

CZECH UNIVERSITY OF LIFE SCIENCES IN PRAGUE

FACULTY OF ECONOMICS AND MANAGEMENT

Neural Network Architectures for Object Recognition in

Digital Photographs

Dissertation

Author: Ing. Adéla Hamplová

Supervisor: doc. Ing. Arnošt Veselý, CSc., Dept. Of Information Engineering

Praha 2024

Neural Network architectures for object recognition in
digital photographs

Abstract

This dissertation is a collection of scientific articles discussing the topic of neural

networks suitable for image recognition in digital photographs. Since this topic is very broad

and general, this dissertation investigates explicitly the use of neural networks suitable for text

recognition, namely two historical alphabets - the Palmyrene alphabet, which was used to write

texts in the Palmyrene dialect of Aramaic, and the cuneiform script. Using the Palmyrene

alphabet as an example, a custom cascade pipeline is presented to build an OCR algorithm that

identifies individual characters using a segmentation neural network and evaluates which

character is the correct one using a custom optimal classifier or directly using multi-class

instance segmentation. The finished solution is presented in a mobile and web application.

GAN-type neural networks were used to refine the results of the classifier using training on the

augmented dataset, and their features were investigated. On the other hand, cuneiform analysis

was performed using an object detection algorithm, where individual strokes in the image were

detected and redrawn onto a blank canvas using a custom utility. I believe that the contribution

of this dissertation is not only theoretical but also practical.

Keywords: Artificial Intelligence, Computer Vision, Object Detection, Convolutional Neural
Networks, Data Augmentation, Text Segmentation, Pattern Recognition

 2

Table of contents

1 Introduction .. 5

2 Theoretical basis and current state of art .. 7
2.1 Artificial Neural Networks ... 7

2.1.1 Brief history of ANNs ... 7
2.1.2 Description .. 8

2.2 Convolutional Neural Networks... 9
2.2.1 Main principles ... 9
2.2.2 CNN layers.. 10

2.2.2.1 Convolutional layer ... 10

2.2.2.2 Subsampling layer ... 13

2.2.2.3 Flatten layer ... 14

2.2.2.4 Dense layers and output functions ... 14

2.2.3 Training Convolutional Neural Networks .. 15
2.2.4 Development of CNNs .. 16
2.2.5 Classification on mobile devices .. 19
2.2.6 Latest research .. 21

2.3 Computer vision tasks .. 21
2.4 Classification .. 22

2.4.1 Determining dataset size ... 22
2.4.2 Classifier success measures .. 23

2.4.2.1 Confusion matrix ... 23

2.4.2.2 Measures derived from confusion matrix .. 25

2.5 Object Detection ... 26
2.5.1 Traditional image processing techniques vs Deep Learning 27
2.5.2 Bounding box formats... 27

2.5.2.1 PASCAL VOC bounding boxes .. 27

2.5.2.2 COCO Json bounding boxes.. 28

2.5.2.3 Tensorflow Object Detection bounding boxes 28

2.5.2.4 YOLO DarkNet bounding boxes ... 28

2.5.3 Latest Object detection algorithms ... 28

2.5.3.1 Two-Stage Detection ... 29

2.5.3.2 One-Stage Detection .. 31

2.5.4 Comparing object detection algorithms .. 36

2.5.4.1 Evaluation options ... 36

 3

2.6 Segmentation .. 36
2.6.1 Mathematical methods used for segmentation .. 37
2.6.2 Object detection algorithms used for segmentation 38

2.6.2.1 Evolution of semantic segmentation.. 38

2.6.2.2 Early approaches of instance segmentation 38

2.6.2.3 Mask R-CNN ... 39

2.6.2.4 YOLO .. 41

2.7 Dataset augmentation ... 41
2.7.1 Classical methods.. 41

2.7.1.1 Keras generator .. 41

2.7.1.2 Online platform Roboflow ... 42

2.7.2 Deep learning methods ... 44

2.7.2.1 Neural Style Transfer ... 44

2.7.2.2 Feature space data augmentation ... 45

2.7.2.3 Variational autoencoders ... 46

2.7.2.4 Generative adversarial networks ... 47

2.8 Optical Character Recognition ... 48
2.9 Research gap .. 50

3 Commentary ... 51
3.1 Palmyrene Aramaic analysis using computer vision algorithms 51

3.1.1 Palmyrene alphabet research outcome .. 53
3.2 Cuneiform stroke detection .. 54

3.2.1 Confusion matrix used for object detection algorithms 54

3.2.1.1 Suggested method to constructing confusion matrix 55

3.3 Cascade-style approach to creating historical OCR systems 55
3.3.1 Data acquisition .. 55
3.3.2 Annotation... 56
3.3.3 Multi-class instance segmentation .. 56
3.3.4 Post-processing ... 56
3.3.5 Text in machine-readable format .. 56

3.4 Next steps ... 56

Conclusion ... 57

4 References ... 58

5 List of Figures, Tables and Abbreviations ... 66
5.1 List of Figures .. 66
5.2 List of Tables .. 66

 4

5.3 List of Abbreviations .. 66

List of Attachments ... 69
Attachment 1 ... 69
Attachment 2 ... 69
Attachment 3 ... 69
Attachment 4 ... 69
Attachment 5 ... 69
Attachment 6 ... 69
Attachment 7 ... 69

 5

1 Introduction

The presented text of the commented dissertation - a compilation of scientific articles -

consists of the theoretical basis and practical applications of Artificial Neural Networks used

for object segmentation, classification, and detection, as well as expanding datasets from

digital photographs. The main goal was to create a simplified, cascade-style approach, which

is meant to develop historical alphabet Optical Character Recognition (OCR) and utilise

multiple types of Convolutional Neural Networks. This novel cascade approach builds on

previous research in Convolutional Neural Networks, Generative Adversarial Networks,

Object Detection, and Optical Character Recognition and groups the knowledge from these

areas into one semi-automated way of use, with nuances in use for alphabets and other types

of writing. A modified method of constructing a confusion matrix, used for evaluating object

detection algorithms when ground truth labels are not available to calculate Intersection over

Union IoU, is presented here as well.

Thanks to the latest technological development of powerful GPUs, TPUs and pocket

size, well-performing cameras, computer vision and object detection are nowadays ones of

the critical applications of Artificial Intelligence, as they allow computers to identify the

contents of their environment by saying what is in the picture, where and how it is

represented. It has become a standard that has contributed to automatisation in a vast number

of human and machine activities in recent years. From industry, where it is necessary to

consistently overview the processes of manufacturing and quality of products, counting

people in shopping malls or detecting risky behaviour in warehouses, through expert systems

or decision support systems, automatic number plate recognition barriers, medical diagnosis

support including tumour detection, kidney stones detection and many others, followed by

self-driving cars, to common applications such as photo editing programs, face tagging or

personalised advertisements. The connecting element of all these applications is Deep

Learning, specifically of various architectures of Convolutional Neural Networks.

The use of computer vision can make commercial organisations more competitive by

automating tasks that otherwise require the use of human resources. In many applications, a

machine can be more accurate or faster than a human in some respects. For this reason,

computer vision technology continues to evolve and improve rapidly. Nowadays, there is a

wide range of ready-made algorithms designed for object recognition in images, from simple

 6

Single Shot Detectors, which mark selected objects in a smaller image in real-time, to

complex mask Region-based Convolutional Neural Networks, which, in addition to detection,

also offer marking of a cluster of pixels belonging to a given class, i.e., a mask - showing the

outline of the object. However, each object detection task cannot be approached in a unified

way and must be solved individually.

The utilisation of computer vision for automatic reading counts as one of the critical

applications of Artificial Intelligence. As part of my doctoral studies and grant projects

included in it, as well as the preparation of this dissertation, I decided to explore and expand

the possibilities of reading historical scripts.

In particular, this dissertation focuses on using existing and constructing new

architectures of Artificial Neural Networks that are applicable to the task of detecting

historical scripts and expanding datasets of letters in alphabets or their elementary subparts

(which, in the case of cuneiform fonts are the individual wedges) and presents novel solutions

of these problems using a fully convolutional approach.

The conducted research was published in 3 different WOS/Scopus-indexed journals and

4 WOS/Scopus-indexed conferences as an output of grant projects:

 PEF IGA 2021A0004 - “Reading Palmyrene Alphabet Characters Using

Artificial Intelligence Tools” [1] [2]

 PEF IGA 2022A0001 - “Research on methods for automatic dataset expansion

using machine learning tools” [3]

 UGC project reg. No CZ.02.2.69/0.0/0.0/19_073/0016944 internal no. 31/2021 -

“Cuneiform analysis using Convolutional Neural Networks” [4] [5]

 PEF IGA 2023A0004 – “Text segmentation methods of historical alphabets in

OCR development” [6] [7]

 7

2 Theoretical basis and current state of art

2.1 Artificial Neural Networks

2.1.1 Brief history of ANNs

Artificial Neural Networks (ANNs) are one of the areas of artificial intelligence, in

addition to expert systems, fuzzy systems and genetic algorithms. They appeared in practice

in the field of artificial intelligence in the 1960s after years of previous research. [8]

The first simple neuron model dates back to 1943 when Warren McCulloch and Walter

Pitts proposed a mathematical model of the central nervous system and declared that “at any

instant, a neuron has some threshold, which excitation must exceed to initiate an impulse”

and described the propagation of the impulse. [9] In 1949, Donald Hebb's book “The

Organization of Behavior” provided guidance on how to apply the learning rule to neuronal

synapses. [10] In 1951, Marvin Minsky created the first SNARC neurocomputer. [11] In

1957, Frank Rosenblatt generalised the neuron model to a perceptron calculating real

numbers in his report from Cornell Aeronautical Laboratory. [12] In 1958, together with

Charles Wightman, he built the "Mark I Perceptron'' neurocomputer with 512 parameters at

the MIT laboratories, which was able to recognise characters, and in 1960, John C. Hay et al.

wrote an operator manual [13]. In 1965, Bernard Widrow and his students created the

Adaptive Linear Element (ADALINE) similar to perceptron, but the individual elements

performed linear functions compared to perceptron [14], after them and one of his doctoral

students, Marcian Edward “Ted” Hoff, who was also the co-inventor of microprocessors, the

Widrow-Hoff least mean square training algorithm was named, it was published in Hoff’s

dissertation. [15] Another pioneer in the field of neurocomputers was Karl Steinbuch, who

published a comparison of two adaptive classification networks with Widrow [16] and

developed a model of a binary associative network, the principle of which is based on

associative memory and the provision of certain information based on its partial knowledge.

For almost twenty years, neurocomputers have only been used for experimental

purposes because perceptron has been shown to be unable to perform equivalence x1 x2

(EQV) and non-equivalence x1 ⊕ x2 (XOR), as these Boolean functions are not linearly

separable, and the linear separability of data sets is an essential prerequisite for constructing a

 8

single perceptron. It was not until 1982 that grant projects by John Hopfield (after whom

Hopfield Neural Networks are named) excelled, proving the connection of some models with

physical models of magnetic materials [17], according to which the Hopfield networks based

on the principle of auto-associative memory were named. In 1986, David E. Rumelhart et al.

published a practical backpropagation learning algorithm for multilayer networks in the

Parallel Distributed Processing (PDP) group [19]. However, it was mentioned previously in

1974 in Paul John Werbos's dissertation [18]. In the 1990s, journals about Artificial Neural

Networks began to publish, and the international journal Neural Network World [19] has

been available in the Czech Republic since 1991.

It was not until 2012 that the field experienced a breakthrough in ImageNet

classification contests [20], because until then other methods were more successful. Since

then, artificial intelligence has been developed in a wide range of areas.

2.1.2 Description

Artificial neurons are an abstraction of the mechanism that processes information

compared to the way that biological neurons send information to and within the brain and

determine how to respond to that information. The training or prediction presents the first

neural layer with an input from which we need to obtain an output. The input of the neuron to

the next layer is always the output from the previous layer, and only the last layer shows the

output. The whole network behaves based on parameters (threshold and weights) that

determine the course of networks, so it is an oriented graph. [12]

An output – activation function (formerly, output function and activation functions had

different meanings, but now it is interpreted the same way) is a function that converts an

aggregated signal into an output signal, for example linear, binary - sigma (σ(h)), logistical

sigmoid, signum, tanh, ReLU (Rectified Linear Unit), leaky ReLU, eLU (Exponential Linear

Unit), softmax (generalised sigmoid, counting probability of the input belonging to a single

class), or other. [21] These functions define the outputs of the neurons. Relevant activation

functions of individual Neural Network layers will be explained later in the text of individual

chapters. The simplest neuron – perceptron – is explained in the following Figure 1.

 9

Figure 1 - mathematical model of perceptron with output function σ(h) [22]

where:

𝒘 = (𝑤 , … . , 𝑤) is the vector of weights

ℎ = ∑ 𝑥 ∙ 𝑤 is the postsynaptic potential

and the output function is 𝜎(ℎ) = 1 for ℎ ≥ 0 and 𝜎(ℎ) = 0 for ℎ < 0.

Unfortunately, the analysis of the dynamic behaviour of a Deep Neural Network is

extremely complicated, since the calculation process is not linear and may include hundreds

of thousands of computed parameters, and is unlike classical algorithms, where it is possible

(for more complex programs such as debug mode) to follow the program step by step.

Therefore, studying these problems is both practically and theoretically a core issue.

2.2 Convolutional Neural Networks

To analyse images, we use special kinds of Neural Networks called Convolutional

Neural Networks (CNNs). CNNs are multilayer Neural Networks with thousands of

parameters. They are commonly used to recognize objects in an image directly from

individual pixels, regardless of their distortion, shift within the image, colour change, or other

criteria. The name convolution means filtering performed by a feature map, automatically

extracting object features (such as edges, arches and more). The cornerstone of each image

analysis is classification, done by CNN.

2.2.1 Main principles

CNNs, unlike densely connected networks, use three main principles – local

connectivity, shared weights (or weight replication) and spatial or temporal subsampling. [23]

Thus, one layer of a convolutional Neural Network is not entirely connected to the next, but

 10

only to selected parts, called subregions, avoiding an unmanageable number of parameters in

hidden layers.

2.2.2 CNN layers

The architecture of CNNs consists of an input convolutional layer (in Deep Learning

Python library keras [24] it is called Conv2D), a subsampling layer (MaxPooling2D) and a

suitable iteration of these layers, a layer producing a one-dimensional vector (Flatten), a

densely connected layer (Dense), and an output layer (Dense) whose number of neurons

corresponds to the number of classes to be classified. In the case of localising an object in the

image, the output layer will usually, apart from the class index, contain two points - [xmin,

ymax] and [xmax, ymin] – which, by joining, will create a frame (bounding box), around the

object within the image. There are more options to calculate the bounding box, which will be

explained in reference to relevant existing object detection algorithms in future chapters.

More layers, like Dropout for regularisations and randomly zeroing out weights, may be used

in a CNN. However, the following description deals with obligatory layers. The complete list

of keras layers and their description can be found in [25].

2.2.2.1 Convolutional layer

2.2.2.1.1 Image representation

Each input image Z is represented in the form of a 3-dimensional (in case of RGB

spectrum) M x N x D or 2-dimensional (in case of black and white spectrum) M x N array,

where M is the width, N is the height and D is the depth. For example, the black and white

letter “O” in a 9 x 12 px grid with zero-padding P = 1 looks as follows:

 11

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 123 255 123 0 0 0 0

0 0 0 123 255 123 255 123 0 0 0

0 0 123 255 123 0 123 255 123 0 0

0 0 255 123 0 0 0 123 255 0 0

0 62 255 0 0 0 0 0 255 62 0

0 123 255 0 0 0 0 0 255 123 0

0 123 255 0 0 0 0 0 255 123 0

0 62 255 0 0 0 0 0 255 62 0

0 0 255 123 0 0 0 123 255 0 0

0 0 123 255 123 0 123 255 123 0 0

0 0 0 123 255 123 255 123 0 0 0

0 0 0 0 123 255 123 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Table 1 - Convolutional layer input - a black and white letter "O" represented in pixels

2.2.2.1.2 Convolutional filters and feature maps

A small matrix of numbers called convolutional filter c (also called convolutional

kernel or window) of size width W x height H, where W, H > 0, is applied on the image with

a specified stride S (which is a step size, by which the convolutional filter is shifted), S > 0.

Within it, individual components of the object, such as corners or edges, are recognized.

Usually, multiple filters are applied. When applying the filters, zero-padding P around the

image, which adds zeroes around the input image, can be used, so that there is no loss of

information around the image corners during the computation, P ≥ 0. The output is called

feature map F (also called activation map), which, after being transformed by output

function, transfers to subsequent layers. The equation is following. The indices of rows and

columns of the output feature map are i and j.

𝐹[𝑖, 𝑗] = (𝑧 ∗ 𝑐)[𝑖, 𝑗] = ∑ ∑ 𝑐[𝑚, 𝑛] ∙ 𝑧[𝑖 − 𝑚, 𝑗 − 𝑛] (1)

The dimensions I – the width – and J – the height – of the output feature map can be

counted from the sizes of input M x N, padding P, stride S, and window’s width and height

W, H.

𝐼 = (2)

𝐽 = (3)

 12

The number of parameters in a convolutional layer is

𝑝𝑎𝑟𝑎𝑚𝑠(𝑐𝑜𝑛𝑣) = (𝑓 ∙ 𝐼 ∙ 𝐽 + 1) ∙ 𝑓 (4)

where:

fin = number of input feature maps

I∙J = convolutional window size

fout = number of output feature maps

2.2.2.1.3 Output functions of convolutional layers

There are four main non-linear activation functions used in convolutional layers –

logistic sigmoid, tanh, ReLU and leaky ReLU. Their graphs are visible in Figure 1 below.

Figure 2 – activation functions of convolutional layers: (a) sigmoid (b) tanh (c) ReLU (d) leaky ReLU [26]

Sigmoid or logistic sigmoid function is such function, which is increasing, continuous

and smooth and reaches values between 0 and 1. The main disadvantage of a sigmoid

function is, that its gradient rapidly converges towards 0 (Vanishing Gradient problem). In

keras, sigmoid function is equivalent to two-element softmax (which converts a vector of

values to a probability distribution). [27]

𝑠𝑖𝑔𝑚 (ℎ) = (5)

 13

Another commonly used output function is Hyperbolic Tangent (tanh), also belonging

to sigmoid functions. Tanh is converting the output feature map values to values between -1

and 1.

tanh(ℎ) =
𝟐𝐱

𝟐𝐱
 (6)

One of the most common output functions in a convolutional layer, transforming output

feature maps, is Rectified Linear Unit (ReLU). In contradiction with sigmoid functions, it

prevents gradient vanishing problem, and therefore it is preferred. ReLU is first mentioned in

Fukushima’s Neocognitron [28] and has been regularly used since the publication of

Krizhevsky’s AlexNet [29]. By zeroing out negative values from the output feature maps, it

prevents negative pixels from passing to following layers.

𝑅𝑒𝐿𝑈 (ℎ) = 𝑚𝑎𝑥 (0, ℎ) (7)

However, even ReLU encounters its problem, called “dying ReLU”. A dead ReLU

always outputs 0, reached by using a large negative bias, resulting in the training not

progressing, because the gradient of 0 is also 0. That is why Parametric Rectified Linear

Unit (PReLU) was introduced, assigning a non-zero slope to the negative input values, [30]

simplified into leaky ReLU with a constant value (usually 0.01) instead of a parameter α, the

mathematical definition of PReLU is following.

𝑃𝑅𝑒𝐿𝑈(ℎ) = max(0, ℎ) + 𝛼 ∙ min (0, ℎ) (8)

2.2.2.2 Subsampling layer

Usually following a convolutional, another CNN layer called the subsampling (also

pooling) layer is placed which aggregates neighbouring pixels according to its type, resulting

in a reduction of the input size. Pooling is a sample-based discretisation process, aggregating

the values of adjacent units. We distinguish max pooling (where we take the highest value of

neighbouring pixels and pool them to a downsized matrix, shifting a specified window by a

specified stride) and average pooling (where we take the average value). There are 0

parameters in a pooling layer, as it is only reducing dimension and not learning any new

information.

 14

Figure 3 - Demostration of maxpooling and averagepooling operation [31]

2.2.2.3 Flatten layer

Within a Flatten layer, a one-dimensional vector is created from a multi-dimensional

tensor at the input of the given Flatten layer, with no effect on the batch. In keras, the input to

Flatten layer is usually in the format (batch, channels, height, width), if ordering of the inputs

is “channels_first” or (batch, height, width, channels), if the ordering is “channels_last”. Not

affecting the batch, an example input (None, 1, 10, 64) will result in (None, 640) output. A

Flatten layer also has 0 parameters, as it only changes the shape but perceives the same

information.

2.2.2.4 Dense layers and output functions

A Dense layer is fully connected – all neurons from the Flatten layer are connected to

all neurons in the Dense layer.

The number of parameters of the Dense layer is following.

𝑝𝑎𝑟𝑎𝑚(𝐷𝑒𝑛𝑠𝑒) = (𝑖𝑛 + 1) ∙ 𝑜𝑢𝑡 (9)

where:

in = input

out = number of output neurons

 15

Output function of Dense layers depend on the task, which the CNN solves. The last

but one hidden Dense layer is logistical sigmoid in case of binary classification and logistical

sigmoid or tanh in case of multi-class classification. In the last Dense layer, in the case of

binary classification the output neurons will be logistical sigmoid. In case of a multi-class

classification, logistical sigmoid (in case of non-exclusive classification) or softmax (in case

of exclusive classification) is chosen for output neurons.

2.2.3 Training Convolutional Neural Networks

Modern Convolutional Neural Networks are trained with error backpropagation

algorithm, which is slightly different for each error function. It was originally derived for the

use with Sum of Square Errors ESSE loss function and then, similarly derived for Cross-

entropy ECE. ESSE is used for regression, therefore it is not suitable for measuring error of a

classification network. For binary classification with one output neuron, we minimise the

Binary Cross-entropy error (loss) function binary ECE and for multi-class classification, we

minimise Categorical Cross-entropy categorical ECE. Cross-entropy is counted as follows.

𝑏𝑖𝑛𝑎𝑟𝑦 𝐸 = − ∑ (𝑑 ∙ 𝑙𝑛𝑦 + (1 − 𝑑) ∙ ln(1 − 𝑦)) (10)

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐸 = − ∑ ∑ 𝑑 ∙ 𝑙𝑛𝑦 (11)

where:

yi = output of neuron with respective index i

di = i-th component of the respective category (either 0 or 1)

m = number of categories

The binary ECE back-propagation is counted as follows. [32] At first, the total error

across all neurons is counted as the sum of errors of outputs as in (10). Considering the

logistic output function yi in a layer

𝑦 = (12)

where:

𝑠 = ∑ ℎ 𝑤 (13)

where:

 16

hj = the postsynaptic potential of respective neuron

wji = the weight of respective connection

si = weighted sums of the hidden layer activations

we compute the gradient (partial derivation) with respect to the weights connecting

hidden neurons in the last layer, using chain rule.

𝑔𝑟𝑎𝑑 𝐸 = = =
∙()

∙ 𝑦 (1 − 𝑦) ∙ ℎ = (𝑦 − 𝑑) ∙ ℎ (14)

In hidden layers, we also compute components of gradient and then we recursively

propagate the error within the network, from the last layer to the first, and update the weight

vector wn accordingly. [22]

𝑤 = 𝑤 − 𝜀 ∙ 𝑔𝑟𝑎𝑑 𝐸 + 𝜇 ∙ 𝑤 (15)

where:

ε > 0 = parameter controlling the step size

μ > 0 = parameter controlling the speed and stability of algorithm (momentum)

When the termination condition is met, the training is completed (it can be a selected

number of epochs or not getting better results for a specified number of epochs).

2.2.4 Development of CNNs

The first self-organised (unsupervised – learning without labelled data) predecessor of

CNN using local connectivity was called Neocognitron. It was published in Biological

Cybernetics by Kunihiko Fukushima in the 1980’s. It was named after extending “cognitron”,

a model proposed by the author in earlier years, based on Hubel and Wiesel model.

Neocognitron is capable of recognising patterns according to the geometrical similarity

(Gestalt) independent of their position. The main benefit over previous Neural Network

models was the ability not to be affected by the shifting or small distortion of an object within

an image. [28]

In 1998, Yann LeCun et al. published a CNN trained with the gradient back-

propagation algorithm, called LeNet, and applied it to the task of recognising handwritten

characters almost without pre-processing the images; this time, it involved supervised

 17

learning (using labelled data). In the same paper, they presented a new learning paradigm,

Graph Transformer Network (GTN) for Optical Character Recognition (OCR) eliminating the

deficiencies of using fixed-size vectors for the set of parameters and the state information

communicated between the modules. [23] It was a generalisation and an extension of Hidden

Markov Models.

Figure 4- LeNet-5 used for recognition of handwritten character (32 x 32 pixels), Source: [23]

In 2009, a milestone was reached, when a database of about 3.2 million hand-annotated

images called ImageNet was published in IEEE, meant for the use of image classification,

object recognition and automatic object clustering, and since 2012, there were ImageNet

classification contests. [20] In 2012, AlexNet was presented as a winner of the ImageNet

challenge, with 17% error rate. [29] It has a quite simple architecture, consisting of 5

convolutional, 3 pooling and 3 Dense layers, utilising ReLU output function in convolutional

layers. The same architecture was published under the name ZFNet in 2013, pointing out the

high impact of tuning hyperparameters. It won the contest ImageNet Large Scale Visual

Recognition Challenge 2013, dropping the error to 11 %. [33]

One of the 2014’s ImageNet contestants was a much deeper (11, 13, 16 and even 19

layers) Visual Geometry Group Network (VGGNet), presented in ICLR 2015 conference.

[34] Another contestant and the winner was GoogLeNet – an Inception network. Google

came up with its own complex Neural Network design, introducing a combination of

repeating Inception modules (Figure 5). There were two versions of inception modules, a

naïve version and with dimension reduction Another difference from other networks was also

the omission of densely connected layers. [35]

 18

Figure 5 - Inception modules presented in GoogLeNet [35]

Very deep sequential neural networks encounter the Vanishing Gradient problem,

because, when training using gradient-based learning algorithms, the weights update

according to the partial derivate of error function, and if the derivate is too small, the weights

practically don’t update and there’s hardly any training going on (the weights stay on similar

level to the zero or random initialisation). [36] One of the first networks to try solving this

problem were Residual Networks (ResNet), winning the ImageNet challenge in 2015,

published in 2016 IEEE Conference on Computer Vision and Pattern Recognition. [37]

Residual Networks can be called an updated version of VGGNet [34], combining residual

blocks. In residual blocks, there is a skip connection – called identity connections – to the end

of the block instead of just connecting to the subsequent layer. This helps the model leave out

the layers, which cause a Vanishing Gradient problem.

