
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UCENI TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EXTENSION OF OPENSTACK MODULES FOR ANSI-
BLE PLATFORM
ROZŠÍŘENÍ MODULŮ O P E N S T A C K P R O PLATFORMU ANSIBLE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

ADAM ŠAMALÍK

Ing. MARTIN HRUŠKA

BRNO 2016

Abstract
OpenStack is a cloud platform with distributed architecture that is very complex to deploy.
In this thesis, I will design an Ansible playbok (automatic deployment script) to deploy a
custom OpenStack architecture.

Abstrakt
OpenStack je cloudová platforma s distribuovanou architekturou, jejíž instalace je velice
komplexní. V této práci navrhnu Ansible Playbook (automatický instalační skript), který
OpenStack nainstaluje.

Keywords
OpenStack, Ansible, deployment, cloud, automation

Klíčová slova
OpenStack, Ansible, instalace, cloud, automatizace

Reference
S A M A L I K , Adam. Extension of OpenStack Modules for Ansible Platform. Brno, 2016.
Bachelor's thesis. Brno University of Technology, Faculty of Information Technology. Su­
pervisor Hruska Martin.

Extension of OpenStack Modules for Ansible Plat ­
form

Declaration
I declare that I have wrote this Bachelor's Thesis individually, with help from my supervisor,
Ing. Martin Hruska, and technical consultant, Miroslav Suchy from Red Hat. I have
included all resources and literature I have used for this Thesis.

Adam Šamalík
May 16, 2016

Acknowledgements
I would like to thank to my supervisor, Ing. Martin Hruška, who gave me extensive feedback
about technical writing and who helped me with the overall structure of this thesis. His
feedback and constructive criticism was much appreciated. I would also like to thank to
my technical consultant, Miroslav Suchý from Red Hat, who gave me strong support about
the technologies and shared his technical experience. Thank you.

© Adam Samalik, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3
1.1 Relation with Red Hat 3

2 Technology Overview 4
2.1 Cloud Computing Introduction 4

2.1.1 Difference Between Traditional Virtualisation and Cloud Computing 4
2.1.2 Cloud Applications and Scaling 5
2.1.3 Models of Cloud Computing 5
2.1.4 Models of Cloud Deployment 6

2.2 OpenStack 6
2.2.1 Core OpenStack Components 6

2.3 Ansible 8
2.3.1 What is Ansible 8
2.3.2 Advantages of the Ansible Technology 9
2.3.3 Ansible Playbooks 10

3 OpenStack Architecture 13
3.1 Conceptual Architecture 13
3.2 Logical Architecture 13
3.3 Physical Architecture 14
3.4 Installation of Core Components 14

3.4.1 OpenStack Identity Service 15
3.4.2 OpenStack Image Service 17
3.4.3 OpenStack Compute Service 17
3.4.4 OpenStack Networking Service 20
3.4.5 OpenStack Block Storage Service 22
3.4.6 OpenStack Dashboard Service 24

4 Existing Methods of Automated OpenStack Deployment 25
4.1 Packstack 25
4.2 OpenStack-Ansible 25

5 Implementation Design 26
5.1 Design of the Physical Architecture 26

5.1.1 Selecting OpenStack Services 26
5.1.2 Selecting Specific Implementations 27
5.1.3 Physical architecture 27

5.2 Design of the Ansible Playbook 28

1

5.2.1 Ansible Roles 30
5.2.2 Applying Roles to the Hosts 35

6 Implementation and Testing 37
6.1 Third-party Modules in the Playbook 37
6.2 Testing of the Deployment 37

6.2.1 Description of the Host Environment 37
6.2.2 Using Ansible with Vagrant 38
6.2.3 Running the Deployment 38
6.2.4 Testing the Deployment 39

7 Conclusion 42

7.1 Future Development 42

Bibliography 43

Appendices 45

List of Appendices 46

A C D Contents 47

B Manual 48
B . l Using Roles with Variables 48
B.2 Variables of Individual Roles 49

B.2.1 Role keystone 49
B.2.2 Role glance 49
B.2.3 Role nova-controller 50
B.2.4 Role nova-compute 50
B.2.5 Role neutron-controller 51
B.2.6 Role neutron-compute 52
B.2.7 Role cinder-controller 52
B.2.8 Role cinder-storage 53
B.2.9 Role dashboard 53
B.2.10 Role rabbit 53
B.2.11 Role sql-database 54

2

Chapter 1

Introduction

Originally, server applications were running on dedicated physical servers. If the application
needed more resources, the server would be upgraded with additional CPUs, memory, or
storage which required physical access and only allowed adding whole new disk, or whole
new memory board. Virtualisation (running virtual machines on a single physical host)
solved both limitations, as the virtual machines could be managed remotely and only small
chunks of storage or memory could be added. Cloud computing is another step in the
evolution, as it creates an abstract layer of resources over multiple servers and provides
advanced techniquies such as scheduling and load balancing. A l l of this is described in
more detail in section 2.1.

OpenStack is a cloud platform with distributed architecture, and is briefly described
in section ??. Deploying OpenStack can be a complex task requiring deep knowledge in
distributed system architecture, networking, storage, and virtualisation. Because of its
complexity, it is very hard to create an installation script. There are several projects that
try to simplify the process. They are described in chapter 4.

However, before I start describing the methods of installing OpenStack, the reader
should understand automatic application deployments which is described in section 2.3
using technology called Ansible.

As said before, OpenStack is a complex system with distributed architecture. It is
described in more detail in chapter 3 which describes the architecture of OpenStack and its
components.

The goal of this thesis is to design and implement an installation script which would
enable to install basic OpenStack deployment and would also offer flexibility in configuring
more complex scenarios by reusing the individual components of the script. The design of
a reference OpenStack architecture and the script is described in chapter 5.

The final chapter 6 shows some details about the implementation process, describes the
testing environment and will also present results of the testing.

1.1 Relation with Red Hat

This thesis has been written in cooperation with Red Hat 1 , a leading open-source technology
company. Some parts of the installation script designed and created as part of this thesis
will be reused by the Fedora Project 2 in its own infrastructure.

1https://www. redhat.com
2https://getfedora.org

3

https://www
http://redhat.com
https://getfedora.org

Chapter 2

Technology Overview

2.1 Cloud Computing Introduction

Originally, we used dedicated servers to run enterprise applications. One application would
run on a single physical machine. These machines could be small servers or large main­
frames. When an organization grown and their application required more resources, the
server would scale up, which means adding more processors, memory, or storage to the
host. Is is also referred to as vertical scaling. This method was not flexible enough, as
every change required physical access to the datacentre and buying new hardware. Also, it
only allowed upgrading by rather large steps, for example by adding whole new hard drive,
memory module, etc. This problem has been solved by virtualization.

Virtualization is a technology that enables running several virtual servers on a single
host. Every virtual server would have its own operating system and would act as a physical
host. These servers could be dynamically scaled up and down without the need of a physical
access to the datacentre. New virtual servers could be provisioned, unused servers could be
deleted to make space for scaling, which would reflect the business needs in more flexible
way then dedicated servers. This method is also referred to as a traditional virtualization.
It is because there is a new technology called cloud computing that will be described right
now in the following section.

2.1.1 Difference Between Traditional Virtualisation and Cloud Comput­
ing

In a traditional virtualization, virtual servers are created and managed as part of a single
physical host. Virtual machines on every physical host must be managed separately, directly
on the host. This approach, again, might not seem flexible enough for large corporations
running thousands of virtual servers on many physical hosts in several datacentres. This is
why a technology called cloud computing has emerged.

Cloud computing, in a similar way as traditional virtualization, is a technology that
manages running of virtual machines. The main difference is that in cloud computing, a
virtual layer of resources, such as computing power, memory, and storage, is created over
one or more datacentres. These resources are then used to provision virtual servers. It also
offers scheduling and load-balancing. Scheduling means, that the cloud computing platform
automatically chooses on which host the virtual server would run. Load balancing means
that requests coming to an application running on multiple virtual machines are evenly
distributed across all of them.

4

This approach is very flexible in terms of creating, deleting, and scaling virtual servers.
It also brings new technology, such as software-defined networking (SDN), or an object
store, both of which will be described later in the thesis.

2.1.2 Cloud Applications and Scaling

The cloud computing flexibility opens new possibilities in the way enterprise applications
are designed and created. Instead of building a large monolithic application that would run
on a single host, the application has been broken down to smaller parts communicating with
each other. These parts are called microservices and each part runs on a separate virtual
machine. This approach of creating an application consisting of several microservices is
called distributed architecture.

Scale-Up

Scale-Out

Figure 2.1: Vertical and horizontal scalability [Source: [1]]

This architecture style enabled another innovation in terms of scaling. As I described
in the beginning of this section, with physical servers and also in traditional virtualization,
applications are scaled up by adding more processors, memory, or storage. In cloud com­
puting, the application can scale by adding more virtual machines to handle the workload.
This approach is called scaling out. This approach is also referred to as horizontal scaling.
See the picture 2.1 for more details. Such scaling can be also done automatically, on de­
mand. This means that the application does not need to have all the resources reserved
for itself all the time. For example, an application can run in business' private datacentre,
which provides the computing power for the majority of time. In a need of extra computing
power, the application can automatically scale out and use resources from another datacen­
tre, which might be run by different company as a paid service. This leads us to different
models of cloud computing and deployment models.

2.1.3 Models of Cloud Computing

There are several models [17] describing the the terms in which are cloud computing re­
sources used. It varies from using the whole infrastructure to using only an environment,
in which an application would run.

5

• Infrastructure as a Service (IaaS) provides computing resources, which can be
used to provision virtual machines and software-defined networks. In this model, the
cloud consumer manages the application, operating system, storage, networking, and
computing resources. OpenStack is an IaaS solution.

