

This reveals that using both reasonable reinforcement ratio and the textile type make 

composites possible to enhance significantly the flexural toughness. Figure 6.7 shows that 

the number of cracks increased with the increasing number of textile layers. Based on this 

result we also see that the stiffness of the composites is related to the number of cracks. The 

composites with higher stiffness will delay the propagation of cracks longer, which results 

in the reduction in the crack width and increase in the number of the cracks at tension edge.  

Figure 6.8 showed the strength development of the CRG specimens at different periods of 

time. In general, with increasing time the bending strength tends to decrease, but the 

reduction in strength between the CRG specimens at the time after a half-year is not 

negligible. As shown in Figure 6.8, compared to the 28-day samples the bending strength 

of the 180-day samples decreased by 8.89%, but the 365-day samples showed a decrease 

in strength by 1.74% when compared to the 180-day samples. 
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Figure 6.4 Average value of the ultimate four-point bending strength of the CRG specimens 

corresponding to reinforcement ratio and textile type. 

 

 

Figure 6.5 Average value of the bending toughness of the CRG specimens corresponding 

to reinforcement ratio and textile type. 
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Figure 6.6 The average value of the ultimate displacement of the CRG specimens 

corresponding to reinforcement ratio and textile type. 

 

 

Figure 6.7 The number of the cracks of the CRG specimens corresponding to reinforcement 

ratio and textile type. 
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Figure 6.8 Development of flexural strength of the CRG specimens at various periods of 

time.  

 

6.1.3 Failure modes of the CRG specimens 

The flexural failure modes of the TRG composites are displayed in Figure 6.9. It was 

observed that the CRG specimens could be exhibited two different types of the bending 

failure: i) the loss of bonding strength at the matrix/fiber interface along with the partial 

rupture of the filaments at outer layer leads to the slippage of the fiber yarns within mortar 

matrix resulting in pure flexural failure, ii) the initiation of the failure process is the same 

like the failure mode of type 1, then as soon as the CRG specimens reach their maximum 

load-bearing capacity, a sudden debonding process and the catastrophic collapse occurred 

almost simultaneously with loud noises. As seen in Figure 6.9, all CRG specimens almost 

have the same failure mode of type 1, while those reinforced with 2 – 3 layers of the C-

10x15 textile have the failure mode of type 2. 
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Figure 6.9 Failure modes of the CRG specimens corresponding to the textile type and a 

different number of the textile layers. 

 

6.2  Effect of mortar type on flexural performance  

Geomortar 1 with label GM-0.2S and geomortar 2 with label GM-0.2S0.1F5B (see in Table 

3.2) were used to study the influence of the mortar strength on the flexural behavior of the 

C-10x15 textile composites. In comparison to geomortar 1, the geomortar 2 showed 

approximately 1.39 times and 1.45 times higher flexural strength and compressive strength, 

respectively. For both geomortars, composites were reinforced with 1 – 3 layers of the C-

10x15 textile. Representative load-displacement curves of the C-10x15 textile composites 

with geomortar 1 and geomortar 2 are demonstrated in Figure 6.10. In stage 1, both 

geomortars show a similar linear elastic behavior and the same stiffness. However, there is 

a clear difference between two types of geomortar affecting the composites when 

comparing them at stages 2 and 3. In comparison to composites with geomortar 2, the 

composites with geomortar 1 indicated significantly lower stiffness resulting from the 

lower slope of these two stages. Also, despite the increased reinforcement ration, the 

oscillation of the loading curve at stage 2 and non-linearity of this curve during stage 3 still 

occur which was not found in composites with geomortar 2. This is attributed to the low 

bond at the interface of matrix and fiber yarn due to less compact in the structure of 

geomortar 1. In other words, from load-displacement curves, all the composites are 

characterized by a significant sudden drop (disastrous failure) in the load almost to zero 

after reaching the maximum load-bearing capacity, except for one reinforcing layer 

composite with geomortar 2. This is attributed to the fact that the presence of the BF in 

geomortar 2 along with the reasonable reinforcement ratio of textile helps the composite 
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avoid catastrophic failure. The role of the BF on the flexural behavior of the textile 

geopolymer composite will be presented in the next part.  

It is clearly evident from Table 6.2 and Figure 6.11, Figure 6.12 the using geomortar 2 

drastically improves the mechanical properties of the C-10x15 textile composites. By the 

increasing geomortar strength, first-crack strength, ultimate strength, and toughness were 

increased. At the same time, the deformation rate of the composites has decreased, meaning 

that the composite stiffness increases. For example, the C-10x15 textile composites with 

geomortar 2 almost show an approximately 2 times higher value of ultimate bending 

strength compared to those with geomortar 1 at the same reinforcement ratio. Especially 

for bending toughness value, the geomortar 2 make composite have a better effect on this 

parameter, especially when comparing composite between 2 and 3 layers, wherein bending 

toughness increased by 21.21 %, while this value for composite used geo-mortar 1 only 

increased by 8.94 % (see in Figure 6.12).  

 

 

Figure 6.10 Effect of geomortar strength on flexural load-displacement curves of the C-

10x15 textile composites.  

 

 

 



Flexural Performance of Various Carbon Fiber Meshes Reinforced Geopolymer Mortar 

78 

   

 

Table 6.2 Effect of geo-mortar strength on the flexural behavior of C-10x15 textile 

composites. 

 

Sample  

F1  

[kN] 

Rmo1 

[MPa] 

F2  

[kN] 

Rmo2 

[MPa] 

y 

[mm] 

Toughness  

[kN.mm] 

Cr.  

[-] 

Rr.  

[%] 

M
o

rt
a

r 
1
  1L 0.42 ±0.07 5.61 ±1.16 1.62 ±052 21.59 ±2.12 18.94 ±2.42 21.03 ±1.56 7.33 0.96 

2L 0.54 ±0.04 7.23 ± 0.40 2.73 ±0.40 36.41 ±4.32 19.89 ±1.79 32.87 ±0.56 14.33 1.93 

3L 0.72 ±0.02 9.62 ± 0.22 3.75 ±0.55 50.01 ±5.91 17.28 ±1.28 35.81 ±1.82 14.67 2.89 

M
o

rt
a

r 
2
 1L 0.79 ±0.05 10.55 ±0.90 3.03 ±0.14 40.36 ±1.88 15.89 ±1.76 31.12 ±0.87 14.67 0.96 

2L 0.79 ±0.03 10.53 ±0.52 4.79 ±0.52 63.94 ±6.88 14.19 ±0.71 38.71 ±3.22 15.33 1.93 

3L 0.89 ±0.06 11.87 ±0.76 6.47 ±0.72 86.30 ±5.65 13.10 ±0.43 46.92 ±2.95 16.00 2.89 

 

 

 

Figure 6.11 Comparison of flexural strength of the C-10x15 textile composites considering 

the use of the different geomortar. 
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Figure 6.12 Comparison of flexural toughness of the C-10x15 textile composites 

considering the use of the different geomortar. 