 19

Figure 6 - Residual block [37]

In 2016, an upgraded version of GoogLeNet [35] was proposed by Francois Chollet

(author of Keras) and published in IEEE in 2017, it was called Xception [38], merging the

ideas of GoogLeNet and ResNet, replacing the inception blocks with depth-wise separable

convolutional layers. The difference between standard convolutional layers and depth-wise

separable convolutional layers is, that standard layers use convolutional filters to capture both

spatial (such as line, edge, oval) and cross-channel patterns (combinations like ear, nose,

mouth, creating a face) at once, while separable layers model each pattern category

separately.

A year later, in 2018, SENet was created by Jie Hu et al. [39]. It consists of Squeeze-

and-Excitation (SE) blocks, Inception and Residual units. SENets, at the cost of

computational complexity, increase the state of art performance of CNN on different tasks

and datasets. Each SE block is, in fact, a small CNN, which analyses the output of the unit to

which it is attached, not looking for spatial patterns, but focusing on the depth dimension

(each block has 3 layers – Global average pooling layer, Dense layer with ReLU activation

and Dense layer with Sigmoid activation). Then, it recalibrates the feature maps (reduces the

irrelevant ones and boosts the relevant ones) in accordance with a recalibration vector.

In 2019, EfficientNet was published by Tan et al. [40]. They presented the concept of

scaling up MobileNets and ResNets. The compound scaling method further improved the

accuracy on ImageNet by up to 2.5 % with fewer parameters.

2.2.5 Classification on mobile devices

With the development of smart phones, tablets and other handheld computers used in

the industry such as in autonomous driving cars or autopilots, which have limited

 20

computational capacity, arose the need to create networks with a lower number of parameters

while keeping the target accuracy. These networks are called lightweight [41] networks.

 SqueezeNet, limiting the size of the AlexNet model from about 240 MB to less than 7

MB was presented in 2016 by Iandola et al. [42] To achieve a small number of parameters in

the CNN, they replaced some commonly used 3x3 convolution filters with 1x1 filters,

limiting the parameters 9 times, while keeping the same number of filters. They also

decreased the number of input channels to 3x3 using the Squeeze layers and used delayed

subsampling (pooling). By delaying the subsampling to later layers while limiting the

parameters with decreasing the filter size, they kept the accuracy high. In the same paper,

they presented Fire modules, utilising Squeeze convolutional layers with 1x1 filters followed

by an Expand layer with 1x1 and 3x3 convolutional filters. They presented three types of

architectures of the final SqueezeNet, the simplest architecture consists of 1 Convolutional

layer at the start, 8 Fire modules, 1 Convolutional layer at the end followed by

AveragePooling and a Dense layer with softmax activation.

The MobileNet family was presented in 2017 by Howard et al. [43]. It was developed,

as the name suggest, for the use in mobile phones as well as in embedded vision applications,

aiming to reach a high speed while keeping the model size small. Howard et al. suggests

using two new hyperparameters (width multiplier and resolution multiplier), that trade-off

between accuracy and latency of the models. The architecture consists of Depthwise

Separable Convolutional layers, which are a form of factorized standard convolutions, Batch

normalisation layers, ReLU and a 1x1 pointwise Convolutional layers. MobileNet has

slightly lower accuracy on standard ImageNet dataset than VGG16 [34] or GoogLeNet

(Inception) [35], but is very fast.

In 2018, ShuffleNet was published by Zhang et al [44]. They grouped feature maps and

performed the convolutions on groups, reducing the computational cost. It is called

ShuffleNet as it shuffles the channels for each feature map group, to distribute information

across channels, consists of a Convolutional layer, 3 Shuffle blocks, global pooling and

Dense layer. The channel shuffle is differentiable, which means it can be used in end-to-end

training. The network was 18 times faster than SqueezeNet.

More techniques to reduce the number of parameters were presented in a network

family called ShiftNet by Wu et al., built from shift-based modules [45]. The main goal was

 21

to limit the number of floating-point operations (FLOPs). They came up with a FLOP-free

shift operation with zero parameters as an alternative to depth-wise 3x3 convolutions. While

keeping the same accuracy as SqueezeNet, they limited the model size to about two thirds.

FE-Net introduced by Chen et al. [46] limits the shift operations presented in ShiftNet

to only a few feature maps, in Sparse Shift Layers (SSL). The team claimed, that ShuffleNet

and MobileNet are inefficient in practice because they occupy about 80 % of GPU runtime,

which mismatches the theoretical FLOPs, and suggested a solution to it by using blocks of

1x1 Convolutional layers with a limited number of shifts, reached by penalising the shift

operation during optimisation with the use of quantisation-aware shift learning method. They

claim and prove that not all shift operations are necessary and slow down the computation a

lot. While leaving out some of the shifts, the accuracy drops a little, but the speed is increased

significantly.

In 2020, and re-printed in Springer in 2022, EfficientNet-eLite was presented by Wang

et al. [47], based on Tan’s EfficientNet [40]. They introduced Network Candidate Search

(NCS), which measures the different models’ resource usage and performance and suggests

downscaling the EfficientNet. They reached an even lower number of parameters and a

slightly higher accuracy in their new network.

2.2.6 Latest research

The latest research on CNNs is, on top of building architectures (still utilising

suggested blocks from previous research), increasing speed, limiting model size and tuning

hyperparameters, focused mainly on different ways to find and classify objects within an

image, to identify relevant regions of interests and to find the best approach to creating the

most fitting bounding boxes and segmentation, which opens a whole another chapter of

computer vision tasks.

2.3 Computer vision tasks

Computer vision utilises CNNs and aims to make computer systems perceivable to the

visual world by recognising the meaning of pixels (i.e., objects) in pictures. [41] There are

three main tasks of computer vision, which can be represented by questions about the objects

in a visual scene:

 22

 Classification (what)

 Object detection (where)

 Scene understanding – segmentation (how)

In the early days of computer vision, manual feature extraction was combined with

classic machine learning techniques. However, this has prevented computers from

recognising more complex objects that have many shapes and colours (cats, dogs, …).

Nowadays, in some tasks, AI techniques are better performing than humans, as automatic

feature extraction is incorporated in convolutional layers of CNNs, and manual feature

extraction only serves to reduce the dimensionality of input data or is used in different tasks,

which belong to unsupervised learning, such as clustering, autoencoders or bag-of-words

technique in Natural Language Processing (NLP).

2.4 Classification

Classification is a process of computing a probability vector of each class, already

described in Chapter 2.2.3. The training datasets consist of tuples (image, class). In

classification networks, the number of neurons in the last Dense layer corresponds with the

number of object classes, and we use the softmax function as activation and the error function

cross-entropy. (10) (11) In the 1990s, with the rise of Artificial Neural Networks, kernel

methods began to emerge. [48] In 1995, Vapnik and Cortes published the Support Vector

Machine (SVM) classification method. [49] Revolution in approach to classification has been

reached since ImageNet contests, launching the rapid development of different neural

network architectures, tuning hyperparameters and creating special networks for individual

tasks. Nowadays, the ImageNet database contains over 14 million images.

2.4.1 Determining dataset size

The fundamental part of each practical research is data in suitable quality and quantity.

As stated in Cho Junghwan’s research about classification accuracy of Computer

Tomography (CT) scans of different body parts [50], to get an approximately 97.25 %

classification accuracy, we need about 1000 images per class, or to get 99.5 % accuracy, it is

more than 4000, as visible in Figure 7. The dataset size of course also depends on the

complexity of classified data – the more complex data, the more we need.

 23

Figure 7 - Number of data needed per class for a high classification accuracy [50]

2.4.2 Classifier success measures

The generalisation capability, i.e., the ability to correctly classify new inputs that did

not appear in the training set, can be measured by standard metrics for each classifier, both

binary and multi-class.

2.4.2.1 Confusion matrix

These measures are calculated from four basic values, written in a confusion matrix. A

binary confusion matrix of a binary classifier, deciding, whether the image contains the

object of interest or not, consists of:

 true positives TP, which are values classified as true and are true in real

 true negatives TN, which are values classified as false and are false in real

 false positives FP, which are values classified as true and are false in real

 false negatives FN, which are values classified as false and are true in real

 24

 Predicted Class

Real class

 True False

True TP FN

False FP TN

Table 2 - Binary confusion matrix

A multi-class confusion matrix for 4 disjunctive classes is following:

actual / predicted class 1 class 2 class 3 class 4

class 1 TP for class 1
FN for class 1,

FP for class 2

FN for class 1,

FP for class 3

FN for class 1,

FP for class 4

class 2
FN for class 2,

FP for class 1
TP for class 2

FN for class 2,

FP for class 3

FN for class 2,

FP for class 4

class 3
FN for class 3,

FP for class 1

FN for class 3,

FP for class 2
TP for class 3

FN for class 3,

FP for class 4

class 4
FN for class 4,

FP for class 1

FN for class 4,

FP for class 2

FN for class 4,

FP for class 3
TP for class 4

Table 3 - 4-class confusion matrix

The values of TPi, FNi and FPi can be obtained from the multi-class confusion matrix.

FNi is obtained as the sum of the FNi values for the corresponding class in all columns

except the element on the diagonal of the confusion matrix. Thus, for class 1, it is the sum of

the values of the 2nd, 3rd, and 4th columns.

FPi is obtained as the sum of the columns of the corresponding class, again excluding

the element on the diagonal.

TPi is then the corresponding element on the diagonal.

 25

TNi is mathematically expressible as

𝑇𝑁 = 𝑁 − (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (16)

where Ni = the number of elements of the i-th category

2.4.2.2 Measures derived from confusion matrix

There are multiple measures derived from the confusion matrix, namely correctness

(accuracy) c, error e, precision p, recall (sensitivity) r, F-measure F. In case of binary

classification, they are calculated as follows.

𝑐 = (17)

𝑒 = 1 − 𝑐 (18)

𝑝 = (19)

𝑟 = (20)

𝐹 =
⋅(⋅)

 (21)

where:

𝑁 = 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 (22)

If 𝑠 = 𝑝, then 𝐹 = 𝑠 = 𝑝

In case of disjunctive multi-class classification, for each category 𝑖 = 1, … . , 𝐶, where

𝐶 = number of categories, a binary decision is made, whether the object belongs to the

category 𝑖 or it belongs to any other category 𝑗 ≠ 𝑖. Then, the evaluating measures are

counted as follows and the overall parameters of precision p, recall r and F-score F are their

arithmetic means.

𝑐 =
∑ ∑

 (23)

𝑝 = (24)

 26

𝑟 = (25)

𝐹 =
⋅(⋅)

 (26)

2.5 Object Detection

Object detection [51, pp. 483-488] is a combination of two tasks – classification and

localisation. Localisation can be described as a regression task, predicting bounding boxes

around the desired object in different formats. The dataset then consists of tuples in form of

(image, (class, bounding_box). In deep learning projects using object detection, the hardest

and most time and resource-costly problem is getting the labels, as it has to be hand-made.

At the start, object detection was done by a sliding window detection. The original

approach was to train a binary classifier, deciding, whether the object of interest is in the

given window of cells in the grid, to which the image was divided. Just like in the calculation

of convolutions, the window shifted from left to right, top to bottom. For each combination of

cells in a given grid, it calculated whether there was the object of interest in that window,

along with its probability. When this window shifted by one step, the classifier detected some

of the cells more than once. When the probabilities were counted for a small window, the

window size increased and slid again across all regions. Due to running through the CNN

many times, this approach is very slow. It also needs post-processing, as the same objects are

detected multiple times. A common post-processing technique, deleting bounding boxes, that

are overlapping each other, keeping only the one with the highest presence of the object –

“objectness”, is called non-max suppression.

In 2014, Fully Convolutional Networks (FCN) were presented by Long et al. [52]. They

transferred at that time contemporary architectures – AlexNet [29], VGG Net [34] and

GoogLeNet [35] to classification and pixel-to-pixel classification (i.e., segmentation) and

also presented a new architecture. By replacing dense layers with convolutional layers, the

image only has to be processed once, significantly speeding up the object detection. One of

the generally used architectures utilising this principle is YOLO (You Only Look Once) [53],

which is described in more detail in the chapter One stage detection algorithms.

 27

2.5.1 Traditional image processing techniques vs Deep Learning

A study was published by HCL Tech [54] about the comparison of Deep Learning and

traditional image processing (TIP) techniques. TIP like scale-invariant feature transform

(SIFT) [55] , Histograms of oriented gradients (HOG) [56] and other algorithms usually reach

lower accuracy in all computer vision areas – classification, object detection and

segmentation, and require more fine-tuning and expert analysis. These methods are based on

block-wise orientation histograms. The traditional techniques are more domain-specific and

less flexible, however, they are still relevant in some cases. They do not need large datasets, a

high computing power, the annotation time shortens significantly, they have a high domain

expertise and algorithm transparency. However, feature engineering is required. For some

applications like 3D modelling, noise reduction, image registration and data compression,

traditional models are still suitable. According to Boesch [57], traditional image processing in

OpenCV don’t require annotated images. On the contrary, deep learning caused, that in some

cases, machine perform better than humans. In comparison with Deep Learning methods, TIP

have been recently used sparsely in contemporary image processing research.

2.5.2 Bounding box formats

There are many different object detection algorithms, which accept various types of

bounding boxes. The most commonly used are PASCAL VOC (.xml), COCO (.json),

Tensorflow Object Detection (.csv) and YOLO DarkNet (.txt). [58] Each of these types

describe the boxes in another way.

2.5.2.1 PASCAL VOC bounding boxes

The name comes from an abbreviation of “Pattern Analysis, Statistical Modelling and

Computational Learning Visual Object Challenge”. PASCAL VOC bounding boxes are

saved as a .xml file and are presented as a set of absolute coordinates xmin, xmax, ymin, ymax

closed in <bndbox> tags. Each coordinate set is related to one object with a class name and

there is one .xml file for each image in the dataset, which contains all bounding boxes in the

given image.

 28

2.5.2.2 COCO Json bounding boxes

COCO Json is named after the commonly used dataset COCO - Common Objects in

Context, which contains approximately 328000 images in 91 classes, with about 2.5 million

labelled objects. There is one .json file for the whole dataset, which includes the list of

categories, image IDs, object categories and the bounding boxes are saved as an array of four

absolute numerical values in “bbox”: [x-coordinate of the upper left corner, y-coordinate of

the upper left corner, width of object, height of object].

2.5.2.3 Tensorflow Object Detection bounding boxes

When using Tensorflow Object Detection API, a TF Record file is needed to train the

detector network. It has a binary, human non-readable format, therefore it is generated using

a script from a .csv file. Each .csv file contains a table describing the whole dataset – one row

per image – with the following columns: filename, width, height, class name, xmin, xmax, ymin,

ymax. The coordinates are also absolute values.

2.5.2.4 YOLO DarkNet bounding boxes

YOLO Darknet bounding boxes work with relative values of coordinates (values of the

centre of the object and dimensions of the object are normalised between 0 and 1) and are

saved in a .txt file. For each image in a dataset, there is one .txt file, containing one bounding

box on each line. The values are separated with blank spaces and come in this order:

class_index xcentre ycentre width height. As images are resized to a square of fixed size, working

with relative coordinates has many advantages. When detecting an object and saving labels in

YOLO format, it is possible to retrieve information from the original, non-resized image.

2.5.3 Latest Object detection algorithms

Algorithms implementing object detection are based on two approaches. [59] Two-

stage detection and one-stage detection algorithms. Generally, it can be said, that one-stage

detectors are faster and structurally simpler, and two-stage detectors have a higher

recognition and localisation accuracy but are harder to implement. Therefore, each of them is

suitable for different practical applications.

 29

2.5.3.1 Two-Stage Detection

These object detection algorithms are divided in two stages. The first stage is predicting

candidate bounding boxes, using traditional Computer Vision methods or Deep Learning,

while the second one is classification with bounding box regression. It means, that two-stage

detectors first find a Region of Interest (RoI), then crop the image and classify the cropped

image. Because the cropping operation is non-differentiable, such detectors are usually not

end-to-end trainable (all parameters of the model cannot be simultaneously trained for one

loss function). There are various algorithms using different approach to this two-stage

detecting, the most popular are Regions with CNN features (R-CNN), Fast R-CNN, Faster R-

CNN, Spatial Pyramid Pooling Network (SPPNet), Feature Pyramid Networks (FPN),

Detecto, combining previous approaches, and Gated Recurrent Convolutional Neural

Network (G-RCNN).

2.5.3.1.1 R-CNN, Fast R-CNN, Faster R-CNN

One of the prominent two-stage detectors is the R-CNN Family. All versions of R-CNN

use PASCAL VOC bounding boxes

In 2014, the first version of R-CNN was presented by Girshick et al. [60]. Due to large

receptive fields and strides, Girshick decided not to use sliding-window technique for object

localisation and introduced recognition using regions instead. R-CNN consists of three steps

– region proposals, feature extraction and classification. Approximately 2000 regions, which

are category independent, are proposed during prediction, and by using CNN, a fixed-length

feature vector from each proposal is extracted and after that, each region is classified with a

SVM, which is category specific.

As the training of R-CNN is a multi-stage pipeline, which is expensive in memory and

time and the detection is quite slow, a year later, Girshick published an improved version,

213 times faster at testing and 9 times faster at training, called Fast R-CNN [61]. He

introduced multi-task loss and a single-stage multi-task training, which saved time and space,

as it left out the need of feature caching. He also replaced a SVM classifier with a softmax

CNN classifier, which also increased the speed and performance.

 30

In 2017, Ren et al. followed Girshick’s research and introduced Faster R-CNN [62]. He

focused on speeding up the region proposal step, as in Fast R-CNN, it consumed same or

even more time than the detection network. They proposed an end-to-end trainable Region

Proposal Network (RPN), which shared layers with the object detection networks and

significantly speeded up the testing time, getting close to real time with 10 ms per image.

They also presented, at that time novel, anchor boxes, they served as a reference when using

multiple aspect ratios and scales of images.

2.5.3.1.2 Spatial Pyramid Pooling Network (SPPNet)

Spatial Pyramid Pooling Network – the SPPNet – comes from the very author of

Detectron, Res-Net and Mask R-CNN – Kaiming He – et al. [63]. The Spatial Pyramid

Pooling method does not require a fixed-size input that is normally reached by resizing or

changing the original image – cropping or warping (a combination of cropping and stretching

into a square). Making such manipulations unnecessary is a convenience when using different

sizes, scales and aspect ratios of images in datasets. The reason for using fixed-size images is

that the fully connected (Dense) layers require a fixed-length input by definition.

As convolutional and pooling layers work on a sliding-window basis and can work with

any size and shape of input, the authors put a newly introduced SPP layer, which creates a

fixed-size output from a variable-size input, on top of the last convolutional layer in the

network before the classifiers (SVM or softmax - Dense layers).

Getting a fixed-size vector from a variable-size input can be reached by using two

approaches – the first one is a vector space model Bag-of-Words (BoW) [64], which maps the

visual features and their number occurrences, making it a fixed-size vector (i.e.: {eyes: 8,

legs: 8, torso: 1, ears: 0, nose: 0, claws:2, tail: 0} – a simplified example of animal features,

in this case, representing a spider; in real use, the features are extracted automatically by the

CNN). The other option is using a BoW improvement – Spatial Pyramid Pooling, which

maintains spatial information by pooling in local spatial bins, regardless of the image site.

SPPNet had good results on ImageNet’s contest ILSVRC 2014 and was ranked #2 in

object detection and #3 in classification.

2.5.3.1.3 Feature Pyramid Network (FPN)

 31

Feature Pyramid Networks (FPN) were published in 2016 [65]. They follow up on the

SPPNet, with a significant improvement in generic feature extraction. In combination with R-

CNN, it surpassed the object detection results of COCO dataset. This is also one of the

flagship networks used for generating segmentation proposals, following the DeepMask [66]

framework.

2.5.3.1.4 Detecto – ResNet, R-CNN and FPN

Detecto [67] is Python framework released in 2019, which combines Faster R-CNN.

ResNet-50 and FPN. As a callable Python package, it is easy to implement on custom data,

with a very high precision in comparison to other object detection algorithms. It requires

bounding boxes in PASCAL VOC format and uses PyTorch instead of the usual TensorFlow.

2.5.3.1.5 Gated Recurrent Convolutional Neural Network G-RCNN

Wang et al. released G-RCNN in 2022 [68]. The principle stands in introducing gates

controlling the amount of information on input of a recurrent CNN. They follow-up on the

research of CNN with Adaptive Receptive Field, which works with deformable convolutions,

and combine it with skip connections introduced in ResNet [37] and recurrent connections

between neurons in the same layer. These networks are used for object recognition

(classification), but also scene text recognition (OCR) and object detection.

2.5.3.2 One-Stage Detection

One-stage detection algorithms only predict bounding boxes and leave out predicting

RoI. Because of that, it leverages anchors and a grid box to localise the object and constraint

its shape. The three most popular one-stage detectors are YOLO, SSD and RetinaNet. The

disadvantage of such detectors is a fixed-size input.

2.5.3.2.1 YOLO

YOLO is a famous family of networks with a controversial history, which belongs to

convolutional networks designed to classify and detect objects in images. The first version of

YOLO was proposed by Redmond et al. in 2015 [53] as YOLOv1, improved in 2016 [69] as

YOLOv2 and subsequently in 2018 [70] as YOLOv3, then he left the research due to

potential misuse and various teams came up with further versions. At the time (as in the

 32

beginning of 2023), 9 versions are available. Older versions of YOLO use TFRecords to load

datasets, and later versions (YOLOv5+) require YOLO bounding boxes

At its release time, YOLOv1 [53] was revolutionary, because it was so fast it could run

in real time (over 20 FPS) in a video; it exceeded the speed of Fast R-CNN with a 57.2%

mAP (mean Average Precision) on VOC 2007 dataset, however, when comparing the

prediction on one image, there was a significant number of localisation errors. Redmond and

his team’s approach differed from other detectors, as they framed object detection as a

regression problem with regards to a grid of cells instead of using a sliding window classifier

(which was a common approach before 2014). However, this approach also comes with its

downsides – all images are resized to 448 x 448 pixels, then a single convolutional network is

run to detect object with regards to the grid, and in order to avoid multiple detections of one

object and remove overlapping bounding boxes, non-max suppression is applied. However,

each grid cell can only detect two object and only one class (making it 98 objects in total),

therefore, YOLOv1 struggles with images containing larger groups of small objects (i.e.,

flocks of birds). YOLOv1’s architecture consists of 24 Convolutional layers, 4 MaxPooling

layers and 2 Dense layers. The whole prediction is encoded as a tensor 𝑆 × 𝑆 × (𝐵 ∗ 5 + 𝐶),

where 𝑆 = height and width of the image, 𝐵 = number of bounding boxes, 𝐶 = number of

classes.

YOLOv2 [69], or YOLO9000, named after the capability of detecting over 9000

classes, reached 76.8 % mAP on VOC 2007 (containing 20 classes) in 67 FPS. With 156

classes, the mAP drops to 16, dropping even more when more classes are used. In

comparison with YOLOv1, several changes were made. The input image size shrunk from

448 x 448 to 416 x 416 and there was a change in the architecture – the base of YOLOv2 is a

newly proposed Darknet-19, which has 19 Convolutional layers and 5 MaxPooling layers,

using 3x3 convolutions as well as 1x1 in order to compress the feature representations. By

removing the Dense layers, YOLOv2 had to introduce dimension clusters as anchor boxes to

predict bounding boxes instead of a static cell grid. For each anchor box, the class and

objectness is predicted. Although using anchor boxes allows more objects to be detected

(over a thousand within one image), the prediction accuracy lowered a bit. An average recall

of public datasets (like VOC, COCO or ImageNet) reached about 81 %, which is enough for

analysing a video, for example a surveillance camera, but not enough for precise detection

 33

(like in OCR). In the same paper, the system called WordTree is introduced, which is used to

unite the labels from different sources (COCO and ImageNet at once).

In an unusually informal technical report presenting version 3 [70], Joseph Redmond

and his teacher Ali Farhadi presented more improvements in YOLO. Darknet-19 was

replaced by Darknet-53 and detecting small objects improved, however, detecting large

objects deteriorated. The author (who himself was funded by Google and the Office of Naval

Research) was questioning the use of fast and precise object detectors – as most such research

was funded by the military or big corporations like Google and Facebook – Are the detectors

going to be used to harvest personal data and sell it to other subjects? Are they going to be

used by the army to train automatic targeting systems in order to kill a lot of people?

Redmond then stopped developing YOLO (and computer vision research altogether) in fear

of the potential misuse, however, other teams took over.

After 2 years of inactivity on YOLO, much to Redmond’s dismay, it was taken over by

Alexey Bochkovskyi et al. in 2020 and YOLOv4 was published [71]. Some of the changes

are the input image size, which has grown to 512 x 512, anchor optimisation, mosaic data

augmentation (proposed by Glen Jocher), cross mini-batch normalisation, dynamic mini-

batch size, IoU threshold, class label smoothing, and training tuning – genetic algorithms

were used in order to select the optimal hyperparameters during learning and different loss

algorithms were used for bounding box regression. These changes caused an improvement

both in speed and in accuracy.

Also in 2020, Glen Jocher released YOLOv5 [72] with some differences from

YOLOv4, like automatic learning of bounding box anchors and an almost 10 times lower

model size, making it a lightweight model suitable for mobile real-time applications,

however, only as a code (which has been continually improved ever since), and by now (as of

2023), the paper was not presented. Many people had a problem with Jocher naming his

algorithm YOLOv5, as it was supposedly not novel enough and he is not the original author

of YOLO. He has made alliance with Joseph Nelso, the CEO of Roboflow [58], which is an

online platform for annotation, augmentation and also training different deep learning

projects, and since 2022. YOLOv5 [72] can be also used for segmentation [73], if trained on

images with polygon annotations instead of standard rectangular bounding boxes.

 34

YOLOR (You Only Lear One Representation) followed the YOLO line in 2021 [74].

Published by Wang et al., they proposed a network, which integrates both types of knowledge

- implicit (which has nothing to do with the observation – subconscious learning) and explicit

(directly corresponding with the observation – conscious learning). Such network is capable

of general representation as well as sub-representations for various tasks, as it is a multiple-

output network with a single input. Some of the tasks are questions like what the object is,

where it is, what colour it has etc.

