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Abstract 
The goal of this Bachelor's thesis is to design, implement, and test a system that can detect 
and recognize license plates in real-time by using neural networks. The collected data will 
be saved into the database. The system's architecture is divided into three main parts. The 
first part handles the license plate detection in the image by making use of the TensorFlow 
Object Detection A P I . The detector reaches the accuracy of 98.15% A P with a speed of 
roughly 14fps. The second part deals with license plate tracking by using the algorithm 
SORT. The third part holistically recognizes the text of the license plate and can reach 
up to 0.6% character error rate and 2% word error rate. The system may be used by law 
enforcement for purposes such as for keeping track of stolen vehicles or for the automatic 
road tolling. 

Abstrakt 
Cílem této bakalářské práce je návrh, implementace a testování systému, který v reálném 
čase pomocí neuronových sítí bude detekovat a rozpoznávat registrační značky vozidel. 
Nasbíraná data budou ukládána do databáze. Architektura systému je rozdělena do tří 
hlavních částí. První část řeší detekci registrační značky v obraze pomocí TensorFlow 
Object Detection A P I . Detektor dosahuje přesnosti 98.15% A P při rychlosti kolem 14fps. 
Druhá část se zabývá sledováním značek ve videu pomocí algoritmu SORT. Třetí část 
systému se věnuje holistickému rozpoznávání textu registrační značky a dosahuje až 0.6% 
chybovosti při rozpoznávání jednotlivých znaků a 2% chybovosti při rozpoznávání celého 
textu. Výsledný systém lze použít například pro policejní oddělení za účelem sledování 
kradených vozidel či automatického vybírání dálničních poplatků. 
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Rozšířený abstrakt 
Tato bakalářská práce se zabývá oblastí zpracování obrazu. Cílem této práce je návrh, im­
plementace a testování systému, který v reálném čase pomocí neuronových sítí bude deteko­
vat a rozpoznávat registrační značky vozidel. Všechna data budou ukládána do databáze 
či vyobrazena do videa pro tvorbu demonstračních materiálů. 

Architektura systému je rozdělena do tří hlavních částí. První část řeší detekci regi­
strační značky v obraze pomocí TensorFlow Object Detection A P I s předpřipraveným mode­
lem SSD-MobileNet-v2-COCO, který byl následně přetrénován pro účely této práce. Detek­
tor dosahuje přesnosti 98.15% A P a rychlosti kolem 15fps při zpracování videa o rozlišení 
720x480, respektive 14fps při rozlišení 1280x720. 

Druhá část se zabývá sledováním značek ve videu pomocí algoritmu SORT. Díky sle­
dování registračních značek je systém schopen vybrat pouze jednu potenciálně nejlepší de­
tekci za celou dobu výskytu značky na scéně. SORT tedy drasticky redukuje počet detekcí 
určených k rozpoznání a předchází redundanci, čímž umožňuje data efektivně ukládat do 
databáze. 

Třetí část systému se věnuje rozpoznávání textu. Vyhýbá se segmentaci znaků, namísto 
toho přistupuje k problému holistický K tomu je použita hluboká konvoluční neuronová 
síť a rekurentní neuronová síť s dlouhou krátkodobou pamětí. Experimentální výsledky 
dosahují 0.6% chybovosti při rozpoznávání jednotlivých znaků a 2% chybovosti při rozpozná­
vání celého textu. Tato část zvládne za jednu sekundu rozpoznat 39 obrázků o velikosti 
9.5 kilopixel, respektive 46 obrázků o velikosti 5 kilopixel. 

Za účelem trénování a testování detektoru a rozpoznávače byly použity tři ručně ano-
tované datové sady. Datové sady celkově obsahují 184 000 vzorků evropských značek, které 
jsou pořízeny z několika různých pozic a mají rozdílné světelné podmínky, kvalitu, velikost, 
rozmazání, natočení, šum, atd. 

Výsledkem této práce je program alpr, jenž je implementovaný v jazyce Python a je 
schopen pracovat ve dvou režimech. První režim zpracovává video v reálném čase, ukládá 
data o rozpoznaných značkách do databáze a vypisuje pro přehled informace na standardní 
výstup. Druhý režim slouží k vytvoření ukázkového videa, v nemž jsou zakresleny všechny 
detekce společně s rozpoznaným textem. 

Nasbíraná data lze pak využít například pro policejní oddělení za účelem sledování 
kradených vozidel, jízdy na červenou, automatické vybírání dálničních poplatků, atd. 
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Chapter 1 

Introduction 

Detection and recognition of license plates consists of numerous methods which transfer 
image data such as camera recordings into a plain text containing the license plate numbers. 
This can be very practical for vehicle tracking especially when used by the police department 
for law enforcement purposes. Such data is frequently utilized for keeping track of stolen 
vehicles, red-light enforcement, speeding charges, and bus lane control. Moreover it can be 
applied for road tolling or parking management. 

However it also has its drawbacks. There have been cases when the data was abused by 
the police to target and harass minorities and religious or gay people based on the places 
they were going to try to create opportunities to arrest them. Thus information of this 
nature need to be handled with caution. 

In addition older systems happen to falsely accuse drivers often. Although improvements 
in technology have reduced the error rates, it is still a problem. The system has to deal with 
a combination of low image quality, motion blur, bad weather conditions, inferior lightning 
and contrast, poor camera angle, damaged or dirty license plate, etc. 

The aim of this Bachelor's thesis is to design, implement, and test a system able to 
detect and recognize license plates from video records in real-time using neural networks. 
This project focuses only on European license plates. 

I have chosen this topic because it gives me the opportunity to be a part of a solution 
that nowadays is considered a global issues. From this point forward, I would like to 
dedicate my studies to artificial intelligence, which I find extremely fascinating, and plays a 
huge role in this work. Furthermore, I believe artificial intelligence will eventually take over 
many other fields including but not limited to those in the computer science industries. 

This paper is divided into six chapters. The introduction is followed by an overview of 
the current significant methods outlining the object detection, object tracking and license 
plate recognition approaches 2. The third chapter 3 describes the acquisition, the specifics, 
and the ground truth assignment for the used datasets. The next chapter 1 proposes 
the system architecture design among with the design of its individual parts. The fifth 
chapter 5 is dedicated to the implementation of the system, its usage and the experimental 
results. Finally, the last chapter 6 reviews the achieved goals of this work and potential 
improvements in the future. 
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Chapter 2 

Related Work 

Detection and recognition of license plates can be divided into three separate tasks. To begin 
with, it is required to localize the license plates within the image. The most common used 
technologies for this kind of a problem are presented in section 2.1. To keep track of each 
license plate throughout the scene, it is necessary to employ an object tracker. Different 
approaches on tracking multiple objects are described in section 2.2. After localization, 
the system must proceed to the recognition of the license plate. Such methods are briefly 
introduced in section 2.3. 

2.1 Object Detection Methods 

This section discusses object detection methods that could be split into two groups. The 
first group is classification based and it works in two stages. At first, the interesting regions 
are selected from the input image and then a Convolutional Neural Network (CNN) is used 
for classifying objects within those regions. In general, these solutions are slow and hard 
to optimize because of their complex pipeline. Therefore, some of them are not suitable for 
real-time situations. The most known examples of this type is the Region Convolutional 
Neural Network (R-CNN) 2.1.1 and its successor Fast R - C N N 2.1.2 and Faster R - C N N 2.1.3 
which are described below. 

