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Abstract 
 

This dissertation is a collection of scientific articles discussing the topic of neural 

networks suitable for image recognition in digital photographs. Since this topic is very broad 

and general, this dissertation investigates explicitly the use of neural networks suitable for text 

recognition, namely two historical alphabets - the Palmyrene alphabet, which was used to write 

texts in the Palmyrene dialect of Aramaic, and the cuneiform script. Using the Palmyrene 

alphabet as an example, a custom cascade pipeline is presented to build an OCR algorithm that 

identifies individual characters using a segmentation neural network and evaluates which 

character is the correct one using a custom optimal classifier or directly using multi-class 

instance segmentation. The finished solution is presented in a mobile and web application. 

GAN-type neural networks were used to refine the results of the classifier using training on the 

augmented dataset, and their features were investigated. On the other hand, cuneiform analysis 

was performed using an object detection algorithm, where individual strokes in the image were 

detected and redrawn onto a blank canvas using a custom utility. I believe that the contribution 

of this dissertation is not only theoretical but also practical. 

 
Keywords: Artificial Intelligence, Computer Vision, Object Detection, Convolutional Neural 
Networks, Data Augmentation, Text Segmentation, Pattern Recognition  
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1 Introduction 

The presented text of the commented dissertation - a compilation of scientific articles - 

consists of the theoretical basis and practical applications of Artificial Neural Networks used 

for object segmentation, classification, and detection, as well as expanding datasets from 

digital photographs. The main goal was to create a simplified, cascade-style approach, which 

is meant to develop historical alphabet Optical Character Recognition (OCR) and utilise 

multiple types of Convolutional Neural Networks. This novel cascade approach builds on 

previous research in Convolutional Neural Networks, Generative Adversarial Networks, 

Object Detection, and Optical Character Recognition and groups the knowledge from these 

areas into one semi-automated way of use, with nuances in use for alphabets and other types 

of writing. A modified method of constructing a confusion matrix, used for evaluating object 

detection algorithms when ground truth labels are not available to calculate Intersection over 

Union IoU, is presented here as well. 

Thanks to the latest technological development of powerful GPUs, TPUs and pocket 

size, well-performing cameras, computer vision and object detection are nowadays ones of 

the critical applications of Artificial Intelligence, as they allow computers to identify the 

contents of their environment by saying what is in the picture, where and how it is 

represented. It has become a standard that has contributed to automatisation in a vast number 

of human and machine activities in recent years. From industry, where it is necessary to 

consistently overview the processes of manufacturing and quality of products, counting 

people in shopping malls or detecting risky behaviour in warehouses, through expert systems 

or decision support systems, automatic number plate recognition barriers, medical diagnosis 

support including tumour detection, kidney stones detection and many others, followed by 

self-driving cars, to common applications such as photo editing programs, face tagging or 

personalised advertisements. The connecting element of all these applications is Deep 

Learning, specifically of various architectures of Convolutional Neural Networks. 

The use of computer vision can make commercial organisations more competitive by 

automating tasks that otherwise require the use of human resources. In many applications, a 

machine can be more accurate or faster than a human in some respects. For this reason, 

computer vision technology continues to evolve and improve rapidly. Nowadays, there is a 

wide range of ready-made algorithms designed for object recognition in images, from simple 
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Single Shot Detectors, which mark selected objects in a smaller image in real-time, to 

complex mask Region-based Convolutional Neural Networks, which, in addition to detection, 

also offer marking of a cluster of pixels belonging to a given class, i.e., a mask - showing the 

outline of the object. However, each object detection task cannot be approached in a unified 

way and must be solved individually.  

The utilisation of computer vision for automatic reading counts as one of the critical 

applications of Artificial Intelligence. As part of my doctoral studies and grant projects 

included in it, as well as the preparation of this dissertation, I decided to explore and expand 

the possibilities of reading historical scripts. 

In particular, this dissertation focuses on using existing and constructing new 

architectures of Artificial Neural Networks that are applicable to the task of detecting 

historical scripts and expanding datasets of letters in alphabets or their elementary subparts 

(which, in the case of cuneiform fonts are the individual wedges) and presents novel solutions 

of these problems using a fully convolutional approach. 

The conducted research was published in 3 different WOS/Scopus-indexed journals and 

4 WOS/Scopus-indexed conferences as an output of grant projects: 

 PEF IGA 2021A0004 - “Reading Palmyrene Alphabet Characters Using 

Artificial Intelligence Tools” [1] [2] 

 PEF IGA 2022A0001 - “Research on methods for automatic dataset expansion 

using machine learning tools” [3] 

 UGC project reg. No CZ.02.2.69/0.0/0.0/19_073/0016944 internal no. 31/2021 - 

“Cuneiform analysis using Convolutional Neural Networks” [4] [5] 

 PEF IGA 2023A0004 – “Text segmentation methods of historical alphabets in 

OCR development” [6] [7] 
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2 Theoretical basis and current state of art 

2.1 Artificial Neural Networks 

2.1.1 Brief history of ANNs 

Artificial Neural Networks (ANNs) are one of the areas of artificial intelligence, in 

addition to expert systems, fuzzy systems and genetic algorithms. They appeared in practice 

in the field of artificial intelligence in the 1960s after years of previous research. [8] 

The first simple neuron model dates back to 1943 when Warren McCulloch and Walter 

Pitts proposed a mathematical model of the central nervous system and declared that “at any 

instant, a neuron has some threshold, which excitation must exceed to initiate an impulse” 

and described the propagation of the impulse. [9] In 1949, Donald Hebb's book “The 

Organization of Behavior” provided guidance on how to apply the learning rule to neuronal 

synapses. [10] In 1951, Marvin Minsky created the first SNARC neurocomputer. [11] In 

1957, Frank Rosenblatt generalised the neuron model to a perceptron calculating real 

numbers in his report from Cornell Aeronautical Laboratory. [12] In 1958, together with 

Charles Wightman, he built the "Mark I Perceptron'' neurocomputer with 512 parameters at 

the MIT laboratories, which was able to recognise characters, and in 1960, John C. Hay et al. 

wrote an operator manual [13]. In 1965, Bernard Widrow and his students created the 

Adaptive Linear Element (ADALINE) similar to perceptron, but the individual elements 

performed linear functions compared to perceptron [14], after them and one of his doctoral 

students, Marcian Edward “Ted” Hoff, who was also the co-inventor of microprocessors, the 

Widrow-Hoff least mean square training algorithm was named, it was published in Hoff’s 

dissertation. [15] Another pioneer in the field of neurocomputers was Karl Steinbuch, who 

published a comparison of two adaptive classification networks with Widrow [16] and 

developed a model of a binary associative network, the principle of which is based on 

associative memory and the provision of certain information based on its partial knowledge. 

For almost twenty years, neurocomputers have only been used for experimental 

purposes because perceptron has been shown to be unable to perform equivalence x1  x2 

(EQV) and non-equivalence x1 ⊕ x2 (XOR), as these Boolean functions are not linearly 

separable, and the linear separability of data sets is an essential prerequisite for constructing a 
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single perceptron. It was not until 1982 that grant projects by John Hopfield (after whom 

Hopfield Neural Networks are named) excelled, proving the connection of some models with 

physical models of magnetic materials [17], according to which the Hopfield networks based 

on the principle of auto-associative memory were named. In 1986, David E. Rumelhart et al. 

published a practical backpropagation learning algorithm for multilayer networks in the 

Parallel Distributed Processing (PDP) group [19]. However, it was mentioned previously in 

1974 in Paul John Werbos's dissertation [18]. In the 1990s, journals about Artificial Neural 

Networks began to publish, and the international journal Neural Network World [19] has 

been available in the Czech Republic since 1991. 

It was not until 2012 that the field experienced a breakthrough in ImageNet 

classification contests [20], because until then other methods were more successful. Since 

then, artificial intelligence has been developed in a wide range of areas. 

2.1.2 Description 

Artificial neurons are an abstraction of the mechanism that processes information 

compared to the way that biological neurons send information to and within the brain and 

determine how to respond to that information. The training or prediction presents the first 

neural layer with an input from which we need to obtain an output. The input of the neuron to 

the next layer is always the output from the previous layer, and only the last layer shows the 

output. The whole network behaves based on parameters (threshold and weights) that 

determine the course of networks, so it is an oriented graph. [12] 

An output – activation function (formerly, output function and activation functions had 

different meanings, but now it is interpreted the same way) is a function that converts an 

aggregated signal into an output signal, for example linear, binary - sigma (σ(h)), logistical 

sigmoid, signum, tanh, ReLU (Rectified Linear Unit), leaky ReLU, eLU (Exponential Linear 

Unit), softmax (generalised sigmoid, counting probability of the input belonging to a single 

class), or other. [21] These functions define the outputs of the neurons. Relevant activation 

functions of individual Neural Network layers will be explained later in the text of individual 

chapters. The simplest neuron – perceptron – is explained in the following Figure 1. 
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Figure 1 - mathematical model of perceptron with output function σ(h) [22] 

where: 

𝒘 = (𝑤 , … . , 𝑤 ) is the vector of weights 

ℎ =  ∑ 𝑥 ∙ 𝑤  is the postsynaptic potential  

and the output function is 𝜎(ℎ) = 1 for ℎ ≥ 0 and 𝜎(ℎ) = 0 for ℎ < 0. 

Unfortunately, the analysis of the dynamic behaviour of a Deep Neural Network is 

extremely complicated, since the calculation process is not linear and may include hundreds 

of thousands of computed parameters, and is unlike classical algorithms, where it is possible 

(for more complex programs such as debug mode) to follow the program step by step. 

Therefore, studying these problems is both practically and theoretically a core issue. 

2.2 Convolutional Neural Networks 

To analyse images, we use special kinds of Neural Networks called Convolutional 

Neural Networks (CNNs). CNNs are multilayer Neural Networks with thousands of 

parameters. They are commonly used to recognize objects in an image directly from 

individual pixels, regardless of their distortion, shift within the image, colour change, or other 

criteria. The name convolution means filtering performed by a feature map, automatically 

extracting object features (such as edges, arches and more). The cornerstone of each image 

analysis is classification, done by CNN. 

2.2.1 Main principles 

CNNs, unlike densely connected networks, use three main principles – local 

connectivity, shared weights (or weight replication) and spatial or temporal subsampling. [23] 

Thus, one layer of a convolutional Neural Network is not entirely connected to the next, but 
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only to selected parts, called subregions, avoiding an unmanageable number of parameters in 

hidden layers. 

2.2.2 CNN layers 

The architecture of CNNs consists of an input convolutional layer (in Deep Learning 

Python library keras [24] it is called Conv2D), a subsampling layer (MaxPooling2D) and a 

suitable iteration of these layers, a layer producing a one-dimensional vector (Flatten), a 

densely connected layer (Dense), and an output layer (Dense) whose number of neurons 

corresponds to the number of classes to be classified. In the case of localising an object in the 

image, the output layer will usually, apart from the class index, contain two points - [xmin, 

ymax] and [xmax, ymin] – which, by joining, will create a frame (bounding box), around the 

object within the image. There are more options to calculate the bounding box, which will be 

explained in reference to relevant existing object detection algorithms in future chapters. 

More layers, like Dropout for regularisations and randomly zeroing out weights, may be used 

in a CNN. However, the following description deals with obligatory layers. The complete list 

of keras layers and their description can be found in [25]. 

2.2.2.1 Convolutional layer 

2.2.2.1.1 Image representation 

Each input image Z is represented in the form of a 3-dimensional (in case of RGB 

spectrum) M x N x D or 2-dimensional (in case of black and white spectrum) M x N array, 

where M is the width, N is the height and D is the depth. For example, the black and white 

letter “O” in a 9 x 12 px grid with zero-padding P = 1 looks as follows: 
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0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 123 255 123 0 0 0 0 

0 0 0 123 255 123 255 123 0 0 0 

0 0 123 255 123 0 123 255 123 0 0 

0 0 255 123 0 0 0 123 255 0 0 

0 62 255 0 0 0 0 0 255 62 0 

0 123 255 0 0 0 0 0 255 123 0 

0 123 255 0 0 0 0 0 255 123 0 

0 62 255 0 0 0 0 0 255 62 0 

0 0 255 123 0 0 0 123 255 0 0 

0 0 123 255 123 0 123 255 123 0 0 

0 0 0 123 255 123 255 123 0 0 0 

0 0 0 0 123 255 123 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

Table 1 - Convolutional layer input - a black and white letter "O" represented in pixels 

2.2.2.1.2 Convolutional filters and feature maps 

A small matrix of numbers called convolutional filter c (also called convolutional 

kernel or window) of size width W x height H, where W, H > 0, is applied on the image with 

a specified stride S (which is a step size, by which the convolutional filter is shifted), S > 0. 

Within it, individual components of the object, such as corners or edges, are recognized. 

Usually, multiple filters are applied. When applying the filters, zero-padding P around the 

image, which adds zeroes around the input image, can be used, so that there is no loss of 

information around the image corners during the computation, P ≥ 0. The output is called 

feature map F (also called activation map), which, after being transformed by output 

function, transfers to subsequent layers. The equation is following. The indices of rows and 

columns of the output feature map are i and j.  

𝐹[𝑖, 𝑗] = (𝑧 ∗ 𝑐)[𝑖, 𝑗] = ∑ ∑ 𝑐[𝑚, 𝑛] ∙ 𝑧[𝑖 − 𝑚, 𝑗 − 𝑛]    (1) 

The dimensions I – the width – and J – the height – of the output feature map can be 

counted from the sizes of input M x N, padding P, stride S, and window’s width and height 

W, H. 

𝐼 =           (2) 

𝐽 =           (3) 
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The number of parameters in a convolutional layer is 

𝑝𝑎𝑟𝑎𝑚𝑠(𝑐𝑜𝑛𝑣) =  (𝑓 ∙  𝐼 ∙ 𝐽 +  1) ∙  𝑓      (4) 

where:  

fin = number of input feature maps 

I∙J = convolutional window size 

fout = number of output feature maps 

 

2.2.2.1.3 Output functions of convolutional layers 

There are four main non-linear activation functions used in convolutional layers – 

logistic sigmoid, tanh, ReLU and leaky ReLU. Their graphs are visible in Figure 1 below. 

Figure 2 – activation functions of convolutional layers: (a) sigmoid (b) tanh (c) ReLU (d) leaky ReLU [26] 

Sigmoid or logistic sigmoid function is such function, which is increasing, continuous 

and smooth and reaches values between 0 and 1. The main disadvantage of a sigmoid 

function is, that its gradient rapidly converges towards 0 (Vanishing Gradient problem). In 

keras, sigmoid function is equivalent to two-element softmax (which converts a vector of 

values to a probability distribution). [27] 

𝑠𝑖𝑔𝑚 (ℎ) =           (5) 
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Another commonly used output function is Hyperbolic Tangent (tanh), also belonging 

to sigmoid functions. Tanh is converting the output feature map values to values between -1 

and 1. 

tanh(ℎ) =  
𝟐𝐱

𝟐𝐱
          (6) 

One of the most common output functions in a convolutional layer, transforming output 

feature maps, is Rectified Linear Unit (ReLU). In contradiction with sigmoid functions, it 

prevents gradient vanishing problem, and therefore it is preferred. ReLU is first mentioned in 

Fukushima’s Neocognitron [28] and has been regularly used since the publication of 

Krizhevsky’s AlexNet [29]. By zeroing out negative values from the output feature maps, it 

prevents negative pixels from passing to following layers. 

𝑅𝑒𝐿𝑈 (ℎ)  =  𝑚𝑎𝑥 (0, ℎ)        (7) 

However, even ReLU encounters its problem, called “dying ReLU”. A dead ReLU 

always outputs 0, reached by using a large negative bias, resulting in the training not 

progressing, because the gradient of 0 is also 0. That is why Parametric Rectified Linear 

Unit (PReLU) was introduced, assigning a non-zero slope to the negative input values, [30] 

simplified into leaky ReLU with a constant value (usually 0.01) instead of a parameter α, the 

mathematical definition of PReLU is following. 

𝑃𝑅𝑒𝐿𝑈(ℎ) = max(0, ℎ) + 𝛼 ∙ min (0, ℎ)      (8) 

2.2.2.2 Subsampling layer 

Usually following a convolutional, another CNN layer called the subsampling (also 

pooling) layer is placed which aggregates neighbouring pixels according to its type, resulting 

in a reduction of the input size. Pooling is a sample-based discretisation process, aggregating 

the values of adjacent units. We distinguish max pooling (where we take the highest value of 

neighbouring pixels and pool them to a downsized matrix, shifting a specified window by a 

specified stride) and average pooling (where we take the average value). There are 0 

parameters in a pooling layer, as it is only reducing dimension and not learning any new 

information. 
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Figure 3 - Demostration of maxpooling and averagepooling operation [31] 

2.2.2.3 Flatten layer 

Within a Flatten layer, a one-dimensional vector is created from a multi-dimensional 

tensor at the input of the given Flatten layer, with no effect on the batch. In keras, the input to 

Flatten layer is usually in the format (batch, channels, height, width), if ordering of the inputs 

is “channels_first” or (batch, height, width, channels), if the ordering is “channels_last”. Not 

affecting the batch, an example input (None, 1, 10, 64) will result in (None, 640) output. A 

Flatten layer also has 0 parameters, as it only changes the shape but perceives the same 

information. 

2.2.2.4 Dense layers and output functions 

A Dense layer is fully connected – all neurons from the Flatten layer are connected to 

all neurons in the Dense layer.  

The number of parameters of the Dense layer is following. 

𝑝𝑎𝑟𝑎𝑚(𝐷𝑒𝑛𝑠𝑒)  =  (𝑖𝑛 + 1) ∙ 𝑜𝑢𝑡        (9) 

where: 

in = input 

out = number of output neurons 
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Output function of Dense layers depend on the task, which the CNN solves. The last 

but one hidden Dense layer is logistical sigmoid in case of binary classification and logistical 

sigmoid or tanh in case of multi-class classification. In the last Dense layer, in the case of 

binary classification the output neurons will be logistical sigmoid. In case of a multi-class 

classification, logistical sigmoid (in case of non-exclusive classification) or softmax (in case 

of exclusive classification) is chosen for output neurons.  

2.2.3 Training Convolutional Neural Networks 

Modern Convolutional Neural Networks are trained with error backpropagation 

algorithm, which is slightly different for each error function. It was originally derived for the 

use with Sum of Square Errors ESSE loss function and then, similarly derived for Cross-

entropy ECE. ESSE is used for regression, therefore it is not suitable for measuring error of a 

classification network. For binary classification with one output neuron, we minimise the 

Binary Cross-entropy error (loss) function binary ECE and for multi-class classification, we 

minimise Categorical Cross-entropy categorical ECE. Cross-entropy is counted as follows. 

𝑏𝑖𝑛𝑎𝑟𝑦 𝐸 = − ∑ (𝑑 ∙ 𝑙𝑛𝑦 + (1 − 𝑑 ) ∙ ln(1 − 𝑦 ))   (10) 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐸 = − ∑ ∑ 𝑑 ∙ 𝑙𝑛𝑦      (11) 

where:  

yi = output of neuron with respective index i 

di = i-th component of the respective category (either 0 or 1) 

m = number of categories 

The binary ECE back-propagation is counted as follows. [32] At first, the total error 

across all neurons is counted as the sum of errors of outputs as in (10). Considering the 

logistic output function yi in a layer  

𝑦 =          (12) 

where: 

𝑠 = ∑ ℎ 𝑤          (13) 

where: 
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hj = the postsynaptic potential of respective neuron 

wji = the weight of respective connection 

si = weighted sums of the hidden layer activations 

we compute the gradient (partial derivation) with respect to the weights connecting 

hidden neurons in the last layer, using chain rule. 

𝑔𝑟𝑎𝑑 𝐸 = =  =  
∙( )

∙ 𝑦 (1 − 𝑦 ) ∙ ℎ = (𝑦 − 𝑑 ) ∙ ℎ      (14) 

In hidden layers, we also compute components of gradient and then we recursively 

propagate the error within the network, from the last layer to the first, and update the weight 

vector wn accordingly. [22] 

𝑤 = 𝑤 − 𝜀 ∙ 𝑔𝑟𝑎𝑑 𝐸 + 𝜇 ∙ 𝑤       (15) 

where: 

ε > 0 = parameter controlling the step size  

μ > 0 = parameter controlling the speed and stability of algorithm (momentum) 

When the termination condition is met, the training is completed (it can be a selected 

number of epochs or not getting better results for a specified number of epochs). 