 

6.3  Effect of the position arrangement of the textile layer in the 

specimen 

One of the advantages of TRC composite is that textile reinforcement can be placed at the 

positions where stress is required respect to ensuring the anchoring capability of textiles. It 

was observed that when the textile is positioned closer to the tension edge, the composites 

show a higher load-bearing capacity due to the utilization of the textile used. In this section, 

the influence of the position of the textile layer in specimens will be investigated and four 

different kinds of textile positions consisting of 3 mm, 5 mm, 7 mm, and 9 mm were 

applied. 3 mm value implies the textile layer was placed in the specimen at a distance of 3 

mm from a tension edge, and the higher this value is the closer this distance to compressive 

edge is. Figure 6.13 shows the influence of the position of the textile layer on the flexural 

behavior of the CRG specimens, whereas the mean values of the experimental results are 

represented in Table 6.3 and Figure 6.14 – Figure 6.16. It can be observed from Figure 6.13 

that the thin cover layer leads to an increment of tension element (textile layer) that brings 

higher stiffness and higher bearing capacity. This phenomenon can be explained by the fact 

that when the cover layer thickness guarantees the anchoring capability of the textile in the 

matrix, the specimens with thinner cover layer will delay the development of the crack 
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width as long as possible, due to the tension efficiency of the textile. This results in both 

geopolymer mortar and textile undergoing collectively better bearing capacity under 

loading. Also, in terms of displacement, when the textile layer tends to be placed away from 

tension edge the samples will become more deformed due to lower specimen stiffness; thus, 

the displacement value is higher. It can be seen that, in comparison with the specimens 

having a cover thickness of 9 mm, the ultimate stress of the specimens having a cover 

thickness of 7 mm, 5 mm and 3 mm, increases by 67.32%, 96.85%, and 115.13%, 

respectively. Figure 6.17 shows the photo of failure modes of the CRG specimens respect 

to the position of the textile layer. All the specimens behaved the same failure as a pure 

bending failure due to the slipping of fiber yarns in the matrix.  

 

 

 

Figure 6.13 Flexural load-displacement curves of the TRG composites with respect to the 

position of the textile layer in specimens. 
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Table 6.3 The results of the flexural behavior of the CRG specimens with one reinforcing 

layer corresponding to the position of the textile layer in specimens. 

Value 

Sample 

F2 

[kN] 
Rmo2 

 [MPa] 

y 
[mm] 

Toughness 

[kN.mm] 

Cr. 

[-] 

Rr. 

[%] 

C
-1

0
x
1

5
 t

ex
ti

le
 c

o
m

p
o

si
te

 3 mm 3.59 ± 0.22 47.90 ± 2.97 16.19 ± 1.65 34.83 ± 1.80 15.67 0.96 

5 mm 3.23 ± 0.15 43.05 ± 1.95 16.27 ± 0.15 31.87 ± 3.24 14.67 0.96 

7 mm 2.29 ± 2.60 32.67 ± 2.87 18.66 ± 2.31 27.09 ± 5.20 11.50 0.96 

9 mm 1.40 ± 0.06 18.69 ± 0.79 18.84 ± 0.30 16.19 ± 0.28 4.67 0.96 

 

 

 

 

Figure 6.14 The flexural strength of CRG specimens with one reinforcing layer regarding 

the position of the textile layer in specimens. 
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Figure 6.15 Bending toughness of CRG specimens with one reinforcing layer regarding the 

position of the textile layer in specimens. 

 

 

Figure 6.16 Number of cracks of CRG specimens with one reinforcing layer regarding 

position of the textile layer in specimens. 
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Figure 6.17 Failure modes of the C-10x15 composite with one reinforcing layer regarding 

the position of the textile layer in specimens. 

 

 

6.4  Summary 

• With the increasing reinforcement ratio, the flexural strength of the CRG specimens 

was improved significantly. In other words, the CRG specimens reinforced with one-

layer of the C-10x15 textile almost have a similar flexural strength achieved by those 

reinforced with three layers of the C-21x21 textile and the C-34x34 textile. 

• Using a high reinforcement ratio makes the C-10x15 composites achieve the high 

flexural strength, but they were catastrophically destroyed when compared to the 

remaining TRG specimens. The debonding and collapse phase have taken place 

simultaneously. 

• Although the C-21x21 composites have a higher reinforcement ratio (considering the 

same reinforcing layer), they are unable to produce the higher flexural strength than 

those reinforced with the C-34x34 textiles. 

• In contrast to flexural strength, the C-21x21 composites reinforced with three layers 

achieved the highest flexural toughness while C-10x15 those reinforced with three 

layers achieved the lowest one. The reason for this was concluded that the higher 

elongation of the C-21x21 textiles makes the CRG specimens obvious achieve greater 

ductility, which offsets their low flexural strength; as a result, C-21x21 composites have 

the greater flexural toughness.  



Flexural Performance of Various Carbon Fiber Meshes Reinforced Geopolymer Mortar 

84 

   

• The results obtained in this experiment suggest that the C-10x15 composites are suitable 

for high-strength and low ductility applications while the composites reinforced with 

the remaining two types of carbon textile are useful for high-ductility applications. 

• Using the geomortar with higher mechanical strength can significantly improve the 

mechanical strength of the CRG specimens.  

• The fact that when the cover layer thickness guarantees the anchoring capability of the 

textile in the matrix, the specimens with thinner cover layer will delay the development 

of the crack width as long as possible, due to the tension efficiency of the textile leading 

to both geopolymer mortar and textile undergoing collectively better bearing capacity 

under loading.
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7. EFFECT OF CHOPPED BASALT FIBER ON FLEXURAL 

PERFORMANCE OF TEXTILE REINFORCED 

GEOPOLYMER 

Short fibers added to the cement matrix can help to bridge the micro-cracks and inhibit their 

growth during the crack formation stage. In the field of the TRC, short fibers randomly 

dispersed in the matrix can help to increase the stiffness and the load-bearing capacity of 

the TRC composite compared to the bare TRC because of the effective increase in the 

reinforcement ratio [89]. The various properties of the TRC are also improved by adding 

short fibers [90–92]. The composites obtained by using two or more different kinds of fibers 

in a single matrix are termed as hybrid composites. Hybrid composites have a better all-

round combination of properties than composites containing only a single fiber type [93]. 

This part presents the results of an experimental investigation of mechanical properties of 

textile reinforced geopolymer mortar containing both low and high dose level of the BF 

ranging from 0.25% to 7.5%. The C-10x15 textile composite specimen with one layer was 

chosen. Three kinds of the BF with three different lengths of 6 mm, 12 mm, and 24 mm 

were used as additional reinforcement. The BF dosage added to the matrix for both doses 

was clearly described in part 3. The effect of varied dosages and different fiber lengths of 

the BF on the flexural behavior of textile reinforced geomortar was investigated. 