The second group consists of algorithms based on regression. Instead of selecting in­
teresting regions of the image, it scans the whole image and predicts classes and bounding 
boxes in one run. In general, this approach tends to be faster but lacks accuracy. The You 
Only Look Once (YOLO) 2.1.4 and Single Shot MultiBox Detector (SSD) 2.1.5 methods 
that fall into this category are outlined in the following sections. 

2.1.1 Region Convolutional Neural Network 

R - C N N is one of the object detection methods introduced by Ross Girshick et al. [10]. 
To fully understand R - C N N , it is important to know what a C N N is and how it is 

related with this method. C N N is composed of multiple layers. One input layer, one output 
layer and several hidden layers in between. The particles of the layers, called neurons, are 
connected to every single neuron in the next layer. Every connection has been given a 
certain weight which corresponds to how much the value of the first neuron will influence 
the value of the subsequent one. By adjusting the weights during the training phase we 
can achieve seemingly intelligent behavior of the network. Calculating the proper weights 
is done by loss function. It matches the predicted value obtained from the output layer 
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with the actual one to determine the loss and updates the weights based on the gradient 
descent method so that the overall loss is minimized. 

CNNs are best used for recognizing patterns, shapes, colors, and textures of an input 
image. The hidden layers are convolutional layers in this context. They act as a filter that 
transforms the received input using a specific feature or pattern and sends it to the next 
layer. This continues up to the output layer which could be understood as a feature vector 
of the original image. 

However, CNNs are too slow and computationally very expensive. R - C N N solves this 
problem in 3 stages as described in Figure 2.1. At first, only around 2,000 region proposals 
for the input image are generated by using a selective search. That greatly reduces the 
number of regions that it needs to work with. Every proposal is then fed to the C N N 
that extracts a 4096-dimensional feature vector. Afterwards, the feature vector is used to 
classify its respective region by category-specific Support Vector Machines (SVM). 

In order to achieve a fixed-length feature vector, all pixels of the region are first warped 
to the required size, 224x224 in this case. This allows sharing features across all categories 
and appearance modes. Another key property is that the feature vector is rather small com­
pared to other common approaches (for example 360k-dimensional used by U V A detection 
system [28] vs. 4k-dimensional). 

R - C N N has relatively good mean average precision (mAP), achieving a final m A P of 
43.5% on P A S C A L Visual Object Classes (VOC) Challenge 2010 [6] which serves as a 
benchmark for assessing object detector performance. However, the great lack of speed 
makes it virtually impossible to implement in real-time applications as one test image takes 
around 47 seconds to process. 

R-CNN: Regions with CNN features 

1. Input 2. Extract region 3. Compute 4. Classify 
image proposals (~2k) CNN features regions 

Figure 2.1: (1) The system takes an input image. (2) The input image is extracted to 
~2,000 region proposals. (3) The C N N computes a feature vector for every proposal. (4) 
Each region is being classified by class-specific S V M . Source [7]. 

2.1.2 Fast R - C N N 

One of the authors of R - C N N , Ross Girshick, proposed Fast R - C N N [9] which builds di­
rectly on top of R - C N N and employs several mechanisms to improve speed and accuracy. 
Moreover, unlike previous work, now the architecture is end-to-end and can be trained with 
back-propagation. 
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Fast R - C N N architecture is visualized in Figure 2.2 and is described as follows. The key 
here is that the C N N is not fed with 2,000 region proposals every time anymore. Instead, 
the network processes the whole image and produces a feature map. Then for each region 
proposal, or region of interest (Rol), the pooling layer extracts a fixed-length feature vector 
from the feature map. Every feature vector then results in two outputs. The first indicates 
the softmax probabilities representing which object class was found. The second is the 
bounding box regression predicting offset values for the bounding box. 

Figure 2.2: A n illustration of the Fast R - C N N workflow. Source [7]. 

2.1.3 Faster R - C N N 

Region proposals are still the biggest computational bottleneck of the Fast R - C N N . There­
fore, Ross Girshick et al. [25] introduces the Regional Proposal Network (RPN) to replace 
the selective search process. 

The input image is passed first through a pre-trained C N N creating a convolutional 
feature map. The R P N then uses the feature map to find bounding boxes, which may 
contain objects. The bounding boxes are represented by anchors of different sizes and 
ratios spread uniformly throughout the image. In [25], k = 9 anchors is used for each 
location with box areas of 1282, 2562, and 5122 pixels and 3 aspect ratios of 1:1, 1:2, and 
2:1 as illustrated in Figures 2.3 and 2.4. For a convolutional feature map of a size W x H 
there are WHk anchors in total. 

In the next step, R P N feeds each anchor to a box-classification layer (els) and a box-
regression layer (reg). The els layer outputs 2k scores that estimate the probability of 
the object both being inside and not being inside the anchor. The reg layer produces 4k 
offsets for each anchor to better fit the object (AXcenter, AVcenter, Awidth, Aheight). Since many 
anchors usually overlap, non-maximum suppression (NMS) is applied to reduce redundancy. 
If two anchors have Intersection-over-Union (IoU) bigger than some predefined threshold, 
it discards the one with smaller probability to contain an object. This decreases the overall 
number of proposals without any harm to the ultimate detection accuracy. 

After the region proposals are generated by the R P N , the Fast R - C N N 2.1.2 is adopted 
to work as the detection network. Both the R P N and Fast R - C N N share a common set 
of convolutional layers in order to share computation. Thus making the region proposals 
nearly cost-free. Faster R - C N N enables the system to run at 5-15 fps with a high-quality 
region proposal and therefore a better overall mAP. 
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Figure 2.3: Anchor centers spread 
throughout the input image. Source [26]. 

Figure 2.4: Nine anchors with box 
of 1282, 2562, and 5122 pixels and 3 as­
pect ratios of 1:1, 1:2, and 2:1. Source [8]. 

2.1.4 Y o u Only Look Once 

You Only Look Once (YOLO) is a real-time object detection method published by Joseph 
Redmon et al. [23]. It uses one C N N to simultaneously predict bounding boxes and class 
probabilities for those boxes in one run of the algorithm processing the whole image. 

It divides the input image into a grid of S x S cells. If the center of the object is 
located inside the grid cell, that cell is responsible for detecting that object. Each of these 
grid cells predicts B bounding boxes and whether the bounding box contains the object, 
or part of it. Then it uses this information to try and predict the class of the object with 
certain confidence. Hence, every bounding box, the output of the system, is specified as: 
The (x, y) coordinates representing the center of the bounding box, width and height of 
the bounding box, the class of the object and C class probability which indicates the class-
specific confidence. Typically, a majority of the bounding boxes will not have an object 
inside. Therefore, a process called non-max suppression is used to remove unnecessary 
boxes with low probability to contain objects and those that share big areas with other 
boxes. The Y O L O workflow is shown in Figure 2.5. 

The fact that it sees the complete image at once gives it contextual information that 
helps avoid false positives. Furthermore, Y O L O understands generalized representations 
of objects. This means it can be trained on real world images and is still quite good at 
predicting bounding boxes and detection, compared to other methods, if applied to artwork. 
The Y O L O architecture is extremely fast, enabling it to process 45 frames per second or 
155 frames per second while using a smaller version of the network called Fast Y O L O . 
Nonetheless, Y O L O falls behind in accuracy, especially when dealing with small objects 
that appear in groups, since the strong spacial constraints limit the number of nearby 
objects that can be predicted. 

