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ABSTRACT

We study relationships between compositions of fuzzy relations (for-

mal fuzzy contexts) and morphisms of the structures (concept lat-

tices) associated to the fuzzy relations. In particular, we study con-

cept lattices of both, isotone and antitone concept-forming operators

which are associated to the fuzzy relations. The presented theory

brings new results on characterization, reduction, and similarity is-

sues regarding concept lattices. Moreover, it brings a new insight to

Boolean matrix theory generalizing some of its well-known results to

fuzzy setting. In addition, we provide illustrative examples of appli-

cations of the presented theory, namely, conceptual scaling to fuzzy

attributes and use of block relation to reduce size of a concept lattice.
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Chapter 1

Introduction

Morphisms represent a general way for modeling complex relationships between
mathematical structures. We study morphisms between hierarchies of clusters
contained in tabular data with truth degrees. The clusters—so-called formal
concepts—are extracted by methods of formal concept analysis (FCA) and play
an important role in several areas of relational data analysis.

Formal concept analysis [22] is a method of analysis of relational data in-
vented by Rudolf Wille. In the 1980s, solid mathematical and computational
foundations of FCA have been developed. In the past decade or so, FCA enjoyed
a considerable interest in various communities and many papers on applications
of FCA in various domains appeared, including papers in premier journals and
conferences. The method is based on a formalization of a philosophical view
of conceptual knowledge. The basic notion in FCA is that of a formal concept
which consists of two sets: extent – a set of all objects sharing the same at-
tributes, and intent – a set of all the shared attributes. This definition of formal
concept comes from traditional (Port-Royal) logic [1, 29].

The basic input data for FCA, called a formal context, is a flat table in
which rows represent objects and columns represent attributes. Entries of the
table contain either 1 (or ×), which means that the corresponding object has
the corresponding attribute, or 0 (blank) which means the opposite. One of
the main outputs of FCA is a concept lattice – a hierarchy of formal concepts
present in the formal context. The extents and intents of formal concepts are
formed by particular operators induced by the formal context.

In everyday life we use concepts which are not sharply bounded (e.g. ‘great
dancer’ or ‘middle aged man’). In terms of FCA, objects and attributes do
need not be divided sharply by a formal concept into those to which the formal
concept applies and those to which it does not. That is to say, a formal con-
cept applies to different objects to different, possibly intermediate degrees. For
example, the concept ‘middle aged man’ may apply to a 45-year old person to
degree 1, to a 55-year old person to degree 0.5, and to a 65-year old person to
degree 0.2. There are several approaches to generalize formal concept analysis
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to be able to process such indeterminancy or uncertainty [5, 6, 39, 35, 27, 19].
Many of them are based on Zadeh’s theory of fuzzy sets [42].

Boolean factor analysis (see e.g. [17] for the aim and references) concerns
with a reduction of space dimension of Boolean (binary) data. Its goal is to
decompose a table describing a relation between objects and attributes (in fact,
a formal context) into two tables: one describing a relation between objects
and factors, second describing a relation between factors and objects, such that
the number of factors is as small as possible and the composition of these two
relation (with standard relational product) yields the original relation. We can
read the composition as: “object has an attribute if and only if there is a
factor such that the factor applies to the object and the factor is one of the
manifestations of the attribute.” Belohlavek and Vychodil proved that formal
concepts formed by antitone Galois connections serve as optimal and universal
factors [17]. We can be interested in relational products with different meaning,
for instance “object has an attribute iff for each factor we have, if the object
has the factor, then the factor is a manifestation of the attribute.” This kind of
relational product is called triangular product and they was studied by Bandler
and Kohout [30, 31]. In [8], Belohlavek proved that optimal and universal factors
are formal concepts formed by isotone Galois connections.

This dissertation studies morphisms between concept lattices associated to
different fuzzy relations and concept lattices formed by different operators. We
show that several well-known methods in FCA are expressible as morphisms
described here. We also show several useful applications of the presented theory.

For instance, one of the most important problems in FCA is the reduction
of concept lattice. Even data which are not large can contain a large number
of formal concepts. Large concept lattices are hard to read for a human user.
To allow the human user obtain a useful information contained in the hierarchy
of formal concepts, the number of formal concepts must be reduced. The mor-
phisms of concept lattices described in this dissertation represent a natural way
of reduction of concept lattices. We show that their application covers use of
block relations and conceptual scaling and provides a natural way how to use
these methods in fuzzy setting.

Outline of the thesis

The results presented in this thesis were published in the following papers (the
numbers in square brackets are the numbers of the papers in the Bibliography).

[11] Radim Belohlavek and Jan Konecny. Scaling, granulation, and fuzzy
attributes in formal concept analysis. In FUZZ-IEEE, pages 1–6, 2007.

[12] Radim Belohlavek and Jan Konecny. Closure spaces of isotone Galois
connections and their morphisms. In Proceedings of the 24th international
conference on Advances in Artificial Intelligence, AI’11, pages 182–191,
Berlin, Heidelberg, 2011. Springer-Verlag.
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[13] Radim Belohlavek and Jan Konecny. Concept lattices of isotone vs. anti-
tone Galois connections in graded setting: Mutual reducibility revisited.
Information Sciences, 199(0):133–137, 2012.

[14] Radim Belohlavek and Jan Konecny. Row and column spaces of matrices
over residuated lattices. Fundam. Inform., 115(4):279–295, 2012.

[34] Jan Konecny and Michal Krupka. Block relations in fuzzy setting. In
CLA 2011: Proceedings of the 8th International Conference on Concept
Lattices and Their Applications, page 115—130, INRIA Nancy – Grand
Est and LORIA, 2011.

The dissertation is organized as follows. Chapter 2 describes basic notions
of fuzzy sets, formal fuzzy concept analysis, fuzzy concept lattices, antitone and
isotone fuzzy Galois connections, closure operators, and interior operators.

In Chapter 3 we develop the insight into the concept lattices of a given
context: We study relationship between concept-forming operators induced by
fuzzy relations in (de)composition I = A ∗ B; we show a correspondence with
notions from Boolean matrix theory; characterize closure spaces induced by iso-
tone concept-forming operators; and show a relationship of isotone and antitone
L-Galois connections.

Chapter 4 defines basic types of morphisms of structures associated to fuzzy
relations (sets of extents/intents of a concept lattice) and shows the morphisms
correspondence to fuzzy relations. Furthermore, we describe conditions under
which two structures associated to fuzzy relations are isomorphic. Then we
describe natural behavior of the morphisms with respect to similarities. The
last part of this chapter is devoted to block relations which correspond to special
morphisms of concept lattices.

In Chapter 5 we provide a practical application of the theory described in the
previous chapters, namely, conceptual scaling to fuzzy attributes. In practice
we need to process not only data containing truth-degrees but data containing
numerical or categorical values. Conceptual scaling is a kind of transformation
such data to a form appropriate for methods of formal concept analysis.
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Chapter 2

Preliminaries

We recall basic facts of FCA, residuated lattices, fuzzy sets, and fuzzy relations.

2.1 Residuated Lattices and Fuzzy Sets

We use complete residuated lattices as basic structures of truth-degrees. A
complete residuated lattice [5, 25, 40] is a structure L = ⟨L,∧,∨,⊗,→,0,1⟩ such
that

(i) ⟨L,∧,∨,0,1⟩ is a complete lattice, i.e. a partially ordered set in which
arbitrary infima and suprema exist;

(ii) ⟨L,⊗,1⟩ is a commutative monoid, i.e. ⊗ is a binary operation which is
commutative, associative, and a⊗ 1 = a for each a ∈ L;

(iii) ⊗ and → satisfy adjointness, i.e. a⊗ b ≤ c iff a ≤ b→ c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted
by ≤. Throughout this thesis, L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. Operations ⊗ (multiplication) and
→ (residuum) play the role of a (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a ∈ L as

¬a = a→ 0 (2.1)

Common examples of complete residuated lattices include those defined on
the unit interval, (i.e. L = [0,1]) or on a finite chain in a unit interval, e.g.
L = {0, 1

n
, . . . , n−1

n
,1}, ∧ and ∨ being minimum and maximum, ⊗ being a left-

continuous t-norm with the corresponding residuum → given by a→ b = max{c ∣
a × c ≤ b}. The three most important pairs of adjoint operations on the unit
interval are

•  Lukasiewicz
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a⊗ b = max(a + b − 1,0)
a→ b = min(1 − a + b,1)

• Gödel
a⊗ b = min(a, b)

a→ b =
⎧⎪⎪⎨⎪⎪⎩

1 if a ≤ b,
b otherwise.

• Goguen (product)
a⊗ b = a ⋅ b

a→ b =
⎧⎪⎪⎨⎪⎪⎩

1 if a ≤ b,
b
a

otherwise.

The following theorem summarizes some properties of residuated lattices
used in this thesis.

Theorem 1 ([5]). Every complete residuated lattice satisfies the following con-
ditions:

a⊗ (a→ b) ≤ b, (2.2)

b ≤ a→ (a⊗ b), (2.3)

a ≤ (a→ b)→ b, (2.4)

a ≤ b iff a→ b = 1, (2.5)

a→ a = 1, (2.6)

a→ 1 = 1, (2.7)

0→ a = 1, (2.8)

1→ a = a, (2.9)

a⊗ 0 = 0, (2.10)

a⊗ b ≤ a, (2.11)

a ≤ b→ a, (2.12)

a⊗ b ≤ a ∧ b, (2.13)

(a⊗ b)→ c = a→ (b→ c), (2.14)

(a→ b)⊗ (b→ c) ≤ a→ c, (2.15)

a→ b is the greatest element of {c ∣ a⊗ c ≤ b}, (2.16)

a⊗ b is the least element of {c ∣ a ≤ b→ c}, (2.17)

b1 ≤ b2 implies a⊗ b1 ≤ a⊗ b2, (2.18)

b1 ≤ b2 implies a→ b1 ≤ a→ b2, (2.19)

a1 ≤ a2 implies a2 ⊗ b ≤ a1 ⊗ b, (2.20)
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a⊗⋁
i∈I
bi =⋁

i∈I
(a⊗ bi), (2.21)

a⊗⋀
i∈I
bi ≤⋀

i∈I
(a⊗ bi), (2.22)

a→⋀ bi =⋀
i∈I

(a→ bi), (2.23)

⋁
i∈I
ai → b =⋀

i∈I
(ai → b), (2.24)

⋁
i∈I

(a→ bi) ≤ a→ ⋀
iinI

bi, (2.25)

⋁
i∈I

(ai → b) ≤⋀
i∈I
ai → b, (2.26)

⋀
i∈I

(ai → bi) ≤⋀
i∈I
ai →⋀

i∈I
bi. (2.27)

L-sets and L-relations An L-set (or fuzzy set) A in a universe set X is a
mapping assigning to each x ∈ X some truth degree A(x) ∈ L where L is a
support of a complete residuated lattice. The set of all L-sets in a universe X
is denoted LX , or LX if the structure of Lis to be emphasized.

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A,B ∈ LX is an L-set A ∩B in X such that (A ∩B)(x) =
A(x)∧B(x) for each x ∈X, etc. An L-setA ∈ LX is also denoted {A(x)/x ∣ x ∈X}.
If for all y ∈X distinct from x1, x2, . . . , xn we have A(y) = 0, we also write

{A(x1)/x1,A(x2)/x1, . . . ,A(xn)/xn}.

If there is exactly one x ∈X s.t. A(x) > 0 (i.e. A = {A(x)/x}) we call A a single-
ton. We also use characteristic vector such as (such as (A(x1),A(x2), . . . ,A(xn)))
to describe L-sets if there is no danger of confusion.

An L-set A ∈ LX is called crisp if A(x) ∈ {0,1} for each x ∈ X. Crisp L-sets
can be identified with ordinary sets. For a crisp A, we also write x ∈ A for
A(x) = 1 and x /∈ A for A(x) = 0. An L-set A ∈ LX is called empty (denoted by
∅) if A(x) = 0 for each x ∈ X. For a ∈ L and A ∈ LX , the L-sets a ⊗ A ∈ LX ,
a→ A, and ¬A in X are defined by

(a⊗A)(x) = a⊗A(x), (2.28)

(a→ A)(x) = a→ A(x), (2.29)

¬A(x) = A(x)→ 0. (2.30)

Binary L-relations (binary fuzzy relations) between X and Y can be thought
of as L-sets in the universe X×Y . That is, a binary L-relation I ∈ LX×Y between
a set X and a set Y is a mapping assigning to each x ∈ X and each y ∈ Y a
truth degree I(x, y) ∈ L (a degree to which x and y are related by I).

For universe A,B ∈ LX we define the degree (graded subsethood) of inclusion
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of A in B by

S(A,B) = ⋀
x∈X

A(x)→ B(x) (2.31)

Graded inclusion generalizes the classical inclusion relation ⊆ (note that unlike ⊆,
S is a binary L-relation on LX . Described verbally, S(A,B) represents a degree
to which A is a subset of B. In particular, we write A ⊆ B iff S(A,B) = 1. As
a consequence, we have A ⊆ B iff A(x) ≤ B(x) for each x ∈X.

Further we set

A ≈X B = S(A,B) ∧ S(B,A). (2.32)

A binary L-relation R on a set X is called reflexive if R(x,x) = 1 for any
x ∈X, symmetric if R(x, y) = R(y, x) for any x, y ∈X, and transitive if R(x, y)⊗
R(y, z) ≤ R(x, z) for any x, y, z ∈ X. R is called an L-tolerance, if it is reflexive
and symmetric, L-equivalence if it is reflexive, symmetric and transitive. If R
is an L-equivalence such that for any x, y ∈ X from R(x, y) = 1 it follows x = y,
then R is called an L-equality on X. L-equalities are often denoted by ≈. The
similarity ≈X of L-sets (2.32) is an L-equality on LX .

Composition Operators We use three composition operators, ○, ◃, and ▹,
and consider the corresponding compositions I = A○B, I = A◃B, and I = A▹B
(for I ∈ LX×Y ,A ∈ LX×F ,B ∈ LF×Y ). In the compositions, I(x, y) is interpreted
as the degree to which the object x has the attribute y; A(x, f) as the degree
to which the factor f applies to the object x; B(f, y) as the degree to which
the attribute y is a manifestation (one of possibly several manifestations) of the
factor f . The composition operators are defined by

(A ○B)(x, y) = ⋁
f∈F

A(x, f)⊗B(f, y), (2.33)

(A ◃B)(x, y) = ⋀
f∈F

A(x, f)→ B(f, y), (2.34)

(A ▹B)(x, y) = ⋀
f∈F

B(f, y)→ A(x, z). (2.35)

Note that these operators were extensively studied by Bandler and Kohout,
see e.g. [32]. They have natural verbal descriptions. For instance, (A ○B)(x, y)
is the truth degree of the proposition “there is factor f such that f applies to
object x and attribute y is a manifestation of f”; (A ◃ B)(x, y) is the truth
degree of “for every factor f , if f applies to object x then attribute y is a
manifestation of f”. Note also that for L = {0,1}, A ○ B coincides with the
well-known composition of binary relations.
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Theorem 2 (associativity of composition operators). We have

R ○ (S ○ T ) = (R ○ S) ○ T, (2.36)

R ◃ (S ▹ T ) = (R ◃ S) ▹ T, (2.37)

R ◃ (S ◃ T ) = (R ○ S) ◃ T, (2.38)

R ▹ (S ○ T ) = (R ▹ S) ▹ T. (2.39)

Remark 1. In [9] it is shown that ○,▹, and ◃ can be considered to be the same
composition as it can be covered by a general framework. We do not use the
general framework in this thesis because most results contained here use specific
properties of compositions defined by (2.33),(2.34), and (2.35).

Isotone and antitone L-Galois connections, L-closure and L-interior
operators An antitone L-Galois connection between the sets X and Y is a
pair ⟨↑, ↓⟩ of mappings ⟨↑, ↓⟩ of mappings ↑ ∶ LX → LY , ↓ ∶ LY → LX , satisfying

S(C1,C2) ≤ S(C↑2,C
↑
1) S(D1,D2) ≤ S(D↓2,D

↓
1) (2.40)

C ⊆ (C↑)↓ D ⊆ (D↓)↑ (2.41)

for every C,C1,C2 ∈ LX ,D,D1,D2 ∈ LY .

An isotone L-Galois connection between the sets X and Y is a pair ⟨∩, ∪⟩ of
mappings ⟨∩, ∪⟩ of mappings ∩ ∶ LX → LY , ∪ ∶ LY → LX , satisfying

S(C1,C2) ≤ S(C∩
1 ,C

∩
2 ) S(D1,D2) ≤ S(D∪

1 ,D
∪
2 ) (2.42)

C ⊆ (C∩)∪ D ⊇ (D∪)∩ (2.43)

for every C,C1,C2 ∈ LX ,D,D1,D2 ∈ LY .
The following theorem summarizes properties of both antitone and isotone

Galois connections.

Theorem 3. An antitone L-Galois connection ⟨↑, ↓⟩ satisfies the following prop-
erties:

(i) C1 ⊆ C2 implies C↑2 ⊆ C
↑
1 and D1 ⊆D2 implies D↓2 ⊆D

↓
1

(ii) S(C,D↓) = S(D,C↑)

(iii) (⋃i∈I Ci)
↑ = ⋂i∈I C↑i and (⋃i∈I Di)↓ = ⋂i∈I D↓i

(iv) C↑↓↑ = C↑ and D↓↑↓ =D↓

for each C,Ci ∈ LX ,D,Di ∈ LY .
An isotone L-Galois connection ⟨∩, ∪⟩ satisfies the following properties:

(i) C1 ⊆ C2 implies C∩
1 ⊆ C∩

2 and D1 ⊆D2 implies D∪
1 ⊆D∪

2

(ii) S(C,D∪) = S(C∩,D)
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(iii) (⋃i∈I Ci)
∩ = ⋃i∈I C∩

i and (⋂i∈I Di)∪ = ⋂i∈I D∪
i

(iv) C∩∪∩ = C∩ and D∪∩∪ =D∪

for each C,Ci ∈ LX ,D,Di ∈ LY .

System of L-sets V ⊆ LX is called an L-interior system if

– V is closed under ⊗-multiplication, i.e. for every a ∈ L and C ∈ V we have
a⊗C ∈ V (here, a⊗C is defined by (a⊗C)(x) = a⊗C(x) for x ∈X);

– V is closed under union, i.e. for Cj ∈ V (j ∈ J) we have ⋃j∈J Cj ∈ V .

V ⊆ LX is called an L-closure system if

– V is closed under left→-multiplication (or→-shift), i.e. for every a ∈ L and
C ∈ V we have a→ C ∈ V (here, a→ C is defined by (a→ C)(i) = a→ C(i)
for i = 1, . . . , n);

– V is closed under intersection, i.e. for Cj ∈ V (j ∈ J) we have ⋂j∈J Cj ∈ V .

2.2 Formal Concept Analysis in the Fuzzy Set-
ting

An L-context is a triplet ⟨X,Y, I⟩ where X and Y are (ordinary) sets and
I ∈ LX×Y is an L-relation between X and Y . Elements of X are called objects,
elements of Y are called attributes, I is called an incidence relation. I(x, y) = a
is read: “The object x has the attribute y to degree a.” An L-context is
usually depicted as a table whose rows correspond to objects and whose columns
correspond to attributes; entries of the table contain the degrees I(x, y) (see
Fig. 2.1 for example of an L-context).

Consider the following pairs of operators induced by an L-context ⟨X,Y, I⟩.
First, the pair ⟨↑, ↓⟩ of operators ↑ ∶ LX → LY and ↓ ∶ LY → LX is defined by

C↑(y) = ⋀
x∈X

C(x)→ I(x, y), D↓(x) = ⋀
y∈Y

D(y)→ I(x, y). (2.44)

Second, the pair ⟨∩, ∪⟩ of operators ∩ ∶ LX → LY and ∪ ∶ LY → LX is defined by

C∩(y) = ⋁
x∈X

C(x)⊗ I(x, y), D∪(x) = ⋀
y∈Y

I(x, y)→D(y), (2.45)

Third, the pair ⟨∧, ∨⟩ of operators ∧ ∶ LX → LY and ∨ ∶ LY → LX is defined by

C∧(y) = ⋀
x∈X

I(x, y)→ C(x), D∨(x) = ⋁
y∈Y

D(y)⊗ I(x, y), (2.46)

for C ∈ LX , D ∈ LY .
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⟨↑, ↓⟩ forms an antitone L-Galois connection [2], ⟨∩, ∪⟩ and ⟨∨, ∧⟩ each form
an isotone L-Galois connection [23] (that is why we use the same symbols to
for their notation). To emphasize that the operators are induced by I, we also
denote the operators by ⟨↑I , ↓I ⟩, ⟨∩I , ∪I ⟩, and ⟨∧I , ∨I ⟩. Furthermore, denote the
corresponding sets of fixpoints by B(X↑, Y ↓, I), B(X∩, Y ∪, I), and B(X∧, Y ∨, I),
i.e.

