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1. Introduction 
Mathematical optimization is an important part of mathematical theory. It can be applied to 

many theoretical and real-world problems. With the rapid development of numerical 

modelling in last decades, engineering optimization has become a hot topic. By connecting 

the tools of mathematical optimization and numerical simulations, it is possible to guide 

many design and technical problems, such as shape / topology optimization, or inverse 

problems. In modern society, virtually every product has been optimized with respect to 

some objectives. 

In this work, the goal is to present how the optimization can be used in pump industry. To 

succeed in the competition, every pump design needs to be carefully optimized. This is done 

on multiple levels – mechanical and material solutions, production technologies and costs 

and hydraulic shapes. The hydraulic design typically utilizes exact analytical formulas, 

combined with data and experience-based corrections. For this purpose, numerical 

modelling of fluid is commonly used. It is capable of describing the pump performance and 

operation with a high level of accuracy, and gives the designer a tool to fine-tune the pump 

and balance the trade-offs between various conflicting objectives. 

Here we focus on shape optimization as a part of the hydraulic design. The pump design uses 

input in the form of numerical geometry parameters (dimension, blade angles etc.) and 

numerical output such as performance characteristics (efficiency at a given flow-rate etc.). 

Thus, in principle it is possible to view the hydraulic design as an optimization task. When 

performed by a hydraulic expert, it is approached as a manual, semi-intuitive optimization. 

However, numerical simulations can be automated, and connected with an optimization 

code. This way, we can utilize the full potential of modern optimization methods, developed 

specifically to help aiding the design process. 

Still, there remain many challenges related to the practical incorporation of optimization into 

the hydraulic design process. This thesis deals mostly with the practical side of the pump 

design and optimization. On multiple selected examples, the goals and practical challenges 

are shown and explained. 

The content is organized as follows: 

1. Basic terminology and concepts of (centrifugal) pumps are introduced, and the 

development goals are described. 

2. A brief introduction of hydraulic design and its goals. Connection between (shape) 

optimization and hydraulic design. 

3. Basic description and classification of approaches and methods that are commonly 

used for simulation-driven, computationally expensive optimization, is given. 

4. The real-world cases of shape optimization - these are the main part of this thesis. 

Each case is thoroughly described – introduction, goals of the optimization, 

parametric model and automation, optimization method, results and the outcome, 

including summary and discussion. The cases are ordered by increased complexity 

of the optimization. 

5. In the end, the overall results and experience are summarized. Future plans and 

prospects, and advantages and limits of the shape optimization in the process of 

hydraulic design are discussed. 

In next chapter, a brief introduction of the centrifugal pumps follows. 
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2. Centrifugal Pumps - basic concepts1 
Centrifugal pumps are machines that convert mechanical energy to a kinetic energy of 

the moving fluid. It typically comprises of a rotating impeller, driven by an engine through 

a shaft, a stator part and a casing (hub and shroud). The impeller adds the kinetic energy to 

the fluid, and the stator helps to convert the kinetic energy into static pressure. They are 

utilized in many areas, such as water or petroleum pumping. Any pump can be described by 

its performance and operational characteristics. 

 
Figure 1: Centrifugal pump schematics. Source: By Fantagu - Own work, Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=4332102 

The most important characteristics related to the hydraulic performance of the pump are: 

1. flow rate Q - volume of fluid transported per time unit. The flow rate where the pump 

reaches peak efficiency is called optimum and denoted QOPT. 

2. Head H – difference of the total pressure between the outlet and the inlet. 

3. Power P – power needed for operating the pump, i.e., the mechanical energy spent 

on the pump operation. 

4. Efficiency ƞ - the ratio between energy transferred to the fluid kinetic energy and the 

power needed for the pump operation. 

5. NPSH3, the so-called suction ability of the pump – it denotes the Net Positive Suction 

Head (i.e., the inflow pressure), below which the pump performance (measured by 

head) is degraded by 3 percent. 

A pump is typically operated in a range of flow rates, typically called working range. Thus, 

instead of a single value, the dependence on Q needs to be given for all the characteristic. 

For example, Q-H, Q-P and Q- ƞ and NPSH3 curves are often used as performance metrics. 

 
1 The naming and abbreviations found in this chapter follow (1). 
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2.1. (Centrifugal) pumps classification and specific speed 

The size of centrifugal pumps can vary from a few watts up to hundreds of MWs. However, 

all these pumps can be classified by the so-called specific speed. 

𝑛𝑠 =  𝑛 ∙
√𝑄𝑂𝑃𝑇

(𝐻𝑂𝑃𝑇)0.75
 

Where n is the pump speed (in rpm) and HOPT is the head at QOPT. Pumps range from low Q, 

high H (low specific speed – radial pumps) to high Q, low H (high specific speed – axial 

pumps). 

 
Figure 2: Pump types by specific speed. Source: https://www.pumpfundamentals.com/centrifugal-pump-tips.htm2 

Two pumps are called hydraulically similar, if both the hydraulic shapes and the fluid 

dynamics are similar. I.e., there exists a real coefficient λ > 0 such that the hydraulic shape 

of the second pump is λ-scaled geometry of the first pump (including the surface roughness). 

If we follow the so-called Affinity laws (𝑄𝜆 =  𝜆3 ∙ 𝑄, 𝐻𝜆 =  𝜆2 ∙ 𝑄), we get a formula:  

𝑛𝑠,𝜆 =  𝑛 ∙
√𝜆3 ∙ 𝑄𝑂𝑃𝑇

(𝜆2 ∙ 𝐻𝑂𝑃𝑇)0.75
= 𝑛𝑠 

This means that the specific speed remains the same when scaling the pump. Of course, the 

conditions of hydraulic similarity are not met rigorously in real life. Obviously, gravity or 

speed of sound remain the same. But, for practical applications this can be safely ignored. 

This is useful for both so-called model testing (i.e., testing a scaled-down version of a large 

production pump) and also for the methods of hydraulic design. The reason is that it is not 

necessary to develop a new design for every pump size. Instead, it is sufficient to create a 

design for a given specific speed, and then it can be scaled down or up in a wide range of 

sizes. Of course, there are limits to this approach (1), as for large values of 𝜆, the surface 

roughness or mechanical losses of the pump start playing an increasingly important role. 

Empirically, the hydraulic similarity between two pumps is considered reliable for the values 

of the scaling coefficient 𝜆 < 10. 

 
2 In this source, a different evaluation of specific speed, based on the imperial system of units (ft, gpm). The 

conversion rate is 𝑛𝑠𝐼 = 51.65 × 𝑛𝑠. 
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2.2. Hydraulic design 

The whole process of a pump design, production and installation (on site) has multiple steps 

– hydraulic design, construction, production and technological limits consideration, 

experimental performance verification etc. This work only deals with the (already very 

complex) problematics of the hydraulic design. By hydraulic design we mean designing the 

hydraulic (wetted) shapes of the pump. The pump development starts by the hydraulic 

design, then construction and technology considerations follow. All these stages need to be 

taken into account, but due to excessive complexity it is commonly approached as an 

iterative process. As the fluid flow is a very complex phenomena, no simple direct analytical 

method for optimal design is known. Instead, multiple “hybrid” (semi-analytical) design 

theories, each suitable or recommended for a certain interval of specific speeds, have been 

proven for the impeller design. “Hybrid” means that these methods combine exact analytical 

formulas with “engineering” approximations, based on experience and simplifications. The 

theory originates from Euler’s pump equation and velocity triangles (between the 

circumferential and relative velocity components). The good practice is to approach the 

impeller design process as a sequence of steps: 

1. Deciding the Main dimensions, i.e., the inflow and outflow dimensions. This is 

mostly dictated by the required performance parameters (flow rate and head). 

2. Meridional shape of the impeller, i.e., the transition from inflow to outflow part. The 

goal is to distribute the fluid momentum change in the “optimal” way. 

3. Blades – number of blades, relative position in the passage and leading and trailing 

angles. The blades are shaped at multiple camber lines, in case of an impeller there 

are usually at least three – hub, midline and shroud. 

If the stator part contains blades (i.e., for example in a case of axial diffuser), the design 

methods are similar to the impeller. For different parts (volute, suction), different design 

methods exist. Generally, the designer tries to minimize the energy dissipation (= efficiency 

loss), caused by the whirls. I.e., from the geometrical perspective, the energy conversion 

needs to be as smooth as possible. When flow rate changes, the velocity triangle changes, 

too. Thus, any pump can only display good performance in a limited range of flow rates. 

 
Figure 3: Visualisation of impeller velocity triangle. Source: By Kaboldy - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=9581391 
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All the design theories are very well elaborated and described in literature, such as (2) or (3). 

During decades (the modern hydraulic theory is already over 100 years old (4)), many 

experimentally-verified examples have been gathered and used for experience-based 

corrections of predictions provided by the hydraulic theories. These corrections play a 

significant role, as the hydraulic theory does not consider the three-dimensionality of the 

flow (and other physical phenomena, such as cavitation). As a result, for one particular flow-

rate, it is typically possible to design a highly-efficient pump – very quickly and using solely 

analytical tools and experience. However, vast majority of pumps is not operated at a single 

point (flow rate). Instead, a whole working range has to be considered. As in the practical 

applications the pumps speed (rpm) remains fixed (and the same obviously holds for the 

shape), the velocity triangles change with the flow rate. As a consequence, the flow becomes 

more turbulent and “three-dimensional” when the is not working at its design point. Under 

such conditions, prediction accuracy of the analytical methods diminishes. This all means 

that pump design is a very complex process, that involves balancing multiple conflicting 

objectives and utilize many “layers” of information – from fast analytical methods to 

demanding and costly numerical simulations and experimental measurements. Here are 

some examples what needs to be considered by the designer: 

- Peak efficiency (at the design point) 

- Efficiency in the whole working range 

- Head at the design point 

- NPSH3 (suction abilities of the pump) 

- Technical limits (minimal thickness of the blades, manufacturability, dimension 

limits specified by customer, …) 

And the tools available to the designer for estimating / evaluating the design performance: 

- Analytical methods based on “one-dimensional” flow properties 

- Engineering approximations and corrections based on previously measured designs 

- Numerical simulations 

- Experimental measurements, typically performed on model (scaled down) pump. 

The analytical methods, together with the corrections, are very fast and efficient. But, as 

mentioned before, they have limited accuracy for non-optimal flow rates. The accuracy in 

non-standard situations (For example, limits on pump dimensions that do not allow for the 

“best practice” main dimensions, etc.), where the assumptions of the methods cannot be quite 

met for some reasons, can also be of a concern. In such cases, the numerical simulations and 

experimental measurements offers higher accuracy, but at higher cost. The general rule is 

that the designer tries to obtain as much information as possible from the cheapest method. 

The more demanding numerical simulations are used as verification and correction tool. And 

the most demanding and expensive experimental measurements are only used for the final 

verification of the design performance. The graphical visualisation of the workflow can be 

seen in Figure 4. 