2.1.5 Single Shot Mul t iBox Detector 

Liu et al. introduced a method called Single Shot MultiBox Detector (SSD) [19] which is 
fast and designed to detect multiple categories with a single shot evaluation of an input 
image. 

SSD eliminates bounding box proposals which is typically expensive. Instead, it encap­
sulates all of the computation in a single network. The architecture includes progressively 
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Figure 2.5: Left: The image is divided into grid of S x S cells. Center: The network 
predicts bounding boxes and probabilities for each grid cell. Right: The result after 
bounding boxes being removed based on the predicted probabilities. Source [24]. 

decreasing convolutional layers thus enabling it to extract multiple feature maps at dif­
ferent resolutions. This naturally handles detections of different scales and improves the 
detection quality. The topmost feature maps have large receptive fields and can deal with 
large objects; while the feature maps from the lower layers capture more fine details and 
are able to detect very small objects. 

To create predictions, every feature map location is associated with a set of bounding 
boxes at different scales and aspect ratios. These are called priors and could be referred 
to as anchors in Faster R - C N N 2.1.3. The priors are illustrated in Figure 2.6. Then both 
confidences for all object categories and four offsets are computed for each prior. However, 
a large number of boxes will not contain any object therefore it is essential to perform a 
non-maximum suppression to produce the final detections. By combining predictions for 
all priors from all locations of many feature maps, the predictions become diverse and cover 
objects of many various shapes and sizes. 
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Figure 2.6: Exemplary feature maps of different sizes (e.g. 8 x 8 (left) and 4 x 4 (right)). 
Each location is assigned a set (e.g. 4) of priors of different aspect ratios and scales. Each 
box is then predicted with both the shape offsets and the confidence for all object categories. 
Source [19]. 

2.2 Object Tracking Methods 

Since the object detection is applied on the whole sequence of frames from the video, it 
would produce many redundant results since the subsequent frames are very similar. To 
avoid this issue, the object tracker can be employed to assign IDs to individual objects and 
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Figure 2.7: Left: A n example of inaccurate position and velocity sensor readings. 
Right: The position and velocity are correlated. The faster the object is, the bigger the 
change that it will travel further and vice versa. 

then the tracker carries them forward across the following frames. This way the system is 
able to capture only one representative sample for each license plate that appears in the 
video. 

A n auxiliary algorithm called the Kalman filter is used to predict possible object loca­
tions in the future and it is presented in 2.2.1. SORT method focuses on the simplicity and 
real-time application which is described in 2.2.2 and its successor Deep SORT which on top 
of that applies deep association metric is summarized in 2.2.3. 

2.2.1 Ka lman Filter 

In 1960, R . E . Kalman published his paper [15] describing a recursive solution to the discrete-
data linear filtering problem. Named after him, the Kalman filter can be exploited to track 
the license plates in the image sequence. Based on information that is uncertain, it produces 
an educated guess of what the dynamic system is going to look like in the next step. The 
main idea is that the sensor readings (the outputs of the object detection method in our 
case) are not always totally accurate. The Kalman filter improves the overall accuracy by 
combining the sensor readings with its own prediction of the next step in the system. 

To formulate a prediction, the Kalman filter needs information about the current state 
read from the sensors. It then gathers more information about the measured data by apply­
ing the correlation captured in the covariance matrix. In another words, one measurement 
can indicate something about what the others could be as illustrated in the example Fig­
ure 2.7. 

The next step is to predict the future state. It is usually done by using formulas 
represented by the state transition matrix that logically corresponds to the measured values. 
In the case of the position and velocity, it would be the basic kinetic formula. This matrix is 
used on the whole distribution of the sensor readings and its noise. The covariance matrix 
then needs to be updated. 

However the prediction is not over yet. There might be some external influences that 
are not related to the state itself but still affect the system. If these additional influences 
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are known they can be modeled by the control matrix and control vector and be added to 
the prediction as a correction. Moreover, there could be some external uncertainty that is 
not being tracked. To include this into the estimation, the Kalman filter adds the process 
noise that can be constant after every prediction step as shown in Figure 2.8. 

new uncertainty 
around Xk 

O * * •» 

o 

' Xk-1 

> 

velocity 

Figure 2.8: The transition of the state xt-i into xt with external uncertainty taken into 
consideration. This is done for every state in the original estimation which produces a 
bigger Gaussian blob. 

The final stage is to incorporate a new noisy measurement into its prediction. The noisy 
measurement is a single Gaussian blob, where the noise is modeled as covariance matrix. To 
put this information together, the Kalman filter multiplies both Gaussian blobs producing 
only their overlap. If there is a strong confidence about the prediction, this overlap can be 
adjusted before the multiplication by setting the measurement noise level high so that it 
leans more towards the prediction blob. In the same manner, the measurement noise can be 
set to low emphasizing the sensor readings. This is called the Kalman gain and it specifies 
how much the estimate is going to change by a given measurement. Finally, the mean of 
this newly created overlap is the final product of the Kalman filter describing the current 
state of a dynamic system. It is more precise than if the measurements or predictions were 
treated individually and it represents the optimal solution for the tracking problem. 

2.2.2 Simple Online and Real-Time Tracking 

Simple Online and Real-Time Tracking (SORT) is an algorithm used for multiple object 
tracking published by Bewley et al. [2]. It ignores a lot complex issues such as an object 
re-identification or short-term, and long-term occlusion. Instead, it focuses on efficient and 
reliable handling of the common frame-to-frame associations. Due to its simplicity it needs 
only the bounding box positions and sizes to estimate both motion and data association. 

The state of each tracked target is modeled as: 

x = [u, v, s, r, u, v, s]T 

Where u and v represent the vertical and horizontal pixel of the center of the target, s and 
r represent the scale (area) and the aspect ratio of the target's bounding box. u, v, and s 
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denote the target's predicted state via the Kalman filter 2.2.1. Note that r is considered a 
constant. 

When the object detector outputs the bounding boxes, they are assigned to the existing 
targets by maximizing the IoU distance between each detection and all predictions. The 
assignment is rejected if the overlap is less than IoUmin. In this case the state is simply 
predicted without any corrections. However, if the target is not assigned for T^ost frames, 
the track will get terminated. To create a new track the SORT considers any detection 
with overlap less than IoUmin as a new untracked object. 

2.2.3 Deep S O R T 

Figure 2.9: A n example of Deep 
SORT output on the M O T challenge 
dataset [20] in a common track­
ing situation with frequent occlu­
sion. Source [30]. 

Simple Online and Real-Time Tracking with a Deep 
Association Metric (Deep SORT) was published by 
Bewley et al. [30] as an extension to SORT 2.2.2. A n 
exemplary output of Deep SORT is shown in Fig­
ure 2.9. It minimizes the issue with identity switches 
and it performs better at tracking through occlu­
sions. This is accomplished by incorporating more 
informed metric that combines motion and appear­
ance information into the association stage. 

The motion metric is obtained by using the Ma-
halanobis distance. It provides possible object lo­
cations based on motion and it is useful for short-
term predictions. It takes the uncertainties from 
the Kalman filter into account by effectively measur­
ing the distance between two distributions. Further, 
thresholding this distance can exclude unlikely asso­
ciations. 