B(X↑, Y ↓, I) = {⟨C,D⟩ ∈ LX ×LY ∣ C↑ =D, D↓ = C},
B(X∩, Y ∪, I) = {⟨C,D⟩ ∈ LX ×LY ∣ C∩ =D, D∪ = C},
B(X∧, Y ∨, I) = {⟨C,D⟩ ∈ LX ×LY ∣ C∧ =D, D∨ = C}.

The sets of fixpoints are complete lattices, called L-concept lattices associated
to I, and their elements are called formal concepts.

For a concept lattice B(X△, Y ▽, I), where ⟨△,▽⟩ is either of ⟨↑, ↓⟩, ⟨∩, ∪⟩, or
⟨∧, ∨⟩, denote the corresponding sets of extents and intents by Ext(X△, Y ▽, I)
and Int(X△, Y ▽, I). That is,

Ext(X△, Y ▽, I) = {C ∈ LX ∣ ⟨C,D⟩ ∈ B(X△, Y ▽, I) for some D},
Int(X△, Y ▽, I) = {D ∈ LY ∣ ⟨C,D⟩ ∈ B(X△, Y ▽, I) for some C},

Note that the operators induced by an L-context and their sets of fixpoints have
extensively been studied, see e.g. [2, 4, 6, 23, 39]. Clearly, ⟨C,D⟩ ∈ B(X∩, Y ∪, I)
iff ⟨D,C⟩ ∈ B(Y ∧,X∨, IT), where IT denotes the transpose of I; so one could
consider only one pair, ⟨∩I , ∪I ⟩ or ⟨∧I , ∨I ⟩, and obtain the properties of the other
pair by a simple translation. Note also that if L = {0,1}, B(X↑, Y ↓, I) coincides
with the ordinary concept lattice of the formal context consisting of X, Y , and
the binary relation (represented by) I.

It is well known that for L = {0,1}, each of the three operators is definable
by any of the remaining two [21] and that, as a consequence, we have

B(X∩I , Y ∪I , I) and B(X↑¬I , Y ↓¬I ,¬I) are isomorphic as lattices (2.47)

with ⟨C,D⟩ ↦ ⟨C,¬D⟩ being an isomorphism (¬U denotes the complement of
U).

Hence, in particular,

Ext(X∩I , Y ∪I , I) = Ext(X↑¬I , Y ↓¬I ,¬I), (2.48)

i.e. the corresponding sets of extents are equal. Here, the concept lattices and
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the sets of extents of a binary relation I ∈ {0,1}X×Y are defined by

B(X↑I , Y ↓I , I) = {⟨C,D⟩ ∈ {0,1}X × {0,1}Y ∣ C↑I =D, D↓I = C}, (2.49)

B(X∩I , Y ∪I , I) = {⟨C,D⟩ ∈ {0,1}X × {0,1}Y ∣ C∩I =D, D∪I = C}, (2.50)

Ext(X↑I , Y ↓I , I) = {C ∈ {0,1}X ∣ ⟨C,D⟩ ∈ B(X↑I , Y ↓I , I) for some D}, (2.51)

Ext(X∩I , Y ∪I , I) = {C ∈ {0,1}X ∣ ⟨C,D⟩ ∈ B(X∩I , Y ∪I , I) for some D}. (2.52)

The above reducibility results mean that, in a sense, one need not investigate
the properties of the concept lattices of ⟨↑I , ↓I ⟩ and ⟨∩I , ∪I ⟩ separately because
the properties of one are derivable from the properties of the other.

However, as shown in [23], when fuzzy relations instead of ordinary rela-
tions I are considered (i.e. graded attributes rather than yes/no attributes are
considered), the above mutual reducibility results are no longer true.

L-Concept lattices The following theorem says that L-concept lattices are
complete lattices (i.e. the name L-concept lattices is well justified).

Theorem 4. (a) B(X↑, Y ↓, I) is a complete lattice with suprema and infima
given by:

⋀
j∈J

⟨Cj ,Dj⟩ = ⟨⋂
j∈J

Cj , (⋃
j∈J

Dj)↓↑⟩,

⋁
j∈J

⟨Cj ,Dj⟩ = ⟨(⋃
j∈J

Dj)↑↓,⋂
j∈J

Dj⟩.

(b) B(X∩, Y ∪, I) is a complete lattice with suprema and infima given by:

⋀
j∈J

⟨Cj ,Dj⟩ = ⟨⋂
j∈J

Cj , (⋂
j∈J

Dj)∪∩⟩,

⋁
j∈J

⟨Cj ,Dj⟩ = ⟨(⋃
j∈J

Dj)∩∪,⋃
j∈J

Dj⟩.

(c) B(X∧, Y ∨, I) is a complete lattice with suprema and infima given by:

⋀
j∈J

⟨Cj ,Dj⟩ = ⟨(⋂
j∈J

Cj)∨∧,⋂
j∈J

Dj⟩,

⋁
j∈J

⟨Cj ,Dj⟩ = ⟨⋃
j∈J

Cj , (⋃
j∈J

Dj)∩∪⟩.

When displaying L-concept lattice B(X↑, Y ↓, I), we use labeled Hasse di-
agram to include all the information on extents and intents. For any x ∈ X,
y ∈ Y and formal L-concept ⟨A,B⟩ we have A(x) ≥ a and B(y) ≥ b if and only if
there is a formal concept ⟨A1,B1⟩ ≤ ⟨A,B⟩, labeled by a/x and a formal concept
⟨A2,B2⟩ ≥ ⟨A,B⟩, labeled by b/y. We use labels x resp. y instead of 1/x resp. 1/y
and omit redundant labels (i.e., if a concept has both the labels a/x and b/x then
we keep only that with the greater degree; dually for attributes). The whole
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y1 y2 y3 y4 y5 y6 y7
x1 0 0.5 1 0 0 0.5 1
x2 0 1 0 0 0.5 1 1
x3 0 1 1 0.5 1 1 1
x4 0 1 1 0 0 0.5 1

Figure 2.1: Example of L-context with objects x1, . . . , x4 and attributes
y1, . . . , y7 over 3-element  Lukasievicz chain. The L-context is scaled fuzzy
valued-context cars from [39].

0.5/y2, 0.5/y6, y7

x3

0.5/y1

0.5/x20.5/x1, 0.5/x4

0.5/x3

y1

0.5/y3

x1, y3

y2

x2,
0.5/y5, y6

0.5/y4

y5

x4

Figure 2.2: L-concept lattice B(X↑, Y ↓, I) of example L-context from Fig. 2.1.

structure of B(X↑, Y ↓, I) can be determined from the labeled diagram using the
results from [6].

In B(X∩, Y ∪, I), for any x ∈ X, y ∈ Y and formal L-concept ⟨A,B⟩ we have
A(x) ≤ a and B(y) ≥ b if and only if there is a formal concept ⟨A1,B1⟩ ≤ ⟨A,B⟩,
labeled by a/x and a formal concept ⟨A2,B2⟩ ≥ ⟨A,B⟩, labeled by b/y. Dually,
in B(X∧, Y ∨, I). for any x ∈ X, y ∈ Y and formal L-concept ⟨A,B⟩ we have
A(x) ≥ a and B(y) ≤ b if and only if there is a formal concept ⟨A1,B1⟩ ≥ ⟨A,B⟩,
labeled by a/x and a formal concept ⟨A2,B2⟩ ≤ ⟨A,B⟩, labeled by b/y.

Example 1. Consider the L-context depicted in Fig. 2.1. Figure 2.2 shows its
L-concept lattice B(X↑, Y ↓, I), Fig. 2.3 shows B(X∩, Y ∪, I), and Fig. 2.4 shows
B(X∧, Y ∨, I).
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0/y7

x4,
0.5/y5

0.5/y2

0.5/y6

0/y4, 0.5/y5

y1,
0.5/y4

0.5/x2

x2,
0/y3

0.5/x1, 0/y2

0.5/x4, 0/y6

0.5/x3, 0.5/y7

0.5/y3

x1

Figure 2.3: L-concept lattice B(X∩, Y ∪, I) of example L-context from Fig. 2.1.

0/x3, y1, 0.5/y4

x3

0.5/x4, y6
0.5/x2

0.5/x1, y2
y7

y4,
0.5/y5

0.5/y6

0/x4, y5 0.5/y3

0/x2, y3

0.5/y2

0/x1 0.5/x3, 0.5/y7

Figure 2.4: L-concept lattice B(X∧, Y ∨, I) of example L-context from Fig. 2.1.



2.3 Matrices and Vectors over Residuated Lattices 21

2.3 Matrices and Vectors over Residuated Lat-
tices

We use matrices whose degrees are elements of residuated lattices. For conve-
nience and since there is no danger of misunderstanding, we take the advantage
of identifying n ×m matrices over residuated lattices (the set of all such matri-
ces is denoted by Ln×m) with L-relations between X and Y . Also, we identify
vectors with n components over residuated lattices (the set of all such vectors
is denoted by Ln) with fuzzy sets in X. As usual, we identify vectors with n
components with 1 × n matrices. We denote

X = {1, . . . , n}, Y = {1, . . . ,m}, F = {1, . . . , k},

and we use notation of L-sets and L-relations for matrices; for example we write
A(i, j) instead of Aij .

Given an n ×m matrix I and a composition operator ∗ (i.e., ○, ◃, or ▹),
the decomposition problem consists in finding a decomposition I = A ∗B of I
into an n × k matrix A and a k ×m matrix B with the number k (number of
factors) as small as possible. The smallest k is called the Schein rank of I and
is denoted by ρs(I) Looking for decompositions I = A∗B can be seen as looking
for factors in data described by I. That is, decomposing I can be regarded as
factor analysis in which the data as well as the operations used are different
from the ordinary factor analysis [26].
The concept lattices associated to I play a fundamental role for decompositions
of I. Namely, given a set

F = {⟨C1,D1⟩, . . . , ⟨Ck,Dk⟩}

of L-sets Cf ∈ LX and Df ∈ LY define L-relations AF and BF by

AF(x, f) = Cf(x) and BF(f, y) =Df(y). (2.53)

This says: the l-th column of AF is the transpose of the vector corresponding
to Cl and the l-th row of BF is the vector corresponding to Dl.

Then we have:

Theorem 5 (universality, [7, 8]).

(○) For every I ∈ LX,Y there exists F ⊆ B(X↑, Y ↓, I) such that I = AF ○BF .

(◃) For every I ∈ LX,Y there exists F ⊆ B(X∩, Y ∪, I) such that I = AF ◃BF .

(▹) For every I ∈ LX,Y there exists F ⊆ B(X∧, Y ∨, I) such that I = AF ▹BF .

Theorem 6 (optimality, [7, 8]).

(○) Let I = A○B, for A ∈ LX×Z ,B ∈ LZ×Y . Then there exists F ⊆ B(X↑, Y ↓, I)
with ∣F ∣ ≤ ∣Z ∣ such that for the L-relations AF and BF , we have I =
AF ○BF .
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(◃) Let I = A◃B, for A ∈ LX×Z ,B ∈ LZ×Y . Then there exists F ⊆ B(X∩, Y ∨, I)
with ∣F ∣ ≤ ∣Z ∣ such that for the L-relations AF and BF , we have I =
AF ◃BF .

(▹) Let I = A▹B, for A ∈ LX×Z ,B ∈ LZ×Y . Then there exists F ⊆ B(X∧, Y ∨, I)
with ∣F ∣ ≤ ∣Z ∣ such that for the L-relations AF and BF , we have I =
AF ▹BF .

Theorem 5 and Theorem 6 state that formal concepts are universal and op-
timal factors for decompositions. In words, there always exists a decomposition
I = AF ∗BF formed with formal concepts and for each decomposition I = A∗F
there is a decomposition formed with formal concepts which is at least as good
as this one. [7, 8] provide effective algorithms for decompositions based on this
fact.



Chapter 3

Structures Associated to
L-relations

In this chapter, we develop a new insight into the L-concept lattices of a given L-
context: We study a relationship between concept-forming operators induced by
L-relations involved in a (de)composition I = A ∗B; we show a correspondence
with some notions from Boolean matrix theory; characterize closure spaces in-
duced by isotone concept-forming operators; and show a relationship between
isotone and antitone L-Galois connections.

3.1 L-concept Lattices Associated to Composi-
tions of L-relations

We consider (de)compositions I = A∗B and the concept-forming operators and
concept lattices associated to I, A, and B. We start with an assertion which is
used later. Note that C∧A∧B denotes (C∧A)∧B and the like.

Theorem 7. Let ⟨X,F,A⟩ and ⟨F,Y,B⟩ be L-contexts, let C ∈ LX , D ∈ LY .
We have

C∩A○B = C∩A∩B , D∪A○B =D∪B∪A , (3.1)

C∧A○B = C∧A∧B , D∨A○B =D∨B∨A , (3.2)

C↑A◃B = C∩A↑B , D↓A◃B =D↓B∪A , (3.3)

C↑A▹B = C↑A∧B , D↓A▹B =D∨B↓A . (3.4)

Proof. (3.1)–(3.4) can be directly verified using properties of complete residu-
ated lattices. Another way is to use Theorem 2. We only will demonstrate how
(3.2) can be proved using (2.39). Consider a one-element universe U = {1} and
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fuzzy relation R between U and X defined by R(1, x) = C(x). Observe that

C∧A○B(y) = (R ▹ (A ○B))(1, y) and C∧A∧B(y) = ((R ▹A) ▹B)(1, y).

This proves C∧A○B = C∧A∧B .
In a similar way: (3.1) can be proved using (2.36); (3.3) can be proved using

(2.38); (3.4) can be proved using (2.37) and (2.39).

The following theorem describes basic relationships between the various con-
cept lattices associated to decompositions I = A ∗B.

Theorem 8. Let ⟨X,F,A⟩ and ⟨F,Y,B⟩ be L-contexts. We have

Ext(X∩A○B , Y ∪A○B ,A ○B) ⊆ Ext(X∩A , F ∪A ,A)
Int(X∩A○B , Y ∪A○B ,A ○B) ⊆ Int(F ∩B , Y ∪B ,B)

(○1)

Ext(X∧A○B , Y ∨A○B ,A ○B) ⊆ Ext(X∧A , F ∨A ,A)
Int(X∧A○B , Y ∨A○B ,A ○B) ⊆ Int(F ∧B , Y ∨B ,B)

(○2)

Ext(X↑A◃B , Y ↓A◃B ,A ◃B) ⊆ Ext(X∩A , F ∪A ,A)
Int(X↑A◃B , Y ↓A◃B ,A ◃B) ⊆ Int(F ↑B , Y ↓B ,B)

(◃)

Ext(X↑A▹B , Y ↓A▹B ,A ▹B) ⊆ Ext(X↑A , F ↓A ,A)
Int(X↑A▹B , Y ↓A▹B ,A ▹B) ⊆ Int(F ∧B , Y ∨B ,B)

(▹)

Proof. For (○1): Note first that C is an extent in Ext(X∩, Y ∪, I) if and only if
C =D∪ for some D. Let thus C be an extent of B(X∩A○B , Y ∪A○B ,A ○B). Then
C = D∪A○B for ⟨C,D⟩ ∈ B(X∩A○B , Y ∪A○B ,A ○ B). Due to (3.1), C = D∪A○B =
(D∪B)∪A , hence C is an extent of B(X∩A , Y ∪A ,A).

In a similar way, one can prove the second part of (○1) and also (○2), (◃),
and (▹).

Remark 2. Note that the opposite inclusions in Theorem 8 are not true. For
example, for L = {0,1}, consider X = Y = F = {1,2}, and matrices

A = (1 0
1 1

) , B = (1 1
0 1

) , A ○B = (1 1
1 1

) .

One can check that (1,0) is (a characteristic vector of) an extent of B(X∩, F ∪,A)
and (0,1) is (a characteristic vector of) an intent of B(F ∩, Y ∪,B). But neither
(1,0) is an extent nor (0,1) is an intent of B(X∩, Y ∪,A ○B).

The next theorem shows that every formal concept ⟨C,D⟩ of a compound
L-relation A ∗ B is generated by a collection of L-sets H of factors in such a
way that C results by applying the extent-forming operator of A to H and D
results by applying the intent-forming operator of B to H. The theorem also
describes the collection of such Hs as a particular interval.

Theorem 9. Let ⟨X,F,A⟩ and ⟨F,Y,B⟩ be formal L-contexts.



3.1 L-concept Lattices Associated to Compositions of L-relations 25

(○1) For every ⟨C,D⟩ ∈ B(X∩A○B , Y ∪A○B ,A ○B), denote

pre(E,G) = {H ∈ LF ∣H∪A = C,H∩B =D}.

Then pre(E,G) forms an interval in LF ; C∩A is its least element and
D∪B its greatest element.

(○2) For every ⟨C,D⟩ ∈ B(X∧A○B , Y ∨A○B ,A ○B), denote

pre(C,D) = {H ∈ LF ∣H∨A = C,H∧B =D}.

Then pre(C,D) forms an interval in LF ; D∨B is its least element and
C∧A its greatest element.

(◃) For every ⟨C,D⟩ ∈ B(X↑A◃B , Y ↓A◃B ,A ◃B), denote

pre(C,D) = {H ∈ LF ∣H∪A = C,H↑B =D}.

Then pre(C,D) forms an interval in LF ; C∩A is its least element and D↓B

its greatest element.

(▹) For every ⟨C,D⟩ ∈ B(X↑A▹B , Y ↓A▹B ,A ▹B), denote

pre(C,D) = {H ∈ LF ∣H↓A = C,H∧B =D}.

Then pre(C,D) forms an interval in LF ; D∨B is its least element and
C↑A its greatest element.

Proof. We prove only (○1). (○2), (◃) and (▹) can be proved similarly.
Let ⟨C,D⟩ ∈ B(X∩A○B , Y ∪A○B ,A○B). Observe that C∩A ∈ pre(C,D). Indeed,

we have C∩A∪A = C by Theorem 8 (○1) and C∩A∩B = C∩A○B = D by (3.1).
Similarly, D∪B ∈ pre(C,D).

Let H ∈ pre(C,D). We get C∩A ⊆H directly from H∪A = C and H∪A∩A ⊆H
(see [23] for properties of ∩ and ∪). H ⊆D∪B can be proved similarly. Therefore,
pre(C,D) is contained in the interval [C∩A ,D∪B ] = {H ∣ C∩A ⊆ H ⊆ D∪B}. On
the other hand, if H ∈ [C∩A ,D∪B ], i.e. C∩A ⊆ H ⊆ D∪B , then C = C∩A∪A ⊆
H∪A ⊆ G∪B∪A =D∪A○B = C, whence H∪A = C. In a similar way, H∩B =D.

Theorem 9 is illustrated in Fig. 3.1.
The necessary and sufficient conditions for inclusions of sets of extents and

intents of two L-contexts are the subject of the following theorem.

Theorem 10. Consider contexts ⟨X,Y, I⟩, ⟨X,F,A⟩, and ⟨F,Y,B⟩.

(a) Int(X∩, Y ∪, I) ⊆ Int(F ∩, Y ∪,B) if and only if there exists A′ ∈ LX×F such
that I = A′ ○B,

(b) Ext(X∧, Y ∨, I) ⊆ Ext(X∧, F ∨,A) if and only if there exists B′ ∈ LF×Y
such that I = A ○B′,
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Figure 3.1: Illustration of Theorem 9.
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(c) Int(X↑, Y ↓, I) ⊆ Int(F ↑, Y ↓,B) if and only if there exists A′ ∈ LX×F such
that I = A′ ◃B,

(d) Ext(X↑, Y ↓, I) ⊆ Ext(X↑, F ↓,A) if and only if there exists B′ ∈ LF×Y such
that I = A ▹B′.

In addition,

(e) Ext(X↑, Y ↓, I) ⊆ Ext(X∩, F ∪,A) if and only if there exists B′ ∈ LF×Y such
that I = A ◃B′,

(f) Int(X↑, Y ↓, I) ⊆ Int(F ∧, Y ∨,B) if and only if there exists A′ ∈ LX×Y such
that I = A′ ▹B.

Proof. (a) “⇒”: Let Int(X∩, Y ∪, I) ⊆ Int(F ∩, Y ∪,B). Every H ∈ Int(F ∩, Y ∪,B)
can be written as

H = ⋁
f∈F

cf ⊗Bf .

Thus every H ∈ Int(X∩, Y ∪, I) can be written as ⋁f∈F cf ⊗Bf . Therefore, since
every row Ix of I belongs to Int(X∩, Y ∪, I), Ix can be written as

Ix = ⋁
f∈F

cxf ⊗Bf .

Now, we get the required L-relation A by putting A(x, f) = cxf .

“⇐” is established in Theorem 8.

(b) follows from (a) and the fact that (C ○D)T =DT ○CT.

(c) “⇒”: Let Int(X↑, Y ↓, I) ⊆ Int(F ↑, Y ↓,B). Every H ∈ Int(F ↑, Y ↓,B) can
be written as

H = ⋀
f∈F

cf → Bf .