The major advantage of the analytical methods is that following the “good practice” 

produces well-tested designs, which will most likely prove to have properties desired for 

the later stages (construction, production, …) of the design process. This is an important 

factor, as many of the pump qualities (mechanical properties, vibrations, NPSH3, …) are 

difficult (or even impossible) to obtain during the early stages of the (design) process. And 

the later there are changes, the more expensive they become. This also limits the 

contribution of the numerical simulations. While they are a powerful tool, it would be 

extremely difficult to model all relevant pump characteristics. This means that numerical 

simulations are very useful as an extension of the analytical methods (used for “tuning” the 

baseline design), but cannot be used as a sole tool. The same is true for the experimental 

measurements – the price and time demands are very high. 
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Figure 4: Scheme of hydraulic design 
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2.3. Hydraulic design and optimization 

As was described in the previous text, the “good practice” approach to hydraulic design is, 

in principle, a many-parameter, multi-objective (and “multi-level”3) optimization. The pump 

geometry is always described by (a finite number) N parameters, and we also have a finite 

number M of objectives. Thus, the problem of hydraulic design can be viewed as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽: 𝛺  𝑅𝑁 → 𝑅𝑀 

where Ω is a (bounded) set of N parameters describing the pump geometry, and J is an 

evaluation of pump performance. In the “classical”, i.e., expert approach to the hydraulic 

design, this optimization is not performed in a strictly mathematical sense. Instead, it is 

combined with human expertise, where many of the objectives are not evaluated solely by 

numbers. Nonetheless, it is possible to perform a “true” optimization, but it brings 

considerable challenges: 

1. It is necessary to fully automate the evaluation of the objectives. I.e., geometry 

creation, mesh generation, computational model assembly, running simulations and 

the post-processing. While this is no problem in theory, in real applications it is not 

an easy task. 

2. In many cases, exact formulation of the objectives can be challenging. Human 

experts use many ways how to measure or estimate the quality of the design. In some 

cases, the evaluation is based on things like visual impression (“smoothness” of the 

hydraulic shapes) or experience with previous designs. It is often unclear, how to 

process such steps algorithmically, or how to assign an exact numerical value to such 

decisions. 

3. Numerical simulations are computationally very demanding. Having a high-

accuracy, multi-physics model is not a viable option for an optimization run. Instead, 

compromises and simplification are necessary. This, on the other hand, further 

(together with 2) limits the set of objectives that can be actually used for the 

optimization. 

In theory, it is possible to make a general parametric model, that can cover all possible pump 

shapes. And to optimize it just for any physically possible pump performance. This is 

ensured by the fact that both the parameters and objectives are bounded, and their numbers 

are finite. However, such optimization would be extremely demanding due to large number 

of both parameters and objectives, combined with multimodality of the objective function(s). 

When practical limitations are considered, the optimization becomes not a replacement, but 

instead an addition to the design process performed by human experts. I.e., it is usually 

extending the earlier steps (as mentioned in the workflow description in the previous chapter) 

of hydraulic design process. This means that the initial “baseline” design is still performed 

by a hydraulic expert, and the consecutive optimization uses this design as a starting point. 

This approach uses the available information from the analytical methods and human 

expertise, and thus helps making the optimization easier – increasing chance of success and 

saving time and considerable amount of computational resources. And, since the fidelity of 

the numerical modelling is limited in practice, it lowers the chances that the optimization 

arrives at an impractical design due to not having complete information about some aspects 

of the pump performance. 

In the next chapter, the most common optimization methods and approaches to the shape 

optimization, used in pump hydraulic design, are described. 

 
3 By “multi-level” it is meant that hydraulic experts work with different types of information – fast analytical 

formulas, computationally expensive simulations, experience-based judgments of the design quality etc. This 

means that part of the design process is also a proper utilization of these “levels”, something, that is very 

difficult to include in an automated optimization. 
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3. Current approach to hydraulic shapes optimization 
There are multiple ways of approaching the hydraulic design as an optimization problem. 

One important aspect of the optimization is how the parametric model is created. One option 

is to create a “complete” parametric model, i.e., the geometry is completely defined by the 

input parameters. For hydraulic shapes, the “complete” parametric model is a frequently 

used option. It is very convenient, as there is a relatively standardized set of rules, how to 

parametrically create a pump design, that is commonly used by the hydraulic experts. As 

pumps are axisymmetric, it is based on meridional shapes, blades position, angles and 

thickness. 

Another option is to use the parameters to express a difference from a baseline design. This 

is typically realized by some kind of parameters-driven shape morphing technique, such as 

Free-Form Deformation (5), mesh deformation techniques based on Radial Basis Function 

interpolation (6) or Hicks-Henne bump functions (7), (8). These deformation techniques 

allow for very flexible control of the shape. It is also very easy to set the number of 

parameters, so it is possible to choose the details and difficulty of the optimization – 

something the “complete” parametric models do not allow. These methods are commonly 

used for wings optimization. 

When comparing these two approaches, both have strengths and weaknesses. The first option 

(the “complete” model) is often relatively straightforward, as in engineering practice, CAE 

is a standard part of the workflow nowadays. This means that in many cases the parametric 

model already exists, and if automation of it is possible, then the optimization can directly 

follow. In such case, the values of the geometry parameters can also be easily interpreted by 

the experts. The disadvantage is, that if the parametric model is not available, then it can be 

difficult to create. The deformation techniques, on the other hand, are easier to apply on any 

geometry. However, sometimes it can be difficult necessary geometry conditions (such as 

rotational symmetry) are met after the deformation. And when deforming the computational 

mesh, the quality can suffer and limit the shape variations. Poor mesh quality can also lead 

to a phenomenon where the optimization actually searches for good mesh instead of good 

objective values (9). 

The “complete” parametric model method was the choice for all optimization cases 

presented in this work. Its main advantage is that the parameters obtained by an optimization 

can be easily understood by the hydraulic experts. Also, the “good practice” approach to the 

geometry creation can easily guarantee that necessary geometry constraints (for example 

rotational symmetry) are met, as it is inherently included in the geometry generation. And, 

as mentioned before, it is suitable for wide range of pump designs. Something, that cannot 

be easily accomplished with the deformations. 

Yet another option is to obtain the geometry via some kind of geometry optimization. In 

such case, the parameters used by the optimization of hydraulic shape are not used directly 

for geometry creation. Instead, they serve as an input for yet another geometry optimization. 

This last approach can be combined with the first two. The main advantage is that the 

geometry optimization can be a very complex, with large number of parameters. And thanks 

to this (fast) geometry optimization, fewer parameters are needed for the (slow) hydraulic 

optimization. However, this only makes sense if the geometry creation cannot be simplified 

in other way. Another big problem is, that the geometry optimization can produce the same 

(or very similar) results for multiple input parameters. I.e., the input parameters can be 

different, but the optimization will still converge to the same results. In such case, the 

hydraulic optimization can have troubles with sampling the objective space. On the other 

hand, it can help to improve the hydraulic shapes fast. In pump design, smooth shapes are 

desirable. But the optimization based on noisy and computationally expensive simulations 

can hardly converge to a smooth shape. But, the geometry optimization can manage this. 
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Another classification is based on the type of the optimization routine: 

1. Gradient-based methods. These are the “classical” methods, such as gradient 

descent, conjugate gradients or Newton’s method. These methods can converge (to 

a local minimum) very fast, even for large number of parameters. However, they 

suffer from serious drawbacks when applied to (computationally expensive) 

simulation-driven engineering problems. First, in many commercial simulation 

packages, the derivatives (of the objective function) are not available (to the user). 

The derivatives can be approximated numerically, but this considerably increases 

number of the expensive evaluations and lowers the accuracy. Second, these are local 

methods, and the objective functions in hydraulic design can be multi-modal. 

Another problem is, that the objective function evaluation can fail for various 

reasons, and such methods were not designed with such situation in mind. 

2. Global heuristic methods. such as genetic algorithms, DE (10), PSO (11), etc (12). 

These are global methods, usually population-based, mimicking real-world 

behaviour of some systems. They are typically very robust, capable of dealing with 

very difficult objective functions. They also require relatively big number of the 

(computationally expensive) objective function evaluations. This makes their 

application for hydraulic design problematic, as the computational costs can be too 

prohibitive. On the other hand, these methods can handle penalization of objective 

functions relatively well. 

3. Surrogate-assisted optimization (SAO). In this case, the objective function is 

replaced by an approximation, usually called a surrogate or response surface. The 

surrogate can help in guiding the search and speeding the optimization process. Of 

course, building and updating the surrogate cost additional computational resources, 

too. But in a case of computationally expensive objective functions the overhead is 

negligible. There are many different kinds of surrogates, such as Radial Basis 

Functions, Kriging or Support Vector Machine A survey of various methods 

performance is in (13). 

When considering optimization based on computationally expensive simulations, 

multiple things need to be considered. First, to number of objective evaluations is 

limited. Thus, methods improving the objective faster are preferred. Gradient-based 

methods can converge really fast, if derivatives are available. But in such case, it is also 

possible to improve building of the surrogates. Second, the method needs to be able to 

cope with situations where the evaluation fails. This is another advantage of the 

population-based methods (with or without surrogates). As a new population is generated 

in every iteration, the error rate would need to be very high to cause any problems. 

Generally, various SAO methods are most commonly used for computationally 

expensive simulations (14). The typical good practice it an iterative approach. The 

method is start from the initial sampling on the given parametric space. Once the samples 

are evaluated, a response surface is fit to these points. Then new samples are generated 

(based on the information provided by the response surface) and evaluated, and the 

response surface is updated. Evaluating an approximated value is much faster than the 

objective functions and can thus speed up the optimization process. As the objective 

function and its approximation can generally be multi-modal functions, the search is 

usually based on the global optimization methods. A comparison between an 

optimization with and without surrogates can be seen in (15). 

In this work, global SAO approach was used. The objective functions defined for 

hydraulic design are difficult to optimize, and derivative information was not available. 

More detailed description of these methods, and their practical applications on pumps 

are described in the following chapters.  
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4. Case 1 - Pump stator 
Objectives: Pump efficiency and circumferential velocity at the outflow, at the optimal 

flow rate. 

Solution: ANSYS Workbench parametric model driven through text script files, Transient 

Blade Row model. Best design selected from Latin hypercube sampling of the parametric 

space in second iteration. 

Results: Efficiency increased from 3% up to 8% in the working range. 

4.1. Introduction 

The studied pump was a diagonal one, designed for specific speed ns = 240, with adjustable 

blades of the impeller and a diagonal diffuser. The “adjustable blades” means the attack 

angle of the blades can be set within a range of values, and allows for operating the pump in 

wider range of flow rates. The hydraulic parameters were only mediocre, and as the CFD 

analysis revealed, this was mainly due to the diffuser. A well-designed diffuser can transfer 

most of the circumferential velocity (inevitably found at the outlet of the rotating impeller) 

to the desired forward movement. In our case, the residual circumferential part of the velocity 

was still significant, even at the optimal flow rate. As a result, the total (combined) velocity 

of the flow in the outlet parts was increased. Thus, the efficiency was lowered significantly 

due to the hydraulic losses in the elbow. 

 
Figure 5: Original pump (left) vs the new design (right) 

Because of this, the stator was deemed as the ideal starting point for pump optimization. This 

decision was based on following reasons: 

1. The stator has negligible impact on cavitational performance. Because the cavitation 

starts at leading edge of the impeller and slowly progresses further into the passage 

as the NPSH drops, the moment it develops to the stator is far below operational 

limits of the pump, anyway. Since the numerical simulations of pump cavitational 

characteristics are both computationally very demanding and difficult to evaluate, 

optimizing only the stator is much easier. 
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2. The pump hydraulic performance is mostly decided by the impeller. By lowering the 

hydraulic loss in the diffuser, both the pump efficiency and head are increased. In 

such case, there will be an almost ideal linear dependency between efficiency and 

head (because both parameters are increased by the same mechanism - lowering the 

hydraulic loss). Thanks to this, only efficiency needs to be considered as optimization 

objective. This makes formulation of the optimization problem easier. 