2.2.4 Development of CNNs 

The first self-organised (unsupervised – learning without labelled data) predecessor of 

CNN using local connectivity was called Neocognitron. It was published in Biological 

Cybernetics by Kunihiko Fukushima in the 1980’s. It was named after extending “cognitron”, 

a model proposed by the author in earlier years, based on Hubel and Wiesel model. 

Neocognitron is capable of recognising patterns according to the geometrical similarity 

(Gestalt) independent of their position. The main benefit over previous Neural Network 

models was the ability not to be affected by the shifting or small distortion of an object within 

an image. [28] 

In 1998, Yann LeCun et al. published a CNN trained with the gradient back-

propagation algorithm, called LeNet, and applied it to the task of recognising handwritten 

characters almost without pre-processing the images; this time, it involved supervised 
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learning (using labelled data). In the same paper, they presented a new learning paradigm, 

Graph Transformer Network (GTN) for Optical Character Recognition (OCR) eliminating the 

deficiencies of using fixed-size vectors for the set of parameters and the state information 

communicated between the modules. [23] It was a generalisation and an extension of Hidden 

Markov Models. 

 
Figure 4- LeNet-5 used for recognition of handwritten character (32 x 32 pixels), Source: [23] 

In 2009, a milestone was reached, when a database of about 3.2 million hand-annotated 

images called ImageNet was published in IEEE, meant for the use of image classification, 

object recognition and automatic object clustering, and since 2012, there were ImageNet 

classification contests. [20] In 2012, AlexNet was presented as a winner of the ImageNet 

challenge, with 17% error rate. [29] It has a quite simple architecture, consisting of 5 

convolutional, 3 pooling and 3 Dense layers, utilising ReLU output function in convolutional 

layers. The same architecture was published under the name ZFNet in 2013, pointing out the 

high impact of tuning hyperparameters. It won the contest ImageNet Large Scale Visual 

Recognition Challenge 2013, dropping the error to 11 %. [33]  

One of the 2014’s ImageNet contestants was a much deeper (11, 13, 16 and even 19 

layers) Visual Geometry Group Network (VGGNet), presented in ICLR 2015 conference. 

[34] Another contestant and the winner was GoogLeNet – an Inception network. Google 

came up with its own complex Neural Network design, introducing a combination of 

repeating Inception modules (Figure 5). There were two versions of inception modules, a 

naïve version and with dimension reduction Another difference from other networks was also 

the omission of densely connected layers. [35]  
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Figure 5 - Inception modules presented in GoogLeNet [35] 

Very deep sequential neural networks encounter the Vanishing Gradient problem, 

because, when training using gradient-based learning algorithms, the weights update 

according to the partial derivate of error function, and if the derivate is too small, the weights 

practically don’t update and there’s hardly any training going on (the weights stay on similar 

level to the zero or random initialisation). [36] One of the first networks to try solving this 

problem were Residual Networks (ResNet), winning the ImageNet challenge in 2015, 

published in 2016 IEEE Conference on Computer Vision and Pattern Recognition. [37] 

Residual Networks can be called an updated version of VGGNet [34], combining residual 

blocks. In residual blocks, there is a skip connection – called identity connections – to the end 

of the block instead of just connecting to the subsequent layer. This helps the model leave out 

the layers, which cause a Vanishing Gradient problem.  
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Figure 6 - Residual block [37] 

In 2016, an upgraded version of GoogLeNet [35] was proposed by Francois Chollet 

(author of Keras) and published in IEEE in 2017, it was called Xception [38], merging the 

ideas of GoogLeNet and ResNet, replacing the inception blocks with depth-wise separable 

convolutional layers. The difference between standard convolutional layers and depth-wise 

separable convolutional layers is, that standard layers use convolutional filters to capture both 

spatial (such as line, edge, oval) and cross-channel patterns (combinations like ear, nose, 

mouth, creating a face) at once, while separable layers model each pattern category 

separately. 

A year later, in 2018, SENet was created by Jie Hu et al. [39]. It consists of Squeeze-

and-Excitation (SE) blocks, Inception and Residual units. SENets, at the cost of 

computational complexity, increase the state of art performance of CNN on different tasks 

and datasets. Each SE block is, in fact, a small CNN, which analyses the output of the unit to 

which it is attached, not looking for spatial patterns, but focusing on the depth dimension 

(each block has 3 layers – Global average pooling layer, Dense layer with ReLU activation 

and Dense layer with Sigmoid activation). Then, it recalibrates the feature maps (reduces the 

irrelevant ones and boosts the relevant ones) in accordance with a recalibration vector. 

In 2019, EfficientNet was published by Tan et al. [40]. They presented the concept of 

scaling up MobileNets and ResNets. The compound scaling method further improved the 

accuracy on ImageNet by up to 2.5 % with fewer parameters. 

2.2.5 Classification on mobile devices 

With the development of smart phones, tablets and other handheld computers used in 

the industry such as in autonomous driving cars or autopilots, which have limited 
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computational capacity, arose the need to create networks with a lower number of parameters 

while keeping the target accuracy. These networks are called lightweight [41] networks. 

 SqueezeNet, limiting the size of the AlexNet model from about 240 MB to less than 7 

MB was presented in 2016 by Iandola et al. [42] To achieve a small number of parameters in 

the CNN, they replaced some commonly used 3x3 convolution filters with 1x1 filters, 

limiting the parameters 9 times, while keeping the same number of filters. They also 

decreased the number of input channels to 3x3 using the Squeeze layers and used delayed 

subsampling (pooling). By delaying the subsampling to later layers while limiting the 

parameters with decreasing the filter size, they kept the accuracy high. In the same paper, 

they presented Fire modules, utilising Squeeze convolutional layers with 1x1 filters followed 

by an Expand layer with 1x1 and 3x3 convolutional filters. They presented three types of 

architectures of the final SqueezeNet, the simplest architecture consists of 1 Convolutional 

layer at the start, 8 Fire modules, 1 Convolutional layer at the end followed by 

AveragePooling and a Dense layer with softmax activation. 

The MobileNet family was presented in 2017 by Howard et al. [43]. It was developed, 

as the name suggest, for the use in mobile phones as well as in embedded vision applications, 

aiming to reach a high speed while keeping the model size small. Howard et al. suggests 

using two new hyperparameters (width multiplier and resolution multiplier), that trade-off 

between accuracy and latency of the models. The architecture consists of Depthwise 

Separable Convolutional layers, which are a form of factorized standard convolutions, Batch 

normalisation layers, ReLU and a 1x1 pointwise Convolutional layers. MobileNet has 

slightly lower accuracy on standard ImageNet dataset than VGG16 [34] or GoogLeNet 

(Inception) [35], but is very fast. 

In 2018, ShuffleNet was published by Zhang et al [44]. They grouped feature maps and 

performed the convolutions on groups, reducing the computational cost. It is called 

ShuffleNet as it shuffles the channels for each feature map group, to distribute information 

across channels, consists of a Convolutional layer, 3 Shuffle blocks, global pooling and 

Dense layer. The channel shuffle is differentiable, which means it can be used in end-to-end 

training. The network was 18 times faster than SqueezeNet. 

More techniques to reduce the number of parameters were presented in a network 

family called ShiftNet by Wu et al., built from shift-based modules [45]. The main goal was 
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to limit the number of floating-point operations (FLOPs). They came up with a FLOP-free 

shift operation with zero parameters as an alternative to depth-wise 3x3 convolutions. While 

keeping the same accuracy as SqueezeNet, they limited the model size to about two thirds. 

FE-Net introduced by Chen et al. [46] limits the shift operations presented in ShiftNet 

to only a few feature maps, in Sparse Shift Layers (SSL). The team claimed, that ShuffleNet 

and MobileNet are inefficient in practice because they occupy about 80 % of GPU runtime, 

which mismatches the theoretical FLOPs, and suggested a solution to it by using blocks of 

1x1 Convolutional layers with a limited number of shifts, reached by penalising the shift 

operation during optimisation with the use of quantisation-aware shift learning method. They 

claim and prove that not all shift operations are necessary and slow down the computation a 

lot. While leaving out some of the shifts, the accuracy drops a little, but the speed is increased 

significantly. 

In 2020, and re-printed in Springer in 2022, EfficientNet-eLite was presented by Wang 

et al. [47], based on Tan’s EfficientNet [40]. They introduced Network Candidate Search 

(NCS), which measures the different models’ resource usage and performance and suggests 

downscaling the EfficientNet. They reached an even lower number of parameters and a 

slightly higher accuracy in their new network. 

2.2.6 Latest research 

The latest research on CNNs is, on top of building architectures (still utilising 

suggested blocks from previous research), increasing speed, limiting model size and tuning 

hyperparameters, focused mainly on different ways to find and classify objects within an 

image, to identify relevant regions of interests and to find the best approach to creating the 

most fitting bounding boxes and segmentation, which opens a whole another chapter of 

computer vision tasks. 

 

2.3 Computer vision tasks 

Computer vision utilises CNNs and aims to make computer systems perceivable to the 

visual world by recognising the meaning of pixels (i.e., objects) in pictures. [41] There are 

three main tasks of computer vision, which can be represented by questions about the objects 

in a visual scene: 
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 Classification (what) 

 Object detection (where) 

 Scene understanding – segmentation (how) 

In the early days of computer vision, manual feature extraction was combined with 

classic machine learning techniques. However, this has prevented computers from 

recognising more complex objects that have many shapes and colours (cats, dogs, …). 

Nowadays, in some tasks, AI techniques are better performing than humans, as automatic 

feature extraction is incorporated in convolutional layers of CNNs, and manual feature 

extraction only serves to reduce the dimensionality of input data or is used in different tasks, 

which belong to unsupervised learning, such as clustering, autoencoders or bag-of-words 

technique in Natural Language Processing (NLP). 

2.4 Classification 

Classification is a process of computing a probability vector of each class, already 

described in Chapter 2.2.3. The training datasets consist of tuples (image, class). In 

classification networks, the number of neurons in the last Dense layer corresponds with the 

number of object classes, and we use the softmax function as activation and the error function 

cross-entropy. (10) (11) In the 1990s, with the rise of Artificial Neural Networks, kernel 

methods began to emerge. [48] In 1995, Vapnik and Cortes published the Support Vector 

Machine (SVM) classification method. [49] Revolution in approach to classification has been 

reached since ImageNet contests, launching the rapid development of different neural 

network architectures, tuning hyperparameters and creating special networks for individual 

tasks. Nowadays, the ImageNet database contains over 14 million images. 

2.4.1 Determining dataset size 

The fundamental part of each practical research is data in suitable quality and quantity. 

As stated in Cho Junghwan’s research about classification accuracy of Computer 

Tomography (CT) scans of different body parts [50], to get an approximately 97.25 % 

classification accuracy, we need about 1000 images per class, or to get 99.5 % accuracy, it is 

more than 4000, as visible in Figure 7. The dataset size of course also depends on the 

complexity of classified data – the more complex data, the more we need. 
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Figure 7 - Number of data needed per class for a high classification accuracy [50] 

2.4.2 Classifier success measures 

The generalisation capability, i.e., the ability to correctly classify new inputs that did 

not appear in the training set, can be measured by standard metrics for each classifier, both 

binary and multi-class.  

2.4.2.1 Confusion matrix 

These measures are calculated from four basic values, written in a confusion matrix. A 

binary confusion matrix of a binary classifier, deciding, whether the image contains the 

object of interest or not, consists of: 

 true positives TP, which are values classified as true and are true in real 

 true negatives TN, which are values classified as false and are false in real 

 false positives FP, which are values classified as true and are false in real 

 false negatives FN, which are values classified as false and are true in real 

 

 

 



 
 

 

 

 24 

 Predicted Class 

Real class 

 True False 

True TP FN 

False FP TN 

Table 2 - Binary confusion matrix 

A multi-class confusion matrix for 4 disjunctive classes is following: 

actual / predicted class 1 class 2 class 3 class 4 

class 1 TP for class 1 
FN for class 1, 

FP for class 2 

FN for class 1, 

FP for class 3 

FN for class 1, 

FP for class 4 

class 2 
FN for class 2, 

FP for class 1 
TP for class 2 

FN for class 2, 

FP for class 3 

FN for class 2, 

FP for class 4 

class 3 
FN for class 3, 

FP for class 1 

FN for class 3, 

FP for class 2 
TP for class 3 

FN for class 3, 

FP for class 4 

class 4 
FN for class 4, 

FP for class 1 

FN for class 4, 

FP for class 2 

FN for class 4, 

FP for class 3 
TP for class 4 

Table 3 - 4-class confusion matrix  

The values of TPi, FNi and FPi can be obtained from the multi-class confusion matrix.  

FNi is obtained as the sum of the FNi values for the corresponding class in all columns 

except the element on the diagonal of the confusion matrix. Thus, for class 1, it is the sum of 

the values of the 2nd, 3rd, and 4th columns.  

FPi is obtained as the sum of the columns of the corresponding class, again excluding 

the element on the diagonal.  

TPi is then the corresponding element on the diagonal. 
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TNi is mathematically expressible as 

𝑇𝑁 = 𝑁 − (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 )      (16) 

where Ni = the number of elements of the i-th category 

2.4.2.2 Measures derived from confusion matrix 

There are multiple measures derived from the confusion matrix, namely correctness 

(accuracy) c, error e, precision p, recall (sensitivity) r, F-measure F. In case of binary 

classification, they are calculated as follows. 

𝑐 =           (17) 

𝑒 = 1 − 𝑐         (18) 

𝑝 =                                                 (19) 

𝑟 =                                                        (20) 

𝐹 =
⋅( ⋅ )

         (21) 

where: 

𝑁 = 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁       (22) 

If 𝑠 = 𝑝, then 𝐹 = 𝑠 = 𝑝 

In case of disjunctive multi-class classification, for each category 𝑖 = 1, … . , 𝐶, where 

𝐶 = number of categories, a binary decision is made, whether the object belongs to the 

category 𝑖 or it belongs to any other category 𝑗 ≠ 𝑖. Then, the evaluating measures are 

counted as follows and the overall parameters of precision p, recall r and F-score F are their 

arithmetic means. 

𝑐 =
∑ ∑

        (23) 

𝑝 =                                                (24) 
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𝑟 =                                                        (25) 

𝐹 =
⋅( ⋅ )

         (26) 

2.5 Object Detection 

Object detection [51, pp. 483-488] is a combination of two tasks – classification and 

localisation. Localisation can be described as a regression task, predicting bounding boxes 

around the desired object in different formats. The dataset then consists of tuples in form of 

(image, (class, bounding_box). In deep learning projects using object detection, the hardest 

and most time and resource-costly problem is getting the labels, as it has to be hand-made. 

At the start, object detection was done by a sliding window detection. The original 

approach was to train a binary classifier, deciding, whether the object of interest is in the 

given window of cells in the grid, to which the image was divided. Just like in the calculation 

of convolutions, the window shifted from left to right, top to bottom. For each combination of 

cells in a given grid, it calculated whether there was the object of interest in that window, 

along with its probability. When this window shifted by one step, the classifier detected some 

of the cells more than once. When the probabilities were counted for a small window, the 

window size increased and slid again across all regions. Due to running through the CNN 

many times, this approach is very slow. It also needs post-processing, as the same objects are 

detected multiple times. A common post-processing technique, deleting bounding boxes, that 

are overlapping each other, keeping only the one with the highest presence of the object – 

“objectness”, is called non-max suppression.  

In 2014, Fully Convolutional Networks (FCN) were presented by Long et al. [52]. They 

transferred at that time contemporary architectures – AlexNet [29], VGG Net [34] and 

GoogLeNet [35] to classification and pixel-to-pixel classification (i.e., segmentation) and 

also presented a new architecture. By replacing dense layers with convolutional layers, the 

image only has to be processed once, significantly speeding up the object detection. One of 

the generally used architectures utilising this principle is YOLO (You Only Look Once) [53], 

which is described in more detail in the chapter One stage detection algorithms. 
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2.5.1 Traditional image processing techniques vs Deep Learning 

A study was published by HCL Tech [54] about the comparison of Deep Learning and 

traditional image processing (TIP) techniques. TIP like scale-invariant feature transform 

(SIFT) [55] , Histograms of oriented gradients (HOG) [56] and other algorithms usually reach 

lower accuracy in all computer vision areas – classification, object detection and 

segmentation, and require more fine-tuning and expert analysis. These methods are based on 

block-wise orientation histograms. The traditional techniques are more domain-specific and 

less flexible, however, they are still relevant in some cases. They do not need large datasets, a 

high computing power, the annotation time shortens significantly, they have a high domain 

expertise and algorithm transparency. However, feature engineering is required. For some 

applications like 3D modelling, noise reduction, image registration and data compression, 

traditional models are still suitable. According to Boesch [57], traditional image processing in 

OpenCV don’t require annotated images. On the contrary, deep learning caused, that in some 

cases, machine perform better than humans. In comparison with Deep Learning methods, TIP 

have been recently used sparsely in contemporary image processing research.  

2.5.2 Bounding box formats 

There are many different object detection algorithms, which accept various types of 

bounding boxes. The most commonly used are PASCAL VOC (.xml), COCO (.json), 

Tensorflow Object Detection (.csv) and YOLO DarkNet (.txt). [58] Each of these types 

describe the boxes in another way. 

2.5.2.1 PASCAL VOC bounding boxes 

The name comes from an abbreviation of “Pattern Analysis, Statistical Modelling and 

Computational Learning Visual Object Challenge”. PASCAL VOC bounding boxes are 

saved as a .xml file and are presented as a set of absolute coordinates xmin, xmax, ymin, ymax 

closed in <bndbox> tags. Each coordinate set is related to one object with a class name and 

there is one .xml file for each image in the dataset, which contains all bounding boxes in the 

given image. 
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2.5.2.2 COCO Json bounding boxes 

COCO Json is named after the commonly used dataset COCO - Common Objects in 

Context, which contains approximately 328000 images in 91 classes, with about 2.5 million 

labelled objects. There is one .json file for the whole dataset, which includes the list of 

categories, image IDs, object categories and the bounding boxes are saved as an array of four 

absolute numerical values in “bbox”: [x-coordinate of the upper left corner, y-coordinate of 

the upper left corner, width of object, height of object]. 

2.5.2.3 Tensorflow Object Detection bounding boxes 

When using Tensorflow Object Detection API, a TF Record file is needed to train the 

detector network. It has a binary, human non-readable format, therefore it is generated using 

a script from a .csv file. Each .csv file contains a table describing the whole dataset – one row 

per image – with the following columns: filename, width, height, class name, xmin, xmax, ymin, 

ymax. The coordinates are also absolute values. 

2.5.2.4 YOLO DarkNet bounding boxes 

YOLO Darknet bounding boxes work with relative values of coordinates (values of the 

centre of the object and dimensions of the object are normalised between 0 and 1) and are 

saved in a .txt file. For each image in a dataset, there is one .txt file, containing one bounding 

box on each line. The values are separated with blank spaces and come in this order: 

class_index xcentre ycentre width height. As images are resized to a square of fixed size, working 

with relative coordinates has many advantages. When detecting an object and saving labels in 

YOLO format, it is possible to retrieve information from the original, non-resized image. 

2.5.3 Latest Object detection algorithms 

Algorithms implementing object detection are based on two approaches. [59] Two-

stage detection and one-stage detection algorithms. Generally, it can be said, that one-stage 

detectors are faster and structurally simpler, and two-stage detectors have a higher 

recognition and localisation accuracy but are harder to implement. Therefore, each of them is 

suitable for different practical applications. 
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2.5.3.1 Two-Stage Detection 

These object detection algorithms are divided in two stages. The first stage is predicting 

candidate bounding boxes, using traditional Computer Vision methods or Deep Learning, 

while the second one is classification with bounding box regression. It means, that two-stage 

detectors first find a Region of Interest (RoI), then crop the image and classify the cropped 

image. Because the cropping operation is non-differentiable, such detectors are usually not 

end-to-end trainable (all parameters of the model cannot be simultaneously trained for one 

loss function). There are various algorithms using different approach to this two-stage 

detecting, the most popular are Regions with CNN features (R-CNN), Fast R-CNN, Faster R-

CNN, Spatial Pyramid Pooling Network (SPPNet), Feature Pyramid Networks (FPN), 

Detecto, combining previous approaches, and Gated Recurrent Convolutional Neural 

Network (G-RCNN). 