Thus every H ∈ Int(X↑, Y ↓, I) can be written as ⋀f∈F cf → Bf . Therefore,
since every row Ii of I belongs to Int(X↑, Y ↓, I), Ix can be written as

Ix = ⋀
f∈F

cxf → Bf .

Now, we get the required L-relation A by putting A(x, f) = cxf .

“⇐” is established in Theorem 8.

(d) follows from (c) and the fact that (C ◃D)T =DT ▹CT.

(e) “⇒”: Let Ext(X↑, Y ↓, I) ⊆ Ext(X∩, F ∪,B). Every H ∈ Ext(X∩, Y ∪,B)
can be written as

H = ⋀
f∈F

B l → cf .
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Thus every H ∈ Ext(X↑, Y ↓, I) can be written as ⋀f∈F A f → cf . Therefore,
since every column I y of I belongs to Ext(X↑, Y ↓, I), I y can be written as

I y = ⋀
f∈F

A f → cfy

Now, we get the required L-relation B by putting B(f, y) = cfy.
Again, “⇐” is established in Theorem 8.

(f) follows from (e) and the fact that (C ◃D)T =DT ▹CT.

Remark 3. Reducing size of concept lattice is one of the most important prob-
lem in FCA. Even data which are not large can contain large number of formal
concepts. Large concept lattices are then not readable by human user. There is
several approaches to reduction of the size of concept lattice (e.g. [18, 33] enrich
concept-forming operators with additional parameters – truth stressing (or truth
relaxing) hedges, [3] considers approach based on a choice of a threshold a ∈ L
and using an a-cut a≈ of the L-equality ≈ on B(X↑, Y ↓, I) for factorization,
etc.). Notice, that Theorem 10 provides crucial insight to that problem. It says
that if we reduce concept lattice in such a way that it preserves original extents
(or intents) then it can be expressed as composition of L-relations. We show its
applications in Chapter 4 (block relations) and Chapter 5.

Remark 4. Note that from Theorem 10(a) we have:

Int(X∩, Y ∪, I) ⊆ Int(F ∩, Y ∪,B) iff there exists A′ ∈ LX×F such that I = A′ ○B.

None the less, Ext(X∩, Y ∪, I) ⊆ Ext(X∩, F ∪,A), does not imply existence of
L-relation B′ ∈ LF×Y such that I = A ○B′. As an counterexample, consider L
being a finite chain containing a < b with ⊗ defined as follows:

x⊗ y =
⎧⎪⎪⎨⎪⎪⎩

x ∧ y if x = 1 or y = 1,

0 otherwise,

for each x, y ∈ L. One can easily see that x ⊗ ⋁j yj = ⋁j(x ⊗ yj) and thus an
adjoint operation → exists such that ⟨L,∧,∨,⊗,→,0,1⟩ is a complete residuated
lattice (see e.g. [24]). Namely, → is given as follows:

x→ y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x ≤ y,

y if x = 1,

b otherwise,

for each x, y ∈ L. Consider I = (a) and B = (b). One can check that, we have

Ext({x}∩,{y}∪, I) = Ext({x}∩,{f}∪,A) = {{b/x}, x}, but there is no L-relation
B′ ∈ L{f}×{y} such that I = A ○B′.

As a corollary of Theorem 10, we obtain the following theorem.

Theorem 11. Let I and J be L-relations between X and Y .
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(a) If Int(X∩, Y ∪, I) = Int(X∩, Y ∪, J) and I = A ○B for some A ∈ LX×F ,B ∈
LF×Y then there exists A′ ∈ LX×F such that J = A′ ○B.

(b) If Ext(X∧, Y ∨, I) = Ext(X∧, Y ∨, J) and I = A○B for some A ∈ LX×F ,B ∈
LF×Y then there exists B′ ∈ LF×Y such that J = A ○B′.

(c) If Int(X↑, Y ↓, I) = Int(X↑, Y ↓, J) and I = A ◃B for some A ∈ LX×F ,B ∈
LF×Y then there exists A′ ∈ LX×F such that J = A′ ◃B.

(d) If Ext(X↑, Y ↓, I) = Ext(X↑, Y ↓, J) and I = A ▹B for some A ∈ LX×F ,B ∈
LF×Y then there exists B′ ∈ LF×Y such that J = A ▹B′.

(e) If Ext(X↑, Y ↓, I) = Ext(X↑, Y ↓, J) and I = A ◃B for some A ∈ LX×F ,B ∈
LF×Y then there exists B′ ∈ LY ×F such that J = A ◃B′.

(f) If Int(X↑, Y ↓, I) = Int(X↑, Y ↓, J) for some A ∈ LX×F ,B ∈ LF×Y then there
exists A′ ∈ LX×F such that J = A′ ▹B.

Proof. (a): If I = A ○B then, due to Theorem 10 (a), we have Int(X∩, Y ∪, I) ⊆
Int(X∩, Y ∪,B). Since Int(X∩, Y ∪, J) = Int(X∩, Y ∪, I), we have Int(X∩, Y ∪, J) ⊆
Int(X∩, Y ∪,B). Another application of Theorem 10(a) yields A′ for which
J = A′ ○B.

The proof for (b)–(f) is similar.

L-concept Lattices Associated to (de)compositions with Con-
cepts as Factors

Now, we consider (de)compositions I = AF ∗BF which use formal concepts as
factors as described by (2.53). Since column of AF are extents of I and rows of
BF are intents I their concept-forming operators have additional properties to
those presented in Section 3.1.

Theorem 12. (○) Let ⟨X,Y, I⟩ be an L-context and let F ⊆ B(X↑, Y ↓, I).
Consider AF ∈ LX×F and BF ∈ LF×Y as in (2.53). We have

C↑AF = C↑I∪BF H↓AF =H∩BF
↓I

H↑BF =H∨AF
↑I D↓BF =D↓I∧AF

for each C ∈ LX ,D ∈ LY ,H ∈ LF .

(◃) Let ⟨X,Y, I⟩ be an L-context and let F ⊆ B(X∩, Y ∪, I). Consider AF ∈
LX×F and BF ∈ LF×Y as in (2.53).We have

C↑AF = C∩I↓BF H↓AF =H↑BF ∪I

H∩BF =H∨AF
∩I D∪BF =D∪I∧AF

for each C ∈ LX ,D ∈ LY ,H ∈ LF .
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(▹) Let ⟨X,Y, I⟩ be an L-context and let F ⊆ B(X↑, Y ↓, I). Consider AF ∈
LX×F and BF ∈ LF×Y as in (2.53).

C∩AF = C∩I∨BF H∪AF =H∩BF
∪I

H↑BF =H↓AF ∧I D↓BF =D∨I↑AF

for each C ∈ LX ,D ∈ LY ,H ∈ LF .

Proof. We prove only (○); parts (◃) and (▹) can be proved similarly. By (2.53)

we have A(x, f) = Af(x) = B↓If (x) = ⋀y∈Y Bf(y) → I(x, y) = ⋀y∈Y B(f, y) →
I(x, y) = (I ▹BT)(x, f). Whence, we have AF = I ▹BTF . Now, C↑AF = C∩I↓BF

and H↓AF = H↑BF ∪I follow from Theorem 7(3.4) and from ↓BF = ↑BT
F

and

↑BF = ↓BT
F

(BT
F denotes transpose of BF ). Similarly, we can obtain BF = AT

F ◃I
and apply Theorem 7(3.3) to obtain the other two assertions.

Theorem 13. (○) Let ⟨X,Y, I⟩ be an L-context and let F ⊆ B(X↑, Y ↓, I).
Then we have

Ext(X↑, Y ↓,AF) ⊆ Ext(X↑, Y ↓, I),
Int(X↑, Y ↓,BF) ⊆ Int(X↑, Y ↓, I).

(◃) Let ⟨X,Y, I⟩ be an L-context and let F ⊆ B(X↑, Y ↓, I). Then we have

Ext(X↑, Y ↓,AF) ⊆ Ext(X∩, Y ∪, I),
Int(X∩, Y ∪,BF) ⊆ Int(X∩, Y ∪, I).

(▹) Let ⟨X,Y, I⟩ be an L-context and let F ⊆ B(X∧, Y ∨, I). Then we have

Ext(X∧, Y ∨,AF) ⊆ Ext(X∧, Y ∨, I),
Int(X↑, Y ↓,BF) ⊆ Int(X∧, Y ∨, I).

Proof. The theorem can be proved similarly as Theorem 8 using Theorem 12.

Remark 5. Notice that the propositions in Theorem 12 and Theorem 13 do
not assume that I = AF ∗ BF . Indeed, only preposition is that columns of A
are extents of I and rows of B are the corresponding intents. Thus, the two
theorems can be applied even to approximate decompositions, i.e. solutions that
do not assure equality I = AF ∗BF .

3.2 Row and Column Spaces of Graded Matri-
ces

In this section, we define the notions of row and column spaces for matrices over
residuated lattices and establish their properties and connections to concept
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lattices.

Using the terminology known from Boolean matrices [28], we define the
following notions as follows.

Definition 1. V ⊆ Ln is called an i-subspace if

– V is closed under ⊗-multiplication, i.e. for every a ∈ L and C ∈ V we have
a⊗C ∈ V (here, a⊗C is defined by (a⊗C)(i) = a⊗C(i) for i = 1, . . . , n);

– V is closed under ⋁-union, i.e. for Cj ∈ V (j ∈ J) we have ⋁j∈J Cj ∈ V
(here, ⋁j∈J Cj is defined by (⋁j∈J Cj)(i) = ⋁j∈J Cj(i)).

V ⊆ Ln is called a c-subspace if

– V is closed under left →-multiplication (or →-shift), i.e. for every a ∈ L
and C ∈ V we have a → C ∈ V (here, a → C is defined by (a → C)(i) =
a→ C(i) for i = 1, . . . , n);

– V is closed under ⋀-intersection, i.e. for Cj ∈ V (j ∈ J) we have ⋀j∈J Cj ∈
V (here, ⋀j∈J Cj is defined by (⋀j∈J Cj)(i) = ⋀j∈J Cj(i)).

If elements of V are regarded as fuzzy sets, the concepts of an i-subspace and
a c-subspace coincide with the concept of a L-interior system and a L-closure
system.

Remark 6. For L = {0,1} the concept of an i-subspace coincides with the con-
cept of a subspace from the theory of Boolean matrices [28]. In fact, closedness
under ⊗-multiplication is satisfied for free in the case of Boolean matrices. Note
also that for Boolean matrices, V forms a c-subspace iff V = {C ∣ C ∈ V } forms
an i-subspace (with ¬C defined by ¬C(i) = ¬C(i) where ¬a = a → 0, i.e. ¬0 = 1
and ¬1 = 0), and vice versa. However, such a reducibility among the concepts
of i-subspace and c-subspace is not available in general because in residuated
lattices, the law of double negation (saying that (a→ 0)→ 0 = a) does not hold.

Definition 2. The i-span (c-span) of V ⊆ Ln is the intersection of all i-subspaces
(c-subspaces) of Ln that contain V , hence itself an i-subspace (c-subspace) of
Ln.

The row i-space (row c-space) of matrix I ∈ Ln×m is the i-span (c-span) of the
set of all rows of I (considered as vectors from Ln). The column i-space (column
c-space) is defined analogously as the i-span (c-span) of the set of columns of I.
The row i-space, row c-space, column i-space, and column c-space of matrix I is
denoted by Ri(I), Rc(I), Ci(I), Cc(I).

A fundamental connection between the row and column spaces on one hand,
and the concept lattices on the other hand, is described in the following theorem
(IT denotes the transpose of I).
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Theorem 14. For a matrix I ∈ Ln×m, X = {1, . . . , n}, Y = {1, . . . ,m}, we have

Ri(I) = Int(X∩, Y ∪, I) = Ext(Y ∧,X∨, IT), (3.5)

Rc(I) = Int(X↑, Y ↓, I) = Ext(Y ↑,X↓, IT), (3.6)

Ci(I) = Ext(X∧, Y ∨, I) = Int(Y ∩,X∪, IT), (3.7)

Cc(I) = Ext(X↑, Y ↓, I) = Int(Y ↑,X↓, IT). (3.8)

Proof. (3.5): To establish Ri(I) = Int(X∩, Y ∪, I), notice that Int(X∩, Y ∪, I)
is just the set of all fixpoints of the fuzzy interior operator ∪∩ (see e.g. [10,
23]), i.e. a fuzzy interior system. To see that this fuzzy interior system is
the least one that contains all rows of I, it is sufficient to observe that every
intent D ∈ Int(X∩, Y ∪, I) is a ⋁-union of ⊗-multiplications of rows of I and
that Int(X∩, Y ∪, I) contains every row of I. To observe this fact, consider
the corresponding formal concept ⟨C,D⟩ ∈ B(X∩, Y ∪, I). It follows from the
description of suprema in B(X∩, Y ∪, I) that

⟨C,D⟩ = ⋁
x∈X

⟨{C(x)/x}∩∪,{C(x)/x}∩⟩ =

⟨(⋁
x∈X

{C(x)/x})∩∪, ⋁
x∈X

{C(x)/x}∩⟩,

(note that {a/x} denotes a singleton fuzzy set A defined by A(u) = a for u = x
and A(u) = 0 for u /= x) and hence

D = ⋁
x∈X

{C(x)/x}∩ =

= ⋁
x∈X

C(x)⊗ {1/x}∩.

In addition, ⟨{1/x}∩∪,{1/x}∩⟩ is a particular formal concept from B(X∩, Y ∪, I).
It is now sufficient to realize that {1/x}∩ is just the x-th row of I.

The second equality of (3.5) is immediate. (3.7) is a consequence of (3.5)
when taking a transpose of I. Namely, in such case extents and intents switch
their roles.

(3.6): Similarly, to establishRc(I) = Int(X↑, Y ↓, I), notice that Int(X↑, Y ↓, I)
is just the set of all fixpoints of the fuzzy closure operator ↓↑ (see e.g. [2, 4]),
i.e. a fuzzy closure system. To see that Int(X↑, Y ↓, I) is the least fuzzy clo-
sure system which contains all rows of I, it is sufficient to observe that every
intent D ∈ Int(X↑, Y ↓, I) is an ⋀-intersection of →-shifts of rows of I and that
Int(X↑, Y ↓, I) contains every row of I. To observe this fact, consider the cor-
responding formal concept ⟨C,D⟩ ∈ B(X↑, Y ↓, I). Then it follows from the
description of suprema in B(X↑, Y ↓, I) that

⟨C,D⟩ = ⋁
x∈X

⟨{C(x)/x}↑↓,{C(x)/x}↑⟩ = ⟨(⋁
x∈X

{C(x)/x})↑↓, ⋀
x∈X

{C(x)/x}↑⟩,
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and hence
D = ⋀

x∈X
{C(x)/x}↑ = ⋀

x∈X
C(x)→ {1/x}↑.

In addition, ⟨{1/x}↑↓,{1/x}↑⟩ is a particular formal concept from B(X↑, Y ↓, I).
It is now sufficient to realize that {1/x}↑ is just the x-th row of I.

Again, (3.8) is a consequence of (3.6) when taking the transpose of I.

Remark 7. From the point of view of concept lattices, as developed within
formal concept analysis, the row space of a Boolean matrix I, i.e. Ri(I), is
dually isomorphic as a lattice to the lattice of all intents of the ordinary concept
lattice of the complement of I, i.e. to Int(X↑, Y ↓,¬I). Namely, according to
Theorem 14, Ri(I) = Int(X∩, Y ∪, I) and it is well known that for L = {0,1},
Int(X∩, Y ∪, I) is dually isomorphic to Int(X↑, Y ↓,¬I) with D ↦ ¬D being the
dual isomorphism. Lattices Int(X∩, Y ∪, I) have been studied by Markowsky,
see e.g. [37].

Corollary 15. (1) For Boolean matrices A and B, the row space of A ○B is a
subset of the row space of B.

(2) For a Boolean matrix A, the row space of A has the same number of
elements as the columns space of A.

Proof. (1) is a particular case of (3.5) for L = {0,1}.
(2): By Theorem 14, Ri(A) = Int(X∩, Y ∪,A) and Ci(A) = Int(Y ∩,X∪,AT).

As is mentioned in Remark 7, system Int(X∩, Y ∪,A) is dually isomorphic to
Int(X↑, Y ↓,A) and hence isomorphic to B(X↑, Y ↓,A). Thus, Int(Y ∩,X∪,AT)
is isomorphic to B(Y ↑,X↓,AT). As is well-known from FCA [22], B(X↑, Y ↓,A)
is dually isomorphic to B(Y ↑,X↓,AT), proving the claim.

Remark 8. (1) From Theorem 14 we have ∣Rc(I)∣ = ∣Cc(I)∣ for any I ∈ Ln×m
since Cc(I) = Ext(X↑, Y ↓, I) and, as is well known, Ext(X↑, Y ↓, I) is dually
isomorphic to Rc(I) = Int(X↑, Y ↓, I).

(2) Contrary to Corollary 15 (2), ∣Ri(I)∣ = ∣Ci(I)∣ does not hold for general
L. As an example, consider L from Remark 4. For the matrix I = (a b), we
have Ri(I) = {(a, b), (0,0)} and Ci(I) = {(0), (a), (b)}.

3.3 Closure Spaces Induced by ⟨∧, ∨⟩
It is known that ⟨∧, ∨⟩ forms an isotone L-Galois connection [23], ∧∨ and ∨∧

are L-interior and L-closure operators in X and Y , and Ext(X∧, Y ∨, I) and
Int(X∧, Y ∨, I) are L-interior and L-closure systems in X and Y , respectively.
For antitone L-Galois connection ⟨↑, ↓⟩ any L-closure system in Y is in the form
of Ext(X↑, Y ↓, I) (same for X). The situation for ⟨∧, ∨⟩ might seem completely
dual to that of ⟨↑, ↓⟩ (which is the case when L = {0,1}). However, as the next
example shows, it is not. Namely, there exist L-closure systems that are not of
the form Int(X∧, Y ∨, I).
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Example 2. Let L be the standard Gödel algebra, U = {u}, S = {{0.5/u},{1/u}}.
Therefore, L = [0,1] and a → b = 1 if a ≤ b and a → b = b of a > b. Clearly,
S is closed under intersections and →-shifts, hence it is an L-closure system.
However, S is not of the form S = Int(X∧, Y ∨, I). (This claim is justified at the
end of this section.)

Therefore, L-closure systems that are of the form Int(X∧, Y ∨, I) are just
particular L-closure systems. Below, we provide their characterization. For a
system S ⊆ LU , put

[S]⋀ = {⋀T ∣ T ⊆ S},
[S]→ = {a→ A ∣ a ∈ L, A ∈ S},
[S]→ = {A→ a ∣ a ∈ L, A ∈ S}.

Note that A → a is defined by (A → a)(u) = A(u) → a and call A → a the right
→-multiple of A by a. Therefore, [S]⋀ is the system of all intersections of fuzzy
sets from S, [S]→ is the system of all left →-multiplications of fuzzy sets from
S, and [S]→ is the system of all right →-multiplications of fuzzy sets from S. It
is known that for any S ⊆ LU , [[S]→]⋀ is the least, w.r.t. inclusion, L-closure
system containing S. [[S]→]⋀ is called the L-closure system generated by S, or
the c-span of S.

Note that in fuzzy logic, b → 0 is called the negation of the truth degree b.
Correspondingly, the fuzzy set A→ 0 is called the complement of A. Clearly, in
the above terms, A→ 0 is the right multiple of A by 0. From this point of view,
the right multiples A→ a generalize the concept of a complement of a fuzzy set.
A→ a could naturally be called the a-complement of A.

In the classical case (L = {0,1}), every A is a complement of some B; namely,
of B = A→ 0. This is no longer true for the general setting of residuated lattices
(not even for a = 0). We only have:

Lemma 16. A is an a-complement of some fuzzy set if and only if A = (A →
a)→ a.

Proof. Easy, follows from ((b→ a)→ a)→ a = b→ a.

This lemma is, in a sense, the key observation in characterizing the L-closure
systems Int(X∧, Y ∨, I). We are going to show that Int(X∧, Y ∨, I) are just the
L-closure systems that are generated by a-complements of some collection T
of fuzzy sets. Such systems are conveniently characterized by the following
theorem.

Theorem 17. For any T ⊆ LU , [[T ]→]⋀ is an L-closure system. It is the least,
w.r.t. inclusion, L-closure system containing all a-complements (i.e., right →-
multiplications) of fuzzy sets from T .

Proof. Clearly, [[T ]→]⋀ contains all a-complements of fuzzy sets from T .
The closedness of [[T ]→]⋀ under ∧ is obvious form definition of [⋅]⋀. Now,

we show that [[T ]→]⋀ is closed under left →-multiplications. Let A ∈ [[T ]→]⋀.
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Then A is in the form
A = ⋀

Ti∈T
Ti → ai.

The closedness under → follow from a → (b → c) = b → (a → c) and a → ⋀ bi =
⋀(a→ bi). The rest is by standard arguments.

The following theorem provides our characterization.