3. The shape of the stator is simpler and easier to control by parameters than the 

impeller. For example, stator blades are typically created using two camber lines 

only, compared to three or more used in case of the impeller. This means lower 

number of parameters and lower chance for geometry conflicts caused by different 

angle setting for each streamline. 

Apart from improving hydraulic performance, another opportunity for the new design was 

lowering the manufacturing cost by making the design “simpler”. As revealed by the CFD 

analyses, the curved design of the original diffuser, based on theoretical assumptions related 

to optimal flow-direction and cross-section area, did not work well in practice. In fact, the 

flow was not fully following the geometry shapes. I.e., the complex hydraulic shapes of the 

original diffuser were not really guiding the flow as intended. For these reasons, considering 

a shape manufacturable by a process of metal-sheets-bending seemed to be a viable idea. 

Such method can be considerably cheaper and easier to implement, when compared to the 

casting used for the original diffuser. In Figure 5, a meridional comparison of the old and 

new designs can be seen. The longer and wider passage was designed with the intention to 

enable a more fluid flow, and to prevent whirls at the beginning of the diffuser.  

 
Figure 6: Graphical visualisation of the geometric parameters. 

4.2. Parametric model and automation 

ANSYS Workbench was used for creation of the computational models. Parametric diffuser 

model in DesignModeler was connected to automated structured (hexahedral) mesh 

generation in TurboGrid. Next, the diffuser mesh was updated in a premade CFX model. 

The other parts (Inflow, Impeller and Outflow) remained fixed. All the necessary steps 

(updating the diffuser geometry, mesh and CFX model) were recorded as a Workbench 

script. Next, the numerical values of the considered parameters were replaced by keywords 

(par_1, par_2, …) and the script file was used as a template. With Excel macros, a set of 

Workbench replay files could be easily created, based on a table containing a list of names 

and appropriate parameters. To avoid unnecessary complexity, only selected parameters 

were considered – basically blade position, angles and the so-called sweep angle (the right 

part of Figure 6). 

 In total, 13 geometric parameters were considered. The baseline design followed the 

“standard” methods for hydraulic design, and the parameter ranges were determined by an 

offset from these initial values. The parameters are described in Table 1, a graphical 

visualisation of these parameters is shown in Figure 6 and Figure 7. 
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Table 1: List of parameters 

Parameter Description 

1 Shroud-position of the leading edge of the blade. Defined by a distance to 

rotor-stator interface. 

2 Angle between the shroud and the leading edge of the blade. This way the 

hub-position of the leading edge is also prescribed. 

3 Hub-position of the trailing edge. Defined by the distance to stator-outflow 

interface. 

4 Angle between the hub and the trailing edge. 

5 Sweep angle of the leading edge. I.e., the angle between the hub-position 

and shroud-position of the leading edge, as seen from the axis-of-rotation 

direction. 

6 Beta angle (of the blade) – shroud, leading edge 

7 Beta angle – shroud, passage 

8 Beta angle – shroud, relative position of the passage point 

9 Beta angle – shroud, trailing edge 

10 Beta angle – hub, leading edge 

11 Beta angle – hub, passage 

12 Beta angle – hub, relative position of the passage point 

13 Beta angle – hub, trailing edge 

Since the intention was to only consider the design point QOPT, it was possible to use the so-

called Transient Blade Row (TBR) method (16), (17). In this method, only one passage of 

the impeller and diffuser was considered. TBR can only be used on axisymmetric cases, and 

the elbow in the outflow part violates this condition. However, at QOPT, the elbow can be 

safely ignored and replaced by a straight pipe. Such change has an effect on the absolute 

values of head and efficiency. However, the general practical experience is that the relative 

comparison between various pump design remains very similar in the end. For optimization 

purposes, only the relative values matter. In case of non-optimal flow rates, this is generally 

not true. TBR is unable to capture the lower-frequency instabilities present in the non-

optimal flow rates. But at the optimum, it provides accurate values of the efficiency. 

Such approach (considering only QOPT efficiency as the optimization objective) can be risky, 

as improving the peak efficiency does not necessarily grant an improvement in the whole 

working range. Still, as the TBR model meant approximately ten times faster simulation in 

our case, it was assessed as the preferred option. The resulting mesh size was ca. 0.25 million 

of nodes (compared to 1.7 million for the “full” model), with simulation time below 2 hours. 

The comparison between the “full” and TBR models can be seen in Figure 8. For similar 

reasons, only one adjustment of the impeller blades was considered. Numerical simulations 

of multiple scenarios would increase the computational demands dramatically, and based on 

previous experience, it was expected that results obtained for one scenario are applicable for 

other settings, too. 

 
Figure 7: Examples of the stator geometry for various parameters settings 
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The whole analysis was performed as fully transient. Timestep was chosen with respect to 

count of impeller and diffuser blades. To maintain reasonable simulation accuracy, one 

timestep should represent rotation from 1° to 4°. In our case (8 blades on impeller, 9 blades 

on diffuser) 8 ∙ 9 ∙ 2 = 144 timesteps per a rotation meet these criteria. One timestep 

represents 2.5° and has this value: 

(1) 𝛥𝑡 =
1

𝑖⋅𝑛⋅𝑝
=

1⋅60

18⋅294⋅8
= 0.00141723(𝑠) 

with p being the impeller blades count, i being the number of timesteps per passage and n 

(rpm) the rotor rotation speed (in rpm). As a turbulence model, SST (Shear Stress Transport) 

k-Ω model has been chosen. In general, SST k-Ω is the recommended choice for modelling 

fluids in geometries containing rotating parts. 

 
Figure 8: Full (left) vs TBR (right) CFD model 

4.3. Optimization and results 

Using ANSYS DesignXplorer tool, an initial sampling for the hypercube (of the parametric 

space) was generated. In the first step, only 11 parameters were considered. Parameters 8 

and 12 remained fixed at value of 0.35. The sampling had 151 items, of these 147 were 

successfully created. Next, for these 147 samples, the CFD simulations were performed. The 

simulations were run on a dual-socket machine, running in parallel as 2 x 8 cores. The total 

machine time was ca. 3000 CPU-hours, i.e., ca. 8 days of a real time. For each sample, two 

objectives were evaluated – efficiency of the pump and averaged circumferential velocity at 

the inflow part of the pump. Since the high residual circumferential velocity was one of the 

reasons for the low efficiency of the old design, it was also considered for the optimization 

process and analysed. 

From all the computed designs, one seemed to be particularly promising. After an evaluation 

and analysis of the results, the parameters bounds were limited to focus more on the area 

close to the best sample of the first run. The comparison of the parameter ranges can be seen 

in Table 2. Then, a second sampling was created for this hypercube, with all 13 parameters 

(including P8 and P12) enabled. There were 105 samples in total, and only 77 of these were 

successfully generated and evaluated.  
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Table 2: Comparison of parameter bounds – 1st vs 2nd sampling. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

1st 

sampling 

1 45 5 45 -20 -75 -60 0.35 -3 -70 -60 0.35 -3 

15 70 100 90 -5 -45 -30 0.35 12 -40 -30 0.35 12 

2nd 

sampling 

1 55 5 30 -15 -70 -65 0.25 -10 -70 -65 0.25 -10 

10 67 15 55 -5 -55 -50 0.5 3 -55 -50 0.5 3 

Once again, all the CFD simulations were run in parallel on the dual-socket machine. The 

efficiency results for both runs can be seen in Figure 9. From the new samples, the best 

design was selected. It displayed both excellent efficiency and minimal residual 

circumferential velocity at QOPT. After minor modifications (mainly by rounding the values 

of the geometric parameters), it was used as the final design. For this design, the full CFD 

model (all passages, outflow elbow) was created, and complete performance characteristics 

were evaluated for three different settings (of attack angle) of the impeller blades – 0, 6 and 

9 degrees. In total, 21 performance points (3 adjustments, 7 flow rates) were computed. The 

results can be seen in Figure 10 and Figure 11. 

 
Figure 9: CFD results (efficiency) for the 1st and 2nd sampling. The arrows show the selected (s the best) designs for 

each sampling. 

As can be seen, the optimized design clearly dominates the old one. In the whole working 

range, no matter what attack angle is set for the impeller blades, the improvement in 

efficiency ranges from 3% up to 8%. For a high-performance pump, this is a very significant 

improvement. The real product can vary in size a bit, as it can be scaled down or up in 

accordance with the laws of hydraulic similarity. The maximum power can exceed 5 MW in 

its largest form, and for such power consumption, every single per cent of efficiency matters 

when the pump is operated for a long period of time. The higher efficiency can help to save 

the electricity costs, and possibly save the cost for the electro engine. The head has improved 

by similar margin. This is only natural, as the impeller remained the same. The NPSH3 

characteristics were not simulated. As mentioned before, the diffuser does not have a 

significant impact on cavitation. 
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Figure 10: Efficiency for different blade adjustments. The original (black) vs optimized (red) design. 

 
Figure 11:  Head for different blade settings. The original (black) vs optimized (red) design 

In Figure 12 and Figure 13, a comparison of residual circumferential velocity and backflow 

areas between the old and optimized design can be seen. There is an evident and significant 

difference. The wider and longer passage, together with the optimized blades, helped to 

reduce the circumferential velocity. The lower dissipated energy translates into higher 

overall efficiency of the newly designed pump. The new model also worked better despite 

the fact it was meant for the sheet-metal bending technology, which limited the 

parametrization options of the geometry. 
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Figure 12: Circumferential velocity at the outflow for the original (left) and optimized (right) design. Excessive values 

are displayed in red colour. 

4.4. Summary and conclusion 

The automated parametric model was successfully assembled and used as a part of CFD-

driven hydraulic design of a pump diffuser. The optimization was only performed with a 

simplified TBR model at the design point QOPT, but the outcome was very good nonetheless. 

The newly designed and optimized diffuser display performance superior to the original one 

– ranging from 3 % to 8 % in majority of the working range. It should be noted, however, 

that randomness can play certain role in the process, as the parametric space and initial 

sampling can influence the results. This can be also observed here, as in the first initial 

sampling, only one sample helped guiding the search and further narrowing the parametric 

space to the promising area. Overall, the selected approach has shown promising results and 

potential for the future tasks of hydraulic development. 

 
Figure 13: Backflow areas (in yellow) for the original (left) and optimized (right) design. 
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5. Case 2 - Pump suction 
Objectives: Pressure loss and uniformity of velocity profile at the output of the suction part 

(at QOPT). 

Solution: ANSYS Workbench parametric model driven through text script files, steady-

state and transient simulations, Stochastic RBF optimization method 

Results: Efficiency increased by 0.5%, NPSH3 by 20%. 

5.1. Introduction 

In this case, a radial pump of specific speed ns = 135 was considered. In order to improve 

the suction ability (NPSH3 characteristic) of the pump for a specific application, an inducer4 

was developed. CFD analyses of the pump performance revealed, however, a problem at the 

inflow part of the pump. For optimal performance, the flow that comes into the rotor (i.e., 

the inducer in this case) should be perpendicular to the entrance and uniform. In this case, 

however, the CFD analyses revealed significant variations in the inflow profile, which is 

supposed to have detrimental effect of the pump performance. The visualisation of the 

velocity profile at the interface between the suction and the impeller is shown in Figure 16. 