Along with YOLOR, YOLOX surpassing all previous YOLO versions was published in

the same year by Ge et al. from Megvii Technology. [75] In YOLOX, there are no anchors,

as in order to get optimal anchors, cluster analysis has to be performed before training, and

the objective was to speed up the process, the predictions look for a grid top, object width and

height. YOLOX has several versions with different sizes. One version is based on Darknet53,

then there is a L-version, Tiny and Nano with only 0.91 M parameters. Also an advanced

assignment of labels called SimOTA is presented in this paper; it calculates pair-wise

matching degree, which is represented by quality or cost for each “prediction – grid top” –

pair, then it selects best predictions and assigns the grids of positive predictions as positive

and the rest as negatives.

In 2022, YOLOv7 was published by YOLOR’s authors Wang et al. [76]. It does not

have a single specific architecture, but rather, it is more of a structure as it uses a novel model

scaling method that scales concatenation-based ELAN and residual-based CSPDarknet

models. In order to assign labels dynamically, they used a set of methods that were bag-of-

freebies to improve the model's accuracy and speed.

YOLOv6 was released a few months after YOLOv7 by Li et al. [77], even more

improving the accuracy and speed by using four main techniques – presenting different scales

of models, a self-distillation strategy on classification and regression, a broad verification of

advanced detection techniques and reforming the quantisation scheme using a RepOptimizer

and a channel-wise distillation. YOLOv8 [78] was also released on GitHub by Ultralytics at

the beginning of 2023 (without the paper yet). YOLOv8 is able to work with bigger square

images in real-time, by default, 640 x 640 pixels with almost 54 mAP. YOLOv9, developed

by Chien-Yao Wang et al., followed in February 2024. [79] They built a new YOLO on a

proposed Generalized Efficient Layer Aggregation Network (GELAN) architecture.

 35

2.5.3.2.2 SSD – Single Shot Detector

Presented by Liu et al. in 2016 [80], the Single Shot MultiBox Detector (SSD) detects

objects using only one deep Convolutional Neural Network. It creates default bounding boxes

and generates scores for the presence of each category of objects in each default bounding

box. It also adapts the box to match the shape of the given object better. Although the SSD is

a relatively simple algorithm, it reaches a sufficient accuracy on small images and

outperforms Faster R-CNN in speed (as most one-shot detectors do with two-stage detectors).

As Liu criticised the two-stage detectors for being too slow for real-time applications, he

suggested SSD with a feed-forward CNN, VGG-16 base, which makes it even faster than

YOLO. The loss of the model is counted as a weighted sum between the localisation losses.

2.5.3.2.3 RetinaNet

In 2017, Lin et al. released another one-stage detector, called RetinaNet [81]. They

came up with a novel loss, addressing the problem of one-stage detectors with class-

imbalanced datasets. It is called the focal loss, which extends the cross-entropy loss with a

modulating factor (1 − 𝑝) utilising a tuneable focusing parameter γ ≥ 0, with an

experimentally reached optimal value of 2, focusing on learning on hard negative examples.

The modulating factor extends the range in which a prediction receives a low loss. The

architecture of RetinaNet consists of an FPN backbone and a feedforward ResNet,

minimising focal loss during training.

2.5.3.2.4 SqueezeDet

SqueezeDet [82] is a Fully Convolutional Network (FCN) that was released by the Shift

[46] author team with the aim of use in autonomous driving. Inspired by YOLO but with a

smaller (and scalable) model size, the SqueezeDet team adopts a single-stage detection

pipeline using anchors. However, they use only convolutional layers not just to extract

feature maps but also for a novel output layer called ConvDet, which predicts bounding

boxes. The coordinates of bounding boxes are counted as a regression with regard to the

relative coordinates of anchors.

 36

2.5.4 Comparing object detection algorithms

2.5.4.1 Evaluation options

In object detection algorithms, we usually evaluate automatically on labelled test data.

It is not possible to simply count TP, FN, FP, and TN as it is done in classification. [83]

For this reason, the most common metric to measure how well the model predicts the

bounding boxes is Intersection over Union (IoU). It is the area of intersection of real and

predicted bounding boxes, divided by their union. The higher the IoU, the more precise the

detection is. We can find it in tf.keras.metrics.MeanIoU class. [84]

From IoU, we can calculate TP, FN, FP, and TN. We establish an IoU threshold, which

is considered sufficient.

If 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, we mark the box as TP. All boxes without intersections are

marked as FP, and boxes with low IoU are marked as FN. Then, we construct the confusion

matrix just like with classification.

In some cases where we don’t have the ground truth labels available, it is inconvenient

to use this method; therefore, in the comments section, a method is suggested.

2.6 Segmentation

Segmentation is the most complex computer vision task of all three. It can be explained

as pixel-level classification. By clustering pixels belonging to a selected class, the algorithm

shows, where the exact object boundaries are located. There are two types of segmentation:

semantic segmentation, which clusters all pixels of objects belonging to the same class, even

if they overlap, and instance segmentation, which identifies each object instance separately,

even if they belong to the same class. Instance segmentation decides the outlines of an

instance in accordance with its shape, texture, brightness, and colour. [85]

 37

Figure 8- Computer vision tasks: (a) image classification, (b) object detection, (c) semantic segmentation (d) instance

segmentation. [86]

2.6.1 Mathematical methods used for segmentation

There are two main strategies in image segmentation:

 similarity – this approach is based on thresholding, comparing the similarity of

neighbouring pixels

 discontinuity – this method incorporates algorithms of line, point and edge

detection

Various mathematical techniques are available to segment the content of an image;

however, due to the focus of this dissertation (neural networks), these methods are not

described in detail.

Methods such as graph cuts, pseudo-Boolean programming, and fast optimisation [87]

are used to create a Markov Random Field (MRF) model estimation, which are undirected

graphs.

 38

Another one is constructing a Bayesian network (multiple variants of Directed Acyclic

Graphs – DAGs). Baxter et al. [88] described a Directed Acyclic Graph Max-Flow

(DAGMF) image segmentation, capable of segmenting a wide variety of input images from

different areas. This approach orders labels into a set of continuous spaces, marking each

pixel in the input image with a category.

2.6.2 Object detection algorithms used for segmentation

2.6.2.1 Evolution of semantic segmentation

In 2017, Garcia-Garcia et al. presented a review of semantic segmentation done with

deep learning techniques [86]. In semantic segmentation, each pixel in the picture is

classified. Different objects of the same class are marked the same. Regardless of whether

there is one or more objects of the same class, they are not distinguished.

Instance segmentation is, however, more challenging, as it requires precisely

segmenting each instance while correctly detecting all objects. It combines object detection

and semantic segmentation within each bounding box separately.

2.6.2.2 Early approaches of instance segmentation

The origin of segmentation was a previously mentioned Fully Convolutional Network

by Long et al. [52] Many instance segmentation papers are based on segment proposals.

Earlier proposals from around 2013 were based on bottom-up segments [89] [90], DeepMask

by Chen et al. from 2016 [66] and research following it by Pinheiro et al. [91] is based on

Fast R-CNN and segment candidate proposals, where the segmentation precedes object

recognition, making it less accurate, however, at that time, it improved the state of art in the

recall by 10 – 20 %. In 2015, Dai et al. [92] suggested a complex model, which consists of a

sequence (or, as they call it, cascade) of three convolutional models. The first one

differentiates instances, the second one estimates masks, and the last one is a classifier. It is a

sequence and is not predicted parallelly. As already described in Chapter 2.5.3.1. Two-Stage

Detection, Feature Pyramid Networks (FPN) were one of the flagship object detectors with

automatically generated mask proposals.

 39

The most contemporary instance segmentation models are currently based on Mask R-

CNN and, since 2022, also on YOLOv5, YOLOv7 and since 2023, on YOLOv8 and

YOLOv9 in 2024.

2.6.2.3 Mask R-CNN

Mask R-CNN was proposed in 2017 by He et al. [93]. They are an extension of Fast R-

CNN [62], which added an object mask in parallel with the bounding boxes – when detecting

objects, Mask R-CNN also generates segmentation masks for each instance. In comparison to

Dai’s cascade approach [92], it is much faster. The original code [94] is called Detectron. The

authors presented a new type of layer, RoIAlign, which preserves the exact spatial locations

of detected objects. In comparison to previously published RoiPool layers, the mask accuracy

increased by 10 to 50 %. In this approach, each class is predicted independently, and a binary

mask in the form of a polygonal label is created for each object class within every Region of

Interest.

Figure 9 - Masks created with polygonal labels for training a Mask R-CNN network

source: https://bit.ly/3wTxzK4

In 2017, Waleed et al. [95] proposed an improved Mask R-CNN based on a Feature

Pyramid Network (FPN) and a ResNet101 backbone. In comparison to the original Mask R-

CNN, where square inputs were needed, they preserved the aspect ratio of images, generated

the bounding boxes in a different way and decreased the learning rate from 0.02, as in

combination with small batch sizes, causing exploding weights.

In the state of the art around 2022, Mask R-CNN could be used for segmenting objects

like aeroplanes, cars, animals, and people for tracking; however, the precision of masks was

not very big, as visible in the two Figures below. It made Mask R-CNN unusable by itself

(without pre- or post-processing) for applications like Optical Character Recognition (OCR).

 40

However, in 2023, the precision has risen greatly, which opened the possibility of applying

this technique to use instant segmentation for experimental letter recognition.

Figure 10 - Elephant predicted with Mask R-CNN [96]

Figure 11 – Houses segmented with Mask R-CNN: Mapping Challenge converting satellite images to maps [95]

 41

2.6.2.4 YOLO

Since 2022, as described on the Roboflow blog [97], YOLOv5 has also been usable for

instance segmentation. It uses the same polygonal labels as Mask R-CNN for generating

object outlines. In 2023 and 2024, more future YOLO versions followed this trend, further

improving the quality of predicted segmentation masks.

2.7 Dataset augmentation

In order to conduct research, and not just image processing research, a sufficient

amount of good quality data is needed. Machine learning projects usually require a high

amount of training data to be reliable. [50] [54] While working with public datasets, which

usually consist of a large number of images, makes the process easier, there are not always

the data that we need.

When training deep learning models on self-made, custom-created datasets for our own

research, we often face the challenge of obtaining data of sufficient quality and scope. In

some cases, only a limited amount of data is available, and the annotation process (or, for

classification, the process of cutting images to square inputs containing only the object of

interest) is also time-consuming. Under these circumstances, along with optimising network

architecture and training parameters and incorporating regularisation techniques (for

example, adding dropout layers to the model), it is appropriate to consider including synthetic

data that is built upon a foundation of real data and transformed using mathematical or other

techniques.

We distinguish between classical image filtering methods, geometric transformations

(both of which only manipulate the original images) and machine learning methods that

create custom data as close to real data as possible.

2.7.1 Classical methods

2.7.1.1 Keras generator

There is a class called ImageDataGenerator (callable by

tf.keras.preprocessing.image.ImageDataGenerator) in the Keras framework, which allows the

researchers to use several filtering methods and geometric transformations to augment the

 42

input image dataset. Filtering methods include changes in saturation, colour depth, colour

spectrum, contrast, brightness, focus, blur, and noise inserted into the original images. On the

other hand, geometric transformations are rotating, flipping, stretching, cropping, and

narrowing. Keras also allows for the replacement of parts of images with blank pixels or

noise and the compiling of multiple images in a tile, which consists of random crops.

2.7.1.2 Online platform Roboflow

In January 2020, an online platform called Roboflow was released on the domain

roboflow.com. This platform includes many features useful for machine learning projects,

such as creating project datasets in clouds and callable from notebooks (Jupyter, Google

Colab, Kaggle, etc.). Supported project types are object detection, single-label classification,

multi-label classification, instance segmentation, semantic segmentation, keypoint detection

and “other”. For object detection and segmentation, an annotation tool is available,

supporting both types of labels – bounding boxes and polygonal labels. In the premium

version, Roboflow also offers training DL models on “Roboflow train”. When exporting

datasets for use in external notebooks, the user can choose the dataset format (from the ones

explained in detail in Chapter 2.5.2 – Bounding box formats) and also pick pre-processing

and augmentation methods. The pre-processing options offered are visible in the following

Figure:

Figure 12 - Roboflow pre-processing options

source: www.roboflow.com

 43

Augmentation options include image level augmentations and bounding box level

augmentations, which are shown in the Figure below. These augmentations, just like the ones

in the Keras generator, are classified as filtering and geometric methods.

Figure 13 - Roboflow augmentation optios

source: www.roboflow.com

 44

2.7.2 Deep learning methods

In addition to classical filtering and geometric methods, there are also augmentation

techniques using artificial intelligence to increase the dataset size. Using these methods, new,

original data are created that take on the features of the original images. Such methods are

Neural style transfer, Feature space data augmentation, such as Variational autoencoders

(VAE) and more, Generative adversarial networks (GANs) and others (Deep Dream etc.).

2.7.2.1 Neural Style Transfer

Using the Neural Style Transfer (NST) method, we work with the terms image content

and style. NST was presented by Leon Gatys et al. in 2015. [98] Image content is defined in

higher CNN layers as a high-level structure of the image (mainly rough outlines defining the

main features) and the style defined in lower CNN layers consists of colours, textures, and

visual patterns. This method is incorrectly, but commonly called “filters” in mobile phone

cameras. Simply put, if you take a photo of a face and make it look like it was painted in

Leonardo da Vinci style or a landscape that you change to look like a painted canvas, this is

NST. This method has been used in the latest research as well. Daru et al. [99] presented a

method of designing drapes with a combination of various binary masks and NST. The part

of the image of a drape where the used mask was black had a different target style than the

part of the image where the mask was white. Wu et al. [100] proposed a Direction-aware

NST with a custom direction field loss function, improving the state of art of generating

mosaic and canvas-like images. Xinyu et al. [101] extended the use of NST to stereoscopic

images in 2018, which was enhanced by Friedrich et al. [102] in 2021 by creating a pipeline

based on a high-resolution voxel representation with the goal of creating complete 3D shapes

with a transferred neural style.

 45

Figure 14 - Neural Style Transfer by Leon Gatys [98]

2.7.2.2 Feature space data augmentation

Feature space data augmentation (FDA) is a group of methods used to improve

classifier performance. Kumar et al. [103] described different FDA methods as follows.

These techniques first extract the features from the original datasets, and then they generate

new data from the latent feature space. After this process, the synthetic data is added to

training sets in order to improve the classification accuracy. One of the FDA's methods is

upsampling, which creates higher-resolution pictures by applying features learned on smaller

images. Random perturbation adds noise from the uniform distribution. Linear delta is a

simple method of generating new examples by subtracting the difference between two

examples from the same class and combining it with a third example. Extrapolation between

 46

samples in latent feature space creates new samples as well, and delta-encoder, similarly to

variational autoencoder, consists of an encoder and decoder; at first, it extracts the differences

between two samples within a class (deltas); then, it applies these deltas to create synthetic

data from a different class.

2.7.2.3 Variational autoencoders

Variational autoencoders (VAE) were explored by two independent teams and

published at about the same time by Kingma et al. [104] and Rezende et al. [105]. Chollet

[48, p. 271] describes the key idea to generating pictures as a low-dimensional vector latent

space of representations, where any point can be mapped to a realistically looking image.

VAE is a composition of two neural networks. One of them, the encoder, accepts real

images as input and encodes them into a compressed representation using ANN, usually

CNN. This compressed representation consists of two parameters in the latent space –

z_mean and z_log_var.

Figure 15 - Principle of VAE [48, p. 274]

The randomly sampled point, as shown in the figure above, is picked using this

equation.

𝑧 = 𝑧 + exp (𝑧_𝑙𝑜𝑔_𝑣𝑎𝑟) ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (27)

where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = a random tensor of small values.

The decoder network maps this z point back to the original image. The points, which

are near each other in the latent space, will generate a very similar output using the decoder.

 47

The representations in the latent space are highly structured and can be used for smooth

transitions of images.

VAEs have been used in contemporary research. Chadebec et al. [106] increased

accuracy from 80.7 % to 88.6 % by incorporating synthetic data into classification datasets in

the OASIS database. Elbattah et al. [107] used VAE to generate eye-tracking scan paths with

the goal of reducing dataset imbalance.

2.7.2.4 Generative adversarial networks

Generative Adversarial Networks (GANs), first presented by Ian Goodfellow et al.

[108] also consist of two neural networks. One of them is called the generator, while the

second one is the discriminator (real-fake classifier). Both networks are trained alternately,

each to an adversarial goal. The generator captures the distribution of data and tries to

generate real-like input, and the discriminator estimates the probability of the input to be real

(it comes from the training set) or fake (it was generated). At first, the generator generates

Gaussian noise, which is easily identified as fake by the discriminator, but as the training

goes on, the generated images resemble real images more and more. In an ideal situation, a

Nash equilibrium is reached. It is a state in which no player can unilaterally improve his

strategy to beat the opponent. In the context of a GAN, this means that the generator

generates so well that the discriminator has exactly a 50% chance of identifying the input

correctly.

GANs, like the VAEs, consist of two neural networks. However, unlike VAE, they do

not create structured, continuous latent spaces. GANs have the potential to produce highly

realistic images, whereas the images from the VAE are merged, because of the continuity in

the latent space. Géron [51, p. 591] states that although VAEs have been very popular for a

long, GANs have already surpassed them with their capability to create more realistic images.

It is, therefore, advisable to consider what data we are augmenting before choosing the right

method.

Contemporary research has introduced improvements to basic GANs. Deep

Convolutional GAN – DCGAN [109] presented the following improvements in the

architecture and guidelines for a more stable network:

 48

 Replacing pooling layers with strided convolutions in the discriminator and

fractional convolutions in the generator

 Using batch normalisation

 In deeper architectures, removing fully connected hidden layers

 Using ReLu activation in all layers of the generator, except for the last layer

with Tanh

 Using LeakyReLu in all layers of the discriminator

Progressively growing GAN by Karras et al. [110] present a novel approach to train

low-resolution images at first and progressively increase them to high resolution, usually up

to 1024 x 1024 px. In their paper, the discriminator network is called “the critic”. The

principle of the upscale lies in the smooth adding of layers. The layers operating in higher

resolutions are treated like a residual block, in which layers have small weights linearly

increasing from 0 to 1. Ledig et al.’s Super-resolution GAN (SRGAN) [111] is focused on

creating highly detailed textures when upscaling the generated images.

Recent use of GANs in contemporary research projects includes augmenting datasets of

palmprint [112], improving cancer classification on gene expressions data [113], augmenting

X-ray security images for threat detection [114], improving liver lesion classification with

synthetic data [115] and many more.

2.8 Optical Character Recognition

Optical Character Recognition (OCR) systems are among the most complex

applications of computer vision and image recognition, in addition to the scene understanding

required for self-driving vehicles, for instance. It is the process of classifying patterns

corresponding with alphanumeric or other characters from a digital photograph or PDF scan.

[116] This recognition is done in several, at least three, basic steps - segmentation of text

against the background and individual parts of the text, feature extraction and feature

classification. [117]

Holistic OCR systems contain 9 stages [118], from the actual acquisition of image data

to the conversion of text into machine-readable format:

 49

1. Scanning - digitising physical documents (papers, photographing historical

artefacts - reliefs, vases, funerary steles, etc. inscriptions)

2. Local segmentation, which distinguishes the text parts of a photograph from

graphics

3. Optional pre-processing, in which noise is reduced, text is rotated to the correct

position, the image is normalised, compressed

4. Segmentation, also called binarisation - separation of non-text and text parts,

and further segmentation into individual characters or parts of characters

5. Representation - global, statistical, or geometric representation of characters

6. Feature extraction - in current OCR systems, template matching is most

commonly used based on the extracted distribution of points identified in an

image

7. Training and recognition - creating templates of individual features, fixed or

elastic, statistical techniques, cluster analysis, use of fuzzy logic or artificial

neural network

8. Post-processing - detected features are composed into words compared with a

dictionary, and modified to make sense

9. The final step is the output text itself in a machine-readable format, which can

be further manipulated, e.g., using NLP - natural language processing systems

(e.g., translating into other languages, creating automatic text summaries, etc.)

Current research in OCR [119] combines multiple systems in a hybrid solution for

better recognition, which reduces the error rate when using only one OCR algorithm. Post-

processing methods are being improved to account for different types of errors and produce

automatic corrections [120], and systems are being developed for languages that were

previously unavailable, such as Arabic [121], Hindi [122], Japanese [123], and many more. In

a comparative study of current OCR systems (here, regarding Latin OCR) from 2021 [124],

the problems encountered by these systems in common situations are mentioned. One of them

is the problem of recognising letters on a scanned document, in case the letters are distorted,

blurred or parts of the characters are missing completely. Another problem is font

differences, which create the need to extract multiple different features for each character

class or to use multiple templates and elastic templates for character classification.

 50

At the time, a common way to classify a character in OCR is using elastic templates.

Contemporary research uses neural networks for text segmentation, like in case of car license

plate reading [125], where Mask R-CNN serves to segment the text area, and it is forwarded

to Terrasect OCR for transliteration. Only one pioneer research called “Rosetta” [126]

proposes a convolutional approach because it uses neural networks for both text localisation

and text recognition. Rosetta is used to analyse text in so-called “memes”, which are

uploaded to the social media Facebook every day.

2.9 Research gap

The exploration of neural network architectures used for object recognition in images,

image segmentation and augmentation of learning sets, applied to recognising historical

alphabets is best done with real-world examples. It is not possible to define one correct

approach to analyse historical scripts, as there are many types (alphabets, logographic scripts,

ideographic scripts, syllabaries and many more) and each of them is unique and needs to be

approached respectively. Based on the knowledge described in the literature review, several

research gaps were identified. In this dissertation, an effort is made to obtain a general

approach for developing improved neural networks for the purpose of OCR algorithms of

historical scripts specific to each type of script.

At the time of writing this dissertation, there were no detectors and classifiers for the

characters of the Palmyrene alphabet. Therefore, it was possible to build a custom dataset of

the characters used to write Palmyrene Aramaic, explore classifier architectures and optimise

them, try different augmentation methods, construct a Generative adversarial network and

train it to augment the data, as well as start to work on a complete OCR system, incorporating

segmentation, and lastly, connect it with a dictionary. Completion of Palmyrene OCR,

namely the dictionary part, will be finished after publishing this dissertation, but it’s

appropriate to mention it now, as my team and I are already working on it at the time.

In addition to analysing the Palmyrene alphabet, together with a team from Israel, we

decided to explore the possibilities of detecting wedges (otherwise known as strokes) in

cuneiform using only object detection algorithms, as this approach was not used before. As

cuneiform is a logo-syllabic script, in this case, not the whole vowels, but their parts were

 51

being detected. In the course of this research, I was able to construct different object

detection algorithms and test their properties.

During the cuneiform research, we encountered the problem of calculating the

confusion matrix for detectors in the absence of ground truth labels. For this reason, I propose

a modification of it and present it here in chapter 3.2.1.

3 Commentary

In the Attachment section, five papers are presented about the topic of creating

Palmyrene OCR and two papers about detecting strokes in cuneiform script. One article is

mentioned but not yet published; therefore, it is not attached as full text.

3.1 Palmyrene Aramaic analysis using computer vision algorithms

In the first, conference article [1] (Attachment 1), the Android application incorporating

two classifiers was shown. The first classifier takes an EMNIST-like Palmyrene character,

which is drawn on the mobile screen; optionally, the second classifier takes a photo of one

Palmyrene character (which needs to be taken by the mobile phone camera). The respective

classifier suggests the top three classes with the highest confidence scores; the user picks the

character in accordance with the Unicode table character pictured next to the confidence

score and saves it to buffer. This way, the user can re-write (or take pictures letter by letter)

and classify every letter in the Palmyrene inscription and can then export it as text. The

architecture used in this version of the app was efficient_lite0. The results of hand-written

classification reached 80.2% F-score, while the photographic classifier reached only 71.96%.

There were three authors in this paper. I created the dataset and the classifier and conducted

tests. Mr. Franc created and debugged the mobile application, and Mr. Tyrychtr provided

professional guidance while writing the article.

The second, journal, article [2] (Attachment 2) presents a custom CNN architecture,

which was obtained by testing different layer combinations and training parameters. An

optimal architecture for the classification of hand-written inputs was selected, and the

accuracy increased from efficient_lite0’s 68.93% to 98,21%. the hand-written Palmyrene

character classification task was complete. However, it was not suitable for classifying photos

of characters. I created the training scripts in Keras and conducted the tests of architectures

 52

and classification results tests. Mr. Franc updated the mobile application, and Mr. Veselý

helped with the methodology and article review.

In the third, conference, article about the topic of Palmyrene OCR [3] (Attachment 3),

we present GAN augmentation methods used for expanding photographic datasets. However,

as the improvement was not sufficient for practical use, therefore, we explored more options,

that are presented in a journal article, for which we have recently received reviews and are

editing it in accordance with the reviewer’s comments Mr. Franc created the GAN training

and generating scripts, I did the data hand-sorting and classifier testing. Mr. Veselý suggested

methods and reviewed the article.

In 2022, we extended our research by presenting the Palmyrene OCR web application

available at https://ml-research.pef.czu.cz, which, at the time of creation offered the same

options as the mobile application - to either draw characters by hand or alternately take a

picture of one character in Android application, annotating characters in an uploaded photo of

Palmyrene inscription. Mr. Svojše developed the web application, I provided extended

datasets, classifiers trained on them and conducted tests, and Mr. Franc ensured the operation

of the web server. The article related to this topic has not yet been published and, therefore,

cannot be referenced, but the web application is already in use.

In the conference article [6] (Attachment 4) published by Springer, the planned

capabilities of the Palmyrene OCR web application were described using a diagram, which

was, along with a part of a single-class segmentation dataset and methods for further steps,

presented in the MOBA workshop of CAISE conference. The dataset was obtained and

annotated by me as well as the research plan, and Mr. Pavlíček edited the diagram. Mr. Franc

helped with the manuscript preparation. I prepared the methods.