2.5.3.1.1 R-CNN, Fast R-CNN, Faster R-CNN 

One of the prominent two-stage detectors is the R-CNN Family. All versions of R-CNN 

use PASCAL VOC bounding boxes 

In 2014, the first version of R-CNN was presented by Girshick et al. [60]. Due to large 

receptive fields and strides, Girshick decided not to use sliding-window technique for object 

localisation and introduced recognition using regions instead. R-CNN consists of three steps 

– region proposals, feature extraction and classification. Approximately 2000 regions, which 

are category independent, are proposed during prediction, and by using CNN, a fixed-length 

feature vector from each proposal is extracted and after that, each region is classified with a 

SVM, which is category specific.  

As the training of R-CNN is a multi-stage pipeline, which is expensive in memory and 

time and the detection is quite slow, a year later, Girshick published an improved version, 

213 times faster at testing and 9 times faster at training, called Fast R-CNN [61]. He 

introduced multi-task loss and a single-stage multi-task training, which saved time and space, 

as it left out the need of feature caching. He also replaced a SVM classifier with a softmax 

CNN classifier, which also increased the speed and performance.  
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In 2017, Ren et al. followed Girshick’s research and introduced Faster R-CNN [62]. He 

focused on speeding up the region proposal step, as in Fast R-CNN, it consumed same or 

even more time than the detection network. They proposed an end-to-end trainable Region 

Proposal Network (RPN), which shared layers with the object detection networks and 

significantly speeded up the testing time, getting close to real time with 10 ms per image. 

They also presented, at that time novel, anchor boxes, they served as a reference when using 

multiple aspect ratios and scales of images. 

2.5.3.1.2 Spatial Pyramid Pooling Network (SPPNet) 

Spatial Pyramid Pooling Network – the SPPNet – comes from the very author of 

Detectron, Res-Net and Mask R-CNN – Kaiming He – et al. [63]. The Spatial Pyramid 

Pooling method does not require a fixed-size input that is normally reached by resizing or 

changing the original image – cropping or warping (a combination of cropping and stretching 

into a square). Making such manipulations unnecessary is a convenience when using different 

sizes, scales and aspect ratios of images in datasets. The reason for using fixed-size images is 

that the fully connected (Dense) layers require a fixed-length input by definition.  

As convolutional and pooling layers work on a sliding-window basis and can work with 

any size and shape of input, the authors put a newly introduced SPP layer, which creates a 

fixed-size output from a variable-size input, on top of the last convolutional layer in the 

network before the classifiers (SVM or softmax - Dense layers).  

Getting a fixed-size vector from a variable-size input can be reached by using two 

approaches – the first one is a vector space model Bag-of-Words (BoW) [64], which maps the 

visual features and their number occurrences, making it a fixed-size vector (i.e.: {eyes: 8, 

legs: 8, torso: 1, ears: 0, nose: 0, claws:2, tail: 0} – a simplified example of animal features, 

in this case, representing a spider; in real use, the features are extracted automatically by the 

CNN). The other option is using a BoW improvement – Spatial Pyramid Pooling, which 

maintains spatial information by pooling in local spatial bins, regardless of the image site.  

SPPNet had good results on ImageNet’s contest ILSVRC 2014 and was ranked #2 in 

object detection and #3 in classification. 

2.5.3.1.3 Feature Pyramid Network (FPN) 
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Feature Pyramid Networks (FPN) were published in 2016 [65]. They follow up on the 

SPPNet, with a significant improvement in generic feature extraction. In combination with R-

CNN, it surpassed the object detection results of COCO dataset. This is also one of the 

flagship networks used for generating segmentation proposals, following the DeepMask [66] 

framework. 

2.5.3.1.4 Detecto – ResNet, R-CNN and FPN 

Detecto [67] is Python framework released in 2019, which combines Faster R-CNN. 

ResNet-50 and FPN. As a callable Python package, it is easy to implement on custom data, 

with a very high precision in comparison to other object detection algorithms. It requires 

bounding boxes in PASCAL VOC format and uses PyTorch instead of the usual TensorFlow. 

2.5.3.1.5 Gated Recurrent Convolutional Neural Network G-RCNN 

Wang et al. released G-RCNN in 2022 [68]. The principle stands in introducing gates 

controlling the amount of information on input of a recurrent CNN. They follow-up on the 

research of CNN with Adaptive Receptive Field, which works with deformable convolutions, 

and combine it with skip connections introduced in ResNet [37] and recurrent connections 

between neurons in the same layer. These networks are used for object recognition 

(classification), but also scene text recognition (OCR) and object detection. 

2.5.3.2 One-Stage Detection 

One-stage detection algorithms only predict bounding boxes and leave out predicting 

RoI. Because of that, it leverages anchors and a grid box to localise the object and constraint 

its shape. The three most popular one-stage detectors are YOLO, SSD and RetinaNet. The 

disadvantage of such detectors is a fixed-size input. 

2.5.3.2.1 YOLO 

YOLO is a famous family of networks with a controversial history, which belongs to 

convolutional networks designed to classify and detect objects in images. The first version of 

YOLO was proposed by Redmond et al. in 2015 [53] as YOLOv1, improved in 2016 [69] as 

YOLOv2 and subsequently in 2018 [70] as YOLOv3, then he left the research due to 

potential misuse and various teams came up with further versions. At the time (as in the 
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beginning of 2023), 9 versions are available. Older versions of YOLO use TFRecords to load 

datasets, and later versions (YOLOv5+) require YOLO bounding boxes 

At its release time, YOLOv1 [53] was revolutionary, because it was so fast it could run 

in real time (over 20 FPS) in a video; it exceeded the speed of Fast R-CNN with a 57.2% 

mAP (mean Average Precision) on VOC 2007 dataset, however, when comparing the 

prediction on one image, there was a significant number of localisation errors. Redmond and 

his team’s approach differed from other detectors, as they framed object detection as a 

regression problem with regards to a grid of cells instead of using a sliding window classifier 

(which was a common approach before 2014). However, this approach also comes with its 

downsides – all images are resized to 448 x 448 pixels, then a single convolutional network is 

run to detect object with regards to the grid, and in order to avoid multiple detections of one 

object and remove overlapping bounding boxes, non-max suppression is applied. However, 

each grid cell can only detect two object and only one class (making it 98 objects in total), 

therefore, YOLOv1 struggles with images containing larger groups of small objects (i.e., 

flocks of birds). YOLOv1’s architecture consists of 24 Convolutional layers, 4 MaxPooling 

layers and 2 Dense layers. The whole prediction is encoded as a tensor 𝑆 ×  𝑆 × (𝐵 ∗ 5 + 𝐶), 

where 𝑆 = height and width of the image, 𝐵 = number of bounding boxes, 𝐶 = number of 

classes. 

YOLOv2 [69], or YOLO9000, named after the capability of detecting over 9000 

classes, reached 76.8 % mAP on VOC 2007 (containing 20 classes) in 67 FPS. With 156 

classes, the mAP drops to 16, dropping even more when more classes are used. In 

comparison with YOLOv1, several changes were made. The input image size shrunk from 

448 x 448 to 416 x 416 and there was a change in the architecture – the base of YOLOv2 is a 

newly proposed Darknet-19, which has 19 Convolutional layers and 5 MaxPooling layers, 

using 3x3 convolutions as well as 1x1 in order to compress the feature representations. By 

removing the Dense layers, YOLOv2 had to introduce dimension clusters as anchor boxes to 

predict bounding boxes instead of a static cell grid. For each anchor box, the class and 

objectness is predicted. Although using anchor boxes allows more objects to be detected 

(over a thousand within one image), the prediction accuracy lowered a bit. An average recall 

of public datasets (like VOC, COCO or ImageNet) reached about 81 %, which is enough for 

analysing a video, for example a surveillance camera, but not enough for precise detection 
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(like in OCR). In the same paper, the system called WordTree is introduced, which is used to 

unite the labels from different sources (COCO and ImageNet at once).   

In an unusually informal technical report presenting version 3 [70], Joseph Redmond 

and his teacher Ali Farhadi presented more improvements in YOLO. Darknet-19 was 

replaced by Darknet-53 and detecting small objects improved, however, detecting large 

objects deteriorated. The author (who himself was funded by Google and the Office of Naval 

Research) was questioning the use of fast and precise object detectors – as most such research 

was funded by the military or big corporations like Google and Facebook –  Are the detectors 

going to be used to harvest personal data and sell it to other subjects? Are they going to be 

used by the army to train automatic targeting systems in order to kill a lot of people? 

Redmond then stopped developing YOLO (and computer vision research altogether) in fear 

of the potential misuse, however, other teams took over. 

After 2 years of inactivity on YOLO, much to Redmond’s dismay, it was taken over by 

Alexey Bochkovskyi et al. in 2020 and YOLOv4 was published [71]. Some of the changes 

are the input image size, which has grown to 512 x 512, anchor optimisation, mosaic data 

augmentation (proposed by Glen Jocher), cross mini-batch normalisation, dynamic mini-

batch size, IoU threshold, class label smoothing, and training tuning – genetic algorithms 

were used in order to select the optimal hyperparameters during learning and different loss 

algorithms were used for bounding box regression. These changes caused an improvement 

both in speed and in accuracy. 

Also in 2020, Glen Jocher released YOLOv5 [72] with some differences from 

YOLOv4, like automatic learning of bounding box anchors and an almost 10 times lower 

model size, making it a lightweight model suitable for mobile real-time applications, 

however, only as a code (which has been continually improved ever since), and by now (as of 

2023), the paper was not presented. Many people had a problem with Jocher naming his 

algorithm YOLOv5, as it was supposedly not novel enough and he is not the original author 

of YOLO. He has made alliance with Joseph Nelso, the CEO of Roboflow [58], which is an 

online platform for annotation, augmentation and also training different deep learning 

projects, and since 2022. YOLOv5 [72] can be also used for segmentation [73], if trained on 

images with polygon annotations instead of standard rectangular bounding boxes. 



 
 

 

 

 34 

YOLOR (You Only Lear One Representation) followed the YOLO line in 2021 [74]. 

Published by Wang et al., they proposed a network, which integrates both types of knowledge 

- implicit (which has nothing to do with the observation – subconscious learning) and explicit 

(directly corresponding with the observation – conscious learning). Such network is capable 

of general representation as well as sub-representations for various tasks, as it is a multiple-

output network with a single input. Some of the tasks are questions like what the object is, 

where it is, what colour it has etc. 

Along with YOLOR, YOLOX surpassing all previous YOLO versions was published in 

the same year by Ge et al. from Megvii Technology. [75] In YOLOX, there are no anchors, 

as in order to get optimal anchors, cluster analysis has to be performed before training, and 

the objective was to speed up the process, the predictions look for a grid top, object width and 

height. YOLOX has several versions with different sizes. One version is based on Darknet53, 

then there is a L-version, Tiny and Nano with only 0.91 M parameters. Also an advanced 

assignment of labels called SimOTA is presented in this paper; it calculates pair-wise 

matching degree, which is represented by quality or cost for each “prediction – grid top” –  

pair, then it selects best predictions and assigns the grids of positive predictions as positive 

and the rest as negatives. 

In 2022, YOLOv7 was published by YOLOR’s authors Wang et al. [76]. It does not 

have a single specific architecture, but rather, it is more of a structure as it uses a novel model 

scaling method that scales concatenation-based ELAN and residual-based CSPDarknet 

models.  In order to assign labels dynamically, they used a set of methods that were bag-of-

freebies to improve the model's accuracy and speed. 

YOLOv6 was released a few months after YOLOv7 by Li et al. [77], even more 

improving the accuracy and speed by using four main techniques – presenting different scales 

of models, a self-distillation strategy on classification and regression, a broad verification of 

advanced detection techniques and reforming the quantisation scheme using a RepOptimizer 

and a channel-wise distillation. YOLOv8 [78] was also released on GitHub by Ultralytics at 

the beginning of 2023 (without the paper yet). YOLOv8 is able to work with bigger square 

images in real-time, by default, 640 x 640 pixels with almost 54 mAP. YOLOv9, developed 

by Chien-Yao Wang et al., followed in February 2024. [79] They built a new YOLO on a 

proposed Generalized Efficient Layer Aggregation Network (GELAN) architecture. 
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2.5.3.2.2 SSD – Single Shot Detector 

Presented by Liu et al. in 2016 [80], the Single Shot MultiBox Detector (SSD) detects 

objects using only one deep Convolutional Neural Network. It creates default bounding boxes 

and generates scores for the presence of each category of objects in each default bounding 

box. It also adapts the box to match the shape of the given object better. Although the SSD is 

a relatively simple algorithm, it reaches a sufficient accuracy on small images and 

outperforms Faster R-CNN in speed (as most one-shot detectors do with two-stage detectors). 

As Liu criticised the two-stage detectors for being too slow for real-time applications, he 

suggested SSD with a feed-forward CNN, VGG-16 base, which makes it even faster than 

YOLO. The loss of the model is counted as a weighted sum between the localisation losses. 

2.5.3.2.3 RetinaNet 

In 2017, Lin et al. released another one-stage detector, called RetinaNet [81]. They 

came up with a novel loss, addressing the problem of one-stage detectors with class-

imbalanced datasets. It is called the focal loss, which extends the cross-entropy loss with a 

modulating factor (1 − 𝑝 )  utilising a tuneable focusing parameter γ ≥ 0, with an 

experimentally reached optimal value of 2, focusing on learning on hard negative examples. 

The modulating factor extends the range in which a prediction receives a low loss. The 

architecture of RetinaNet consists of an FPN backbone and a feedforward ResNet, 

minimising focal loss during training. 

2.5.3.2.4 SqueezeDet 

SqueezeDet [82] is a Fully Convolutional Network (FCN) that was released by the Shift 

[46] author team with the aim of use in autonomous driving. Inspired by YOLO but with a 

smaller (and scalable) model size, the SqueezeDet team adopts a single-stage detection 

pipeline using anchors. However, they use only convolutional layers not just to extract 

feature maps but also for a novel output layer called ConvDet, which predicts bounding 

boxes. The coordinates of bounding boxes are counted as a regression with regard to the 

relative coordinates of anchors. 



 
 

 

 

 36 

2.5.4 Comparing object detection algorithms 

2.5.4.1 Evaluation options 

In object detection algorithms, we usually evaluate automatically on labelled test data. 

It is not possible to simply count TP, FN, FP, and TN as it is done in classification. [83] 

For this reason, the most common metric to measure how well the model predicts the 

bounding boxes is Intersection over Union (IoU). It is the area of intersection of real and 

predicted bounding boxes, divided by their union. The higher the IoU, the more precise the 

detection is. We can find it in tf.keras.metrics.MeanIoU class. [84] 

From IoU, we can calculate TP, FN, FP, and TN. We establish an IoU threshold, which 

is considered sufficient.  

If 𝐼𝑜𝑈 ≥ 𝐼𝑜𝑈 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, we mark the box as TP. All boxes without intersections are 

marked as FP, and boxes with low IoU are marked as FN. Then, we construct the confusion 

matrix just like with classification. 

In some cases where we don’t have the ground truth labels available, it is inconvenient 

to use this method; therefore, in the comments section, a method is suggested. 

2.6 Segmentation 

Segmentation is the most complex computer vision task of all three. It can be explained 

as pixel-level classification. By clustering pixels belonging to a selected class, the algorithm 

shows, where the exact object boundaries are located. There are two types of segmentation: 

semantic segmentation, which clusters all pixels of objects belonging to the same class, even 

if they overlap, and instance segmentation, which identifies each object instance separately, 

even if they belong to the same class. Instance segmentation decides the outlines of an 

instance in accordance with its shape, texture, brightness, and colour. [85] 
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Figure 8- Computer vision tasks: (a) image classification, (b) object detection, (c) semantic segmentation (d) instance 

segmentation. [86] 

2.6.1 Mathematical methods used for segmentation 

There are two main strategies in image segmentation: 

 similarity – this approach is based on thresholding, comparing the similarity of 

neighbouring pixels 

 discontinuity – this method incorporates algorithms of line, point and edge 

detection 

Various mathematical techniques are available to segment the content of an image; 

however, due to the focus of this dissertation (neural networks), these methods are not 

described in detail.  

Methods such as graph cuts, pseudo-Boolean programming, and fast optimisation [87] 

are used to create a Markov Random Field (MRF) model estimation, which are undirected 

graphs.  
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Another one is constructing a Bayesian network (multiple variants of Directed Acyclic 

Graphs – DAGs). Baxter et al. [88] described a Directed Acyclic Graph Max-Flow 

(DAGMF) image segmentation, capable of segmenting a wide variety of input images from 

different areas. This approach orders labels into a set of continuous spaces, marking each 

pixel in the input image with a category. 

2.6.2 Object detection algorithms used for segmentation 

2.6.2.1 Evolution of semantic segmentation 

In 2017, Garcia-Garcia et al. presented a review of semantic segmentation done with 

deep learning techniques [86]. In semantic segmentation, each pixel in the picture is 

classified. Different objects of the same class are marked the same. Regardless of whether 

there is one or more objects of the same class, they are not distinguished.  

Instance segmentation is, however, more challenging, as it requires precisely 

segmenting each instance while correctly detecting all objects. It combines object detection 

and semantic segmentation within each bounding box separately. 

2.6.2.2 Early approaches of instance segmentation 

The origin of segmentation was a previously mentioned Fully Convolutional Network 

by Long et al. [52] Many instance segmentation papers are based on segment proposals. 

Earlier proposals from around 2013 were based on bottom-up segments [89] [90], DeepMask 

by Chen et al. from 2016 [66] and research following it by Pinheiro et al. [91] is based on 

Fast R-CNN and segment candidate proposals, where the segmentation precedes object 

recognition, making it less accurate, however, at that time, it improved the state of art in the 

recall by 10 – 20 %. In 2015, Dai et al. [92] suggested a complex model, which consists of a 

sequence (or, as they call it, cascade) of three convolutional models. The first one 

differentiates instances, the second one estimates masks, and the last one is a classifier. It is a 

sequence and is not predicted parallelly. As already described in Chapter 2.5.3.1. Two-Stage 

Detection, Feature Pyramid Networks (FPN) were one of the flagship object detectors with 

automatically generated mask proposals. 
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The most contemporary instance segmentation models are currently based on Mask R-

CNN and, since 2022, also on YOLOv5, YOLOv7 and since 2023, on YOLOv8 and 

YOLOv9 in 2024. 

2.6.2.3 Mask R-CNN 

Mask R-CNN was proposed in 2017 by He et al. [93]. They are an extension of Fast R-

CNN [62], which added an object mask in parallel with the bounding boxes – when detecting 

objects, Mask R-CNN also generates segmentation masks for each instance. In comparison to 

Dai’s cascade approach [92], it is much faster. The original code [94] is called Detectron. The 

authors presented a new type of layer, RoIAlign, which preserves the exact spatial locations 

of detected objects. In comparison to previously published RoiPool layers, the mask accuracy 

increased by 10 to 50 %. In this approach, each class is predicted independently, and a binary 

mask in the form of a polygonal label is created for each object class within every Region of 

Interest. 

 

Figure 9 - Masks created with polygonal labels for training a Mask R-CNN network 

source: https://bit.ly/3wTxzK4 

In 2017, Waleed et al. [95] proposed an improved Mask R-CNN based on a Feature 

Pyramid Network (FPN) and a ResNet101 backbone. In comparison to the original Mask R-

CNN, where square inputs were needed, they preserved the aspect ratio of images, generated 

the bounding boxes in a different way and decreased the learning rate from 0.02, as in 

combination with small batch sizes, causing exploding weights. 

In the state of the art around 2022, Mask R-CNN could be used for segmenting objects 

like aeroplanes, cars, animals, and people for tracking; however, the precision of masks was 

not very big, as visible in the two Figures below. It made Mask R-CNN unusable by itself 

(without pre- or post-processing) for applications like Optical Character Recognition (OCR). 
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However, in 2023, the precision has risen greatly, which opened the possibility of applying 

this technique to use instant segmentation for experimental letter recognition. 