In such case, the velocity profile at the leading edges (of the blades) is not expected, and 

thus the impeller is not working in the regime it was designed for. This means that the blade 

angles are not optimally selected for the direction of the fluid. 

 
Figure 14: The pump CFD model and a detail of the suction geometry and mesh. 

Based on the data, it was decided that optimizing the suction shape is a good opportunity for 

improving the pump performance. The expectation was that such optimization can be based 

on steady-state simulations of the suction only, significantly limiting the computational 

expense and efforts invested into the automation of the numerical modelling. The plan was 

to further develop the automation and connect it with a suitable optimization method. When 

compared to the impeller or diffuser, the suction of the shape is less complicated and easier 

to change via geometric parameters. So, this task was decided to be the optimal starting point 

for testing a fully-automated parametric model, connected to a suitable optimization code. 

As the computational cost of one steady-state CFD simulation of the suction part is not very 

taxing, it can be much easier to test geometry and mesh creation, and to control the 

simulations. Evaluating steady-state computation is easier, too, as it converts to a single 

number. For transient simulation, averages over a period of time need to be considered. 

 
4 An inducer is added in front of the impeller and shares the same shaft. Its blades are designed to generate 

static pressure and help feeding the impeller to help to delay the cavitation occurring there. In exchange, the 

efficiency of the pump is lowered by a few per cents. 



24 

5.2. Parametric model and automation 

The parametric creation of the suction was done using ANSYS Workbench and 

DesignModeler. The approach to the hydraulic design and choice of parameters were mostly 

based on recommendations in (2). In total, there were 18 geometry parameters, which are 

listed in Table 3. Visualisation of selected parameters can be seen in Figure 15. The 

parameters and geometry model were selected as a compromise between a full control over 

the suction shape and the complexity of the optimization. There are also technical difficulties 

when creating such parametric model, as the freedom for creating a 3D shapes is more 

limited in the DesignModeler than it should be in theory. 
Table 3: Parameters description 

Parameter Description 

1 Radius of the inner wall. 

2 Radius of the outer wall. 

3 Rounding radius of the diffusion channel. 

4 Radius of the diffusion channel. 

5 Width of the diffusion channel. 

6 Height of the bottom part (of the suction). 

7 Height of the top part. 

8 Meridional width of the bottom part. 

9 Meridional width of the top part. 

10 Meridional width of the middle part. 

11 Diffuser vane – leading edge - radius at the top 

12 Diffuser vane – trailing edge – radius at the top 

13 Diffuser vane – leading edge – position at the top 

14 Diffuser vane – trailing edge – position at the top 

15 Diffuser vane – leading edge - radius at the bottom 

16 Diffuser vane – leading edge – radius at the bottom 

17 Diffuser vane – leading edge – position at the bottom 

18 Diffuser vane – trailing edge – position at the bottom 

Considering the shape of the suction, the computational mesh was created as unstructured, 

i.e., tetra + prism for the boundary layers. Creating a block structure would be overly 

complicated in this case. The numerical modelling was fully automated, using ANSYS 

Workbench, Linux shell and Python scripts and codes. 

 
Figure 15: Visualization of selected parameters 
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First, the update process in Workbench (DesignModeler, Meshing and CFX/Pre updates) 

was recorded as a script. By replacing the file name and parameter values by keywords, a 

source template for the automation was then created. The workflow of the automation is as 

follows: 

1. The Python routine accepts csv file with parameter values as an input. 

2. The Workbench template is loaded, keywords are replaced by the actual values, and 

a new script is saved – named after the input csv file. 

3. The Workbench script is executed in command line. As a result, a CFX input file is 

created. 

4. For pre-set flow rates (and possibly other solver settings defined in a premade ccl 

files), the CFX input file is solved in batch mode. 

5. For each result file, monitored variables (efficiency, head, …) are extracted and 

stored in a csv file (with appropriate name). 

6. The csv files are processed by a Python script, and efficiencies (for each result file 

of a particular design) values are saved into a csv file. This csv file then acts as an 

input for an optimization routine. 

 
Figure 16: Velocity profile at the inlet to the inducer. Red or blue colour shows greater than 10% difference from the 

average value. 

The step 4 (the solver) is typically performed on an HPC cluster via a PBS scheduler. I.e., 

the user does not have a direct control over the run. Instead, the task is sent to a queue, and 

the scheduler decided when it is run. Such decision is based on multiple factors – licences 

availability, computational resources availability, user priority etc. This brings many 

technical challenges to the automation procedure. Apart from difficulties with data transfers 

between the “global” shared storage and local computation nodes, the simulation can fail for 

various reasons (licensing problems etc.). To maximize the utilization of the available 

resources and to make the simulation “flow” more manageable, the CFX model creation and 

assembly is separated from the solver run. The scripts work like this: 
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1. For all wbjn files (the Workbench scripts) present on the shared storage, the 

corresponding jobs are created and send to the queue. 

2. Once the “model creation and assembly” job starts, it copies all the necessary data to 

the assigned local storage and tries to execute Workbench in the batch mode. As the 

Workbench run can “freeze” frequently (for various technical reasons), special 

measures needed to be taken. Because the time spent for the generation of the solver 

file is known quite well (typically between five and ten minutes), the Workbench 

process is limited to 30 minutes (and killed after that, if necessary). At the end of the 

script run, a log file is created. Now three situations can occur: 

a. Neither the solver input file nor the log file is created. This means Workbench 

“froze” and got terminated by the timer. In this case, the job is sent to the 

queue again. 

b. Only the log file is created. This means the Workbench script was executed 

successfully, but the geometry or mesh generation failed. In this case, the 

design is written to a log file on the shared storage as “failed”. 

c. The solver input file is created. In this case for each pre-set solver setting 

(uploaded at the shared storage), the solver jobs are set to the queue (in 

parallel). 

3. The “solver” job copies the necessary data to the local storage and runs the CFX 

solver with the appropriate model and settings in batch mode. As no problems with 

“freezing” were observed during the CFX runs, no measures similar to running 

Workbench needed to be deployed. One the simulation end (typically in ca. 10 

minutes), the results are copied back to the shared storage and an “objectives 

evaluation” script is run. 

4. The evaluation script is created in Python, and process the data extracted from the 

result file. The outcome is an objective function value stored in a csv file. If all the 

results for the design (i.e., all result files corresponding to the defined list of solver 

settings) are available, the scalarized objective is generated and written to a file. The 

design is also flagged as “finished” in another log file on the shared storage. 

With this approach, it is possible to maintain sufficient control over multiple simulations 

running in parallel, without a central “driving” script. Such script would be technically very 

difficult to create, as both the user’s control over the scheduler and knowledge about running 

and finished jobs are very limited. Instead, any optimization code can just check for newly 

added “finished” jobs in regular intervals. 

  
Figure 17: Geometry error (left) and mesh error (right). 
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5.3. Testing the parametric model 

For the start, a relatively large sampling of size 100 was created and used for testing of the 

parametric geometry. Of these 100 samples, 43 failed due to various geometry or mesh 

errors. This is a common problem faced when creating the parametric model, as ensuring a 

consistent geometry generation for all possible combinations of the parameters is often a 

challenging task. 

  

  
Figure 18: Four mesh sizes used for the mesh dependency tests. Ranging from ca. 100K to 2M nodes. 

After improving the geometry creation, 88 samples (out of the 100) were successfully 

generated. This rate was decided to be acceptable. Next, a smaller sampling, intended for 

CFD evaluation and testing the parametric space, was created. For the 18 parameters, 38 

samples were created and used as an input for the batch processing. For the lack of better 

information, the default size used in the Stochastic RBF method codes was used. It is defined 

as 2 * (N + 1), where N is the number of parameters. 
Table 4: Parameter ranges 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

200 130 30 380 220 5 5 2 2 30 5 10 190 250 5 10 90 250 

450 200 50 510 300 50 50 25 25 100 25 45 230 280 35 50 220 280 
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With this setting, 31 models were successfully generated and 7 failed because of geometry 

errors. These 31 samples were evaluated by CFD at QOPT. For the optimization, only the 

suction, together with prolonged inflow and outflow (for better numerical stability), were 

considered. SST k-ɷ model was used as the turbulence model. The original intention was to 

use both total pressure loss (denoted as H) and outlet velocity uniformity (denoted as v) as 

optimization objectives. 

𝐻 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐼𝑛𝑙𝑒𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑂𝑢𝑡𝑙𝑒𝑡

𝜌𝑊𝑎𝑡𝑒𝑟 ∙ 𝑔
 

𝑣 = ∫ |𝑣 −  𝑣𝑎𝑣𝑔|
 

𝑂𝑢𝑡𝑙𝑒𝑡

 

Unfortunately, upon more thorough testing the results proved to be significantly mesh and 

model dependent.  In Table 5 and Table 6, the values for each mesh size / solver settings are 

normalized and coloured according the normalized value. 
Table 5: Normalized values of H (left) and v (right) – mesh dependency. 

 Mesh size  Mesh size 

Sample rough medium fine finer  rough medium fine finer 

1 1.00 1.00 1.00 1.00  0.45 0.56 0.54 0.65 

2 0.76 0.83 0.82 0.87  0.80 0.73 0.70 0.88 

3 0.43 0.64 0.55 0.66  0.76 0.57 0.57 0.65 

4 0.61 0.70 0.68 0.78  1.00 0.95 0.94 0.87 

5 0.68 0.76 0.77 0.75  0.95 0.93 0.70 1.00 

6 0.38 0.53 0.37 0.56  0.33 0.58 0.42 0.37 

7 0.50 0.59 0.56 0.69  0.84 0.64 0.67 0.82 

8 0.40 0.54 0.57 0.63  0.81 0.57 1.00 0.57 

9 0.43 0.37 0.45 0.39  0.51 0.30 0.22 0.33 

10 0.42 0.67 0.64 0.78  0.34 0.13 0.11 0.07 

11 0.41 0.54 0.57 0.62  0.85 0.61 0.40 0.63 

12 0.57 0.55 0.54 0.57  0.71 0.43 0.37 0.43 

13 0.24 0.25 0.30 0.24  0.31 0.25 0.20 0.20 

14 0.17 0.23 0.25 0.18  0.52 0.53 0.25 0.27 

15 0.30 0.49 0.46 0.55  0.73 1.00 0.51 0.55 

16 0.18 0.20 0.14 0.37  0.36 0.28 0.13 0.03 

17 0.19 0.21 0.23 0.16  0.55 0.37 0.29 0.14 

18 0.18 0.19 0.24 0.11  0.71 0.40 0.43 0.35 

19 0.59 0.44 0.48 0.49  0.37 0.40 0.36 0.35 

20 0.17 0.33 0.41 0.40  0.80 0.41 0.26 0.24 

21 0.14 0.19 0.23 0.21  0.28 0.12 0.02 0.05 

22 0.38 0.42 0.37 0.47  0.31 0.33 0.32 0.36 

23 0.14 0.22 0.43 0.25  0.36 0.08 0.14 0.08 

24 0.24 0.22 0.13 0.25  0.48 0.50 0.27 0.52 

25 0.32 0.37 0.51 0.36  0.00 0.00 0.00 0.22 

26 0.43 0.32 0.36 0.31  0.18 0.34 0.14 0.06 

27 0.27 0.41 0.43 0.39  0.51 0.27 0.12 0.29 

28 0.09 0.16 0.10 0.11  0.54 0.34 0.03 0.00 

29 0.13 0.33 0.33 0.35  0.89 0.42 0.15 0.69 

30 0.00 0.00 0.05 0.00  0.54 0.53 0.48 0.23 

31 0.02 0.06 0.00 0.19  0.32 0.36 0.11 0.00 

32 0.14 0.19 0.37 0.20  0.38 0.44 0.07 0.34 
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The testing was done for four different mesh sizes and four solver settings. The mesh sizes 

ranged from ca. 100 thousand to 2 million nodes. There were differences in both surface 

elements sizes and prism layer settings. As there are no moving parts in the suction, the 

simulation was set as “steady-state”, significantly faster than the transient option. The 

comparison of meshes for one geometry are displayed in Figure 18. Every design in the 

sampling was then evaluated for these eight scenarios. For an optimization, relative values 

of the objectives are more important than the absolute numbers. I.e., the statement “design 

A is better than design B” should be independent on the mesh or solver settings. 
Table 6: Normalized values of H (left) and v (right) - solver settings dependency. 