7.1  Influence of high dose of chopped basalt fibers on flexural 

performance  

Two geomortars (GM-0.2S and GM-0.2S0.1F) with different mechanical strengths were 

used to investigate the influence of the high dose level of the BF dosages on the flexural 

behavior of the textile geopolymer composites. In comparison to GM-0.2S mix, GM-0.2-

0.1F showed an approximately 11.66 % higher flexural strength and 16.69 % higher 

compressive strength. This means that one has weak mechanical strength other has higher 

mechanical strength. For each geomortar type, three different dosages with an increment of 

2.5, from 2.5 % to 7.5 %, were considered as additional reinforcement in the production of 

the C-10x15 textile geopolymer composite reinforced with one layer. The BF with a fiber 

length of 6 mm (6 mm BF) will be chosen to add to geomortar due to its convenience in the 

mixing process. It should be noted that due to the high amount of the BF added into the 

mortar, the length of the BF was chopped into smaller dimensions during the mixing. Thus, 
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the original length of the BF does not affect the mechanical strength of the composite, but 

the fiber dosage does. The main reason for using two mortar types with different strengths 

is to better accurately assess the role of the BF in the bending behavior of textile 

geopolymer composites.  

Typical load-displacement curves of textile geocomposites used GM-0.2S and GM-

0.2S0.1F mortar are displayed in Figure 7.1. In general, both types of geomortars appear to 

make composites behave roughly similar in load-displacement response. The textile 

geocomposites without the addition of the BF can hardly carry the load after the initial 

failure occurred despite the geomortar type. In contrast, the composites with the BF 

addition exhibited an extended period of plastic deformation (i.e. pseudoplastic behavior) 

unlike a short drop at the point of maximum load. These composites are typically 

characterized by a relatively gradual decrease in load after reaching the maximum load-

bearing capacity. This behavior of textile geocomposites can be resulted from the fiber-

bridging and sliding after debonding and pulling-out of the BF from the geomortar matrix 

[94]. Even composites used GM-0.2S0.1F mortar can still maintain load capacity with 

increasing displacement after being reduced to roughly 0.6 times of their maximum load-

bearing capacity (see in Figure 7.1b). Furthermore, there are still two clear differences 

between the two geomortar types that can be observed for stage 2 of the loading curve and 

composite stiffness. Due to its higher mechanical strength, GM-0.2S0.1F geomortar helps 

composites have less oscillation of the curve in stage 2 and higher stiffness during both 

stages 2 and 3. On the other hand, it can be concluded that the geomortar matrix with the 

BF addition significantly improved the flexural behavior of the CRG composites. The 

positive effects of increasing BF dosage on the load-displacement responses of the 

composites can be clearly seen through a higher first-crack load, higher maximum load-

bearing capacity, less fluctuation in stage 2, and higher stiffness, compared to those without 

the BF addition. The improvement in the mechanical properties of the textile-reinforced 

composite resulting from the BF addition could be explained as follows: i) the randomly 

distributed fibers in the matrix will help to reduce the overall shrinkage strains, thus 

decreasing the internal flaws in the matrix. On the other hand, if they do occur, the fibers 

could reduce their development which induces the formation of micro-cracks [95]; ii) due 

to the bridge effect of the chopped fiber at the micro-cracks, the geomortar matrix has 

higher mechanical properties since the shift from micro-cracks to macro-cracks demands 

higher stress. Moreover, the connection between the fiber yarns of the textile and the 
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geopolymer mortar is also promoted due to this bridging effect. In this case, it could be said 

that the chopped fiber contributes to enhancing the efficiency of the textile in the 

reinforcement as well.  

The average mechanical properties of the CRG specimens containing various dosages of 

chopped basalt fiber are compared in Table 7.1, whereas Figure 7.2 – Figure 7.3 gives a 

clear view of the flexural strength and bending toughness corresponding to various BF 

content. It can be seen that a clear trend of increasing strength from samples with increasing 

BF dosage. The CRG composites with the BF addition confirm the high-quality 

advancement in the aspect of the bending strength and flexural toughness. However, there 

is also a high variability of the measured values for this composite. This variability does 

not follow a clear rule. For example, considering the CRG specimen containing 7.5 % BF, 

while the GM-0.2S mix makes the CRG specimens obtained the average bending strength 

with low standard deviation, the CRG specimens using the GM-0.2S0.1F mix achieved the 

average bending strength with higher standard deviation. This can be attributed to two 

reasons: i) the sampling error occurred during sample fabrication (but all the samples were 

fabricated according to the same technique); ii) initial damage of fiber yarns occurred 

during the production of the textile meshes. 

 

  
(a) (b) 

Figure 7.1 Typical flexural load-displacement curves of the C-10x15 textile composite 

containing varied fiber dosages of 6 mm BF: (a) GM-0.2S mix; (b) GM-0.2S0.1F mix. 

 

 



Effect of Chopped Basalt Fiber on Flexural Performance of Textile Reinforced Geopolymer 

88 

   

Table 7.1 The result of the flexural behavior of the CRG specimens corresponding to 

various dosages (0.0 %, 2.5 %, 5.0 %, 7.5 %) of chopped basalt fiber. 

Value 

Sample  

F1  

[kN] 

F2  

[kN] 

Rmo1  

[MPa] 

Rmo2 

 [MPa] 

y 

[mm] 

Toughness 

[kN.mm] 

Cr. 

[-] 

Rr. 

[%] 

G
M

-0
.2

S
  

0.0 % 0.42 ± 0.07 1.62 ± 0.52 5.61 ± 1.16 21.59 ±2.12 18.94 ±2.42 21.03 ±1.56 7.33 0.96 

2.5 % 0.68 ± 0.11 2.05 ± 0.40 9.02 ± 1.60 26.72 ±4.07 18.01 ±2.93 23.74 ±2.99 11.33 0.96 

5.0 % 0.72 ± 0.06 2.25 ± 0.31 9.63 ± 0.80 29.99 ±4.11 20.03 ±2.61 27.93 ±5.90 13.67 0.96 

7.5 % 0.80 ± 0.11 2.57 ± 0.14 10.67 ±1.40 34.24 ±1.88 21.85 ±1.83 34.39 ±4.51 14.33 0.96 

G
M

-0
.2

S
0

.1
F

  0.0 % 0.53 ± 0.09 2.26 ± 0.71 7.04 ± 1.15 30.14 ±1.29 16.59 ±2.65 24.43 ±2.57 8.66 0.96 

2.5 % 0.71 ± 0.07 2.57 ± 0.34 9.48 ± 0.9 34.26 ±2.79 17.79 ±1.41 28.15 ±2.15 11.33 0.96 

5.0 % 0.79 ± 0.05 3.03 ± 0.34 10.55 ± 0.9 40.36 ±2.38 15.89 ±2.88 31.12 ±3.82 14.67 0.96 

7.5 % 0.83 ± 0.07 3.21 ± 0.16 11.16 ± 1.4 42.79 ±4.13 16.59 ±1.99 35.87 ±4.72 14.67 0.96 

 

 

 

Figure 7.2 The average value of the ultimate flexural strength of the CRG composites with 

regarding varied dosage of the BF at the high dose level. 
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Figure 7.3 The average value of the flexural toughness of the CRG composites with 

regarding the varied dosage of the BF at the high dose level. 