In the end, the methods proposed in the conference articles were supplemented by an

additional method, which was multi-class instance segmentation. With the help of new

scientific knowledge and experiments, we have found that it is not necessary first to detect

individual letters and then categorise them into the correct classes, as was the original plan,

but that it is possible to segment and categorise at the same time. In fact, during 2023, the

segmentation algorithms were further improved, and YOLOv8 could be trained for multi-

class instance segmentation. In a 2024 paper published in CMES [7] (Attachment 5), we

performed a thorough analysis that involved a substantial expansion of the dataset, with input

 53

from humanities professor Alexey Lyavdansky of the Russian HSE University, who, for

photographs of the Palmyra inscriptions I collected from public and non-public sources,

verified which letters were visible in the photographs and provided transcriptions for

inscriptions that were not publicly available. We trained four models - for one and multiple

classes - on two algorithms and developed a custom algorithm for line processing and letter-

in-line comparison directly from the detected segmentation masks in the form of polygons.

Mr. Svojše and Mr. Franc also published this module to our web application ml-research. Mr.

Novák helped with manuscript formatting and administration, and Mr. Veselý helped with

manuscript preparation and methodology description.

Another article, which is also part of the research, is not attached to this dissertation as

it is in preparation. In this article, various GAN and SRGAN possibilities and training

methodologies are explored, presenting the optimisation of GANs for classification data

augmentation and upscaling images on specially downscaled images using the Hierarchical

Collaborative Downscaling (HCD) method published in 2023 [127]. The outcome of this

study suggests that synthetic data can play a crucial role in enhancing the performance of

computer vision algorithms, with potential applications extending beyond the scope of the

study to other areas of research and development in computer science and digital humanities.

I helped prepare the data and train multiple GAN networks constructed by Mr. Franc. Ondřej

Svojše published the relevant content on the ml-research web application, and Mr. Veselý

provided methodological guidance and helped with manuscript preparation.

3.1.1 Palmyrene alphabet research outcome

Over the course of the past few years, computer vision algorithms have experienced

rapid development, enabling a wide variety of applications to be created. One such

application is a novel way of developing OCR, which we have researched for a number of

years. Through ongoing experiments and using the most contemporary algorithms in each

phase of the research, we have achieved results that allow us to read the characters of the

Palmyrene alphabet directly from photos and obtain the transcriptions in either a mobile or

web application. A foreign humanities professor with the ability to read and understand the

Palmyrene texts has joined our team and is invaluably helping us with the process. One last

step for this research to be complete is to incorporate the datasets in standard OCR algorithms

like Google Tesseract and create an NLP algorithm to put the predicted characters in the

context of words and sentences.

 54

3.2 Cuneiform stroke detection

Concerning cuneiform stroke detection, two papers are attached to this dissertation. The

first one, a conference article [4] (Attachment 6) presents detecting horizontal strokes within

images of cuneiform tablets and a journal article [5] (Attachment 7) presents comparing

different computer vision algorithms and also some additional tools that we created to detect

the strokes successfully. The dataset was processed by Mr. Franc, who also prepared the

Detecto algorithm for training in a custom notebook and annotated by partners from two

Israeli universities – Shai Gordin from Ariel University and Avital Romach from Tel Aviv

University. They also helped us with the texts about cuneiform in both articles. In this

research project, I served as a project manager and was responsible for the preparation and

training of the YOLOv5 network, programming several utilities, and Mr Čejka participated in

training the R-CNN network. Mr. Pavlíček also participated by programming more utilities.

The final outcome of the cuneiform research project was not deployed in any web

application and is currently only available on GitHub. The topic was further explored by E

Stötzner et al. [128], adding all other types of strokes to the detection, allowing the research

to be put into practical use.

According to Google Scholar on the 18th of April 2024 [129], the SPML conference

article [5] has been cited 3 times by other author teams (E Stötzner et al., V Yugay et al. and

A Bucciero et al.) who followed the development of detecting cuneiform signs directly from

2D photographs.

3.2.1 Confusion matrix used for object detection algorithms

During the evaluation of the cuneiform stroke object detectors, we encountered a

problem with the standard algorithm evaluating methodology – counting mean IoU and

deriving the confusion matrix from it [83] – as some of the testing data was not labelled.

There was a need to establish a method that could be used in detector evaluation cases where

few or no ground truth labels are available. Therefore, an altered version of the confusion

matrix was suggested. Confusion matrix is traditionally used to evaluate classifiers or used on

an object detection algorithm, if it is derived from IoU as described in chapter 2.5.4.1 of this

dissertation.

The method of altered confusion matrix construction was applied in the 2024 article in

Digital Humanities Quarterly [6].

 55

3.2.1.1 Suggested method to constructing confusion matrix

In case of missing IoU, True Positives TP, False Negatives FN and False Positives FP

are counted as follows, and a duplicity or multiplicity D is added:

 The object of interest or its part is bounded by a box.

o It is denoted as TP.

 The object of interest or its part is not bounded by a box.

o It is denoted as FN.

 Multiple boxes bound the same object or its part.

o The number of boxes b-1 are denoted as D.

 A box bounds an area, where there is no object of interest or its part.

o It is denoted as FP.

 TN cannot be counted; therefore, it is set to 0.

o TN = 0.

Standard metrics such as precision p, recall s and F-score can be calculated using the

matrix. The number of multiplicities D can be ignored in calculations as bounding boxes with

a high overlap can be removed when a threshold for overlap is set. However, it can serve as

additional information when evaluating the algorithm.

3.3 Cascade-style approach to creating historical OCR systems

In Chapter 8, a classical 9-step holistic approach to creating OCR algorithms, which

consists of scanning, local segmentation, pre-processing, binarisation, representation, feature

extraction, training and recognition, post-processing, and finally, getting the text in a

machine-readable format, was presented. However, by applying the latest knowledge in the

field of computer vision and using previously unavailable or imprecise algorithms, which

have achieved much higher success rates in recent years, the number of steps to create an

OCR algorithm can be significantly reduced. Although there are different approaches of

reading historical scripts, there are many connecting elements that can be summarised in a

cascade-style approach. The 9-step process can be simplified to a 5-step process.

3.3.1 Data acquisition

The quality and quantity of the data acquired directly impact the algorithm's ability to

generalise and accurately recognise text across different fonts, sizes, and styles which are

 56

present when processing handwriting of historical documents. Different digitising processes

can obtain data, but the easiest one is collecting existing photographs of texts or taking new

pictures.

3.3.2 Annotation

With the use of manual annotation of whole letters in case of alphabets, or parts of

characters used to write historical language, such as cuneiform, we prepare a dataset for

training an instance segmentation algorithm that incorporates the previously mentioned steps

- local segmentation and pre-processing. An optional step in this step includes using GAN

networks to generate more training data if too little is available.

3.3.3 Multi-class instance segmentation

Multi-class instance segmentation sums up the binarisation (segmenting text and non-

text areas), representation, feature extraction, training, and recognition from the holistic

approach in just one step, as it directly detects non-text and text parts and recognises whole

letters or components at once and results in a list of letter.

3.3.4 Post-processing

This step involves techniques such as sorting characters into rows and columns and

combining parts of characters into syllables in non-alphabetic scripts.

Advanced post-processing can also be understood as spell-checking, grammar

correction, and context analysis to improve the overall accuracy and readability of the

extracted text. Additionally, post-processing may also include error correction mechanisms to

prevent any misinterpretations or inconsistencies in the recognised text.

3.3.5 Text in machine-readable format

Converting the recognised text into a machine-readable format is the final step in the

OCR pipeline. This step requires working with a dictionary in the given language and enables

future text processing such as translation or summarisation.

3.4 Next steps

Future research plans are presented. In order to complete the development of the OCR

algorithm in Palmyrene Aramaic, advanced post-processing techniques need to be applied to

avoid recognition errors, and a dictionary needs to be developed to understand the transcripts

 57

obtained by image processing fully using instance segmentation. Of course, we are also

continuously working on annotating more available images with Palmyrene inscriptions to

refine the segmentation results as more accurate results will make post-processing easier.

Other research teams have already followed up on the processing of cuneiform script

from 2D photographs, yet if our Israeli partners are interested in collaborating on the next

steps, we would be happy to participate in the research with them.

Conclusion

The beautiful aspect of science is that there is always something to improve and

develop, and new knowledge allows us to educate ourselves and educate others continually.

Over the course of my PhD grant projects, I have researched a large number of neural

network types and architectures that are used for image processing, such as classification,

object detection, dataset augmentation and segmentation. I explored their capabilities and

limitations in relation to the detection, augmentation, and classification of historical fonts,

both alphabet and logo-syllabic.

Together with several research teams, I have developed a horizontal stroke detector in

cuneiform script, a classifier, a segmentation algorithm, and a generator of Palmyrene

alphabet characters and proposed a modified method for computing the confusion matrix

when no ground truth labels are available to calculate IoU.

I suggested and published a novel cascade approach to OCR creation using

Convolutional Neural Networks. It both simplifies and combines the steps of a holistic OCR

development approach using state-of-the-art image processing algorithms. This approach is

generally applicable to the development of algorithms processing various other scripts, be

they historical or contemporary.

I have gained knowledge in computer vision that I will further enhance in other

research or commercial projects that I am working on now and will work on in the future. I

trust that the results presented in this dissertation will help as a baseline for research by other

teams working on the development of processing historical scripts.

 58

4 References

[1]aaa
aa

A. Hamplová, D. Franc and J. Tyrychtr, “Historical Alphabet Transliteration
Software Using Computer Vision Classification Approach,” Lecture Notes in
Networks and Systems, pp. 34-45, 26 04 2022.

[2] A. Hamplová, D. Franc and A. Veselý, “An improved classifier and transliterator of
hand-written Palmyrene letters to Latin,” Neural Network World, vol. 32, pp. 181-
195, 30 08 2022.

[3] D. Franc, A. Hamplová and O. Svojše, “Augmenting Historical Alphabet Datasets
Using Generative Adversarial Networks,” Data Science and Algorithms in Systems.
CoMeSySo 2022. Lecture Notes in Networks and Systems, vol. 597, pp. 132-141, 04
01 2023.

[4] A. Hamplová, D. Franc, J. Pavlíček, A. Romach and S. Gordin, “Cuneiform Reading
Using Computer Vision Algorithms,” SPML 2022: Proceedings of the 2022 5th
International Conference on Signal Processing and Machine Learning, 2022.

[5] A. Hamplová, A. Romach, J. Pavlíček, A. Veselý, M. Čejka, D. Franc and S. Gordin,
“Cuneiform Stroke Recognition and Vectorization in 2D Images,” Digital
Humanities Quarterly, vol. 18, no. 1, 2024.

[6] A. Hamplová, D. Franc and J. Pavlíček, “Character Segmentation in the
Development of Palmyrene Aramaic OCR,” in Model-Driven Organizational and
Business Agility, Lecture Notes in Business Information Processing (LNBIP, volume
488), Zaragoza, 2023.

[7] A. Hamplová, A. Lyavdansky, T. Novák, O. Svojše, D. Franc and A. Veselý,
“Instance Segmentation Of Characters Recognized In Palmyrene Aramaic
Inscriptions,” Computer Modelling in Engineering & Sciences, 2024.

[8] N. Muthukrishnan, F. Maleki, K. Ovens, C. Reinhold, B. Forghani and R. Forghani,
“Brief History of Artificial Intelligence,” NEUROIMAGING CLINICS OF NORTH
AMERICA , vol. 4, pp. 393-+, 03 11 2020.

[9] W. McCulloch and W. Pitts, “A LOGICAL CALCULUS OF THE IDEAS
IMMANENT IN NERVOUS ACTIVITY,” Bulletin of Mathematical Biophysics, pp.
115-133, 1943.

[10] D. O. Hebb, The organization of behavior: A neuropsychological theory, New York:
John Wiley and Sons, Inc., 1949.

[11] M. Minsky, “A Neural-Analogue Calculator Based upon a Probability Model of
Reinforcement,” Harvard University Psychological Laboratories, Cambridge,
Massechusetts, 1952.

[12] F. Rosenblatt, “The perceptron - a perceiving and recognizing automaton,” Cornell
Aeronautical Laboratory, 1957.

[13] J. C. Hay, B. Lynch, D. Russell and B. Smith, “Mark I Perceptron Operators'
Manual,” 1960.

[14] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in Proceedings of I.R.E
Wescon Convention Record, 1960.

[15] B. Widrow, “Thinking About Thinking: The Discovery of the LMS Algorithm,”
IEEE SIGNAL PROCESSING MAGAZINE, pp. 100-106, 2005.

 59

[16] B. Widrow and K. Steinbuch, “A critical comparison of two kinds of adaptive
classification networks,” IEEE Transactions on Electronic Computers, p. 737–740,
1965.

[17] J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 8, pp. 2554-8, 1 4 1982.

[18] P. J. Werbos, “Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Science,” Thesis (Ph. D.), 01 1974.

[19] “Neural Network World,” ČVUT, [Online]. Available: http://www.nnw.cz/.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” in IEEE Conference on Computer Vision and
Pattern Recognition, Miami, 2009.

[21] A. Apicella, F. Donnarumma, F. Isgro and R. Prevete, “A survey on modern
trainable activation functions,” Neural Networks, vol. 138, pp. 14-32, 19 05 2021.

[22] A. Veselý, Metody umělé inteligence, 1 ed., Praha: Česká zemědělská univerzita v
Praze, 2012.

[23] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “GradientBased Learning Applied
to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,
11 1998.

[24] F. Chollet, A. Gulli, S. Pal, A. Geron, R. Dattaraj, A. Kapoor and J. Moolayil,
“Keras: the Python deep learning API,” [Online]. Available: https://keras.io/.
[Accessed 11 10 2022].

[25] Chollet, Francois, “Keras Layers API,” [Online]. Available:
https://keras.io/api/layers/. [Accessed 12 10 2022].

[26] Y. Jing and Y. Guanci, “Modified Convolutional Neural Network Based on Dropout
and the Stochastic Gradient Descent Optimizer,” Algorithms, vol. 11, no. 18, 03
2018.

[27] Chollet, Francois, “Layer activation functions,” Keras, [Online]. Available:
https://keras.io/api/layers/activations/. [Accessed 12 10 2022].

[28] K. Fukushima, “Neocognitron: A Self-organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biological
Cybernetics, vol. 36, pp. 193-202, 04 1980.

[29] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” NIPS'12: Proceedings of the 25th International
Conference on Neural Information Processing Systems, vol. 1, pp. 1097-1105, 03 12
2012.

[30] K. He, X. Zhang, S. Ren and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1026-1034, 02 2015.

[31] H. Yingge, I. Ali and K.-Y. Lee, “Deep Neural Networks on Chip - A Survey,” 2020
IEEE International Conference on Big Data and Smart Computing (BigComp), pp.
589-59, 02 2020.

[32] P. Sadowski, “Notes on Backpropagation,” University of California Irvine, Irvine,
CA 92697.

 60

[33] O. Russakovsky, J. Deng, J. Krause, A. Berg and F.-F. Li, “ImageNet Large Scale
Visual Recognition Challenge 2013 (ILSVRC2013),” Stanford University, 2013.
[Online]. Available: https://image-net.org/challenges/LSVRC/2013/.

[34] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” Proceedings of 3rd International Conference on
Learning Representations ICLR 2015, 10 04 2015.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke and A. Rabinovich, “Going deeper with convolutions,” 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015.

[36] S. Basodi, C. Ji, H. Zhang and Y. Pan, “Gradient amplification: An efficient way to
train deep neural networks,” Big Data Mining and Analytics, vol. 3, pp. 196-207, 09
2020.

[37] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778, 12 12 2016.

[38] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800-
1807, 2017.

[39] J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, “Squeeze-and-Excitation Networks,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132-
7141, 2018.

[40] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks,” Proceedings of the 36th International Conference on Machine
Learning, vol. 97, pp. 6105-6114, 2019.

[41] X. Feng, Y. Jiang, X. Yang, M. Du and X. Li, “Computer vision algorithms and
hardware implementations: A survey,” in Integration; Proceedings of 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jeju, South Korea, 2019.

[42] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB
model size,” 24 02 2016.

[43] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” 17 04 2017.

[44] X. Zhang, X. Zhou, M. Lin and J. Sun, “ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices,” IEEE Xplore, pp. 6848-6856,
2018.

[45] B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad, J. Gonzales
and K. Keutzer, “Shift: A Zero FLOP, Zero Parameter Alternative to Spatial
Convolutions,” IEEE Xplore, pp. 9127-9135, 2018.

[46] W. Chen, D. Xie, Y. Zhang and S. Pu, “All you need is a few shifts: designing
efficient convolutional neural networks for image classification,” Proceedings of
Conference on Computer Vision and Pattern Recognition (2019), 2019.

[47] C.-C. Wang, C.-T. Chiu and J.-Y. Chang, “EfficientNet-eLite: Extremely
Lightweight and Efficient CNN Models for Edge Devices by Network Candidate
Search,” Journal of Signal Processing Systems, 2022.

 61

[48] F. Chollet, Deep Learning with Python, Second Edition, 2 ed., Manning
Publications, 2021, pp. 30-32.

[49] V. Vapnik and C. Cortes, “Support-vector networks,” Machine Learning, vol. 20, no.
3, pp. 273-297, 1995.

[50] J. Cho, K. Lee, E. Shin, G. Choy and S. Do, “How much data is needed to train a
medical image deep learning system to achieve necessary high accuracy?,”
Proceedings of ICLR 2016 , 2016.

[51] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow,
vol. 7, R. Roumeliotis and N. Tache, Eds., Sebastopol, Canada: O'Reilly Media, Inc.,
2020.

[52] J. Long, E. Shelhamer and T. Darrell, Fully Convolutional Networks for Semantic
Segmentation, arXiv, 2014.

[53] J. Redmond, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified,
Real-Time Object Detection, IEEE, 2015, pp. 779-788.

[54] HCL Tech, “Traditional Image Processing vs. Deep Learning,” Imaging & Machine
Vision Europe.

[55] D. G. Lowe, “Distinctive Image Features,” International Journal of Computer
Vision, pp. 91-110, 11 2004.

[56] “Histograms of oriented gradients for human detection,” 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886-
893, 2005.

[57] G. Boesch, “Object detection in 2022: The definitive guide - visio.ai,” visio.ai, 2022.
[Online]. Available: https://viso.ai/deep-learning/object-detection/.

[58] Roboflow, “Object Detection - Roboflow,” Roboflow, 2022. [Online]. Available:
https://docs.roboflow.com/adding-data/object-detection.

[59] A. Lohia, K. D. Kadam, R. R. Joshi and A. M. Bongale, “Bibliometric Analysis of
One-stage and Two-stage Object Detection,” Library Philosophy and Practice (e-
journal), vol. 4910, 02 2021.

[60] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” 2014 IEEE Conference of
Computer Vision and Pattern Recognition, pp. 580-587, 06 2014.

[61] R. Girshick, “Fast R-CNN,” arXiv, pp. 1-9, 27 09 2015.

[62] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,” arXiv, 04 01 2015.

[63] K. He, X. Zhang, S. Ren and J. Sun, “Spatial Pyramid Pooling in Deep
Convolutional,” Lecture Notes in Computer Science book series (LNIP,volume
8691), p. 346–361, 18 06 2014.

[64] Sivic and Zisserman, “Video Google: a text retrieval approach to object matching in
videos,” Proceedings Ninth IEEE International Conference on Computer Vision, vol.
2, pp. 1470-1477, 2003.

[65] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature
Pyramid Networks for Object Detection,” arXiv, 09 12 2016.

[66] T. Chen, L. Lin, X. Wu, N. Xiao and X. Luo, “Learning to Segment Object
Candidates via Recursive Neural Networks,” 04 12 2016.

 62

[67] A. Bi, “Welcome to Detecto's Documentation! --- Detecto 1.0,” 2019. [Online].
Available: https://detecto.readthedocs.io/.

[68] J. Wang and X. Hu, “Convolutional Neural Networks with Gated Recurrent
Connections,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 7, pp. 3421-3435, 01 07 2022.

[69] J. Redmond and A. Farhadi, YOLO9000: Better, Faster, Stronger, IEEE, 2016, pp.
6517-6525.

[70] J. Redmond and A. Farhadi, YOLOv3: An Incremental Improvement, arXiv, 2018.

[71] A. Bochovskyi, C.-Y. Wang and H.-Y. M. Liao, “YOLOv4: Optimal Speed and
Accuracy of Object Detection,” arXiv, 23 04 2020.

[72] G. Jocher, A. Chaurasia, A. Stoken and J. Borovec, ultralytics/yolov5: v6.2 -
YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.ai
integrations, zenodo, 2022.

[73] P. Guerrie and T. Lynn, “How to Train YOLOv5 Instance Segmentation on a
Custom Dataset,” 21 09 2022. [Online]. Available: https://blog.roboflow.com/train-
yolov5-instance-segmentation-custom-dataset/.

[74] C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, “You Only Learn One Representation:
Unified Network for Multiple Tasks,” arXiv, 10 05 2021.

[75] Ge, Theng; Liu, Songtao; Wang, Feng; Li, Zeming; Sun, Jian; Megvii Technology,
“YOLOX: Exceeding YOLO Series in 2021,” arXiv, 06 08 2021.

[76] C.-Y. Wang, A. Bochkovskyi and H.-Y. Liao, “YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors,” 06 07 2022.

[77] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y.
Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, X. Wei and Meituan,
“YOLOv6: A Single-Stage Object Detection Framework for Industrial
Applications,” arXiv, 07 09 2022.

[78] G. Jocher, “YOLOv8 by Ultralytics,” 10 01 2023. [Online]. Available:
https://github.com/ultralytics/ultralytics.

[79] C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, “YOLOv9: Learning What You Want to
Learn Using Programmable Gradient Information,” ArXiv, 21 02 2024.

[80] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg,
“SSD: Single Shot MultiBox Detector,” Computer Vision – ECCV 2016. ECCV
2016. Lecture Notes in Computer Science, vol. 9905, pp. 21-37, 2016.

[81] T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal Loss for Dense Object
Detection,” 2017 IEEE International Conference on Computer Vision, pp. 2999-
3007, 10 2017.

[82] B. Wu, A. Wan, F. Iandola, P. H. Jin and K. Keutzer, “SqueezeDet: Unified, Small,
Low Power Fully Convolutional Neural Networks for Real-Time Object Detection
for Autonomous Driving,” arXiv, 11 07 2019.

[83] J. Szczegielniak, “Comparing Object Detection Models - Objectivity,” Objectivity
Ltd., [Online]. Available: https://www.objectivity.co.uk/blog/comparing-object-
detection-models/.

[84] TensorFlow, “tf.keras.metrics.MeanIoU,” TensorFlow documentation, 18 11 2022.
[Online]. Available:
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/MeanIoU.

 63

[85] A. M. Hafiz and G. M. Bhat, “A survey on instance segmentation: state of the art,”
International Journal of Multimedia Information Retrieval, vol. 9, pp. 171-189, 12
05 2020.

[86] A. Garcia-Garcia, S. Escolano-Orts, S. Oprea, V. Villena-Martinez, P. Martinez-
Gonzales and J. Garcia-Rodriguez, “A Review on Deep Learning Techniques
Applied to Semantic Segmentation,” Applied Soft Computing, vol. 70, pp. 41-65, 01
09 2018.

[87] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” Discrete Applied
Mathematics, vol. 123, pp. 155-225, 15 11 2022.

[88] J. S. H. Baxter, M. Rajchl, A. J. McLeod, J. Yuan and T. M. Peters, “Directed
Acyclic Graph Continuous Max-Flow Image Segmentation for Unconstrained Label
Orderings,” International Journal of Computer Vision, vol. 123, pp. 415-434, 2017.

[89] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques and J. Malik, “Multiscale
Combinatorial Grouping,” 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 328-335, 2014.

[90] J. Uijlings, K. van de Sande, T. Gevers and A. Smeulders, “Selective Search for
Object Recognition,” International Journal of Computer Vision, vol. 2, pp. 154-171,
2013.

[91] P. O. Pinheiro, T.-Y. Lin, R. Collobert and P. Dollár, “Learning to Refine Object
Segments,” arXiv, 29 03 2016.

[92] J. Dai, K. He and J. Sun, “Instance-aware Semantic Segmentation via Multi-task
Network Cascades,” arXiv, 14 12 2015.

[93] K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” 017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988, 2017.

[94] K. He, G. Gkioxari, P. Dollár and R. Girshick, “facebookresearch/Detectron,”
Facebook, 2018. [Online]. Available:
https://github.com/facebookresearch/Detectron.

[95] Waleed, Abdulla and C. Clauss, “matterport/Mask_RCNN,” Github Repository,
2017.

[96] J. Brownlee, “How to Use Mask R-CNN in Keras for Object Detection in
Photographs,” Machine Learning Mastery, 14 05 2019. [Online]. Available:
https://machinelearningmastery.com/how-to-perform-object-detection-in-
photographs-with-mask-r-cnn-in-keras/.

[97] P. Guerrie and T. Lynn, “How to Train YOLOv5 Instance Segmentation on a
Custom Dataset,” Roboflow blog, 21 09 2022.

[98] L. A. Gatys, A. S. Ecker and M. Bethge, “A Neural Algorithm of Artistic Style,”
Journal of Vision, vol. 16, pp. 1-16, 2016.

[99] P. Daru, S. Gada, M. Chheda and P. Raut, “Neural Style Transfer to Design Drapes,”
Proceedings of the 8th IEEE International Conference on Computational
Intelligence and Computing Research (IEEE ICCIC), pp. 626-631, 2017.

[100] H. Wu, Z. Sun and W. Yuan, “Direction-aware Neural Style Transfer,”
PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), pp.
1163-1171, 2018.

 64

[101] X. Gong, H. Huang, L. Ma, F. Shen, W. Liu and T. Zhang, “Neural Stereoscopic
Image Style Transfer,” Lecture Notes in Computer Science, 15th European
Conference on Computer Vision (ECCV), vol. 11209, pp. 56-71, 2018.

[102] T. Friedrich, B. Hammer and S. Menzel, “Voxel-Based Three-Dimensional Neural
Style Transfer,” Lecture Notes in Computer Science, 16th International Work-
Conference on Artificial Neural Networks (IWANN), vol. 12861, pp. 334-346, 2021.

[103] V. Kumar, H. Glaude, C. de Lichy and W. Campbell, “A Closer Look At Feature
Space Data Augmentation For Few-Shot,” Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), pp. 1-10, 2019.

[104] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” Proceedings of
the ICRL 2014 conference; arXiv, pp. 1-14, 2013.

[105] D. J. Rezende, S. Mohamed and D. Wierstra, “Stochastic Backpropagation and
Approximate Inference in Deep Generative Models,” Proceedings of the 31st
International Conference on Machine Learning, vol. 32, pp. 1278-1286, 2014.