• Platform as a Service (PaaS) provides an operating system including libraries and
programming languages. In this model, the cloud consumer manages the application,
but not the underlying infrastructure.

• Software as a Service (SaaS) provides an operating system and the application. In
this model, the cloud consumer does not manage the application nor the underlying
infrastructure.

2.1.4 Models of Cloud Deployment

There are several ways [17] where to deploy the cloud computing infrastructure. A company
can a cloud in their own datacentre, or they can use a public provider. A combination of
both is also common.

• Public cloud is a cloud run by a cloud provider, provided as a service.

• Private cloud is a cloud run and used by a single organization.

• Hybrid cloud is a combination of public and private cloud. The cloud consumer has
the ability to run an application in their datacentre and expand to the private cloud
when more resources are needed. It is commonly achieved by two independent cloud
deployment that use single interface to manage the resources. A n example of such
interface can be Red Hat CloudForms.

2.2 OpenStack

OpenStack is an open-source cloud platform that controls large pools of compute power,
storage, and networking resources of one ore more datacentres. These resources are then
used to provision virtual machines.

The service is managed by a single web interface called dashboard or a command-line
interface, which gives the administrators control over the whole cloud, and users the ability
to provision and manage resources via single web interface. OpenStack consists of several
components. The base six components provide identity, networking, object storage, block
storage, a service for managing images, and the compute service. Other services may include
an orchestration service, telemetry service to measure usage of the cloud, or a database as a
service solution (DBaaS). These services will be described in more detail later in the thesis.

A l l services communicate with each other via public H T T P S endpoints and use Ad­
vanced Message Queuing Protocol (A M Q P) , which is a protocol supporting sending and
receiving messages between distributed systems. [17]

2.2.1 Core OpenStack Components

OpenStack is composed of several components [17] called services. Some of them can be
seen on picture 2.2, and are also described in this section.

G

DASHBOARD
(Horizon)

COMPUTE

(Nova)

BLOCK STORAGE NETWORKING i IMAGE SERVICE

(Cinder) (Neutron) (Glance)

OBJECT STORAGE

H (Swift)

IDENTITY
SERVICE

^ (Keystone)

Figure 2.2: OpenStack core services [Source: []]

• Horizon (dashboard) is a web interface for managing OpenStack services provid­
ing graphical user interface. Horizon supports operations like launching instances,
managing networking, and setting access controls.

• Keystone (identity) is a centralized identity service providing authentication and
authorization for other services. It also provides a catalogue of services running in
the OpenStack cloud.

• Neutron (networking) provides software-defined networking (SDN) in the Open-
Stack cloud, including networks, subnets and routers. Other advanced services such
as firewalls, virtual private networks (VPN) or quality of service (QoS) are also sup­
ported. This service handles the creating and management of the networking infras­
tructure for the cloud administrator and users.

• Cinder (block storage) manages persistent block storage volumes used by virtual
machines. The service supports creating of snapshots which can be used for backing
up data. Then backup can be then used to restore data or to create some new block
storage volumes. This service is often used by the virtual machines as a storage.

• Swift (object storage) provides an object storage that allows users to store and
retrieve files. Swift has a distributed architecture that enable horizontal scaling and
redundancy. Data replication is managed by software, which allows larger scalability
and redundancy than dedicated hardware.

• Glance (image) is a registry of virtual machine images. Users can copy server images
and use them as templates when setting up new virtual servers.

• Nova (compute) is a service that manages virtual machines running on compute
nodes. Nova is designed to scale horizontally on standard hardware and to download
images to launch new instances. Nova is a distributed component that interact with
Keystone for authentication, Glance for images and Horizon for a web interface. It
uses libvirtd, qemu, and kvm for the hypervisor.

• Ceilometer (metering) is a service that provides a centralized source for metering
and monitoring data, which can be used to meter and bill users.

• Heat (orchestration) an advanced service to orchestrate multiple cloud application
using the Amazon Web Services (AWS) template format. The software integrates

7

other core components of OpenStack into a one-file template system. Templates
can be used to create most of OpenStack resources, such as instances, floating IPs,
volumes, security groups or users. Heat also offers advanced functionality such as
high availability, auto scaling and nested stacks.

2.3 Ansible

2.3.1 What is Ansible

Ansible is an automation engine which can be used for application deployment. It is also
suitable as a configuration management tool, for orchestration of deployment and provi­
sioning new servers, all of which will be described later in the section. [4]

Deployment

Application deployment is a process of taking a source code of a software that has been
written internally, building it to get the binaries, copying the required files to the servers
that are supposed to run the application, and then starting the necessary services.

Tools other than Ansible that can be used for deployment are for example Capistrano,
or Fabric, which are both open-source. [16]

As Ansible can manage both deployment and configuration management, using a same
tool for these tasks can make it easier and well-arranged for the people using it.

Configuration management

Configuration management typically means writing some kind of description of our servers
- a state in which we want the servers to be. This definition of a state can include infor­
mation about packages that should be installed (or, more precisely, present) on the server,
configuration files containing specific values and have specific permission and ownership,
that the correct services are running, and so on.

Except Ansible, common configuration management tools are for example Chef, Salt,
Puppet, or cfEngine. [16]

Orchestration of deployment

We need to use orchestration when there are more servers involved and we need to run
tasks in a specific order. This can mean, for example, bringing up the database server first
and then starting the web servers. Or in case of updating web servers, we need to take
them out of the load balancer one at a time to preserve stable service without outages.

Ansible is designed to support orchestration by using a simple model of dependencies
build directly into the core architecture - so the tasks are automatically executed in the
correct order.

Provisioning

The term provisioning a new server is often used in a cloud environment. It means creating
a new virtual machine instance with operating system installed and having the networking
and access configured in a way that the machine can be used.

However, provisioning is also used with baremetal machines, because, in the end, all
virtual and cloud machines run on a physical server. Ansible can provision all the machines

8

in the datacenter and can be also integrated with several datacentre management tools, like
(not limited to) Red Hat Satellite, Hanlon, or Cobler.

Ansible supports several cloud providers including Amazon EC2, Microsoft Azure, Dig­
ital Ocean, Google Compute Engine, Linode, Rackspace and clouds supporting the Open-
Stack APIs. [16]

2.3.2 Advantages of the Ansible Technology

There are several features of the Ansible technology that are important to mention:

Syntax is Easy to Read
The ansible configuration management scripts are build on top of Y A M L syntax, which is
a data format language that was designed to be easy to read for people.

When used properly, the ansible playbooks might be seen as an executable documenta­
tion. And it will never be outdated, because it is also the code, that gets executed.

Push-based mechanism

There are two main concepts of deploying a change to servers: push-based and pull-based
mechanisms.

Some configuration management, that use agents, are pull-based. A n example of these
tools can be Puppet or Chef. The pull-based mechanism work in the following way:

1. Administrator makes change to the configuration scripts

2. Administrator pushes the changes to a central service

3. Agent running on the server checks for changes periodically

4. Agent downloads the change from the central service

5. Agent executes the configuration script locally and changes the state of the server

Ansible uses the push-based mechanism, in which the administrator controls when a change
is applied to the server. [] The administrator does not need to wait for a timer to expire
before the change is applied. This is an advantage of the Ansible solution, as it offers more
control over the overall system. The push-based mechanism works in the following way:

1. Administrator makes change to the configuration scripts

2. Administrator runs the playbook

3. Ansible connects to the servers and executes modules, making changes to the server

Ansible, however, also supports a pull-based mechanism, using a tool called ansible-pull.

No Agents Required

To manage a server by ansible, it only needs a Python version 2.5 or later and an SSH to
be installed. Ansible does not need any agents or additional software to be installed on the
servers. It also does not need any special management interfaces, as it runs on the existing
network infrastructure using SSH.

9

Thin Layer of Abstraction

Some configuration management tools provide a thick layer of abstraction, which enables
the administrator to manage multiple operation systems using a single script. For example,
an abstraction called package could be used to install a package on a system, regardless
its type. It could be a yum-based, or a apt-based system. However, these abstractions can
be even bigger which means that administrator often need to learn how these abstractions
work. Learning these abstractions would be an extra effort, as the administrators should
know how their system work anyway.

Ansible does not use these abstractions. This allows the administrator to write scripts
for a specific system without the need of learning the abstractions, which makes the learning
process shorter, and reading the scripts easier. [16]

2.3.3 Ansible Playbooks

As already mentioned previously, ansible configuration scripts are called playbooks. Play-
books can define the configuration of the target servers, and they can orchestrate the steps
in which the configuration is applied. Playbooks consist of several parts: plays, tasks, and
modules. [] []

Playbook - < Play < Host

Task Module J Task Module J

Figure 2.3: Ansible playbook anatomy [Source: [16]]

Plays

Playbook is a list of plays. Plays can be thought of as a connection of tasks to hosts. A
play must contain:

• A list of hosts

• A list of tasks that would be executed on the hosts

Plays also support several options that affect the way it is executed. A n example of these
settings can be:

• name - A description of the respective task. The names should be always used, as
they will be printed at the time of run, showing what changes has been made to a
particular server.

• sudo - A boolean value determining if the tasks will be executed with root privileges.

10

• vars - A list of variables that would be used for the particular task. They act as a
parameters.

A n example of a play, taken from [], is shown below:

- name: Configure webserver with nginx

hosts : webservers

sudo: True

tasks :

- name : i n s t a l l nginx

apt: name=nginx update_cache=yes

- name: copy nginx config f i l e

copy: >

src=files/nginx.conf

dest=/etc/nginx/sites-available/default

- name: enable configuration

f i l e : >

dest=/etc/nginx/sites-enabled/default

s r c = / e t c / n g i n x / s i t e s - a v a i l a b l e / d e f a u l t

state=link

- name: copy index.html

template: >

src=templates/index.html.j 2

dest=/usr/share/nginx/html/index.html mode=0644

- name: re s t a r t nginx

service : name = nginx state = r estarted

Tasks

Play is a list of tasks. Every task represents a single module that would be executed. Every
task must contain:

• A name of the particular module

• A list of arguments for the module

Task can also include a definition of its name. Using of names is a good practise, as
they are printed at the time of run and can be used to track changes made by the scripts.
They also act as comments, improving readability of the playbook.