 

In addition to improving the mechanical properties, the BF addition at high dose level also 

impacts strongly on the failure mode of the CRG specimens as seen in Figure 7.11. There 

are two different types of failure modes which demonstrated for the general failure modes 

of all the CRG specimens. For the CRG specimens without BF addition, the poor bonding 

performance between the textile layer and geomortar matrix leads to the gradual peeling 

process of the fiber yarns occurs out from the matrix, followed by collapsing of the matrix 

due to reaching maximum load-bearing capacity. It was found that although the using GM-

0.2S0.1F mix had significantly higher geomortar strength than GM-0.2S mix, both types of 

geomortar still induce the CRG specimens without the BF addition to have the same failure 

mode as debonding phase within the matrix occurred. Textile reinforced specimens with 

BF addition, on the contrary, result in the pure flexural failure without the debonding phase 

due to the slipping of fiber yarn within the matrix. It can be said that the use of chopped 

basalt fibers in the production of the geopolymer mortar has markedly improved the rigidity 

of the matrix structure and has also promoted the cohesion of the fiber yarns of the carbon 

textile in the matrix. This result confirms that the BF adding into geomortar matrix impacts 

positively on the failure mode of the CRG specimens, and the use one-layer of textile 

reinforcement is strong insufficient to peel off the geomortar matrix. 
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(a) Mortar type: GM-0.2S 

 

(b) Mortar type: GM-0.2S0.1F 

Figure 7.4 Typical failure modes of textile geopolymer composite. 

 

7.2  Influence of low dose of chopped basalt fibers on flexural 

performance  

At low dose level three kinds of the BF corresponding to three fiber lengths (6 mm BF, 12 

mm BF, 24 mm BF) are used to add to geomortar. Also, three different dosages with an 

increment of 0.25, from 0.25 % up to 0.75 %, were applied for each BF type; except for the 

6 mm BF up to 1.0 %. The difference from the high dose level described in the previous 

section is that the effect of low dose level on the flexural behavior of textile gepcomposites 

is studied based on varying fiber lengths. The geomortar with GM-0.2S0.1F mix was used 

as a matrix in the production of C-10x15 textile composites reinforced with one layer.  

Figure 7.5 - Figure 7.7 show typical load-displacement curves obtained from four-point 

bending tests of the CRG specimens with the varied dosage of the BF addition. It is apparent 

from the diagrams that the BF addition at the low dose level also was efficient in increasing 

the load-bearing capacity of the CRG specimens compared to those without BF additions. 

Although there is some variation in the behavior of the individual curves, the general load-

displacement response is roughly similar for all the composites. After reaching the 
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maximum load, almost the specimens are virtually impossible to continue to carry the load 

anymore. A significant flattening of the load-displacement curves around the point of 

maximum load associated with inelastic deformation is displayed for all the specimens 

except to specimens without the BF addition. In some cases, the bending test was ended 

immediately after reaching the maximum load. In other cases the bending load decreased 

slowly in a short duration with the displacement.  

Table 7.2 and Figure 7.8 - Figure 7.11 provide the information about the result of the 

flexural tests of all the CRG specimens. The first-crack bending strength of all the CRG 

specimens with the BF adding was higher compared to those without BF adding (see in 

Figure 7.8). The CRG composites without the BF adding have the average ultimate flexural 

strength of 30.14 MPa. The highest value of ultimate bending strength was 41.33 MPa for 

the CRG composite with 1.0% adding of the 6 mm BF. The next good values of bending 

strength were 39.07 MPa, 38.51 MPa for the CRG composites with 0.75% adding of the 24 

mm BF, the 12 mm BF, respectively, considering higher variability of measured values of 

the strength. It can be seen that for all three different fiber lengths of the BF, the specimens 

obtained the highest bending strength with the most BF content. However, keeping in mind 

that due to the fact that the high BF content makes it difficult to mix the fresh geomortar 

and resulted in the marked occurrence of clusters of fibers. This reason answers why the 

author does not want to continue increasing BF content. In other words, the effect of the 

BF at the low dose level on the bending toughness of the specimens is unclear. From 

experimental results it can be seen that the specimens with higher flexural strength do not 

always indicate higher bending toughness than those with lower flexural strength and vice 

versa. The reason for this is that the toughness value of the specimens depends on both their 

load capacity and their displacement. For some CRG specimens with an increase in flexural 

strength, on the other hand, there is a significant reduction in displacement leading to the 

lower toughness value, compared to those without the BF addition (see in Table 7.2 and  

Figure 7.10).  
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Figure 7.5 Representative load-displacement curves of the CRG composites containing 

varied fiber dosages of the 6 mm BF. 

 

 

Figure 7.6 Representative load-displacement curves of the CRG composites containing 

varied fiber dosages of the 12 mm BF. 
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Figure 7.7 Representative load-displacement curves of the CRG composites containing 

varied fiber dosage of the 24 mm BF. 

 

Table 7.2 The result of flexural tests of the CRG specimens containing three different types 

of chopped basalt fibers (6 mm BF, 12 mm BF, and 24 mm BF). 

Value 

Sample  

F1  

[kN] 

F2  

[kN] 

Rmo1  

[MPa] 

Rmo2 

 [MPa] 

y 

[mm] 

Toughness 

[kN.mm] 

Cr. 

[-] 

 0.00 % 0.53 ± 0.09 2.26 ± 0.71 7.04 ± 1.15 30.14± 1.29 16.59± 2.65 23.43± 2.57 8.66 

6
 m

m
 B

F
 

0.25 % 0.61 ± 0.04 2.69 ± 0.44 8.13± 0.50 34.74± 1.72 14.47± 1.27 23.71± 1.49 11.33 

0.50 % 0.56 ± 0.04 2.75 ± 0.28 7.44± 0.49 36.65± 3.77 13.73± 1.19 21.37± 1.78 12.33 

0.75 % 0.63± 0.02 2.93± 0.18 8.34± 0.24 39.01± 2.36 15.03± 1.08 27.36± 3.37 11.67 

1.00 % 0.63 ± 0.04 3.10 ± 0.11 8.41±0.52 41.33± 1.41 12.83± 2.30 23.13± 5.30 13.33 

1
2

 m
m

 B
F

 

0.25 % 0.57 ± 0.06 2.69 ± 0.18 7.63 ±0.85 35.94± 2.45 15.65± 2.51 23.98± 3.86 12.00 