Theorem 18. For any S ⊆ LU , S = Int(X∧, Y ∨, I) for some I if and only if
S = [[T ]→]⋀ for some T ⊆ LU , i.e. S is an L-closure system generated by a
system of all a-complements of fuzzy sets from T .

Proof. “⇒”: Let T be set of rows Ix of I. Since

C∧(y) = ⋀
x∈X

I(x, y)→ C(x)

we have
C∧ = ⋀

x∈X
Ix → cx

and
Int(X∧, Y ∨, I) = [[T ]→]⋀.

“⇐”: Let X = T , Y = U , I(A,u) = A(u) for A ∈ S, u ∈ U . One can show
that S = Int(X∧, Y ∨, I).

Definition 3. We call the systems S satisfying the condition of Theorem 18
c-closure systems (“c” for “complement”).

Example 2 (continued). Suppose, by contradiction, that S = Int(X∧, Y ∨, I).
Then U = X and by Theorem 18, S is a system generated by a system of all
a-complements of fuzzy sets from some T . According to Theorem 17, [[T ]→]⋀ =
{{0.5/u},{1/u}}. Then, {0.5/u} needs to be an intersection of other fuzzy sets from
[T ]→ or {0.5/u} ∈ [T ]→. Clearly, {0.5/u} ∈ [T ]→ must be the case. Therefore,
{0.5/u} = {a/u} → b for some b. Clearly, a > b = 0.5 must be the case. But then,
we also have {a/u} → 0.4 = {0.4/u} ∈ [T ]→, a contradiction to [T ]→ ⊆ [[T ]→]⋀ =
{{0.5/u},{1/u}}.

3.4 Concept Lattices of Isotone vs. Antitone
Galois Connections

The classical notion of a complement ¬I of a fuzzy relation may be looked at the
following way. Each attribute y ∈ Y in the data table representing I is replaced
by its complement. That it, each fuzzy set Iy ∈ LX , representing attribute y,
defined by Iy(x) = I(x, y) is replaced in the table by its complement ¬Iy defined
by

(¬Iy)(x) = ¬(Iy(x)), i.e. (¬Iy)(x) = Iy(x)→ 0.
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The complement (2.1) is in fact the residuum of a w.r.t. 0. However, one may
also consider a residuum of a ∈ L w.r.t. to an arbitrary element b ∈ L, i.e. one
may consider

¬ba = a→ b, (3.9)

of which ¬a is a particular case because ¬a = ¬0a. In addition to ¬Iy, the
“negation relative to 0” one may therefore also consider ¬bIy, the “negation
relative to b”, for other degrees b, defined by

(¬bIy)(x) = ¬b(Iy(x)), i.e. (¬bIy)(x) = Iy(x)→ b.

For every original attribute y, Iy may therefore be replaced not just by the
complement ¬0Iy w.r.t. 0 but by several complements ¬bIy w.r.t. b ∈ K with
K ⊆ L being a set of selected values, bringing us the following definition.

Definition 4. For a set K ⊆ L, the K-complement of a fuzzy relation I between
X and Y is a fuzzy relation ¬KI between X and Y ×K defined by

(¬KI)(x, ⟨y, b⟩) = ¬bI(x, y) (3.10)

for every x ∈X, y ∈ Y , and b ∈K.

Remark 9. (a) Going from I to ¬KI may be seen as replacing every attribute
y ∈ Y , represented by Iy in I, by a collection of new attributes ⟨y, b⟩ ∈ Y ×K,
represented by ¬bIy in ¬KI for b ∈K.

(b) Clearly, for K = {0}, ¬KI may be identified with ¬I, because Y × {0}
may be identified with Y and ¬KI(x, ⟨y,{0}⟩) = ¬I(x, y).

(c) In what follows, we use ¬KI for K = L− {1}. Observe that for L = {0,1}
(the ordinary case), ¬L−{1}I = ¬{0}I, i.e. in view of (b) of this Remark, ¬L−{1}I
may be identified with the classical complement ¬I of I.

In view of Remark 9(c), there are two ways to generalize the notion of a
complement of an ordinary relation I between X and Y to a fuzzy setting:

(i) First, a complement of I may be defined as a fuzzy relation between X
and Y by (2.30).

(ii) Second, a complement of I may be defined as a fuzzy relation between X
and Y ×K by (3.10) with K = L − {1}.

While B(X∩I , Y ∪I , I) and B(X↑¬I , Y ↓¬I ,¬I) are isomorphic as lattices holds
true in the ordinary setting (see (2.47) and (2.48)), it fails to hold in a fuzzy
setting for (i), they hold in a fuzzy setting with the complement understood
according to (ii):

Theorem 19. For a fuzzy relation I between X and Y , let ⨼I denote ¬L−{1}I.

Then B(X∩I , Y ∪I , I) and B(X↑⨼I , Y ×(L−{1})↓⨼I ,⨼I) are isomorphic as lattices,
with the mappings ⟨A,B⟩↦ ⟨A,D⟩, where

D(y, b) = ¬bB(y) (3.11)
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for y ∈ Y , b ∈ L − {1}, and ⟨A,D⟩↦ ⟨A,B⟩, where

B(y) = ⋀
b∈L−{1}

¬bD(y, b) (3.12)

for y ∈ Y , being the isomorphism and its inverse. Hence, in particular,

Ext(X∩I , Y ∪I , I) = Ext(X↑⨼I , Y × (L − {1})↓⨼I ,⨼I). (3.13)

Proof. We first prove (3.13). Since ↑⨼I↓⨼I is an L-closure operator in X [5], it
follows that Ext(X↑⨼I , Y × (L − {1})↓⨼I ,⨼I) is an L-closure system in X, i.e.
it is closed under arbitrary ⋀-intersections and left →-multiplications. This
means that for all Aj ∈ Ext(X↑⨼I , Y × (L− {1})↓⨼I ,⨼I), j ∈ J , we have ⋀j∈J Aj ∈
Ext(X↑⨼I , Y × (L − {1})↓⨼I ,⨼I) and for each a ∈ L and A ∈ Ext(X↑⨼I , Y × (L −
{1})↓⨼I ,⨼I) we have a → A ∈ Ext(X↑⨼I , Y × (L − {1})↓⨼I ,⨼I) with a → A ∈ LX
defined by (a → A)(x) = a → A(x) for each x ∈ X. Moreover, [14, Theorem 2
(10)] implies that Ext(X↑⨼I , Y × (L − {1})↓⨼I ,⨼I) is the least L-closure system
in X containing every column of ⨼I, i.e. every ¬bIy for each b ∈ L − {1}.

To prove (3.13), it is therefore sufficient to show that Ext(X∩I , Y ∪I , I) is
the least L-closure system in X containing every column of ⨼I. This assertion
follows from the fact that Ext(X∩I , Y ∪I , I) is always an L-closure system and
from the following claim.

Claim. Ext(X∩I , Y ∪I , I) consists of all possible ⋀-intersections of fuzzy sets
¬bIy (y ∈ Y , b ∈ L − {1}).

Namely, if S is an L-closure system that contains every column of ⨼I, it
contains all intersections of the columns of ⨼I and, due to Claim, it contains
Ext(X∩I , Y ∪I , I). Therefore, to prove (3.13), it remains to prove Claim.

Proof of Claim. Since ∩I and ∪I form an isotone Galois connection, we have

Ext(X∩I , Y ∪I , I) = {B∪I ∣B ∈ LY }. (3.14)

On one hand, every B∪I is an intersection of fuzzy sets of the form ¬bIy because

B∪I (x) = ⋀
y∈Y

(I(x, y)→ B(y)) = ⋀
y∈Y

¬B(y)Iy. (3.15)

On the other hand, consider an arbitrary intersection A of ¬bIys, i.e. A =
⋀⟨y,b⟩∈P ¬bIy for some P ⊆ Y × (L − {1}). Define B(y) = ⋀⟨y,b⟩∈P b. Then

A(x) = ⋀
y∈Y

⋀
⟨y,b⟩∈P

(I(x, y)→ b) = ⋀
y∈Y

I(x, y)→ ⋀
⟨y,b⟩∈P

b =

= ⋀
y∈Y

I(x, y)→ B(y) = B∪I (x),

hence A ∈ Ext(X∩I , Y ∪I , I), finishing the proof of Claim and hence also the
proof of (3.13).
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Now, since Ext(X∩I , Y ∪I , I) and Ext(X↑⨼I , Y × (L−{1})↓⨼I ,⨼I) are isomor-
phic as lattices to B(X∩I , Y ∪I , I) and B(X↑⨼I , Y ×(L−{1})↓⨼I ,⨼I), respectively,
it follows that B(X∩I , Y ∪I , I) and B(X↑⨼I , Y × (L − {1})↓⨼I ,⨼I) are isomorphic
as lattices.

Take any ⟨A,B⟩ ∈ B(X∩I , Y ∪I , I) and the corresponding ⟨A,D⟩ ∈ B(X↑⨼I , Y ×
(L − {1})↓⨼I ,⨼I). Then

D(y, b) = A↑⨼I (y, b) = ⋀
x∈X

A(x)→ ⨼I(x, ⟨y, b⟩) =

= ⋀
x∈X

A(x)→ (I(x, y)→ b) = ⋀
x∈X

((A(x)⊗ I(x, y))→ b) =

= [⋁
x∈X

(A(x)⊗ I(x, y)]→ b = A∩I (y)→ b = B(y)→ b = ¬bB(y),

verifying (3.11). To check (3.12), consider any A ∈ LX and the corresponding
B = A∩I and D = A↑⨼I . Observe first that

B(y) ≤ ¬bD(y, b) (3.16)

for each b ∈ L − {1}. Indeed, taking into account a ≤ (a → b) → b = ¬b¬ba for
any a ∈ L and (3.11), we have B(y) ≤ ¬b¬bB(y) = ¬bD(y, b). This verifies the
“≤” part of (3.12). Let now c = B(y). If c < 1, then c is one of the degrees
from L − {1} over which the infimum in (3.12) is taken and since ¬cD(y, c) =
¬c¬cB(y) = ¬c¬cc = c = B(y) in this case, the infimum in (3.12) is indeed equal
to B(y). If c = 1 then due to (3.16), ¬bD(y, b) = 1 for each b ∈ L − {1}, hence
also the infimum in (3.12) is equal to 1, i.e. equal to B(y).

Remark 10. (a) Observe, that ⨼I is possible to express as composition I ◃B
of L-relations I and B ∈ LY,Y ×(L−{1}) with

B(y1, ⟨y2, a⟩) =
⎧⎪⎪⎨⎪⎪⎩

a if y1 = y2
1 otherwise.

Thus we have A↑⨼I = A↑I◃B = A∩I↑B .

(b) One easily checks that since ¬1Iy(x) = 1 for each x ∈X, one may replace
L − {1} by L in Theorem 19.

(c) A converse statement to Theorem 19 does not hold. That is, there is no
notion of a complement ∼ such that for any fuzzy relation I, Ext(X↑I , Y ↓I , I) is
equal to Ext(X∩∼I , Z∪∼I ,∼I) for any suitable Z. This is because for some fuzzy
relations I, Ext(X↑I , Y ↓I , I) is not a system of extents of any fuzzy relation J
w.r.t. the operators ∩J and ∪J as it is shown in Section 3.3.

(d) In view of Remark 9 (c), Theorem 19 generalizes (2.47) and (2.48) and
its proof does not use the law of double negation.

(e) Theorem 19 uses a new notion of complement. Unlike the usual notion
of complement, the new one does not result by a straightforward replacement
of truth functions of classical logic by the truth functions of fuzzy logic. It is an
interesting question to explore to what extent this notion may be used in other
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areas of fuzzy set theory to replace the usual notion of complement in such a
way that the resulting concepts behave as in the classical, bivalent case even
without the law of double negation.

(f) One of the main result in [33] is description of scaling of a fuzzy relation
I ∈ LX×Y to crisp relation Ic ⊆ (X × L) × (Y × L) s.t. B(X∩I , Y ∪I , I) and
B(X ×L↑Ic , Y ×L↓Ic , Ic) are isomorphic as lattices. The result can be considered
to be a consequence of Theorem 19; using the new notion of complement can
simplify several proofs in that paper.

3.5 Summary and Future Research

This chapter provided a study of relationship between concept-forming operators
induced by fuzzy relations in (de)composition I = A∗B; a correspondence with
notions from Boolean matrix theory, characterization of closure spaces induced
by isotone concept-forming operators, and a relationship of isotone and antitone
L-Galois connections via a new notion of a complement.

Our future research includes:

• Theorem 10 says that reduction of a concept lattice can be obtained by
using relational compositions. We want to study L-relations which are
reasonable to be used for such a reduction. Some initial results on this
are given in Section 4.4.

• Possible applications of the new notion of a complement in wider scope.
For example fuzzification of attribute dependency formulas and failure
dependency formulas [20] seem to be appropriate goal since in their crisp
setting law of double negation is frequently used.

• Several results in this section are known to hold true in the general frame-
work (mentioned in Remark 1); it is our plan to further develop the frame-
work.

• The second main output of FCA are attribute implications, our future re-
search includes a study of a relationship between the attribute implications
and the (de)compositions of L-relations.

• Study of matrices over more general structures than residuated lattices.
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Chapter 4

Morphisms of Structures
Associated to L-relations

In this chapter we define notions of i-morphisms, c-morphisms, and a-morphisms
and show their basic properties.

Definition 5. A mapping h ∶ V → W from an i-subspace V ⊆ Lp into an i-
subspace W ⊆ Lq is called an i-morphism if it is a ⊗- and ⋁-morphism, i.e.
if

– h(a⊗C) = a⊗ h(C) for each a ∈ L and C ∈ V ;

– h(⋁k∈K Ck) = ⋁k∈K h(Ck) for every collection of Ck ∈ V (k ∈K).

An i-morphism h ∶ V → W is called an extendable i-morphism if h can be
extended to an i-morphism of Lp to Lq, i.e. if there exists an i-morphism h′ ∶
Lp → Lq such that for every C ∈ V we have h′(C) = h(C);

A mapping h ∶ V → W from a c-subspace V ⊆ Lp into a c-subspace W ⊆ Lq
is called a c-morphism if it is a →- and ⋀-morphism, i.e. if

– h(a→ C) = a→ h(C) for each a ∈ L and C ∈ V ;

– h(⋀k∈K Ck) = ⋀k∈K h(Ck) for every collection of Ck ∈ V (k ∈K);

– if C is an a-complement then h(C) is an a-complement.

A mapping h ∶ V →W from an i-subspace V ⊆ Lp into an c-subspace W ⊆ Lq
is called an a-morphism if

– h(a⊗C) = a→ h(C) for each a ∈ L and C ∈ V ;

– h(⋁k∈K Ck) = ⋀k∈K h(Ck) for every collection of Ck ∈ V .

The notions of extendable c-morphism, extendable a-morphism are defined sim-
ilarly as in the case of i-morphisms.

In what follows we consider only extendable morphisms.
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4.1 Basic Properties of Morphisms

The following two lemmas show that i-morphisms, c-morphisms, and a-morphisms
are in a correspondence with L-relations.

Lemma 20. For V ⊆ LX , (a) if h ∶ V → LY is an i-morphism then there exists
an L-relation A ∈ LX×Y such that h(C) = C ○A for every C ∈ Lp.

(b) if h ∶ V → LY is an c-morphism then there exists an L-relation A ∈ LX×Y

such that h(C) = C ▹A for every C ∈ LY .
(c) if h ∶ V → LY is an a-morphism then there exists an L-relation A ∈ LX×Y

such that h(C) = C ◃A for every C ∈ LX .

Proof. (a) Since h is extendable, we may safely assume that h ∶ LX → LY , i.e.
that h is defined for every C ∈ LX . Let A ∈ LX×F be defined by

A(x, y) = ⋀
C∈LX

(C(x)→ (h(C))(y)).

That is, A(x, ) = ⋀C∈LX (C(i) → h(C)), i.e. the row Ax contains a vector of
degrees that can be interpreted as the intersection of images of those vectors C
from V for which the corresponding fuzzy set contains x.

To establish the equation (h(C))(y) = (C ○A)(y), we first show

(h(Ek))(y) = (Ek ○A)(y) (4.1)

for every k ∈X, where Ek is defined by

Ek(x) =
⎧⎪⎪⎨⎪⎪⎩

0 for x ≠ k,
1 for x = k,

for every x ∈X.
Notice that for any C ∈ V , as C(k) ⊗ Ek ≤ C, we have C(k) ⊗ h(Ek) =

h(C(k)⊗Ek) ≤ h(C), whence Ek(k)→ h(Ek) ≤ C(k)→ h(C).
Using this inequality, we get

(Ex ○A)(y) = ⋁
x∈X

[Ek(x)⊗ ( ⋀
C∈LX

(C(x)→ (h(C))(y)))] =

= ⋀
C∈LX

(C(k)→ (h(C))(y)) = ⋀
k∈X

(Ek(k)→ (h(Ek))(y)) =

= (h(Ek))(j).

Using (4.2), we now get

(h(C))(y) = (h(⋁
x∈X

(C(x)⊗Ex)))(j) = ⋁
x∈X

(C(x)⊗ h(Ex)(y)) ≤

≤ ⋁
x∈X

(C(x)⊗ (Ex ○A)(y)) = (⋁
x∈X

(C(x)⊗Ex) ○A)(y)) = (C ○A)(y),

finishing the proof of (a).
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(b) Let A ∈ LX×Y be defined by

A(x, y) = ⋀C∈V ((h(C))(y)→ C(x)).

That is, A(x, ) = ⋀C∈V (h(C) → C(x)), i.e. the row Ax contains a vector
of degrees that can be interpreted as the intersection of images of those vectors
C from V for which the corresponding fuzzy set contains i.

We now check h(C) = C ▹A for every C ∈ LX . First,

(C ▹A)(y) = ⋀
x∈X

[A(x, y)→ C(x)] =

= ⋀
x∈X

[( ⋀
C′∈V

(h(C ′))(y)→ C ′(x)))→ C(x)] ≥ (h(C))(y).

Second, to establish (h(C))(y) ≥ (C ▹A)(y), we first show

(h(⋂
a∈L

Ek,a))(j) ≥ ⋂
a∈L

(Ek,a ▹A)(j) (4.2)

for every k ∈X, where Ek,a is a-complement of Ek, i.e.

Ek,a(x) = Ek → a =
⎧⎪⎪⎨⎪⎪⎩

1 for x ≠ k,

a for x = k,

for every x ∈X.

Indeed,

(Ek,a ▹A)(j) =
p

⋀
i=1

[( ⋀
C∈V

((h(C))(j)→ C(i)))→ Ek,a(i)] ≤

≤ ((h(Ek,a))(j)→ Ek,a(k))→ Ek,a(k) =
= ((h(Ek,a))(j)→ a)→ a =
= (h(Ek,a))(j).

Using (4.2), we now get

h(C) = h(⋀
i

(Ek → c(i))) =⋀
i

h(Ek → c(i)) ≥

≥⋀
i

((Ek → c(i)) ▹A) =⋀
i

(Ek → c(i)) ▹A = C ▹A,

finishing the proof of (b).

(c) Since h is extendable, we may safely assume that h ∶ LX → LY , i.e. that
h is defined for every C ∈ LX . Let A ∈ LX×F be defined by

A(x, y) = ⋀
C∈LX

(C(x)→ (h(C))(y)).

That is, A(x, ) = ⋀C∈LX (C(i) → h(C)), i.e. the row Ax contains a vector of
degrees that can be interpreted as the intersection of images of those vectors C
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from V for which the corresponding fuzzy set contains x.
Let A(x, y) = ⋁C∈LX C(x) ○h(C)(y). First, we prove that h(Ek)(y) = (Ek ◃

A)(y) for each y ∈ Y , where Ek(x) is defined as in proof of part (a).
≥:

(Ek ◃A)(x) = ⋀
x∈X

Ek(x)→ ⋁
C∈LX

(C(x) ○ h(C)(y))

≥ ⋀
x∈X

Ek(x)→ (Ek(x) ○ h(Ek)(y)) ≥ h(Ek)(y).

≤:

(Ek ◃A)(y) = ⋀
x∈X

Ek(x)→⋁
C

(C(x) ○ h(C)(y)) = (⋁
C

C(k) ○ h(C)(y))

=⋁
C

C(k) ○ h(⋁
i

(C(x)⊗Ex))(y) =⋁
C

C(k) ○⋀
i

(C(x)→ h(Ex)(j))

≤⋁
C

C(k) ○ (C(k)→ h(Ek)(y)) ≤ h(Ek)(y).

Finally, we show that h(C) = (C ◃A) for each C ∈ LX :

h(C) = h(⋁
x∈X

C(x)⊗Ek) = ⋀
x∈X

C(x)→ h(Ek) = ⋀
x∈X

C(x)→ (Ek ◃A)

= C ◃ (Ek ◃A) = (C ○Ek) ◃A) = C ◃A,

finishing the proof of (c).

Lemma 21. Let A ∈ LX×Y ,

(a) the mapping hA ∶ LX → LY defined by hA(C) = C ○ A (= C∩A) is an
i-morphism.