The appearance information is helpful to recover identities after long-term occlusions. A 
pre-trained C N N is applied for each bounding box detection and it computes an appearance 
descriptor. It is able to extract features in a way that features from the same identity are 
close together while maintaining the features from the different identities far away in the 
feature space. In combination, both metrics complement each other by serving different 
aspects to the assignment problem. Influence of each metric can be controlled through 
hyperparameter as needed. 

In comparison to SORT, the experimental results show that the number of times when 
the ID switches to a different previously tracked object was reduced by approximately 
45%. There is also a significant increase in maintaining identities throughout the longer 
occlusions. Although the runtime drops around 33% due to the algorithm's complexity, it 
remains able to work in real-time. 

2.3 License Plate Recognition Methods 

Once we obtain a cropped image of a license plate, Optical Character Recognition (OCR) 
methods can be applied to produce the desired plain text. One of the advantages over the 
hand written text is that license plate characters are fairly uniformed, which makes this task 
easier. Nonetheless, there are still many challenges to face. This section describes some of 
the methods which focus on character segmentation and character recognition 2.3.1, 2.3.2 as 
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well as on holistic methods that perceive a license plate as a whole and avoid the character 
segmentation 2.3.3, 2.3.4. 

2.3.1 Template Matching 

The template matching approach was summarized 
in [22] by Poorvi Hedau et al. It is decomposed into 
character segmentation and character recognition. 

At first, the input image with an extracted license 
plate is being converted into a grayscale. Contrast 
and brightness adjustments as well as noise removal 
by using median filtering follow up. The next step is 
to identify and segment all characters. The bounding 
box method is used to map each character into a 
single image. 

This method then compares portions of individ­
ual characters against the templates 2.10. Matching 
is pixel to pixel based and it moves the template over 
all possible positions in the input image. As a result, 
it produces a coefficient indicating the deviation between the template and the input image 
in a certain position. If the deviation is small enough, the template is considered as the 
resultant character. 

Experimental results of this method conducted by Poorvi Hedau et al. are shown in 
Table 2.1. 

Total License Total Total Total Percentage 
Plates Number of Correct A l ­ Incorrect A l ­ of correctly 

Alphanu­ phanumeric phanumeric recognized 
meric Recognition Recognition Alphanu­

meric 
118 1108 972 135 87.72% 

Table 2.1: The experimental results of Template Matching. Misrecognized alphanumeric 
are common characters similar in shape such as O vs. D, 5 vs. S or 8 vs. B . Source [22]. 

2.3.2 Support Vector Machine Based Recognition System 

A Support Vecotr Machine (SVM) is a supervised machine learning model. It was used by 
Wen et al. [29] or by Parasuraman and Subin P.S [17] for license plate recognition. 

This method requires character segmentation. It takes a cropped license plate image as 
an input and resizes it to a given width and height. Then it executes horizontal and vertical 
correction because license plates are prone to slant and distort due to different angles of 
orientation. Consequently, image gray equilibrium is performed and afterwards the whole 
image is binarized. Next, the projective technique is used to segment each character which 
is later resized to a uniform size. 

Several different features are then extracted from each character to be classified by a pre-
trained S V M . The S V M is able to find a hyperplane in an A-dimensional space (./V - the 
number of features). It separates two classes of data points, thus creating a boundary. 

\MEEEXB 
Figure 2.10: Example of character 
templates. Source [21]. 
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Figure 2.11: A n example of the S V M . The two classes of data points (red and blue dots) 
are separated by a hyperplane. In 2-dimensional space, the hyperplane is a line. The line's 
blue background represents the maximum possible margin between data points from both 
classes. Source [16]. 

Then a class can be assigned to anything that falls onto either side of the hyperplane. The 
objective is to find the hyperplane that has the maximum margin from data points of both 
classes so that it can predict future data points more confidently. A n example of the S V M 
is shown in Figure 2.11. Since S V M usually classifies in only two pattern classes, license 
plate recognition approaches this issue as a series of binary classification problems. After 
all possible characters are tested one by one using individual SVMs, the result with the 
highest confidence is chosen. 

Although this method achieves satisfactory overall performance, it has the drawback 
that it heavily relies on correct character segmentation. Moreover, there must be pre-
trained classifiers for each corresponding character. 

2.3.3 License Plate Recognition by using Deep C N N and Long Short-
Term Memories 

L i and Shen have developed a novel approach for license plate recognition by using deep 
C N N and long short-term memories (LSTMs) [18]. This method omits segmentation of 
license plate characters, which should be highlighted. The reason is, proper character 
segmentation has a major influence on the whole recognition process. If the segmentation 
is executed poorly due to challenging conditions such as image blur, shadows, noise, etc., 
it will lead to incorrect recognition no matter how robust the recognizer is. 

This method could be broken down to the three stages, as shown in the in Figure 2.12. 
To begin, the input image of the license plate needs some preprocessing. It is converted 
into a grayscale, padded with additional pixels on both left and right side and resized to 
the height that matches the input height of the C N N model. After, the C N N extracts a 
sequence of feature vectors from the image. 

In order to complete the task of character string recognition, it is very helpful to have 
access to the past and the future context information. These contextual clues will make 
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Input linage 

C N N based sequence 
feature extraction 

B R N N based 
sequence labelling 

C T C based 
sequence decoding 

Recognized license plate 

Figure 2.12: The workflow of the method proposed by L i and Shen. In the first section, 
the feature sequence is extracted from the input image by using the C N N . Then in the 
second section, BRNNs with L S T M s process the sequence labelling. Finally, C T C decodes 
the produced sequence into a character string. Source [18]. 

the process more stable than treating each feature independently. Therefore Bidirectional 
Recurrent Neural Networks (BRNNs) are applied to help capture the interdependencies 
between the features. There are two separated hidden layers in BRNNs. One of them 
processes the feature sequence forwards for the future context information, while the other 
one processes it backwards for the past context information. The L S T M s are also employed 
to store contexts for a long period of time and capturing long-range dependencies between 
the features. 

Sequence labelling is then done by recurrently implementing B L S T M s for each feature in 
the feature sequence. The state of the current feature is updated with both its own state and 
the state of the past or the future neighbour feature. After, the soft-max layer transforms 
L S T M s ' states into a sequence of probability distribution over 37 classes (26 upper-case 
letters, 10 digits, and 1 non-character class). Subsequently, the whole feature sequence is 
transformed into a sequence of probability estimations. Finally, a Connectionist Temporal 
Classification (CTC) [12] is applied to the output layer of R N N . It decodes the prediction 
sequence into a character string. 

This segmentation-free method was the first of its kind. The experimental results have 
proven higher accuracy than methods that use character segmentation. It is robust to 
various illumination, rotations, and distortions in the image. However, it is only focused 
on standard high-quality images of the license plates. 

13 



2.3.4 Holistic Recognition of Low Quality License Plates by C N N 

Holistic Recognition of Low Quality License Plates by C N N using Track Annotated Data 
was published by Adam Herout et al. [31]. 

This method focuses on a holistic approach, meaning it perceives the license plate as 
a whole. The architecture of this solution is designed for maximum of 8 characters per 
license plate. It uses one C N N to process the whole R G B image. The last convolutional 
layer is connected to 8 branches of fully connected layers, each with 36 outputs. This 
way every branch predicts one character on the same position in the license plate text 
every time. Figure 2.13 demonstrates where the fully connected layers search for their 
respective characters. It represents the mean of weights in the first fully connected layer 
which corresponds to different spatial locations. The 4 t h character does not have a clearly 
given blob since in majority of training license plate texts was the 4 t h spot designated as 
the blank fill character. 