0.50 % 0.58 ± 0.09 2.57 ± 0.12 7.69 ± 1.33 34.87± 1.65 14.68± 1.61 22.63± 2.49 12.00 

0.75 % 0.64 ± 0.04 2.81 ± 0.24 8.60 ±0.50 38.51± 3.24 14.72± 1.34 24.97± 4.76 12.67 

2
4

 m
m

 B
F

 

        

0.25 % 0.64 ± 0.02 2.77 ± 0.22 8.54 ± 0.25 37.04± 2.93 15.28± 1.91 26.21± 5.40 13.33 

0.50 % 0.65 ± 0.02 2.74 ± 0.29 8.77 ±0.25 36.47± 3.88 13.65± 1.18 22.02± 4.13 11.67 

0.75 % 0.66 ± 0.04 2.93 ± 0.27 8.79 ± 0.55 39.07± 3.57 13.41± 1.43 22.77± 4.35 13.67 
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Figure 7.8 The average value of the first-crack flexural strength of the CRG composites 

with reinforcing one layer regarding fiber lengths and varied dosage of the BF. 

 

 

Figure 7.9 The average value of the ultimate flexural strength of the CRG composites with 

reinforcing one layer regarding fiber lengths and varied dosage of the BF. 
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Figure 7.10 The average value of the flexural toughness of the CRG composites with 

reinforcing one layer regarding fiber lengths and varied dosage of the BF. 

 

Photographs of typical failure observations for these composite specimens are shown in 

Figure 7.11. Unlike pure flexural failure mode of textile geocomposites with the BF adding 

at high dose level due slipping of fiber yarns within the matrix, the results from Figure 7.11 

showed clearly that the composites with the BF addition at low dose level failed in a 

catastrophic manner which demonstrated by the process of debonding or debonding and 

collapse after reaching the maximum bearing-load capacity. In some cases the specimens 

failed due to the occurrence of debonding along with the matrix-textile interface. In other 

cases when specimens failed, the geomortar pieces were broken down, and debonding along 

the matrix-textile interface did not occur. Finally, these specimens broke down due to the 

collapse of the matrix. The failure modes indicated that although using the BF at the low 

dose level could enhance the flexural strength of the textile composite, there is no 

improvement in failure modes compared to those without the BF addition.  
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Figure 7.11 Typical failure modes of the CRG composites with reinforcing one layer 

regarding different fiber lengths and various dosages of the chopped basalt fiber. 

 

7.3  Summary  

• The introduction of chopped basalt fiber to geomortar improved significantly the 

flexural properties of textile geopolymer composites. 

• The fact that although using chopped basalt fiber at the low dose level can help to 

enhance undoubtedly the flexural strength when compared to one without the BF 

adding, there is no impact on the failure mode of these composites. The typical failure 

mode of these composites, similar to the specimens without the BF adding, is debonding 

and collapse after reaching the maximum load capacity. 

• Using chopped basalt fiber at the high dose level has a markedly positive effect on the 

flexural properties and failure mode of textile geopolymer composites. In addition to 

the significantly improved bending strength, the specimens showed the pure flexural 

failure without the debonding phase due to the slipping of fiber yarn within the matrix. 
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8. IMPACT-BENDING PERFORMANCE OF TEXTILE 

REINFORCED GEOPOLYMER MORTAR 

8.1  Introduction  

As already mentioned in the previous part geopolymer concretes were have emerged as an 

alternative to Portland cement-based concretes. In addition to static loads, many concrete 

structures such as wall panels, hydraulic structures, airport pavements, military structures, 

and industrial floor overlays may be subjected to dynamic loads in a short duration. These 

loads originate from sources such as vehicular and ship collisions with structure, rock falls, 

missile impacts, explosions, machine dynamics, wind gusts, and earthquakes. Concrete 

subjected to high impact loads will experience significant damage in structural stability and 

integrity.  

The Charpy test was originally established for metals and then was applied to unreinforced 

polymer and cement-based composites. In terms of the Charpy test the specimen is 

exhibited to a three-point bending impact loading produced by a swinging pendulum. The 

amount of energy absorbed by the specimen was defined as the change in potential energy 

related to the difference in the height of the swinging pendulum before it was released and 

the maximum height it reached as it passed through the specimen after impact. Sufficient 

energy was delivered to the specimen to ensure that it was completely fractured during the 

impact process. The reported Charpy impact strength is determined as this energy divided 

by the mid-section area [96]. Impact strength is an essential dynamic property of 

engineering material that gives an indication of its resistance against a suddenly applied 

load and is expressed in terms of energy. Often measured with the Charpy impact test, 

which measures the impact energy required to fracture a sample. The impact strength of 

fiber reinforced polymer is governed by the matrix–fiber interfacial bonding, and properties 

of matrix and fibers. When the composites experience a suddenly applied load, the impact 

energy is dispersed by the combination of fiber pull-outs, fiber fracture, and matrix 

deformation [97]. Charpy impact test was performed on a wide variety of cementitious 

composites including mortar/concrete without or with fiber reinforcements. The specimen 

sizes ranged from 10 by 10 by 50 – 55 mm [98–100] to 100 by 100 by 500 mm [101]. In 

some cases the specimens have a loading span of 40 mm, in other cases they have larger 
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loading spans [101–103]. Despite a number of studies on the collision resistance of 

cementitious composites by Charpy impact test, there is no specific standard for such tests.  

Fiber addition to concrete improves its ductility, tensile, impact, and flexural strength. The 

purpose of this part is to present the experimental results of an impact Charpy test on the 

composite samples of the textile reinforced geomortar. The variables investigated are 

different dosage and fiber length of chopped basalt fibers and the number of textile layers. 

The 6 samples with an approximate dimension of 15 x 50 x 120 mm3 for each recipe were 

prepared for measurement of the results for the Charpy impact test. 

8.2  Influence of dosage and fiber length of the BF on impact strength  

 

Table 8.1 The results of Charpy impact test of the CRG specimens containing three different 

types of the BF.   