Modules

Modules are scripts that perform the desired action on the target server.
They are designed to be idempotent, which means that they can be run multiple times,

but will only make changes when there is a difference between the present and desired state.

11

In other words, running a playbook for the second time without making changes will not
affect the target server in any way.

A n example of modules can be:

• copy - Copies a file from the local machine to the remote host.

• service - Manages the services running on the remote host. It can start, stop, or
restart a services.

Handlers

When ansible execute modules on a particular server, they may or may not make a change.
They only make change when the present state is different from the desired state. At the
time of run, ansible prints out the names of tasks that are being executed. If the state
has changed, the module will return changed state. And if no action was needed, an ok
state will be returned instead. Ansible will then print the result, as seen on the following
example:

TASK: [I n s t a l l packages] *

changed: [webserverl]

TASK: [Set configuration] *

ok: [webserverl]

This detection of a change can be used by a mechanism called handlers. [] Handlers
are actions triggered at the end of run only when a specific change has occurred. However,
the action will be executed only once.

For example, a change of a web server configuration might require restart of the par­
ticular service. Also, an update of the web server package might require a restart of the
service. If any of these actions occur, a handler responsible for restarting the service will
be notified and executed at the end of run. It will be executed only once, even when both
of the changes above will occur.

Roles

Roles are the main mechanism to break large playbooks into multiple files, which simplifies
writing complex playbooks. It also makes them easier to reuse.

When managing a large number of servers, a single playbook describing changes of
all of the servers would become too long and hard to maintain. Also, applying a common
configuration to multiple servers would result in a duplication of code. To solve this problem,
a mechanism called Roles has been introduced to Ansible. [14]

A role can be thought of as something that should be assigned to one or more hosts.
For example, a database role will be assigned to servers acting as a database servers.

Roles can also be dependent, which means that a role can require other role to be
applied before. Using this feature, Ansible will automatically ensure that roles are applied
in the correct order.

12

Chapter 3

OpenStack Architecture

This chapter describes the OpenStack architecture, how the components communicate and
what they are used for. Selected components, which are needed for the deployment option
used later in this thesis, will be described in more detail.

3.1 Conceptual Architecture

Conceptual architecture is a high level architecture that shows the core components of a
system and their relations including description of responsibilities for each component.

The relationships among the OpenStack services can be seen on picture 3.1.

3.2 Logical Architecture

Logical architecture shows processes and functions that make the system functioning.
OpenStack consists of several independent parts called OpenStack services.[17] Authen­

tication for all services is provided by a common identity service. The services interact with
each other via public APIs. [5]

OpenStack services are internally composed of several processes. Each service has at
least one A P I process. This A P I process listens for A P I requests, does necessary preprocess­
ing and passes them to the particular process or processes within the service. The actual
work of a service is done by distinct processes. A n exception to this rule is the identity
service.

The processes within a service communicate with each other via message broker using
A M Q P protocol. The most used A M Q P broker is RabbitMQ, which is also used in this
thesis.

The state of a service is stored in a database. OpenStack support several databases, such
as MySQL, MariaDB, and SQLite. The database solution used in this thesis is MariaDB.
[5]

Users can interact with OpenStack in several ways. There is a graphical web-based
interface, which is implemented by OpenStack Dashboard. Other ways include command-
line clients provided by all basic services, and by A P I requests using web browser plugins
or curl.

The most common, but not the only possible logical architecture can be seen on picture
3.2.

13

Keystone Ceilometer Horizon
*. , J

Provides auth

I
Monitor Provides Ul

Registers hadoop
images in

Boots data processing
instances via

Fetchs images
via

i L
Assigns jobs

to

Provision

Saves data or job
binary in

Registers guest
mages in

Boots database
nstances via

Neutron

Provides PXE
network for

Provides images

Stores
mages in

Sahara

Orchestrates
clusters via

Swift

- Provision - Provides
volumes lo

Provides network
connection for

Backups
volumes in

J
Backups

databases in

Provision, operation
and management

Cinder

Trove

- Orchestration

Heat

Figure 3.1: OpenStack conceptual architecture [Source: []]

3.3 Physical Architecture

OpenStack is a distributed system, which enables cloud architects to design varieties of
physical architecture reflecting needs of the cloud consumer.

"Designing an OpenStack cloud is a great achievement. It requires a robust under­
standing of the requirements and needs of the cloud's users to determine the best possible
configuration to meet them. OpenStack provides a great deal of flexibility to achieve your
needs..." [15]

3.4 Installation of Core Components

This section will explain each service of the OpenStack cloud in more detail including
general description, some basic principles of the function, and a list of components of the
service. Some services, such as Compute or Storage, can use several backends for the actual
work. List and short description of these backends is also included in this section.

14

Figure 3.2: OpenStack logical architecture [Source: [15]]

3.4.1 OpenStack Identity Service

The OpenStack identity service provides a single point of authentication and authorisation.
When OpenStack services receive a request from a user, they check with the identity service

15

to verify the authorisation of the user.
It also provides a catalog of OpenStack services. When installing OpenStack cloud,

each service needs to be registered in the identity service. The identity service then tracks
which services are installed and where they are located on the network.

OpenStack services also use the identity service as a common unified A P I .

Identity Abstractions

The identity service uses the following abstractions:

• Service is an OpenStack service, such as the identity (Keystone) service, compute
(Nova) service, etc.

• Endpoint is an address accessible via network and acts as an access-point of a service.

• Region represents a general division of the OpenStack deployment. The identity
service also supports sub-regions, which allows the creation of a tree-structured hier­
archy.

• Authentication is the process of confirming the identity of a user. To confirm an
incoming authentication request, the identity service validates a set of credentials
supplied by the user. These can be a name and password, or a name and A P I
key. After validation of the user credentials, the identity services then issues an
authentication token. This process is done only once on in the beginning of a session
and user then provide this token in all subsequent requests.

• Credentials are data to identify the user, such as name and password, or name and
A P I key.

• Authentication token is an alpha-numeric string used to access to OpenStack APIs
and resources. Token is valid for a finite duration and can be revoked at any time.

• Domain is a collection of projects and users. This collection defines administrative
boundaries for managing identity entities. Domains can be used to represent an
individual person, a company, or an operator-owned space. User can be granted
the administrator role within a domain. This domain administrator can then create
users, projects, and groups in the domains as well as create and assign roles to users
or groups.

• Project is used to isolate resources or identity objects. Projects can be used to map
to a customer, account, organisation, or tenant.

• Role is a personality containing a set of user rights and privileges. A user contains a
list of roles.

• Group is a collection of users and is owned by a domain. A group can be assigned a
role that applies to all users in the group.

• User is a representation of a person, system or service using the OpenStack services.
[17]

16

OpenStack Identity Components

The identity service consists of these components:

• Server - A centralised server, providing authentication and authorisation services. It
uses a RESTful interface.

• Drivers - Drivers are used to access identity information provided by external repos­
itories like L D A P , or existing SQL databases.

• Modules - Middleware modules that check service requests, extract user credentials
and send them to the Server for authorisation. The modules are integrated with the
OpenStack components by using the Python Web Server Gateway Interface (Python
WSGI).
[6]

3.4.2 OpenStack Image Service

The OpenStack Image service controls image storage and management and allows users to
discover, register, and retrieve images.

Images provide templates for virtual machine filesystems. Each virtual machine runs
from a copy of a base image and several virtual machines can be run from a single base
image. Any changes made to the virtual machines will not affect the image. Users can
also create a snapshot - a state of a virtual machines running disk - and build a new image
based on these snapshots.

The implementation of the image service is called Glance. It supports various backends
as a storage, which can be normal filesystems, OpenStack object storage, H T T P , R A D O S
block devices, and Amazon S3. Some of the storage backends can be read-only. The
architecture in this thesis will use normal filesystem mounted to the controller node.

Basic Components

The image service consists of the following components:

• glance-api - Accepts A P I calls.

• glance-registry - Stores, processes, and retrieves metadata about images like size
and type. This is an internal service only and should not be exposed outside of the
image service.

• Database - A n SQL database to store image metadata.

• Storage repository for image files - Backend that stores the images itself.

3.4.3 OpenStack Compute Service

The OpenStack Compute service is the major part of an Infrastructure as a Service (IaaS)
system. It runs and manages the virtual machines running in the OpenStack cloud. It can
also provide networking for the virtual machines. However, Nova networking is not often
used. The OpenStack Networking (Neutron) , described in this section, is used instead. [6]

The OpenStack Compute service scales horizontally and is commonly deployed on mul­
tiple hosts, [15] often called compute nodes.

17

The service manages virtualisation, but it does not include any virtualisation software.
Instead, it uses drivers to interact with the underlying virtualisation backend, also called
virtualisation provider. It is also possible to use multiple providers in different availability
zones.

The OpenStack Compute service supports these following virtualisation providers: [5]

• Baremetal

• Docker

• Hyper-V

• Kernel-based Virtual Machine (K V M)

• Linux Containers (LXC)

• Quick Emulator (QEMU)

• User Mode Linux (UML)

• VMware vSphere

• Xen

Service Architecture

The architecture of the Compute service could be divided into the following four parts:

• A P I Server is the compute controller that commands and controls the hypervisor,
storage, and networking available to the end users. It manages the A P I endpoints,
which are basic H T T P web services that handle the authentication, authorisation,
and basic command and control functions. It support various A P I interfaces including
Amazon, Rackspace, and others, which enables compatibility with multiple existing
tools already created for other cloud platforms. This open approach also prevents
vendor lock-in.