 
Figure 10 - Elephant predicted with Mask R-CNN [96] 

 
Figure 11 – Houses segmented with Mask R-CNN: Mapping Challenge converting satellite images to maps [95] 
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2.6.2.4 YOLO 

Since 2022, as described on the Roboflow blog [97], YOLOv5 has also been usable for 

instance segmentation. It uses the same polygonal labels as Mask R-CNN for generating 

object outlines. In 2023 and 2024, more future YOLO versions followed this trend, further 

improving the quality of predicted segmentation masks. 

2.7 Dataset augmentation 

In order to conduct research, and not just image processing research, a sufficient 

amount of good quality data is needed. Machine learning projects usually require a high 

amount of training data to be reliable. [50] [54] While working with public datasets, which 

usually consist of a large number of images, makes the process easier, there are not always 

the data that we need.  

When training deep learning models on self-made, custom-created datasets for our own 

research, we often face the challenge of obtaining data of sufficient quality and scope. In 

some cases, only a limited amount of data is available, and the annotation process (or, for 

classification, the process of cutting images to square inputs containing only the object of 

interest) is also time-consuming. Under these circumstances, along with optimising network 

architecture and training parameters and incorporating regularisation techniques (for 

example, adding dropout layers to the model), it is appropriate to consider including synthetic 

data that is built upon a foundation of real data and transformed using mathematical or other 

techniques.  

We distinguish between classical image filtering methods, geometric transformations 

(both of which only manipulate the original images) and machine learning methods that 

create custom data as close to real data as possible. 

2.7.1 Classical methods 

2.7.1.1 Keras generator 

There is a class called ImageDataGenerator (callable by 

tf.keras.preprocessing.image.ImageDataGenerator) in the Keras framework, which allows the 

researchers to use several filtering methods and geometric transformations to augment the 
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input image dataset. Filtering methods include changes in saturation, colour depth, colour 

spectrum, contrast, brightness, focus, blur, and noise inserted into the original images. On the 

other hand, geometric transformations are rotating, flipping, stretching, cropping, and 

narrowing. Keras also allows for the replacement of parts of images with blank pixels or 

noise and the compiling of multiple images in a tile, which consists of random crops.  

2.7.1.2 Online platform Roboflow 

In January 2020, an online platform called Roboflow was released on the domain 

roboflow.com. This platform includes many features useful for machine learning projects, 

such as creating project datasets in clouds and callable from notebooks (Jupyter, Google 

Colab, Kaggle, etc.). Supported project types are object detection, single-label classification, 

multi-label classification, instance segmentation, semantic segmentation, keypoint detection 

and “other”. For object detection and segmentation, an annotation tool is available, 

supporting both types of labels – bounding boxes and polygonal labels. In the premium 

version, Roboflow also offers training DL models on “Roboflow train”. When exporting 

datasets for use in external notebooks, the user can choose the dataset format (from the ones 

explained in detail in Chapter 2.5.2 – Bounding box formats) and also pick pre-processing 

and augmentation methods. The pre-processing options offered are visible in the following 

Figure: 

 
Figure 12 - Roboflow pre-processing options 

source: www.roboflow.com 
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Augmentation options include image level augmentations and bounding box level 

augmentations, which are shown in the Figure below. These augmentations, just like the ones 

in the Keras generator, are classified as filtering and geometric methods. 

 
Figure 13 - Roboflow augmentation optios 

source: www.roboflow.com 
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2.7.2 Deep learning methods 

In addition to classical filtering and geometric methods, there are also augmentation 

techniques using artificial intelligence to increase the dataset size. Using these methods, new, 

original data are created that take on the features of the original images. Such methods are 

Neural style transfer, Feature space data augmentation, such as Variational autoencoders 

(VAE) and more, Generative adversarial networks (GANs) and others (Deep Dream etc.). 

2.7.2.1 Neural Style Transfer 

Using the Neural Style Transfer (NST) method, we work with the terms image content 

and style. NST was presented by Leon Gatys et al. in 2015. [98] Image content is defined in 

higher CNN layers as a high-level structure of the image (mainly rough outlines defining the 

main features) and the style defined in lower CNN layers consists of colours, textures, and 

visual patterns. This method is incorrectly, but commonly called “filters” in mobile phone 

cameras. Simply put, if you take a photo of a face and make it look like it was painted in 

Leonardo da Vinci style or a landscape that you change to look like a painted canvas, this is 

NST. This method has been used in the latest research as well. Daru et al. [99] presented a 

method of designing drapes with a combination of various binary masks and NST. The part 

of the image of a drape where the used mask was black had a different target style than the 

part of the image where the mask was white. Wu et al. [100] proposed a Direction-aware 

NST with a custom direction field loss function, improving the state of art of generating 

mosaic and canvas-like images. Xinyu et al. [101] extended the use of NST to stereoscopic 

images in 2018, which was enhanced by Friedrich et al. [102] in 2021 by creating a pipeline 

based on a high-resolution voxel representation with the goal of creating complete 3D shapes 

with a transferred neural style. 
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Figure 14 - Neural Style Transfer by Leon Gatys [98] 

2.7.2.2 Feature space data augmentation 

Feature space data augmentation (FDA) is a group of methods used to improve 

classifier performance. Kumar et al. [103] described different FDA methods as follows. 

These techniques first extract the features from the original datasets, and then they generate 

new data from the latent feature space. After this process, the synthetic data is added to 

training sets in order to improve the classification accuracy. One of the FDA's methods is 

upsampling, which creates higher-resolution pictures by applying features learned on smaller 

images. Random perturbation adds noise from the uniform distribution. Linear delta is a 

simple method of generating new examples by subtracting the difference between two 

examples from the same class and combining it with a third example. Extrapolation between 



 
 

 

 

 46 

samples in latent feature space creates new samples as well, and delta-encoder, similarly to 

variational autoencoder, consists of an encoder and decoder; at first, it extracts the differences 

between two samples within a class (deltas); then, it applies these deltas to create synthetic 

data from a different class. 

2.7.2.3 Variational autoencoders 

Variational autoencoders (VAE) were explored by two independent teams and 

published at about the same time by Kingma et al. [104] and Rezende et al. [105]. Chollet 

[48, p. 271] describes the key idea to generating pictures as a low-dimensional vector latent 

space of representations, where any point can be mapped to a realistically looking image. 

VAE is a composition of two neural networks. One of them, the encoder, accepts real 

images as input and encodes them into a compressed representation using ANN, usually 

CNN. This compressed representation consists of two parameters in the latent space – 

z_mean and z_log_var. 

 

Figure 15 - Principle of VAE [48, p. 274] 

The randomly sampled point, as shown in the figure above, is picked using this 

equation. 

𝑧 = 𝑧 + exp (𝑧_𝑙𝑜𝑔_𝑣𝑎𝑟) ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (27) 

where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = a random tensor of small values. 

The decoder network maps this z point back to the original image. The points, which 

are near each other in the latent space, will generate a very similar output using the decoder. 
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The representations in the latent space are highly structured and can be used for smooth 

transitions of images.  

VAEs have been used in contemporary research. Chadebec et al. [106] increased 

accuracy from 80.7 % to 88.6 % by incorporating synthetic data into classification datasets in 

the OASIS database. Elbattah et al. [107] used VAE to generate eye-tracking scan paths with 

the goal of reducing dataset imbalance. 

2.7.2.4 Generative adversarial networks 

Generative Adversarial Networks (GANs), first presented by Ian Goodfellow et al. 

[108] also consist of two neural networks. One of them is called the generator, while the 

second one is the discriminator (real-fake classifier). Both networks are trained alternately, 

each to an adversarial goal. The generator captures the distribution of data and tries to 

generate real-like input, and the discriminator estimates the probability of the input to be real 

(it comes from the training set) or fake (it was generated). At first, the generator generates 

Gaussian noise, which is easily identified as fake by the discriminator, but as the training 

goes on, the generated images resemble real images more and more. In an ideal situation, a 

Nash equilibrium is reached. It is a state in which no player can unilaterally improve his 

strategy to beat the opponent. In the context of a GAN, this means that the generator 

generates so well that the discriminator has exactly a 50% chance of identifying the input 

correctly. 

GANs, like the VAEs, consist of two neural networks. However, unlike VAE, they do 

not create structured, continuous latent spaces. GANs have the potential to produce highly 

realistic images, whereas the images from the VAE are merged, because of the continuity in 

the latent space. Géron [51, p. 591] states that although VAEs have been very popular for a 

long, GANs have already surpassed them with their capability to create more realistic images. 

It is, therefore, advisable to consider what data we are augmenting before choosing the right 

method. 

Contemporary research has introduced improvements to basic GANs. Deep 

Convolutional GAN – DCGAN [109] presented the following improvements in the 

architecture and guidelines for a more stable network: 
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 Replacing pooling layers with strided convolutions in the discriminator and 

fractional convolutions in the generator 

 Using batch normalisation 

 In deeper architectures, removing fully connected hidden layers 

 Using ReLu activation in all layers of the generator, except for the last layer 

with Tanh 

 Using LeakyReLu in all layers of the discriminator 

Progressively growing GAN by Karras et al. [110] present a novel approach to train 

low-resolution images at first and progressively increase them to high resolution, usually up 

to 1024 x 1024 px. In their paper, the discriminator network is called “the critic”. The 

principle of the upscale lies in the smooth adding of layers. The layers operating in higher 

resolutions are treated like a residual block, in which layers have small weights linearly 

increasing from 0 to 1. Ledig et al.’s Super-resolution GAN (SRGAN) [111] is focused on 

creating highly detailed textures when upscaling the generated images.  

Recent use of GANs in contemporary research projects includes augmenting datasets of 

palmprint [112], improving cancer classification on gene expressions data [113], augmenting 

X-ray security images for threat detection [114], improving liver lesion classification with 

synthetic data [115] and many more. 

2.8 Optical Character Recognition 

Optical Character Recognition (OCR) systems are among the most complex 

applications of computer vision and image recognition, in addition to the scene understanding 

required for self-driving vehicles, for instance. It is the process of classifying patterns 

corresponding with alphanumeric or other characters from a digital photograph or PDF scan. 

[116] This recognition is done in several, at least three, basic steps - segmentation of text 

against the background and individual parts of the text, feature extraction and feature 

classification. [117] 

Holistic OCR systems contain 9 stages [118], from the actual acquisition of image data 

to the conversion of text into machine-readable format:  
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1. Scanning - digitising physical documents (papers, photographing historical 

artefacts - reliefs, vases, funerary steles, etc. inscriptions) 

2. Local segmentation, which distinguishes the text parts of a photograph from 

graphics  

3. Optional pre-processing, in which noise is reduced, text is rotated to the correct 

position, the image is normalised, compressed 

4. Segmentation, also called binarisation - separation of non-text and text parts, 

and further segmentation into individual characters or parts of characters 

5. Representation - global, statistical, or geometric representation of characters 

6. Feature extraction - in current OCR systems, template matching is most 

commonly used based on the extracted distribution of points identified in an 

image 

7. Training and recognition - creating templates of individual features, fixed or 

elastic, statistical techniques, cluster analysis, use of fuzzy logic or artificial 

neural network 

8. Post-processing - detected features are composed into words compared with a 

dictionary, and modified to make sense 

9. The final step is the output text itself in a machine-readable format, which can 

be further manipulated, e.g., using NLP - natural language processing systems 

(e.g., translating into other languages, creating automatic text summaries, etc.) 

Current research in OCR [119] combines multiple systems in a hybrid solution for 

better recognition, which reduces the error rate when using only one OCR algorithm. Post-

processing methods are being improved to account for different types of errors and produce 

automatic corrections [120], and systems are being developed for languages that were 

previously unavailable, such as Arabic [121], Hindi [122], Japanese [123], and many more. In 

a comparative study of current OCR systems (here, regarding Latin OCR) from 2021 [124], 

the problems encountered by these systems in common situations are mentioned. One of them 

is the problem of recognising letters on a scanned document, in case the letters are distorted, 

blurred or parts of the characters are missing completely. Another problem is font 

differences, which create the need to extract multiple different features for each character 

class or to use multiple templates and elastic templates for character classification. 
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At the time, a common way to classify a character in OCR is using elastic templates. 

Contemporary research uses neural networks for text segmentation, like in case of car license 

plate reading [125], where Mask R-CNN serves to segment the text area, and it is forwarded 

to Terrasect OCR for transliteration. Only one pioneer research called “Rosetta” [126] 

proposes a convolutional approach because it uses neural networks for both text localisation 

and text recognition. Rosetta is used to analyse text in so-called “memes”, which are 

uploaded to the social media Facebook every day.  

2.9 Research gap  

The exploration of neural network architectures used for object recognition in images, 

image segmentation and augmentation of learning sets, applied to recognising historical 

alphabets is best done with real-world examples. It is not possible to define one correct 

approach to analyse historical scripts, as there are many types (alphabets, logographic scripts, 

ideographic scripts, syllabaries and many more) and each of them is unique and needs to be 

approached respectively. Based on the knowledge described in the literature review, several 

research gaps were identified. In this dissertation, an effort is made to obtain a general 

approach for developing improved neural networks for the purpose of OCR algorithms of 

historical scripts specific to each type of script. 

At the time of writing this dissertation, there were no detectors and classifiers for the 

characters of the Palmyrene alphabet. Therefore, it was possible to build a custom dataset of 

the characters used to write Palmyrene Aramaic, explore classifier architectures and optimise 

them, try different augmentation methods, construct a Generative adversarial network and 

train it to augment the data, as well as start to work on a complete OCR system, incorporating 

segmentation, and lastly, connect it with a dictionary. Completion of Palmyrene OCR, 

namely the dictionary part, will be finished after publishing this dissertation, but it’s 

appropriate to mention it now, as my team and I are already working on it at the time. 

In addition to analysing the Palmyrene alphabet, together with a team from Israel, we 

decided to explore the possibilities of detecting wedges (otherwise known as strokes) in 

cuneiform using only object detection algorithms, as this approach was not used before. As 

cuneiform is a logo-syllabic script, in this case, not the whole vowels, but their parts were 
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being detected. In the course of this research, I was able to construct different object 

detection algorithms and test their properties. 

During the cuneiform research, we encountered the problem of calculating the 

confusion matrix for detectors in the absence of ground truth labels. For this reason, I propose 

a modification of it and present it here in chapter 3.2.1. 

3 Commentary 

In the Attachment section, five papers are presented about the topic of creating 

Palmyrene OCR and two papers about detecting strokes in cuneiform script. One article is 

mentioned but not yet published; therefore, it is not attached as full text. 

3.1 Palmyrene Aramaic analysis using computer vision algorithms 

In the first, conference article [1] (Attachment 1), the Android application incorporating 

two classifiers was shown. The first classifier takes an EMNIST-like Palmyrene character, 

which is drawn on the mobile screen; optionally, the second classifier takes a photo of one 

Palmyrene character (which needs to be taken by the mobile phone camera). The respective 

classifier suggests the top three classes with the highest confidence scores; the user picks the 

character in accordance with the Unicode table character pictured next to the confidence 

score and saves it to buffer. This way, the user can re-write (or take pictures letter by letter) 

and classify every letter in the Palmyrene inscription and can then export it as text. The 

architecture used in this version of the app was efficient_lite0. The results of hand-written 

classification reached 80.2% F-score, while the photographic classifier reached only 71.96%. 

There were three authors in this paper. I created the dataset and the classifier and conducted 

tests. Mr. Franc created and debugged the mobile application, and Mr. Tyrychtr provided 

professional guidance while writing the article. 

 
The second, journal, article [2] (Attachment 2) presents a custom CNN architecture, 

which was obtained by testing different layer combinations and training parameters. An 

optimal architecture for the classification of hand-written inputs was selected, and the 

accuracy increased from efficient_lite0’s 68.93% to 98,21%. the hand-written Palmyrene 

character classification task was complete. However, it was not suitable for classifying photos 

of characters. I created the training scripts in Keras and conducted the tests of architectures 
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and classification results tests. Mr. Franc updated the mobile application, and Mr. Veselý 

helped with the methodology and article review. 

In the third, conference, article about the topic of Palmyrene OCR [3] (Attachment 3), 

we present GAN augmentation methods used for expanding photographic datasets. However, 

as the improvement was not sufficient for practical use, therefore, we explored more options, 

that are presented in a journal article, for which we have recently received reviews and are 

editing it in accordance with the reviewer’s comments Mr. Franc created the GAN training 

and generating scripts, I did the data hand-sorting and classifier testing. Mr. Veselý suggested 

methods and reviewed the article. 

In 2022, we extended our research by presenting the Palmyrene OCR web application 

available at https://ml-research.pef.czu.cz, which, at the time of creation offered the same 

options as the mobile application - to either draw characters by hand or alternately take a 

picture of one character in Android application, annotating characters in an uploaded photo of 

Palmyrene inscription. Mr. Svojše developed the web application, I provided extended 

datasets, classifiers trained on them and conducted tests, and Mr. Franc ensured the operation 

of the web server. The article related to this topic has not yet been published and, therefore, 

cannot be referenced, but the web application is already in use.  

In the conference article [6] (Attachment 4) published by Springer, the planned 

capabilities of the Palmyrene OCR web application were described using a diagram, which 

was, along with a part of a single-class segmentation dataset and methods for further steps, 

presented in the MOBA workshop of CAISE conference. The dataset was obtained and 

annotated by me as well as the research plan, and Mr. Pavlíček edited the diagram. Mr. Franc 

helped with the manuscript preparation. I prepared the methods. 

In the end, the methods proposed in the conference articles were supplemented by an 

additional method, which was multi-class instance segmentation. With the help of new 

scientific knowledge and experiments, we have found that it is not necessary first to detect 

individual letters and then categorise them into the correct classes, as was the original plan, 

but that it is possible to segment and categorise at the same time. In fact, during 2023, the 

segmentation algorithms were further improved, and YOLOv8 could be trained for multi-

class instance segmentation. In a 2024 paper published in CMES [7] (Attachment 5), we 

performed a thorough analysis that involved a substantial expansion of the dataset, with input 
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from humanities professor Alexey Lyavdansky of the Russian HSE University, who, for 

photographs of the Palmyra inscriptions I collected from public and non-public sources, 

verified which letters were visible in the photographs and provided transcriptions for 

inscriptions that were not publicly available. We trained four models - for one and multiple 

classes - on two algorithms and developed a custom algorithm for line processing and letter-

in-line comparison directly from the detected segmentation masks in the form of polygons. 

Mr. Svojše and Mr. Franc also published this module to our web application ml-research. Mr. 

Novák helped with manuscript formatting and administration, and Mr. Veselý helped with 

manuscript preparation and methodology description. 

Another article, which is also part of the research, is not attached to this dissertation as 

it is in preparation. In this article, various GAN and SRGAN possibilities and training 

methodologies are explored, presenting the optimisation of GANs for classification data 

augmentation and upscaling images on specially downscaled images using the Hierarchical 

Collaborative Downscaling (HCD) method published in 2023 [127]. The outcome of this 

study suggests that synthetic data can play a crucial role in enhancing the performance of 

computer vision algorithms, with potential applications extending beyond the scope of the 

study to other areas of research and development in computer science and digital humanities. 

I helped prepare the data and train multiple GAN networks constructed by Mr. Franc. Ondřej 

Svojše published the relevant content on the ml-research web application, and Mr. Veselý 

provided methodological guidance and helped with manuscript preparation. 

3.1.1 Palmyrene alphabet research outcome 

Over the course of the past few years, computer vision algorithms have experienced 

rapid development, enabling a wide variety of applications to be created. One such 

application is a novel way of developing OCR, which we have researched for a number of 

years. Through ongoing experiments and using the most contemporary algorithms in each 

phase of the research, we have achieved results that allow us to read the characters of the 

Palmyrene alphabet directly from photos and obtain the transcriptions in either a mobile or 

web application. A foreign humanities professor with the ability to read and understand the 

Palmyrene texts has joined our team and is invaluably helping us with the process. One last 

step for this research to be complete is to incorporate the datasets in standard OCR algorithms 

like Google Tesseract and create an NLP algorithm to put the predicted characters in the 

context of words and sentences. 
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3.2 Cuneiform stroke detection 

Concerning cuneiform stroke detection, two papers are attached to this dissertation. The 

first one, a conference article [4] (Attachment 6) presents detecting horizontal strokes within 

images of cuneiform tablets and a journal article [5] (Attachment 7) presents comparing 

different computer vision algorithms and also some additional tools that we created to detect 

the strokes successfully. The dataset was processed by Mr. Franc, who also prepared the 

Detecto algorithm for training in a custom notebook and annotated by partners from two 

Israeli universities – Shai Gordin from Ariel University and Avital Romach from Tel Aviv 

University. They also helped us with the texts about cuneiform in both articles. In this 

research project, I served as a project manager and was responsible for the preparation and 

training of the YOLOv5 network, programming several utilities, and Mr Čejka participated in 

training the R-CNN network. Mr. Pavlíček also participated by programming more utilities. 