 Solver settings  Solver settings 

Sample v1 v2 v3 v4  v1 v2 v3 v4 

1 1.00 1.00 1.00 1.00  0.74 0.89 0.37 0.27 

2 0.77 0.79 0.83 0.84  0.37 1.00 0.38 0.31 

3 0.60 0.63 0.64 0.68  0.35 0.27 0.39 0.12 

4 0.63 0.74 0.70 0.83  0.18 0.79 0.09 0.76 

5 0.67 0.68 0.76 0.73  0.59 0.93 0.21 0.78 

6 0.46 0.52 0.53 0.58  0.67 0.79 0.38 0.20 

7 0.53 0.58 0.59 0.62  0.24 0.03 0.22 0.27 

8 0.49 0.51 0.54 0.56  0.02 0.00 0.04 0.08 

9 0.31 0.31 0.37 0.32  0.56 0.37 0.71 0.69 

10 0.61 0.66 0.67 0.74  0.21 0.31 0.48 0.05 

11 0.48 0.53 0.54 0.54  1.00 0.72 0.71 0.39 

12 0.50 0.50 0.55 0.58  0.34 0.59 1.00 0.91 

13 0.21 0.22 0.25 0.26  0.01 0.00 0.00 0.00 

14 0.21 0.26 0.23 0.25  0.47 0.40 0.41 1.00 

15 0.41 0.44 0.49 0.47  0.45 0.04 0.33 0.13 

16 0.15 0.16 0.20 0.21  0.10 0.43 0.29 0.50 

17 0.18 0.18 0.21 0.22  0.11 0.15 0.11 0.12 

18 0.15 0.15 0.19 0.19  0.00 0.04 0.00 0.02 

19 0.39 0.39 0.44 0.39  0.51 0.33 0.75 0.44 

20 0.30 0.31 0.33 0.38  0.19 0.37 0.38 0.20 

21 0.18 0.18 0.19 0.22  0.34 0.47 0.25 0.77 

22 0.35 0.36 0.42 0.39  0.45 0.43 0.31 0.67 

23 0.19 0.20 0.22 0.24  0.07 0.04 0.21 0.12 

24 0.19 0.21 0.22 0.25  0.79 0.74 0.44 0.69 

25 0.32 0.33 0.37 0.36  0.17 0.20 0.56 0.20 

26 0.27 0.28 0.32 0.32  0.29 0.34 0.25 0.33 

27 0.35 0.36 0.41 0.40  0.51 0.68 0.65 0.81 

28 0.14 0.13 0.16 0.17  0.47 0.10 0.20 0.43 

29 0.29 0.29 0.33 0.35  0.18 0.11 0.28 0.23 

30 0.00 0.00 0.00 0.00  0.33 0.07 0.10 0.31 

31 0.02 0.03 0.06 0.11  0.72 0.18 0.16 0.36 

It is clear that the velocity profile depends significantly on the simulation settings and mesh 

size. The probable cause of this is that the local values of the velocity field are much more 

prone to errors and inaccuracies than the “averaged over area” head values. As a 

consequence, v was decided to be too unreliable to be used as an optimization objective. 

Thus, only the pressure loss at the design flow rate was selected as the cost function. 
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5.4. The optimization method 

When selecting an optimization method for a CFD-driven optimization, one has to consider 

multiple criteria: 

1. The numerical simulations are computationally very expensive, this severely limits 

the maximum number of the objective function evaluations. This means that a 

method that can improve the objective(s) fast is preferable to a method that can do 

better, but only after very high number of (objective function) evaluations.  

2. It needs to be a derivative-free method. In special cases and with in-house or open 

source (such as OpenFOAM) codes, it is possible to use the so-called adjoint method 

(18). But generally, especially for commercial codes such as ANSYS CFX, no 

derivatives are available. Numerical differentiation is not a viable option here, due 

to accuracy limits of numerical methods and high number of parameters. 

3. The objective functions are supposed to be multimodal, i.e., global optimization 

methods are preferable. 

4. Failed simulations / crashes can occur for various reasons. I.e., for some input values, 

the objective function returns no output. The non-existent values can be “faked”, but 

this can distort the optimum search. Thus, having a method that can handle such 

situations easily is preferable. 

Point 1 is a problem for classical population-based methods, points 2, 3 and 4 practically 

rule gradient-based methods (steepest descent, Newton's method, etc.) out. Currently, the so-

called Surrogate-Assisted Optimization (SAO) is the preferred option for computationally 

expensive engineering optimization. In SAO, the approximation of the objective function 

(surrogate) is used instead of the objective function itself. In every iteration, the optimization 

is performed on this (computationally cheap) surrogate. Once the new point for evaluation 

is decided, it goes through the computationally expensive simulations and the surrogate is 

updated. SAO has been studied extensively in literature, such as (13), (19) or (20).  

For the suction optimization, the so-called Stochastic Radial Basis Function (Stochastic 

RBF) method, described in (21), (22), was selected for this task. There were two main 

reasons for the choice: 

1. According to the testing done by the authors, it is very competitive when maximum 

number of evaluations is a concern. 

2. Matlab codes were freely available at (23), and easy to understand and modify. This 

was a major advantage, as it is necessary to modify the codes to deal with the 

specialities of CFD-driven optimization 

Stochastic RBF is a single-objective, stochastic SAO method. It works by a following 

scheme: 

1. Generate initial sampling and evaluate the samples. 

2. Use already computed samples and fit the response surface. 

3. Generate large number (ca. ten thousand) random testing points to cover the response 

surface uniformly. 

4. From these testing points, select N new candidate points for evaluation. The selection 

is a compromise between exploiting local minima of the response surface and 

exploring areas further away from the already sampled points. 

5. Evaluate the candidate points. 

6. Repeat (2) until ending criteria are met. 

The number N can be selected arbitrarily; the authors recommend either 4 or 8 for optimal 

performance. To deal with the technical difficulties in real-world application for the shape 

optimization (namely failed samples and heterogenous HPC cluster environment with a 

scheduler), the original method was modified to work with something that could be called 

“pipeline”. 
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1. Generate initial sampling and evaluate the samples. 

2. Use already computed samples and fit the response surface. 

3. Generate large number (ca. ten thousand) random testing points to cover the response 

surface uniformly. 

4. Select N new candidate points for evaluation and add them to the queue. 

5. Wait until at least one computation finishes. Then wait for a few more minutes and 

read all available results. (Due to the nature of the scheduler system, the results often 

come within very short interval.) 

6. Select k new points, where k = number of samples computed + number of samples 

failed. 

7. Add the newly selected samples to queue. 

8. Repeat (5’) until ending criteria are met. 

This way, the failed samples are simply ignored, and the “slower” ones are just used once 

they finish. Because of this, there are no bottlenecks caused by waiting for “stuck” 

computations. One can assume that such approach has influence on convergence speed, but 

no thorough testing has been performed with the computationally expensive functions. 

Obviously, there is no automated solution for a case where all new samples fail. In practice, 

such situation never occurred, though. Plus, as the method always work with “all data 

available”, it is possible to insert new samples manually. It is thus for example possible to 

manually “tune” a selected design (an experienced hydraulic expert can often do this) and 

add it to the already evaluated data. 

5.5. Optimization and results 

The optimization continued from the results of the initial sampling. The number of newly 

generated samples in every iteration was set to N = 4. The optimization was ended manually 

once no significant improvement in the objective have been observed for multiple iterations. 

The results can be seen in Figure 19. In this particular case, the optimization has hardly 

shown an improvement over the random sampling, performed over the parametric space. 

 
Figure 19: Objective function progress. The bold line connects the best values reached. 

Based on the optimization results, the complete CFD model of the pump (suction + inducer 

+ impeller + stator + outflow) was assembled. For comparison, both best samples from the 
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(performance and NPSH3 characteristics) were performed. Comparison to the original design 

can be seen in Figure 20. The differences in efficiency and head are negligible, basically 

within the accuracy limits of the numerical simulations. More significant improvement, up 

to almost 8 %, can be observed for the suction ability. While the improvement in hydraulic 

losses is negligible in the context of the whole pump, it obviously gives more headroom at 

the inducer inflow, delaying the cavitation creation. As the results were not convincing, 

though, another, more complex parametric model was created.  

 
Figure 20: Hydraulic and NPSH3 performance of the optimized designs, compared to the original (in grey). 

5.6. Parametric model – suction and inducer 

After analysing the outcome of the optimization, the inducer was added to the parametric 

model. As the next step, a different way of evaluating the velocity uniformity was chosen. 

The inducer was added to the model, and the simulation was set as transient. I.e., the inducer 

domain rotated around the z axis, with rotor-stator interface to the static suction domain. 

These changes were supposed to help in capturing the velocity objective v with higher 

accuracy. Inflow and outflow parts were again modified to improve the numerical stability. 

The boundary conditions and turbulence model remained the same as in the previous case. 

The transient simulation gives more accurate results, as the rotor / stator interaction and 

inertia forces are considered. However, it also brings a steep increase in computational time 

and adds complexity to the automation process and post-processing. In a steady state 

simulation, only one “converged” value is used for the objective function. In the transient 

case, average values (typically over two last rotations of the impeller) need to be used. 

However, this approach allowed obtaining data for meridional velocity profile at the inlet 

part of the inducer blades. Using ANSYS CFD-Post built-in functions, the Hub-to-Shroud 

line was defined and meridional velocity 𝑣𝑚 was exported in multiple points. The objective 

function was then defined as: 

𝐽 =  ∑
(𝑣𝑚

(𝑖)
−  �̅�𝑚)

2

�̅�𝑚

𝑁

𝑖=1

 

where �̅�𝑚 =  
1

𝑁
∙ ∑ 𝑣𝑚

(𝑖)𝑁
𝑖=1  is an average meridional velocity over the selected Hub-to-Shroud 

line. Number of points N was selected as 32. Unlike head, the v values were not averaged 

over time interval. Instead, only the last value was considered. This was a limitation forced 

by technical reasons, as processing the data with CFD-Post every timestep would be 

computationally too taxing. 
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With objective function defined this way, the intention was to ensure as uniform fluid 

entrance to the inducer as possible. Supposedly, this should lead to better pressure 

distribution along the blades and slower creation of the cavitational areas. The assembled 

CFD model and inducer details, including the Hub-to-Shroud line, can be seen in Figure 21. 

 
Figure 21: Parametric CFD model with the inducer and a detail of the Hub-to-Shroud line. 

The mesh dependence was again tested with the aforementioned four different suction mesh 

settings, this time only with one selected design. The inducer mesh remained the same for 

all the variants. The results are displayed in Figure 22. As expected, the transient analysis 

has proven to be more accurate, and the result differences were negligible. 