• Message Queue manages the interaction between compute nodes, the networking
controllers, A P I server, and the scheduler. It is provided by the Advanced Message
Queuing Protocol (A M Q P) . Several implementations are available, the most common
are RabbitMQ, Qpid, ZeroMQ, and others.

• Compute Worker manages the virtual machines that run on the compute nodes.
It is managed via A P I that provides commands to run, delete, and reboot instances,
attaching and detaching volumes, and to get local console output.

• Network Controller manages the networking resources available on the compute
nodes. It is managed via A P I that provides commands for allocating fixed IP ad­
dresses, configuring V L A N s for projects, or configuring networks for compute nodes.
[5]

18

OpenStack Compute Components

The OpenStack Compute service consists of the following components:

• nova-api service - Accepts A P I calls and responds to them. It supports the Open-
Stack Compute A P I , the Amazon EC2 A P I , and a special Admin A P I .

• nova-api-metadata service - Accepts metadata requests from instances.

• nova-compute service - A worker daemon that manages virtual machines via virtu-
alisation provider A P I . It supports XenAPI, libvirt, VMwareAPI, and others. The
state of the instances is always saved in the database.

• nova-scheduler service - This service determines on which compute node a new
virtual machine should be started.

• nova-conductor module - It is a point of access to the database for other nova
services. It eliminates direct access to the database by other services. This service
scales horizontally and can be deployed on multiple hosts.

• nova-cert module - This is only needed to use with the Amazon EC2 A P I , used to
generate certificates.

• nova-network worker daemon - Similar to the nova-compute service, but for net­
working. Accepts networking tasks from the queue and manipulates the network.

• nova-consoleauth daemon - Provides authorisation for users provided by the con­
sole proxies - see nova-novncproxy and nova-xvpvncproxy for more information. It
needs to run for the proxies to work.

• nova-novncproxy daemon - Proxy for accessing running virtual machines via a V N C
connection. Supports browser-based H T M L 5 clients.

• nova-spicehtml5proxy daemon - Proxy for accessing running virtual machines via
a SPICE connection. Supports browser-based H T M L 5 clients.

• nova-xvpvncproxy daemon - Proxy for accessing running virtual machines via a
V N C connection. Supports an OpenStack-specific Java client.

• nova-cert daemon - Manages x509 certificates.

• euca2ools client - A set of command-line interpreter commands to manage the cloud
resources via Amazon EC2 interface.

• nova client - A command-line client for the end user.

• Message Queue - Passes messages between nova daemons. Provided by the Ad­
vanced Message Queuing Protocol (A M Q P) . It is usually implemented by RabbitMQ.

• SQL Database - Stores most of the build-time and run-time states of the infrastruc­
ture, including information about available virtual machine types, virtual machines
in use, available networks, and information about projects. OpenStack Compute
supports SQLite3 for test and development work, MySQL and MariaDB, and Post-
greSQL.
[6]

19

3.4.4 OpenStack Networking Service

The OpenStack Networking service enables users to create virtual networks and attach the
devices managed by other OpenStack services to them. It provides an A P I that lets users to
configure and manage network connectivity and addressing. The network services include
L3 forwarding, N A T , load balancing, firewalls, and V P N .

Networking provides the end users the ability to create virtual networks, subnets,
routers, and firewalls. A l l of these will be explained later in this section.

It also supports variety of plug-ins which can enable interoperability with several com­
mercial and open source technologies. This plug-in architecture provides flexibility when
designing custom OpenStack architecture and deploying it.

Networking

Before using or deploying the OpenStack Networking service, the following general facts
about networking [] should be understood:

• Ethernet is a networking protocol that is being used by most wired network interface
cards. In the OSI model of networking, Ethernet operates on the second layer, also
referred to as layer 2, L2, link layer, or data link layer. Every host has unique
identification called Media Access Control (MAC) address.

Ethernet can be conceptually think of as a single bus, to which each of the network
host is connected. However, modern networks use devices called switches, and every
device is connected directly to them.

The OpenStack Dashboard uses this simple model to visualise the network topology
to the end user. This ethernet network is sometimes referred to as a layer 2 segment.

• V L A N is a networking technology that creates separate virtual network on a single
switch in a way, that devices connected to the same switch can not each other's traffic,
if they are on different V L A N s .

OpenStack uses V L A N s to isolate the traffic of different tenants, even when their
instances run on a single host.

Each V L A N has a numerical ID between 1 and 4095. For example, a V L A N with an
id of 15 will be referred to as V L A N 15.

• Address Resolution Protocol (ARP) - As pointed out above, network devices use
M A C addresses to be identified. However, T C P / I P applications use IP addresses as
an identifiers. The Address Resolution Protocol (ARP) bridges the gap by translating
IP addresses into M A C addresses.

• Dynamic Host Configuration Protocol (DHCP) dynamically assigns IP ad­
dresses to network hosts. These hosts are called D H C P clients.

• T C P , U D P , and I C M P - Software applications communicating over an IP network
use another protocols above IP. In the OSI model of networking, they use the fourth
layer, which is also referred to as layer 4, or transport layer. There are three main
protocols:

20

— Transmission Control Protocol (TCP) is the most commonly used layer 4 proto­
col. It is a connection-oriented protocol. Delivery of packets via this protocol is
guaranteed.

— User Datagram Protocol (UDP) is mostly used to transfer real-time information
like voice or video. It is a connectionless and unreliable protocol which means
that the delivery of packaets via this protocol is not guaranteed.

— Control Message Protocol (ICMP) is used for sending control messages.

Switch is device that allow packets to travel from one node to another. They connect
hosts belonging to the same layer-2 network. Switches forward the traffic based on
the destination Ethernet address in the packet header.

Router is device that allows communication between nodes on different layer-3 net­
works. They route the traffic based on the destination IP address in the packet
header.

Firewall is device that restricts traffic to and from hosts on a network by special
rules defined on the device. They are supposed to protect hosts from unauthorised
access and attacks.

Load Balancer is device that allows even distribution of traffic across several hosts.
They are supposed to avoid overload of a single host. They also prevent a single point
of failure as they enable the traffic to be processed by multiple hosts.

Networking Concepts in OpenStack

OpenStack uses the following concepts to enable users to create their own virtual
network infrastructure:

Network is an isolated L2 segment. There are two types of network:

— Tenant Networks are managed by the end user and are used within their projects.
These networks are fully isolated from other projects.

— Provider Networks are managed by the OpenStack administrator and map ti the
existing physical network in the datacenter. These networks are mainly used to
enable external connectivity to the virtual machines running in the cloud. Each
project should have at least one public provider network.

Subnet is a block of IP addresses and associated configuration state. They are used
to allocate IP addresses to ports that are created on a network.

Port - Not to be confused with T C P or U D P port. In the OpenStack terminology,
port is a connection point for attaching a single device (such as NIC of a virtual
machine) to a virtual network. It also describes the configuration like M A C address
and IP address.

Security Groups enable users to define their own firewall rules in groups. They
can control traffic in both direction (called ingress and egress). These rules are then
applied to a port. A port can be assigned with multiple security groups.
[7]

21

OpenStack Networking Components

The OpenStack Networking service is composed of the following components [6]:

• neutron-server - accepts A P I requests and routes them to the appropriate Network­
ing plug-in

• OpenStack Networking plug-ins and agents - the main logic is implemented by
several plug-ins. They plug and unplug ports, create networks, subnets, and provide
IP addressing. OpenStack Networking ships with plug-ins and agents for Cisco virtual
and physical switches, N E C OpenFlow products, Open vSwitch, Linux bridging, and
the VMware N S X product. The architecture in this thesis will use Linux bridging.

• Messaging queue - routes the information between neutron-server and other agents.
It also act as a database for particular plug-ins. The architecture in this thesis will
use centralised RabbitMQ service running on a controller node.

The architecture in this thesis will use the following plug-ins and agents for networking:

• Modular Layer 2 plug-in - builds layer-2 (bridging and switching) virtual network­
ing infrastructure for virtual machines. IT uses the Linux bridge mechanism.

• Linux bridge agent - builds the networking infrastructure for virtual machines and
also manages V X L A N tunnels for private networks and security groups.

• Layer 3 agent - is the most commonly used agent that provides layer-3 (routing)
services for virtual networks.

• D H C P agent - provides D H C P services for virtual networks.

3.4.5 OpenStack Block Storage Service

The OpenStack Block Storage service adds persistent block storage to a virtual machine
instances and provides an infrastructure for managing volumes. This service is similar to
the Amazon EC2 Elastic Block Storage (EBS) offering.

The service supports various backends which can be consumed using a Block Storage
driver. A n example of supported drivers that are available can be N A S / S A N , NFS, iSCSI,
Ceph, and more. A usage of multi-backend configuration is also supported. [6]

To install the OpenStack Block storage service, it is important to understand a number
of concepts, because there are several choices of deployment. [] Apart from choosing the
right storage backend, it mostly depends on the final architecture - which can be single node
or multi-node. For example, in this thesis I use a multi-node architecture with separate
block storage node, and will use a local L V M storage as a backend.

Logical Volume Management (LVM)

Because this thesis will use an L V M as a block storage provider, it is important to under­
stand the basic concepts of L V M .

L V M creates a layer of abstraction over physical storage, which allows you to create mul­
tiple logical storage volumes. From an application view, these logical volumes are the same
as traditional disk partitions. The hardware storage configuration is also hidden from the

22

software, so it can be resized and moved without stopping services or unmounting filesys-
tems. And in an opposite way, the logical volumes can be also resized without changing
the underlying physical storage. This solution provides much more flexibility than using
traditional partitions directly. [8]

Logical
Volume

X-

Q
Physical
Volume

Volume Group

Physical
Volume

9
Logical
Volume

0
Physical
Volume

Figure 3.3: Logical volume architecture [Source: []]

As shown on the picture 3.3, L V M consists of three basic layers:

• Physical Volume (PV) is the underlying physical block storage device, which can
be a partition or the whole disk. To use the device for L V M , it needs to be initialised

Physical Volume (PV).