The final outcome of the cuneiform research project was not deployed in any web 

application and is currently only available on GitHub. The topic was further explored by E 

Stötzner et al. [128], adding all other types of strokes to the detection, allowing the research 

to be put into practical use.  

According to Google Scholar on the 18th of April 2024 [129], the SPML conference 

article [5] has been cited 3 times by other author teams (E Stötzner et al., V Yugay et al. and 

A Bucciero et al.) who followed the development of detecting cuneiform signs directly from 

2D photographs. 

3.2.1 Confusion matrix used for object detection algorithms 

During the evaluation of the cuneiform stroke object detectors, we encountered a 

problem with the standard algorithm evaluating methodology – counting mean IoU and 

deriving the confusion matrix from it [83] – as some of the testing data was not labelled. 

There was a need to establish a method that could be used in detector evaluation cases where 

few or no ground truth labels are available. Therefore, an altered version of the confusion 

matrix was suggested. Confusion matrix is traditionally used to evaluate classifiers or used on 

an object detection algorithm, if it is derived from IoU as described in chapter 2.5.4.1 of this 

dissertation.  

The method of altered confusion matrix construction was applied in the 2024 article in 

Digital Humanities Quarterly [6]. 
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3.2.1.1 Suggested method to constructing confusion matrix 

In case of missing IoU, True Positives TP, False Negatives FN and False Positives FP 

are counted as follows, and a duplicity or multiplicity D is added:  

 The object of interest or its part is bounded by a box.  

o It is denoted as TP. 

 The object of interest or its part is not bounded by a box.  

o It is denoted as FN. 

 Multiple boxes bound the same object or its part.  

o The number of boxes b-1 are denoted as D. 

 A box bounds an area, where there is no object of interest or its part. 

o It is denoted as FP. 

 TN cannot be counted; therefore, it is set to 0. 

o TN = 0. 

Standard metrics such as precision p, recall s and F-score can be calculated using the 

matrix. The number of multiplicities D can be ignored in calculations as bounding boxes with 

a high overlap can be removed when a threshold for overlap is set. However, it can serve as 

additional information when evaluating the algorithm. 

3.3 Cascade-style approach to creating historical OCR systems 

In Chapter 8, a classical 9-step holistic approach to creating OCR algorithms, which 

consists of scanning, local segmentation, pre-processing, binarisation, representation, feature 

extraction, training and recognition, post-processing, and finally, getting the text in a 

machine-readable format, was presented. However, by applying the latest knowledge in the 

field of computer vision and using previously unavailable or imprecise algorithms, which 

have achieved much higher success rates in recent years, the number of steps to create an 

OCR algorithm can be significantly reduced. Although there are different approaches of 

reading historical scripts, there are many connecting elements that can be summarised in a 

cascade-style approach. The 9-step process can be simplified to a 5-step process. 

3.3.1 Data acquisition 

The quality and quantity of the data acquired directly impact the algorithm's ability to 

generalise and accurately recognise text across different fonts, sizes, and styles which are 
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present when processing handwriting of historical documents. Different digitising processes 

can obtain data, but the easiest one is collecting existing photographs of texts or taking new 

pictures. 

3.3.2 Annotation 

With the use of manual annotation of whole letters in case of alphabets, or parts of 

characters used to write historical language, such as cuneiform, we prepare a dataset for 

training an instance segmentation algorithm that incorporates the previously mentioned steps 

- local segmentation and pre-processing. An optional step in this step includes using GAN 

networks to generate more training data if too little is available. 

3.3.3 Multi-class instance segmentation 

Multi-class instance segmentation sums up the binarisation (segmenting text and non-

text areas), representation, feature extraction, training, and recognition from the holistic 

approach in just one step, as it directly detects non-text and text parts and recognises whole 

letters or components at once and results in a list of letter. 

3.3.4 Post-processing 

This step involves techniques such as sorting characters into rows and columns and 

combining parts of characters into syllables in non-alphabetic scripts.  

Advanced post-processing can also be understood as spell-checking, grammar 

correction, and context analysis to improve the overall accuracy and readability of the 

extracted text. Additionally, post-processing may also include error correction mechanisms to 

prevent any misinterpretations or inconsistencies in the recognised text. 

3.3.5 Text in machine-readable format 

Converting the recognised text into a machine-readable format is the final step in the 

OCR pipeline. This step requires working with a dictionary in the given language and enables 

future text processing such as translation or summarisation. 

3.4 Next steps 

Future research plans are presented. In order to complete the development of the OCR 

algorithm in Palmyrene Aramaic, advanced post-processing techniques need to be applied to 

avoid recognition errors, and a dictionary needs to be developed to understand the transcripts 
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obtained by image processing fully using instance segmentation. Of course, we are also 

continuously working on annotating more available images with Palmyrene inscriptions to 

refine the segmentation results as more accurate results will make post-processing easier. 

Other research teams have already followed up on the processing of cuneiform script 

from 2D photographs, yet if our Israeli partners are interested in collaborating on the next 

steps, we would be happy to participate in the research with them. 

Conclusion 

The beautiful aspect of science is that there is always something to improve and 

develop, and new knowledge allows us to educate ourselves and educate others continually. 

Over the course of my PhD grant projects, I have researched a large number of neural 

network types and architectures that are used for image processing, such as classification, 

object detection, dataset augmentation and segmentation. I explored their capabilities and 

limitations in relation to the detection, augmentation, and classification of historical fonts, 

both alphabet and logo-syllabic.  

Together with several research teams, I have developed a horizontal stroke detector in 

cuneiform script, a classifier, a segmentation algorithm, and a generator of Palmyrene 

alphabet characters and proposed a modified method for computing the confusion matrix 

when no ground truth labels are available to calculate IoU.  

I suggested and published a novel cascade approach to OCR creation using 

Convolutional Neural Networks. It both simplifies and combines the steps of a holistic OCR 

development approach using state-of-the-art image processing algorithms. This approach is 

generally applicable to the development of algorithms processing various other scripts, be 

they historical or contemporary. 

I have gained knowledge in computer vision that I will further enhance in other 

research or commercial projects that I am working on now and will work on in the future. I 

trust that the results presented in this dissertation will help as a baseline for research by other 

teams working on the development of processing historical scripts.  
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Abstract: This article presents the problem of improving the classifier of hand-
written letters from historical alphabets, using letter classification algorithms and
transliterating them to Latin. We apply it on Palmyrene alphabet, which is a
complex alphabet with letters, some of which are very similar to each other. We
created a mobile application for Palmyrene alphabet that is able to transliterate
hand-written letters or letters that are given as photograph images. At first, the
core of the application was based on MobileNet, but the classification results were
not suitable enough. In this article, we suggest an improved, better performing con-
volutional neural network architecture for hand-written letter classifier used in our
mobile application. Our suggested new convolutional neural network architecture
shows an improvement in accuracy from 0.6893 to 0.9821 by 142% for hand-written
model in comparison with the original MobileNet. Future plans are to improve the
photographic model as well.
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1. Introduction

1.1 Historical alphabet digitization including Palmyrene

Many researches are focused on character recognition of letters from historical
alphabets. These include Persian [5], Bangladeshi [3] and cuneiform, which is
transliterated by hand [19] and photos of these transliterations are classified.

Until recently, there was no Palmyrene transliteration available. There is a
large number of Palmyrene Aramaic memorabilia, which is written in Palmyrene
alphabet. It is similar to classic Aramaic with some differences in the alphabet and
dialect. This dialect was used in western parts of Syria, and classic Aramaic was
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spoken in the eastern parts. This script was used in the nearest surroundings and
inside the Syrian city of Palmyra (also called city of Tadmur) in the years 100–400
A.D.

Translating Palmyrene texts is contributing to the study of ancient art and
history, as well as Palmyrene and Biblical studies. The largest anthologies were
published in 1996 by Hillers et al. [7] and in 2001 by Taylor et al. [15].

Palmyrene font became part of Unicode in 2010 [1] when the coding for Palmyrene
letters was proposed. The alphabet consists of 32 characters in the range 10860–
1087F in Unicode [12] (Palmyrene, 2010). Apart from “y”, there are only conso-
nants in the script. The alphabet is read from the top right to left corner; words
are not divided by a blank space. As for numbers, there are only four characters,
which mean 1, 5, 10 (or 100) and 20.

1.2 Image classification on mobile devices

Android applications are developed mostly using the IDE Android Studio and in
each version of IDE, a set of standard libraries is added and some of the existing
ones are updated. Among standard Android API libraries, image classification
is not included. The TensorFlow documentation website [17] recommends using
convolutional neural network MobileNet for image classification on mobile devices.

Current research [4] recommends using MobileNet version efficient lite0. It was
introduced by Tan and Le in 2020 [16] and is also presented in Sonawane’s paper [14]
in comparison with other architectures.

1.3 Android software template and Palmyrene transliterator

In our research we suggest a mobile software tool for automatic character reading
of historical alphabets and transliterating them into Latin alphabet. This tool
called “Palmyrene Alphabet Transcription” has a potential to help to speed up the
process of processing archived but not transliterated and untranslated documents
or can be used directly in the field by archeologists.

Our tool is an Android application that can serve as a template for other alpha-
bets as well. The two main use cases of our tool are hand-written letter analysis
and letter analysis from photo.

In the first one our tool asks the user to draw a letter on the screen. The
drawn image is resized and sent on the input of the convolution neural network
(CNN). CNN classifies the image and then the three possible transliterations with
the highest confidence score are displayed, see Fig. 1.

The second possibility how to use our tool is using it for transliteration of letters
given in photos. Instead of writing the letters by hand, the user takes a photograph
of the letter directly from sandstone tablet like in Fig. 2 or other document type
that is written in Palmyrene.

The user interface is visible in Fig. 3. There is also a help available, as well as
info and alphabet table available in the application.

The target group of users of this tool are archaeologists, who would use the
software for faster Palmyrene Aramaic texts transliteration, the secondary focus
group are other researchers and people outside the scientific community that could
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Fig. 1 In-app character classification.

Fig. 2 Example of a sandstone tablet containing Palmyrene script, Inv. 2983/9507,
© The Archaeological Museum Of Palmyra.

use the transliteration for educational purposes. The Android application can also
be modified if another historical alphabet model is trained. Therefore, it can be
used for further semi-automatic transliteration of any alphabet.
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Fig. 3 “Palmyrene Alphabet Transcription” mobile application user interface.
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2. Objective

Our goal was to design a suitable classifier for transcribing Palmyrene characters
into Latin, with special regard to its use in mobile applications. Current research
suggests using MobileNet classifier. Therefore, our first step was to verify the
possibility of using CNN with the MobileNet architecture and to train it on the
Palmyrene alphabet character set. Because the results obtained were not satisfac-
tory, we designed our own CNN architecture, trained it and then we compared the
results with the results obtained using MobileNet.

Our results confirmed that it is possible to design CNN architecture of the clas-
sifier that gives better results than MobileNet based classifier. It is likely that this
classifier would also give good results if trained for transcription of some another
similar alphabet.

3. Building the classifier

3.1 Training and validation set

In order to create a dataset of hand-written characters, we modified Axel Thevenot’s
“Python-Interface-to-Create-Handwrittendataset” tool available at Github [18]. The
letters were transcribed from a large number of photographs containing Palmyrene
alphabet, such as in Fig. 2. For acquiring these photographs of tablets with
Palmyrene inscriptions, we established a cooperation with two museums – Musée
du Louvre in Paris [9] as well as Virtual Museum Of Palmyra. [11].

Palmyra alphabet consists of 32 characters, see transcription table in Fig. 4. In
our research we considered only 28 characters. We excluded four characters – the
numbers 2, 3, 4 and 5. The numbers 2–4 are sequences of the characters 1, and
the number 5 looks exactly the same as the letter “ayin”. Using graphic tablet, we
wrote 56197 letters in total (exactly 2007 samples per each character).

The used system font for Palmyrene is “palmmne”. Each character class is
saved in a different folder with character name and using keras ImageDataGenera-
tor.flow from directory function, the dataset is converted to CNN-readable format.
With the generator, the data is split into two subsets – training set contains 80%
data and validation set contains the remaining 20%. We did not use any data
augmentation method.

3.2 MobileNet based architecture

Our first choice of mobile network architecture was picked according to the cur-
rent recommendations — MobileNet efficient lite0. This architecture consists of a
HubKerasV1V2 layer, Dropout layer to prevent overfitting and an output Dense
layer. The final activation function is softmax, as the problem solved is a multiple
category classification.

The training of the efficient lite0 model (both photographic and hand-written)
used 80% images for training and 20% for validation. For model creation, we used
the library “tflite-model-maker” and did not alternate the architecture.
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Fig. 4 Palmyrene characters and transcription to Latin.

For creating dataset, we call the tflite model maker.image classifier.DataLoader
method. By calling this method, input images are resized to 224× 224 pixels and
loaded into a data generator.
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The network is trained calling the function “model.create”, which runs training
for 5 epochs, with batch size 128 images. The core of the network is not trained, as
there are only 38430 trainable parameters and 3451454 non-trainable parameters.

Model summary is specified below.

Model: “sequential”

Layer (type) Output Shape Param #

Hub keras layer v1v2 (HubKe rasLayerV1V2) (None, 1280) 3413024
dropout (Dropout) (None, 1280) 0

dense (Dense) (None, 30) 38430

Total params: 3451454
Trainable params: 38430

Non-trainable params: 3413024

Tab. I MobileNet summary.

The training accuracy was very high even after the first epoch, it reached 0.902,
and in the last epoch it reached 0.993. The validation accuracy was 0.677. Model
is then saved in .tflite format.

3.3 Design of the custom CNN architecture

To design the network architecture, we conduct experiments with CNN layers. We
compare the influence of the number of convolutions in each Convolutional layer,
the influence of leaving out pooling layers, compare the difference in performance of
AveragePooling and MaxPooling layers and research the influence of the number of
repetition of Convolutional/Pooling blocks. We then pick the architecture, which
had the highest validation accuracy, lowest validation error and lowest validation
loss, and convert it to a mobile version of the model – “.tflite” for testing.

The training is conducted on the graphic card NVIDIA GeForce GTX 970 with
memory clock rate 1.1775GHz, 1664 CUDA cores and memory size 8159MB.

We created 10 versions of CNN architectures and researched the influence of
the combination of layers and numbers of convolutions on a small dataset of hand-
written letters (153 per class, image size 28×28). The results are visible in Tab. II,
where V is version, Acci is accuracy in given epoch i, Lossi is loss in given epoch i,
V Acci is validation accuracy in given epoch i, V Lossi is validation loss in given
epoch i.

Each architecture version was using alternation of Convolutional layers with
specified number of convolutions and Pooling layers, either MaxPooling or Aver-
agePooling. The last three layers were always Flatten and two Dense layers. The
versions are described in the following Tab. III, where Conv i means the number
of convolutions in each i-th Convolutional layer.

As visible in Tab. II, the combination of low validation loss and high validation
accuracy was present in models using the straight alternation of Convolutional and
MaxPooling layers, with 3 or 4 such blocks (mostly versions 1 and 3). Adding
another Convolutional / MaxPooling block (version 7) lowered the validation ac-
curacy from 0.548 to 0.4967 in the last epoch and increased the validation loss
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V Acc 1 Loss 1 V Acc 1 V Loss 1 Acc 15 Loss 15 V Acc 15 V Loss 15

1 0.2992 2.749 00 0.3326 2.6634 0.9688 0.0583 0.5301 2.5247
2 0.7730 0.794 60 0.4330 3.3265 0.9648 0.0511 0.4196 2.7923
3 0.2054 2.871 13 0.2366 2.8368 0.9720 0.0550 0.5480 2.6796
4 0.0649 3.254 80 0.1373 3.0333 0.9389 0.1334 0.4085 5.2541
5 2.8557 0.262 00 0.2334 3.2072 0.9960 0.0758 0.4542 4.2724
6 3.2109 0.082 00 0.1652 3.1675 0.9626 0.0805 0.4743 4.5598
7 3.0733 0.117 90 0.1417 3.2524 0.9628 0.0621 0.4967 4.0713
8 1.4428 0.592 40 0.3571 2.9419 0.9658 0.0499 0.4877 2.9082
9 3.1120 0.123 30 0.1730 3.0210 0.9659 0.6030 0.5580 2.9961
10 3.2842 0.089 40 0.1696 3.0293 0.9652 0.0928 0.5022 3.5259

Tab. II Influence of CNN layers on network performance.

V Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Pool

1 16 32 64 Max
2 32 64 128 Max
3 16 32 64 128 Max
4 16 32 64 128 Avg
5 32 64 128 Avg
6 32 64 128 256 Avg
7 16 32 64 128 256 Avg
8 16 32 64 Max
9 16 32 64 64 Max

10 16 32 32 32 Max

Tab. III CNN versions description.

from 2.6796 to 4.0713. Using AveragePooling layers conducted in lower validation
accuracy to 0.4085 in version 4 and almost doubled the validation loss to 5.2541 in
comparison to using MaxPooling layers. The best performing architecture overall
was version 3.

3.4 Training of the new CNN model

We used the training / validation split equal to 0.8 / 0.2 using the library Image-
DataGenerator from tensorflow.keras. The images are resized to 28× 28 pixels.

We picked the best performing model with 4 Convolutional layers alternated by
4 MaxPooling layers (version 3). The model summary is visible below.

We trained the network for 15 epochs, with batch size 128, selected optimizer
was “adam”. The training results are visible in Tab. V.
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Model: “sequential”

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 16) 448
max pooling2d (MaxPooling2D) (None, 14, 14, 16) 0

conv2d 1 (Conv2D) (None, 14, 14, 32) 4640
max pooling2d 1 (MaxPooling2) (None, 7, 7, 32) 0

conv2d 2 (Conv2D) (None, 7, 7, 64) 18496
max pooling2d 2 (MaxPooling2) (None, 3, 3, 64) 0

conv2d 3 (Conv2D) (None, 3, 3, 128) 73856
max pooling2d 3 (MaxPooling2) (None, 1, 1, 128) 0

flatten (Flatten) (None, 128) 0
dense (Dense) (None, 512) 66048
dense 1 (Dense) (None, 28) 14364

Total params: 177852
Trainable params: 177852

Non-trainable params: 0

Tab. IV Custom CNN summary.

Acc 1 Loss 1 V Acc 1 V Loss 1 Acc 15 Loss 15 V Acc 15 V Loss 15

0.861 0.4718 0.9255 0.3092 1 4.66 0.9626 0.3315

Tab. V Results of final model training.

4. Evaluation on testing set

The testing dataset is not created in advance. Testing is conducted directly in
the mobile application, and the characters need to be written by hand in the
“Draw Letter” module. We use 10 samples in each class for testing of both CNN
architectures (280 images in total).

4.1 Metrics

For classifier evaluation, the metrics accuracy acc, error err, recall r Eq. (1), preci-
sion p Eq. (2) and F-score Eq. (3) are used. [2] Accuracy acc is the mean of correctly
classified characters, error err is the mean of incorrectly classified characters. Pa-
rameters of recall Eq. (2), precision Eq. (1) and F-score Eq. (3) are evaluated as
follows. For each category i we consider binary decision whether character belongs
to the category i versus it belongs to any other category j ̸= i and we calculate
precision pi, recall ri and Fi-score.

ri =
m∑
i=1

TPi

TPi + FPi
, (1)

pi =
m∑
i=1

TPi

TPi + FNi
, (2)
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Fi =
2 · ri · pi
ri + pi

, (3)

where
– TPi is the number of correctly classified objects from category i
– FPi is the number of characters from the category j ̸= i incorrectly classified as
being characterss from category i
– FNi is the number of characters from category i incorrectly classified as being
characters from some another category j ̸= i
– m is the number of categories.

The overall parameters of recall r Eq. (4), precision p Eq. (5) and F score
Eq. (6) are then evaluated as arithmetic means.

r =
1

m

m∑
i=1

ri, (4)

p =
1

m

m∑
i=1

pi, (5)

F =
1

m

m∑
i=1

Fi. (6)

4.2 Results of MobileNet and custom CNN classifier

The detailed results of MobileNet classifier evaluation on testing set are visible in
Tab. VI.