                       Value                           

No. sample                        

 CRG specimens with varied additions of the BF 

 BF [wt.%] K [J] KC [kJ/m2] 

C
-1

0
x

1
5

 t
ex

ti
le

 c
o

m
p

o
si

te
 r

e
in

fo
rc

ed
 w

it
h

 o
n

e 
la

y
er

 

 No BF 0.00 46.07 ± 7.27 60.86 ± 09.27 

L
o

w
 d

o
e
 

6 mm BF 

0.25 51.79 ± 9.10 67.92 ± 12.32 

0.50 54.67 ± 10.33 72.12 ± 14.04 

0.75 56.63 ± 8.94 73.81 ± 12.54 

1.00 56.13 ± 6.22 74.23 ± 08.16 

12 mm BF 

0.25 59.49 ± 7.04 78.90 ± 08.63 

0.50 56.17 ± 9.80 73.11 ± 12.66 

0.75 58.92 ± 4.07 77.32 ± 08.46 

24 mm BF 

0.25 58.96 ± 6.90 76.90 ± 11.10 

0.50 56.50 ± 10.07 74.59 ± 14.07 

0.75 59.13 ± 7.64 78.26 ± 8.53 

H
ig

h
 

d
o

se
 

6 mm BF 

2.50 58.38 ± 5.98 76.41 ± 06.71 

5.00 61.46 ± 6.42 80.55 ± 08.74 

7.50 61.17 ± 8.32 79.26 ± 09.10 

 

The experimental results of Charpy impact tests for CRG specimens with the addition of 

various dosages and fiber lengths of the BF were reported in Table 8.1 and Figure 8.1 – 

Figure 8.2. The composites without BF addition show the lowest average impact strength 

with value of 60.86 kJ/m2. After adding varied dosages of the BF to geopolymer composite, 

the average impact strength ranges from 67.92 kJ/m2 to 80.55 kJ/m2 which is increased by 
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11.66 % to 32.35 %, depending on the added BF dosage. This finding confirmed that the 

BF also improves the significantly mechanical strength of textile geomortar composites 

under dynamic load. However, an observation in the value of standard deviation also 

indicated confusing variability. As shown in Table 8.1 at the low dose level, the 

geocomposites with an addition at a dosage of 0.25 % and 0.75 % for all three BF kinds 

showed a smaller standard deviation compared to those at 0.5 %. The resulting strength of 

the samples for each fiber type at each dosage was generally unpredictable. For example, 

while the geocomposites with the 12 mm BF addition at 0.25% showed the highest impact 

strength compared to those at other two percentages, the highest impact strength for 

geocomposites with the 24 mm BF addition achieved at a dosage of 0.75%. This result can 

be attributed to the fabrication process. Since all the specimens were fabricated according 

to the same technique and from the same materials, this behavior can be attributed to the 

presence of several clusters of fibers in the mixture during mixing resulting in a non-

homogenous structure of hardened geomortar. In other words, from the results in Table 8.1 

and Figure 8.1 it can be observed that the geocomposites with 6 mm BF show lower impact 

strength value compared to those with the other two BFs. This result is not consistent with 

results in the static loading test (four-point bending test) of these geocomposites, where the 

highest strength value achieved for geocomposites with 6 mm BF at 1 %. This finding 

shows that the failure mechanism of fiber geocomposites is different under static and 

impact loading.  

The average impact strength of the composites with varied addition of the 6 mm BF is 

compared in Table 8.1 and Figure 8.2. With increasing the BF content, the composites 

showed an increased trend in strength. However, the BF addition at high dose level appears 

to have composites achieve more homogeneous strength within each recipe due to a smaller 

value of standard deviation, compared to a low dose level. This can be attributed to the BF 

amount added to geomortar. If the amount of the BF added still ensures good workability 

of fresh mortar and mechanical strength of hardened mortar, the more the BF added, the 

more homogeneous mortar is.  
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Figure 8.1 The result of the bending impact of carbon fiber mesh reinforced geomortar 

containing the various types of chopped basalt fibers. 

 

 

Figure 8.2 The result of the bending impact of carbon fiber mesh reinforced geomortar 

containing the various dosages of the 6 mm BF. 
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8.3  Influence of textile type and number of textile layers 

The experimental results of impact Charpy tests for the composites reinforced with a 

number of textile layers of C-10x15 and B-10x14 textile were reported in Table 8.2 and 

Figure 8.3 – Figure 8.5. From Table 8.2 we can see that the non-reinforced sample without 

the BF addition achieved impact strength of 4.16 kJ/m2, which showed ~1.47 times higher 

average strength compared to non-reinforced sample with 5 % BF addition (6.1 kJ/m2). The 

BF also enhanced the energy absorption capacity of textile composite samples considering 

the same reinforcement ratio, when compared to those without the BF adding. For example, 

in the case of B-10x14 textile, the composites with 5 % BF reinforced with 1 – 4 layers 

increased in impact strength by 1.59 times, 1.41 times, 1.39 times, and 1.42 times, 

respectively, compared to those without BF adding. For C-10x15 textile, the composites 

with 5 % BF reinforced with 1 – 3 layers increased by 1.32 times, 1.30 times and 1.24 

times, respectively, compared to those without BF adding. It is also observed that the higher 

average strength is accompanied by a higher standard deviation of measured strength. This 

problem of standard deviation has the same situation with the textile geocomposites under 

the four-point bending test. The experimental results showed that a clear improvement for 

textile reinforced specimens was observed with increasing reinforcement ratio. On the other 

hand, the much higher impact strength of the C-10x15 composite is attributed to the higher 

mechanical strength of carbon fiber in comparison to basalt fiber. For example, the highest 

average strength of 107.55 kJ/m2 was recorded for C-10x15 textile composites with 2 

reinforcing layers, and this value is ~ 2.68 times higher compared to B-10x14 textile 

composite with 4 reinforcing layers which achieved the highest strength of 40.10 kJ/m2. It 

is worth seeing an interesting point when looking at Figure 8.3 and Figure 8.4. The B-10x14 

textile composites show an increasing trend when the reinforcement ratio increased from 1 

layer to 4 layers. In contrast, the C-10x15 textile composite reinforced with 3 layers do not 

show a higher average strength value than those reinforced with 2 layers even smaller. 

However, under static loading test (four-point bending test) the C-10x15 textile composites 

with 3 reinforcing layers showed much higher flexural strength than those with 2 

reinforcing layers. This phenomenon can be attributed to the anchoring capacity of textile 

reinforcement in geomortar under dynamic loading test. Since the distance between two 

adjacent textile layers was 2 mm of the geomortar as described in part 3, the cover thickness 

of this geomortar may not be strong enough to anchor the fiber yarns of textile under impact 

loads. 
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Table 8.2 The results of Charpy impact test of the textile reinforced geomortar 

corresponding to the varied number of textile layers at the age of 28 days. 

                  

Value                      

Sample                                

 Geomortar without BF addition Geomortar with 5% BF addition 

No. layer K [J] 
KC [kJ/m2] K [J] 

KC [kJ/m2] 

Non-reinforced 

sample 
0L 3.14 ± 1.04 04.16 ± 1.35 4.63 ± 1.34 06.10 ± 1.64 

B-10x14 

composite 

1L 19.13 ± 1.97 15.82 ± 1.92 19.13 ± 1.97 25.18 ± 2.81 

2L 23.82 ± 2.63 19.76 ± 4.18 23.82 ± 2.63 27.88 ± 3.18 

3L 26.42 ± 4.06 24.79 ± 5.21 26.42 ± 4.06 34.34 ± 5.71 

4L 31.50 ± 4.83 28.24 ± 6.21 31.50 ± 4.83 40.10 ± 6.11 

C-10x15 

composite 

1L 46.07 ± 7.27 60.86 ± 07.27 61.46 ± 6.42 80.55 ± 8.74 

2L 
62.42 ± 13.23 

82.67 ± 13.84 
82.63 ±13.23 

107.55 ± 

16.61 

3L 
60.59 ± 14.93 81.85 ± 16.58 77.96 ±14.93 

101.88 ± 

18.69 

 

 

Figure 8.3 The result of the bending impact of fiber mesh reinforced geomortar 

corresponding to the various number of textile layers. 
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Figure 8.4 The result of the bending impact of fiber mesh reinforced geomortar 

corresponding to the various number of textile layers. 