• Volume Group (VG) is a combination of several physical volumes. However, vol­
ume group can also consist of a single physical volume. This layer provides a pool of
disk space used to create logical volumes (LV) in the same way disks are divided into
partitions.

• Logical Volume (LV) is the volume used by filesystems and applications. In L V M ,
a volume group is divided into several logical volumes.

Block Storage Components

The OpenStack Block Storage service consists of the following components [6]:

• cinder-api - Accepts A P I requests and routes them to the cinder-volume process for
action.

• cinder-volume - This process manages the read and write requests sent to the Block
Storage service. It interacts with the cinder-scheduler and cinder-backup processes
and the storage providers, using respective drivers.

23

• cinder-scheduler daemon - In multi-node deployments, it selects the optimal stor­
age node on which the volume will be created. This process is similar to the nova-
scheduler.

• cinder-backup daemon - Provides the ability to back up volumes. It can interact
with multiple backup storage providers using drivers, in a similar way as the cinder-
volume process.

• Messaging queue - Routes information between the processes within the OpenStack
Block Storage service. In this thesis, I use a centralised RabbitMQ service, running
on the controller node.

3.4.6 OpenStack Dashboard Service

The OpenStack Dashboard service provides you a way to manage the OpenStack resources
and services. It is used by administrators and the end user. It provides a web-based
interface that communicates through the OpenStack APIs. It also allows customising the
brand of the dashboard to match the cloud provider's needs. []

Handling of User Session Data

The Dashboard service supports several session backends [] to handle the user session data:

• Local Memory Cache - The quickest and easiest session backend, which does not
require external dependencies and is the easiest to set up. However, it does not support
shared storage across processes or workers, and does not offer data persistency after
a process terminates. This is the reason why it is not recommended for production
use.

• Memcached - A n external caching service. Supports shared storage and offers data
persistency after process or worker terminates. It is extremely fast and efficient cache
backend. It requires the memcached service to be running and accessible and a python
memcached module installed.

• Database - A database can be also used as a caching backend. It is scalable, it can
be highly-available and offers data persistency. However, it is slow in comparison to
other caching methods.

• Cached Database - This is a hybrid setting using database and caching infrastruc­
ture together.

• Cookies - Stores data in a cookie in the user's browser. It supports a cryptographic
signing to ensure that the data has not been changed during transport. It should be
noted, that signing is not the same as encryption, so that the data are still readable
by potential attacker.

In this thesis, I will use the Memcached option.

24

Chapter 4

Existing Methods of Automated
OpenStack Deployment

4.1 Packstack

Packstack is a command line installation utility that support deployment of OpenStack on
existing server using SSH connection. The installation can be configured interactively or
by a configuration file called answer file. [17]

It supports these two basic types of deployment [13]:

• A n all-on-one installation - A l l services are installed on a single physical host that
would run all controller services and the virtual machines.

• Multiple nodes - Using several hosts to run the installations, where there is a single
controller node running the controller services, and one or more compute nodes that
would run the virtual machines.

However, packstack is not suitable for production deployments. This is mainly because
it makes many assumptions about the configuration in order to simplify the installation
process. It can not deploy the services in a high availability (HA) mode or using load
balancers. It also does not support advanced networking configuration, which might be
required by more complex setups. [12]

4.2 OpenStack-Ansible

OpenStack-Ansible is an official OpenStack project, still under development. The goal of
this project is to be able to deploy OpenStack cloud in a production environment directly
from source code. It is focused on Ubuntu Linux and the OpenStack components are
installed into Linux Containers (L X C) . [10] [11]

25

Chapter 5

Implementation Design

5.1 Design of the Physical Architecture

Before I can write the Ansible playbook to deploy the OpenStack cloud, I need to know
exactly what I need to deploy. I have designed a basic physical architecture that I will use,
and this charpter will describe it.

5.1.1 Selecting OpenStack Services

The first decision when designing an OpenStack cloud deployment is about the services we
need to have running.

For this thesis, I have chosen these five core services:

• OpenStack Identity (Keystone)

• OpenStack Image (Glance)

• OpenStack Compute (Nova)

• OpenStack Networking (Neutron)

• OpenStack Block Storage (Cinder)

• OpenStack Dashboard (Horizon)

OpenStack consists of several components. I have chosen these six as they are the
minimum to have a cloud deployment where I can create virtual machines, attach them to
networks, use routers and other networking devices, attach a persistent block storage, and
also manage the cloud by a web interface. Implementing more services would be out of the
scope of the Thesis.

The services mentioned above will require a database to store their states, and a message
broker for some processes to communicate. Specifically, these two services will be needed:

• SQL Database

• A M Q P message broker

26

5.1.2 Selecting Specific Implementations

The second decision is about the specific implementation of each technology. The Open-
Stack cloud comes in several releases. The newest release at the time of writing this Thesis
is OpenStack Liberty. I will use this relase as I want to develop for the newest stable version
available.

I also need to choose an operating system platform that will run on the physical host
machines. Choosing the right Linux distribution is important as there might be big differ­
ences in terms of available packages, stability, the lifecycle, and an option of commercial
support. For this Thesis, I have chosen a CentOS 7.2. CentOS is free and open source oper­
ating system based on the Red Hat Enterprise Linux platform. It uses the R P M packaging
model and the OpenStack Liberty packages are included in the repositories. The system
is stable, has a long lifecycle and potential migration to to a commercially supported envi­
ronment would be easy, as it is based on the Red Hat Enterprise Linux platform. I have
also chose this particular distribution as I know the environment well enough to perform
needed configurations and debugging.

OpenStack also needs an SQL database to store the state of the services, and it also
might be used as a storage for the Identity service. In this deployment, it will be used in
this way. I have chosen MariaDB because it is open source and widely used SQL database.
It also comes with the CentOS distribution by default.

The next component is an A M Q P broker. It is used by processes within the OpenStack
services for communication, and it also might be used as a short-term storage by some
networking plugins. For this particular deployment, I will use RabbitMQ because it is an
open source solution and it is widely used in production environments. It is also well-
supported by the OpenStack itself.

The last decision will be about storage backend for the OpenStack Block Storage service.
I will use a local disk and an L V M technology. L V M is a robust and stable open source
solution for storage that runs on commodity hardware, which is important especially for
this testing environment.

5.1.3 Physical architecture

With the knowledge of the specific components and their implementations, I can design
a physical architecture of the deployment I will be using in this Thesis. The physical
architecture can be seen on picture 5.1. It consists of three hosts, referred to as nodes. The
description of the nodes is as follows:

Controller node

The controller node is the central point of this OpenStack architecture. It will controll and
command the whole cloud, and it will also store the state of the cloud. It will host both
of the external services: MariaDB and RabbitMQ. There will be also the controller parts
of the Compute and Block Storage services. To make this setup easier, it will also host
the whole Networking service. However, in large production deployments, the Networking
service might be installed on a separate node.

The communication between all OpenStack services will go trough this node, as it also
hosts the Identity service that will act as an A P I . Also, the Dashboard service will be
deployed to this nodes. The administrators and the end users will be accessing the cloud
via the controller node.

27

Compute node

The compute node will host the Nova Compute service and will act as a hypervisor. A l l
instances in the cloud will run on this node. It is designed in a way it can scale horizontally
in need of extra resources. It means that there can be serveral compute nodes deployed at
the same time. If this happends, the Nova scheduler service deployed on the controller node
will automatically choose the most suitable compute node for all new virtual machines.

Storage node

The storage node will provide persistent storage to the virtual machines. It has been
separated so the storage can scale independently of the compute resources and vice versa.
The storage node is designed in a way that it can scale horizontally, in the same way as
the compute node which means that there can be more storage nodes deployed at the same
time.

Networks

I have used three different networks in my architecture and each one have different purpose
in the whole system. Their descriptions ctre cts follows:

• Utility Network - This network is used the datacenter administrators to maintain
the physical hosts. In this example it will also be used by Ansible to deploy the
OpenStack and all other services.

• Management Network - This network is used by the OpenStack services to com­
municate with each other. It will also provide connectivity for the services to the
MySQL database and the RabbitMQ Message Queue. A l l Keystone endpoints based
on hostnames will also use this network. It will be also used to connect storage from
Storagel host to virtual machines running on the Computel host.

• V M Network - This network is used to provide outside connectivity to the virtual
machines running on the compute node.

There is a separate Utility and Management network. This is because the IP adresses
on the Management network are setted up during the deployment. These two networks
can be joined together if the IP adresses are properly set before and will not change during
deployment. This information might be important when testing on physical nodes with
limited number of network connectors.

It is also important to note that the eth2 interfaces on Controller and Computel hosts
will use special configuration without an IP address and will be attached to virtual network
bridges. Their specific configuration will be mentioned later in the text.

5.2 Design of the Ansible Playbook

The Ansible playbook will be designed in a way that it will deploy the physical architecture
designed above. To achieve this, it will require minimal configuration, such as IP addresses,
hostnames, and passwords - so the level of abstraction will be high enough for the admin­
istrator to deploy OpenStack without deep knowledge about it as they will only need to
know the IP adresses, hostnames, and passwords.