Figure 2.13: The demonstration of where the fully connected layers search for their respec­
tive characters. Left to right, top to bottom: 1 s t to 8 t h character. In most cases in the 
training data, the 4 t h character is a blank fill character. Source [31]. 

The solution proposed in this work can also deal with license plates having less than 8 
characters. It simply fills the missing characters with the blank fill character ( „#" ) during 
the training phase. However, it is limited by the highest number of characters that the 
net is trained for. Moreover, it is unable to recognize multi-line license plates as it expects 
all characters to be in one line. Nevertheless evaluation results on multiple datasets prove 
that this method greatly surpasses other commercial solutions for low quality license plate 
recognition. 
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Chapter 3 

License Plate Datasets 

Multiple annotated datasets were acquired for the purposes of this work. Ideally, they 
should all simulate real world conditions. This means that the license plates should be 
blurred, partially obscured, distorted, vary in lighting conditions, etc. 

On top of that, both the license plate detector and license plate recognizer require 
different kinds of images and annotations. The detector not only needs the license plate 
image but also a significant amount of background around it. The dataset should also 
contain the annotations of coordinates of the bounding box corners. On the other hand, 
the recognizer works with only already cropped license plate images and their annotations 
in form of ground truth labels. 

Details on both kinds of datasets for license plate detection 3.1 and license plate recog­
nition 3.2 are provided below. 

3.1 Dataset for License Plate Detection 

One dataset for license plate detection with manually verified bounding box annotations 
was provided by my supervisor Ing. Juranek, Ph.D. The dataset was recorded from seven 
different locations by surveillance cameras placed above the roads under different light 
conditions. It contains 1013 images each with 1920x1080 resolution. A l l images were 
captured from the frontal view of the vehicle thus every license plate is more or less parallel 
with the bottom border of the image. The majority of license plates come from the Czech 
Republic with a standard European design. There are always one or more license plates in 
an image. Random samples of the datasets are shown in Figure 3.1. 

Figure 3.1: Random samples of the license plate detection dataset. Note; the license plates 
are not distorted and there are different light conditions. 
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Following a good splitting practice, I have decided to divide the dataset into the training 
and testing parts in a ratio of 80/20. This proportion is based on the Pareto Principle which 
is also known as 80/20 rule. It states that roughly 80% of the effects come from 20% of 
the causes. This results in 809 images for the training and 204 for the testing. Note that 
the seven sets of images from different areas were split independently to prevent the data 
being imbalanced. 

3.2 Datasets for License Plate Recognition 

Two novel real world (non-synthetic) user-annotated datasets of low quality images Reld 
and HDR, previously collected and used by Adam Herout et al. for their research [31], 
were acquired for the license plate recognition. The following sections describe each dataset 
acquisition 3.2.1 as well as datasets specifics, ground truth assignment, and division into 
training and testing parts 3.2.2. 

3.2.1 Datasets Acquisition 

As stated in the paper [31] „Multiple videos from various locations and under different 
conditions were recorded for Reld dataset. The data was captured by Full-HD video cameras 
placed on bridges above the highway, simulating surveillance cameras on toll gates. 9.5 
hours of license plate recordings were collected in total from eight different locations during 
various times of the day. Samples of recorded data are shown in Figure 3.2. License plates 
were then automatically detected using a pretrained detector. 

Figure 3.2: Samples of recordings from different camera locations. Source [31]. 

H D R dataset was captured by Digital Single Lens Reflex (DSLR) camera with three 
different exposures. License plates were hand-cropped from the images. Samples from H D R 
dataset are shown in Figure 3.3". 

Figure 3.3: Randomly selected samples from the H D R dataset. Source [31]. 
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3.2.2 Datasets Specifics and Ground Truth Assignment 

The Reld dataset consists of user-annotated 
tracks (a sequence of the same license plate in 
the video) that can be seen in Figure 3.4. This 
enables a person to annotate the tracks with at 
least one human-readable license plate therefore, 
it provides ground truth labels for the rest of 
the images on the track which could be natu­
rally blurred, small, partially covered, or hardly 
readable in general. This is very convenient for 
building a very robust license plate recognizer. 
The number of characters on the license plates 
ranges from 5 to 8 in both datasets. Note that 
the license plates are only European. 

Following an already existing distribution of 
subsets proposed in [31], the Reld dataset is split 
into training and test parts per video. This guarantees an appropriate evaluation because 
the training and testing samples come from mutually exclusive sets of videos. The training 
part contains 7,393 tracks (105,924 images) and the testing part contains 6,967 tracks 
(76,412 images). The H D R dataset is used exclusively for evaluation. It does not contain 
tracks but only a total of 652 user-annotated images. It is worth noting that some of these 
images contain rotated license plates which differ from the ones used for training. 

Figure 3.4: A n example of license plate 
track. The whole track can be annotated 
as long as at least one of the license plates 
is human-readable. Source [31]. 
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Chapter 4 

Design Proposal for the Real-Time 
Traffic Surveillance Tool 

The goal of this work is to design, implement and test a system that would be able to 
successfully detect and recognize license plates from video recordings from a stationary 
camera in real-time by using neural networks. The following sections provide a system's 
architecture design 4.1 along with an assessment of the current state of the art and propose 
a draft for the license plate detection 4.2, tracking 4.3, and recognition 4.4. 

4.1 System's Architecture 

The system will be designed to make use of the TensorFlow 1.15.2 G P U version. The 
TensorFlow is an end-to-end open source platform for machine learning written in Python, 
C+-1- and C U D A and it can run on various platforms. The final application should work on 
Ubuntu 16.04 or later (64-bit) and Windows 7 or later (64-bit). The code will be written 
in Python 3.6. The architecture of the system is illustrated in Figure 4.3. The system will 
be composed out of three main parts: 

• License Plate Detector 

• License Plate Tracker 

• License Plate Recognizer 

Initially, the input video stream will be loaded from the provided program argument 
in form of a file path or a link to an IP webcam. Next, every nth frame from the input 
feed will be extracted, resized to 400x225 pixels and passed to the detector. The detector 
will then find possible license plate locations with a certain confidence and output an array 
where each element will compose a [ x m i n , y m i n , x m a x , y m a x , confidence]; xmin and ymin 
are coordinates of the upper left bounding box corner and x m a x with ymax denote the lower 
right corner. The coordinates are relative to the image size meaning they will always have 
values ranging from 0 to 1. The confidence indicates how likely the object is classified as a 
license plate. The boxes with a confidence below a predefined threshold will be eliminated. 

Then, such arrays will be forwarded to the tracker in order to monitor each plate 
throughout the scene. If the tracker assigns an ID to a license plate in the image, it will 
return a similar array with the ID in the last column. These outputs from the tracker will be 
used to form tracks [ID, frame, [x m i n , y m i n , x m a x , y m a x ] , confidence, timestamp, age]. 
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The timestamp will use the hh:mm:ss dd/mm/yyyy format e.g. 09:45:35 20/04/2020. If 
there is another detection with a higher confidence of the same license plate, the track will 
be replaced with the more confident one. This ensures that the recognizer will potentially 
receive the best detections and it will not get overloaded with multiple images of the same 
object. The system will wait until the license plate leaves the scene, in the sense that 
the plate will not be spotted for several consecutive frames and the track will reach the 
maximum age. Then, the track will be stored in a queue for the recognizer. Note that 
the coordinates will be multiplied by the frame width and height to be converted in the 
absolute form and padding of 10 pixels will be added for better recognition results. 