The mean error of this classifier is 0.311, while the mean accuracy reached 0.689.

The least recognized Palmyrene character is “20” and “mem” with only 1 (out
of 10) true positive recognition. The character “20” was otherwise classified as “pe”
and “waw”, while “mem” was classified as “beth”, “nun” and “pe”. 9 characters
– “10”, “aleph”, “beth”, “he”, “nun”, “nun final”, “pe”, “shin” and “waw” were
recognized in each case (10 out of 10).

The classifier was over-oriented for character “pe”, as it had most false positive
predictions – 28 other letters were classified as “pe”, as it is visually similar to
other characters. The second character with most false positive predictions was
“nun” with 18 false classifications and the third one was “nun final” with 9 false
positives.

The detailed results of custom CNN classifier evaluation on testing set are
visible in Tab. VII. The mean error of custom CNN classifier is only 0.018, while
the accuracy reached 0.982, which is a significant 142% improvement from the
MobileNet classifier.

The least recognized character is “pe” with 8 true positives out of 10, one was
classified as “nun” and the other as “yodh”. 24 characters were recognized in all 10
cases out of 10, 3 had one false negative prediction – “gimel”, “resh” and “sadhe”.

There were only 5 characters with false positives – “20”, “daleth”, “heth”,
“nun” and “yodh”, each of them had 1 false positive prediction.
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class TPi FNi FPi ri pi Fi err acc

1 8 2 2 0.8 0.8 0.8
10 10 0 0 1 1 1
20 1 9 0 0.1 1 0.182

aleph 10 0 9 1 0.526 0.690
ayin 6 4 0 0.6 1 0.75
beth 10 0 7 1 0.588 0.741

daleth 5 5 0 0.5 1 0.667
gimmel 4 6 0 0.4 1 0.571

he 10 0 0 1 1 1
heth 9 1 1 0.9 0.9 0.9
kaph 8 2 2 0.8 0.8 0.8

lamedh 7 3 0 0.7 1 0.824
left 2 8 5 0.2 0.286 0.235

mem 1 9 0 0.1 1 0.182
nun 10 0 18 1 0.357 0.526

nun final 10 0 9 1 0.526 0.690
pe 10 0 26 1 0.278 0.435

qoph 7 3 1 0.7 0.875 0.778
resh 3 7 0 0.3 1 0.462
right 5 5 0 0.5 1 0.667
sadhe 4 6 0 0.4 1 0.571

samekh 3 7 0 0.3 1 0.462
shin 10 0 2 1 0.833 0.909
taw 5 5 1 0.5 0.833 0.625
teth 8 2 0 0.8 1 0.889
waw 10 0 4 1 0.714 0.833
yodh 8 2 2 0.8 0.8 0.8
zayin 7 3 0 0.7 1 0.824
mean 0.682 0.826 0.672 0.311 0.689

Tab. VI MobileNet classifier evaluation.

5. Discussion

The results of the Palmyrene hand-written characters classification were satis-
factory, as the accuracy reached 98.21% instead of 68.93% with MobileNet effi-
cient lite0.

The reason behind the false predictions when using MobileNet is the visual
similarity of Palmyrene symbols. In sample datasets used for object detection
with MobileNet image classifiers, there are many distinct features that makes the
classification easier. Such objects like dogs, cats etc. can be stretched, rotated and
shifted within the image and still be recognized and classified correctly, however, in
case of characters of alphabets, the precise position, shape and rotation of letters
matter and can not be altered, because it would change the meaning of the letter,
as some letters look like others if rotated or stretched. The demonstration of such
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class TPi FNi FPi ri pi Fi err acc

1 10 0 0 1 1 1
10 10 0 0 1 1 1
20 10 0 1 1 0.909 0.952

aleph 10 0 0 1 1 1
ayin 10 0 0 1 1 1
beth 10 0 0 1 1 1

daleth 10 0 1 1 0.909 0.952
gimmel 9 1 0 0.9 1 0.947

he 10 0 0 1 1 1
heth 10 0 1 1 0.909 0.952
kaph 10 0 0 1 1 1

lamedh 10 0 0 1 1 1
left 10 0 0 1 1 1

mem 10 0 0 1 1 1
nun 10 0 1 1 0.909 0.952

nun final 10 0 0 1 1 1
pe 8 2 0 0.8 1 0.889

qoph 10 0 0 1 1 1
resh 9 1 0 0.9 1 0.947
right 10 0 0 1 1 1
sadhe 9 1 0 0.9 1 0.947

samekh 10 0 0 1 1 1
shin 10 0 0 1 1 1
taw 10 0 0 1 1 1
teth 10 0 0 1 1 1
waw 10 0 0 1 1 1
yodh 10 0 1 1 0.909 0.952
zayin 10 0 0 1 1 1
mean 0.982 0.984 0.982 0.018 0.982

Tab. VII Results of model with 4×Conv/MaxPooling network architecture.

similarity is visible in Fig. 5. The most similar letter to “pe” is “20” and so it had
the highest classification error with MobileNet.

When using custom classifier, the improvement is significant (142% better), as
the CNN architecture was tested especially for letter classification and is less prone
to error when classifying objects with less distinct features.

Fig. 5 Visual similarity of character similarity.
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Mara H. conducted the analysis of 3-dimensional scans of tablets with cuneiform
signs, however the success rate is not presented in the research. [10] Yamauchi
researched hand-written cuneiform characters, but also did not publish classifier
results. [19]

Ghosh et al.’s model, that recognized Bangladeshi signs, reached 96.46% accu-
racy on MobileNet, which is 2.4% less than with our upgraded CNN hand-written
model. The Bangladeshi script contains 60 letters [3]. Its hand-written were also
analysed and reached 90.27% accuracy. [13]

Our classifier is also comparable with other object recognition tasks, for example
Cho Junghwan et al. have researched CT body scans. The dataset contained 4000
very high quality images and they reached 97% accuracy on GoogLeNet Inception
v1 architecture. They also described, how the results declined if less images were
used, accordingly [8].

The F-score of 83% has been reached in the task of great tits and carried food
recognition by part of our team. We analysed photos from Smart Nest Boxes.
For the model, we used YOLOv3 architecture. The F-measure was lower due to
difficult object detection. [6]

Our results of Palmyrene letters recognition were therefore comparable with
other author’s works. The classifier results were satisfactory, over 70% as initially
stated in the success criteria. With a 98.21% classification success, the task of
hand-written Palmyrene characters classification can be considered resolved.

6. Conclusion

We have explored the architectures suitable for character recognition for mobile
use, which is an ever evolving area. Letters and numbers classification is a special
image classification case, as, unlike other objects, the images of alphabet characters
can not be manipulated rotation-wise, shape-wise and shift-wise. We conducted
experiments with convolutional neural network architectures special for character
recognition on Android devices, aiming to improve the classification in comparison
with MobileNet, and found out, that the network with 4 Convolutional layers
alternated by MaxPooling layers has better classification results than other tested
networks and trained this network on our data and improved hand-written classifier
results by 142%.

We updated the model in our software tool, which uses artificial intelligence
for semi-automation of historical alphabets transliteration and proved its function
on Palmyrene Aramaic script. From a general point of view, we can state that
if a different model is trained on another alphabet, using the same architecture
and mobile application (using different dataset of letters, and with some alterna-
tions of in-app texts), this research can serve as a template for other historical
script analysis and a foundation of historical optical character recognition (OCR)
algorithms.

There is still room for improvement in performance of the photographic model,
which is still run on MobileNet and has only 440 images per class in the dataset.
We plan to expand the set using keras augmentation and to develop generative
adversarial networks. We also plan to create a web application for Palmyrene
alphabet recognition, where we will also implement rows recognition and character
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segmentation, creating a Palmyrene OCR, aiding researchers with transliterating
Palmyrene Aramaic texts in field use and thus contributing to biblical studies. The
aim of the next steps of this research is however not just to create a Palmyrene OCR,
but to suggest neural network architectures for any historical alphabet character
detection, segmentation and classification on mobile and improve the state of art
of creating mobile OCR.
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ABSTRACT

This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene
inscriptions, employing two state-of-the-art deep learning algorithms, namely YOLOv8 and Roboflow 3.0. The
goal is to contribute to the preservation and understanding of historical texts, showcasing the potential of modern
deep learning methods in archaeological research. Our research culminates in several key findings and scientific
contributions. We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of
Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses
of each algorithm in this context. We also created and annotated an extensive dataset of Palmyrene inscriptions, a
crucial resource for further research in the field. The dataset serves for training and evaluating the segmentation
models. We employ comparative evaluation metrics to quantitatively assess the segmentation results, ensuring the
reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation
masks. Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes
a benchmark for future research. The availability of the Palmyrene dataset and the insights into algorithm
performance contribute to the broader understanding of historical text analysis.

KEYWORDS
Optical character recognition; instance segmentation; Palmyrene; ancient languages; computer vision

1 Introduction

Palmyra, known as Tadmur in Arabic, is an ancient city located in the Syrian desert. It is also
an essential part of human history. Its archaeological significance lies not only in its physical ruins,
but also in the inscriptions carved into the buildings and into the funerary stelae. These inscriptions
represent a valuable repository of knowledge that records the Palmyrene dialect of Aramaic, its
culture, and the records of ancient Palmyrene society. However, uncovering the secret written on these
inscriptions poses challenges for the scientific community.
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Deciphering and analyzing these historical texts have interested scientists, historians, and archae-
ologists for generations, and until now it has only ever been done by linguists, not by machines.
Therefore, applying deep learning (DL) methods is a transformative force, making the work of linguists
easier and allowing the non-scholarly public access to texts that would otherwise be incomprehensible
to them. Deep learning algorithms, including deep neural networks, offer automation in letter classi-
fication and segmentation, which can be a potential solution to the complexity of the transcription of
Palmyrene inscriptions.

Previous research [1] dealt with classifying Palmyrene characters from handwritten transcripts
and photographs and their augmentation [2]. It addressed the classification in two ways. The first way
is to divide a dataset of Palmyrene characters into squares that each contain one letter; the second
way is to handwrite an EMNIST-like dataset using special software and a mouse pen tablet and then
make both classifiers available in an Android mobile application and an online application [3], using
a custom neural network which was chosen as the best performing from 10 different architectures.
As photographs classification did not achieve satisfactory results initially, Generative Adversarial
Networks (GAN) are employed to expand the classification dataset, improving the outcomes by 120%.
The research plan for segmenting Palmyrene characters was presented at a conference in 2023 [4].

Based on deep learning principles, this study aims to evaluate and compare the performance of
state-of-the-art DL instance segmentation algorithms in Palmyrene character segmentation. Through
data collection in collaboration with several museums worldwide, photo analysis, pre-processing, man-
ual review of published transcriptions, and custom annotation in the Roboflow annotation platform,
the computing power of DL is employed to solve the unique challenges posed by transcriptions of
ancient inscriptions.

2 Structure

The article is structured as follows:

Section 3—Related Work-presents other works that describe developing an ancient or alive
language Optical Character Recognition (OCR) and comment on the proposed methods. It also
presents other relevant studies that utilize instance segmentation and the research gap.

Section 4—Data Collection and Preparation-describes how the data were obtained from the
museums, checks the published transliterations to indicate if they align with the photographs, and adds
the transliterations to photos that did not have them available. It also describes the pre-processing and
annotation process and its challenges and defines the number of classes to work with.

Section 5—Methodology-introduces two approaches-single-and multi-class segmentation-and
algorithms used-YOLOv8 and Roboflow 3.0. It explains the advantages and disadvantages of each
method and describes the training, hyperparameters, and evaluation metrics. It also presents the
custom scripts developed for letter sorting and visualization.

Section 6—Results-includes individual network training, testing, quantitative metrics, and visual-
ization of results.

Sections 7 through 9 discuss the results, next steps, and conclusion. At the end, statements,
acknowledgments, and references are presented, followed by Appendices A and B that provide details
of the models’ training and testing.
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3 Related Work

Developing OCR or Natural Language Processing (NLP) algorithms for languages lacking
existing solutions is an essential part of preservation and making it easier to process documents in
that given language. This applies to historical texts, such as Egyptian hieroglyphs [5], Sanskrit [6], and
different types of cuneiform [7] and living languages.

For instance, a Turkish OCR system [8] employs commonly available OCR algorithms-CuneiForm
Cognitive OpenOCR, GNU License Open-source Character Recogniton (GOCR), and Tesseract [9]-
to handle a dataset consisting of scans and photos of Turkish texts. Another was designed for Icelandic
to aid in digitizing the Fjolnir magazine, housing historical texts [10]. Character recognition has also
been developed for Bangla [11], presenting unique challenges due to the variability of characters and
the presence of ligatures (conjunctions of characters). Oni et al. [12] developed an OCR algorithm
based on generated training data. They scanned images of Yoruba texts written in Latin script and
reached 3.138% character error rate using the Times New Roman font.

There are comparative performance studies for or languages with many OCR systems available,
either of the whole systems [13] or separate languages, such as Arabic [14].

Using instance segmentation algorithms for character detection can be effective in image-based
tasks involving handwriting, as opposed to OCR for scanned text, where semantic segmentation is
employed to separate text from background, e.g., in the case of Czechoslovak scanned documents
[15]. Instance segmentation using Convolutional Neural Networks (CNNs) is applied to detect the
boundaries of individual objects. It is usually used for other tasks, such as segmenting leaves in plants
[16], cars in a parking lot [17], or ships and airplanes from satellite images [18].

Although instance segmentation algorithms are usually used for tasks other than letter segmen-
tation, they also have a high potential to find letters in photographs. Instance segmentation can make
it possible to recognize characters in different font styles and photographs of various quality if a large
enough dataset is available, and it is not necessary to separate the text from the non-text part.

4 Data Collection and Preparation
4.1 Obtaining Data

Photographs of Palmyrene inscriptions were obtained from several private sources with their
consent, from public online sources, and by taking photographs in the respective museums. The pho-
tographs of inscriptions originate from Arbeia Roman Fort and Museum1, Archaeological Museum
of Palmyra2, The British Museum3, Carlsberg Glyptotek4, Hypogeum of Three Brothers5, MET
Museum6, Musée du Louvre7, Musei Vaticani8, Museum of the American University, Beirut9, The
Getty Villa Museum10, National Museum in Prague11, Royal Ontario Museum12, The Pushkin State
Museum of Fine Arts13 and The State Hermitage Museum14.

1https://arbeiaromanfort.org.uk/.
2https://virtual-museum-syria.org/palmyra/.
3https://www.britishmuseum.org/.
4https://glyptoteket.dk/.
5https://archeologie.culture.gouv.fr/palmyre/en/mediatheque/hypogeum-three-brothers-palmyra-7.
6https://www.metmuseum.org/.
7https://www.louvre.fr/en.
8https://www.museivaticani.va/content/museivaticani/en.html.
9https://www.aub.edu.lb/museum_archeo/Pages/default.aspx.
10https://www.getty.edu/visit/villa.
11https://www.nm.cz/en.
12https://www.rom.on.ca/en.
13https://pushkinmuseum.art/?lang=en.
14https://www.hermitagemuseum.org/wps/portal/hermitage/.

https://arbeiaromanfort.org.uk/
https://virtual-museum-syria.org/palmyra/
https://www.britishmuseum.org/
https://glyptoteket.dk/
https://archeologie.culture.gouv.fr/palmyre/en/mediatheque/hypogeum-three-brothers-palmyra-7
https://www.metmuseum.org/
https://www.louvre.fr/en
https://www.museivaticani.va/content/museivaticani/en.html
https://www.aub.edu.lb/museum_archeo/Pages/default.aspx
https://www.getty.edu/visit/villa
https://www.nm.cz/en
https://www.rom.on.ca/en
https://pushkinmuseum.art/?lang=en
https://www.hermitagemuseum.org/wps/portal/hermitage/
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4.2 Checking Transcriptions
Prior to the annotation, the collected photographs were checked. For each photo, the visible letters

were checked. For some photographs, previously published transcriptions were available and edited to
match the visible characters in the photographs. For those photographs that did not have transcripts
available, transcripts were created.

4.3 Annotation and Pre-Processing
The annotation of the instance segmentation dataset was based on the checked and newly created

transcriptions and was completed in the Roboflow annotation tool using 26 classes corresponding
with the Palmyrene characters. Table 1 shows the complete list.

Table 1: Palmyrene character classes in multi-class segmentation

Class index Class name Transcription Palmyrene

0 One 1
1 Ten 10/100
2 Twenty 20
3 Aleph
4 Ayin
5 Beth b
6 Gimel g
7 He h
8 Heth h.
9 Kaph k
10 Lamedh l
11 Mem m
12 Nun n
13 Nun_final n
14 Pe p
15 Qoph q
16 Resh/daleth r/d
17 Right >
18 Sadhe s.
19 Samekh s
20 Shin š
21 Taw t
22 Teth t.
23 Waw w
24 Yodh y
25 Zayin z
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The characters “left” and “right” are paratextual signs similar to punctuation marks.
Traditionally, they are labeled “ivy leaf” and put either at the beginning or at the end of a line, or
a whole text in Palmyrene Aramaic and Greek inscriptions. Generally, the “left” ivy leaf is used much
more often than its right counterpart.

The character “left” was not present in any of the photographs, so it was excluded from the
class list, but it was included in the classification dataset. The characters “resh” and “daleth” were
combined into a single class because they are often written identically, with their distinction depending
only on the context. Sometimes, “resh” is marked with a dot above. However, a segment must be a
continuous object. Hence, the dot will make a separate segment. There are some dotted “resh” in
the dataset, but they are a minority compared to the volume of those that are not dotted.

The same blending applies to characters “10” and “100”, “5” and “ayin”. In some visual variants,
this also applies to the pair “mem” and “qoph” and the pair “heth” and “sadhe”, however, they were
preserved as a separate class, as other visual variants are distinguishable.

5 Methodology
5.1 Instance Segmentation

Segmentation is the most intricate of the three computer vision tasks: classification, object
detection, and segmentation [19]. It involves pixel-level classification, where pixels are grouped based
on the selected class, revealing the precise boundaries of objects. There are two main types of
segmentation: semantic segmentation, which clusters pixels belonging to the same class regardless
of whether objects overlap, and instance segmentation, which identifies individual instances of objects
within the same class. Instance segmentation determines the outlines of each instance based on factors
such as shape, texture, brightness, and color [20].

During the training of an instance segmentation model, four types of losses are minimized in
parallel, including box, segmentation, class, and distributional focal (box_loss, seg_loss, cls_loss,
dfl_loss). The box loss measures the difference between predicted bounding box coordinates and the
ground truth bounding box coordinates for each object instance, typically calculated as smooth L1
loss. The segmentation loss quantifies the difference between the predicted segmentation mask and the
ground truth mask for each object instance. The class loss describes the variation between predicted
class probabilities and the true class labels associated with each object instance. It is typically computed
using a categorical cross-entropy loss function. The distributional focal loss is a modified version of
the focal loss employed to solve the class imbalance problem. More information about the losses can
be found in the literature [21].

This study uses two approaches to extract text from a photo using instance segmentation.

5.1.1 Single-Class Instance Segmentation

The first approach aims to segment letters regardless of their class and semantic meaning. Hence,
the identified segments are ordered as text (right to left, top to bottom), and plotted one by one in
the empty images (as described in Section 5.4, Custom Tools). These individual images are input
for classification, and the classified features in the correct order form the entire text in the photo.
This approach of looking for segments in only one class greatly increases the chance of finding more
segments since the neural network only looks for one class.
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5.1.2 Multi-Class Instance Segmentation

The second approach uses multi-class segmentation. Each letter is identified separately in the
dataset, making it more accurate to find them and draw more correct segmentation masks. However,
many letters are underrepresented in the dataset, so the segmentation algorithms do not find them and
miss them entirely in the resulting text transcription. This problem will be solved through a significant
dataset extension, which is currently in progress.

5.2 Selected Segmentation Models, Their Advantages and Disadvantages, Hyperparameters and
Training

This study selected two instance segmentation algorithms. A comparison between YOLOv8 and
Mask Region-based Convolutional Neural Network (R-CNN) was presented in 2023 [22] and showed
that YOLOv8 performs better on selected images from fish-eye cameras. Like the images of the
sandstone tablets with the Palmyra inscriptions, these images are of lower quality, and YOLOv8 can
find more objects than the more accurate R-CNN. Roboflow Train was also chosen because this
company offers dataset management, integrates an annotation tool, and offers data augmentation
directly in the application. Thus, training directly in this particular application is relevant as the dataset
was annotated there.