28

Controller

MySQL

RabbitMQ

Keystone

Glance

Nova Controller services

Neutron

Cinder controller services

Computel

Nova compute

Neutron Linux bridge agent

Storagel

Cinder volume

ethO

eth1

eth2

ethO

ethl

eth2

ethO

ethl

Physical Architecture

V M Network
192.168.50.0/24

Utility Network
192.168.1.0/24

Management Network
192.168.60.0/24

Figure 5.1: OpenStack physical architecture design

However, the real benefit of this playbook will be in the reusability for different archi­
tectures. In addition of configuring the basic options mentioned above, it will be possible to
change the script itself to match other architectures. To make this as easy as possible, I will
use the minimal level of abstraction when writing the playbook. I will only use the most
basic operations such as installing specific packages using yum, changing the OpenStack
configuration files, and restarting systemd services. This minimal abstraction will allow to
make much more customisations of the playbook than it is possible to do with Packstack.

29

However, it will require much deeper understanding of the OpenStack architecture which
might make it harder to use for some people.

5.2.1 Ansible Roles

The services will be installed on the target hosts using Ansible roles. Roles offer flexibility
in a way, that each role can be installed separately on a given host, or, if needed, on multiple
hosts. These roles can be then reused to deploy a different physical architectures.

A l l roles use handlers to restart services in case of a configuration change. A l l roles are
also designed to be idempotent.

There is a role for each OpenStack service. Some services, such as OpenStack Compute
and OpenStack Block Storage, will be divided into two roles: the controller part, installed
on the controller node, and the functional part, installed on respective nodes.

There will be two other roles to install the database and the A M Q P message bus.
Following is the description of each indivitual role.

Role sql-database

The role sql-database will deploy a MariaDB database on the target host. It will set the
root password accordingly and will also remove the anonymous user as well as the test
database.

The following packages will be installed:

• mariadb

• mariadb-server

• MySQL-python

And the following MariaDB service will be enabled and started:

• mariadb

Role rabbit

The rabbit role will deploy a RabbitMQ message broker on the target host. It will also
create a new user needed for the OpenStack deployment.

The following package will be installed:

• rabbitmq-server

And the following RabbitMQ service will be enabled and started:

• rabbitmq-server

Roles controller-basic and compute-basic

The roles controller-basic and compute-basic enable the OpenStack Liberty repository for
CentOS and install the SELinux package. These roles are the first that should be run before
any other openstack roles.

These roles will install these two packages:

• python-openstackclient

• openstack-selinux

30

Role keystone

The keystone role will install the OpenStack Identity service, codename Keystone, on the
target host. It requires an SQL database to be running on the network. The design used
in this thesis will run the database on the controller node.

The role will create a database for the Keystone service called keystone.
This role will install the following packages:

• openstack-keystone

• httpd

• mod_wsgi

• memcached

• python-memcached

• python-keystoneclient

And it will enable and start the httpd service on the target host.

Role glance

The glance role will install the OpenStack Image service, codename Glance, on the target
host. It requires an SQL database, and the OpenStack Identity service to be running on
the network. The example in this thesis will run both on the controller node.

The role will create a database for the Glance service called glance, and registers the
Glance service and creates endpoints in the Keystone service.

Glance supports several backends for storing images. This role uses local filesystem
to do so. Metadata about the images will be stored in the SQL database running on the
controller node.

This role will install the following packages:

• openstack-glance

• python-glance

• python-glanceclient

And the two following services will be enabled and started:

• openstack-glance-api

• openstack-glance-registry

Role nova-controller

The nova-controller role will install some parts of the OpenStack Compute service, code-
name Nova, on the target host. It requires an SQL database, RabbitMQ message bus, and
the OpenStack Identity service to be running on the network. The example in this thesis
will run all these services on the controller node.

The role will create a database for the Nova service called nova, and registers the Nova
service and creates endpoints in the Keystone service.

31

Besides the standard configurations such as setting hostname, configuration of database,
and message bus access, the Nova service will be configured to use the OpenStack Network­
ing (as opposed to legacy Nova networking) with the Linux bridge driver.

This role will install the following packages:

• openstack-nova-api

• openstack-nova-cert

• openstack-nova-conductor

• openstack-nova-console

• openstack-nova-novncproxy

• openstack-nova-scheduler

• python-novaclient

And the following services will be enabled and started:

• openstack-nova-api

• openstack-nova-cert

• openstack-nova-consoleauth

• openstack-nova-scheduler

• openstack-nova-conductor

• openstack-nova-novncproxy

Role nova-compute

The nova-compute role will install the nova-compute process of the OpenStack Compute
service, codename Nova, on the target host. It requires the RabbitMQ message bus to be
running on the network. The example in this thesis will run it on the controller node.

The role will configure an access to the necessary Nova processes installed by the nova-
controller role, and will also configure Nova to use the OpenStack Networking with the
Linux bridge driver.

It will also configure the hypervisor. This role uses the libvirt provider with Q E M U .
This is because VirtualBox, which is used for testing the deployment, does not support
nested virtualisation, so K V M can not be used.

This role will install these two packages:

• openstack-nova-compute

• sysfsutils

And will start and enable the two following services:

• libvirtd

• openstack-nova-compute

32

Role neutron-controller

The neutron-controller role will install the OpenStack Networking service, codename Neu­
tron, on the target host. It requires an SQL database, RabbitMQ message bus, and the
OpenStack Identity service to be running on the network. The example in this thesis will
run all these services on the controller node. This role also requires the nova-compute role
to be run on the same host before.

The role will create a database for the Neutron service called neutron, and registers the
Neutron service and creates endpoints in the Keystone service.

The OpenStack Networking service uses plug-ins and agents for the actual networking
functionality. This role will use:

• Modular Layer 2 (ML2) plugin

• Linux bridge agent

• Layer-3 agent

• DHCP agent

This setup will allow to create tenant networks as well as public provider networks.
The M L 2 plugin will be configured to use the Linux bridge technology and V X L A N to

create the tenant networks. The Linux bridge agent will be configured to use V X L A N for
the tenant networks and iptables firewall driver to manage security groups. The layer-3
agent will be configured to use the Linux bridge driver and to support multiple external
networks.

The D H C P agent will be also configured to use the Linux bridge driver and the M T U is
set to 1450 bytes. This is because the V X L A N includes additional packet header and virtual
machines running in the cloud use the default M T U of 1500 bytes. Using this settings, the
virtual machines will use the smaller M T U , which would allow space for the additional
header.

Finally, the Nova service will be configured to use the OpenStack Networking service,
installed by this role.

This role will install the following packages:

• openstack-neutron

• openstack-neutron-ml2

• openstack-neutron-linuxbridge

• python-neutronclient

• ebtables

• ipset

It will restart this service:

• openstack-nova-api

And the following services will be started and enabled:

• neutron-server

33

• neutron-linuxbridge-agent

• neutron-dhcp-agent

• neutron-metadata-agent

• neutron-13-agent

Role neutron-compute

The neutron-compute role will install the Linux bridge agent of the OpenStack Networking
service, codename Neutron, on the target host. It requires the RabbitMQ message bus to
be running on the network. The example in this thesis will run it on the controller node.
It also require the role nova-compute to be run on the same host before.

This role will configure the Linux bridge agent to use the correct network interface as
a public interface, enables V X L A N for the tenant networks, and configures iptables as a
firewall driver to manage security groups.

It will also configure the Nova service to use the OpenStack Networking.
This role will install the following packages:

• openstack-neutron

• openstack-neutron-linuxbridge

• ebtables

• ipset

It will restart this Nova service:

• openstack-nova-compute

And also the Linux bridge agent service will be started and enabled:

• neutron-linuxbridge-agent

Role cinder-controller

The cinder-controller role will install the OpenStack Block Storage service, codename Cin­
der, on the target host. It requires an SQL database, RabbitMQ message bus, and the
OpenStack Identity service to be running on the network. The example in this thesis will
run all these services on the controller node.

The role will create a database for the Cinder service called cinder, and registers two
services called cinder and cinderv2, and creates endpoints for each service. Two services
are created, because the OpenStack Block Storage service currently supports two versions
of A P I . This role will use both for better compatibility.

The following packages will be installed:

• openstack-cinder

• python-cinderclient

The openstack-nova-api service needs to be restarted first, and then the following
services will be enabled and started:

• openstack-cinder-api

• openstack-cinder-scheduler

34

Role cinder-st or age

This cinder-storage role will install the storage part of the OpenStack Block Storage service,
codename Cinder, on the target host. It requires the RabbitMQ message bus to be running
on the network. The example in this thesis will run it on the controller node.

At first, the role makes sure that there is a partition available for the storage, and
creates an L V M volume group. Then it configures the Block Storage service to use this
volume group to create individual volumes of persistent storage for the virtual machines.

The following packages will be installed:

• lvm2

• openstack-cinder

• targetcli

• python-oslo-policy

And the following services will be started and enabled:

• openstack-cinder-volume

• target

Role dashboard

The dashboard role will install the OpenStack Dashboard service, codename Horizon, on
the target host. The Dashboard service installed by this role uses the Apache httpd web
server.

It will install the following packages:

• openstack-dashboard

• httpd

• memcached

And the following services will be started and enabled:

• httpd

• memcached

5.2.2 Apply ing Roles to the Hosts

The main Ansible playbook will apply the roles designed above to particular hosts. See the
table 5.1 for reference about what roles will be applied to which hosts.

Each role will require several parametres such as IP addresses, hostnames, or passwords
to be set. This can be also done in the main playbook.

35

Host Name Applied Roles

Controller node

controller-basic

rabbit

sql-database

dashboard

glance

keystone

neutron-controller

nova-controller

cinder-controller

Compute node
c omput e-bas i c

neutron-compute

nova-compute

Storage node
storage-basic

cinder-storage

Table 5.1: Roles applied to the particular hosts

36

Chapter 6

Implementation and Testing

6.1 Third-party Modules in the Playbook

The implementation requires two third-party modules for managing Keystone endpoints
and services. Both modules have been created by Davide Guerri 1 , licensed under Apache
License, Version 2.0, and are included as part of the playbook.