[106] C. Chadebec, S. Allassonniere, S. Engelhardt, I. Oksuz, D. Zhu, Y. Yuan, A.
Mukhopadhyay, N. Heller, S. Huang, H. Nguyen, R. Sznitman and Y. Xue, “Data
Augmentation with Variational Autoencoders and Manifold Sampling,” Lecture
Notes in Computer Science, vol. 13003, pp. 184-192, 28 10 2021.

[107] M. Elbattah, C. Loughnane, J.-L. Guerin, R. Caretter, F. Cilia and G. Dequen,
“Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data,”
Journal of Imaging, vol. 7, no. 83, 11 06 2021.

[108] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville and Y. Bengio, “Generative Adversarial Networks,” Associaition for
Computing Machinery, pp. 139-148, 2014.

[109] A. Radford, Metz, L. Metz and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” arXiv, pp. 1-16, 2016.

[110] T. Karras, T. Aila, S. Laine and J. Lehtinen, “Progressive Growing of GANs for
Improved Quality, Stability, and Variation,” Proceedings of ICLR 2018; arXiv, pp.
1-26, 2017.

[111] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang and W. Shi, “Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network,” arXiv, pp. 1-19, 2017.

[112] G. Wang, W. Kang, Q. Wu, Z. Wang and G. Junbin, “Generative Adversarial
Network (GAN) based Data Augmentation for Palmprint Recognition,” 2018 Digital
Image Computing: Techniques and Applications (DICTA), pp. 156-162, 2018.

[113] “Data augmentation using MG-GAN for improved cancer classification on gene
expression data,” Soft Computing, pp. 11381-11391, 27 07 2020.

[114] J. K. Dumagpi and Y.-J. Jeong, “Evaluating GAN-Based Image Augmentation for
Threat Detection in Large-Scale Xray Security Images,” APPLIED SCIENCES-
BASEL, vol. 11, no. 1, 25 01 2021.

[115] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger and H. Greenspan, “SYNTHETIC
DATA AUGMENTATION USING GAN FOR IMPROVED LIVER LESION
CLASSIFICATION,” 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON
BIOMEDICAL IMAGING (ISBI 2018), pp. 289-293, 2018.

 65

[116] A. Chaudhuri, K. Mandaviya, P. Badelia and S. K. Ghosh, “Optical Character
Recognition Systems for Different Languages with Soft Computing,” Studies in
Fuzziness and Soft Computing, 2017.

[117] F. T. Yu, “Optical Pattern Recognition,” Optics & Photonics News, vol. 12, pp. 55-,
2001.

[118] N. Arica and F. T. Yarman Vural, “An Overview of Character Recognition focused
on Offline Handwriting,” IEEE Transactions on Systems, Man and Cybernetics -
Part C: Applications and Reviews, vol. 31, no. 2, pp. 216-233, 05 2001.

[119] F. Kboubi, A. H. Chaibi and B. M. Armed, “A new strategy of OCR combination,”
APPLICATIONS OF CYBERNETICS AND INFORMATICS IN OPTICS, SIGNALS,
SCIENCE AND ENGINEERING, pp. 325-330, 2004.

[120] T.-T.-H. Nguyen, A. Jatowt, M. Coustaty, N.-V. Nguyen and A. Doucet, “Deep
Statistical Analysis of OCR Errors for Effective Post-OCR Processing,” Proceedings
of 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 29-38, 2019.

[121] S. Alghyaline, “Arabic Optical Character Recognition: A Review,” CMES-Computer
Modeling in Engineering & Sciences, vol. 135, no. 3, pp. 1825-1861, 2013.

[122] “The BBN Byblos Hindi OCR system,” Proceedings of SPIE - The International
Society for Optical Engineering: Document Recognition and Retrieval XII, vol.
5676, pp. 10-16, 17 1 2005.

[123] A. Kokawa, L. S. P. Busagala, W. Ohyama, T. Wakabayashi and F. Kimura, “An
Impact of OCR Errors on Automated Classification of OCR Japanese Texts with
Parts-of-Speech Analysis,” 2011 International Conference on Document Analysis
and Recognition, pp. 543-547, 2011.

[124] P. Jain, K. Taneja and H. Taneja, “Which OCR toolset is good and why : A
comparative study,” Kuwait Journal of Science, vol. 48, no. 2, pp. 1-12, 2021.

[125] A. Shanthakumari, R. Kalpana, J. Jayashankari, B. UmaMaheswari and M. Sirija,
“Mask RCNN and Tesseract OCR for vehicle plate character recognition,” AIP
Conference Proceedings 2393, vol. 2393, no. 020135, 2022.

[126] F. Borisyuk, A. Gordo and V. Sivakumar, “Rosetta,” pp. 71-79, 19 07 2018.

[127] B. Xu, Y. Guo, L. Jiang, M. Yu and J. Chen, “Downscaled Representation Matters:
Improving Image Rescaling with Collaborative Downscaled Images,” in 2023
IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France,
2023.

[128] E. Stötzner, T. Homburg and H. Mara, “CNN based Cuneiform Sign Detection
Learned from Annotated 3D Renderings and Mapped Photographs with Illumination
Augmentation,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision., Paris, France, 2023.

[129] D. Franc, A. Hamplová, O. Svojše and A. Veselý, “Data augmentation methods
using Generative Adversarial Networks for improving the accuracy of Computer
Vision algorithms,” Journal of Intelligent & Fuzzy Systems, 2024 (forthcoming).

[130] Google Scholar, “Hamplová: Cuneiform Reading Using Computer Vision
Algorithms - Google Scholar,” [Online]. Available:
https://scholar.google.co.uk/scholar?cites=13200824122647241410&as_sdt=2005&s
ciodt=0,5&hl=cs. [Accessed 18 04 2024].

 66

5 List of Figures, Tables and Abbreviations

5.1 List of Figures

Figure 1 - mathematical model of perceptron with output function σ(h) [22] 9
Figure 2 – activation functions of convolutional layers: (a) sigmoid (b) tanh (c) ReLU (d)
leaky ReLU [26] .. 12
Figure 3 - Demostration of maxpooling and averagepooling operation [31] 14
Figure 4- LeNet-5 used for recognition of handwritten character (32 x 32 pixels), Source:
[23] ... 17
Figure 5 - Inception modules presented in GoogLeNet [35] ... 18
Figure 6 - Residual block [37] ... 19
Figure 7 - Number of data needed per class for a high classification accuracy [50] 23
Figure 8- Computer vision tasks: (a) image classification, (b) object detection, (c) semantic
segmentation (d) instance segmentation. [86] ... 37
Figure 9 - Masks created with polygonal labels for training a Mask R-CNN network 39
Figure 10 - Elephant predicted with Mask R-CNN [96].. 40
Figure 11 – Houses segmented with Mask R-CNN: Mapping Challenge converting satellite
images to maps [95] ... 40
Figure 12 - Roboflow pre-processing options ... 42
Figure 13 - Roboflow augmentation optios ... 43
Figure 14 - Neural Style Transfer by Leon Gatys [98] .. 45
Figure 15 - Principle of VAE [48, p. 274] ... 46

5.2 List of Tables

Table 1 - Convolutional layer input - a black and white letter "O" represented in pixels 11
Table 2 - Binary confusion matrix ... 24
Table 3 - 4-class confusion matrix ... 24

5.3 List of Abbreviations

OCR = Optical Character Recognition

GPU = Graphical Processing Unit

TPU = Tensor Processing Unit

CNN = Convolutional Neural Network

ANN = Artificial Neural Network

DNN = Deep Neural Network

AI = Artificial Intelligence

 67

GAN = Generative Adversarial Network

RoI = Region of Interest

SNARC =

EQV = Equivalence

XOR = Nonequivalence

PDP = Paralell Distributed Processing

ReLu = Rectified Linear Unit

eLu = Exponential Linear Unit

ESSE = Error Sum of Square Errors

ECE = Error Cross-Entropy

GTN = Graph Transformer Network

IEEE = Institute of Electrical and Electronics Engineers

VGG Net = Visual Geometry Group Network

ICLR = International Conference on Learning Representations

Res Net = Residual Network

SE Net = Squeeze and Excitation Network

FE Net = Fully Exploited Network

NLP = Natural Language Processing

SVM = Support Vector Machine

CT = Computed Tomography

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

ROC = Receiver Operating Characteristic or Relative Operating Characteristic

FAR = False Alarm Rate

TPR = True Positive Rate

AUC = Area Under Curve

FCN = Fully Convolutional Network

YOLO = You Only Look Once

TIP = Traditional Image Processing

SIFT = Scale Invariant Feature Transform

HOG = Histograms of Oriented Gradients

 68

PASCAL VOC = Pattern Analysis, Statistical Modelling and Computational Learning Visual

Object Challenge

COCO = Common Objects in Context

ID = Identification

API = Application Programming Interface

TF = TensorFlow

SPP Net = Spatial Pyramid Pooling Network

BoW = Bag of Words

R-CNN = Regions with CNN features

FPN = Feature Pyramid Network

RPN = Region Proposal Network

G-RCNN = Gated Recurrent Convolutional Neural Network

SSD = Single Shot Detector

IoU = Intersection over Union

DAG = Directed Acyclic Graph

ILSVRC = ImageNet Large Scale Visual Recognition Challenge

mAP = mean Average Precision

FPS = Frames per Second

HCD = Hierarchical Collaborative Downscaling

 69

List of Attachments

Attachment 1: A. Hamplová, D. Franc and J. Tyrychtr, “Historical Alphabet Transliteration

Software Using Computer Vision Classification Approach,” Lecture Notes in Networks and

Systems, pp. 34-45, 26 04 2022.

Attachment 2: A. Hamplová, D. Franc and A. Veselý, “An improved classifier and

transliterator of hand-written Palmyrene letters to Latin,” Neural Network World, vol. 32, pp.

181-195, 30 08 2022.

Attachment 3: D. Franc, A. Hamplová and O. Svojše, “Augmenting Historical Alphabet

Datasets Using Generative Adversarial Networks,” Data Science and Algorithms in Systems.

CoMeSySo 2022. Lecture Notes in Networks and Systems, vol. 597, pp. 132-141, 04 01 2023.

Attachment 4: A. Hamplová, D. Franc and J. Pavlíček, “Character segmentation in the

development of Palmyrene Aramaic OCR,” CAISE 2023 35th International Conference on

Advanced Information Systems Engineering, 2023.

Attachment 5: A. Hamplová, A. Lyavdansky, T. Novák, O. Svojše, D. Franc and A. Veselý,

“Instance Segmentation Of Characters Recognized In Palmyrene Aramaic Inscriptions,”

Computer Modelling in Engineering & Sciences, 2024.

Attachment 6: A. Hamplová, D. Franc, J. Pavlíček, A. Romach and S. Gordin, “Cuneiform

Reading Using Computer Vision Algorithms,” SPML 2022: Proceedings of the 2022 5th

International Conference on Signal Processing and Machine Learning, 2022.

Attachment 7: A. Hamplová, A. Romach, J. Pavlíček, A. Veselý, M. Čejka, D. Franc and

S. Gordin, “Cuneiform stroke recognition and vectorization in 2D images,” Digital Humanities

Quarterly, 2023.

Attachment 1

A. Hamplová, D. Franc and J. Tyrychtr, “Historical Alphabet Transliteration Software Using

Computer Vision Classification Approach,” Lecture Notes in Networks and Systems, pp. 34-

45, 26 04 2022.

Attachment 2

A. Hamplová, D. Franc and A. Veselý, “An improved classifier and transliterator of hand-

written Palmyrene letters to Latin,” Neural Network World, vol. 32, pp. 181-195, 30 08 2022.

AN IMPROVED CLASSIFIER AND
TRANSLITERATOR OF HAND-WRITTEN

PALMYRENE LETTERS TO LATIN

A. Hamplová∗, D. Franc†, A. Veselý‡,

Abstract: This article presents the problem of improving the classifier of hand-
written letters from historical alphabets, using letter classification algorithms and
transliterating them to Latin. We apply it on Palmyrene alphabet, which is a
complex alphabet with letters, some of which are very similar to each other. We
created a mobile application for Palmyrene alphabet that is able to transliterate
hand-written letters or letters that are given as photograph images. At first, the
core of the application was based on MobileNet, but the classification results were
not suitable enough. In this article, we suggest an improved, better performing con-
volutional neural network architecture for hand-written letter classifier used in our
mobile application. Our suggested new convolutional neural network architecture
shows an improvement in accuracy from 0.6893 to 0.9821 by 142% for hand-written
model in comparison with the original MobileNet. Future plans are to improve the
photographic model as well.

Key words: artificial intelligence, classification, historical alphabets, mobilenet, com-
puter vision

Received: February 25, 2022 DOI: 10.14311/NNW.2022.32.011
Revised and accepted: August 30, 2022

1. Introduction

1.1 Historical alphabet digitization including Palmyrene

Many researches are focused on character recognition of letters from historical
alphabets. These include Persian [5], Bangladeshi [3] and cuneiform, which is
transliterated by hand [19] and photos of these transliterations are classified.

Until recently, there was no Palmyrene transliteration available. There is a
large number of Palmyrene Aramaic memorabilia, which is written in Palmyrene
alphabet. It is similar to classic Aramaic with some differences in the alphabet and
dialect. This dialect was used in western parts of Syria, and classic Aramaic was

∗Adéla Hamplová; Czech University of Life Sciences in Prague, PEF KII, Kamýcká 129, CZ-
165 00, Praha 6 – Suchdol, Czech Republic, E-mail: hamplova@pef.czu.cz

†David Franc – Corresponding author; Czech University of Life Sciences in Prague, PEF KII,
Kamýcká 129, CZ-165 00, Praha 6 – Suchdol, Czech Republic, E-mail: francd@pef.czu.cz

‡Arnošt Veselý – Corresponding author; Czech University of Life Sciences in Prague, PEF KII,
Kamýcká 129, CZ-165 00, Praha 6 – Suchdol, Czech Republic, E-mail: vesely@pef.czu.cz

©CTU FTS 2022 181

mailto:hamplova@pef.czu.cz
mailto:francd@pef.czu.cz
mailto:vesely@pef.czu.cz

Neural Network World 4/2022, 181–195

spoken in the eastern parts. This script was used in the nearest surroundings and
inside the Syrian city of Palmyra (also called city of Tadmur) in the years 100–400
A.D.

Translating Palmyrene texts is contributing to the study of ancient art and
history, as well as Palmyrene and Biblical studies. The largest anthologies were
published in 1996 by Hillers et al. [7] and in 2001 by Taylor et al. [15].

Palmyrene font became part of Unicode in 2010 [1] when the coding for Palmyrene
letters was proposed. The alphabet consists of 32 characters in the range 10860–
1087F in Unicode [12] (Palmyrene, 2010). Apart from “y”, there are only conso-
nants in the script. The alphabet is read from the top right to left corner; words
are not divided by a blank space. As for numbers, there are only four characters,
which mean 1, 5, 10 (or 100) and 20.

1.2 Image classification on mobile devices

Android applications are developed mostly using the IDE Android Studio and in
each version of IDE, a set of standard libraries is added and some of the existing
ones are updated. Among standard Android API libraries, image classification
is not included. The TensorFlow documentation website [17] recommends using
convolutional neural network MobileNet for image classification on mobile devices.

Current research [4] recommends using MobileNet version efficient lite0. It was
introduced by Tan and Le in 2020 [16] and is also presented in Sonawane’s paper [14]
in comparison with other architectures.

1.3 Android software template and Palmyrene transliterator

In our research we suggest a mobile software tool for automatic character reading
of historical alphabets and transliterating them into Latin alphabet. This tool
called “Palmyrene Alphabet Transcription” has a potential to help to speed up the
process of processing archived but not transliterated and untranslated documents
or can be used directly in the field by archeologists.

Our tool is an Android application that can serve as a template for other alpha-
bets as well. The two main use cases of our tool are hand-written letter analysis
and letter analysis from photo.

In the first one our tool asks the user to draw a letter on the screen. The
drawn image is resized and sent on the input of the convolution neural network
(CNN). CNN classifies the image and then the three possible transliterations with
the highest confidence score are displayed, see Fig. 1.

The second possibility how to use our tool is using it for transliteration of letters
given in photos. Instead of writing the letters by hand, the user takes a photograph
of the letter directly from sandstone tablet like in Fig. 2 or other document type
that is written in Palmyrene.

The user interface is visible in Fig. 3. There is also a help available, as well as
info and alphabet table available in the application.

The target group of users of this tool are archaeologists, who would use the
software for faster Palmyrene Aramaic texts transliteration, the secondary focus
group are other researchers and people outside the scientific community that could

182

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

Fig. 1 In-app character classification.

Fig. 2 Example of a sandstone tablet containing Palmyrene script, Inv. 2983/9507,
© The Archaeological Museum Of Palmyra.

use the transliteration for educational purposes. The Android application can also
be modified if another historical alphabet model is trained. Therefore, it can be
used for further semi-automatic transliteration of any alphabet.

183

Neural Network World 4/2022, 181–195

Fig. 3 “Palmyrene Alphabet Transcription” mobile application user interface.

184

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

2. Objective

Our goal was to design a suitable classifier for transcribing Palmyrene characters
into Latin, with special regard to its use in mobile applications. Current research
suggests using MobileNet classifier. Therefore, our first step was to verify the
possibility of using CNN with the MobileNet architecture and to train it on the
Palmyrene alphabet character set. Because the results obtained were not satisfac-
tory, we designed our own CNN architecture, trained it and then we compared the
results with the results obtained using MobileNet.

Our results confirmed that it is possible to design CNN architecture of the clas-
sifier that gives better results than MobileNet based classifier. It is likely that this
classifier would also give good results if trained for transcription of some another
similar alphabet.

3. Building the classifier

3.1 Training and validation set

In order to create a dataset of hand-written characters, we modified Axel Thevenot’s
“Python-Interface-to-Create-Handwrittendataset” tool available at Github [18]. The
letters were transcribed from a large number of photographs containing Palmyrene
alphabet, such as in Fig. 2. For acquiring these photographs of tablets with
Palmyrene inscriptions, we established a cooperation with two museums – Musée
du Louvre in Paris [9] as well as Virtual Museum Of Palmyra. [11].

Palmyra alphabet consists of 32 characters, see transcription table in Fig. 4. In
our research we considered only 28 characters. We excluded four characters – the
numbers 2, 3, 4 and 5. The numbers 2–4 are sequences of the characters 1, and
the number 5 looks exactly the same as the letter “ayin”. Using graphic tablet, we
wrote 56197 letters in total (exactly 2007 samples per each character).

The used system font for Palmyrene is “palmmne”. Each character class is
saved in a different folder with character name and using keras ImageDataGenera-
tor.flow from directory function, the dataset is converted to CNN-readable format.
With the generator, the data is split into two subsets – training set contains 80%
data and validation set contains the remaining 20%. We did not use any data
augmentation method.

3.2 MobileNet based architecture

Our first choice of mobile network architecture was picked according to the cur-
rent recommendations — MobileNet efficient lite0. This architecture consists of a
HubKerasV1V2 layer, Dropout layer to prevent overfitting and an output Dense
layer. The final activation function is softmax, as the problem solved is a multiple
category classification.

The training of the efficient lite0 model (both photographic and hand-written)
used 80% images for training and 20% for validation. For model creation, we used
the library “tflite-model-maker” and did not alternate the architecture.

185

Neural Network World 4/2022, 181–195

Fig. 4 Palmyrene characters and transcription to Latin.

For creating dataset, we call the tflite model maker.image classifier.DataLoader
method. By calling this method, input images are resized to 224× 224 pixels and
loaded into a data generator.

186

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

The network is trained calling the function “model.create”, which runs training
for 5 epochs, with batch size 128 images. The core of the network is not trained, as
there are only 38430 trainable parameters and 3451454 non-trainable parameters.

Model summary is specified below.

Model: “sequential”

Layer (type) Output Shape Param #

Hub keras layer v1v2 (HubKe rasLayerV1V2) (None, 1280) 3413024
dropout (Dropout) (None, 1280) 0

dense (Dense) (None, 30) 38430

Total params: 3451454
Trainable params: 38430

Non-trainable params: 3413024

Tab. I MobileNet summary.

The training accuracy was very high even after the first epoch, it reached 0.902,
and in the last epoch it reached 0.993. The validation accuracy was 0.677. Model
is then saved in .tflite format.

3.3 Design of the custom CNN architecture

To design the network architecture, we conduct experiments with CNN layers. We
compare the influence of the number of convolutions in each Convolutional layer,
the influence of leaving out pooling layers, compare the difference in performance of
AveragePooling and MaxPooling layers and research the influence of the number of
repetition of Convolutional/Pooling blocks. We then pick the architecture, which
had the highest validation accuracy, lowest validation error and lowest validation
loss, and convert it to a mobile version of the model – “.tflite” for testing.

The training is conducted on the graphic card NVIDIA GeForce GTX 970 with
memory clock rate 1.1775GHz, 1664 CUDA cores and memory size 8159MB.

We created 10 versions of CNN architectures and researched the influence of
the combination of layers and numbers of convolutions on a small dataset of hand-
written letters (153 per class, image size 28×28). The results are visible in Tab. II,
where V is version, Acci is accuracy in given epoch i, Lossi is loss in given epoch i,
V Acci is validation accuracy in given epoch i, V Lossi is validation loss in given
epoch i.

Each architecture version was using alternation of Convolutional layers with
specified number of convolutions and Pooling layers, either MaxPooling or Aver-
agePooling. The last three layers were always Flatten and two Dense layers. The
versions are described in the following Tab. III, where Conv i means the number
of convolutions in each i-th Convolutional layer.

As visible in Tab. II, the combination of low validation loss and high validation
accuracy was present in models using the straight alternation of Convolutional and
MaxPooling layers, with 3 or 4 such blocks (mostly versions 1 and 3). Adding
another Convolutional / MaxPooling block (version 7) lowered the validation ac-
curacy from 0.548 to 0.4967 in the last epoch and increased the validation loss

187

Neural Network World 4/2022, 181–195

V Acc 1 Loss 1 V Acc 1 V Loss 1 Acc 15 Loss 15 V Acc 15 V Loss 15

1 0.2992 2.749 00 0.3326 2.6634 0.9688 0.0583 0.5301 2.5247
2 0.7730 0.794 60 0.4330 3.3265 0.9648 0.0511 0.4196 2.7923
3 0.2054 2.871 13 0.2366 2.8368 0.9720 0.0550 0.5480 2.6796
4 0.0649 3.254 80 0.1373 3.0333 0.9389 0.1334 0.4085 5.2541
5 2.8557 0.262 00 0.2334 3.2072 0.9960 0.0758 0.4542 4.2724
6 3.2109 0.082 00 0.1652 3.1675 0.9626 0.0805 0.4743 4.5598
7 3.0733 0.117 90 0.1417 3.2524 0.9628 0.0621 0.4967 4.0713
8 1.4428 0.592 40 0.3571 2.9419 0.9658 0.0499 0.4877 2.9082
9 3.1120 0.123 30 0.1730 3.0210 0.9659 0.6030 0.5580 2.9961
10 3.2842 0.089 40 0.1696 3.0293 0.9652 0.0928 0.5022 3.5259

Tab. II Influence of CNN layers on network performance.

V Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Pool

1 16 32 64 Max
2 32 64 128 Max
3 16 32 64 128 Max
4 16 32 64 128 Avg
5 32 64 128 Avg
6 32 64 128 256 Avg
7 16 32 64 128 256 Avg
8 16 32 64 Max
9 16 32 64 64 Max

10 16 32 32 32 Max

Tab. III CNN versions description.

from 2.6796 to 4.0713. Using AveragePooling layers conducted in lower validation
accuracy to 0.4085 in version 4 and almost doubled the validation loss to 5.2541 in
comparison to using MaxPooling layers. The best performing architecture overall
was version 3.

3.4 Training of the new CNN model

We used the training / validation split equal to 0.8 / 0.2 using the library Image-
DataGenerator from tensorflow.keras. The images are resized to 28× 28 pixels.

We picked the best performing model with 4 Convolutional layers alternated by
4 MaxPooling layers (version 3). The model summary is visible below.

We trained the network for 15 epochs, with batch size 128, selected optimizer
was “adam”. The training results are visible in Tab. V.

188

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

Model: “sequential”

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 16) 448
max pooling2d (MaxPooling2D) (None, 14, 14, 16) 0

conv2d 1 (Conv2D) (None, 14, 14, 32) 4640
max pooling2d 1 (MaxPooling2) (None, 7, 7, 32) 0

conv2d 2 (Conv2D) (None, 7, 7, 64) 18496
max pooling2d 2 (MaxPooling2) (None, 3, 3, 64) 0

conv2d 3 (Conv2D) (None, 3, 3, 128) 73856
max pooling2d 3 (MaxPooling2) (None, 1, 1, 128) 0

flatten (Flatten) (None, 128) 0
dense (Dense) (None, 512) 66048
dense 1 (Dense) (None, 28) 14364

Total params: 177852
Trainable params: 177852

Non-trainable params: 0

Tab. IV Custom CNN summary.

Acc 1 Loss 1 V Acc 1 V Loss 1 Acc 15 Loss 15 V Acc 15 V Loss 15

0.861 0.4718 0.9255 0.3092 1 4.66 0.9626 0.3315

Tab. V Results of final model training.

4. Evaluation on testing set

The testing dataset is not created in advance. Testing is conducted directly in
the mobile application, and the characters need to be written by hand in the
“Draw Letter” module. We use 10 samples in each class for testing of both CNN
architectures (280 images in total).

4.1 Metrics

For classifier evaluation, the metrics accuracy acc, error err, recall r Eq. (1), preci-
sion p Eq. (2) and F-score Eq. (3) are used. [2] Accuracy acc is the mean of correctly
classified characters, error err is the mean of incorrectly classified characters. Pa-
rameters of recall Eq. (2), precision Eq. (1) and F-score Eq. (3) are evaluated as
follows. For each category i we consider binary decision whether character belongs
to the category i versus it belongs to any other category j ̸= i and we calculate
precision pi, recall ri and Fi-score.

ri =
m∑
i=1

TPi

TPi + FPi
, (1)

pi =
m∑
i=1

TPi

TPi + FNi
, (2)

189

Neural Network World 4/2022, 181–195

Fi =
2 · ri · pi
ri + pi

, (3)

where
– TPi is the number of correctly classified objects from category i
– FPi is the number of characters from the category j ̸= i incorrectly classified as
being characterss from category i
– FNi is the number of characters from category i incorrectly classified as being
characters from some another category j ̸= i
– m is the number of categories.