 

Table 8.3 summarizes the results of the Charpy impact tests of textile geocomposites at the 

time period of 365 days, whereas Figure 8.5 provides a comparison of impact strength 

between 28-day samples and 365-day samples. The B-10x14 textile composites with 4 

reinforcing layers and C-10x15 textile composites with 2 reinforcing layers were selected 

and geomortar without and with 5 % BF were applied to each type of respective textile 

geocomposite. The results confirmed that the basalt reinforcements adversely affect the 

impact strength of composites. However, the decrease of composite strength after a year is 

considered to be negligible.  

 

Table 8.3 The results of the textile geopolymer composite at the age of 365 days. 

Sample  BF [wt. %] K [J] KC [kJ/m2] 

B-10x14 composite – 4 Layers 
0 % 

16.44 ± 4.21 21.84 ± 5.41 

C-10x15 composite – 2 Layers 62.42 ± 8.58 82.67 ± 13.84 

B-10x14 composite – 4 Layers 
5 % 

28.26 ± 4.83 34.29 ± 6.71 

C-10x15 composite – 2 Layers 73.58 ± 9.26 99.18 ± 13.12 
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Figure 8.5 Comparison of the impact strength of textile reinforced geomortar between 28-

day samples and 365-day samples: (a) BRG specimens; (b) CRG specimens. 

 

8.4  Failure modes of tested specimens 

A photo of the typical failure modes of the composite specimens after finishing the Charpy 

impact test is shown in Figure 8.6. Some important remarks concerning the failure modes 

should be noted. It could be observed that the specimen without the reinforcing layer was 

easily broken after the Charpy impact test. For the B-10x14 textile composites, the obvious 

rupture of fiber yarns of basalt textiles for all the composites is inspected. The specimens 

were almost broken at the point of central load by the impact of the head of the hammer. In 

some cases, other cracks at other positions were also displayed from the impact of the 

hammer. From the failure mode of basalt textile composites, it can be concluded that the 

anchoring capacity of basalt textile with 2 mm thickness of mortar cover was suitable. This 

is consistent with the results of impact strength that composite with 4 reinforcing layers is 

clearly higher than those with 3 reinforcing layers.  

For C-10x15 textile composites, the dominating failure mode for these composites was the 

slip of fiber yarns within the geomortar matrix along with partial damage of multifilament 

at the outer layer, no bundles were broken. Also, from Figure 8.6 it is observed that the 

composites with one reinforcing layer have shown a different failure manner compared to 
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those with 2 – 3 layers. The 1-layer composites were separated into two main parts with a 

distance themselves of ~ 10 – 15 mm causing by slipping of fiber bundles. In some cases, 

the specimens fail disastrous other cases specimens fail smooth. On the other hand, the 

composites with 2 – 3 layers lost their structural geometry and integrity upon reaching the 

impact energy capacity, which cannot return to its original shape after finishing the test. 

The specimens bend around the head of the hammer but do not separate due to the flexibility 

of fiber that was not broken. This evidence showed that one reinforcing layer can receive 

the collision energy and transmit well, while a higher reinforcement ratio in composites 

with three reinforcing layers makes the usefulness of textiles not fully utilized.  



Impact-Bending Performance of Textile Reinforced Geopolymer Mortar 

106 

   

 

Figure 8.6 Typical failure modes of the textile reinforced geomortar after finishing Charpy 

impact test. 
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8.5  Summary  

• The experimental results confirmed that the BF also improves the significantly 

mechanical strength of textile geomortar composites under dynamic load. It is also 

observed that the geocomposites with 6 mm BF show lower impact strength value 

compared to those with the other two BFs. This result is not consistent with results in 

the static loading test (four-point bending test) of these geocomposites, where the 

highest strength value achieved for geocomposites with 6 mm BFs at 1%. This finding 

shows that the failure mechanism of geocomposites with the addition of the BF is 

different under static and impact loading. 

• With the increasing reinforcement ratio the B-10x14 textile composites showed a clear 

increasing trend of the impact strength, but this did not occur for the C-10x15 textile 

composites. The geocomposites with three layers of carbon textiles showed a lower 

impact strength value than one with two layers. This phenomenon can be attributed to 

the fact that the cover thickness of the geomortar may not be strong enough to anchor 

the fiber yarns of textile under impact loads. 

• For the B-10x14 textile composites, the obvious rupture of fiber yarns of basalt textiles 

for all the composites is inspected. For C-10x15 textile composites, the dominating 

failure mode for these composites was the slip of fiber yarns within the geomortar 

matrix along with partial damage of multifilament at the outer layer, no bundles were 

broken. 
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9. CONCLUSION AND FUTURE WORK 

 

9.1  Overall Conclusions 

The aim of this thesis was the fabrication of composite thin plates made of geomortar matrix 

and textile reinforcements and the evaluation of their mechanical properties through a four-

point bending test and Charpy impact test. The research works included optimization of the 

geomortar compositions with the highest mechanical strength, effect of textile types and 

reinforcement ratio on flexural properties of textile geopolymer composites, the effect of 

chopped basalt fiber on the flexural properties of textile geopolymer composites and also 

failure modes of relevant composites.  

• From experimental results of the optimization of the geomortar it was found that 

the geomortar incorporating different filler materials with reasonable proportion can 

achieve relatively high mechanical strength. When adding both micro-particles and 

chopped fibers in geomortar, the best mixture makes samples to increase flexural 

strength approximately by 55.44 % and compressive strength by 61.32 % 

respectively, compared to plain geomortar. The fact that although the chopped 

basalt fiber addition at the low dose level to geomortar showed a clear increase in 

flexural strength, there is no clear effect on compressive strength. In contrast, the 

use of the BF at the high dose level makes geomortar achieve significant 

improvement in both flexural strength and compressive strength. The reported data 

on the strength development of the geomortar revealed that the geomortar without 

the BF additions almost remains unchanged strength over time up to 365 days. In 

contrast, the mechanical strength of the geomortar with the BF addition has been 

reduced due to the degradation of the BF in the alkali environment. However, a 

decrease of the sample strength lasts only up to 150 days, beyond this time the 

mechanical strength is almost unchanged.    