Wi th each frame, the recognizer will check for the data in the queue. If successful, it 
will crop the frame by the given bounding box coordinates and run the inference. As a 
result, it will enrich the data by the recognized text and its probability. 

Finally, the data will be saved into the database. The SQLite library will be used be­
cause it provides a lightweight disk-based database and does not require a separate server 
process. The database will consist of the following elements: ID, text, confidence, 
Xmim ymim x m a x , y m a x , timestamp, image. The ID is a primary key and it is auto­
matically generated by the database. Since it is not a good practise to save images to 
the database, the images are given an unique name and are saved into a separate folder. 
Therefore the database column image only refers to the images by their names. 

The data from the database may be used to check whether a vehicle a with given license 
plate has passed the area that is covered by the surveillance camera and at what time it 
happend. It may also serve for statistical purposes such as calculating the average traffic 
flow and many others. 

I S G 491251 1LASI ABC 
Figure 4.1: Most commonly used formats of license plates in Europe. Black on white (left). 
Black on yellow (right). Source [3]. 

Since all of the datasets only contain European license 
plates, the system is intended just for that selection. Although 
European license plates slightly differ in every country, it is 
safe to say that they have rectangular shape and most of them 
use the standard black on white or black on yellow format. 
Examples of such formats are shown in Figure 4.1. Typically, 
countries ban certain characters for their interchangeability. 
For Example in the Czech Republic letters G, C H , O, Q, and 
W are not allowed [1]. 

Every license plate issued in the member state of the Eu­
ropean Union (EU) must have a reflecting blue zone on the 
extreme left with twelve stars representing the European flag 
and up to three characters distinguishing the state of registration [4]. Several non-EU 
states have developed a similar design with national flags or other symbols instead of the 
European flag. Examples of blue zones are illustrated in Figure 4.2. 

* * * 
* * 
* * 
* * n 
D UA 

Figure 4.2: Examples of the 
blue zones on the European 
license plates. Source [3]. 
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Figure 4.3: The proposed architecture of the system for a real-time traffic surveillance. 

20 



4.2 License Plate Detection 

Over the years, object detection has been widely used and many diverse methods have 
been developed. These methods can be trained for detecting various desired object classes 
if they are supplied with a sufficient dataset. Every method has its pros and cons, usually 
it sacrifices speed over accuracy or vice versa. 

Even though this work's detector is supposed to run in real-time, it is not necessary to 
capture every single frame of the video recording. To provide reasonably good input for 
the tracker and the recognizer, it is enough to extract just a few images per second. The 
goal is to aim for around 10 fps. Thanks to this the architecture can afford to use slower 
but more precise approaches while not suffering from the lack of the input data. 

For the purposes of the license plate detection, I have decided to make use of the 
TensorFlow Object Detection A P I [13] and its source codes on Gi tHub 1 . The TensorFlow 
provides several object detection models (pre-trained classifiers with specific neural network 
architectures). For the sake of accuracy, I have chosen the Faster-RCNN-Resnet50 model. 

The detector will be trained and tested on the dataset described in 3.1. The training 
will be done on the G P U for extra processing power and it will proceed until the loss will 
consistently move around 1. 

Metrics from the latest Pascal V O C Challenge 2012 [5] will be used for the object 
detector evaluation. Individual detections are categorized based on the overlap with the 
ground truth bounding box into three groups: 

• True Positive (TP): A correct detection. loll > 0.5 

• False Positive (FP): A n incorrect detection. loll < 0.5 

• False Negative (FN): A ground truth bounding box is not detected. 

If multiple detections of the same object are detected, it only counts one of them as a 
positive while the rest are negatives. The precision which identifies the system's ability to 
identify only the relevant objects is calculated as: 

TP 
Precision TP + FP 

Note that the precision applies only for the objects that were found and does not take false 
negatives into consideration. The recall measures the success rate of the model to find all 
ground truth bounding boxes. It is given by: 

TP 
Recall TP + FN 

A good way to evaluate the object detector is to order the detections by their confidences, 
calculate the precision and recall and create a precision-recall curve 4.4. The area below 
the curve is defined as Average Precision (AP) . Nevertheless, in practice the precision-recall 
curve is being interpolated across all data points. The intention is to reduce the impact 
of the small deviations within the curve. The interpolation process is shown in Figure 4.5. 
The resultant A P ranges from 0 to 1 and it will serve as a metric for evaluation. 

As a result the license plate detector model should be capable of processing several 
images per second and extracting objects classified as license plates together with their 

x

https: / / github.com/tensorf low/models/tree/master/research/obj ect_detect ion 
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Figure 4.4: A n exemplary precision-recall curve. The precision usually starts with high 
values and decreases while the recall increases. Source [14]. 

bounding box coordinates with certain confidence. By changing the confidence threshold 
the amount of detected objects considered as correct can be effected. There is room for 
experimenting but in general the aim is to try to achieve the highest A P possible. 

4.3 License Plate Tracking 

Due to the recent progress in object detection, tracking-by-detection has become the leading 
paradigm in multiple object tracking. Wi th powerful state of the art object detectors, it 
is possible to employ object trackers where the detection quality strongly influences the 
tracking performance. The authors of SORT 2.2.2 have made an assertion that states 
modern object detection algorithms can do most of the work and object tracking can be 
reduced to simple heuristics. 

I have chosen to use SORT for several different reasons. It is designed for real-time 
applications and is therefore capable of achieving a high processing speed. Moreover, it 
omits handling issues such as identity switches or object re-identifications which should 
rarely happen when surveilling traffic with a stationary camera. 

After the detection is done, the object tracker will receive an array of bounding boxes 
with their respective confidences. As a result, it will output a similar array with assigned 
IDs. However, the aim is to select only one instance per plate throughout the scene with the 
highest confidence. In order to do this, the tracker will keep a list of currently tracked objects 
which will contain [ID, frame, x m i n , y m i n , x m a x , y m a x , confidence, timestamp, age]. 
The age symbolizes the number of frames the object was lastly assigned. If the same object 
is spotted multiple times and if the new occurrence has a higher confidence, the list will 
be updated; otherwise it will be ignored. After the object is no longer spotted for T^ost 

frames, it will be removed from the list and it will get added to the queue waiting for the 
recognition. Note that the ID, confidence, and age is no longer needed so it will be excluded. 

Thost will be set to 1, which is the same as in the other conducted experiments in [2]. 
loUmin parameter is subject to change. The authors of the SORT used 0.3. Nevertheless 
it is apparent that it can be set to a lower value, approximately around 0.1, since license 
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Figure 4.5: The green line represents an interpolated precision-recall curve while the or­
ange line is the original one. The interpolated precision values are obtained by taking 
the maximum precision of those whose recall value is greater than its current recall value. 
Source [14]. 

plates do not tend to cluster together as much as other objects. This decision should help 
robustly track individual objects and thus prevent perceiving the same object as a new one 
after losing its track. 