6.2 Testing of the Deployment

I have prepared the following setup to for testing the environ

6.2.1 Description of the Host Environment

The reference testing environment consists of three virtual machines with the following
specification:

Controller

• CPUs: 2

• R A M : 2048 M B

• Disk: 30 G B

Compute

• CPUs: 4

• R A M : 6144 M B

• Disk: 30 G B

Storage

• CPUs: 1

• R A M : 1536 M B
1 <davide.guerri@gmail.com>

37

mailto:davide.guerri@gmail.com

• D i sk l : 20 G B

• Disk2: 60 G B

These virtual machines were running on a laptop with the following configuration:

• C P U : 2.8 GHz Intel i7 4980HQ

• R A M : 16 G B

• SSD: PCIe 3.0 x4 8.0 G T / s (25.6 Gbit/s)

6.2.2 Using Ansible with Vagrant
Vagrant is a tool that manages virtual machines for development environment. It uses
private key authentication and generates its own keys for the virtual machines.

First, Vagrant needs to be configured to use a single private key to authenticate to
all three virtual machines. To achieve this, the following line needs to be put in the
Vagrantfile:

config.ssh.insert_key = f a l s e

Vagrant routes SSH ports of the guest virtual machines to the localhost and uses dif­
ferent port for each. A command vagrant ssh-conf ig will show the ports of each virtual
machine. These ports need to be used in the hosts file. A n example might look like this:

c o n t r o l l e r ansible_ssh_host=127 0 0 1 ansible_ssh_port=2222

computel ansible_ssh_host=127.0 0 1 ansible_ssh_port=2200

computel ansible_ssh_host=127.0 0 1 ansible_ssh_port=2201

The last step is to configure Ansible to use the correct user name and private key. This
can be done by creating file called ansible. cfg with the following content:

[def ault s]

h o s t f i l e = hosts

remote_user = vagrant

p r i v a t e _ k e y _ f i l e = -/.vagrant.d/insecure_private_key

host_key_checking = False

6.2.3 Running the Deployment

To deploy the OpenStack cloud in the testing environment using the Ansible playbook, you
need to provision the virtual machines and run the playbook. The virtual machines can be
provisioned using Vagrant by issuing the following command:

$ vagrant up

This will create three virtual machines matching the physical architecture. When the
virtual machines are ready, you can run the Ansible playbook by issuing the following
command:

$ ansible-playbook deploy-openstack.yml

This will deploy the OpenStack cloud on the virtual machines created before. The play­
book assumes that you have an internet connection available to all three virtual machines.
When running the deployment, the installation took approximately 7 minutes.

38

6.2.4 Testing the Deployment

When the deployment is finished, the local instance of the OpenStack cloud can be accessed
using the Dashboard via web browser. Wi th the default configuration provided with this
thesis, the Dashboard will be accessible on http: //10.0.0.11/dashboard. To log in, enter
the following credentials:

• Domain: default

• User: admin

• Password: redhat

Checking Running Services

The Dashboard is able to show all OpenStack services running in the current deployment.
A screenshot of the running services is shown as picture 6.1). There is also a more detailed
information about distributed services running on two nodes. These are the Compute
Services (shown on picture 6.2), the block storage services (shown on picture 6.3), and the
network agents (shown on picture 6.4).

A l l necessary services are running which means that the deployment was successful!.

^ O • y Q System Information - Ope Adam

4" =t> C D controller/dashboard/admin/info/ &1 O
Q openstack EH Default • admin • & admin •

Project System Information
Admin Services Compute Services Block Storage Services Network Agents

System System
Filter Q,]

Overview Overview
Name Service Host Status

Hypervisors
cinder volume controller Enabled

Host Aggregates
neutron network controller Enabled

Instances nova compute controller Enabled

Volumes glance image controller Enabled

Flavors keystone identity (native backend) controller Enabled

Images cinderv2 volumev2 controller Enabled

Networks Displaying 6 items

Figure 6.1: The OpenStack Dashboard shows the OpenStack services running

39

Q openstack IP Default • admin w & admin •

Project System Information
Admin Services Compute Services Block Storage Services Network Agents

System
Filter

Overview

Hypervisors

Host Aggregates

Instances

Volumes

Flavors

Images

Name Host Zone Status State Last Updated

nova-cert controller internal Enabled Up 0 minutes

nova-consoleauth controller internal Enabled Up 0 minutes

nova-scheduler controller internal Enabled Up 0 minutes

nova-conductor controller internal Enabled Up 0 minutes

nova-compute computel nova Enabled Up Q minutes

Displaying 5 items

Figure 6.2: The OpenStack Dashboard shows the compute services running

Q OpenStack • Default • admin - & admin •

System Inform
Services Compute Services

ation
Network Agents

Project System Inform
Services Compute Services

ation
Network Agents Admin

System Inform
Services Compute Services Block Storage Services Network Agents

System

Overview

Hypervisors

Host Aggregates

Instances

Name Host Zone Status State Last Updated

cinder-scheduler controller nova Enabled Up 0 minutes

cinder-volume storage! @lvm nova Enabled Up 0 minutes

Displaying 2 items

Figure 6.3: The OpenStack Dashboard shows the block storage services running

| openstack HH Default • admin • & admin •

Project System Information
Admin

System

Services Compute Services Block Storage Services Network Agents

Overview

Hypervisors

Host Aggregates

Instances

Volumes

Flavors

Type Name Host Status State Last Updated

L3 agent neutron-13-agent controller Enabled Up 0 minutes

Linux bridge agent neutron-linuxbridge-agent controller Enabled Up 0 minutes

Linux bridge agent neutron-linuxbridge-agent computel Enabled Up 0 minutes

Metadata agent neutra n -m etadata-agent controller Enabled Up 0 minutes

DHCP agent neutron-d hep-agent controller Enabled Up 0 minutes

Displaying 5 items

Figure 6.4: The OpenStack Dashboard shows the network agents running

40

Testing the Functionality

To test the deployment functionality, I have created six virtual machines, two tenant net­
works, one router, and one provider network. The picture 6.5 is a Screenshot showing the
whole environment running in the OpenStadk Dashboard.

^ ^ 1 QNetwork Topology - OpenE X ̂ ^ Adam

C D controller/dashboard/project/networkjopology/ ft] o =
Q OpenStaCk EH Default • admin - £ admin •

Project

Compute

Network

1 Network Topology

Networks

Routers

Admin

Identity

Network Topology
Resize the canvas by scrolling up/down with your mouse/trackpad on the topology. Pan around the canvas by clicking
and dragging the space behind the topology.

• • Toggle labels ::: Toggle Network Collapse A Launch Instance + Create Network + Create Router

Figure 6.5: The OpenStack Dashboard shows the testing environment

41

Chapter 7

Conclusion

In this thesis, I have designed simple OpenStack architecture able to run virtual machines,
create tenant networks using software-defined networking (SDN), and use persistent storage.
This runs in a multi-tenant environment and is managed by a web interface.

I have also designed and implemented an Ansible playbook which can automatically
deploy the architecture on multiple physical hosts. This playbook has been designed for
an easy deployment of the reference architecture, and, at the same time, to be reusable
with modifications for deploying different production environments. The reusability is also
simplified by using Ansible roles. There is a separate role for each functionality and they
can be deployed on separate hosts.

In comparison to another automatic deployment system called Packstack, it offers more
flexibility in terms of architecture changes. This is because I have not used the high level of
abstraction Packstack uses. On the other hand, it means that customising the playbook will
require much deeper knowledge of the OpenStack cloud compared to using Packstack. While
this is an advantage for experienced OpenStack administrators, it can be also disadvantage
for beginners.

Compared to the official OpenStack-Ansible project, the playbook developed in this
thesis installs the OpenStack cloud using R P M packages that can be signed and certified
before use.

7.1 Future Development

Some roles will be offered to the Fedora Infrastructure team 1 for their own OpenStack
infrastructure which is currently installed by Packstack and customized by Ansible. It
might require further development and changes to match their architecture, and it will also
require extensive testing before using in production. The project has been also published
on Gi tHub 2 .

1 https: / / fedoraproj ect .org / wiki/Infrastructure
2https: / / github.com/asamalik/openstack-ansible

42

http://github.com/asamalik/openstack-ansible

Bibliography

[1] How is scalability achieved?

https://hadoop4usa.wordpress.com/2012/04/13/scale-out-up/, 2012 [quoted

2016-04-5].

[2] Introduction to OpenStack [online], http://docs.openstack.org/security-guide/
introduction/introduction-to-openstack.html, 2015-10-22 [quoted 2015-10-22].

[3] Conceptual architecture [online], http://docs.openstack.org/liberty/
install-guide-obs/common/get_started_conceptual_architecture.html,

2015-10-25 [quoted 2015-10-25].

[4] How Ansible Works [online], https://www.ansible.com/how-ansible-works, 2015
[quoted 2015-11-14].

[5] OpenStack Administrator Guide [online].
http://docs.openstack.org/admin-guide/, 2015 [quoted 2015-11-27].

[6] OpenStack Installation Guide for Red Hat Enterprise Linux and CentOS [online].
http://docs.openstack.org/liberty/install-guide-rdo/, 2015 [quoted

2015-11-27].

[7] OpenStack Networking Guide [online].
http://docs.openstack.org/liberty/networking-guide/, 2015 [quoted

2015-11-27].

[8] Red Hat Enterprise Linux 6 Logical Volume Manager Administration [online].
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/

6/pdf/Logical_Volume_Manager_Administration/Red_Hat_Enterprise_

Linux-6-Logical_Volume_Manager_Administration-en-US.pdf, 2015 [quoted

2015-11-27].

[9] Deploying Horizon [online].
http://docs.openstack.org/developer/horizon/topics/deployment.html, 2015

[quoted 2015-11-28].

[10] About OpenStack-Ansible [online], http://docs.openstack.org/developer/
openstack-ansible/install-guide/overview-osa.html, 2015 [quoted

2015-12-09].