(b) the mapping hA ∶ LX → LY defined by hA(C) = C ▹ A (= C∧A) is a
c-morphism.

(c) the mapping hA ∶ LX → LY defined by hA(C) = C ◃ A (= C↑A) is an
a-morphism.

Proof. (a) – (c) follow from properties of residuated lattices.

Remark 11. (1) As a result of Lemma 21 and Lemma 20, extendable i-
morphisms may be represented by L-relations by means of ○-composition, ex-
tendable c-morphisms may be represented by L-relations by means of ▹-compo-
sition and extendable a-morphisms may be represented by means of ◃-compo-
sition.

(2) In the crisp case, every i-morphism is extendable. Namely, due to [28,
Lemma 1.3.2], for every i-morphism h ∶ V → {0,1}q there exists a Boolean matrix
A ∈ {0,1}p×q such that h(C) = C ○ A for every C ∈ V . Clearly, h′ ∶ {0,1}p →
{0,1}q defined by h′(C) = C ○A for any C ∈ {0,1}p is the required extension of h
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which is an i-morphism. Analogously every c-morphism and every a-morphism
is extendable.

(3) For general residuated lattices, however, there exist i-morphisms that
are not extendable. Consider any finite chain L with a < b being two elements
of L. Let ⊗ be defined as in Remark 8 (2). For p = q = 1, put V = {(0), (a)},
W = {(0), (b)}. Clearly, both V and W are i-subspaces for which h((0)) = (0)
and h((a)) = (b) defines an i-morphism h. If h was extendable, there would
exist a matrix A = (c) for which h(C) = C ○A (Lemma 20). In particular, this
would mean (b) = h((a)) = (a) ○ (c), i.e. b = a ⊗ c which is impossible because
b > a. Therefore, h is not extendable.

Lemmas 20 and 21 say that i-morphisms, a-morphisms, and c-morphisms are
in a correspondence with L-relations. From this correspondence we can easily
derive some properties of the morphisms like the one in the following theorem.

Theorem 22. (a) Let f ∶ LX → LF , g ∶ LF → LY be an i-morphisms, then
g ○ f ∶ LX → LY is an i-morphism.

(b) Let f ∶ LX → LF , g ∶ LF → LY be c-morphisms, then g ○ f ∶ LX → LY is
an c-morphism.

(c) Let f ∶ LX → LF be an i-morphism and g ∶ LF → LY be an a-morphism,
then g ○ f ∶ LX → LY is an a-morphism.

(d) Let f ∶ LX → LF be an a-morphism and g ∶ LF → LY be a c-morphism,
then g ○ f ∶ LX → LY is an a-morphism.

Proof. Directly from Lemma 20, Lemma 21 and Theorem 7.

Notice, that different L-relations can define the same morphism. In other
words, the L-relation Ah that characterizes an i-morphism (a-morphism, c-mor-
phism) h is not generally unique. As an example, consider the same residuated
lattice as in Remark 4, i.e. a finite chain containing a < b with ⊗ defined as
follows:

x⊗ y =
⎧⎪⎪⎨⎪⎪⎩

x ∧ y if x = 1 or y = 1,

0 otherwise,
x→ y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x ≤ y,

y if x = 1,

b otherwise,

for each x, y ∈ L, and L-interior system {(a), (0)} over an one-element universe.
It is easy to observe that i-relations given by L-relations (0) , (a) , (b) turn both
L-sets of the L-interior system to (0). The following theorem explains structure
of all such L-relations.

Theorem 23. (a) Let h be an i-morphism V →W and let Ah be set of all L-
relations, s.t. C∩Ah = h(C) for each C ∈ U . Then Ah is closed under ∨-union.

(b) Let h be an c-morphism V →W and let Ah be set of all L-relations, s.t.
C∧Ah = h(C) for each C ∈ U . Then Ah is closed under ∧-intersection.

(c) Let h be an a-morphism V →W and let Ah be set of all L-relations, s.t.
C↑Ah = h(C) for each C ∈ U . Then Ah is closed under ∨-union.
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Proof. Follows from properties of residuated lattices; for instance, consider K ⊆
Ah. Thus we have

h(C)(y) = ⋁
A∈K

C∩Ah (y)

= ⋁
A∈K

⋁
x∈X

C(x)⊗Ah(x, y)

= ⋁
x∈X

C(x)⊗ ⋁
A∈K

Ah(x, y)

= C∩⋁A∈Ah
Ah(x,y)(y).

which proves (a).

The next theorem says that morphisms which are defined for entire LX have
a unique L-relation Ah.

Theorem 24. Let h ∶ LX → W be an i-morphism (c-morphism, a-morphism).
Then there is a unique L-relation Ah s.t. C∩Ah = h(C) (C∧Ah = h(C),C↑Ah =
h(C))

Proof. From properties of residuated lattices.

4.2 Isomorphisms of Concept Lattices

In this section, we study the i-isomorphisms and c-isomorphisms of concept
lattices.

Definition 6. An i-morphism h ∶ V →W is called i-isomorphism if h is bijec-
tive, its inverse h−1 is i-morphism. If an i-isomorphism h ∶ V → W exists we
also say that V is i-isomorphic to W .

A c-morphism h ∶ V →W is called c-isomorphism if h is bijective, its inverse
h−1 is c-morphism. If a c-isomorphism h ∶ V →W exists we also say that V is
c-isomorphic to W .

The following theorem provides the sufficient and necessary condition under
which two systems of intents are isomorphic.

Theorem 25. Let ⟨X1, Y1, I1⟩ and ⟨X2, Y2, I2⟩ be L-contexts. Then system of
intents Int(X∩

1 , Y
∪
1 , I1) is i-isomorphic to Int(X∩

2 , Y
∪
2 , I2) if and only if there

exists an L-relation K ∈ LX2×Y1 such that

Int(X∩
1 , Y

∪
1 , I1) = Int(X∩

2 , Y
∪
1 ,K) and Ext(X∧

2 , Y
∨
2 , I2) = Ext(X∧

2 , Y
∨
1 ,K).

Proof. “⇒”: Let h ∶ Int(X∩
2 , Y

∪
2 , I2) → Int(X∩

1 , Y
∪
1 , I1) be the i-isomorphism.

According to Lemma 20, there exist L-relations J2→1 ∈ LY2×Y1 and J1→2 ∶∈ LY1×Y2

such that
h(D2) =D2 ○ J2→1 and h−1(D1) =D1 ○ J1→2
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for every D1 ∈ Int(X∩
1 , Y

∪
1 , I1) and D2 ∈ Int(X∩

2 , Y
∪
2 , I2). Because every row of

I2 is intent of Int(X∩
2 , Y

∪
2 , I2), it follows that

I2 ○ J2→1 ○ J1→2 = I2.

Therefore, according to Theorem 8 (○2),

Ext(X∧
2 , Y

∨
2 , I2)⊆Ext(X∧

2 , Y
∨
2 , I2 ○ J2→1).

Since, according to Theorem 8 (○1) again,

Ext(X∧
2 , Y

∨
2 , I2)⊇Ext(X∧

2 , Y
∨
2 , I2 ○ J2→1),

we conclude
Ext(X∧

2 , Y
∨
2 , I2) = Ext(X∧

2 , Y
∨
1 , I2 ○ J2→1).

Furthermore, ifD1 ∈ Int(X∩
1 , Y

∪
1 , I1), thenD1○J1→2 = h−1(D1) ∈ Int(Y ∩

1 , Y
∪
2 , J1→2),

hence D1 ○ J1→2 = C2 ○ I2 for some C2 ∈ LX2 . Since D1 = (D1 ○ J1→2) ○ J2→1, we
get D1 = (C2 ○ I2) ○ J2→1 = C2 ○ (I2 ○ J2→1), showing D1 ∈ Int(X∩

2 , Y
∪
1 , I2 ○ J2→1).

We established Int(X∩
1 , Y

∪
1 , I1) ⊆ Int(X∩

2 , Y
∪
1 , I2 ○ J2→1).

If D1 ∈ Int(X2, Y1, I2 ○ J2→1) then D1 = C2 ○ (I2 ○ J2→1) = (C2 ○ I2) ○ J2→1 for
some C2 ∈ LX2 . Since C2 ○ I2 ∈ Int(X∩

2 , Y
∪
2 , I2), we get

D1 = (C2 ○ I2) ○ J2→1 = h(C2 ○ I2) ∈ Int(X∩
1 , Y

∪
1 , I1),

proving Int(X∩
2 , Y

∪
1 , I2 ○ J2→1) ⊆ Int(X∩

1 , Y
∪
1 , I1).

Summing up, we proved

Int(X∩
2 , Y

∪
1 , I2 ○ J2→1) = Int(X∩

1 , Y
∪
1 , I1).

Now, I2 ○ J2→1 yields the required L-relation K.

“⇐”: Since Ext(X∧
2 , Y

∨
1 ,K) = Ext(X∧

2 , Y
∨
2 , I2), an application of Theo-

rem 10 (b) to inclusions Ext(X∧
2 , Y

∨
1 ,K) ⊆ Ext(X∧

2 , Y
∨
2 , I) and Ext(X∧

2 , Y
∨
1 ,K) ⊇

Ext(X∧
2 , Y

∨
2 , I), respectively, yields L-relations J1→2 ∈ LY1×Y2 and J2→1 ∈ LY2×Y1

for which I2 ○ J1→2 =K and K ○ J1→2 = I2.

Define mappings f∶ Int(X2, Y2, I2) → Int(X2, Y1,K) and g∶ Int(X2, Y1,K) →
Int(X2, Y2, I2) as follows

f(D2) =D2 ○ J2→1 and g(D1) =D1 ○ J1→2 (4.3)

for D2 ∈ Int(X∩
2 , Y

∪
2 , I2) and D1 ∈ Int(X∩

1 , Y
∪
1 , I1).

Notice that every D1 ∈ Int(X∩
2 , Y

∪
1 ,K) is in the form D1 = C2 ○ K for some

C2 ∈ LX2 and that every D2 ∈ Int(X∩
2 , Y

∪
2 , I2) is in the form D2 = C2 ○ I2 for

some C2 ∈ LX2 . The mappings f and g are defined correctly. Indeed,

f(D2) =D2 ○ J2→1 = (C2 ○ I2) ○ J2→1 = C2 ○ (I2 ○ J2→1) = C2 ○K

for some C2, and because we have C2○K ∈ Int(X∩
2 , Y

∪
1 ,K), we also have f(D2) ∈
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Int(X∩
2 , Y

∪
1 ,K). In a similar way one obtains g(D1) ∈ Int(X∩

2 , Y
∪
2 , I2). Next,

since D1 is in the form D1 = C2 ○K for some C2 ∈ LX2 , we have

g(f(D2)) = ((C2 ○K) ○ J1→2) ○ J2→1 = (C2 ○ (K ○ J1→2)) ○ J2→1 =
= (C2 ○ I2) ○ J2→1 = C2 ○ (I2 ○ J2→1) = C2 ○K =D2

and, similarly, f(g(D1)) = D1, proving that f and g are mutually inverse bi-
jections. Finally, due to (4.3), Lemma 21 implies that f and g are extendable
i-morphisms. This shows that Int(X∩

2 , Y
∪
1 ,K) is i-isomorphic to Int(X∩

2 , Y
∪
2 , I2),

and hence Int(X∩
1 , Y

∪
1 , I1) is i-isomorphic to Int(X∩

2 , Y
∪
2 , I2).

Remark 12. Note, that Theorem 25 generalizes a well-known result on Green’s
relations on Boolean matrices. Namely, by Theorem 14 system of intents w.r.t.
⟨∩, ∪⟩ and system of extents w.r.t. ⟨∧, ∨⟩ correspond to row and column space, re-
spectively. The existence of K in Theorem 25 is then equivalent to the condition
under which are two Boolean matrices D-related. The Theorem 25 generalizes
[28, Theorem 1.3.3] which says that two Boolean matrices are D-related if and
only if their row spaces are isomorphic.

Next, we show how Theorem 25 may be used to prove a characterization of
isomorphism of concept lattices induced by the ∩ and ∪ operators. We consider
mappings of concept lattices. Since every extent of a formal concept is uniquely
determined by the corresponding intent and vice versa (using operators ∩ and ∪),
a mapping h ∶ B(X∩

1 , Y
∪
1 , I1) → B(X∩

2 , Y
∪
2 , I2) may be thought of as consisting

of a pair ⟨hExt, hInt⟩ of mappings, such that h(A,B) = ⟨hExt(A), hInt(B)⟩. That
is, h consists of

hExt∶ Ext(X∩
1 , Y

∪
1 , I1)→ Ext(X∩

2 , Y
∪
2 , I2)

and
hInt∶ Int(X∩

1 , Y
∪
1 , I1)→ Int(X∩

2 , Y
∪
2 , I2).

Since Ext(X∩
i , Y

∪
i , Ii) are L-closure systems and Int(X∩

i , Y
∪
i , Ii) are L-interior

systems, the following definition provides natural requirements for h to be a
morphism.

Definition 7. A mapping h = ⟨hExt, hInt⟩ ∶ B(X∩
1 , Y

∪
1 , I1) → B(X∩

2 , Y
∪
2 , I2) is

called an morphism if hExt is an c-morphism and hInt is an i-morphism (cf.
Definition 5). h is called an isomorphism if hExt is a c-isomorphism and hInt
is an i-isomorphism; if such h exists, we write B(X∩

1 , Y
∪
1 , I1) ≅ B(X∩

2 , Y
∪
2 , I2).

Lemma 26. Let ⟨X1, Y1, I1⟩ and ⟨X2, Y2, I2⟩ be L-contexts. Let h be a lattice
isomorphism h ∶ B(X∩

1 , Y
∪
1 , I1)→ B(X∩

2 , Y
∪
2 , I2). If its Int-component hInt is an

i-morphism then its Ext-component hExt and its inverse h−1Ext are a c-morphisms.

Proof. Due to Lemma 20, there exists an L-relation Ah such that

hInt(D1) =D1 ○Ah,
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i.e. hInt(D1) =D
∩Ah

1 for every D1 ∈ Int(X∩
1 , Y

∪
1 , I1). As a result,

hExt(C1) = (hInt(C
∩I1

1 ))∪I2 = C∩I1
∩Ah

∪I2

1 (4.4)

for every C1 ∈ Ext(X∩
1 , Y

∪
1 , I1). Theorem 25 (a) and its proof imply that the

L-relation K = I1 ○Ah satisfies Int(X∩
1 , Y

∪
2 ,K) = Int(X∩

2 , Y
∪
2 , I2).

Since Int(X∩
1 , Y

∪
2 ,K) ⊆ Int(X∩

2 , Y
∪
2 , I2), there is a L-relation J such that

K = J ○ I2 (Theorem 10 (a)). Note that due to Theorem 7(3.1), ∩J○I2 = ∩J∩I2

and ∪J○I2 = ∪I2
∪J . As a result, (4.4) implies

hExt(C1) = C
∩I1

∩Ah
∪I2

1 = C∩I1○Ah
∪I2

1 = C∩K∪I2

1 = C∩J○I2
∪I2

1 = C∩J∩I2
∪I2

1 . (4.5)

Observe now that since hExt is a bijection, we have

C
∩J∩I2

∪I2
∪J

1 = C1 (4.6)

for every C1 ∈ Ext(X∩
1 , Y

∪
1 , I1). Indeed, since C

∩J∩I2
∪I2

∪J

1 = C
∩J○I2

∪J○I2

1 , it
follows from the general properties of isotone Galois connections that

C
∩J○I2

∪J○I2

1 ⊇ C1. (4.7)

If in (4.7), C
∩J○I2

∪J○I2

1 ⊃ C1, i.e. C
∩J○I2

∪J○I2

1 /= C1 then applying ∩J○I2
∪I2 to both

sides of the inequality and taking into account that ∩J○I2
∪I2 = hExt is a bijection,

we get
C
∩J○I2

∪J○I2
∩J○I2

∪I2

1 /= C∩J○I2
∪I2

1 , (4.8)

which yields a contradiction because using ∩J○I2
∪J○I2

∩J○I2 = ∩J○I2 , both sides of
(4.8) are equal.

We established (4.13) and (4.6) from which it follows that ∪J is inverse to
hExt, i.e.

h−1Ext(C2) = C∪J

2 (4.9)

for each C2 ∈ Ext(X∩
2 , Y

∪
2 , I2).

Now, in a similar way, one may show that there exists a matrix J ′ such that

hExt(C1) = C∪J′

1 (4.10)

for each C1 ∈ Ext(X∩
1 , Y

∪
1 , I1). Namely, just start as in the beginning of this

proof with h−1Int instead of hInt, i.e. start by claiming the existence of A′
h for

which h−1Int(D) =D ○A′
h and proceed dually to how we have proceeded above.

Finally, h−1Ext and hExt are c-morphisms by Lemma 21.

Figure 4.2 illustrates Theorem 29.

Remark 13. Note that opposite direction of the proposition in Theorem 26 does
not hold. That is, having lattice isomorphism h ∶ B(X1, Y1, I1) → B(X2, Y2, I2)
with Ext-component being c-morphism does not implies Int-component (or its
inverse) to be extendable i-morphism. As a counterexample consider the same
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Int(X∩
1 , Y

∪
1 , I1) Int(X∩

2 , Y
∪
2 , I2)

Ext(X∩
1 , Y

∪
1 , I1) Ext(X∩

2 , Y
∪
2 , I2)

∪I1
∩I1

∪I2
∩I2

hExt

c-morphism

hInt

i-morphism

Figure 4.1: Illustration of Lemma 26.

residuated lattice as in Remark 4, i.e. a finite chain containing a < b with ⊗
defined as follows:

x⊗ y =
⎧⎪⎪⎨⎪⎪⎩

x ∧ y if x = 1 or y = 1,

0 otherwise,
x→ y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x ≤ y,

y if x = 1,

b otherwise,

for each x, y ∈ L. Now, L-contexts I, J given by matrices (a) , (b) ∈ L1×1,
respectively, induce following sets of concepts:

B({x}∩,{y}∪, I) = {⟨{b/x},∅⟩,{y,{b/y}}},
B({x}∩,{y}∪, J) = {⟨{b/x},∅⟩,{y,{a/y}}}.

It is easy to check, that the identity on L{x} – Ext-component of lattice
isomorphism B({x}∩,{y}∪, I) → B({x}∩,{y}∪, J) – is complement-preserving
c-isomorphism (as well as its inverse). On the other hand, the Int-component
is i-morphism which fails to be extendable (as well as its inverse).

Theorem 27. Let I1 ∈ LX1×X1 and I ∈ LX2×Y2 be L-relations. B(X∩
1 , Y

∪
1 , I1) ≅

B(X∩
2 , Y

∪
2 , I2) if and only if there exists an L-relation K ∈ LX2×Y1 such that

Int(X∩
1 , Y

∪
1 , I1) = Int(X∩

2 , Y
∪
1 ,K) and Ext(X∧

1 , Y
∨
1 , I2) = Ext(X∧

2 , Y
∨
1 ,K).

Proof. Follows directly from Theorem 25 and Lemma 26.

The Antitone Case

We can get analogous results c-isomorphisms and concept lattices formed by
antitone Galois connections.

Definition 8. A mapping h = ⟨hExt, hInt⟩ ∶ B(X↑1, Y
↓
1 , I1) → B(X

↑
2, Y

↓
2 , I2) is

called an morphism if both hExt and hInt are c-morphisms. h is called an
isomorphism if hExt and hInt are c-isomorphisms; if such h exists, we write
B(X↑1, Y

↓
1 , I1) ≅c B(X

↑
2, Y

↓
2 , I2).
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Theorem 28. Let ⟨X1, Y1, I1⟩ and ⟨X2, Y2, I2⟩ be L-contexts. We have sys-
tem of extents Ext(X↑1, Y

↓
1 , I1) is isomorphic to Ext(X↑2, Y

↓
2 , I2) if and only if

there exists an L-relation K ∈ LX2×Y1 s.t. Int(X↑1, Y
↓
1 , I1) = Int(X↑2, Y

↓
1 ,K) and

Ext(X↑2, Y
↓
2 , I2) = Ext(X↑2, Y

↓
1 ,K).

Proof. “⇒”: Let h ∶ Int(X↑2, Y
↓
2 , I2) → Int(X↑1, Y

↓
1 , I1) be the c-isomorphism.

According to Lemma 20, there exist L-relations J2→1 ∈ LY2×Y1 and J1→2 ∶∈ LY1×Y2

such that
h(D2) =D2 ▹ J2→1 and h−1(D1) =D1 ▹ J1→2

for every D1 ∈ Int(X↑1, Y
↓
1 , I1) and D2 ∈ Int(X↑2, Y

↓
2 , I2). Because every row of I2

is intent of Int(X↑2, Y
↓
2 , I2), it follows that

(I2 ▹ J2→1) ▹ J1→2 = I2 ▹ (J2→1 ○ J1→2) = I2.

Therefore, according to Theorem 8 (▹),

Ext(X↑2, Y
↓
2 , I2)⊆Ext(X↑2, Y

↓
2 , I2 ▹ J2→1).