4.4 License Plate Recognition 

The first license plate recognition method was employed in 1976. Since then, many research 
groups have proposed their own methods to improve the state of the art at that time. 
Nowadays many solutions typically depend on character segmentation. However, this may 
be the accuracy bottleneck as improper segmentation caused by many different challenging 
factors makes the rest of the recognition process impossible. 

It has been proven by Goodfellow et al. [11] that CNNs with segmentation-free ap­
proaches are capable of multi-character text recognition. Motivated by this fact and inspired 
by [18], I have chosen to determine this stage of the system using a holistic approach. 

130 px 32 px 

420 px 128 px 

Figure 4.6: The cropped license plates will be resized to 128x32 pixels without any distor­
tion. In another words, the image will keep its aspect ratio and any extra space will be 
filled with white pixels. 

The system will consist of 5 C N N layers, 2 R N N (LSTM) layers, and the C T C loss and 
decoding layer. First, the license plate will be cropped from the input image and will be 
resized to 128x32 pixels without any distortion. Any extra space will be filled with white 
pixels as shown in Figure 4.6. The image will then be turned into a grayscale and fed to the 
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C N N layers to extract its features. Consequently, the L S T M implementation of R N N will 
be used to propagate relevant information through the sequence. Finally, the C T C layer 
will compute the loss value during the training or it will decode the output of the R N N 
layers into the final text. 

The system will be implemented by using TensorFlow 1.15.2 and it will run on the G P U . 
The training and testing is going to be performed on Reld and H D R datasets as described 
in 3.2.2. Additionally, 5 % of the training part will be excluded for the validation purposes. 
After each epoch of training, the validation will be done and if there are no improvements 
in the character error rate in 5 consecutive epochs, the training will be terminated. The 
model will be evaluated based on the Character Error Rate (CER) and the Word Error 
Rate (WER) . 

character errors 
CER 

WER 

all characters 
word errors 

all words 
As a result, the recognizer should output several characters per image with a certain con­
fidence representing the prediction of the license plate text. 
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Chapter 5 

Implementation and Testing of the 
Real-Time Traffic Surveillance Tool 

The training and the employment of the models require a powerful hardware and is very 
time intensive. In order to speed up the process, a cloud service for machine learning and 
research called Google Colaboratory 1 was utilized. It is a Jupyter notebook environment 
with the TensorFlow already pre-installed and optimized for the hardware being used. It 
provides two Intel Xeon CPUs at 2.30 GHz, N V I D I A Tesla P100-PCIE-16GB G P U , and 
13 G B R A M . 

The following sections describe the training and experimental results of the license 
plate detector 5.1 and recognizer 5.3. The license plate tracker implementation and its 
demonstration is summarized in section 5.2. Finally, the last chapter 5.4 covers topics 
including how to work with the tool and the necessary dependencies. 

5.1 License Plate Detector Training and Experimental Re­
sults 

Originally, the object detection was designed to make use of one of the TensorFlow pre-
trained models Faster-RCNN-Resnet50. However, with the computational power available, 
it was not capable of achieving the desired speed. On average, it processed only 4 fps when 
working with videos of 720x480 or 1280x720 resolution. For this reason, another model 
from TensorFlow detection model zoo 2 called SSD-MobileNet-v2-COCO was selected. It is 
supposed to be three times faster yet it suffers from less accuracy especially when detecting 
small objects like the license plates. 

The first step was to convert the dataset into the TFRecord format that is supported 
and recommended by the TensorFlow. TFRecord is a simple format for storing a sequence 
of binary records and it positively influences the training time. 

Then the model was trained for ~15,000 steps or 5.5 hours. It was terminated when the 
loss kept stagnating around the value 1 for the last 5,000 steps. Nonetheless, the results of 
the experiments executed on the testing part of the dataset came out unsatisfactory with 
the highest A P reaching only 88.63%. Therefore, the model was retrained for a longer 
period of time on a newly created and augmented dataset. 

x

https: //colab.research.google.com/notebooks/intro.ipynb 
2

https: //github.com/tensorf low/models/blob/master/research/object_detection/g3doc/ 

t i l detection zoo.md 
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Figure 5.1: Random examples of the images after the dataset augmentation. The top left 
image is the original one. 

The augmentation was performed on every image from the training part of the dataset 
via the python library imgaug'\ Each image was modified by 1 to 9 transformations in a 
random order. 

• Rotation from - 1 0 ° to 10° 

• Shear of the x axis from —20 ° to 20 0 

• Shear of the y axis from —20 ° to 20 0 

• Scale of the x axis from 0.5 to 1 

• Scale of the y axis from 0.5 to 1 

• Adding the Gaussian noise with the standard deviation of the normal distribution 
that generates the noise ranging from 10 to 60 

• Brightness multiplication from 0.6 to 1.5 

• Contrast with low severity i.e. low strength of the corruption 

• Motion blur using a kernel of size 10 

Each image resulted in 19 slightly modified new images as well as their corresponding bound­
ing boxes. These images have kept their original resolution therefore if scaling, shearing, 
or rotation were applied, the empty spaces would be filled with black pixels. Additionally, 
the overlaying parts along with the bounding boxes would be clipped. Random examples 
are shown in Figure 5.1. 

The second training on the augmented dataset lasted for ~44,000 steps or 17.5 hours. 
The course of the training was observed via a Tensorboard. It is a TensorFlow's toolkit 

3
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Figure 5.2: A graph showing the loss during the training on the augmented dataset. The 
light orange shows the original values. The dark orange represents the values after the 
smoothing (exponentially weighted moving average) with weight = 0.7 was applied. 

for visualization of machine learning experimentation. A graph of the loss provided by 
Tensorboard is shown in Figure 5.2. 

Different confidence thresholds were evaluated on the testing part of the dataset as 
shown in Table 5.1. The highest A P achieved was 98.15% while having the confidence 
threshold set to 0.1, 0.2, or 0.3. The threshold 0.1 was chosen for this work as it seems like 
the A P increases when the confidence threshold decreases. Moreover, even the less accurate 
detections can be helpful for the license plate tracker. The precision-recall curve for the 
threshold 0.1 is illustrated in Figure 5.3. 

Precision x Recall curve 
Class: plate, AP: 98.15% 

1.000 
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recall 

Figure 5.3: The precision-recall curve for the evaluation of the license plate detector. The 
experiments were conducted on the detections with the confidence value higher than 0.1. 
The recall, which is an important factor for the license plate tracker, reached 0.99. 
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confidence threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
1 s t training A P (%) 88.63 88.63 87.87 87.10 85.18 83.26 80.96 79.80 
2 n d training A P (%) 98.15 98.15 98.15 97.74 96.51 94.05 91.99 89.10 

Table 5.1: The results of the experiments executed on the training part of the object 
detection dataset. The first training was performed on the original dataset while the other 
training was performed on the augmented one. The A P grows as the confidence threshold 
decreases until it reaches the point where there are no more detections with less confidence 
than the previous higher threshold. 

Given the Google Colaboratory computational power, the detector is able to process 
a video with resolution 1280x720 with a speed of roughly 14fps. When working with 
smaller videos with resolution 720x480 the detector reaches around 15fps. The output of 
the detector is illustrated in Figure 5.4. 

Figure 5.4: The visualized output of the detector — predicted bounding boxes with their 
respective confidences. 