• Under a four-point bending test, all the BRG specimens have the same failure mode 

by flexural failure due to rupture of fiber yarn in mortar matrix and no debonding 

of fiber yarn or a gradual peeling process of mortar matrix happed during testing. 

On the other hand, the specimens reinforced with more textile layers lead to a 

greater number of cracks resulting in higher specimen stiffness. With the increasing 
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number of textile layers, the mechanical properties of the BRG specimens were 

improved significantly, considering for the BRG specimens reinforced with basalt 

mesh having a small net size and middle net size. There is no impact on the 

mechanical strength of the BRG reinforced with basalt mesh of big net size, failure 

of these BRG specimens is due to localization of the first-crack. It can be concluded 

that using basalt textiles with the big net size is not effective in reinforcement. So, 

the author suggests that only basalt textile of small net size should be used to 

reinforce in specimens due to reinforcement effectiveness; or in case of using basalt 

mesh of big net size, fiber yarn should be resized to its size by way of fiber yarn 

that should be made of more individual filaments to improve its low tensile strength. 

In other words, the specimen production phase also plays an important role in the 

first-crack strength of these composites. The subjectivity in the specimen 

production can lead to the BRG specimens having many cavities at the interface 

between mortar matrix and fiber yarn which results in a decrease of the mechanical 

strength of the BRG specimens. 

• Under a four-point bending test, the specimens reinforced with carbon textiles show 

a markedly positive effect on the mechanical properties of the resulting composites 

through a displacement-hardening behavior. With the increasing reinforcement 

ratio, the flexural strength of the CRG specimens was improved significantly 

especially with the CRG specimens reinforced with the C-10×15 textiles. The CRG 

specimens reinforced with the one-layer of the C-10×15 textile have an almost 

similar flexural strength achieved by those reinforced with the three layers of the C-

21×21 textile and the C-34×34 textile. Using a high reinforcement ratio makes the 

C-10×15 composites achieve high flexural strength, but they were catastrophically 

destroyed when compared to the remaining CRG specimens. The debonding and 

collapse phase took place simultaneously. Although the C-21×21 composites have 

a higher reinforcement ratio (considering the same reinforcing layer), they are 

unable to produce a higher flexural strength than those reinforced with the C-34×34 

textiles. In contrast to the flexural strength, the C-21×21 composites reinforced with 

the three layers (a reinforcement ratio of 1.45 %) achieved the highest flexural 

toughness while the C-10×15 composite reinforced with three layers (2.89 %) 

achieved the lowest one. The reason for this is that the higher elongation of the C-

21×21 textiles makes the CRG specimens obviously achieve greater ductility, which 
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offsets their low flexural strength; as a result, the C-21×21 composites have a 

greater flexural toughness. The failure mode of all the specimens shows either a 

pure bending failure or a peeling off the geomortar at the matrix/fiber interface due 

to the rupture of some filaments in the outer layer and the loss of the bonding 

strength of the fiber yarn in the matrix leading to the slippage of the fiber yarns 

within the matrix The results obtained in the four-point bending test of carbon 

textiles reinforced geomortar suggest that the C-10×15 composites are suitable for 

high-strength and low-ductility applications while the composites reinforced with 

the remaining two types of carbon textile are useful for high-ductility applications. 

• Using the geomortar with higher mechanical strength can significantly improve the 

mechanical strength of the CRG specimens.  

• The fact that when the cover layer thickness guarantees the anchoring capability of 

the textile in the matrix, the specimens with thinner cover layer will delay the 

development of the crack width as long as possible, due to the tension efficiency of 

the textile leading to both geopolymer mortar and textile undergoing collectively 

better load-bearing capacity under loading. 

• In contrast to basalt textiles, the specimens reinforced with carbon textiles provide 

a much better effect on the mechanical properties of the resulting composites. For 

example, specimens reinforced with a 1-carbon layer (41 MPa) have achieved 

flexural strength higher than those with 4-basalt layers (29.72 MPa) reinforced 

specimens. Although the price of carbon fiber is much higher than basalt fiber, the 

production of the composite with carbon textile provides a more reinforcing effect 

and saves much time for sample production.  

• The introduction of chopped basalt fiber to geomortar improved significantly the 

flexural properties of textile geopolymer composites. The addition of the BF to 

geomortar obviously improved the mechanical strength of the composites, however 

only the high dose level of the BF can help to improve both the mechanical 

properties and failure modes. Failure mode can shift from a catastrophic manner 

due to the debonding and collapse phase to pure bending failure due to the slipping 

of fiber yarn in the matrix.  

• Under the Charpy impact test, textile geomortar composites have shown impressive 

dynamic shock resistance. For example, non-reinforced composites have an average 

impact strength of 6.1 kJ/m2. The composites reinforced with 4-basalt textile layers 
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and 2-carbon textile layer increased in impact strength approximately by 557% 

(40.10 kJ/m2) and 1663% (107.55 kJ/m2), respectively. Tested results also showed 

that the impact strength of composite reinforced with 3-carbon layers is not higher 

than one with 2-carbon layers. However, under static loading test (four-point 

bending test) the C-10x15 textile composites with 3 reinforcing layers showed much 

higher flexural strength than those with 2 reinforcing layers. This phenomenon can 

be attributed to the anchoring capacity of textile reinforcement in geomortar under 

dynamic loading tests. The thickness of the geomortar layer between textile layers 

may be reasonable for static loading tests but may not be strong enough to anchor 

the fiber yarns of textiles under impact loading tests. 

• Based on the references and empirical results achieved in this study, it can conclude 

that although basalt fiber is proved to have partial loss of strength; however, the 

mechanical strength of the composites at the age of 365 days is still good, compared 

to those at 28 days.  

 

9.2  Limitations and Future Directions 

• Only long-term mechanical strength of basalt fiber geomortar composite was 

studied in this dissertation. The composite strength was reduced over time due to 

fiber degradation, but only at a certain period of time. The mechanisms of fiber 

degradation are not explained. So the investigation on this behaviour needs to be 

explored in the future. 

• C-10x15 textile geomortar composites with 2 – 3 reinforcing layers were displayed 

high flexural strength. However, accompanied by this value is a catastrophic failure 

mode despite the BF added to geomortar matrix. This is attributed to the fact that 

the sample thickness is unreasonable for reinforcing multiple layers. The composite 

samples with a thickness of 15 mm produced in this study were tested. The 

investigation on the optimum thickness of the samples when using reinforcing 

multiple layers of this type of carbon textile should be carried out to improve the 

failure manner. 

• Geopolymers are known to be fire-resistant materials. The investigation on the fire-

resistant behaviour of the textile geomortar composites at elevated temperatures 

should be studied in the future. 
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• The durability of the construction materials significantly influences their service 

life. Although the 365-day composite strength exposed at lab temperature remains 

well compared to 25-day one, the other durability properties such as chloride and 

sulfuric acid resistance, freezing, and thawing durability should be carried out. 
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