Since, according to Theorem 8 (▹) again,

Ext(X↑2, Y
↓
2 , I2)⊇Ext(X↑2, Y

↓
2 , I2 ▹ J2→1),

we conclude
Ext(X↑2, Y

↓
2 , I2) = Ext(X↑2, Y

↓
1 , I2 ▹ J2→1).

Furthermore, ifD1 ∈ Int(X↑1, Y
↓
1 , I1), thenD1▹J1→2 = h−1(D1) ∈ Int(Y ↑1 , Y

↓
2 , J1→2),

hence D1 ▹ J1→2 = C2 ◃ I2 for some C2 ∈ LX2 . Since D1 = (D1 ▹ J1→2) ▹ J2→1, we
get D1 = (C2 ◃ I2) ▹ J2→1 = C2 ◃ (I2 ▹ J2→1), showing D1 ∈ Int(X↑2, Y

↓
1 , I2 ▹ J2→1).

We established Int(X↑1, Y
↓
1 , I1) ⊆ Int(X↑2, Y

↓
1 , I2 ▹ J2→1).

If D1 ∈ Int(X2, Y1, I2 ▹ J2→1) then D1 = C2 ◃ (I2 ▹ J2→1) = (C2 ◃ I2) ▹ J2→1 for
some C2 ∈ LX2 . Since C2 ◃ I2 ∈ Int(X↑2, Y

↓
2 , I2), we get

D1 = (C2 ◃ I2) ▹ J2→1 = h(C2 ◃ I2) ∈ Int(X↑1, Y
↓
1 , I1),

proving Int(X↑2, Y
↓
1 , I2 ▹ J2→1) ⊆ Int(X↑1, Y

↓
1 , I1).

Summing up, we proved

Int(X↑2, Y
↓
1 , I2 ◃ J2→1) = Int(X↑1, Y

↓
1 , I1).

Now, I2 ▹ J2→1 yields the required L-relation K.

“⇐”: Since we have Ext(X↑2, Y
↓
1 ,K) = Ext(X↑2, Y

↓
2 , I2), an application of

Theorem 10 (d) to inclusions

Ext(X↑2, Y
↓
1 ,K) ⊆ Ext(X↑2, Y

↓
2 , I) and Ext(X↑2, Y

↓
1 ,K) ⊇ Ext(X↑2, Y

↓
2 , I),

respectively, yields L-relations J1→2 ∈ LY1×Y2 and J2→1 ∈ LY2×Y1 for which I2 ▹
J1→2 =K and K ▹ J1→2 = I2.
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Define mappings f∶ Int(X2, Y2, I2) → Int(X2, Y1,K) and g∶ Int(X2, Y1,K) →
Int(X2, Y2, I2) as follows

f(D2) =D2 ▹ J2→1 and g(D1) =D1 ▹ J1→2 (4.11)

for D2 ∈ Int(X↑2, Y
↓
2 , I2) and D1 ∈ Int(X↑1, Y

↓
1 , I1).

Notice that every D1 ∈ Int(X↑2, Y
↓
1 ,K) is in the form D1 = C2 ◃ K for some

C2 ∈ LX2 and that every D2 ∈ Int(X↑2, Y
↓
2 , I2) is in the form D2 = C2 ◃ I2 for

some C2 ∈ LX2 . The mappings f and g are defined correctly. Indeed,

f(D2) =D2 ▹ J2→1 = (C2 ◃ I2) ▹ J2→1 = C2 ◃ (I2 ▹ J2→1) = C2 ◃K

for some C2, and because we have C2◃K ∈ Int(X↑2, Y
↓
1 ,K), we also have f(D2) ∈

Int(X↑2, Y
↓
1 ,K). In a similar way one obtains g(D1) ∈ Int(X↑2, Y

↓
2 , I2). Next,

since D1 is in the form D1 = C2 ◃K for some C2 ∈ LX2 , we have

g(f(D2)) = ((C2 ◃K) ▹ J1→2) ▹ J2→1 = (C2 ◃ (K ▹ J1→2)) ▹ J2→1 =
= (C2 ◃ I2) ▹ J2→1 = C2 ◃ (I2 ▹ J2→1) = C2 ◃K =D2

and, similarly, f(g(D1)) = D1, proving that f and g are mutually inverse bi-
jections. Finally, due to (4.11), Lemma 21 implies that f and g are extendable
c-morphisms. This shows that Int(X↑2, Y

↓
1 ,K) is c-isomorphic to Int(X↑2, Y

↓
2 , I2),

and hence Int(X↑1, Y
↓
1 , I1) is c-isomorphic to Int(X↑2, Y

↓
2 , I2).

Lemma 29. Let ⟨X1, Y1, I1⟩ and ⟨X2, Y2, I2⟩ be L-contexts. Let h be a lattice
isomorphism h ∶ B(X↑1, Y

↓
1 , I1) → B(X

↑
2, Y

↓
2 , I2). If its Int-component hInt is an

c-morphism then inverse h−1Ext its Ext-component is c-morphism as well.

Proof. Due to Lemma 20, there exists an L-relation Ah such that

hInt(D1) =D1 ▹Ah,

i.e. hInt(D1) =D
∧Ah

1 for every D1 ∈ Int(X↑1, Y
↓
1 , I1). As a result,

hExt(C1) = (hInt(C
↑I1
1 ))↓I2 = C↑I1∧Ah

↓I2
1 (4.12)

for every C1 ∈ Ext(X↑1, Y
↓
1 , I1). Theorem 28 and its proof imply that the L-

relation K = I1 ▹Ah satisfies Int(X↑1, Y
↓
2 ,K) = Int(X↑2, Y

↓
2 , I2).

Since Int(X↑1, Y
↓
2 ,K) ⊆ Int(X↑2, Y

↓
2 , I2), there is an L-relation J such that

K = J ◃ I2 (Theorem 10 (c)). Note that due to Theorem 7 (3.3), ↑J◃I2 = ∩J↑I2

and ↓J◃I2 = ↓I2∪J . As a result, (4.4) implies

hExt(C1) = C
↑I1∧Ah

↓I2
1 = C∩I1▹Ah

↓I2
1 = C∩K∪I2

1 = C∩J○I2
↓I2

1 = C∩J↑I2 ↓I2
1 . (4.13)

Observe now that since hExt is a bijection, we have

C
∩J↑I2 ↓I2∪J

1 = C1 (4.14)
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Int(X↑1, Y
↓
1 , I1) Int(X↑2, Y

↓
2 , I2)

Ext(X↑1, Y
↓
1 , I1) Ext(X↑2, Y

↓
2 , I2)

↓I1 ↑I1 ↓I2 ↑I2

h−1Ext

c-morphism

hInt

c-morphism

Figure 4.2: Illustration of Lemma 29.

for every C1 ∈ Ext(X↑1, Y
↓
1 , I1). Indeed, since C

∩J↑I2 ↓I2∪J

1 = C↑J◃I2 ↓J◃I21 , it follows
from the general properties of isotone Galois connections that

C
↑J◃I2 ↓J◃I2
1 ⊇ C1. (4.15)

If in (4.15), C
↑J◃I2 ↓J◃I2
1 ⊃ C1, i.e. C

↑J◃I2 ↓J◃I2
1 /= C1 then applying ↑J◃I2 ↓I2 to both

sides of the inequality and taking into account that ↑J◃I2 ↓I2 = hExt is a bijection,
we get

C
↑J◃I2 ↓J◃I2 ↑J◃I2 ↓I2
1 /= C↑J◃I2 ↓I21 , (4.16)

which yields a contradiction because using ↑J◃I2 ↓J◃I2 ↑J◃I2 = ↑J◃I2 , both sides of
(4.16) are equal. Thus ∪J is equal to h−1Ext and due Lemma 21 it is a c-morphism.

Figure 4.2 illustrates Lemma 29.

Theorem 30. Let I1 ∈ LX1×X1 and I ∈ LX2×Y2 be L-relations. We have
B(X↑1, Y

↓
2 , I2) ≅ B(X

↑
2, Y

↓
2 , I2) if and only if there exists an L-relation K ∈ LX2×Y1

such that

Int(X↑1, Y
↓
1 , I1) = Int(X↑2, Y

↓
1 ,K) and Ext(X↑1, Y

↓
1 , I2) = Ext(X↑2, Y

↓
1 ,K).

Proof. Follows directly from Theorem 28 and Lemma 29.

4.3 Sensitivity Issues

In this section, we define the notion of similarity of extendable morphisms and
similarity of collections of L-sets. We also have that the morphisms show a
natural behavior in the sense that application of similar morphisms to similar
spaces produces similar spaces.

Let A,B ⊆ LX be collections of L-sets, define similarity between them as

(A ≈ B) =⋀A∈A⋁B∈B(A ≈ B) ∧⋀B∈B⋁A∈A(A ≈ B).
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That is, A ≈ B is a degree to which for L-set A from A there exists a similar L-set
B from B and vice versa, when similarity of A to B is measured by similarity
of L-sets (2.32).

Similarity of L-concept lattices B1 = B(X△, Y ▽, I1),B2 = B(X△, Y ▽, I2) is
then defined as similarity of their extents (resp. intents).

(B1 ≈Ext B2) = (Ext(X△, Y ▽, I1) ≈ Ext(X△, Y ▽, I2))
(B1 ≈Int B2) = (Int(X△, Y ▽, I1) ≈ Int(X△, Y ▽, I2))

This corresponds to definition of similarity between L-concept lattices with an-
titone concept-forming operators described in [3, 5].

Theorem 31. Let A,B ⊆ LX and I, J ∈ LX×Y then we have

(A ≈ B)⊗ (J ≈ I) ≤ (A↑I ≈ B↑J ) (4.17)

(A ≈ B)⊗ (J ≈ I) ≤ (A∩I ≈ B∩J ) (4.18)

(A ≈ B)⊗ (J ≈ I) ≤ (A∧I ≈ B∧J ) (4.19)

where A↑ means {A↑ ∣A ∈ A}, etc.

Proof. (4.17) We prove only

(I ≈ J)⊗⋀A∈A⋁B∈B(A ≈ B) ≤ ⋀A∈A⋁B∈B(A↑I ≈ B↑J ).

The second inequality can be proved dually.
For each A ∈ A,B ∈ B we have (A ≈ B) ⊗ (I ≈ J) ≤ (A ◃ I) ≈ (B ◃ J) by

properties of residuated lattices (see [5]). Thus we have

⋀
A∈A
⋁
B∈B

(A↑I ≈ B↑J ) ≥ ⋀
A∈A
⋁
B∈B

(A ≈ B)⊗ (I ≈ J)

= ⋀
A∈A

(I ≈ J)⊗ ⋁
B∈B

(A ≈ B) ≥ (I ≈ J)⊗ ⋀
A∈A
⋁
B∈B

(A ≈ B).

Dually, we have ⋀B∈B⋁A∈A(A↑I ≈ B↑J ) ≥ ⋀B∈B⋁A∈A(A ≈ B). Similarly, one
can prove (4.18) and (4.19).

As a direct consequence, we get the following theorem.

Theorem 32.

(B(X∩
1 , Y

∪,A1) ≈Int B(X∩
2 , Y

∪,A2))⊗ (B1 ≈ B2) ≤
≤ (B(X∩

1 , Y
∪,A1 ○B1) ≈Int B(X∩

2 , Y
∪,A2 ○B2))

(4.20)

(B(X∧
1 , Y

∨,A1) ≈Int B(X∧
2 , Y

∨,A2))⊗ (B1 ≈ B2) ≤
≤ (B(X∧

1 , Y
∨,A1 ○B1) ≈Int B(X∧

2 , Y
∨,A2 ○B2))

(4.21)

(B(X↑1, Y
↓,A1) ≈Int B(X↑2, Y

↓,A2))⊗ (B1 ≈ B2) ≤
≤ (B(X↑1, Y

↓,A1 ▹B1) ≈Int B(X↑2, Y
↓,A2 ▹B2))

(4.22)
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If we define the similarity of the morphisms as the similarity of the corre-
sponding L-relations, namely those which are constructed in proof of Lemma 20,
Theorem 32 may be read as follows: By application of similar morphisms to sim-
ilar concept lattices one obtains similar concept lattices. We use this result in
Chapter 5 to obtain a result on using similar scales in conceptual scaling.

4.4 Block L-relations

The problem of the size of concept lattices is recognized as one of the most
important problems of FCA. The main aim of this section is to describe approx-
imation of formal concepts using block relations.

In [5, 3], a method of factorization of fuzzy concept lattices is presented.
A similarity threshold a is supplied and the method outputs a factor lattice
instead of the whole concept lattice which might be large. The elements of the
factor lattice are maximal blocks of concepts from the whole concept lattice
which are pairwise similar to degree at least a. We generalize the results using
a special case of c-morphisms. We also show that the factor lattice can be
computed from a special kind of superrelations of the incidence relation, called
fuzzy block relations.

In [38], Meschke proposed a method of approximation of (crisp) concepts by
tolerances and block relations. We use some of his ideas (namely the selection
of important objects and attributes) in an illustrative example.

This section introduces block L-relations on L-formal contexts a their prop-
erties. We define block relations as follows:

Definition 9. Block L-relation of I ∈ LX×Y is an L-relation J ⊇ I such that

Ext(X↑, Y ↓, J) ⊆ Ext(X↑, Y ↓, I) and Int(X↑, Y ↓, J) ⊆ Int(X↑, Y ↓, I).

In the crisp setting, [41] defines block relation as a relation J ⊇ I where each
row is an intent of I and each column is an extent of I. Lemma 33 says that
block L-relation is proper generalization of crisp block relation.

Lemma 33. Let I ∈ LX×Y ; J ⊇ I is a block L-relation of I iff {x}↑J ∈ Int(X↑, Y ↓, I)
for each x ∈X and {y}↓J ∈ Ext(X↑, Y ↓, I) for each y ∈ Y .

Proof. Follows from properties of L-closure systems.

The following theorem provides a characterization of block L-relations.

Theorem 34. Let I ∈ LX×Y be an L-relation. The following statements are
equivalent:

(a) J is a block L-relation of I.
(b) J = I ▹ Si with Si ∈ LY ×Y and for the induced mapping ∧Si we have

D∧Si ∈ Int(X↑, Y ↓, I) and D ⊆D∧Si for each D ∈ Int(X↑, Y ↓, I).
(c) J = Se ◃ I with Se ∈ LX×X and for the induced mapping ∪Se we have

C∪Se ∈ Ext(X↑, Y ↓, I) and C ⊆ C∪Se for each C ∈ Ext(X↑, Y ↓, I).
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Proof. We prove equality of (a) and (b): Ext(X↑, Y ↓, J) ⊆ Ext(X↑, Y ↓, I) iff Si ∈
LY ×Y s.t. J = I ▹Si due Theorem 10 (d). Since I ⊆ J we have C↑I ⊆ C↑J for each
C ∈ LX , that is equal to C↑I ⊆ C↑I∧Si for each C ∈ LX due Due Theorem 7 (3.4).
Thus D ⊆ D∧Si . Finally, D∧Si ∈ Int(X↑, Y ↓, I) for each D ∈ Int(X↑, Y ↓, I) iff
Int(X↑, Y ↓, I ▹ Si) ⊆ Int(X↑, Y ↓, I) which holds true by Theorem 8 (▹).

Equality of (a) and (c) can be proved analogously.

Notice, that Theorem 34 says that block L-relation is given by a extensive
mapping ∧Si

(or dually by ∪Se) which is c-morphism due Lemma 21.

Theorem 35. Let I ∈ LX×Y be an L-relation between X and Y .

(a) The set of all block L-relations J of I is an L-closure system.

(b) The set of all Se (from Theorem 34) is an L-interior system.

(c) The set of all Si (from Theorem 34) is an L-interior system.

Proof. (a) Let Ji be block L-relations of I. Let J = ⋀i Ji and letD ∈ Int(X↑, Y ↓, J),
hence D = C↑J for some C ∈ LX . By definition of ↑J and properties of residuated
lattices we have

C↑J (y) = ⋀
x∈X

C(x)→ J(x, y) = ⋀
x∈X

C(x)→⋀
i

Ji(x, y) =

=⋀
i
⋀
x∈X

A(x)→ Ji(x, y) =⋀
i

C↑Ji .

Thus we have C↑J = ⋂iC↑Ji ∈ Int(X↑, Y ↓, I). Similarly, one can show that
D↓J = ⋂iD↓Ji ∈ Ext(X↑, Y ↓, I), C↑a→Ji = a→ C↑Ji ∈ Int(X↑, Y ↓, I), and D↓a→Ji =
⋂i a→D↓Ji ∈ Ext(X↑, Y ↓, I).

Finally, from I ⊆ Ji we have I ⊆ ⋀i Ji and I ⊆ a → Ji. Whence ⋀i Ji and
I ⊆ a → Ji are block L-relations proving that set of all block L-relations J of I
is an L-closure system.

(b) and (c) can be proved similarly.

The induced operators of the L-relations Se and Si have following properties:

Lemma 36. Let I ∈ LX×Y be an L-relation between X and Y and let J be its
block L-relation:

(a) C∪Se = C↑I↓J for each C ∈ Ext(X↑, Y ↓, I),
D∧Si =D↓I↑J for each D ∈ Int(X↑, Y ↓, I).

(b) ⟨C∪Se ,C∪Se∩Se ↑I ⟩ ∈ B(X↑, Y ↓, J) and ⟨D∧Si
∨Si
↓I ,D∧Si ⟩ ∈ B(X↑, Y ↓, J)

for each ⟨C,D⟩ ∈ B(X↑, Y ↓, I)

(c) C∩Se ↑I = C↑I∧Si = C↑J for each C ∈ LX ,
D∨Si

↓I =D↓I∪Se =D↓J for each D ∈ LY .

Proof. Easy, using definition of Si and Se and Theorem 7.



4.4 Block L-relations 57

Remark 14. Observe that by definition, the block L-relation J induces smaller
concept lattice than the original L-relation I. This could suggest that J can be
always decomposed to smaller or equal number of factors since formal concepts
are the optimal and universal factors by Theorem 5 and Theorem 6. Despite of
that, it is not always the case. As a counterexample consider

I = (1 0
0 0

) = (1 0) ○ (1
0
) J = ( 1 0.25

0.25 0.25
)

Over 5-element chain {0,0.25,0.5,0.75,1} with  Lukasiewicz operations. Clearly,
J is a block L-relation of I, on the other hand there is no decomposition of J
by one factor.

Definition 10. Let I ∈ LX×Y be an L-relation between X and Y and let J be its
block relation. Denote by θJ a mapping θJ ∶ B(X↑, Y ↓, I) → B(X↑, Y ↓, I) defined
by

⟨C,D⟩θJ = ⟨C∪Se ,C∪Se ↑I ⟩ (4.23)

and denote by θJ a mapping θJ ∶ B(X↑, Y ↓, I)→ B(X↑, Y ↓, I) defined by

⟨C,D⟩θJ = ⟨D∧Si
↓I ,D∧Si ⟩ (4.24)

Notice, that different block L-relations J of an L-relation I induce different
mappings θJ , θJ . In what follows we omit subscript in the notation θJ , θJ and
write just θ, θ.

Theorem 37. Let I ∈ LX×Y be an L-relation between X and Y and let J be its
block L-relation: The pairs ⟨θ, θ⟩ is isotone L-Galois connection in B(X↑, Y ↓, I)
and for each ⟨C,D⟩ ∈ B(X↑, Y ↓, I) we have ⟨C,D⟩θ ≤ ⟨C,D⟩ ≤ ⟨C,D⟩θ.

Proof. Directly from Lemma 36.

Remark 15. According to Theorem 37 the pair ⟨θ, θ⟩ defines intervals in the
concept lattice. In [34] we also study a relationship between fuzzy block relations
and complete fuzzy tolerances on concept lattices. It turns out that block L-
relations and the induced mappings ⟨θ, θ⟩ are in one-to-one correspondence with
the complete fuzzy tolerances. That way we generalize a Wille’s results on (crisp)
tolerances and block relations in [41] (see also [22]).

Illustrative Example of Block L-relations

In this example, we use data, which are “inherently fuzzy”. We have chosen
ratings of some motion pictures obtained from reviews made by film critics. In
general, movie ratings are suitable for interpreting by means of fuzzy logic. A
movie rating (usually given by number of “stars” or by a percentage) can be
interpreted as an answer to the question: “How do you like this movie?”, given
in grades. Another advantage of this example is that it is quite natural; in most
cases, it is not possible to answer the above question with simple “Yes” or “No”,
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c1 c2 c3 c4 c5
BV 0.4 0.4 0.2 0.4 0.6
LH 0.8 0.8 0.8 1 1
MD 0.8 0.4 1 0.8 1
TSS 0.4 0.4 0.8 0.6 0.4

Figure 4.3: Formal context of movies (“Blue Velvet” (BV), “Lost High-
way” (LH), ”Mulholland Drive” (MD), and “The Straight Story” (TSS)),
reviewers (David Sterritt (c1), Desson Thomson (c2), Jonathan Rosenbaum
(c3), Owen Gleiberman (c4) and Roger Ebert (c5)) and their ratings on
the 6-element  Lukasievicz chain L = {0,0.2,0.4,0.6,0.8,1}. Data taken from
www.metacritic.com on March 20, 2011.

and, in the same time, there are no doubts about the answer (especially, if given
by a film critic).