5.2 License Plate Tracker Implementation and Demonstra­
tion 

The license plater tracker used the original implementation of SORT that was written in 
Python by its creators'1. Nevertheless, there were a couple of adaptations that needed to 
be done. 

Due to its nature, the SORT performs poorly if it works with small bounding boxes, as 
opposed to the larger boxes. Only a small deviation in the prediction can result in a denial of 
the assignment. Therefore, the coordinates of the bounding boxes get expanded before they 
are fed to the tracker and then the reverse process is used to retrieve the original coordinates 
back. Figure 5.5 shows the difference between the normal boxes and the expanded ones. 
The width of the detection gets stretched by three times and is distributed equally on both 
sides. The height gets enlarged by nine times and is distributed upwards and downwards 

4
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in a ratio of 5:1. It covers more of the upper section above the license plate because it will 
very likely only overlap with the rest of the vehicle and it will not collide with the other 
detections. 

Figure 5.5: The green bounding boxes are the original detections. The red bounding boxes 
are expanded for better tracking performance. The expansion grows mainly upwards since 
it will mostly likely cover only the rest of the vehicle and it will not collide with the other 
bounding boxes. 

Another issue is the detector may not always be correct. The position of the detection 
can be either a little off or the license plate may not get spotted even up to several times 
in a row. This can lead to loosing track of the license plate and possible re-identification 
later but with a different ID. To prevent this, the T^ost was raised to 5, meaning the ID has 
5 frames to get assigned again before the track gets terminated. However, the predictions 
from the Kalman Filter get less accurate with each frame that has no detections and they 
can become difficult to assign. For this reason, the IoUmin was set to 0.1 to tolerate greater 
mistakes accumulated over time. The impact of the IoUmin = 0.1 is illustrated in Figure 5.6. 

Figure 5.6: The upper line shows the results for IoUmin = 0.1; the bottom line for 
IoUmin = 0.3. The video was processed by only 3 fps to induce the inaccurate predictions. 
Left: The license plate gets assigned an ID (359). Center: The ID is not assigned due to 
the poor prediction. Right: The same ID is again assigned to the license plate but only 
with the lower IoUmin. 
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5.3 License Plate Recognizer Training and Experimental Re­
sults 

The license plate recognizer training and implementation was adapted from the Handwritten 
Text Recognition (HTR) system created by Harald Scheidl [27] and its publicly shared 
source codes5. It is expected that the dataset is compatible with the I A M dataset6, therefore 
the first step was to convert the Reld and H D R datasets 3.2.2 into the required format. 

Then the model was trained in the Google Colaboratory environment for 6 epochs or 
21 hours. However, the training pace was unsatisfactory due to the large amount of files 
being slowly read from the Google Drive. For that reason, the training was resumed on 
the local machine with Intel Core i5-6198DU C P U at 2.30 GHz, N V I D I A GeForce 930MX 
G P U , and 8 G B R A M . Despite the worse hardware specifications, the overall training 
speed improved by more than 4.5 times. The training continued from the last checkpoint 
for another 28 epochs or 21 hours. It was executed after 5 consecutive epochs with no 
improvement while the loss was consistently moving around 0.1. 

The experimental results of the recognizer are shown in Table 5.2. The recognizer is able 
to correctly infer alphanumerical characters 0123456789ABCDEFGHIJKLMNPQRSTU-
V W X Y Z . Wi th the previously mentioned hardware setup, it can recognize 39 frames per 
second with the average size of 9.5 kilopixel or 46 frames per second with the average size 
of 5 kilopixel respectively. 

Character Error Rate (CER) Word Error Rate (WER) 
Reld validation subset 0.846581 % 4.4% 
Reld testing subset 0.584667% 2.019343% 
H D R dataset 8.146684% 21.47239% 

Table 5.2: The experimental results of the trained license plate recognizer. 

5.4 The Applicat ion Usage 

There are several dependencies that must be installed before running the application. A l l 
of the required modules can be found in the requirements.txt file. The application is called 
alpr.py and has the following synopsis: 
a l p r . p y [ -h ] - s <source> - d < d e s t i n a t i o n > ( - i < i m g _ d i r _ d e s t i n a t i o n > | - v ) 
Table 5.3 describes the program arguments. It can run in two different modes. When the 
- v switch is applied, outputs of the detector and recognizer are rendered into the frames 
which are used to create a new exemplary video. The result of this mode can be seen in 
Figure 5.7. Although the tracking is turned off because it is no longer necessary, this mode 
does not fulfil the real-time characteristics due to the need to process every single frame. 
The second mode is the default one that has been reviewed before; it runs in real-time and 
saves the data into the database. 

Standard output information such as the recognized license plate text, its probability 
and the timestamp are written to the stdout. If an error occurs, the exception is raised and 
the error is emitted as a command-line message to the stderr. 

5
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Argument Description 
-h, —help Shows the help message and exits 
-s, —src The source video stream 
-d, —dest The database or the output video destination 
- i , —img_dir_dest The image directory destination 
-v, — video_output The program will produce a video output 

Table 5.3: The description of the alpr.py arguments. 

Figure 5.7: A n example of the video output mode showing the bounding boxes and license 
plate texts. 
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Chapter 6 

Conclusion 

The goal of this Bachelor's thesis was to design, implement, and test a system that would 
be able to detect and recognize license plates in real-time by using neural networks. The 
collected data should be saved to a database or used to produce a new video for the 
demonstration purposes. Such a system was developed in Python and can be employed to 
process the offline videos as well as the live webcams. A video showing the detections and 
recognized license plate texts was created to illustrate the program's performance. 

Several methods were examined while considering the most suitable ones for this topic. 
Ultimately, The Single Shot MultiBox Detector (SSD) method was chosen for the license 
plate detection. The model was trained by utilizing the TensorFlow Object Detection A P I . 
It reaches the accuracy of 98.15% A P with a speed of roughly 14fps when working with a 
video with a resolution of 1280x720 or 15fps when the resolution is 720x480. 

Simple Online and Real-Time Tracking (SORT) was selected for tracking the license 
plates in the video due to its capability of achieving high processing speeds. SORT allows 
it to effectively filter the data to prevent redundancy, thus drastically reducing the number 
of detections meant to be recognized later in the system. 

The license plate recognition was implemented by following the segmentation-free ap­
proach by using deep Convolutional Neural Networks (CNN) and Long Short-Term Mem­
ories (LSTMs). The model was trained by using TensorFlow and it achieves up to 0.6% 
character error rate (CER) and 2% word error rate (WER) . It manages to recognize 39fps 
when given images with the average size of 9.5kilopixel or 46fps with the average size of 
5 kilopixel respectively. 

Three real world user-annotated datasets were acquired for the purposes of the license 
plate detector and recognizer training and testing. In total, the datasets contain 184,000 
samples of the European license plates taken from multiple different locations and have 
various lightning conditions, quality, size, blur, distortion, noise, etc. 

There are several possible improvements that could be done for the further advancement 
of the project. The detector was dedicated to the SSD approach due to its great speed. 
However, this method is weak when working with small objects such as license plates. By 
designing the individual parts of the system in parallel, it would be doable to employ more 
accurate but slower models and yet run the program in real-time. Another suggestion would 
be to adapt the application to collect the data from more than just one camera at a time. 
Each detection node would run in its own process or even on a different computer and the 
communication between the rest of the system would be solved by a message broker. 
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