 
Figure 22: Meridional velocity profiles on the selected Hub-to-Shroud line. 
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5.7. Optimization and results – suction plus inducer 

The optimization was started from the initial sampling. The number of samples remained the 

same, i.e., 38. The geometries for all the initial sampling were generated and computed on 

an HPC cluster. Then, using these results, the Stochastic RBF optimization was performed. 

The procedure was set to generate 4 new samples in each iteration (same as in previous case), 

and run in an HPC environment. The progress of the objective function J during the 

optimization is shown in Figure 23. 

 
Figure 23: Optimization progress. The dashed line connects the best values. 

For the best design selected from the optimization run, CFD model of the complete pump 

was assembled and full set of simulations was performed. The geometries and results 

comparison between the original and optimized designs can be seen in the following section. 

Quite in the contrary to the original expectations, this objective function yielded inferior 

results to the pressure drop version. Further analysis of the results has revealed that the 

suction shape has very little to no effect on the velocity profile in the middle and trailing 

parts of the inducer blades. Due to this, the shape optimization with respect to the meridional 

velocity uniformity has no significant effect once the cavitational areas start to develop. 

Lowering pressure loss in the suction, on the other hand, gives more NPSH reserve. 

 
Figure 24: Suction designs and results of CFD analyses. The colours show differences in velocity profile at the suction 

outlet. 
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Figure 25: Hydraulic and cavitational performance of the optimized designs. The results are related to the original 

suction design. 

To further analyse the accuracy of the numerical simulations, the geometry from the first 

optimization (with respect to the 𝐻𝑆𝑢𝑐𝑡𝑖𝑜𝑛) was tested on different meshes. The full set of 

both hydraulic and cavitation simulations was performed. Three new variants of the CFD 

model were prepared – one with coarse mesh, one with similar nodes count as the original 

one, but with different topology, and one refined. The nodes count ranged from 1.3 to 7 

million, compared to the 1.9 million for the original mesh. The mesh dependence of NPSH3 

is displayed in Figure 26. In Figure 27, the performance characteristics (compared to the 

original design) can be seen.  

 
Figure 26: Head-drop curve mesh dependence. The dotted line shows the head boost required for the impeller to work 

properly. Once the static pressure generated by the inducer drops below this value, the cavitational breakdown of the 

pump occurs. 
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As can be seen in the figures, a relatively small mesh dependence can be observed. It is 

obvious that for efficiency and head, the improvement (over the original design) lies withing 

the interval of CFD inaccuracies, and is thus inconclusive. Only for NPSH3, the difference 

is comfortably greater than the errors. Also, for this particular pump, the head drop is very 

steep, as can be seen in Figure 26. This leaves smaller range for possible errors and has a 

positive effect on NPSH3 computation accuracy. 

 
Figure 27: Mesh dependence of H-optimized design (in comparison with the original design). 

5.8. Summary and conclusion 

The automated parametric model was successfully created, tested and connected with a 

selected optimization method. Two different approaches were tested. First, a simple model 

with the suction only and set as computationally (relatively) inexpensive steady-state 

simulations. Second, a more complex model with the rotating inducer included, and using 

the computationally demanding transient simulations. In the end, the simpler model worked 

out better. The results of the numerical simulations of a complete pump suggest the model 

with suction optimized for 𝐻𝑆𝑢𝑐𝑡𝑖𝑜𝑛 displays both the best efficiency and cavitational 

properties. For hydraulic parameters the differences are too small to rule out the mesh-related 

errors, though. For the NPSH3 characteristics, on the other hand, the changes are more 

substantial. The objective defined by velocity uniformity did not work very well, possibly 

because of lower accuracy on the rotor-stator interface. Overall, results of this optimization 

were not convincing. The parametric geometry and CFD simulations of the suction has 

proven to be much more problematic than was originally expected. The biggest concern was 

the mesh-dependence of the results. 

However, this case was successfully used for testing of the Stochastic RBF method 

implementation for the purpose of hydraulic shapes optimization. For this, modifications of 

the original Matlab code were necessary, to make it capable of dealing with failed samples 

and “restarts”, which was important for running the optimization under a real-world 

condition on an HPC system with a PBS scheduler. It was also a good opportunity for testing 

all routines related to automation of the numerical simulations – parametric geometry 

creation, mesh generation, dealing with failed designs, CFD model assembling, running the 

CFD simulations and evaluating and post-processing the results. Valuable experience was 

obtained as part of the process, as there are many technical challenges related to the practical 

realisation of the shape optimization. This experience was then used in the next optimization 

cases.  
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6. Case 3 - multi-objective optimization of a stator 
Objectives: Pump efficiency at working range. 

Solution: ANSYS Workbench parametric model driven through text script files, transient 

simulation (full geometry). Three objectives (efficiency at 90%, 100% and 110% of QOPT). 

Stochastic RBF optimization method + scalarization. 

Results: Efficiency increased from 2% up to 5% in the working range. 

6.1. Introduction 

The next case for stator optimization was a diagonal pump with adjustable blades, of specific 

speed ns = 360. It was an already existing, but outdated pump from SIGMA. When compared 

to the newer designs, the efficiency was not competitive. The numerical simulations 

identified the diffuser to be responsible for significant part of the efficiency loss. The 

impeller efficiency was very high (over 90 %), but the circumferential component of the 

velocity remained very high through the diffuser. This increased the hydraulic losses in the 

outflow part, lowering the hydraulic performance of the pump. Based on previous experience 

with diffuser optimization, it was decided to do another diffuser optimization. Unlike in the 

previously described “Case 1”, the plan was to use the Stochastic RBF method and perform 

an automated and more complex optimization at multiple flow rates, to ensure a good 

performance at the whole working range. This means that the TBR method could not be 

used, as the inflow and outflow shapes could not be ignored at the non-optimal flow rates. 

 
Figure 28: 3D model of the pump with bent diffuser blades. 
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Just as in the previous case, the plan was to produce a design that can be manufactured by 

the so-called metal sheets bending. I.e., relatively simple blades (with constant thickness, 

defined on two camber lines) and “straight” meridional profile. It should be noted that in the 

ideal case, the actual bent shape should be considered for optimization. The bending in 

general has a small negative impact on the hydraulic performance, as sharp edges are created 

on the blade. For each blade shape, there are practical limits for the bending. As a result, it 

can happen that one shape of the blade is deformed more than another, resulting in bigger 

performance drop. However, for the optimization this had to be ignored, as doing the 

optimization with respect to the bent shape would pose a major challenge. This is because 

the software tools used for the parametric model creation are not suitable for such option. 

I.e., both geometry creation and mesh generation cannot be automated in the bent shape. 

Thus, the optimization was based on the assumption that the resulting design will display 

performance good enough to have a reserve for the decrease caused by the bending. 

Another empirically verified assumption was that only one selected impeller blades 

adjustment can be considered for the optimization. I.e., if the pump displays good 

performance for one setting, then it performs well for a range of adjustments. Then it is 

sufficient to only perform the optimization for one setting (of the impeller blades). 

6.2. Parametric model and automation 

For geometry and mesh parametric creation, a Workbench project was created. The process 

of setting the parameters, geometry and mesh creation, and consequent CFD model assembly 

was recorded as a template script. Parameter values recorded in the script are then replaced 

by keywords (par_1, par_2, …). When the code responsible for the evaluation of the 

objective function is called, it simply replaces keywords in the template by the input 

parameters, calls Workbench in batch mode, performs the CFD simulations, extracts and 

evaluate the results and sends the output information (either objective values, or “failed 

design” flag) back to the optimization routine. For the scripts related routines, experience 

from the previous “Case 2” was used. The geometry shape was driven by 18 parameters, 

listen in the following Table 7, some of the parameters are shown in Figure 30. 
Table 7: Parameters 

Parameter Description 

1 Beta angle - hub - leading edge 

2 Beta angle - hub - relative value at 25% 

3 Beta angle - hub - relative value at 50% 

4 Beta angle - hub - relative value at 75% 

5 Beta angle - hub – trailing edge 

6 Beta angle - shroud - leading edge 

7 Beta angle - shroud - relative value at 25% 

8 Beta angle - shroud - relative value at 50% 

9 Beta angle - shroud - relative value at 75% 

10 Beta angle - shroud – trailing edge 

11 Meridional length – hub 

12 Meridional length – shroud 

13 Angle between hub and rotation axis 

14 Position of leading edge – hub 

15 Position of leading edge – shroud 

16 Position of trailing edge – hub 

17 Position of trailing edge – shroud 

18 Sweep angle (defined at the shroud) 
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The beta angles (at both hub and shroud) were defined at leading edge, trailing edge and 

three interior points (located at 25%, 50% and 75% of the blade length). As it is often 

recommended to “hold” the angle towards the blade end, the value at 95 % was considered 

the same as at the trailing edge. To ensure desired shapes (i.e., monotonicity), the inner 

values were set as relative with respect to the neighbourhood points: 

val95% = val100% 

val50% = val00% + coeff50% * (val95% - val00%) * 20/19 

val25% = val00% + coeff25% * (val50% - val00%) 

val75% = val50% + coeff75% * (val95% - val50%) * 10/9 

 
Figure 29: Examples of angle distribution for selected coefficient settings. 

ANSYS DesignModeler was used for diffuser and outflow geometry creation. The structured 

impeller mesh was generated by TurboGrid, and ANSYS Meshing was used for elbow 

meshing. The mesh size was ca 1.5 mil. of nodes. The simulation was set as transient, with 

rotating impeller and the solution time was ca. 20 hours on a 16-cores HPC cluster node. 

SST k-Ω turbulence model was used. With a Workbench script, the CFD model is then 

updated and solver input file created. The solver is run for each desired setting, defined in a 

ccl file. This file contains the expression language understood by CFX, and can be used as 

an input for a command line run. It is thus possible to set arbitrary parameters of the CFD 

model, such as flow rate, pump rpm, fluid medium properties, maximal allowed number of 

iterations etc. Three ccl files with the respective settings were created, and the simulations 

were run on an HPC cluster. For optimal utilization of the available resources, the duration 

was limited to 2 hours (the fastest queue on the cluster). Once the run finishes, the results 

are extracted and processed. If the simulation is decided as “finished” by the routine, the 

results are saved to a csv file and used by the optimization routine. If not, then the simulation 

continues, i.e., another 2-hours run is sent to the PBS scheduler. 
Table 8: Parameter ranges 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1st 

sampling 

30 0.3 0.3 0.3  15 0.3 0.3 0.3  700 700 15 20 20 -10 25 25 

40 0.7 0.7 0.7  35 0.7 0.7 0.7  1300 1300 25 200 200 15 150 150 

2nd 

sampling 

31 0.3 0.25 0.25 80 17 0.5 0.4 0.5 80 1100 1100 15 20 20 -10 25 25 

37 0.5 0.45 0.4 90 23 0.7 0.6 0.7 90 1300 1300 25 200 200 15 100 100 
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Figure 30: Visualisation of selected parameters. 

6.3. Testing the parametric model 

First, the trailing edges were set as fixed to 90 degrees. For the 16 remaining parameters, the 

initial sampling was created. The default (sampling) size of the Stochastic RBF method was 

used, i.e., 2 * (N + 1) = 34 samples, where N = 16 is the number of parameters. Out of these 

34 samples, 25 were successfully created. The remaining ones failed for geometry reasons. 