For this example we use context of four selected David Lynch movies and
their scores assigned by five reviewers. We rescaled the ratings the critics
gave to each of the films (according to Metacritic) to the 6-element scale L =
{0,0.2,0.4,0.6,0.8,1} with the structure of  Lukasiewicz chain. The data forms
an L-formal context ⟨X,Y, I⟩, where X is the set of films and Y the set of critics.
The L-formal context ⟨X,Y, I⟩ and its L-context lattice are displayed in Fig. 4.3
and Fig. 4.4.

Our aim is to reduce the size of the L-concept lattice B(X↑, Y ↓, I). First we
take the approach from [3]. This approach is based on a choice of a threshold a ∈
L and using the a-cut a≈ of the L-equality ≈ on B(X↑, Y ↓, I) for factorization. As
noted in [15], the factor lattice is isomorphic to the concept lattice B(X↑, Y ↓, a→
I). As it can be easily seen, these results are a special case of the results of this
chapter since a→ I is a block L-relation of I.

As an example, we present in Fig. 4.5 and Fig. 4.6 results we obtained for
our formal context of movies, critics and ratings with values of the threshold a
equal to 0.8 and 0.6.

We also tried a more sophisticated approach, based on [38]. The author’s
method is based on using a complete tolerance on a complete lattice induced
by an interior and closure operator. As an example, the author uses a complete
tolerance on a (crisp) concept lattice, obtained by selecting subsets X ′ ⊆X and
Y ′ ⊆ Y of important objects and important attributes, respectively.

Although a proper fuzzification of the results from [38] remains to be devel-
oped, it is possible to try some experiments. We provide a short outline of our
method.

For a formal L-context ⟨X,Y, I⟩ we select two L-sets X ′ ∈ LX and Y ′ ∈ LY
and interpret them as L-sets of “important objects” and “important attributes”,
respectively. Thus, for an object x ∈ X, the value X ′(x) is the degree to which
x is important, and similarly for attributes. Further we define two L-relations
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0.6/TSS

0.4/c1, 0.4/c2, 0.2/c3, 0.4/c4, 0.4/c5

BV, 0.6/c5 0.4/c3, 0.6/c4

0.6/c1 0.6/c3

0.6/c2 0.8/c5 0.8/c4 TSS, 0.8/c3

0.8/BV 0.8/c1

c3

0.8/c2 c4 0.8/TSS

c5

0.6/BV

LH MDc1

0.8/MD

0.6/MD

0.4/BV, c2

0.2/BV, 0.8/LH, 0.4/MD, 0.4/TSS,

Figure 4.4: L-concept lattice of movies, critics and ratings (from Fig. 4.3)
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0.8/TSS

0.6/c1, 0.6/c2, 0.4/c3, 0.6/c4, 0.6/c5

BV, 0.8/c5 0.6/c3, 0.8/c4

0.8/c1 0.8/c3

0.8/c2 TSS, c3

0.8/BV c1

c5 c4

MD

0.6/BV, c2 0.6/MD

0.4/BV,LH, 0.6/MD, 0.6/TSS

c1 c2 c3 c4 c5
BV 0.6 0.6 0.4 0.6 0.8
LH 1.0 1.0 1.0 1.0 1.0

MD 1.0 0.6 1.0 1.0 1.0
TSS 0.6 0.6 1.0 0.8 0.6

Si c1 c2 c3 c4 c5
c1 0.8 0.8 0.4 0.6 0.6
c2 0.4 0.8 0.4 0.4 0.4
c3 0.6 0.6 0.8 0.6 0.4
c4 0.8 0.8 0.6 0.8 0.6
c5 0.8 0.8 0.4 0.6 0.8

Se BV LH MD TS
BV 0.8 1.0 0.8 0.6
LH 0.2 0.8 0.4 0.4

MD 0.2 0.8 0.8 0.4
TSS 0.2 0.8 0.8 0.8

Figure 4.5: L-concept lattice of movies, critics and ratings (from Fig. 4.3), fac-
torized with respect to the threshold a = 0.8, the corresponding block L-relation,
and related L-relations Si and Se.

0.8/c1, 0.8/c2, 0.6/c3, 0.8/c4, 0.8/c5

BV, 0.8/c5 0.8/c3, c4

c1 TSS, c3

0.8/BV, c2 MD

0.6/BV,LH, 0.8/MD, 0.8/TSS

c1 c2 c3 c4 c5
BV 0.8 0.8 0.6 0.8 1.0
LH 1.0 1.0 1.0 1.0 1.0

MD 1.0 0.8 1.0 1.0 1.0
TSS 0.8 0.8 1.0 1.0 0.8

Si c1 c2 c3 c4 c5
c1 0.6 0.6 0.4 0.4 0.4
c2 0.4 0.6 0.4 0.4 0.4
c3 0.4 0.4 0.6 0.4 0.2
c4 0.6 0.6 0.6 0.6 0.4
c5 0.6 0.6 0.4 0.4 0.6

Se BV LH MD TS
BV 0.6 1.0 0.6 0.4
LH 0.2 0.8 0.4 0.4

MD 0.2 0.8 0.6 0.4
TSS 0.2 0.8 0.6 0.6

Figure 4.6: L-concept lattice of movies, critics and ratings (from Fig. 4.3), fac-
torized with respect to the threshold a = 0.6, the corresponding block L-relation,
and related L-relations Si and Se.
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IX′ , IY ′ ∈ LX×Y by

IX′(x, y) =X ′(x)→ I(x, y), IY ′(x, y) = Y ′(y)→ I(x, y).

As it can be easily seen, Int(X↑, Y ↓, IX′) ⊆ Int(X↑, Y ↓, I) and Ext(X↑, Y ↓, IY ′) ⊆
Ext(X↑, Y ↓, I). Thus, the L-relations IX′ and IY ′ select some intents and ex-
tents of formal concepts from B(X↑, Y ↓, I). These intents, resp. extents, are
interpreted as “important”. Now, let JX′,Y ′ ∈ LX×Y be the minimal (with re-
spect to L-set inclusion) block L-relation of I such that intent (resp. extent) of
each formal L-concept from B(X↑, Y ↓, JX′,Y ′) is important (the block L-relation
JX′,Y ′ always exists because of Theorem 35 (a)). JX′,Y ′ induces the concept lat-
tice B(X↑, Y ↓, JX′,Y ′).

We apply the above considerations to this example. Suppose we consider
the film BV less important than the other films (perhaps because we have not
seen BV) and the critic c2 less important than the other critics (because we
do not like his opinion on MD). More precisely, set X ′ = {a/BV,LH,MD,TSS}
and Y ′ = {c1, b/c2, c3, c4, c5}, where a, b ∈ L. In Fig. 4.8 and 4.7 we can see the
resulting concept lattices in two cases: first a = b = 0.8 and second a = 1 and
b = 0.6.

Additionally, we depict the four concept lattices from this example (from
Figures 4.5,4.6,4.8,4.7), as hierarchy of intervals in the original lattice (Figs.
4.9, 4.10, 4.12, and 4.11).

4.5 Summary and Future Research

We introduced morphisms of structures associated to L-relations and showed the
morphisms correspondence to L-relations. Furthermore, we described sufficient
and necessary conditions under which two structures are isomorphic. Then we
described special morphisms induced by block L-relations.

Our future research includes:

• Study of the morphisms which are not extendable.

• Block L-relations for isotone Galois connections and revision of the results
on the one-to-one correspondence of Block L-relations with complete tol-
erances (see Remark 15).

• The new notion of a complement introduced in Section 3.4 is a bijective
a-morphism. The notion of an a-isomorphisms in not yet well developed
and remains for our future research.
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0.4/c1, 0.4/c2, 0.2/c3, 0.4/c4, 0.4/c5

BV, 0.6/c5 0.4/c3, 0.6/c4

0.6/c1, 0.6/c2 0.6/c3

0.8/BV 0.8/c4 TSS, 0.8/c3

0.8/c2

c40.6/BV, c5 0.8/TSS, c3

0.6/TSSLH, c1

MD0.4/BV, c2

0.2/BV, 0.8/LH, 0.8/MD, 0.4/TSS

c1 c2 c3 c4 c5
BV 0.4 0.4 0.2 0.4 0.6
LH 1.0 0.8 0.8 1.0 1.0

MD 1.0 0.6 1.0 1.0 1.0
TSS 0.4 0.4 0.8 0.6 0.4

Si c1 c2 c3 c4 c5
c1 0.8 1.0 0.6 0.8 0.8
c2 0.4 0.6 0.4 0.4 0.4
c3 0.8 0.8 1.0 0.8 0.6
c4 0.8 1.0 0.8 0.8 0.8
c5 1.0 1.0 0.6 0.8 1.0

Se BV LH MD TS
BV 1.0 1.0 1.0 0.8
LH 0.4 0.8 0.6 0.4

MD 0.2 0.8 0.6 0.4
TSS 0.4 1.0 1.0 1.0

Figure 4.7: L-concept lattice of movies, critics and ratings (form Fig. 4.3), fac-
torized with respect to an L-set of important objects X ′ = {BV,LH,MD,TSS}
and L-set of important attributes Y ′ = {c1, 0.6/c2, c3, c4, c5}, the corresponding
block L-relation, and related L-relations Si and Se.

0.6/TSS

c1, c5

0.4/c1, 0.4/c2, 0.4/c3, 0.6/c4, 0.4/c5

BV, 0.6/c1, 0.6/c5

0.6/c2, 0.6/c4 TSS

0.8/TSS, c3

0.8/BV, 0.8/c1, 0.8/c5

0.8/c1

c40.8/c5

0.6/BV MD

LH, 0.8/MD

0.4/BV, 0.8/LH, 0.6/MD, 0.4/TSS, c2

c1 c2 c3 c4 c5
BV 0.6 0.4 0.4 0.6 0.6
LH 1.0 0.8 1.0 1.0 1.0

MD 1.0 0.6 1.0 1.0 1.0
TSS 0.4 0.4 0.8 0.6 0.4

Si c1 c2 c3 c4 c5
c1 0.8 1.0 0.6 0.8 0.8
c2 0.4 0.8 0.4 0.4 0.4
c3 0.6 0.8 0.8 0.6 0.6
c4 0.8 1.0 0.8 0.8 0.8
c5 1.0 1.0 0.6 0.8 1.0

Se BV LH MD TS
BV 0.8 1.0 1.0 0.8
LH 0.2 0.8 0.6 0.4

MD 0.2 0.8 0.8 0.4
TSS 0.4 1.0 1.0 1.0

Figure 4.8: L-concept lattice of movies, critics and ratings (form Fig. 4.3), factor-
ized with respect to an L-set of important objects X ′ = {0.8/BV,LH,MD,TSS}
and L-set of important attributes Y ′ = {c1, 0.8/c2, c3, c4, c5}, the corresponding
block L-relation, and related L-relations Si and Se.
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Figure 4.9: L-concept lattice of movies, critics and ratings (from Fig. 4.3), fac-
torized with respect to the threshold a = 0.8 (Fig. 4.6) depicted as hierarchy of
intervals in the original L-concept lattice.
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Figure 4.10: L-concept lattice of movies, critics and ratings (from Fig. 4.3),
factorized with respect to the threshold a = 0.6 (Fig. 4.6) depicted as hierarchy
of intervals in the original L-concept lattice.
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Figure 4.11: L-concept lattice of movies, critics and ratings (from
Fig. 4.3), factorized with respect to an L-set of important objects
X ′ = {0.8/BV,LH,MD,TSS} and L-set of important attributes Y ′ =
{c1, 0.8/c2, c3, c4, c5}. (Fig. 4.7) depicted as hierarchy of intervals in the original
L-concept lattice.
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Figure 4.12: L-concept lattice of movies, critics and ratings (from Fig. 4.3), fac-
torized with respect to an L-set of important objects X ′ = {BV,LH,MD,TSS}
and L-set of important attributes Y ′ = {c1, 0.6/c2, c3, c4, c5} (Fig. 4.8) depicted
as hierarchy of intervals in the original L-concept lattice.



Chapter 5

Conceptual Scaling

In order for FCA to have the capability to analyze data with general attributes,
like the one in Fig. 5.1, FCA uses so-called (conceptual) scaling. Scaling, basi-
cally, represents a transformation of a table with general attributes to a table
with yes/no attributes. For instance (see below for an exact definition of con-
ceptual scaling), attribute age could be replaced by three yes/no attributes ay,
am, ao, corresponding to age intervals [0,30], [31,50], [51,∞], which represent
“young”, “middle”, and “old”. That is, a person with age, say, 18, has attribute
ay but has neither am nor ao. In similar way, one can introduce attributes hs,
hm, ht, corresponding to height intervals [0,160], [161,180], and [181,∞]. This
way, data table in Fig. 5.1 can be transformed into a formal context with yes/no
attributes like the one in Fig. 5.2. After the scaling, the data can be processed
by means of FCA.

Scaling is a particular form of information granulation [43]. Namely, new
attributes such as ay represent granules. For instance, ay represents a gran-
ule consisting of age values [0,30]. As convincingly argued by Zadeh, see e.g.
[43], granules involved in human reasoning are vague rather than sharply de-
lineated. Typical examples are granules corresponding to linguistic expressions
like “young”, “old”, “tall”, etc. Therefore, these granules should be represented

age height symptom
Alice 23 165 1
Boris 30 180 0
Cyril 31 167 1

David 43 159 0
Ellen 24 155 1
Fred 64 170 0

George 30 190 0

Figure 5.1: Data table describing persons Alice, . . . , George (objects) and their
attributes (age in years, height in cm, presence of symptom).
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ay am ao hs hm ht symptom
Alice 1 0 0 0 1 0 1
Boris 1 0 0 0 1 0 0
Cyril 0 1 0 0 1 0 1

David 0 1 0 1 0 0 0
Ellen 1 0 0 1 0 0 1
Fred 0 0 1 0 1 0 0

George 1 0 0 0 0 1 0

Figure 5.2: Formal (crisp) context describing persons Alice, . . . , George (ob-
jects) and their attributes as a result of scaling data table from Fig. 5.1.

ay am ao hs hm ht symptom
Alice 1 0.5 0 0.5 1 0 1
Boris 1 0.5 0 0 0.5 0.5 0
Cyril 0.5 1 0 0.5 1 0 1

David 0 1 0.5 1 0.5 0 0
Ellen 1 0.5 0 1 0.5 0 1
Fred 0 0 1 0.5 1 0 0

George 1 0.5 0 0 0 1 0

Figure 5.3: Formal L-context describing persons Alice, . . . , George (objects)
and their attributes as a result of scaling data table from Fig. 5.1.

by fuzzy sets rather than ordinary sets. From this point of view, scaling to crisp
attributes is not appropriate. For instance if scaling is performed according to
the formal context in Fig. 5.2, attribute ay (“young”) fully applies to a person of
age 30, but does not apply at all to a person of age 31, which is counterintuitive.

There is an obvious way to overcome this problem. Namely, instead of crisp
attributes, one can use fuzzy attributes. After a scaling to fuzzy attributes using
a set {0,0.5,1} of truth degrees, the resulting formal L-context might look like
the one in Figure 5.3.

Scaling, however, is a kind of data preprocessing. After scaling, data is
processed by means of FCA. That is, one can extract all formal concepts from
the data, a non-redundant basis of attribute implications from the data, etc.
The main aim of this chapter is to propose a general definition of scaling to
fuzzy attributes, look in detail at the basic properties of this scaling, compare by
means of illustrative examples to ordinary scaling, and to show that scaling may
be seen as a particular case of morphisms introduced in the previous chapters.
A point to emphasize is that scaling to fuzzy attributes behaves naturally w.r.t.
similarity of attribute values and lends themselves to sensitivity analysis for
which we present some results.

We start by introducing the notion of a many-valued context, see [22].

Definition 11. A many-valued context (data table with general attributes) is a
tuple D = ⟨X,Y,W, I⟩ where X is a non-empty finite set of objects, Y is a finite
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set of (many-valued) attributes, W is a set of values, and I is a ternary relation
between X, Y , and W , i.e., I ⊆X × Y ×W , such that

⟨x, y,w⟩ ∈ I and ⟨x, y, v⟩ ∈ I imply w = v.

Remark 16. (1) A many-valued context can be thought of as representing
a table with rows corresponding to x ∈ X, columns corresponding to y ∈ Y ,
and table entries at the intersection of row x and column y containing values
w ∈W provided by ⟨x, y,w⟩ ∈ I and containing blanks if there is no w ∈W with
⟨x, y,w⟩ ∈ I.

(2) One can see that each y ∈ Y can be considered a partial function from
X to W . Therefore, we often write

y(x) = w instead of ⟨x, y,w⟩ ∈ I.

A set
dom(y) = {x ∈X ∣ ⟨x, y,w⟩ ∈ I for some w ∈W}

is called a domain of y. Attribute y ∈ Y is called complete if dom(y) = X, i.e.
if the table contains some value in every row in the column corresponding to y.
A many-valued context is called complete if each of its attributes is complete.

(3) From the point of view of theory of relational databases, a complete
many-valued context is essentially a relation over a relation scheme Y , see [36].
Namely, each y ∈ Y can be considered an attribute in the sense of relational
databases and putting

Dy = {w ∣ ⟨x, y,w⟩ ∈ I for some x ∈X},

Dy is a domain for y.
(4) In what follows, we prefer term data table (with general attributes) over

the term many-valued context.

5.1 Scales and Plain Scaling With Fuzzy At-
tributes

In this section, we introduce scaling using fuzzy attributes.

Definition 12. A scale (or, L-scale) for attribute y ∈ Y is a data table Sy =
⟨Xy, Yy, Iy⟩ with fuzzy attributes (formal fuzzy context) such that Dy ⊆ Xy.
Objects w ∈Xy are called scale values, attributes of Yy are called scale attributes.

Remark 17. The concept of a scale can be seen a particular case of Zadeh’s
concept of a linguistic variable. Zadeh’s linguistic variable is defined as quintuple
⟨χ,T,U,G,σ⟩ in which χ is a name of the linguistic variable, T denotes a set
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ay am ao
0–20 1 0 0
21–30 1 0.5 0
31–40 0.5 1 0
41–50 0 1 0.5
51–60 0 0.5 1
61–150 0 0 1

Figure 5.4: Scale for attribute age for data table from Fig. 5.1.

of terms of χ (syntactic values), U is a universe, G is a syntactic rule (usually
a grammar) which generates terms of χ, and σ is a semantic rule associating
with each term X its meaning σ(X), which is an L-set over a universe U . We
can simplify the notion of a linguistic variable by removing the syntactic rule.
What remains is a quadruple ⟨χ,T,U, σ⟩.

A scale Sy = ⟨Xy, Yy, Iy⟩ can then be considered as (a simplified) linguistic
variable ⟨y, Yy,Xy, σ⟩, where (σ(z))(w) = Iy(w, z) for z ∈ Yy and w ∈ Xy. That
is, scale attributes are considered as terms and scale values are considered as
elements of the universe of the linguistic variable.

Example 3. Consider the data table with general attributes depicted in Fig. 5.1.
A set X consists of Alice, . . . , George, a set Y consists of age, height, and
symptom, W is a set containing all of the table entries, and we have ⟨Alice,
age, 23⟩ ∈ I, etc.

An example of a scale for age is depicted in Fig. 5.4. Here, we use Xage =
{0,1, . . . ,150}, i.e., scale objects are numbers 0, . . . ,150, Yage = {ay,am,ao}, i.e.,
scale attributes are fuzzy attributes corresponding to linguistic terms “young”,
“middle”, “old”, and we have Iage(5,ay) = 1, etc. For simplicity, all rows
corresponding to 0,1, . . . ,20 of the scale are represented by a single row labeled
0–20 and the same for 21–30, etc.

An example of a scale for height is depicted in Fig. 5.5. Here, Xheight =
[120,200], Yheight = {hs,hm,ht}, i.e., scale attributes are fuzzy attributes cor-
responding to linguistic terms “short”, “medium”, “tall”, and we have then
Iheight(165,hs) = 0.5, etc. Again, rows corresponding to values from [120,150]
are represented by a single row and the like for other groups of values.

It is often the case that domains Dy (and the scale objects Xy) for some
attributes come naturally equipped with similarity relations. That is to say,
we naturally consider some values v,w ∈ Xy similar to each other, some not.
This pertains in particular to numerical domains such as age or height. In fact,
similarity is a matter of degree and an appropriate approach to capture this
intuition is to consider sets Xy of objects equipped with similarity relations ≈y.
A criterion for a scale to be reasonable can then be defined as follows.
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hs hm ht
120–150 1 0 0
151–160 1 0.5 0
161–170 0.5 1 0
171–180 0 0.5 0.5
181–200 0 0 1

Figure 5.5: Scale for attribute height for data table from Fig. 5.1.