The overall parameters of recall r Eq. (4), precision p Eq. (5) and F score
Eq. (6) are then evaluated as arithmetic means.

r =
1

m

m∑
i=1

ri, (4)

p =
1

m

m∑
i=1

pi, (5)

F =
1

m

m∑
i=1

Fi. (6)

4.2 Results of MobileNet and custom CNN classifier

The detailed results of MobileNet classifier evaluation on testing set are visible in
Tab. VI.

The mean error of this classifier is 0.311, while the mean accuracy reached 0.689.

The least recognized Palmyrene character is “20” and “mem” with only 1 (out
of 10) true positive recognition. The character “20” was otherwise classified as “pe”
and “waw”, while “mem” was classified as “beth”, “nun” and “pe”. 9 characters
– “10”, “aleph”, “beth”, “he”, “nun”, “nun final”, “pe”, “shin” and “waw” were
recognized in each case (10 out of 10).

The classifier was over-oriented for character “pe”, as it had most false positive
predictions – 28 other letters were classified as “pe”, as it is visually similar to
other characters. The second character with most false positive predictions was
“nun” with 18 false classifications and the third one was “nun final” with 9 false
positives.

The detailed results of custom CNN classifier evaluation on testing set are
visible in Tab. VII. The mean error of custom CNN classifier is only 0.018, while
the accuracy reached 0.982, which is a significant 142% improvement from the
MobileNet classifier.

The least recognized character is “pe” with 8 true positives out of 10, one was
classified as “nun” and the other as “yodh”. 24 characters were recognized in all 10
cases out of 10, 3 had one false negative prediction – “gimel”, “resh” and “sadhe”.

There were only 5 characters with false positives – “20”, “daleth”, “heth”,
“nun” and “yodh”, each of them had 1 false positive prediction.

190

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

class TPi FNi FPi ri pi Fi err acc

1 8 2 2 0.8 0.8 0.8
10 10 0 0 1 1 1
20 1 9 0 0.1 1 0.182

aleph 10 0 9 1 0.526 0.690
ayin 6 4 0 0.6 1 0.75
beth 10 0 7 1 0.588 0.741

daleth 5 5 0 0.5 1 0.667
gimmel 4 6 0 0.4 1 0.571

he 10 0 0 1 1 1
heth 9 1 1 0.9 0.9 0.9
kaph 8 2 2 0.8 0.8 0.8

lamedh 7 3 0 0.7 1 0.824
left 2 8 5 0.2 0.286 0.235

mem 1 9 0 0.1 1 0.182
nun 10 0 18 1 0.357 0.526

nun final 10 0 9 1 0.526 0.690
pe 10 0 26 1 0.278 0.435

qoph 7 3 1 0.7 0.875 0.778
resh 3 7 0 0.3 1 0.462
right 5 5 0 0.5 1 0.667
sadhe 4 6 0 0.4 1 0.571

samekh 3 7 0 0.3 1 0.462
shin 10 0 2 1 0.833 0.909
taw 5 5 1 0.5 0.833 0.625
teth 8 2 0 0.8 1 0.889
waw 10 0 4 1 0.714 0.833
yodh 8 2 2 0.8 0.8 0.8
zayin 7 3 0 0.7 1 0.824
mean 0.682 0.826 0.672 0.311 0.689

Tab. VI MobileNet classifier evaluation.

5. Discussion

The results of the Palmyrene hand-written characters classification were satis-
factory, as the accuracy reached 98.21% instead of 68.93% with MobileNet effi-
cient lite0.

The reason behind the false predictions when using MobileNet is the visual
similarity of Palmyrene symbols. In sample datasets used for object detection
with MobileNet image classifiers, there are many distinct features that makes the
classification easier. Such objects like dogs, cats etc. can be stretched, rotated and
shifted within the image and still be recognized and classified correctly, however, in
case of characters of alphabets, the precise position, shape and rotation of letters
matter and can not be altered, because it would change the meaning of the letter,
as some letters look like others if rotated or stretched. The demonstration of such

191

Neural Network World 4/2022, 181–195

class TPi FNi FPi ri pi Fi err acc

1 10 0 0 1 1 1
10 10 0 0 1 1 1
20 10 0 1 1 0.909 0.952

aleph 10 0 0 1 1 1
ayin 10 0 0 1 1 1
beth 10 0 0 1 1 1

daleth 10 0 1 1 0.909 0.952
gimmel 9 1 0 0.9 1 0.947

he 10 0 0 1 1 1
heth 10 0 1 1 0.909 0.952
kaph 10 0 0 1 1 1

lamedh 10 0 0 1 1 1
left 10 0 0 1 1 1

mem 10 0 0 1 1 1
nun 10 0 1 1 0.909 0.952

nun final 10 0 0 1 1 1
pe 8 2 0 0.8 1 0.889

qoph 10 0 0 1 1 1
resh 9 1 0 0.9 1 0.947
right 10 0 0 1 1 1
sadhe 9 1 0 0.9 1 0.947

samekh 10 0 0 1 1 1
shin 10 0 0 1 1 1
taw 10 0 0 1 1 1
teth 10 0 0 1 1 1
waw 10 0 0 1 1 1
yodh 10 0 1 1 0.909 0.952
zayin 10 0 0 1 1 1
mean 0.982 0.984 0.982 0.018 0.982

Tab. VII Results of model with 4×Conv/MaxPooling network architecture.

similarity is visible in Fig. 5. The most similar letter to “pe” is “20” and so it had
the highest classification error with MobileNet.

When using custom classifier, the improvement is significant (142% better), as
the CNN architecture was tested especially for letter classification and is less prone
to error when classifying objects with less distinct features.

Fig. 5 Visual similarity of character similarity.

192

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

Mara H. conducted the analysis of 3-dimensional scans of tablets with cuneiform
signs, however the success rate is not presented in the research. [10] Yamauchi
researched hand-written cuneiform characters, but also did not publish classifier
results. [19]

Ghosh et al.’s model, that recognized Bangladeshi signs, reached 96.46% accu-
racy on MobileNet, which is 2.4% less than with our upgraded CNN hand-written
model. The Bangladeshi script contains 60 letters [3]. Its hand-written were also
analysed and reached 90.27% accuracy. [13]

Our classifier is also comparable with other object recognition tasks, for example
Cho Junghwan et al. have researched CT body scans. The dataset contained 4000
very high quality images and they reached 97% accuracy on GoogLeNet Inception
v1 architecture. They also described, how the results declined if less images were
used, accordingly [8].

The F-score of 83% has been reached in the task of great tits and carried food
recognition by part of our team. We analysed photos from Smart Nest Boxes.
For the model, we used YOLOv3 architecture. The F-measure was lower due to
difficult object detection. [6]

Our results of Palmyrene letters recognition were therefore comparable with
other author’s works. The classifier results were satisfactory, over 70% as initially
stated in the success criteria. With a 98.21% classification success, the task of
hand-written Palmyrene characters classification can be considered resolved.

6. Conclusion

We have explored the architectures suitable for character recognition for mobile
use, which is an ever evolving area. Letters and numbers classification is a special
image classification case, as, unlike other objects, the images of alphabet characters
can not be manipulated rotation-wise, shape-wise and shift-wise. We conducted
experiments with convolutional neural network architectures special for character
recognition on Android devices, aiming to improve the classification in comparison
with MobileNet, and found out, that the network with 4 Convolutional layers
alternated by MaxPooling layers has better classification results than other tested
networks and trained this network on our data and improved hand-written classifier
results by 142%.

We updated the model in our software tool, which uses artificial intelligence
for semi-automation of historical alphabets transliteration and proved its function
on Palmyrene Aramaic script. From a general point of view, we can state that
if a different model is trained on another alphabet, using the same architecture
and mobile application (using different dataset of letters, and with some alterna-
tions of in-app texts), this research can serve as a template for other historical
script analysis and a foundation of historical optical character recognition (OCR)
algorithms.

There is still room for improvement in performance of the photographic model,
which is still run on MobileNet and has only 440 images per class in the dataset.
We plan to expand the set using keras augmentation and to develop generative
adversarial networks. We also plan to create a web application for Palmyrene
alphabet recognition, where we will also implement rows recognition and character

193

Neural Network World 4/2022, 181–195

segmentation, creating a Palmyrene OCR, aiding researchers with transliterating
Palmyrene Aramaic texts in field use and thus contributing to biblical studies. The
aim of the next steps of this research is however not just to create a Palmyrene OCR,
but to suggest neural network architectures for any historical alphabet character
detection, segmentation and classification on mobile and improve the state of art
of creating mobile OCR.

Acknowledgement

This article was created with the support of the Internal Grant Agency (IGA) Fac-
ulty of Management and Economy, Czech University of Life Sciences in Prague,
2021A0004 – “Reading the characters of Palmyrene alphabet using artificial intel-
ligence tools”.

References

[1] EVERSON M. Proposal for encoding the Palmyrene script in the SMP of the UCS [online].
UC Berkeley: Department of Linguistics, 2010. Available from: https://escholarship.org/
uc/item/27b327h7.

[2] GÉRON A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd
Edition. O’Reilly, 2019, pp. 88–92.

[3] GHOSH T., ABEDIN M., CHOWDHURY S., TASNIM Z., KARIM T., REZA S., SAIKA
S., YOUSUF M. Bangla handwritten character recognition using MobileNet V1 architecture.
Bulletin of Electrical Engineering and Informatics. 2020, 9(6), pp. 2547–2554, doi: 10.11591/
eei.v9i6.2234.

[4] GUPTA D. Mobile Application for Bird Species Identification Using Transfer Learning. In:
2021 IEEE International Conference on Artificial Intelligence in Engineering and Technol-
ogy (IICAIET). 2021, pp. 1–6, doi: 10.1109/IICAIET51634.2021.9573796.

[5] HAJIHASHEMI V., ARAB AMERI M.M., ALAVI GHARAHBAGH A., BASTANFARD A.
A pattern recognition based Holographic Graph Neuron for Persian alphabet recognition.
In: 2020 International Conference on Machine Vision and Image Processing (MVIP), 2020,
pp. 1–6, doi: 10.1109/MVIP49855.2020.9116913.

[6] HAMPLOVÁ A., PAVLÍČEK J. Object Recognition Tool for “Smart Nest Boxes.”. In: Pro-
ceedings of IAC in Budapest 2020. IAC-ETITAI., Prague, Czech republic: Czech Institute
of Academic Education, 2020, pp. 105–109.

[7] HILLERS D., CUSSINI E. Palmyrene Aramaic Texts. Baltimore: Johns Hopkins Univ. Press,
1996.

[8] CHO J., LEE K., SHIN E., CHOY G., DO S. How much data is needed to train a medi-
cal image deep learning system to achieve necessary high accuracy?, 2015. Available from:
https://arxiv.org/pdf/1511.06348.pdf

[9] Le Louvre. Louvre Museum Official Website. [viewed 2021-12-01]. Available from: https:

//www.louvre.fr/en.

[10] MARA H., KRÖMKER S., JAKOB S., BREUCKMANN B. GigaMesh and Gilgamesh –
3D Multiscale Integral Invariant Cuneiform Character Extraction. In: The 11th Interna-
tional Symposium on Virtual Reality, Archaeology and Cultural Heritage. VAST 2010., 2010,
doi: 10.2312/VAST/VAST10/131-138.

[11] Palmyra Archaeological Museum. The Archaeological Museum Of Palmyra, 2021 [viewed
2021-12-01]. Available from: https://virtual-museum-syria.org/palmyra/.

[12] Palmyrene, Range: 10860–1087F [pdf]. 2010. Available from: https://www.unicode.org/

charts/PDF/U10860.pdf.

194

https://escholarship.org/uc/item/27b327h7
https://escholarship.org/uc/item/27b327h7
http://dx.doi.org/10.11591/eei.v9i6.2234
http://dx.doi.org/10.11591/eei.v9i6.2234
http://dx.doi.org/10.1109/IICAIET51634.2021.9573796
http://dx.doi.org/10.1109/MVIP49855.2020.9116913
https://arxiv.org/pdf/1511.06348.pdf
https://www.louvre.fr/en
https://www.louvre.fr/en
http://dx.doi.org/10.2312/VAST/VAST10/131-138
https://virtual-museum-syria.org/palmyra/
https://www.unicode.org/charts/PDF/U10860.pdf
https://www.unicode.org/charts/PDF/U10860.pdf

Hamplová A., Franc D., Veselý A.: An improved classifier and transliterator of. . .

[13] SAZAL M.M.R., BISWAS S.K., AMIN M.F., MURASE K. Bangla handwritten character
recognition using deep belief network. In: 2013 International Conference on Electrical In-
formation and Communication Technology (EICT), 2013, pp. 1–5, doi: 10.1109/EICT.2014.
6777907.

[14] SONAWANE P., DROLIA S., SHAMSI S., JAIN B. Self-Supervised Visual Representation
Learning Using Lightweight Architectures, 2021. Available from: https://arxiv.org/pdf/

2110.11160.pdf.

[15] TAYLOR D.G.K. An Annotated Index of Dated Palmyrene Aramaic Texts. Journal of
Semitic Studies. 2001, 16(2), pp. 203–219, doi: 10.1093/jss/XLVI.2.203.

[16] TAN M., LE Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks,
2020. Available from: https://arxiv.org/pdf/1905.11946.pdf

[17] Image Classification — Tensorflow. Tensorflow.org, 2021 [viewed 2021-01-14]. Available
from: https://www.tensorflow.org/lite/examples/image_classification/overview.

[18] THEVENOT A. Python Interface to Create Handwritten dataset [software]. Available from:
https://github.com/AxelThevenot/Python-Interface-to-Create-Handwritten-dataset

[19] YAMAUCHI K., YAMAMOTO H., MORI W. Building A Handwritten Cuneiform Char-
acter Imageset. In: Proceedings of the Eleventh International Conference on Language Re-
sources and Evaluation. LREC 2018., Miyazaki, Japan, 2018. Available from: aclweb.org/
anthology/L18-1115.

195

http://dx.doi.org/10.1109/EICT.2014.6777907
http://dx.doi.org/10.1109/EICT.2014.6777907
https://arxiv.org/pdf/2110.11160.pdf
https://arxiv.org/pdf/2110.11160.pdf
http://dx.doi.org/10.1093/jss/XLVI.2.203
https://arxiv.org/pdf/1905.11946.pdf
https://www.tensorflow.org/lite/examples/image_classification/overview
https://github.com/AxelThevenot/Python-Interface-to-Create-Handwritten-dataset
aclweb.org/anthology/L18-1115
aclweb.org/anthology/L18-1115

Attachment 3

D. Franc, A. Hamplová and O. Svojše, “Augmenting Historical Alphabet Datasets Using

Generative Adversarial Networks,” Data Science and Algorithms in Systems. CoMeSySo

2022. Lecture Notes in Networks and Systems, vol. 597, pp. 132-141, 04 01 2023.

Attachment 4

A. Hamplová, D. Franc and J. Pavlíček, “Character segmentation in the development of

Palmyrene Aramaic OCR,” CAISE 2023 35th International Conference on Advanced

Information Systems Engineering, 2023.

Attachment 5

A. Hamplová, A. Lyavdansky, T. Novák, O. Svojše, D. Franc and A. Veselý, “Instance

Segmentation Of Characters Recognized In Palmyrene Aramaic Inscriptions,” Computer

Modelling in Engineering & Sciences, 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.050791

ARTICLE

Instance Segmentation of Characters Recognized in Palmyrene
Aramaic Inscriptions

Adéla Hamplová1,*, Alexey Lyavdansky2,*, Tomáš Novák1, Ondřej Svojše1, David Franc1 and
Arnošt Veselý1

1Czech University of Life Sciences in Prague (CULS), Faculty of Economics and Management, Department of Information
Engineering, Prague, 16500, Czech Republic
2National Research University Higher School of Economics (HSE), Faculty of Humanities, Institute for Oriental and Classical
Studies, Moscow, 101000, The Russian Federation

*Corresponding Authors: Adéla Hamplová. Email: hamplova@pef.czu.cz; Alexey Lyavdansky. Email: andurar@gmail.com

Received: 18 February 2024 Accepted: 12 April 2024

ABSTRACT

This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene
inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The
goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern
deep learning methods in archaeological research. Our research culminates in several key findings and scientific
contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of
Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses
of each algorithm in this context. We also created and annotated an extensive dataset of Palmyrene inscriptions, a
crucial resource for further research in the field. The dataset serves for training and evaluating the segmentation
models. We employ comparative evaluation metrics to quantitatively assess the segmentation results, ensuring the
reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation
masks. Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes
a benchmark for future research. The availability of the Palmyrene dataset and the insights into algorithm
performance contribute to the broader understanding of historical text analysis.

KEYWORDS
Optical character recognition; instance segmentation; Palmyrene; ancient languages; computer vision

1 Introduction

Palmyra, known as Tadmur in Arabic, is an ancient city located in the Syrian desert. It is also
an essential part of human history. Its archaeological significance lies not only in its physical ruins,
but also in the inscriptions carved into the buildings and into the funerary stelae. These inscriptions
represent a valuable repository of knowledge that records the Palmyrene dialect of Aramaic, its
culture, and the records of ancient Palmyrene society. However, uncovering the secret written on these
inscriptions poses challenges for the scientific community.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.050791
https://www.techscience.com/doi/10.32604/cmes.2024.050791
mailto:hamplova@pef.czu.cz
mailto:andurar@gmail.com

2 CMES, 2024

Deciphering and analyzing these historical texts have interested scientists, historians, and archae-
ologists for generations, and until now it has only ever been done by linguists, not by machines.
Therefore, applying deep learning (DL) methods is a transformative force, making the work of linguists
easier and allowing the non-scholarly public access to texts that would otherwise be incomprehensible
to them. Deep learning algorithms, including deep neural networks, offer automation in letter classi-
fication and segmentation, which can be a potential solution to the complexity of the transcription of
Palmyrene inscriptions.

Previous research [1] dealt with classifying Palmyrene characters from handwritten transcripts
and photographs and their augmentation [2]. It addressed the classification in two ways. The first way
is to divide a dataset of Palmyrene characters into squares that each contain one letter; the second
way is to handwrite an EMNIST-like dataset using special software and a mouse pen tablet and then
make both classifiers available in an Android mobile application and an online application [3], using
a custom neural network which was chosen as the best performing from 10 different architectures.
As photographs classification did not achieve satisfactory results initially, Generative Adversarial
Networks (GAN) are employed to expand the classification dataset, improving the outcomes by 120%.
The research plan for segmenting Palmyrene characters was presented at a conference in 2023 [4].

Based on deep learning principles, this study aims to evaluate and compare the performance of
state-of-the-art DL instance segmentation algorithms in Palmyrene character segmentation. Through
data collection in collaboration with several museums worldwide, photo analysis, pre-processing, man-
ual review of published transcriptions, and custom annotation in the Roboflow annotation platform,
the computing power of DL is employed to solve the unique challenges posed by transcriptions of
ancient inscriptions.

2 Structure

The article is structured as follows:

Section 3—Related Work-presents other works that describe developing an ancient or alive
language Optical Character Recognition (OCR) and comment on the proposed methods. It also
presents other relevant studies that utilize instance segmentation and the research gap.

Section 4—Data Collection and Preparation-describes how the data were obtained from the
museums, checks the published transliterations to indicate if they align with the photographs, and adds
the transliterations to photos that did not have them available. It also describes the pre-processing and
annotation process and its challenges and defines the number of classes to work with.

Section 5—Methodology-introduces two approaches-single-and multi-class segmentation-and
algorithms used-YOLOv8 and Roboflow 3.0. It explains the advantages and disadvantages of each
method and describes the training, hyperparameters, and evaluation metrics. It also presents the
custom scripts developed for letter sorting and visualization.

Section 6—Results-includes individual network training, testing, quantitative metrics, and visual-
ization of results.

Sections 7 through 9 discuss the results, next steps, and conclusion. At the end, statements,
acknowledgments, and references are presented, followed by Appendices A and B that provide details
of the models’ training and testing.

CMES, 2024 3

3 Related Work

Developing OCR or Natural Language Processing (NLP) algorithms for languages lacking
existing solutions is an essential part of preservation and making it easier to process documents in
that given language. This applies to historical texts, such as Egyptian hieroglyphs [5], Sanskrit [6], and
different types of cuneiform [7] and living languages.

For instance, a Turkish OCR system [8] employs commonly available OCR algorithms-CuneiForm
Cognitive OpenOCR, GNU License Open-source Character Recogniton (GOCR), and Tesseract [9]-
to handle a dataset consisting of scans and photos of Turkish texts. Another was designed for Icelandic
to aid in digitizing the Fjolnir magazine, housing historical texts [10]. Character recognition has also
been developed for Bangla [11], presenting unique challenges due to the variability of characters and
the presence of ligatures (conjunctions of characters). Oni et al. [12] developed an OCR algorithm
based on generated training data. They scanned images of Yoruba texts written in Latin script and
reached 3.138% character error rate using the Times New Roman font.

There are comparative performance studies for or languages with many OCR systems available,
either of the whole systems [13] or separate languages, such as Arabic [14].

Using instance segmentation algorithms for character detection can be effective in image-based
tasks involving handwriting, as opposed to OCR for scanned text, where semantic segmentation is
employed to separate text from background, e.g., in the case of Czechoslovak scanned documents
[15]. Instance segmentation using Convolutional Neural Networks (CNNs) is applied to detect the
boundaries of individual objects. It is usually used for other tasks, such as segmenting leaves in plants
[16], cars in a parking lot [17], or ships and airplanes from satellite images [18].

Although instance segmentation algorithms are usually used for tasks other than letter segmen-
tation, they also have a high potential to find letters in photographs. Instance segmentation can make
it possible to recognize characters in different font styles and photographs of various quality if a large
enough dataset is available, and it is not necessary to separate the text from the non-text part.

4 Data Collection and Preparation
4.1 Obtaining Data

Photographs of Palmyrene inscriptions were obtained from several private sources with their
consent, from public online sources, and by taking photographs in the respective museums. The pho-
tographs of inscriptions originate from Arbeia Roman Fort and Museum1, Archaeological Museum
of Palmyra2, The British Museum3, Carlsberg Glyptotek4, Hypogeum of Three Brothers5, MET
Museum6, Musée du Louvre7, Musei Vaticani8, Museum of the American University, Beirut9, The
Getty Villa Museum10, National Museum in Prague11, Royal Ontario Museum12, The Pushkin State
Museum of Fine Arts13 and The State Hermitage Museum14.

1https://arbeiaromanfort.org.uk/.
2https://virtual-museum-syria.org/palmyra/.
3https://www.britishmuseum.org/.
4https://glyptoteket.dk/.
5https://archeologie.culture.gouv.fr/palmyre/en/mediatheque/hypogeum-three-brothers-palmyra-7.
6https://www.metmuseum.org/.
7https://www.louvre.fr/en.
8https://www.museivaticani.va/content/museivaticani/en.html.
9https://www.aub.edu.lb/museum_archeo/Pages/default.aspx.
10https://www.getty.edu/visit/villa.
11https://www.nm.cz/en.
12https://www.rom.on.ca/en.
13https://pushkinmuseum.art/?lang=en.
14https://www.hermitagemuseum.org/wps/portal/hermitage/.

https://arbeiaromanfort.org.uk/
https://virtual-museum-syria.org/palmyra/
https://www.britishmuseum.org/
https://glyptoteket.dk/
https://archeologie.culture.gouv.fr/palmyre/en/mediatheque/hypogeum-three-brothers-palmyra-7
https://www.metmuseum.org/
https://www.louvre.fr/en
https://www.museivaticani.va/content/museivaticani/en.html
https://www.aub.edu.lb/museum_archeo/Pages/default.aspx
https://www.getty.edu/visit/villa
https://www.nm.cz/en
https://www.rom.on.ca/en
https://pushkinmuseum.art/?lang=en
https://www.hermitagemuseum.org/wps/portal/hermitage/

4 CMES, 2024

4.2 Checking Transcriptions
Prior to the annotation, the collected photographs were checked. For each photo, the visible letters

were checked. For some photographs, previously published transcriptions were available and edited to
match the visible characters in the photographs. For those photographs that did not have transcripts
available, transcripts were created.

4.3 Annotation and Pre-Processing
The annotation of the instance segmentation dataset was based on the checked and newly created

transcriptions and was completed in the Roboflow annotation tool using 26 classes corresponding
with the Palmyrene characters. Table 1 shows the complete list.

Table 1: Palmyrene character classes in multi-class segmentation

Class index Class name Transcription Palmyrene

0 One 1
1 Ten 10/100
2 Twenty 20
3 Aleph
4 Ayin
5 Beth b
6 Gimel g
7 He h
8 Heth h.
9 Kaph k
10 Lamedh l
11 Mem m
12 Nun n
13 Nun_final n
14 Pe p
15 Qoph q
16 Resh/daleth r/d
17 Right >
18 Sadhe s.
19 Samekh s
20 Shin š
21 Taw t
22 Teth t.
23 Waw w
24 Yodh y
25 Zayin z

CMES, 2024 5

The characters “left” and “right” are paratextual signs similar to punctuation marks.
Traditionally, they are labeled “ivy leaf” and put either at the beginning or at the end of a line, or
a whole text in Palmyrene Aramaic and Greek inscriptions. Generally, the “left” ivy leaf is used much
more often than its right counterpart.

The character “left” was not present in any of the photographs, so it was excluded from the
class list, but it was included in the classification dataset. The characters “resh” and “daleth” were
combined into a single class because they are often written identically, with their distinction depending
only on the context. Sometimes, “resh” is marked with a dot above. However, a segment must be a
continuous object. Hence, the dot will make a separate segment. There are some dotted “resh” in
the dataset, but they are a minority compared to the volume of those that are not dotted.

The same blending applies to characters “10” and “100”, “5” and “ayin”. In some visual variants,
this also applies to the pair “mem” and “qoph” and the pair “heth” and “sadhe”, however, they were
preserved as a separate class, as other visual variants are distinguishable.

5 Methodology
5.1 Instance Segmentation

Segmentation is the most intricate of the three computer vision tasks: classification, object
detection, and segmentation [19]. It involves pixel-level classification, where pixels are grouped based
on the selected class, revealing the precise boundaries of objects. There are two main types of
segmentation: semantic segmentation, which clusters pixels belonging to the same class regardless
of whether objects overlap, and instance segmentation, which identifies individual instances of objects
within the same class. Instance segmentation determines the outlines of each instance based on factors
such as shape, texture, brightness, and color [20].