[11] Ansible playbooks for deploying OpenStack [online].
https://github.com/openstack/openstack-ansible, 2015 [quoted 2015-12-09].

43

https://hadoop4usa.wordpress.com/2012/04/13/scale-out-up/
http://docs.openstack.org/security-guide/
http://docs.openstack.org/liberty/
https://www.ansible.com/how-ansible-works
http://docs.openstack.org/admin-guide/
http://docs.openstack.org/liberty/install-guide-rdo/
http://docs.openstack.org/liberty/networking-guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/
http://docs.openstack.org/developer/horizon/topics/deployment.html
http://docs.openstack.org/developer/
https://github.com/openstack/openstack-ansible

[12] Deploying OpenStack: Proof-of-Concept Environments (PackStack) [online].
https:/ /access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux
OpenStack_Platform/5/html/Getting_Started_Guide/The_PackStack_
Dep loyment_Ut i l i t y l .h tml , 2015 [quoted 2015-12-09].

[13] Packstack quickstart: Proof of concept for single node [online].
h t t p s : / / w w w . r d o p r o j e c t . o r g / i n s t a l l / q u i c k s t a r t / , 2015 [quoted 2015-12-09].

[14] Ansible, I.: Ansible Documentation [online].
h t tp : / / docs . ans ib l e . com/ans ib l e / i ndex .h tml , 2015 [quoted 2015-11-14].

[15] Fifield, T.; Fleming, D.; Gentle, A . ; aj.: OpenStack Operations Guide. O'Reilly
Media, 2014, ISBN 978-1-4919-4694-7.

[16] Hochstein, L . : Ansible: Up and Running. O'Reilly Media, 2014, ISBN
978-1-4919-1532-5.

[17] Taylor F. , V . A . , Mahroua R.: Red Hat Enterprise Linux OpenStack Platform 6.0
CL210, Red Hat OpenStack Administration. Red Hat, 2015, edition 2 20150415.

44

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux
https://www.rdoproject.org/install/quickstart/
http://docs.ansible.com/ansible/index.html

Appendices

45

List of Appendices

A C D Contents 47

B Manual 48
B . l Using Roles with Variables 48
B.2 Variables of Individual Roles 49

B.2.1 Role keystone 49
B.2.2 Role glance 49
B.2.3 Role nova-controller 50
B.2.4 Role nova-compute 50
B.2.5 Role neutron-controller 51
B.2.6 Role neutron-compute 52
B.2.7 Role cinder-controller 52
B.2.8 Role cinder-storage 53
B.2.9 Role dashboard 53
B.2.10 Role rabbit 53
B.2.11 Role sql-database 54

16

Appendix A

C D Contents

The CD attached includes the Ansible playbook with default configuration, a README file
with instructions, and a Vagrantf ile to provision testing environment.

17

Appendix B

Manual

B . l Using Roles with Variables

When deploying your own OpenStack cloud, you will need to set your own passwords and
configure the right network interfaces to match your infrastructure. A l l roles designed in
this Thesis implement variables which allow you to do the configuration. See the following
example to learn how to use roles and variables:

- name: compute node

hosts: computel

sudo: yes

roles :

- compute-basic

- nova-compute

- neutron - compute

controller_hostname: controller.example.com

p u b l i c _ i n t e r f ace_name : eth.2

The example above applies three roles, compute-basic, nova-compute, and neutron-compute
to the compute node with hostname computel. It also sets two variables controller_hostname
and public_interf ace_name to respective values.

See the following section for list and descriptions of all variables used by each role.

18

B.2 Variables of Individual Roles

This secton describes all variables used by each role. A l l variables are mandatory.

B.2.1 Role keystone

The role keystone installs the OpenStack Identity service. Variables used in this role are
described in table B . l .

Variable Name Default Value Description
mysql_root_password redhat Root password for the MariaDB

database.
keystone_db_password redhat Database password for the

OpenStack Keystone service.
keystone_admin_token keystone_admin_token Admin token for the OpenStack

Keystone service.
controller_hostname controller Hostname of the controller node.
admin_password redhat Password for the default admin

user.

Table B . l : Variables of the keystone role

B.2.2 Role glance

The role glance installs the OpenStack Image service. Variables used in this role are
described in table B.2.

Variable Name Default Value Description
mysql_root_password redhat Root password for the Mari­

aDB database.
controller_hostname controller Hostname of the controller

node.
keystone_admin_token keystone_admin_token Admin token for the Open-

Stack Keystone service.
glance_db_password redhat Database password for the

OpenStack Image service.
glance_password redhat Keystone password for the

OpenStack Image service.

Table B.2: Variables of the glance role

49

B.2.3 Role nova-controller

The role nova-controller installs the controller services of the OpenStack Compute ser­
vice. Variables used in this role are described in table B.3.

Variable Name Default Value Description
mysql_root_password redhat Root password for the Mari-

aDB database.
controller_hostname controller Hostname of the controller

node.
keystone_admin_token keystone_admin_token Admin token for the Open-

Stack Keystone service.
nova_db_password redhat Database password for the

OpenStack Compute service.
nova_password redhat Keystone password for the

OpenStack Compute service.
rabbit_password redhat Password for the A M Q P mes­

sage bus.
controller_ip 10.0.0.11 IP address on the interface

attached to the Management
network.

Table B.3: Variables of the nova-controller nova-controller

B.2.4 Role nova-compute

The role nova-compute installs the nova-compute component of the OpenStack Compute
service. Variables used in this role are described in table B.4.

Variable Name Default Value Description
rabbit_password redhat Password for the A M Q P mes­

sage bus.
compute_ip 10.0.0.31 IP address on the interface

attached to the Management
network.

nova_password redhat Keystone password for the
OpenStack Compute service.

controller_hostname controller Hostname of the controller
node.

Table B.4: Variables of the nova-compute role

50

B.2.5 Role neutron-controller

The role neutron-controller installs the controller services of the OpenStack Networking
service. Variables used in this role are described in table B.5.

Variable Name Default Value Description
mysql_root_password redhat Root password for the Mari-

aDB database.
controller_hostname Controller Hostname of the controller

node.
keystone_admin_token keystone_admin_token Admin token for the Open-

Stack Keystone service.
neutron_db_password redhat Database password for the

OpenStack Networking ser­
vice.

neutron_password redhat Keystone password for the
OpenStack Networking ser­
vice.

nova_password redhat Keystone password for the
OpenStack Compute service.

management _interface _name ethl Name of the interface at­
tached to the Management
network.

public _ int erf ace _name eth2 Name of the interface at­
tached to the V M network.

overlay_interface_ip 10.0.0.11 IP address on the interface
attached to the Management
network.

metadata_secret metadata_secret A secret for the metadata
agent.

rabbit_password redhat Password for the A M Q P mes­
sage bus.

Table B.5: Variables of the neutron-controller role

51

B.2.6 Role neutron-compute

The role neutron-compute installs the compute services of the OpenStack Networking
service. Variables used in this role are described in table B.6.

Variable Name Default Value Description
controller_hostname controller Hostname of the controller

node.
rabbit_password redhat Password for the A M Q P mes­

sage bus.
neutron_password redhat Keystone password for the

OpenStack Networking ser­
vice.

public _ int erf ace _name eth.2 Name of the interface at­
tached to the V M network.

overlay_interface_ip 10.0.0.31 IP address on the interface
attached to the Management
network.

Table B.6: Variables of the neutron-compute role

B.2.7 Role cinder-controller

The role cinder-controller installs the controller services of the OpenStack Block Storage
service. Variables used in this role are described in table B.7.

Variable Name Default Value Description
controller_hostname controller Hostname of the controller

node.
mysql_root_password redhat Root password for the Mari-

aDB database.
controller_ip 10.0.0.11 IP address on the interface

attached to the Management
network.

cinder_password redhat Keystone password for the
OpenStack Block Storage ser­
vice

cinder_db_password redhat Database password for the
OpenStack Block Storage ser­
vice

rabbit_password redhat Password for the A M Q P mes­
sage bus.

Table B.7: Variables of the cinder-controller role

52

B.2.8 Role cinder-storage

The role cinder-storage installs the storage services of the OpenStack Block Storage
service. Variables used in this role are described in table B.8.

Variable Name Default Value Description
controller_hostname controller Hostname of the controller

node.
cinder_db_password redhat Database password for the

OpenStack Block Storage ser­
vice

rabbit_password redhat Password for the A M Q P mes­
sage bus.

cinder_password redhat Keystone password for the
OpenStack Block Storage ser­
vice

management _ ip 10.0.0.41 IP address on the interface
attached to the Management
network.

cinder_volume_group cinder-volumes Name of the volume group
used by the OpenStack Block
Storage service.

cinder_part i t ion /dev/sdb Partition used by the Open-
Stack Block Storage service.

Table B.8: Variables of the cinder-storage role

B.2.9 Role dashboard

The role dashboard installs the OpenStack Dashboard service. Variables used in this role
are described in table B.9.

Variable Name Default Value Description
controller_hostname controller Hostname of the controller

node.

Table B.9: Variables of the dashboard role

B.2.10 Role rabbit

The role rabbit installs the RabbitMQ message bus. Variables used in this role are de­
scribed in table B.10.

Variable Name Default Value Description
rabbit_password redhat Password for the A M Q P mes­

sage bus.

Table B.10: Variables of the rabbit role

53

B.2.11 Role sql-database

The role sql-database installs the MariaDB database. Variables used in this role are
described in table B . l l .

Variable Name Default Value Description
mysql_root_password redhat Root password for the Mari­

aDB database.
controller_hostname controller Hostname of the controller

node.
controller_management_ip 10.0.0.11 IP address on the interface

attached to the Management
network.

Table B . l l : Variables of the sql-database role

54