Definition 13. Scale Sy is called admissible w.r.t. ≈y if for each values w1,w2 ∈
Xy and scale attribute z ∈ Yy we have

(w1 ≈y w2)⊗ Iy(w1, z) ≤ Iy(w2, z).

Remark 18. Admissibility means: if w1 and w2 are similar and a scale attribute
z applies to value w1 then z applies to w2 as well. In a sense, an admissible
scale respects similarity relation ≈y.

Lemma 38. Scale Sy = ⟨Dy, Yy, Iy⟩ is admissible w.r.t. ≈ if and only if ≈ ○Iy =
Iy.

Proof. “⇒”: if Sy = ⟨Dy, Yy, Iy⟩ is admissible w.r.t. ≈ then ≈ ○Iy ⊆ Iy follows di-
rectly from Definition 13. The other inclusion ≈ ○Iy ⊇ Iy follows from reflexivity
of ≈ and properties of ○-composition.

“⇐”: directly from Definition 13.

Theorem 39. Let Sy = ⟨Dy, Yy, Iy⟩ be a scale and ≈ be a similarity relation on
Dy. Then Sy = ⟨Dy, Yy,≈ ○Iy⟩ is an admissible scale w.r.t. ≈.

Proof. By transitivity of ≈ we have ≈ ○ ≈⊆≈. By monotony and associativity of
○ we obtain (≈ ○ ≈) ○ Iy =≈ ○(≈ ○Iy) ⊆≈ ○Iy. The proposition now follows from
Lemma 38.

Example 4. Consider fuzzy relations ≈y defined on Xy for y being both age
and height by rule

w1 ≈y w2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if w1 = w2,
0.5 if 0 < ∣w1 −w2∣ < 5,
0 otherwise

One can check that both of the scales from Fig. 5.4 and Fig. 5.5 are admissible
w.r.t. ≈y.

It is our contention that some ordinary crisp scales appear to be unnatural
and problematic simply just because they ignore the underlying similarity on
Xy (similarity is not considered in ordinary scaling). For instance, in case of
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the ordinary scale which is used to transform Fig. 5.1 to Fig. 5.2, Boris has scale
attribute young while Cyril who is only 1 year older is considered middle aged
but not young. A series of questions arises like why to separate Boris and Cyril
by their ages when their ages are very similar? This kind of arbitrariness is,
in our opinion, an apparent disadvantage of the ordinary concept of scale and
scaling.

Example 5. A practical consequence of what we just described is the following.
For a formal concept ⟨A1,B1⟩ of the concept lattice corresponding to Fig. 5.2
which is generated by ay, i.e., A1 = {ay}↓, we have

A1 = {Alice, Boris, Ellen, George},

i.e. the formal concept does not apply to Cyril at all. On the other hand, for a
formal concept ⟨A2,B2⟩ which is generated by am, i.e., A2 = {am}↓, we have

A2 = {Cyril, David},

i.e. the formal concept does not apply to Boris at all. That is, these formal
concepts completely separate Boris and Cyril.

Therefore, admissible scales seem to capture the intuitive requirement to
take the underlying similarities ≈y into account.

Given scales for a data table with general attributes, we can transform the
data table into a table with fuzzy attributes. The following definition says how
to do it.

Definition 14 (plain scaling). For a data table D = ⟨X,Y,W, I⟩ (as above),
scales Sy (y ∈ Y ), the derived table with fuzzy attributes (w.r.t. plain scaling) is
a table ⟨X,Z,J⟩ with fuzzy attributes defined by

– Z = ⋃y∈Y {y} × Yy,

– J(x, ⟨y, z⟩) = Iy(w, z) for y(x) = w.

Denote by B(D,S), where for D = ⟨X,Y,W, I⟩ and S = {Sy ∣ y ∈ Y }, the fuzzy
concept lattice corresponding to the derived table, i.e.,

B(D,S) = B(X↑, Z↓, J),

where ⟨X,Z,J⟩ is the table with fuzzy attributes derived from D and S.

Example 6. A derived table corresponding to table with general attributes from
Fig. 5.1, scales from Fig. 5.4 and Fig. 5.5, and a trivial scale for attribute symp-
tom, is just the L-context shown in Fig. 5.3.
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Example 7. We are going to demonstrate that the undesirable effect of sepa-
ration of Boris and Cyril by both formal concepts generated by scale attributes
corresponding to “young” and “middle” is not present when we use scaling to
fuzzy attributes, cf. Example 5. Namely, for a formal fuzzy concept ⟨A1,B1⟩
of the concept lattice corresponding to Fig. 5.3 which is generated by ay, i.e.,
A1 = {1/ay}↓, we have

A1 = {Alice, Boris, 0.5/Cyril, Ellen, George},

i.e. the formal concept partially covers Cyril. On the other hand, for a formal
concept ⟨A2,B2⟩ which is generated by am, i.e., A2 = {1/am}↓, we have

A2 = {0.5/Alice, 0.5/Boris, Cyril, David, 0.5/Ellen,0.5/George},

i.e. the formal concept partially covers Boris (and also Alice, Ellen, and George).

The next example shows that scaling using fuzzy attributes is beneficial from
the point of attribute dependencies.

Example 8. Consider data table in Fig. 5.3 and a fuzzy attribute implication

{0.5/ay, 0.5/am, 0.5/hs, 0.5/hm}⇒ {sym}. (5.1)

We refer a reader to [16] for an overview on fuzzy attribute implications. With-
out going to details on semantics of fuzzy attribute implications, one can intu-
itively see that (5.1) is true in degree 1 in the data from Fig. 5.3 (this is the
case when we use globalization in the definition of truth degree of fuzzy attribute
implications). This says that, in the data, a person who is young to degree at
least 0.5, middle-aged to degree at least 0.5, short to degree at least 0.5, and
medium-high to degree at least 0.5, has the symptom. That is, a person who is
in between young and middle-aged and in between short and medium-high, has
the symptom.

If we use scaling with crisp attributes, i.e., one gets the data from Fig. 5.2,
and use ordinary attribute implications, the situation is different. Namely, the
following ordinary attribute implications which are related to (5.1) can be con-
sidered:

{am,hm}⇒ {symptom}, (5.2)

{ay,hs}⇒ {symptom}, (5.3)

{ay,hm}⇒ {symptom}, (5.4)

{am,hs}⇒ {symptom}. (5.5)

One can easily see that both (5.2) and (5.3) are true, but (5.4) and (5.5) are
not true in Fig. 5.2. One difference w.r.t. (5.1) is that in scaling with fuzzy
attributes, one has a single fuzzy attribute implication, while with ordinary at-
tributes we have two attribute implications describing the dependency of symp-
tom on age and height. Note also that both (5.2) and (5.3) are supported just
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Iy1

Iy2
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Iy1

Iy2
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Figure 5.6: Schema of a scale L-context as direct sum of Iys (left) and as direct
product of Iys (right)

by a single row in Fig. 5.2 and are, therefore, too specific. More importantly,
however, if one considers the original data from Fig. 5.1, our contention is that
(5.1) naturally captures the dependency of symptom on age and height.

Now, we demonstrate, that the plain scaling is a special case of c-morphism.
First, we construct a formal (crisp) context ⟨X,D, ID⟩ associated to data

table D = ⟨X,Y,W, I⟩ as follows. Let D = ⋃y∈Y {y} ×Dy and ⟨x, ⟨y,w⟩⟩ ∈ ID iff
y(x) = w.

Second, we construct L-context S as a direct sum (Fig. 5.6 (left)) of the
attribute scales S = ⟨D,Z, IS⟩ where Z = ⋃y∈Y {y} × Yy (as in Definition 14) and

IS(⟨y1,w⟩, ⟨y2, z⟩) =
⎧⎪⎪⎨⎪⎪⎩

1 if y1 ≠ y2,
Iy1(w1, z) otherwise.

Observe, that ID ◃ IS is equal to J from Definition 14. Indeed, J(x, ⟨y, z⟩) =
Iy(w, z) for y(x) = w that is equivalent to Iy(w, z) for ⟨x, ⟨y,w⟩⟩ ∈ ID; that
can be rewritten as ⋀⟨y,w⟩ ID(⟨x, ⟨y,w⟩⟩) → Iy(w, z) = ⋀⟨y,w⟩ ID(⟨x, ⟨y,w⟩⟩) →
IS(⟨y,w⟩, ⟨y, z⟩), hence J = ID ◃ IS

Thus plain scaling can be expressed as composition of L-relations and by
Lemma 21 plain scaling is a c-morphism.

5.2 Sensitivity Issues in Scaling: a Theoretical
Insight

One of the above-mentioned disadvantages of ordinary scaling is that it is very
sensitive to user’s selection of scale attributes. A very small difference in the
definition of scale attributes may lead to a large difference in the resulting
concept lattices. For instance, if we define attribute ay (“young”) as applying
to ages from [0,31] instead of [0,30], the concepts of the resulting concept lattice
will sharply change in that some objects disappear from some concepts and will
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appear in other concepts (e.g., Cyril disappears from a formal concept generated
by “middle” and will appear in a formal concept generated by “young”). This
is not desirable. Where shall a user draw a line between “young” and “middle”?
This is a question we can not get rid of when using ordinary scaling.

We argued above that this effect can be mitigated when scaling with fuzzy
attributes is used. However, a problem regarding the arbitrariness of boundaries,
which a user defines for scale attributes, remains. The boundaries are now
membership functions of scale attributes which are now fuzzy attributes. The
basic question is: What happens if instead of scale S1y = ⟨Xy, Yy, I

1
y ⟩, a user

selects scale S2y = ⟨Xy, Yy, I
2
y ⟩ which has a similar membership function, i.e.,

when I1y(x, y) is close to I2y(w, z) for any w ∈ Xy and z ∈ Yy? Suppose we have

two sets of scales, say S1 = {S1y ∣ y ∈ Y } and S2 = {S2y ∣ y ∈ Y }, such that S1y is

similar to S2y for each y ∈ Y . Is it true, then, that the resulting concept lattices

B(D,S1) and B(D,S2) are similar in some natural way of measuring similarity
of concept lattices? In what follows, we are going to provide a positive answer
to this question.

Let us first introduce a degree S1y ≈ S2y to which the scales S1y and S2y are
similar.

Definition 15. For scales S1y = ⟨Dy, Yy, I
1
y ⟩, S2y = ⟨Dy, Yy, I

2
y ⟩ put

(S1y ≈ S2y) = ⋀w∈Dy,z∈Yy
I1y(w, z)↔ I2y(w, z).

That is, S1y ≈ S2y is a degree to which the membership functions of scale

attributes z in S1y and S2y are similar if truth function ↔ fuzzy equivalence is
chosen to assess similarity of membership degrees.

For S1y = ⟨Dy, Yy, I
1
y ⟩, S2y = ⟨Dy, Yy, I

2
y ⟩ (y ∈ Y ), and S1 = {S1y ∣ y ∈ Y }, S2 =

{S2y ∣ y ∈ Y }, put

(S1 ≈ S2) = ⋀y∈Y (S1y ≈ S2y).

That is, S1 ≈ S2 is a degree to which the corresponding scales from S1 and S2
are similar.

Then we get the following theorem.

Theorem 40. For a data table D = ⟨X,Y,W, I⟩, scales S1y = ⟨Dy, Yy, I
1
y ⟩, S2y =

⟨Dy, Yy, I
2
y ⟩ (y ∈ Y ), and S1 = {S1y ∣ y ∈ Y }, S2 = {S2y ∣ y ∈ Y } we have

(S1 ≈ S2) ≤ (B(D,S1) ≈ B(D,S2).

Proof. Follows from Theorem 31 using the fact that IS1 ≈ IS2 = S1 ≈ S2.

Theorem 40 says: “if scales S1 and S2 are similar then the resulting concept
lattices B(D,S1) and B(D,S2) are similar too”. Note that this is the exact
meaning of Theorem 40 (one can see this by invoking basic rules of semantics
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of fuzzy logic). Therefore, small changes in definition of a scale lead to small
changes in the resulting concept lattices which is a desirable property.

We can define similarity even for scales with different attributes. In this
case we consider similarity as truth value of following statement: “For each
combination of attributes in S1y there is an equal (similar) combination attribute

in S2y and vice versa.” To distinguish it from previously defined similarity we
denote it by ≈d.

Definition 16. For attribute scales S1y = ⟨Dy, Y
1
y , I

1
y ⟩, S2y = ⟨Dy, Y

2
y , I

2
y ⟩ put

(S1y ≈d S2y) =⋀Z1∈LY 1
y ⋁Z2∈LY 2

y
(Z1

↓I1y ≈ Z2
↓I2y )

∧

⋀
Z2∈LY 2

y ⋁Z1∈LY 1
y
(Z1

↓I1y ≈ Z2
↓I2y ).

For S1 = {S1y ∣ y ∈ Y },S2 = {S2y ∣ y ∈ Y } define

S1 ≈d S2 = ⋀
y∈Y

(S1y ≈d S2y)

Obviously, this similarity coincides with similarity of corresponding concept
lattices

(S1y ≈d S2y) = B(Dy, Y
1
y , I

1
y) ≈Ext B(Dy, Y

2
y , I

2
y)

and thus
(S1y ≈ S2y) ≤ (S1y ≈d S2y).

More interestingly, we have

(S1 ≈d S2) = B(X↑, Y 1↓, IS1) ≈Ext B(X↑, Y 2↓, IS2)

since B(X↑, Y 1↓, IS) is Cartesian product of B(Dy, Yy, Iy)s.
Using this similarity we can obtain following theorem.

Theorem 41. Let D = ⟨X,Y,W, I⟩ be a data table and let S1 = {S1y ∣ y ∈ Y },S2 =
{S2y ∣ y ∈ Y } be scales with different attributes. Then we have

S1 ≈d S2 ≤ B(D,S1) ≈Ext B(D,S2).

Proof. By straightforward application of Theorem 31 and the discussion follow-
ing Definition 16.

Another useful result, which we are now going to present concerns the con-
cept of admissibility of a scale w.r.t. similarity relations ≈y. Suppose we have ≈y
for each y ∈ Y . Note that if we do not want to consider a similarity on domain
Dy, we may take the identity relation for ≈y. Using ≈y’s, one can define a degree
x1 ≈X x2 of similarity of objects x1, x2 ∈X for a given table ⟨X,Y,W, I⟩ by

(x1 ≈X x2) = ⋀y∈Y y(x1) ≈y y(x2).
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That is, x1 ≈X x2 is a degree to which for every attribute y ∈ Y , the value of x1
on attribute y is similar to the value of x2 on attribute y.

Then, one can prove the following theorem.

Theorem 42. Consider a data table D = ⟨X,Y,W, I⟩ (as above), L-equivalences
≈y on Xy (y ∈ Y ), and a collection of scales S = {Sy ∣ y ∈ Y } which are admissible
w.r.t. ≈y’s. Then for each formal concept ⟨C,D⟩ from B(D,S) and any objects
x1, x2 ∈X we have

C(x1)⊗ (x1 ≈X x2) ≤ C(x2).

Proof. First, observe that for H ∈ LD we have H∪ID (x) = ⋀y∈Y H(⟨y, y(x)⟩).
Indeed, we have

H∪ID (x) = ⋀
⟨y,w⟩∈D

ID(x, ⟨y,w⟩)→H(⟨y,w⟩)

= ⋀
⟨y,w⟩∈D

Iy(x, ⟨y,w⟩)→H(⟨y,w⟩)

= ⋀
y∈Y

H(⟨y, y(x)⟩)

since ID is a crisp relation.

From definition of admissibility we have

(y(x1) ≈y y(x2))⊗ Iy(y(x1), z) ≤ Iy(y(x2), z)

for each x1, x2 ∈X,z ∈ Y, z ∈Dy.

Since Iy(y(x1), z) = IS(⟨y,w⟩, ⟨y, z⟩) = {⟨y, z⟩}↓IS (⟨y,w⟩) we get

(y(x1) ≈y y(x2)) ≤ {⟨y, z⟩}↓IS (⟨y, y(x1)⟩)→ {⟨y, z⟩}↓IS (⟨y, y(x2)⟩)

for each y ∈ Y . Whence

⋀
y∈Y

(y(x1) ≈y y(x2)) ≤ ⋀
y∈Y

({⟨y, z⟩}↓IS (⟨y, y(x1)⟩)↔ {⟨y, z⟩}↓IS (⟨y, y(x2)⟩))

≤ ⋀
y∈Y

({⟨y, z⟩}↓IS (⟨y, y(x1)⟩))↔ ⋀
y∈Y

({⟨y, z⟩}↓IS (⟨y, y(x2)⟩))

≤ {⟨y, z⟩}↓IS∪ID (x1)↔ {⟨y, z⟩}↓IS∪ID (x2)
≤ B↓IS∪ID (x1)↔ B↓IS∪ID (x2)
= A(x1)↔ A(x2).

from which we immediately get the proposition.

Note that Theorem 42 can be read as follows: If two objects are similar,
they will not get separated by any formal concept of the derived table.
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Using the alternative measurement of similarity ≈d of attribute scales we can
state that using similar scales on similar data tables we obtain similar concept
lattices.

Theorem 43. Le D2 = (X,Y,W, I1),D2 = (X,Y,W, I2) be two data tables. For
i = 1,2 let Si be a system {Siy ∣ y ∈ Y } of scales admissible to ≈y. Then we have

(y1(x) ≈y y2(x))⊗ (S1 ≈d S2) ≤ B(D1,S1) ≈Ext B(D2,S2)

Proof. Follows from Theorem 31 and Lemma 38.

Remark 19. We obtain similar results for isotone concept-forming operators
if we define B(D,S) = B(X∩, Z∪, J), construct IS as direct product of attribute
scales (see Fig. 5.6 (right)), and use ○-composition in proofs of related theorems.
The illustrative example in the next section uses isotone concept forming oper-
ators.

5.3 Illustrative Example

We borrow the example data table “Cars” from [39]. The data table contains
verbal descriptions of consumption and speed of four cars (Fig. 5.3). [39]
suggests to replace each such verbal descriptions by an L-sets modeling their
semantics and then use special concept-forming operators. In can be easily
shown that this approach is equivalent to that one described in this chapter
using the semantic L-sets as rows of the corresponding attribute scales (Fig. 5.8;
three-element  Lukasiewicz chain is used as the structure of truth degrees) and
using isotone concept-forming operators. We use this example to show several
applications of theory the from previous chapters.

Using the system of attribute scales S1 = {Sconsumption,Sspeed} (this one cor-
responds to semantics used in [39]) we obtain concept lattice B(D,S1) (Fig. 5.9).
A domain expert could argue that semantics of “not as fast as F2” is not modeled
properly and that scale S′speed should be used instead of Sspeed for the attribute

speed. With the altered system of scales S2 = {Sconsumption,S′speed} we obtain

concept lattice B(D,S2) (Fig. 5.10).
Natural question is: how is B(D,S2) related to B(D,S1)? As we can observe

that semantics of “not as fast as F2” from Sspeed is union of “not as fast as F2”
and “quite fast” from S′speed. Thus we can easily find a binary relation A s.t.

A ○ IS′ = IS. By Theorem 8 we obtain that Int(D,S1) ⊆ Int(D,S2).
Moreover, by results on similarity of concept lattices, since semantics of

“not as fast as F2” in Sspeed and S′speed are similar in degree 0.5, B(D,S1) and

B(D,S2) are similar at least in degree 0.5.
Now, consider different attribute scale S∗speed for speed (Fig. 5.8 (bottom

right)) which uses miles per hour instead of km per hour. Notice that in S∗speed
is defined by L-relation between different sets than Sspeed and after rescaling to
the same units they do not match. Nevertheless the shapes of the L-relations
are the same. We have Ext(Sspeed) = Ext(S∗speed), and thus Sspeed ≈d S∗speed = 1.
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consumption speed
F1 quite high fast
F2 8-10l/100 km quite fast
F3 at least 8l/100 km not so fast as F2

F4 at least 8l/100 km fast

Figure 5.7: Data table “Cars” from [39].

Finally, concept lattice w.r.t. this attribute scale has the same set of extents
as B(D,S1) (similarity of the two concept lattices is 1), and the two concept
lattices are isomorphic.

5.4 Summary and Future Research

We presented an approach to scaling using fuzzy attributes (as an application
of theory described in the previous chapters) and argued that such scaling over-
comes some problematic aspects of scaling using ordinary attributes.

Our future research will focus on:

• Merge with the general framework [9]. This will bring possibility to scale
not only to different attributes but also to different structures of truth-
degrees.

• Study of connections of scaling to fuzzy attribute implications.
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Figure 5.8: Attribute scale Sconsumption for consumption (top left) and three
different attribute scales Sspeed (top right), S′speed (bottom left), S∗speed (bottom
right) for attributes consumption and speed of data table “Cars”.
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Figure 5.9: Concept lattice B(S1,D) of data table “Cars” (Fig. 5.3) with scale
S1 (Fig. 5.8)
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Figure 5.10: Concept lattice B(S2,D) of data table “Cars” (Fig. 5.3) with scale
S2 (Fig. 5.8)
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