During the training of an instance segmentation model, four types of losses are minimized in
parallel, including box, segmentation, class, and distributional focal (box_loss, seg_loss, cls_loss,
dfl_loss). The box loss measures the difference between predicted bounding box coordinates and the
ground truth bounding box coordinates for each object instance, typically calculated as smooth L1
loss. The segmentation loss quantifies the difference between the predicted segmentation mask and the
ground truth mask for each object instance. The class loss describes the variation between predicted
class probabilities and the true class labels associated with each object instance. It is typically computed
using a categorical cross-entropy loss function. The distributional focal loss is a modified version of
the focal loss employed to solve the class imbalance problem. More information about the losses can
be found in the literature [21].

This study uses two approaches to extract text from a photo using instance segmentation.

5.1.1 Single-Class Instance Segmentation

The first approach aims to segment letters regardless of their class and semantic meaning. Hence,
the identified segments are ordered as text (right to left, top to bottom), and plotted one by one in
the empty images (as described in Section 5.4, Custom Tools). These individual images are input
for classification, and the classified features in the correct order form the entire text in the photo.
This approach of looking for segments in only one class greatly increases the chance of finding more
segments since the neural network only looks for one class.

6 CMES, 2024

5.1.2 Multi-Class Instance Segmentation

The second approach uses multi-class segmentation. Each letter is identified separately in the
dataset, making it more accurate to find them and draw more correct segmentation masks. However,
many letters are underrepresented in the dataset, so the segmentation algorithms do not find them and
miss them entirely in the resulting text transcription. This problem will be solved through a significant
dataset extension, which is currently in progress.

5.2 Selected Segmentation Models, Their Advantages and Disadvantages, Hyperparameters and
Training

This study selected two instance segmentation algorithms. A comparison between YOLOv8 and
Mask Region-based Convolutional Neural Network (R-CNN) was presented in 2023 [22] and showed
that YOLOv8 performs better on selected images from fish-eye cameras. Like the images of the
sandstone tablets with the Palmyra inscriptions, these images are of lower quality, and YOLOv8 can
find more objects than the more accurate R-CNN. Roboflow Train was also chosen because this
company offers dataset management, integrates an annotation tool, and offers data augmentation
directly in the application. Thus, training directly in this particular application is relevant as the dataset
was annotated there.

5.2.1 YOLOv8

YOLO, short for You Only Look Once, was released in 2016. It belongs to the category of one-
shot detectors, which are generally less accurate but very fast, contrary to two-stage detectors, which
are more accurate and slower [23]. YOLO has been under development for multiple years by Redmond
et al. [24–26] until he decided to retreat from the research in fear of potential misuse by social media
companies and the military; however, other teams took over his work. The first version of YOLO to
incorporate instance segmentation was YOLOv5 in September 2022 [27]. It was developed by Glenn
Jocher as an object detection algorithm [28]. The most contemporary version-YOLOv8, includes
instance segmentation from January 2023 [29].

The main advantages of using YOLO are its training and inference speed, but it generally comes
with lower accuracy.

The selected YOLOv8 instance segmentation model comprises 261 layers, 11800158 parameters,
11800142 gradients, and 42.7 GFLOPs. The complete architecture overview is indicated in Table A1 in
Appendix A. The initial weights “yolov8n-seg.pt” are trained on the COCO dataset, and the transfer
learning technique is used.

5.2.2 Roboflow 3.0 Instance Segmentation (Accurate)

Roboflow Train 3.0 is a model included in the Roboflow web application, released in July 2023
[30]. There are two options: fast or accurate training. However, the company has not publicly disclosed
technical specifics about the structure and architecture. The main advantages are the simplicity of use
and remote training, and the disadvantages are the lack of control over the model, as the only options
the user can influence are the model type and providing a custom dataset with selected augmentation
options.

5.3 Evaluation Metrics
Each Palmyrene text within a photo examines whether the correct number of characters is

identified and whether the characters are correctly classified. Error analysis can be performed for

CMES, 2024 7

three main types of errors within the OCR transcription of a whole test set, and more derived metrics
can be used. The following errors can occur when processing a test dataset:

• Insertion Errors: The system found a character where there was none. This study denotes the
number of these errors as I .

• Substitution Errors: The system found the character in a certain location but misclassified it.
This study denotes the number of such errors as S.

• Deletion Errors: There was a character at that location, but the system found no character at
that location. This study denotes the number of these errors as D.

• Total Levenshtein Distance: The total number of errors that occurred during the processing of
the test data set is:

TLD = I + D + S (1)

where TLD is the Total Levenshtein Distance. The Levenshtein Distance, also known as the Edit-
Distance algorithm, measures the number of characters that must be changed, added, or deleted in
the predicted word so that it matches the true word [31]. Total Levenshtein distance does not apply to
a word; it applies to the whole text.

• Total Character Accuracy: In addition to the Total Levenshtein Distance, the system’s behavior
will be evaluated using the Total Character Accuracy metric, which will rate the overall quality
of the transcript. This study denotes the total number of letters as N and the Total Character
Accuracy as TCA, where:

TCA = 100 · (N − S − D)

N
(2)

Thus, TCA determines the percentage of characters correctly found and correctly classified in
the test dataset. The TCA value does not depend on the number of insertion errors I . Therefore, the
value of the I parameter or the Total Levenshtein Distance that incorporates the I value must also be
considered when evaluating the system’s overall quality.

5.4 Custom Tools
The image is processed to text, as shown in Fig. 1.

5.4.1 Prediction Scripts

Due to the use of two segmentation methods and, thus, four different models, the characters in
images are predicted in multiple ways. However, a 40% confidence score is always set as a threshold.

This study predicts using the stored model on the web server for single-class segmentation using
YOLO. It obtains a list of identified segments labeled as “1” only (meaning a character). These are
then sorted by the developed program from right to left, top to bottom (see Section 5.4.3 Sort), and
after sorting, they are printed on a square image (Section 5.4.3 Draw), which is input to the classifier,
classifying them in that order and outputs the resulting text.

For single-class segmentation using Roboflow, we use the Roboflow API snippet to predict the
segments. The segments are then converted to YOLO format, and the subsequent procedure is identical
to YOLO single-class segmentation.

8 CMES, 2024

Figure 1: Palmyrene character instance segmentation-process flow diagram

Multi-class segmentation using YOLO uses a second model stored on the web server, the outputs
are segments already assigned to the appropriate characters. These are further sorted, and the resulting
text is obtained directly from the sorting tool. When using the last model, Roboflow multi-class
segmentation, the predictions from the “.json” format are converted to the Yolo format. Then, the
segments are sorted to produce the resulting text.

5.4.2 Detecting Rows and Sorting Letters

Classical line detection algorithms for scanned documents assume that the lines are straight, and in
handwritten documents [32], line detection is performed in the original image before detecting separate
letters. Another successful approach to detect lines in documents is to use Google Tesseract [33], but
it does not support the Palmyrene language. The traditional algorithms assume text linearity and
regularity, which is absent in the historical texts captured in the photographs of sandstone inscriptions.
Such handwriting has considerable variability, which causes irregularities in spacing, angles of lines,
and diverse styles, which were unique to each person. Palmyrene also uses irregular fonts in some cases.
It was, therefore, necessary to address the issue in a specific manner.

The study cannot use either of the mentioned approaches because they are not intended to sort
polygons already detected by YOLO or Roboflow Instance Segmentation. Since these polygons are
restored from photographs, the rows in the images are ambiguous and not always straight.

CMES, 2024 9

At first, the algorithm in sort.py reads polygon information in YOLO instance segmentation
format (the class index, points as x, y coordinate tuples, and confidence score). If the format is different,
the variant sort_json.py is used, and subsequently, the output is converted for further processing by
another custom script json_to_yolo.py. The sorting principle is as follows:

1. The average height h of the polygons (xi,yi) is determined (see Fig. 2).

2. Polygons are sorted in descending order according to their yi coordinate.

3. Splitting into rows: For all pairs of polygons ((xi, yi), (xi+1, yi+1)), i = 1, ... , n–1, we determine,
whether

|yi+1 − yi| > 0.5 · h (3)

If the result of the inequality is true, yi becomes the last polygon of the current row and yi+1 becomes
the first polygon of the subsequent row.

4. Polygons (xi, yi), i = 1, ..., n, are arranged in each row based on the size of the xi coordinate in
descending order (the Palmyrene text is read from right to left).

Finally, the output text is printed, and the sorted polygons are saved to the file whose name was
specified when the script was run.

Figure 2: Coordinates (xi, yj)

5.4.3 Visualization Tools

Sort

The sorting tool includes plotting the polygons and class names in a plot, as depicted in Fig. 3.

Draw

draw.py visualizes separate polygons, which are printed into a black-and-white binary image in the
correct order, which is an input to classification. The relative coordinates of the polygons (obtained
by YOLO or converted to YOLO format from the “.json” format used by Roboflow 3.0) are scaled
to match the size of the original image. The algorithm processes each polygon in the dataset. It scales
the polygon’s relative coordinates to fit the original image’s size. Then, the polygons are drawn as
white letters into a black image in the original polygon size. Subsequently, the polygons are cropped
or stretched to a target size (80 × N or N × 80) based on the aspect ratio of the polygons and put in
the center of a 100 × 100 black image, which is saved with a filename that indicates the polygon index.

10 CMES, 2024

The output of this tool is illustrated in Fig. 4. Then, the letters are classified using the classification
prediction script, resulting in a final list of transcribed letters.

Figure 3: Plotted polygons from YOLO multi-class and single-class predictions of a photo of
“Inv.1438/8582, Archaeological museum of Palmyra”, generated by sort.py tool

CMES, 2024 11

Figure 4: Plotted and sorted polygons for classification

6 Results
6.1 Training Results

The models were trained on the dataset consisting of 119 images with 3578 hand-annotated
Palmyrene characters, resized to 920 × 920 pixels, and augmented to triple the dataset size using the
following augmentation options:

• Grayscale: Apply to 50% of images

• Saturation: Between −60% and +60%

• Brightness: Between −11% and +11%

• Exposure: Between −11% and +11%

• Blur: Up to 1.25px

The value of the loss functions box_loss, seg_loss, cls_loss, and dfl_loss on the training set steadily
decreases during the learning process.

The values of the four loss functions on the validation datasets oscillate, but their mean values
also reduce. The smoothest decrease of the validation loss functions can be observed on the YOLOv8
multi-class model and the most random changes on the Roboflow 3.0 single-class model. The
detailed training Figs. A1–A8 are provided in Appendix A. Table 2 lists the training results of each
segmentation algorithm after the first and last epochs are rounded to 2 decimal places. There are 100
epochs for the YOLOv8 model and 120 epochs for the Roboflow model.

12 CMES, 2024

Table 2: Training of all models in the first and last epoch

Model Roboflow 3.0
multi-class

YOLOv8
multi-class

Roboflow 3.0
single-class

YOLOv8
single-class

First epoch box_loss 1.56 1.11 1.15 2.28
seg_loss 2.91 2.12 2.21 4.63
cls_loss 2.97 0.95 0.97 3.30
dfl_loss 1.23 0.95 1.04 1.59

Last epoch box_loss 0.31 0.68 0.62 0.84
seg_loss 0.85 1.57 1.36 1.71
cls_loss 0.30 0.48 0.39 0.48
dfl_loss 0.14 0.85 0.86 0.87

6.2 Evaluation Results
The success of single-class segmentation with subsequent classification and multi-class segmen-

tation was evaluated on six images with Palmyrene inscriptions with 216 characters. Each image
was analyzed for errors specified in the Section 5. Only images with clear inscriptions were selected
for the test, as the models did not perform well on lower-quality images. Tables A2–A7 include the
original texts and comparisons to predictions available in Appendix B and a summary is present in
Table 3. Original text in [brackets] indicates letters that are not visible in the photo but are part of the
inscription. Errors in the predicted texts are labeled in the texts as follows:

Table 3: Overall evaluation of all models

YOLO
single-class

YOLO
multi-class

Roboflow
single-class

Roboflow
multi-class

Insertion Errors 9 6 0 8
Deletion Errors 2 7 10 17
Substitution Errors 47 7 60 5
Total Character
Accuracy

77.3% 93.5% 67.6% 89.8%

Total Levenshtein
Distance

58 20 70 30

(1) insertion errors: bold and underlined, (2) substitution errors: bold, (3) deletion errors: bold dash
-. All plotted figures with texts generated by the sort.py tool are available on GitHub [12].

7 Discussion

The results indicated that the Roboflow 3.0 multi-class model should be theoretically best
performing as the losses in the last epoch are the least of all trained models. However, it ultimately
achieves a Total Levenshtein Distance of 30 and a Total Character Accuracy of 89.8%, placing
this model in second position. The subsequent tests showed that the YOLO multi-class instance

CMES, 2024 13

segmentation model performs best with the least Total Levenshtein Distance of only 20 and the highest
Total Character Accuracy of 93.5%. The evaluation of both these models proved that using the multi-
class segmentation method attains satisfactory results because the predicted segmentation mask shapes
are very accurate.

However, the single-class instance segmentation method with consecutive classification is insuffi-
cient for practical use as the Total Character Accuracy reached only 77.3% for the YOLO single-class
instance segmentation model, and its Total Levenshtein Distance was too high with the value of 58,
due to a high number of misclassified characters. The Roboflow single-class model reached 67.6%
Total Character Accuracy with a Total Levenshtein Distance of 70.

Although the classifier of handwritten Palmyrene characters, which was utilized to classify the
predicted polygons created from instance segmentation masks, reached over 98% for classifying
handwritten characters [1], the issue causing the misclassification can be the thickness of the lines,
as the classifier was trained on artificially written characters with a fixed line thickness, which was
significantly smaller. Sometimes, the predicted segmentation masks were very wide. Also, some of the
predicted segments had incomplete shapes.

The best performing (YOLO multi-class) model was implemented in the web application ML-
research [3] under the tab “Segmentation & Transcript”.

The average accuracy of the OCR of Egyptian hieroglyphs was 66.64%, surpassing the state of
art, which was 55.27% before that [9]. Arabic character recognition using Deep Belief Network (DBF)
and Convolutional Deep Belief Network (CDBF) was 83.7% accuracy on the IFN/ENIT Database
on a model that reached 97.4% accuracy during training [34]. A Holography graph neuron-based
system (HoloGN) for handwritten Persian characters [35] was over 90% accuracy when using a dataset
extracted from 500000 images of isolated Farsi characters written by hand by Iranian people, but only
45% on images downsized to 32 × 16 pixels due to memory use optimization when using feedforward
Artificial Neural Network (ANN). By comparing this study’s results to those of others in historical
alphabets OCR, the proposed algorithm performed well with 93.5% accuracy when used on high-
quality images of Palmyrene inscriptions.

8 Limitations and Next Steps

Some limitations can be encountered when using instance segmentation algorithms to identify
Palmyrene characters in photographs. A possible problem arises from underrepresenting some char-
acters in the training dataset. Although some letters such as “b”, “d/r”, “y” and “l” occur in almost
every inscription, others such as “left”, “right”, “pe” and “samekh” appear quite rarely.

In the case of single-class instance segmentation, a limitation is the occasional inaccurate identifi-
cation of polygons derived from the segmentation masks of letters, which can cause the character to be
assigned to a different class than the one to which the letter belongs during subsequent classification.
In order to address this problem, the polygons can be added to the training subset, and the handwritten
character classifier can be retrained. This is subject to testing as it can bias the results of handwriting
classification.

When choosing multi-class segmentation, there is a potentially higher risk of encountering
deletion errors-missing some letters-especially for the Roboflow Instance Segmentation model. Since
this type of segmentation expects very accurate character shapes presented to it during training, this
can lead to missed letters in the recognized text when predicting texts in new images.

14 CMES, 2024

In the next steps of this research, the focus will be on integrating natural language processing
(NLP) techniques to combine identified letters into words and sentences and to enable translation into
other world languages. Developing an NLP module that interprets contextual relationships between
characters requires collaboration with experts in the Palmyrene language. Continuous and dynamically
updated expansion of the dataset by including photos of Palmyrene inscriptions with newly created
transcriptions will ensure refinement of the current models and experiment with all possible data
augmentation options. The study hopes to include the data in standard OCR training datasets, making
it easily accessible for further experiments.

9 Conclusion

This study creates an instance segmentation model, which can identify and transcribe letters within
high-quality photos of Palmyrene inscriptions with an accuracy of 93.5%, a significant step towards
developing a Palmyrene OCR algorithm.

The development of tools capable of reading the characters and texts of dead languages has
impactful sociological importance, as it links the past and the present. Inscriptions in dead languages
carry information about important aspects of human history, in the case of Palmyrene Aramaic,
recorded in the funerary, honorific, and dedicatory texts. By establishing OCR technology for this
language, the potential for understanding ancient texts is expanded to a wider range of linguists,
historians, archaeologists, museum keepers, and possibly even the non-scholarly public.

The final goal of humanists and linguists is to decipher the letters individually and understand the
entire inscriptions and contextual meaning, which is not a simple objective that can be accomplished
with a single computational task. However, this research is an essential step towards deciphering the
texts in Palmyrene Aramaic, and the methodology used can be applied to the analysis and extraction
of characters from other alphabets that do not use ligatures. The letters can be spatially separated from
each other.

Acknowledgement: We would like to thank our grant agency for providing us with the funds necessary
to perform this research. We would also like to thank our reviewers and editors for perfecting our
manuscript.

Funding Statement: The results and knowledge included herein have been obtained owing to support
from the following institutional grant. Internal grant agency of the Faculty of Economics and
Management, Czech University of Life Sciences Prague, Grant No. 2023A0004 – “Text Segmentation
Methods of Historical Alphabets in OCR Development”. https://iga.pef.czu.cz/. Funds were granted
to T. Novák, A. Hamplová, O. Svojše, and A. Veselý from the author team.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: A. Hamplová; data collection and annotation: A. Hamplová; inscription checking and text
transcriptions: A. Lyavdansky; analysis and interpretation of results: A. Hamplová; web application
updates: D. Franc, O. Svojše; draft manuscript preparation: A. Hamplová, A. Veselý, A. Lyavdansky;
finance resource management: T. Novák; formatting references and the article structure in accordance
with CMES template: A. Hamplová, T. Novák. All authors reviewed the results and approved the final
version of the manuscript.

https://iga.pef.czu.cz/

CMES, 2024 15

Availability of Data and Materials: The latest dataset version is available at Roboflow [36]. The code
that was developed in this research is available on GitHub [37]. By publishing the dataset and code
related to our research, transparency and reproducibility are ensured.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Hamplová A, Franc D, Veselý A. An improved classifier and transliterator of handwritten Palmyrene letters

to Latin. Neural Netw World. 2022;32:181–95.
2. Franc D, Hamplová A, Svojše O. Augmenting historical alphabet datasets using generative adversarial

networks. In: Data Sci Algorithms Syst Proc 6th Comput Methods Syst Softw 2022; 2023;2:132–41.
3. Hamplová A. Palmyrene translation tool. Available from: https://ml-research.pef.czu.cz. [Accessed 2021].
4. Hamplová A, Franc D, Pavlicek J. Character segmentation in the development of palmyrene aramaic OCR.

In: Model-driven organizational and business agility; Zaragoza, Spain; Jun 12–13, 2023. p. 80–95.
5. Elnabawy R, Elias R, Salem M. Image based hieroglyphic character recognition. In: 14th International

Conference on Signal-Image Technology & Internet-Based Systems (SITIS); 2018; Las Palmas de Gran
Canaria, Spain. p. 32–9.

6. Avadesh M, Goyal N. Optical character recognition for Sanskrit using convolution neural networks. In:
2018 13th IAPR International Workshop on Document Analysis Systems (DAS); 2018; Vienna, Austria. p.
447–52.

7. Gordin S, Gutherz G, Elazary A, Romach A, Jiménez E, Berant J, et al. Reading Akkadian cuneiform using
natural language processing. PLoS One. 2020;15(10):1–16.

8. Karasu K, Bastan M. Turkish OCR on mobile and scanned document images. In: 2015 23nd Signal
Processing and Communications Applications Conference (SIU); 2015; Malatya, Turkey. p. 2074–7.

9. Smith RW, Zanibbi R, Coüasnon B. History of the Tesseract OCR engine: what worked and what didn’t.
In: SPIE Optical Engineering + Applications; 2013; San Diego, California, USA.

10. Daoason JF, Bjarnadóttir K, Rúnarsson K. The journal fjolnir for everyone: the post-processing of
historical OCR texts. In: LREC 2014, Ninth International Conference on Language Resources and
Evaluation; 2014; Reykjavik, Iceland.

11. Rahaman A, Hasan MM, Shuvo MF, Ovi MAS, Rahman MM. Analysis on handwritten Bangla character
recognition using ANN. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV);
2014; Dhaka, Bangladesh. p. 1–5.

12. Oni OJ, Asahiah F.O Computational modelling of an optical character recognition system for Yorùbá
printed text images. Sci Afr. 2020;9:1–12.

13. Salah AB, Moreux JP, Ragot N, Paquet T. OCR performance prediction using cross-OCR alignment. In:
13th International Conference on Document Analysis and Recognition (ICDAR); 2015; Tunisia; p. 556–60.

14. Alghamdi MA, Alkhazi IS, Teahan WJ. Arabic OCR evaluation tool. In: 2016 7th International Conference
on Computer Science and Information Technology (CSIT); 2016; Amman, Jordan. p. 1–6.

15. Gruber I, Hlaváč M, Hrúz M, Železný M. Semantic segmentation of historical documents via fully-
convolutional neural network. In: Lecture Notes in Computer Science (LNAI). Cham, Linz, Austria:
Springer; 2019. vol. 11658, p. 142–9.

16. Yi J, Wu P, Liu B, Hoeppner DJ, Metaxas DN, Fan W. Object-guided instance segmentation for biological
images. IEEE Trans Med Imag. 2021 Sep;40(9):2403–14. doi:10.1109/TMI.2021.3077285.

17. Berry T, Dronen N, Jackson B, Endres I. Parking lot instance segmentation from satellite imagery through
associative embeddings. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems; 2019; Chicago IL USA. p. 528–31.

https://ml-research.pef.czu.cz
https://doi.org/10.1109/TMI.2021.3077285

16 CMES, 2024

18. Luo Y, Han J, Liu Z, Wang M, Xia G. An elliptic centerness for object instance segmentation in aerial
images. J Remote Sens. 2022; 2022:9809505. doi:10.34133/2022/980950.

19. Matsuzaka Y, Yashiro R. AI-based computer vision techniques and expert systems. AI. 2023;4(1):289–302.
20. Hafiz AM, Bhat GM. A survey on instance segmentation: state of the art. Int J Multimed Inf Retr.

2020;9(3):171–89.
21. Zhang H, Wang Y, Dayoub F, Sünderhauf N. Reference for ultralytics/utils/loss.py. Available from:

https://docs.ultralytics.com/reference/utils/loss. [Accessed 2024].
22. Telicko J, Jakvics A. Comparative analysis of YOLOv8 and Mack-RCNN for people counting on fish-eye

images. In: 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME); 2023; Tenerife, Canary Islands, Spain. p. 1–6.

23. Wang X, Zhi M, Pan Z, Wang X. Summary of object detection based on convolutional neural network.
In: Eleventh International Conference on Graphics and Image Processing (ICGIP 2019); 2020; Hangzhou,
China. vol. 2020, no. 31.

24. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016; Honolulu. p. 779–88.

25. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR); 2017; Honolulu. p. 6517–25.

26. Redmon J, Farhadi A. YOLOv3: an incremental improvement. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); 2018; Honolulu.

27. Roboflow Team. What is YOLOv5 instance segmentation? Available from: https://roboflow.com/model/yol
ov5-instance-segmentation. [Accessed 2022].

28. Jocher G. YOLOv5 by ultralytics. Available from: https://zenodo.org/records/3908560. [Accessed 2020].
29. Jocher G. Ultralytics. Available from: https://github.com/ultralytics/ultralytics. [Accessed 2023].
30. Gallagher J. Announcing roboflow train 3.0. Available from: https://blog.roboflow.com/roboflow-train-3-0.

[Accessed 2023].
31. Adjetey C, Adu-Manu K. Content-based image retrieval using tesseract OCR engine and levenshtein

algorithm. Int J Adv Comput Sci Appl. 2021;12(7):666–75.
32. Li Y, Yefeng Z, Doermann D. Detecting text lines in handwritten documents. In: 18th International

Conference on Pattern Recognition (ICPR’06); 2006; Hong Kong, China. p. 1030–3.
33. Bugayong VE, Flores VJ, Linsangan NB. Google tesseract: optical character recognition (OCR) on

HDD/SSD labels using machine vision. In: 2022 14th International Conference on Computer and Automa-
tion Engineering (ICCAE); 2022; Brisbane, Australia. p. 56–60.

34. Elleuch M, Tagougui N, Kherallah M. Deep learning for feature extraction of arabic handwritten script.
In: George A, Petkov N, editors. Lecture notes in computer science. Cham: Springer; 2015. vol. 9257, p.
371–82.

35. Hajihashemi V, Arab Ameri MM, Alavi Gharahbagh A, Bastanfard A. A pattern recognition based
holographic graph neuron for persian alphabet recognition. In: 2020 International Conference on Machine
Vision and Image Processing (MVIP); 2020; Qom, Iran. p. 1–6.

36. Hamplová A. Palmyrene computer vision project. Available from: https://universe.roboflow.com/adela-hamp
lova/palmyrene-tutzu. [Accessed 2023].