5.2.1 YOLOv8

YOLO, short for You Only Look Once, was released in 2016. It belongs to the category of one-
shot detectors, which are generally less accurate but very fast, contrary to two-stage detectors, which
are more accurate and slower [23]. YOLO has been under development for multiple years by Redmond
et al. [24–26] until he decided to retreat from the research in fear of potential misuse by social media
companies and the military; however, other teams took over his work. The first version of YOLO to
incorporate instance segmentation was YOLOv5 in September 2022 [27]. It was developed by Glenn
Jocher as an object detection algorithm [28]. The most contemporary version-YOLOv8, includes
instance segmentation from January 2023 [29].

The main advantages of using YOLO are its training and inference speed, but it generally comes
with lower accuracy.

The selected YOLOv8 instance segmentation model comprises 261 layers, 11800158 parameters,
11800142 gradients, and 42.7 GFLOPs. The complete architecture overview is indicated in Table A1 in
Appendix A. The initial weights “yolov8n-seg.pt” are trained on the COCO dataset, and the transfer
learning technique is used.

5.2.2 Roboflow 3.0 Instance Segmentation (Accurate)

Roboflow Train 3.0 is a model included in the Roboflow web application, released in July 2023
[30]. There are two options: fast or accurate training. However, the company has not publicly disclosed
technical specifics about the structure and architecture. The main advantages are the simplicity of use
and remote training, and the disadvantages are the lack of control over the model, as the only options
the user can influence are the model type and providing a custom dataset with selected augmentation
options.

5.3 Evaluation Metrics
Each Palmyrene text within a photo examines whether the correct number of characters is

identified and whether the characters are correctly classified. Error analysis can be performed for
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three main types of errors within the OCR transcription of a whole test set, and more derived metrics
can be used. The following errors can occur when processing a test dataset:

• Insertion Errors: The system found a character where there was none. This study denotes the
number of these errors as I .

• Substitution Errors: The system found the character in a certain location but misclassified it.
This study denotes the number of such errors as S.

• Deletion Errors: There was a character at that location, but the system found no character at
that location. This study denotes the number of these errors as D.

• Total Levenshtein Distance: The total number of errors that occurred during the processing of
the test data set is:

TLD = I + D + S (1)

where TLD is the Total Levenshtein Distance. The Levenshtein Distance, also known as the Edit-
Distance algorithm, measures the number of characters that must be changed, added, or deleted in
the predicted word so that it matches the true word [31]. Total Levenshtein distance does not apply to
a word; it applies to the whole text.

• Total Character Accuracy: In addition to the Total Levenshtein Distance, the system’s behavior
will be evaluated using the Total Character Accuracy metric, which will rate the overall quality
of the transcript. This study denotes the total number of letters as N and the Total Character
Accuracy as TCA, where:

TCA = 100 · (N − S − D)

N
(2)

Thus, TCA determines the percentage of characters correctly found and correctly classified in
the test dataset. The TCA value does not depend on the number of insertion errors I . Therefore, the
value of the I parameter or the Total Levenshtein Distance that incorporates the I value must also be
considered when evaluating the system’s overall quality.

5.4 Custom Tools
The image is processed to text, as shown in Fig. 1.

5.4.1 Prediction Scripts

Due to the use of two segmentation methods and, thus, four different models, the characters in
images are predicted in multiple ways. However, a 40% confidence score is always set as a threshold.

This study predicts using the stored model on the web server for single-class segmentation using
YOLO. It obtains a list of identified segments labeled as “1” only (meaning a character). These are
then sorted by the developed program from right to left, top to bottom (see Section 5.4.3 Sort), and
after sorting, they are printed on a square image (Section 5.4.3 Draw), which is input to the classifier,
classifying them in that order and outputs the resulting text.

For single-class segmentation using Roboflow, we use the Roboflow API snippet to predict the
segments. The segments are then converted to YOLO format, and the subsequent procedure is identical
to YOLO single-class segmentation.
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Figure 1: Palmyrene character instance segmentation-process flow diagram

Multi-class segmentation using YOLO uses a second model stored on the web server, the outputs
are segments already assigned to the appropriate characters. These are further sorted, and the resulting
text is obtained directly from the sorting tool. When using the last model, Roboflow multi-class
segmentation, the predictions from the “.json” format are converted to the Yolo format. Then, the
segments are sorted to produce the resulting text.

5.4.2 Detecting Rows and Sorting Letters

Classical line detection algorithms for scanned documents assume that the lines are straight, and in
handwritten documents [32], line detection is performed in the original image before detecting separate
letters. Another successful approach to detect lines in documents is to use Google Tesseract [33], but
it does not support the Palmyrene language. The traditional algorithms assume text linearity and
regularity, which is absent in the historical texts captured in the photographs of sandstone inscriptions.
Such handwriting has considerable variability, which causes irregularities in spacing, angles of lines,
and diverse styles, which were unique to each person. Palmyrene also uses irregular fonts in some cases.
It was, therefore, necessary to address the issue in a specific manner.

The study cannot use either of the mentioned approaches because they are not intended to sort
polygons already detected by YOLO or Roboflow Instance Segmentation. Since these polygons are
restored from photographs, the rows in the images are ambiguous and not always straight.
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At first, the algorithm in sort.py reads polygon information in YOLO instance segmentation
format (the class index, points as x, y coordinate tuples, and confidence score). If the format is different,
the variant sort_json.py is used, and subsequently, the output is converted for further processing by
another custom script json_to_yolo.py. The sorting principle is as follows:

1. The average height h of the polygons (xi,yi) is determined (see Fig. 2).

2. Polygons are sorted in descending order according to their yi coordinate.

3. Splitting into rows: For all pairs of polygons ((xi, yi), (xi+1, yi+1)), i = 1, ... , n–1, we determine,
whether

|yi+1 − yi| > 0.5 · h (3)

If the result of the inequality is true, yi becomes the last polygon of the current row and yi+1 becomes
the first polygon of the subsequent row.

4. Polygons (xi, yi), i = 1, ..., n, are arranged in each row based on the size of the xi coordinate in
descending order (the Palmyrene text is read from right to left).

Finally, the output text is printed, and the sorted polygons are saved to the file whose name was
specified when the script was run.

Figure 2: Coordinates (xi, yj)

5.4.3 Visualization Tools

Sort

The sorting tool includes plotting the polygons and class names in a plot, as depicted in Fig. 3.

Draw

draw.py visualizes separate polygons, which are printed into a black-and-white binary image in the
correct order, which is an input to classification. The relative coordinates of the polygons (obtained
by YOLO or converted to YOLO format from the “.json” format used by Roboflow 3.0) are scaled
to match the size of the original image. The algorithm processes each polygon in the dataset. It scales
the polygon’s relative coordinates to fit the original image’s size. Then, the polygons are drawn as
white letters into a black image in the original polygon size. Subsequently, the polygons are cropped
or stretched to a target size (80 × N or N × 80) based on the aspect ratio of the polygons and put in
the center of a 100 × 100 black image, which is saved with a filename that indicates the polygon index.



10 CMES, 2024

The output of this tool is illustrated in Fig. 4. Then, the letters are classified using the classification
prediction script, resulting in a final list of transcribed letters.

Figure 3: Plotted polygons from YOLO multi-class and single-class predictions of a photo of
“Inv.1438/8582, Archaeological museum of Palmyra”, generated by sort.py tool
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Figure 4: Plotted and sorted polygons for classification

6 Results
6.1 Training Results

The models were trained on the dataset consisting of 119 images with 3578 hand-annotated
Palmyrene characters, resized to 920 × 920 pixels, and augmented to triple the dataset size using the
following augmentation options:

• Grayscale: Apply to 50% of images

• Saturation: Between −60% and +60%

• Brightness: Between −11% and +11%

• Exposure: Between −11% and +11%

• Blur: Up to 1.25px

The value of the loss functions box_loss, seg_loss, cls_loss, and dfl_loss on the training set steadily
decreases during the learning process.

The values of the four loss functions on the validation datasets oscillate, but their mean values
also reduce. The smoothest decrease of the validation loss functions can be observed on the YOLOv8
multi-class model and the most random changes on the Roboflow 3.0 single-class model. The
detailed training Figs. A1–A8 are provided in Appendix A. Table 2 lists the training results of each
segmentation algorithm after the first and last epochs are rounded to 2 decimal places. There are 100
epochs for the YOLOv8 model and 120 epochs for the Roboflow model.



12 CMES, 2024

Table 2: Training of all models in the first and last epoch

Model Roboflow 3.0
multi-class

YOLOv8
multi-class

Roboflow 3.0
single-class

YOLOv8
single-class

First epoch box_loss 1.56 1.11 1.15 2.28
seg_loss 2.91 2.12 2.21 4.63
cls_loss 2.97 0.95 0.97 3.30
dfl_loss 1.23 0.95 1.04 1.59

Last epoch box_loss 0.31 0.68 0.62 0.84
seg_loss 0.85 1.57 1.36 1.71
cls_loss 0.30 0.48 0.39 0.48
dfl_loss 0.14 0.85 0.86 0.87

6.2 Evaluation Results
The success of single-class segmentation with subsequent classification and multi-class segmen-

tation was evaluated on six images with Palmyrene inscriptions with 216 characters. Each image
was analyzed for errors specified in the Section 5. Only images with clear inscriptions were selected
for the test, as the models did not perform well on lower-quality images. Tables A2–A7 include the
original texts and comparisons to predictions available in Appendix B and a summary is present in
Table 3. Original text in [brackets] indicates letters that are not visible in the photo but are part of the
inscription. Errors in the predicted texts are labeled in the texts as follows:

Table 3: Overall evaluation of all models

YOLO
single-class

YOLO
multi-class

Roboflow
single-class

Roboflow
multi-class

Insertion Errors 9 6 0 8
Deletion Errors 2 7 10 17
Substitution Errors 47 7 60 5
Total Character
Accuracy

77.3% 93.5% 67.6% 89.8%

Total Levenshtein
Distance

58 20 70 30

(1) insertion errors: bold and underlined, (2) substitution errors: bold, (3) deletion errors: bold dash
-. All plotted figures with texts generated by the sort.py tool are available on GitHub [12].

7 Discussion

The results indicated that the Roboflow 3.0 multi-class model should be theoretically best
performing as the losses in the last epoch are the least of all trained models. However, it ultimately
achieves a Total Levenshtein Distance of 30 and a Total Character Accuracy of 89.8%, placing
this model in second position. The subsequent tests showed that the YOLO multi-class instance
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segmentation model performs best with the least Total Levenshtein Distance of only 20 and the highest
Total Character Accuracy of 93.5%. The evaluation of both these models proved that using the multi-
class segmentation method attains satisfactory results because the predicted segmentation mask shapes
are very accurate.

However, the single-class instance segmentation method with consecutive classification is insuffi-
cient for practical use as the Total Character Accuracy reached only 77.3% for the YOLO single-class
instance segmentation model, and its Total Levenshtein Distance was too high with the value of 58,
due to a high number of misclassified characters. The Roboflow single-class model reached 67.6%
Total Character Accuracy with a Total Levenshtein Distance of 70.

Although the classifier of handwritten Palmyrene characters, which was utilized to classify the
predicted polygons created from instance segmentation masks, reached over 98% for classifying
handwritten characters [1], the issue causing the misclassification can be the thickness of the lines,
as the classifier was trained on artificially written characters with a fixed line thickness, which was
significantly smaller. Sometimes, the predicted segmentation masks were very wide. Also, some of the
predicted segments had incomplete shapes.

The best performing (YOLO multi-class) model was implemented in the web application ML-
research [3] under the tab “Segmentation & Transcript”.

The average accuracy of the OCR of Egyptian hieroglyphs was 66.64%, surpassing the state of
art, which was 55.27% before that [9]. Arabic character recognition using Deep Belief Network (DBF)
and Convolutional Deep Belief Network (CDBF) was 83.7% accuracy on the IFN/ENIT Database
on a model that reached 97.4% accuracy during training [34]. A Holography graph neuron-based
system (HoloGN) for handwritten Persian characters [35] was over 90% accuracy when using a dataset
extracted from 500000 images of isolated Farsi characters written by hand by Iranian people, but only
45% on images downsized to 32 × 16 pixels due to memory use optimization when using feedforward
Artificial Neural Network (ANN). By comparing this study’s results to those of others in historical
alphabets OCR, the proposed algorithm performed well with 93.5% accuracy when used on high-
quality images of Palmyrene inscriptions.

8 Limitations and Next Steps

Some limitations can be encountered when using instance segmentation algorithms to identify
Palmyrene characters in photographs. A possible problem arises from underrepresenting some char-
acters in the training dataset. Although some letters such as “b”, “d/r”, “y” and “l” occur in almost
every inscription, others such as “left”, “right”, “pe” and “samekh” appear quite rarely.

In the case of single-class instance segmentation, a limitation is the occasional inaccurate identifi-
cation of polygons derived from the segmentation masks of letters, which can cause the character to be
assigned to a different class than the one to which the letter belongs during subsequent classification.
In order to address this problem, the polygons can be added to the training subset, and the handwritten
character classifier can be retrained. This is subject to testing as it can bias the results of handwriting
classification.

When choosing multi-class segmentation, there is a potentially higher risk of encountering
deletion errors-missing some letters-especially for the Roboflow Instance Segmentation model. Since
this type of segmentation expects very accurate character shapes presented to it during training, this
can lead to missed letters in the recognized text when predicting texts in new images.
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In the next steps of this research, the focus will be on integrating natural language processing
(NLP) techniques to combine identified letters into words and sentences and to enable translation into
other world languages. Developing an NLP module that interprets contextual relationships between
characters requires collaboration with experts in the Palmyrene language. Continuous and dynamically
updated expansion of the dataset by including photos of Palmyrene inscriptions with newly created
transcriptions will ensure refinement of the current models and experiment with all possible data
augmentation options. The study hopes to include the data in standard OCR training datasets, making
it easily accessible for further experiments.

9 Conclusion

This study creates an instance segmentation model, which can identify and transcribe letters within
high-quality photos of Palmyrene inscriptions with an accuracy of 93.5%, a significant step towards
developing a Palmyrene OCR algorithm.

The development of tools capable of reading the characters and texts of dead languages has
impactful sociological importance, as it links the past and the present. Inscriptions in dead languages
carry information about important aspects of human history, in the case of Palmyrene Aramaic,
recorded in the funerary, honorific, and dedicatory texts. By establishing OCR technology for this
language, the potential for understanding ancient texts is expanded to a wider range of linguists,
historians, archaeologists, museum keepers, and possibly even the non-scholarly public.

The final goal of humanists and linguists is to decipher the letters individually and understand the
entire inscriptions and contextual meaning, which is not a simple objective that can be accomplished
with a single computational task. However, this research is an essential step towards deciphering the
texts in Palmyrene Aramaic, and the methodology used can be applied to the analysis and extraction
of characters from other alphabets that do not use ligatures. The letters can be spatially separated from
each other.
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to T. Novák, A. Hamplová, O. Svojše, and A. Veselý from the author team.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: A. Hamplová; data collection and annotation: A. Hamplová; inscription checking and text
transcriptions: A. Lyavdansky; analysis and interpretation of results: A. Hamplová; web application
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Appendix A—Training Details

Figure A1: YOLOv8 multi-class training loss

Figure A2: YOLOv8 multi-class validation loss

Figure A3: Roboflow 3.0 multi-class instance segmentation (accurate) training loss
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Figure A4: Roboflow 3.0 multi-class Instance segmentation (accurate) validation loss

Figure A5: YOLOv8 single-class training loss

Figure A6: YOLOv8 single-class validation loss
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Figure A7: Roboflow 3.0 single-class Instance segmentation (accurate) training loss

Figure A8: Roboflow 3.0 single-class Instance segmentation (accurate) validation loss

Table A1: YOLOv8 layers overview

Index From n Params Module Arguments

0 −1 1 928 ultralytics.nn.modules.Conv [3, 32, 3, 2]
1 −1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2]
2 −1 1 29056 ultralytics.nn.modules.C2f [64, 64, 1, True]
3 −1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2]
4 −1 2 197632 ultralytics.nn.modules.C2f [128, 128, 2, True]
5 −1 1 295424 ultralytics.nn.modules.Conv [128, 256, 3, 2]
6 −1 2 788480 ultralytics.nn.modules.C2f [256, 256, 2, True]
7 −1 1 1180672 ultralytics.nn.modules.Conv [256, 512, 3, 2]
8 −1 1 1838080 ultralytics.nn.modules.C2f [512, 512, 1, True]
9 −1 1 656896 ultralytics.nn.modules.SPPF [512, 512, 5]
10 −1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]
11 [−1, 6] 1 0 ultralytics.nn.modules.Concat [1]
12 −1 1 591360 ultralytics.nn.modules.C2f [768, 256, 1]
13 −1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ‘nearest’]

(Continued)
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Table A1 (continued)

Index From n Params Module Arguments

14 [−1, 4] 1 0 ultralytics.nn.modules.Concat [1]
15 −1 1 148224 ultralytics.nn.modules.C2f [384, 128, 1]
16 −1 1 147712 ultralytics.nn.modules.Conv [128, 128, 3, 2]
17 [−1, 12] 1 0 ultralytics.nn.modules.Concat [1]
18 −1 1 493056 ultralytics.nn.modules.C2f [384, 256, 1]
19 −1 1 590336 ultralytics.nn.modules.Conv [256, 256, 3, 2]
20 [−1, 9] 1 0 ultralytics.nn.modules.Concat [1]
21 −1 1 1969152 ultralytics.nn.modules.C2f [768, 512, 1]
22 [15, 18, 21] 1 2780606 ultralytics.nn.modules.Segment [26, 32, 128, [128, 256,

512]]

Appendix B—Training Details

Table A2: Real texts and transcriptions of “Inv. 1438/8582, Archaeological museum of Palmyra”, using
all models

Real text YOLO single-class YOLO multi-class Roboflow
single-class

Roboflow
multi-class

qm brt zyb
mlkw h. bl

<m brh. zyb s.lkw
s.bz

qm brt zyb mlkw
h. bl

ym brh. zyb mlky
s.bz

qm brt rzyb mlkw
h. bl

Table A3: Real texts and transcriptions of “Inv. 88.AA.50, The Getty Villa Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow single-class Roboflow multi-class

mqy br m ny mqy br m n- mqy br m ny myy br m-ny mqy br mh. ny

Table A4: Real texts and transcriptions of “Inv. AO 2205, Musée du Louvre”, using all models

Real text YOLO
single-class

YOLO
multi-class

Roboflow
single-class

Roboflow
multi-class

nysn šnt [3] nyyn šny nysn šnt nysn šnh. nysn šnt
[100] 5 3 qbr 5+1+1+1 qbr y

zhdbwl br
5+1+1+1 100+1 br 5+1+1+1 100br 5+1+1+1 100z1

[d]y zbdbwl br 1 hr hršwr y 1bdbwl br y zbdbwl br br
[...]h br tršwr yny knmr dy h br tršwr y br h.ršwr y 1zbdbwl br
bny kmr dy thg wlbnyh bny nkmr dy bn- kmr dy - br tršwr
lh wlbnwhy lh wlbnwh.y -h wlbn-hy bny kmr dy

lh wlbnw-y
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Table A5: Real texts and transcriptions of “Inv. 95.28, The MET Museum”, using all models

Real text YOLO
single-class

YOLO
multi-class

Roboflow single-class Roboflow
multi-class

b yk šmh l lm bryyk šh.h l lmmg bryk šmhn l lmg kr20k šmh l lmg bryk hmh l lm
t.b w h. mn bd yk 1nh. mn kd t.b wrh. mn rbd t.k nrs.mlm kn -b wrh. – bd
wmwd h. ggw b wwm20wd h. ggw

kr 20h20yk bd
yrh. 20 dk l h. ywqy

wmwd h. trw br nmnn h. gg20 sr mhpk
sr 20nh. 20 dk 1l
h. 2020hw s.20- bnhn
- h. 20h- b20rh. qs.20r šs.t
n 100 wnww-

wmwd h. –w br

yhyb b y h. y 1nh. 20 bwhy
w h. why byrh.

yhyb br yrh. y yhyb br -rh. y

dk l h. ywhy qlyw šnt 5 100 10
yyw–

dk m - h. ywhy -k l h. ywh-

wh. y bwhy wh. y bwh y wh. y bwhy
w h. why by h. w h. why byrh. w h. h.why byrh.
qnyn šnt 5.100 qnyw šnt 5 r 100 q–r š– 5 100
+40+3 20—- 20+20+1–

Table A6: Real texts and transcriptions of “Inv. 98.19.4, The MET Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow
single-class

Roboflow
multi-class

h. bl [ ]g [br] zbd th bt h zbddqh h. bl g zbd th tb- g zbddqh s.bl g zbddt h

Table A7: Real texts and transcriptions of “Inv. 125024, The British Museum”, using all models

Real text YOLO single-class YOLO multi-class Roboflow
single-class

Roboflow
multi-class

qm brt h. bzy h. bl qhz brh. h. bnp kws. qm- brt
h. b-y h. bl

h.qm- brh. h. b1y kws. qmq- brt h. bzy
h. bl r
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ABSTRACT
This paper presents a new method for computer-assisted recogni-
tion of horizontal strokes in photographs of cuneiform tablets with
90,52 % accuracy. The cuneiform script is the oldest attested writing
system in the world, used for over three thousand years throughout
the ancient Near East, primarily by the cultures of Mesopotamia
(modern Iraq). It was impressed on clay tablets and engraved on
stone slabs by writing strokes. Researchers have been trying to
speed up the process of reading the tablets using different meth-
ods, as manual copying of the tablets and their transliteration is
time consuming. This research, therefore, aims to recognize the
elementary components, i.e., the strokes, of cuneiform signs from
photographs of ancient cuneiform tablets, in order to enable effec-
tive OCR using the latest computer vision algorithms. The main
difference between other approaches and ours is that we work
directly with the two-dimensional photographs, instead of three-
dimensional models, as there are many more 2D images available
in public online repositories. The goal is to partly automate the
process of identifying and reading cuneiform signs, thus speeding
up the process of rediscovering these ancient texts and civilizations.
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1 INTRODUCTION
1.1 Previous work on cuneiform sign

recognition
Cuneiform writing consists of signs that are formed by combining
three types of strokes - horizontal, vertical, and oblique. Despite
this relative simplicity, cuneiform signs are hard to identify because
of their three dimensional character. From the inception of the
field, this was difficult to represent in a 2D format. Two solutions
were found: taking 2D images of cuneiform tablets or creating hand-
copies, 2D black andwhite drawingsmade by scholars of the tablet’s
strokes. In recent years, 2D images have become rather ubiquitous
and in sufficient quality for machine learning applications. The
largest repositories of such images are the British Museum, Louvre
Museum, Cuneiform Digital Library Initiative, and Yale Babylonian
Collection. 2D+ and 3D models of cuneiform tablets have also be-
come a possibility since the early aughts, although these are still
more expensive and labor-intensive to produce.