All the samples were evaluated at three different points (flow rates) – 90%, 100% and 110% 

of the design point QOPT. After evaluation and careful consideration of the results, the 

parametric model was slightly adjusted. First, the beta angles at trailing edge were enabled 

as parameters, instead of being fixed to a constant value. Second, the ranges of the 

parameters were modified, mostly narrowed. The comparison can be seen in Table 8. 

 
Figure 31: Examples of diffuser geometry (in blue). 

With these changes, a new sampling of a size 38 was created. With the new settings, the 

error rate of the parametric model lowered - out of the 38 samples, 36 were successfully 

generated, and only two failed. Next, the simulations were again run on the HPC cluster, and 

the results were extracted and evaluated. Average efficiency value of two last impeller 

rotations was used as the objective value. This is the commonly used practice for evaluating 

the results of transient simulations. The CFD results of both samplings are compared in 

Figure 33. For better clarity, the numbers are shown in the so-called parallel coordinate plot. 

As can be seen, the second sampling is more focused on the high-efficiency area, and 

contains some more promising designs. Thus, data from the second initial sampling was used 

for starting the optimization. 
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6.4. Optimization and results 

The same method as in the previous case (“Case 2”) - Stochastic RBF – was used. As it is a 

single objective optimization method, the scalarization of the three objectives (efficiencies 

at 90%, 100% and 110% of QOPT, further denoted as ƞ90, ƞ100 and ƞ110) had to be used. Based 

on recommended scalarization methods in (24), the objective function was defined like this: 

𝐽 = 𝑚𝑎𝑥(90 −  ƞ90, 91 −  ƞ100, 88 − ƞ110 ) +  
ƞ90 + ƞ100 + ƞ110

1000
 

90, 91 and 88 were “thresholds”, i.e., efficiencies required to be exceeded (at the respective 

flow rates). By considering the maximum of the “missing efficiencies”, the optimization is 

basically forced to try to meet all the required thresholds. Unlike a scalarization by summing 

the objectives, where gain in one objective can outweigh the loss in another. The small 

additive member in the scalarized function is usually recommended (24) to help guiding the 

optimization in a case when an objective is improved, but the maximum remains the same. 

 

 
Figure 32: The objectives and scalarized function during the optimization. The grey dashed line shows the hypervolume 

of the evaluated designs in the objective space. 
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The optimization was performed at an HPC cluster. The limiting factor for the parallelization 

was the number of available ANSYS CFX licences, there were 25 of them. Thus, to obtain 

the results as fast as possible, Stochastic RBF was set to generate 8 new samples in every 

iteration. For three working points per sample, this means 24 CFD simulations are needed 

per optimization iteration – each utilizing 16 CPU cores. Most likely, increasing the number 

of newly created samples per iteration can possibly lower the optimization speed and 

“efficiency” (when measured in terms of objective function evaluations). This is on the other 

hand offset by the parallelization (if the resources are available) and improved exploration. 

There were 8 Stochastic RBF iterations in total. Out of the 64 samples, 11 failed and 53 was 

successfully generated and evaluated. The optimization was stopped once there were no 

significant improvements over successive iterations. The optimization record (efficiency 

objectives and the single scalarized objective) can be seen in Figure 32. 

 
Figure 33: Parallel coordinates plot of CFD results – 1st and 2nd sampling. The y-axis is for the efficiency. 

The optimization successfully exceeded the efficiency thresholds in all three flow rates. For 

the final comparison, the design found by the Stochastic RBF was then modified for the 

manufacturing (by sheet metal bending technology). For all considered blade adjustments 

(3, 0, 3, 6, 9 and 12 degrees), the meshes were created, and full sets of CFD simulations were 

performed. The comparison of Q-Efficiency characteristics between the pump with original 

diffuser and optimized diffuser with the bent blades can be seen in Figure 34. 

 
Figure 34: Comparison of original (left) and optimized (right) design. 
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The improvements in efficiency vary from 1% up to ca. 7%. The new optimized design has 

a bit narrower operation area with high efficiency. For a pump with adjustable blades this is 

not a problem, though, as the setting can be adjusted to the optimal configuration for any 

scenario. Thus, in practical application, the performance improvements are in a range from 

4 to 7%. For large pump with MWs of power, this is a significant improvement. 

6.5. Conclusion 

The automated optimization was successfully used as part of the hydraulic design process. 

The parametric model was created, connected to a Matlab optimization code and run in an 

HPC environment. The scalarization approach worked reasonably well, and the efficiency 

was improved for the whole relevant working range. The final sets of numerical simulations 

for various impeller blades adjustments (and with the bent diffuser blades) confirmed the 

simplifications of the CFD model (not considering the bent blades, only one impeller blades 

adjustment) as justified. Overall, we can conclude such approach to diffuser optimisation 

works reasonably well, if the parametric model is well created and necessary computational 

resources are available. 

 
Figure 35: Efficiency comparison with the old design. 

Another approach that was successfully tested in this case was the parallelization of the 

optimization. The ability to create multiple new samples in every iteration is a significant 

advantage of the modern optimization methods. As long as the computational resources are 

available, this can significantly increase the amount of information obtained per time unit. 

Without extensive numerical testing (which would be unacceptably expensive for CFD-

based objective function) it is not possible to support this claim for the hydraulic shapes 

optimization. But for fast test functions, such behaviour was observed in (22). In “serial” 

optimization, every consecutive sample is generated with the knowledge of objective 

functions of the previously generated samples. When generated multiple samples, these 

samples lack the information from the actual information. Thus, diminishing returns of the 

parallelization can be expected.  
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7. Case 4 - multi-objective optimization of a stator 
Objectives: Improving efficiency for the sub-optimal flow rates, maintaining it at the 

higher flow rates. 

Solution: ANSYS Workbench parametric model driven through text script files, transient 

simulation (full geometry). Three objectives (efficiencies at 80%, 100% and 120% of 

QOPT). Stochastic RBF optimization method + scalarization, K-RVEA. 

Results: Efficiency increased from 2% up to 5% in the working range. 

7.1. Introduction 

Another case for stator optimization was a diagonal pump with axial diffuser, of a specific 

speed ns = 200. The hydraulic design was challenging, as the operation site constraints forced 

relatively short total length of the pump. This caused some troubles, as the short meridional 

length did not really fit into the recommended ranges for this specific speed. The customer 

also required high efficiency in a wide working range. The resulting design, created by an 

experienced hydraulic expert, met these demands. However, the CFD simulations suggested 

a sharp decrease of performance at ca. 80 % of the design point QOPT. It was thus decided to 

perform an optimization of the design. As the stator optimization is easier than optimizing 

impeller, it was the preferred option. 

 
Figure 36: CFD model of the pump. 

Based on the previous experience, the optimization was focused on the diffuser. Efficiencies 

at three different points were chosen as the objectives. These points followed the experience 

from the previous cases. What was different was the fact that the baseline design was not 

outdated, but a newly created one, with good performance (given the operation site 

limitations) and difficult to improve. Also, the influence of the sealing rings is considered 

and discussed here, which is not common, as the sealing rings are difficult to include in the 

CFD model. First, the already tested Stochastic RBF method and scalarized objective 

function were used. Next, a new, modern method, called K-RVEA, was used. It is a SAO, 

Kriging-based multi-objective method, that effectively uses available information from both 

parametric and objective spaces. This optimization case was an opportunity for testing the 

method, and to compare its performance to Stochastic RBF. Designs found by both methods 

were extensively evaluated and compared to each other and to the baseline design. In the 

conclusion, the results and the advantages of the multi objective approach are discussed. The 

influence of the sealing rings on the optimization is also considered. 
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7.2. Parametric model and automation 

The parametric model was created in a similar way as in the previous diffuser optimization 

case. I.e., an ANSYS Workbench project, driven by Python-controlled scripts. As can be 

seen in Figure 37, the sealing rings were also included in the model. The flow from the 

sealing rings can enter the passage in a direction perpendicular to the “main” flow, and 

influence the rotor-stator interaction. The sealing rings are rarely included in CFD 

simulations, as the geometry and mesh creation are challenging. Instead, the effect on pump 

performance is estimated empirically. 

 
Figure 37: Meridional section of the CFD model. Rotating parts (impeller and shaft) are displayed in blue, the sealing 

rings are in red. 

For the parametric model, the leakage part had to be omitted. Creating a parametric model 

of the leakage and its automation would be very difficult, as TurboGrid cannot be used for 

this. It was also assumed that this would not affect the comparison of different design 

significantly. For these reasons, the CFD model for optimization was simplified in this way. 

The simplified CFD model with diffuser detail can be seen in Figure 38, and the comparison 

of results between the models with and without sealing rings can be seen in Figure 39. 

 
Figure 38: CFD model used for optimization. The diffuser is in blue, impeller-diffuser interface is in red. 
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The CFD model was set as fully-transient, with 154 time-steps per impeller rotations. This 

equals to 2.34 degrees of an impeller rotation during each time-step. The pump has 995 rpm; 

thus, the time-step value was ∆t = 60 / (154·995) = 0.00039157s. Boundary conditions (BC) 

were set as Mass Flow Rate at the outlet and Total Pressure at the inlet. As the turbulence 

model, SST k-Ω was used. The mesh size was ca. 1.5 mil. of nodes for most of the designs. 

With simulations running for 10 up to 20 impeller rotations, the solution time was usually 

16 to 20 hours to termination on a 16-cores HPC node. 

The parametric geometry model has been an evolved version of the previously used models, 

slightly enhanced by adding a few more parameters. In total, there were 22 geometric 

parameters, listed in Table 9. Some of these parameters are displayed in Figure 40. The blade 

angle beta was defined at six points for both hub and shroud. To prevent “waving” of the 

angle curves, the inner values were set “relatively”, in the same way as in the previous case: 

val95% = val100% - diff 

val50% = val00% + coeff50% * (val95% - val00%) * 20/19 

val25% = val00% + coeff25% * (val50% - val00%) 

val75% = val50% + coeff75% * (val95% - val50%) * 10/9 

By setting the angle-shaping parameters like this, monotonicity of the curve is usually met, 

because if one of the points (that is used by the other points – for example val50%) changes, 

then angle values at the following points (25 %, 75 %) change, too, despite the fact that the 

parameters val25% and val75% remain the same. If the parameters were set independently, then 

for high val25% and low val75% it might happen that the beta value at 25 % would actually be 

higher than at 75 % - resulting in an undesired shape of the curve. The biggest concern with 

this approach, on the other hand, is that it can make the relations between the parameters 

more complex. I.e., for example, the angle value at 25 % does not only depend on val25%, 

but is also influenced by val50%. This can make the optimization problem more complex. 
Table 9: Parameter description 

Parameter Description 

1 Beta angle - hub - leading edge 

2 Beta angle - hub - relative value at 25% 

3 Beta angle - hub - relative value at 50% 

4 Beta angle - hub - relative value at 75% 

5 Beta angle - hub - value at 95 % - difference to trailing edge value 

6 Beta angle - hub – trailing edge 

7 Outlet diameter – hub 

8 Meridional length – hub 

9 Leading edge position - hub - distance from the inlet 

10 Trailing edge position - hub - distance to the outlet 

11 Sweep angle (defined at the shroud) 

12 Beta angle - shroud - leading edge 

13 Beta angle - shroud - relative value at 25% 

14 Beta angle - shroud - relative value at 50% 

15 Beta angle - shroud - relative value at 75% 

16 Beta angle - shroud - value at 95 % - difference to trailing edge value 

17 Beta angle - shroud – trailing edge 

18 Meridional length – shroud 

19 Leading edge position - shroud - distance from the inlet 

20 Trailing edge position - shroud - distance to the outlet 

21 Outflow angle – hub 

22 Outflow angle - shroud - relative to the hub angle 
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Figure 39: CFD results – with and without rings. The red dots show the three flow rates at which the efficiency was 

optimized. 