37. Hamplová A. PalmyreneOCR. Available from: https://github.com/adelajelinkova/PalmyreneOCR.
[Accessed 2024].

https://doi.org/10.34133/2022/980950
https://docs.ultralytics.com/reference/utils/loss
https://roboflow.com/model/yolov5-instance-segmentation
https://roboflow.com/model/yolov5-instance-segmentation
https://zenodo.org/records/3908560
https://github.com/ultralytics/ultralytics
https://blog.roboflow.com/roboflow-train-3-0
https://universe.roboflow.com/adela-hamplova/palmyrene-tutzu
https://github.com/adelajelinkova/PalmyreneOCR

CMES, 2024 17

Appendix A—Training Details

Figure A1: YOLOv8 multi-class training loss

Figure A2: YOLOv8 multi-class validation loss

Figure A3: Roboflow 3.0 multi-class instance segmentation (accurate) training loss

18 CMES, 2024

Figure A4: Roboflow 3.0 multi-class Instance segmentation (accurate) validation loss

Figure A5: YOLOv8 single-class training loss

Figure A6: YOLOv8 single-class validation loss

CMES, 2024 19

Figure A7: Roboflow 3.0 single-class Instance segmentation (accurate) training loss

Figure A8: Roboflow 3.0 single-class Instance segmentation (accurate) validation loss

Table A1: YOLOv8 layers overview

Index From n Params Module Arguments

0 −1 1 928 ultralytics.nn.modules.Conv [3, 32, 3, 2]
1 −1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2]
2 −1 1 29056 ultralytics.nn.modules.C2f [64, 64, 1, True]
3 −1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2]
4 −1 2 197632 ultralytics.nn.modules.C2f [128, 128, 2, True]
5 −1 1 295424 ultralytics.nn.modules.Conv [128, 256, 3, 2]
6 −1 2 788480 ultralytics.nn.modules.C2f [256, 256, 2, True]
7 −1 1 1180672 ultralytics.nn.modules.Conv [256, 512, 3, 2]
8 −1 1 1838080 ultralytics.nn.modules.C2f [512, 512, 1, True]
9 −1 1 656896 ultralytics.nn.modules.SPPF [512, 512, 5]
10 −1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]
11 [−1, 6] 1 0 ultralytics.nn.modules.Concat [1]
12 −1 1 591360 ultralytics.nn.modules.C2f [768, 256, 1]
13 −1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]

(Continued)

20 CMES, 2024

Table A1 (continued)

Index From n Params Module Arguments

14 [−1, 4] 1 0 ultralytics.nn.modules.Concat [1]
15 −1 1 148224 ultralytics.nn.modules.C2f [384, 128, 1]
16 −1 1 147712 ultralytics.nn.modules.Conv [128, 128, 3, 2]
17 [−1, 12] 1 0 ultralytics.nn.modules.Concat [1]
18 −1 1 493056 ultralytics.nn.modules.C2f [384, 256, 1]
19 −1 1 590336 ultralytics.nn.modules.Conv [256, 256, 3, 2]
20 [−1, 9] 1 0 ultralytics.nn.modules.Concat [1]
21 −1 1 1969152 ultralytics.nn.modules.C2f [768, 512, 1]
22 [15, 18, 21] 1 2780606 ultralytics.nn.modules.Segment [26, 32, 128, [128, 256,

512]]

Appendix B—Training Details

Table A2: Real texts and transcriptions of “Inv. 1438/8582, Archaeological museum of Palmyra”, using
all models

Real text YOLO single-class YOLO multi-class Roboflow
single-class

Roboflow
multi-class

qm brt zyb
mlkw h. bl

<m brh. zyb s.lkw
s.bz

qm brt zyb mlkw
h. bl

ym brh. zyb mlky
s.bz

qm brt rzyb mlkw
h. bl

Table A3: Real texts and transcriptions of “Inv. 88.AA.50, The Getty Villa Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow single-class Roboflow multi-class

mqy br m ny mqy br m n- mqy br m ny myy br m-ny mqy br mh. ny

Table A4: Real texts and transcriptions of “Inv. AO 2205, Musée du Louvre”, using all models

Real text YOLO
single-class

YOLO
multi-class

Roboflow
single-class

Roboflow
multi-class

nysn šnt [3] nyyn šny nysn šnt nysn šnh. nysn šnt
[100] 5 3 qbr 5+1+1+1 qbr y

zhdbwl br
5+1+1+1 100+1 br 5+1+1+1 100br 5+1+1+1 100z1

[d]y zbdbwl br 1 hr hršwr y 1bdbwl br y zbdbwl br br
[...]h br tršwr yny knmr dy h br tršwr y br h.ršwr y 1zbdbwl br
bny kmr dy thg wlbnyh bny nkmr dy bn- kmr dy - br tršwr
lh wlbnwhy lh wlbnwh.y -h wlbn-hy bny kmr dy

lh wlbnw-y

CMES, 2024 21

Table A5: Real texts and transcriptions of “Inv. 95.28, The MET Museum”, using all models

Real text YOLO
single-class

YOLO
multi-class

Roboflow single-class Roboflow
multi-class

b yk šmh l lm bryyk šh.h l lmmg bryk šmhn l lmg kr20k šmh l lmg bryk hmh l lm
t.b w h. mn bd yk 1nh. mn kd t.b wrh. mn rbd t.k nrs.mlm kn -b wrh. – bd
wmwd h. ggw b wwm20wd h. ggw

kr 20h20yk bd
yrh. 20 dk l h. ywqy

wmwd h. trw br nmnn h. gg20 sr mhpk
sr 20nh. 20 dk 1l
h. 2020hw s.20- bnhn
- h. 20h- b20rh. qs.20r šs.t
n 100 wnww-

wmwd h. –w br

yhyb b y h. y 1nh. 20 bwhy
w h. why byrh.

yhyb br yrh. y yhyb br -rh. y

dk l h. ywhy qlyw šnt 5 100 10
yyw–

dk m - h. ywhy -k l h. ywh-

wh. y bwhy wh. y bwh y wh. y bwhy
w h. why by h. w h. why byrh. w h. h.why byrh.
qnyn šnt 5.100 qnyw šnt 5 r 100 q–r š– 5 100
+40+3 20—- 20+20+1–

Table A6: Real texts and transcriptions of “Inv. 98.19.4, The MET Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow
single-class

Roboflow
multi-class

h. bl []g [br] zbd th bt h zbddqh h. bl g zbd th tb- g zbddqh s.bl g zbddt h

Table A7: Real texts and transcriptions of “Inv. 125024, The British Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow
single-class

Roboflow
multi-class

qm brt h. bzy h. bl qhz brh. h. bnp kws. qm- brt
h. b-y h. bl

h.qm- brh. h. b1y kws. qmq- brt h. bzy
h. bl r

Attachment 6

Attachment 6: A. Hamplová, D. Franc, J. Pavlíček, A. Romach and S. Gordin, “Cuneiform

Reading Using Computer Vision Algorithms,” SPML 2022: Proceedings of the 2022 5th

International Conference on Signal Processing and Machine Learning, 2022.

Cuneiform Reading Using Computer Vision Algorithms
Adela Hamplova

Czech University of Life Sciences in
Prague

hamplova@pef.czu.cz

David Franc
Czech University of Life Sciences in

Prague
francd@pef.czu.cz

Josef Pavlicek
Czech University of Life Sciences in

Prague
pavlicek@pef.czu.cz

Avital Romach
Tel Aviv University

avitalromach@tauex.tau.ac.il

Shai Gordin
Ariel University
shaigo@ariel.ac.il

ABSTRACT
This paper presents a new method for computer-assisted recogni-
tion of horizontal strokes in photographs of cuneiform tablets with
90,52 % accuracy. The cuneiform script is the oldest attested writing
system in the world, used for over three thousand years throughout
the ancient Near East, primarily by the cultures of Mesopotamia
(modern Iraq). It was impressed on clay tablets and engraved on
stone slabs by writing strokes. Researchers have been trying to
speed up the process of reading the tablets using different meth-
ods, as manual copying of the tablets and their transliteration is
time consuming. This research, therefore, aims to recognize the
elementary components, i.e., the strokes, of cuneiform signs from
photographs of ancient cuneiform tablets, in order to enable effec-
tive OCR using the latest computer vision algorithms. The main
difference between other approaches and ours is that we work
directly with the two-dimensional photographs, instead of three-
dimensional models, as there are many more 2D images available
in public online repositories. The goal is to partly automate the
process of identifying and reading cuneiform signs, thus speeding
up the process of rediscovering these ancient texts and civilizations.

CCS CONCEPTS
• computing methodologies; • artificial intelligence; • com-
puter vision;

KEYWORDS
cuneiform, logo-syllabic script, pattern recognition

ACM Reference Format:
Adela Hamplova, David Franc, Josef Pavlicek, Avital Romach, and Shai
Gordin. 2022. Cuneiform Reading Using Computer Vision Algorithms. In
2022 5th International Conference on Signal Processing and Machine Learning
(SPML 2022), August 04–06, 2022, Dalian, China. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3556384.3556421

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPML 2022, August 04–06, 2022, Dalian, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9691-2/22/08. . . $15.00
https://doi.org/10.1145/3556384.3556421

1 INTRODUCTION
1.1 Previous work on cuneiform sign

recognition
Cuneiform writing consists of signs that are formed by combining
three types of strokes - horizontal, vertical, and oblique. Despite
this relative simplicity, cuneiform signs are hard to identify because
of their three dimensional character. From the inception of the
field, this was difficult to represent in a 2D format. Two solutions
were found: taking 2D images of cuneiform tablets or creating hand-
copies, 2D black andwhite drawingsmade by scholars of the tablet’s
strokes. In recent years, 2D images have become rather ubiquitous
and in sufficient quality for machine learning applications. The
largest repositories of such images are the British Museum, Louvre
Museum, Cuneiform Digital Library Initiative, and Yale Babylonian
Collection. 2D+ and 3D models of cuneiform tablets have also be-
come a possibility since the early aughts, although these are still
more expensive and labor-intensive to produce.

Previous research in identifying cuneiform signs or strokes have
usedmostly 3Dmodels. Twomain research groups developed stroke
extraction through geometrical feature identification [1–3]. Mara
and Krömker [4] extracted strokes as Scalable Vector Graphic (SVG)
images, which practically created hand-copies automatically as
vector images. Hand-copies and 2D projections of 3D models were
used for querying signs by example, using convolutional neural
networks with data augmentation by Rusakov et al. [5]. Previous
work on 2D images has only recently started. Dencker et al. used 2D
images for training a weakly supervised machine learning model
in the task of sign detection in a given image [6]. Rusakov et al.
[7] used 2D images of cuneiform tablets for querying cuneiform
signs by example and by schematic expressions representing the
stroke combinations. No previous research has attempted to identify
strokes from 2D images.

1.2 Identifying strokes with mathematical
methods

In the first steps, we looked for methods of finding stroke features
(horizontal and vertical) using classic methods of working with
images. We designed a software, which will allow highlighting
of stroke characters using convolutional image filtering methods.
These are commonly used edge filters that allow the suppression of
the surroundings of the desired objects and highlight their edges.

In contrast to the classical filtering methods, which are based
on the gradient (brightness change) of the neighbouring pixels,
using a convolution mask shifted along the X and Y axis across

https://doi.org/10.1145/3556384.3556421
https://doi.org/10.1145/3556384.3556421

SPML 2022, August 04–06, 2022, Dalian, China Adéla Hamplová et al.

Figure 1: Edge detection of cuneiform signs from a rare gold
tablet in the Yale Babylonian Collection (photo credit: Klaus
Wagensonner)

the image (pixel matrix), we used the edge orientations of the
highlighted characters. In our case, we used the properties of Hough
transformation [8], i.e., lines and their orientation.

Thanks to Hough lines, we can decide if the character we find is
really the one we are looking for. The stroke is oriented either hori-
zontally or vertically or at some other angle that can be described
by us. The classic edge detection filters emphasize the edge, but
due to the difference in the quality of images, sometimes a part of
the edge is left out and needs to be approximated. For such approx-
imation, the Hough line in the correct angle can help calculate the
missing parts of edges. Thus, based on the adjacency, it is possible
to highlight the object and, conversely, filter out the noise. By noise
we mean found edges that are not guided at the angle we require.

The image above then shows how the software works. However,
its use is limited by the manual work of the operator, who, based
on expert knowledge, sets the required parameters such as the
maximum connection length of adjacent edges, edge angles and
image brightness balance so that the results are distinctive and
easy to read. This solution is not ideal for automation, because
cuneiform tablets are photographed at different angles of light.
For example, certain settings that are suitable for the upper left
quarter of the image, will not be for the lower right, due to different
lighting conditions. Resetting the filter would highlight the lower
part but suppress the upper one. Thus, to automate this process, it
is necessary to supplement classical mathematical methods with
machine vision technologies based on artificial intelligence and
heuristic operations.

Of course, an automated solution cannot do without statistical
methods that quantitatively verify the accuracy of the technology
used. Machine vision technology based on artificial intelligence
brings several advantages.

The problem with artificial intelligence is the fact that it is not
possible to find out why the machine predicted the way it did.

While the outputs of algorithmic approaches are always clear, as
they are calculated based on input data and algorithm, in the case
of artificial intelligence the results are not predictable, as they are
gained by the process of learning. The results then need verifying
by quantitative (i.e., statistical) method.

It is therefore necessary to implement the following solution
scheme. Our goal is to suggest a suitable artificial intelligence tech-
nology, train it on labelled data created by our assyriological team
members, verify the ability of the network to recognize strokes of
cuneiform signs.

1.3 Computer Vision and Neural Networks
Computer vision is a widely used method to identify objects in
pictures and is evolving rapidly. Computer vision is associated with
convolutional neural networks (CNN), also known as convnets in
which densely connected layers learn global patterns and convo-
lutional layers learn local patterns in small 2D windows [9]. The
most contemporary algorithms are, among others, YOLOv5 [10]
and Detecto SSD/ResNet [11]. Both algorithms are complementary:
while YOLOv5 is using the library tensorflow, Detecto is using the
library torch.

YOLOv5 is a complex solution created by ultralytics and is avail-
able on GitHub [10]. It contains a pre-trained network as well as a
training and detection script. The input images need to be square
and contain labels in .txt format. Detecto is another solution (avail-
able as a Python library). It uses a single shot detector (SSD) with
ResNet and like YOLO, it contains training and detection scripts.

With labelled data, we need to implement most contemporary
versions of several architectures of Convolutional Neural Networks,
one-stage, or two-stage models. For this, we use an open Python
platform Google Collaboratory or Kaggle and we evaluate the per-
formance of each architecture by standard measures such as recall
r (1), precision p (2), F-measure F (3).

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹 =
2 · 𝑟 · 𝑝
𝑟 + 𝑝

(3)

Where:
TP = true positives (real strokes, that have been correctly found)
FP = false positives (predicted strokes, that are not there in real)
FN = false negatives (real strokes, that were not found)

2 TRAINING AND EVALUATION OF YOLOV5
AND DETECTO

2.1 Dataset creation
To train high quality models, we need many manually labelled in-
put images. The recommended number of pictures for each class is
about 1000 [12]. Our assyriological team tagged thousands of hori-
zontal strokes in eight tablets from the Yale Babylonian Collection
(Table 1; made available through the kind permission of Agnete W.
Lassen and Klaus Wagensonner).

The full tablet images were split into squares of 416x416x3 pixels.
Then, they were labelled using the python software tool “labe-
lImg.py”, which creates files in xml format, each file containing
the name of the image, the path and the labels (Fig. 2). The labels
format is called Pascal VOC and consists of the coordinates x_min,
y_min, x_max and y_max and class name.

The dataset is made up of 823 labelled images with 7355 annota-
tion records. We used the augmentation platform Roboflow using
grayscale, saturation, and exposure augmentation. It contains 1700
images in the training set, 165 images in the validation subset and
82 testing images.

Cuneiform Reading Using Computer Vision Algorithms SPML 2022, August 04–06, 2022, Dalian, China

Table 1: the eight tablets that were tagged and their metadata. The information is taken from the Yale Babylonian Collec-
tion website. The abbreviations for the publications of hand copies can be found through CDLI (https://cdli.ox.ac.uk/wiki/
abbreviations_for_assyriology).

Yale ID CDLI ID material period genre hand copy publication

YPM BC 014442 P504832 clay Neo-Assyrian literary CT 13 1, 3
YPM BC 023856 P293426 clay Old-Babylonian literary JCS 1 22-23
YPM BC 002575 P297024 clay Neo/Late-Babylonian commentary BRM 4 24
YPM BC 016773 P293444 limestone Early Old-Babylonian inscription YOS 1 36
YPM BC 016780 P293445 limestone Early Old-Babylonian inscription YOS 1 35
YPM BC 016869 P429204 clay Middle Assyrian inscription YOS 9 71
YPM BC 021204 P308129 clay Middle Assyrian? medical text FS Sachs 18, no. 16
YPM BC 021234 P308150 clay Old-Babylonian hymn YNER 3 6-7

Figure 2: Example of training data created by the assyriologi-
cal team.

2.2 CNN training
In cases of both YOLOv5 and Detecto, we use training scripts with
alternation of the dataset only. For prediction, we need to edit the
script, so that the predicted images and labels are saved as files and
can be displayed and worked with without the limitation of using
prediction notebooks only.

The training of YOLOv5 architecture (283 layers) was conducted
for 100 epochs at Google Collaboratory, using CUDA on GPU Tesla
T4 with 40 multiprocessors, 15109 MB total memory.

The training of Detecto SSD/Resnet (51 layers - ResNet 50
plus 1 Conv2D layer) was conducted on a pre-trained file
fasterrcnn_resnet50_fpn_coco-258fb6c6.pth by unfreezing some
layers and retraining them for 50 epochs at Google Collaboratory,
using the same GPU Tesla T4.

2.3 Evaluation
The evaluation results of the testing set can be seen in Table 2.
Detecto has found horizontal strokes with 90,53 % recall, while
YOLOv5 reached 43,53 %. Example of such predictions can be seen

Table 2: Testing set results evaluation

Network YOLOv5 Detecto

Precision 0,4211 0,7450
Recall 0,4353 0,7053
F-Measure 0,4281 0,8173
Fake of all strokes found 57,89 % 25,50 %
Correct 43,53 % 90,52 %
Correct of all strokes found 0,7450 0,9053

Figure 3: Detecto SSD/ResNet predictions

in Figure 3, where red boxes are predictions and green boxes are
ground truth labels.

2.4 Horizontal stroke results interpretation
From the results and evaluation, YOLOv5 is less successful than
Detecto. YOLOv5 successfully identifies most strokes however the
false positive identifications exceed 50% (more than half strokes
are false), while in the case of Detecto it is only 25,5 % and 90,5
% is found correctly. The reason might be that YOLOv5 is mostly
used in video processing so there is a lot of input data (for example
30 images per second) and it is not important if some frames are
detected incorrectly.

Shifeng et al. proved that two-stage detection models usually
achieve higher accuracy than one-stage models [13], which proved

https://cdli.ox.ac.uk/wiki/abbreviations_for_assyriology
https://cdli.ox.ac.uk/wiki/abbreviations_for_assyriology

SPML 2022, August 04–06, 2022, Dalian, China Adéla Hamplová et al.

to be true even in case of Detecto and YOLOv5, as Detecto is a
two-stage model and YOLOv5 is a one-stage model.

2.5 Comparison with other authors’ works
In other research projects focused on similar topics - recognition of
objects from images using similar architectures - there are following
results.

Recognition of Bangladeshi signs with models constructed by
Ghosh et al’s [14], reached 96.46% accuracy on MobileNet. In Cho
Junghwan’s et al. research [12] of CT body scans they reached 97%
accuracy on GoogLeNet Inception v1 architecture. Their dataset
contained 4000 very high-quality images.

We have reached 98,21 % accuracy in classification of 2000
Palmyrene letters per class on custom CNN architecture with 4
Convolutional / Max Pooling blocks. [15]

2.6 Research next steps
Detection success rate can be improved with higher amounts of
labelled images and their variability (different light conditions,
colours, shadows) and if more augmentation methods are used.

Future plans include adding vertical and oblique strokes to the
training sets. We may also use oriented bounding boxes for oblique
strokes, but we will need to edit Detecto’s algorithm, so that it
can work with bounding box angles. We may also attempt to in-
crease the accuracy with different neural network architectures,
such as RCNN using selective search, as it usually reaches a better
detection rate. With new labelled data we can also start optimizing
neural networks configurations to reach the maximum accuracy
and have a better comparison, with RCNN included. There are
many experiments to be done such as observing the influence of
number of convolutional layers, number of ignored layers (transfer
learning), number of epochs, steps in epochs, learning rate, optimiz-
ing method, images depth. The accuracy can also be improved in
postprocessing phases. Early stopping with patience attribute may
be experimentally used and compared. Automation, logging, and
visualization are other tools that could help us reach better results.

3 CONCLUSION
We have compared mathematical methods (edge detection) and
artificial intelligence for object detection and chose to train an
object detection models.

Two neural network architectures YOLOv5 and Detecto were
developed to classify and localize horizontal strokes in cuneiform
tablet images divided into 416x416 squares. The classifier based on
Detecto reaches 90,5% accuracy, with 25% false positive predictions
while the classifier based on YOLOv5 scores a lower accuracy on
the cuneiform data.

ACKNOWLEDGMENTS
The project Cuneiform analysis using Convolutional Neural Net-
works reg. no. 31/2021 was financed from the OP RDE project
Improvement in Quality of the Internal Grant Scheme at CZU, reg.
no. CZ.02.2.69/0.0/0.0/19_073/0016944.

Thework of SHG andARwas supported by the cooperation grant
between CULS Prague and Ariel University, Israel (RA2000000010).

REFERENCES
[1] Mara, Hubert, Susanne Krömker, Stefan Jakob, and Bernd Breuckmann. 2010.

“GigaMesh andGilgamesh - 3DMultiscale Integral Invariant CuneiformCharacter
Extraction.” In 11th International Symposium on Virtual Reality, Archaeology and
Intelligent Cultural Heritage (Vast 2010), 131–38. Aire-La-Ville: The Eurographics
Association. https://doi.org/10.2312/VAST/VAST10/131-138.

[2] Fisseler, Denis, Frank Weichert, Gerfrid Müller, and Michele Cammarosano. 2013.
“Towards an Interactive and Automated Script Feature Analysis of 3D Scanned
Cuneiform Tablets.” In Scientific Computing and Cultural Heritage 2013. http:
//www.cuneiform.de/fileadmin/user_upload/documents/scch2013_fisseler.pdf.

[3] Rothacker, Leonard, Denis Fisseler, Frank Weichert, Gernot Fink, and Gerfrid
Müller. 2015. “Retrieving Cuneiform Structures in a Segmentation-Free Word
Spotting Framework.” In Proceedings of the 3rd International Workshop on
Historical Document Imaging and Processing (Hip 2015), 129–36. New York, NY:
Association for Computing Machinery. https://doi.org/10.1145/2809544.2809562.

[4] Mara, Hubert, and Susanne Krömker. 2013. “Vectorization of 3D-Characters by
Integral Invariant Filtering of High-Resolution Triangular Meshes.” In Proceed-
ings of the International Conference on Document Analysis and Recognition
(Icdar 2013), 62–66. Piscataway, NJ: IEEE Computer Society. https://doi.org/10.
1109/ICDAR.2013.21.

[5] Rusakov, Eugen, Kai Brandenbusch, Denis Fisseler, Turna Somel, Gernot A.
Fink, Frank Weichert, and Gerfrid G. W. Müller. 2019. “Generating Cuneiform
Signs with Cycle-Consistent Adversarial Networks.” In Proceedings of the
5th International Workshop on Historical Document Imaging and Processing,
19–24. HIP ’19. New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3352631.3352632.

[6] Dencker, Tobias, Pablo Klinkisch, Stefan M. Maul, and Björn Ommer. 2020. “Deep
Learning of Cuneiform Sign Detection with Weak Supervision Using Transliter-
ation Alignment.” PLoS ONE 15 (12): e0243039. https://doi.org/10.1371/journal.
pone.0243039.

[7] Rusakov, Eugen, Turna Somel, Gernot A. Fink, and Gerfrid G. W. Müller. 2020.
“Towards Query-by-eXpression Retrieval of Cuneiform Signs.” In 2020 17th In-
ternational Conference on Frontiers in Handwriting Recognition (Icfhr), 43–48.
https://doi.org/10.1109/ICFHR2020.2020.00019.

[8] Richard O. Duda and Peter E. Hart. 1972. Use of the Hough Transformation to
Detect Lines and Curves in Pictures. Communications of the ACM. 15(1), 11-15.
https://doi.org/10.1145/361237.361242

[9] Francois Chollet. 2018. Deep Learning with Python, Manning, ISBN
9781617294433

[10] Releases ultralytics/yolov5. 2021. GitHub. Retrieved March 5, 2022, from https:
//github.com/ultralytics/yolov5/releases

[11] Detecto PyPI. Retrieved March 5, 2022, from https://pypi.org/project/detecto/
[12] Junghwan Cho, Kyewook Lee, Ellie Shin, Garry Choy, Synho Do. 2015. How

much data is needed to train a medical image deep learning system to achieve
necessary high accuracy? https://arxiv.org/abs/1511.06348.

[13] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li. 2018. Single-
Shot Refinement Neural Network for Object Detection. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 4203-4212.
https://doi.org/10.48550/arXiv.1711.06897

[14] Tapotosh Ghosh, Md. Min-Ha-Zul Abedin, Shayer Mahmud Chowdhury, Zarin
Tasnim, Tajbia Karim, S. M. Salim Reza, Sabrina Saika, Mohammad Abu Yousuf.
2020. Bangla handwritten character recognition using MobileNet V1 architecture.
Bulletin of Electrical Engineering and Informatics, 9(6), 2547-2554. https://doi.
org/10.11591/eei.v9i6.2234

[15] Adéla Hamplová, David Franc, Jan Tyrychtr. 2022. Historical Alphabet Translit-
eration Software Using Computer Vision Classification Approach. CSOC2022
conference Proceedings. Springer Series: Lecture Notes in Networks and Systems,
Prague, Czech Republic. 2022. ISSN 2367-3370. 2022.

https://doi.org/10.2312/VAST/VAST10/131-138
http://www.cuneiform.de/fileadmin/user_upload/documents/scch2013_fisseler.pdf
http://www.cuneiform.de/fileadmin/user_upload/documents/scch2013_fisseler.pdf
https://doi.org/10.1145/2809544.2809562
https://doi.org/10.1109/ICDAR.2013.21
https://doi.org/10.1109/ICDAR.2013.21
https://doi.org/10.1145/3352631.3352632
https://doi.org/10.1371/journal.pone.0243039
https://doi.org/10.1371/journal.pone.0243039
https://doi.org/10.1109/ICFHR2020.2020.00019
https://doi.org/10.1145/361237.361242
https://github.com/ultralytics/yolov5/releases
https://github.com/ultralytics/yolov5/releases
https://pypi.org/project/detecto/
https://arxiv.org/abs/1511.06348
https://doi.org/10.48550/arXiv.1711.06897
https://doi.org/10.11591/eei.v9i6.2234
https://doi.org/10.11591/eei.v9i6.2234

Attachment 7

A. Hamplová, A. Romach, J. Pavlíček, A. Veselý, M. Čejka, D. Franc and S. Gordin,

“Cuneiform stroke recognition and vectorization in 2D images,” Digital Humanities

Quarterly, 2023.