Previous research in identifying cuneiform signs or strokes have
usedmostly 3Dmodels. Twomain research groups developed stroke
extraction through geometrical feature identification [1–3]. Mara
and Krömker [4] extracted strokes as Scalable Vector Graphic (SVG)
images, which practically created hand-copies automatically as
vector images. Hand-copies and 2D projections of 3D models were
used for querying signs by example, using convolutional neural
networks with data augmentation by Rusakov et al. [5]. Previous
work on 2D images has only recently started. Dencker et al. used 2D
images for training a weakly supervised machine learning model
in the task of sign detection in a given image [6]. Rusakov et al.
[7] used 2D images of cuneiform tablets for querying cuneiform
signs by example and by schematic expressions representing the
stroke combinations. No previous research has attempted to identify
strokes from 2D images.

1.2 Identifying strokes with mathematical
methods

In the first steps, we looked for methods of finding stroke features
(horizontal and vertical) using classic methods of working with
images. We designed a software, which will allow highlighting
of stroke characters using convolutional image filtering methods.
These are commonly used edge filters that allow the suppression of
the surroundings of the desired objects and highlight their edges.

In contrast to the classical filtering methods, which are based
on the gradient (brightness change) of the neighbouring pixels,
using a convolution mask shifted along the X and Y axis across

https://doi.org/10.1145/3556384.3556421
https://doi.org/10.1145/3556384.3556421
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Figure 1: Edge detection of cuneiform signs from a rare gold
tablet in the Yale Babylonian Collection (photo credit: Klaus
Wagensonner)

the image (pixel matrix), we used the edge orientations of the
highlighted characters. In our case, we used the properties of Hough
transformation [8], i.e., lines and their orientation.

Thanks to Hough lines, we can decide if the character we find is
really the one we are looking for. The stroke is oriented either hori-
zontally or vertically or at some other angle that can be described
by us. The classic edge detection filters emphasize the edge, but
due to the difference in the quality of images, sometimes a part of
the edge is left out and needs to be approximated. For such approx-
imation, the Hough line in the correct angle can help calculate the
missing parts of edges. Thus, based on the adjacency, it is possible
to highlight the object and, conversely, filter out the noise. By noise
we mean found edges that are not guided at the angle we require.

The image above then shows how the software works. However,
its use is limited by the manual work of the operator, who, based
on expert knowledge, sets the required parameters such as the
maximum connection length of adjacent edges, edge angles and
image brightness balance so that the results are distinctive and
easy to read. This solution is not ideal for automation, because
cuneiform tablets are photographed at different angles of light.
For example, certain settings that are suitable for the upper left
quarter of the image, will not be for the lower right, due to different
lighting conditions. Resetting the filter would highlight the lower
part but suppress the upper one. Thus, to automate this process, it
is necessary to supplement classical mathematical methods with
machine vision technologies based on artificial intelligence and
heuristic operations.

Of course, an automated solution cannot do without statistical
methods that quantitatively verify the accuracy of the technology
used. Machine vision technology based on artificial intelligence
brings several advantages.

The problem with artificial intelligence is the fact that it is not
possible to find out why the machine predicted the way it did.

While the outputs of algorithmic approaches are always clear, as
they are calculated based on input data and algorithm, in the case
of artificial intelligence the results are not predictable, as they are
gained by the process of learning. The results then need verifying
by quantitative (i.e., statistical) method.

It is therefore necessary to implement the following solution
scheme. Our goal is to suggest a suitable artificial intelligence tech-
nology, train it on labelled data created by our assyriological team
members, verify the ability of the network to recognize strokes of
cuneiform signs.

1.3 Computer Vision and Neural Networks
Computer vision is a widely used method to identify objects in
pictures and is evolving rapidly. Computer vision is associated with
convolutional neural networks (CNN), also known as convnets in
which densely connected layers learn global patterns and convo-
lutional layers learn local patterns in small 2D windows [9]. The
most contemporary algorithms are, among others, YOLOv5 [10]
and Detecto SSD/ResNet [11]. Both algorithms are complementary:
while YOLOv5 is using the library tensorflow, Detecto is using the
library torch.

YOLOv5 is a complex solution created by ultralytics and is avail-
able on GitHub [10]. It contains a pre-trained network as well as a
training and detection script. The input images need to be square
and contain labels in .txt format. Detecto is another solution (avail-
able as a Python library). It uses a single shot detector (SSD) with
ResNet and like YOLO, it contains training and detection scripts.

With labelled data, we need to implement most contemporary
versions of several architectures of Convolutional Neural Networks,
one-stage, or two-stage models. For this, we use an open Python
platform Google Collaboratory or Kaggle and we evaluate the per-
formance of each architecture by standard measures such as recall
r (1), precision p (2), F-measure F (3).

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹 =
2 · 𝑟 · 𝑝
𝑟 + 𝑝

(3)

Where:
TP = true positives (real strokes, that have been correctly found)
FP = false positives (predicted strokes, that are not there in real)
FN = false negatives (real strokes, that were not found)

2 TRAINING AND EVALUATION OF YOLOV5
AND DETECTO

2.1 Dataset creation
To train high quality models, we need many manually labelled in-
put images. The recommended number of pictures for each class is
about 1000 [12]. Our assyriological team tagged thousands of hori-
zontal strokes in eight tablets from the Yale Babylonian Collection
(Table 1; made available through the kind permission of Agnete W.
Lassen and Klaus Wagensonner).

The full tablet images were split into squares of 416x416x3 pixels.
Then, they were labelled using the python software tool “labe-
lImg.py”, which creates files in xml format, each file containing
the name of the image, the path and the labels (Fig. 2). The labels
format is called Pascal VOC and consists of the coordinates x_min,
y_min, x_max and y_max and class name.

The dataset is made up of 823 labelled images with 7355 annota-
tion records. We used the augmentation platform Roboflow using
grayscale, saturation, and exposure augmentation. It contains 1700
images in the training set, 165 images in the validation subset and
82 testing images.
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Table 1: the eight tablets that were tagged and their metadata. The information is taken from the Yale Babylonian Collec-
tion website. The abbreviations for the publications of hand copies can be found through CDLI (https://cdli.ox.ac.uk/wiki/
abbreviations_for_assyriology).

Yale ID CDLI ID material period genre hand copy publication

YPM BC 014442 P504832 clay Neo-Assyrian literary CT 13 1, 3
YPM BC 023856 P293426 clay Old-Babylonian literary JCS 1 22-23
YPM BC 002575 P297024 clay Neo/Late-Babylonian commentary BRM 4 24
YPM BC 016773 P293444 limestone Early Old-Babylonian inscription YOS 1 36
YPM BC 016780 P293445 limestone Early Old-Babylonian inscription YOS 1 35
YPM BC 016869 P429204 clay Middle Assyrian inscription YOS 9 71
YPM BC 021204 P308129 clay Middle Assyrian? medical text FS Sachs 18, no. 16
YPM BC 021234 P308150 clay Old-Babylonian hymn YNER 3 6-7

Figure 2: Example of training data created by the assyriologi-
cal team.

2.2 CNN training
In cases of both YOLOv5 and Detecto, we use training scripts with
alternation of the dataset only. For prediction, we need to edit the
script, so that the predicted images and labels are saved as files and
can be displayed and worked with without the limitation of using
prediction notebooks only.

The training of YOLOv5 architecture (283 layers) was conducted
for 100 epochs at Google Collaboratory, using CUDA on GPU Tesla
T4 with 40 multiprocessors, 15109 MB total memory.

The training of Detecto SSD/Resnet (51 layers - ResNet 50
plus 1 Conv2D layer) was conducted on a pre-trained file
fasterrcnn_resnet50_fpn_coco-258fb6c6.pth by unfreezing some
layers and retraining them for 50 epochs at Google Collaboratory,
using the same GPU Tesla T4.

2.3 Evaluation
The evaluation results of the testing set can be seen in Table 2.
Detecto has found horizontal strokes with 90,53 % recall, while
YOLOv5 reached 43,53 %. Example of such predictions can be seen

Table 2: Testing set results evaluation

Network YOLOv5 Detecto

Precision 0,4211 0,7450
Recall 0,4353 0,7053
F-Measure 0,4281 0,8173
Fake of all strokes found 57,89 % 25,50 %
Correct 43,53 % 90,52 %
Correct of all strokes found 0,7450 0,9053

Figure 3: Detecto SSD/ResNet predictions

in Figure 3, where red boxes are predictions and green boxes are
ground truth labels.

2.4 Horizontal stroke results interpretation
From the results and evaluation, YOLOv5 is less successful than
Detecto. YOLOv5 successfully identifies most strokes however the
false positive identifications exceed 50% (more than half strokes
are false), while in the case of Detecto it is only 25,5 % and 90,5
% is found correctly. The reason might be that YOLOv5 is mostly
used in video processing so there is a lot of input data (for example
30 images per second) and it is not important if some frames are
detected incorrectly.

Shifeng et al. proved that two-stage detection models usually
achieve higher accuracy than one-stage models [13], which proved

https://cdli.ox.ac.uk/wiki/abbreviations_for_assyriology
https://cdli.ox.ac.uk/wiki/abbreviations_for_assyriology
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to be true even in case of Detecto and YOLOv5, as Detecto is a
two-stage model and YOLOv5 is a one-stage model.

2.5 Comparison with other authors’ works
In other research projects focused on similar topics - recognition of
objects from images using similar architectures - there are following
results.

Recognition of Bangladeshi signs with models constructed by
Ghosh et al’s [14], reached 96.46% accuracy on MobileNet. In Cho
Junghwan’s et al. research [12] of CT body scans they reached 97%
accuracy on GoogLeNet Inception v1 architecture. Their dataset
contained 4000 very high-quality images.

We have reached 98,21 % accuracy in classification of 2000
Palmyrene letters per class on custom CNN architecture with 4
Convolutional / Max Pooling blocks. [15]

2.6 Research next steps
Detection success rate can be improved with higher amounts of
labelled images and their variability (different light conditions,
colours, shadows) and if more augmentation methods are used.

Future plans include adding vertical and oblique strokes to the
training sets. We may also use oriented bounding boxes for oblique
strokes, but we will need to edit Detecto’s algorithm, so that it
can work with bounding box angles. We may also attempt to in-
crease the accuracy with different neural network architectures,
such as RCNN using selective search, as it usually reaches a better
detection rate. With new labelled data we can also start optimizing
neural networks configurations to reach the maximum accuracy
and have a better comparison, with RCNN included. There are
many experiments to be done such as observing the influence of
number of convolutional layers, number of ignored layers (transfer
learning), number of epochs, steps in epochs, learning rate, optimiz-
ing method, images depth. The accuracy can also be improved in
postprocessing phases. Early stopping with patience attribute may
be experimentally used and compared. Automation, logging, and
visualization are other tools that could help us reach better results.

3 CONCLUSION
We have compared mathematical methods (edge detection) and
artificial intelligence for object detection and chose to train an
object detection models.

Two neural network architectures YOLOv5 and Detecto were
developed to classify and localize horizontal strokes in cuneiform
tablet images divided into 416x416 squares. The classifier based on
Detecto reaches 90,5% accuracy, with 25% false positive predictions
while the classifier based on YOLOv5 scores a lower accuracy on
the cuneiform data.

ACKNOWLEDGMENTS
The project Cuneiform analysis using Convolutional Neural Net-
works reg. no. 31/2021 was financed from the OP RDE project
Improvement in Quality of the Internal Grant Scheme at CZU, reg.
no. CZ.02.2.69/0.0/0.0/19_073/0016944.

Thework of SHG andARwas supported by the cooperation grant
between CULS Prague and Ariel University, Israel (RA2000000010).

REFERENCES
[1] Mara, Hubert, Susanne Krömker, Stefan Jakob, and Bernd Breuckmann. 2010.

“GigaMesh andGilgamesh - 3DMultiscale Integral Invariant CuneiformCharacter
Extraction.” In 11th International Symposium on Virtual Reality, Archaeology and
Intelligent Cultural Heritage (Vast 2010), 131–38. Aire-La-Ville: The Eurographics
Association. https://doi.org/10.2312/VAST/VAST10/131-138.

[2] Fisseler, Denis, Frank Weichert, Gerfrid Müller, and Michele Cammarosano. 2013.
“Towards an Interactive and Automated Script Feature Analysis of 3D Scanned
Cuneiform Tablets.” In Scientific Computing and Cultural Heritage 2013. http:
//www.cuneiform.de/fileadmin/user_upload/documents/scch2013_fisseler.pdf.

[3] Rothacker, Leonard, Denis Fisseler, Frank Weichert, Gernot Fink, and Gerfrid
Müller. 2015. “Retrieving Cuneiform Structures in a Segmentation-Free Word
Spotting Framework.” In Proceedings of the 3rd International Workshop on
Historical Document Imaging and Processing (Hip 2015), 129–36. New York, NY:
Association for Computing Machinery. https://doi.org/10.1145/2809544.2809562.

[4] Mara, Hubert, and Susanne Krömker. 2013. “Vectorization of 3D-Characters by
Integral Invariant Filtering of High-Resolution Triangular Meshes.” In Proceed-
ings of the International Conference on Document Analysis and Recognition
(Icdar 2013), 62–66. Piscataway, NJ: IEEE Computer Society. https://doi.org/10.
1109/ICDAR.2013.21.

[5] Rusakov, Eugen, Kai Brandenbusch, Denis Fisseler, Turna Somel, Gernot A.
Fink, Frank Weichert, and Gerfrid G. W. Müller. 2019. “Generating Cuneiform
Signs with Cycle-Consistent Adversarial Networks.” In Proceedings of the
5th International Workshop on Historical Document Imaging and Processing,
19–24. HIP ’19. New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3352631.3352632.

[6] Dencker, Tobias, Pablo Klinkisch, Stefan M. Maul, and Björn Ommer. 2020. “Deep
Learning of Cuneiform Sign Detection with Weak Supervision Using Transliter-
ation Alignment.” PLoS ONE 15 (12): e0243039. https://doi.org/10.1371/journal.
pone.0243039.

[7] Rusakov, Eugen, Turna Somel, Gernot A. Fink, and Gerfrid G. W. Müller. 2020.
“Towards Query-by-eXpression Retrieval of Cuneiform Signs.” In 2020 17th In-
ternational Conference on Frontiers in Handwriting Recognition (Icfhr), 43–48.
https://doi.org/10.1109/ICFHR2020.2020.00019.

[8] Richard O. Duda and Peter E. Hart. 1972. Use of the Hough Transformation to
Detect Lines and Curves in Pictures. Communications of the ACM. 15(1), 11-15.
https://doi.org/10.1145/361237.361242

[9] Francois Chollet. 2018. Deep Learning with Python, Manning, ISBN
9781617294433

[10] Releases ultralytics/yolov5. 2021. GitHub. Retrieved March 5, 2022, from https:
//github.com/ultralytics/yolov5/releases

[11] Detecto PyPI. Retrieved March 5, 2022, from https://pypi.org/project/detecto/
[12] Junghwan Cho, Kyewook Lee, Ellie Shin, Garry Choy, Synho Do. 2015. How

much data is needed to train a medical image deep learning system to achieve
necessary high accuracy? https://arxiv.org/abs/1511.06348.

[13] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, Stan Z. Li. 2018. Single-
Shot Refinement Neural Network for Object Detection. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 4203-4212.
https://doi.org/10.48550/arXiv.1711.06897

[14] Tapotosh Ghosh, Md. Min-Ha-Zul Abedin, Shayer Mahmud Chowdhury, Zarin
Tasnim, Tajbia Karim, S. M. Salim Reza, Sabrina Saika, Mohammad Abu Yousuf.
2020. Bangla handwritten character recognition using MobileNet V1 architecture.
Bulletin of Electrical Engineering and Informatics, 9(6), 2547-2554. https://doi.
org/10.11591/eei.v9i6.2234

[15] Adéla Hamplová, David Franc, Jan Tyrychtr. 2022. Historical Alphabet Translit-
eration Software Using Computer Vision Classification Approach. CSOC2022
conference Proceedings. Springer Series: Lecture Notes in Networks and Systems,
Prague, Czech Republic. 2022. ISSN 2367-3370. 2022.

https://doi.org/10.2312/VAST/VAST10/131-138
http://www.cuneiform.de/fileadmin/user_upload/documents/scch2013_fisseler.pdf
http://www.cuneiform.de/fileadmin/user_upload/documents/scch2013_fisseler.pdf
https://doi.org/10.1145/2809544.2809562
https://doi.org/10.1109/ICDAR.2013.21
https://doi.org/10.1109/ICDAR.2013.21
https://doi.org/10.1145/3352631.3352632
https://doi.org/10.1371/journal.pone.0243039
https://doi.org/10.1371/journal.pone.0243039
https://doi.org/10.1109/ICFHR2020.2020.00019
https://doi.org/10.1145/361237.361242
https://github.com/ultralytics/yolov5/releases
https://github.com/ultralytics/yolov5/releases
https://pypi.org/project/detecto/
https://arxiv.org/abs/1511.06348
https://doi.org/10.48550/arXiv.1711.06897
https://doi.org/10.11591/eei.v9i6.2234
https://doi.org/10.11591/eei.v9i6.2234


Attachment 7 
 

 

A. Hamplová, A. Romach, J. Pavlíček, A. Veselý, M. Čejka, D. Franc and S. Gordin, 

“Cuneiform stroke recognition and vectorization in 2D images,” Digital Humanities 

Quarterly, 2023. 


