7.3. Testing the parametric model 

After deciding the parameter ranges, the 2 * (N + 1) = 46 samples were generated, and the 

geometry and mesh creation was tested. Out of these, 37 was created successfully, and 9 

failed. To further enhance the parametric model, two different settings of hexa-mesh 

generation were compared – a premade topology and so-called ATM method, both available 

in TurboGrid. The premade topology approach is faster and ensures consistent mesh 

topology through the optimization. The mesh quality, however, can suffer when the 

geometry differs too much from the geometry used for the template creation. ATM method, 

on the other hand, uses an automatic selection from library of topologies and then optimizes 

the position of the vertices. The mesh is generally bigger, but more likely to maintain high 

quality for a wide range of geometries. 

 
Figure 40: Parameters driving the diffuser shape. 
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Table 10: Comparison of pre-made topology and ATM meshing in ANSYS TurboGrid 

Sample Min angle  Mean angle  Mesh size (number of nodes) 

1 16.5 40.6  49.7 55.5  8.26E+04 1.19E+05 

2 28.3 47.9  65.1 74.9  8.29E+04 1.07E+05 

3 24.6 31.6  43.6 50.2  7.29E+04 1.15E+05 

4 20.7 21.9  48.3 57.4  8.26E+04 1.17E+05 

7 27.0 32.4  51.4 58.0  7.26E+04 1.15E+05 

9 20.2 23.0  48.0 60.5  7.51E+04 1.11E+05 

10 22.3 45.4  57.9 62.4  8.26E+04 1.08E+05 

11 22.0 44.3  58.6 64.5  8.04E+04 1.12E+05 

12 21.7 46.2  57.5 64.2  7.26E+04 1.12E+05 

14 9.7 9.9  40.1 44.6  7.69E+04 1.12E+05 

15 27.6 34.0  59.8 65.0  7.26E+04 1.13E+05 

16 27.1 43.7  60.5 67.0  8.04E+04 1.11E+05 

17 27.4 39.7  62.7 72.4  7.51E+04 1.11E+05 

20 23.6 39.3  65.0 71.6  7.29E+04 1.19E+05 

21 19.4 28.3  60.0 69.3  8.01E+04 1.17E+05 

22 26.0 44.3  60.7 74.1  7.54E+04 1.10E+05 

23 17.5 37.0  66.9 76.0  7.29E+04 1.17E+05 

24 31.7 46.3  61.3 70.9  8.26E+04 1.11E+05 

25 28.1 32.5  53.2 61.9  8.01E+04 1.09E+05 

26 32.7 48.5  61.1 66.1  7.54E+04 1.13E+05 

27 27.6 38.1  51.1 57.8  8.29E+04 1.09E+05 

29 25.8 31.6  51.0 58.1  7.54E+04 1.12E+05 

30 26.5 37.8  50.2 56.6  8.04E+04 1.12E+05 

31 25.6 32.6  58.8 65.2  7.29E+04 1.14E+05 

32 24.8 32.1  50.5 56.2  8.29E+04 1.12E+05 

34 18.3 16.5  49.8 56.8  7.51E+04 1.18E+05 

35 31.1 41.9  62.8 68.1  8.29E+04 1.11E+05 

36 29.2 34.6  62.7 70.8  7.29E+04 1.08E+05 

37 28.6 36.5  50.5 55.3  7.29E+04 1.17E+05 

39 19.1 37.1  55.7 66.6  7.51E+04 1.13E+05 

40 26.1 36.0  62.1 65.5  8.04E+04 1.13E+05 

41 27.2 23.9  51.2 65.1  7.76E+04 1.08E+05 

42 22.9 27.8  49.5 58.9  7.51E+04 1.10E+05 

43 23.2 45.7  51.6 60.7  7.29E+04 1.17E+05 

44 29.3 33.0  66.8 74.3  8.26E+04 1.11E+05 

45 23.0 36.6  57.7 66.1  7.29E+04 1.12E+05 

46 27.6 32.3  47.3 51.1  7.29E+04 1.11E+05 

Mean 24.6 35.4  55.7 63.2  7.72E+04 1.13E+05 

difference +44.1%   +13.5%   +45.8% 

As can be seen in Table 10, the ATM method is indeed considerably better in some cases. 

However, it is at the expense of the mesh size. As the mesh size and simulation times are 

very important for optimization, the premade-topology approach was preferred in the end. 

Still, such decision needs to be considered carefully, as in some cases the inferior mesh 

quality might lead to a situation where the optimization avoids good designs, because the 

results are skewed by the poor mesh quality. 



49 

7.4. Optimization run 1 – Stochastic RBF 

Next, the testing was followed by the optimization. For the designs of the initial sampling 

(created by the “premade-topology” approach), the CFD simulations were run for the three 

selected flow rates (76 %, 100 % and 120 % of QOPT). Just as in the previous case, the three 

objectives were selected as reasonable compromise between computational costs and 

ensuring good performance (of the pump) in the whole working range. 76 % of QOPT was 

placed right below the problematic in-stability flow rate of the original design. After 

checking these initial results, the optimization was continued with a scalarized objective 

function defined like: 

𝐽 = 𝑚𝑎𝑥(84 − ƞ76, 90 −  ƞ100, 84 −  ƞ120 ) 

The threshold values 84, 90 and 84 (per cents of efficiency) for the respective flow rates 

were believed to be enough to improve the original design. During the course of the 

optimization, some modifications were made to the settings. First, some of the parameters 

seemed to converge to the boundary values – indicating the results could be further improved 

outside of the originally specified hypercube. As the Stochastic RBF method updates the 

surrogates every iteration, extending the bounds is relatively straightforward. Of course, it 

can be assumed that RBF approximation of the extended areas is sub-optimal. Still, for a 

lack of better information such option was preferred to running a new initial sampling and 

optimization. Overall, the parameter ranges were modified twice during the course of the 

optimization. The visualization can be seen in Figure 41. 

Further, analysing the available results, the values of the objective thresholds were modified, 

too. The objective function was then changed to: 

𝐽(2) = 𝑚𝑎𝑥(86 −  ƞ76, 90 −  ƞ100, 87.5 −  ƞ120 ) 

Also, as an additional information, a manually tuned sample was inserted to the list of 

computed samples. This can be seen in Figure 42. The sample was added when the hydraulic 

expert decided to analyse the results of the ongoing optimization, and saw a room for an 

improvement in the actual best design. This is an example of another major advantage of the 

Stochastic RBF method (and similar methods in general), when compared to the “classical” 

gradient-based methods. Here, all available information is always utilized, no matter what 

source is it obtained from. 

 
Figure 41: Parameter ranges normalized by the starting values. 
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Figure 42: Objectives during optimization. The dashed lines show the optimization thresholds. 

The optimization run took many iterations, before the set thresholds were exceeded. 

Especially improving the efficiency for the lower (sub-optimal) flow rates has proven to be 

difficult. The progress of all the objectives and of the scalarized objective function can be 

seen in Figure 42. In Figure 43, the hypervolume5 of the evaluated samples (including the 

initial sampling) in the objective space is displayed. It can be clearly observed that the 

Stochastic RBF optimization managed to further improve on the results of the initial 

sampling. As the final design, sample number 311 was selected. The sealing rings were 

added to this model, and efficiency was evaluated at 13 different flow rates in the working 

range. The simulations were performed for both the full (with the sealing rings) and 

simplified geometry. The comparison with the baseline design can be seen in Figure 44. 

There it is also possible to compare the difference caused by the sealing rings. When 

excluded from the model, the efficiency is mostly increased, as the side-flow from the sealing 

rings cause whirls and disturbs the flow characters. 

 
Figure 43: Hypervolume in the objective space. The values are normalized by the hypervolume of the initial sampling. 

 
5 The hypervolume, or hypervolume indicator, is commonly used for judging the ability of multiobjective 

optimization methods to capture a rich set of solutions (78). 
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The Stochastic RBF optimization took more iterations than expected, but the results were 

promising. In the end, the optimization managed to meet the objectives defined at the 

beginning. I.e., to exceed 84 % of efficiency in the problematic area (76 % of QOPT), and to 

maintain the high efficiency at QOPT and at the higher flow rates. The newly found design 

also dominated the old one, and the more thorough CFD simulations confirmed the results. 

 
Figure 44: Performance of the original and Stochastic RBF - optimized designs. The dots show optimization objectives. 

7.5. Optimization run 2 – K-RVEA 

As the next step, a more advanced, truly multiobjective optimization method was used. 

Kriging-assisted evolutionary multiobjective optimisation (K-RVEA) was introduced in 

(25). It is an optimization algorithm designed to solve computationally expensive 

multiobjective optimization problems. It is based on RVEA, introduced in (26). RVEA uses 

the reference vectors in the objective space in order to guide the population development. 

The goal of this is to promote exploration in the search, and to ensure an efficient search of 

the Pareto front. In K-RVEA, this approach is further enhanced by Kriging model for the 

surrogates, which allows to use the uncertainty information to assess the quality of the 

approximations and confidence intervals. The objective spaces are approximated (separately 

for each objective) and RVEA operates on these approximations. This helps to speed up the 

optimization process, and less computationally expensive evaluations of the objective 

functions are then required (27). 

For a better comparison, the optimization was started from the same initial sampling. In each 

iteration, there were three new samples. Thanks to its more sophisticated design, K-RVEA 

displayed superior performance to Stochastic RBF. As can be seen in Figure 47, the 

hypervolume of objective values (of the design found by the optimization) grows much faster 

for K-RVEA. This means that K-RVEA is able to guide the search much more efficiently, 

probably due to more sophisticated way of maintaining the balance between exploitation and 

exploration, as it uses the reference vectors, i.e., information from the objective space, to its 

advantage. Stochastic RBF, on the other hand, only works with the information about the 

samples in the parametric space. Thus, it needs more time to get from a local-minima trap. 

Of course, with the scalarization approach to the objective function it is also more dependent 

on the scalarization coefficients. 
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Figure 45: Nondominated solutions found by K-RVEA. The original design is in black, the selected one in red. 

For the pump case, the K-RVEA was set to generate three new samples every iteration. As 

with Stochastic RBF, this was to promote the utilization of the available parallel resources, 

and also to minimize the problems caused by the failed designs. It took 45 iterations, i.e., 

135 samples, before the optimization run was terminated. Out of these 135 samples, 99 were 

successfully generated and evaluated, the rest has failed. In some iterations it even happened 

that all three new samples failed, meaning that K-RVEA had to be restarted with a bit 

different setting a few times. The nondominated solutions found by K-RVEA are shown in 

Figure 45. Multiple designs displayed performance superior to the old one. In Figure 47, the 

comparison of hypervolumes from both Stochastic RBF and K-RVEA runs are shown. It can 

be seen that K-RVEA clearly outperform Stochastic RBF. For the same number of 

computationally expensive evaluations of the objective function, it is capable of obtaining 

more information, saving computational resources. 

 
Figure 46: Performance comparison between original and optimized designs. The dots show optimization objectives. 
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As the main goal of the optimization was to improve the efficiency of the pump in the sub-

optimal flow rates (and to at least maintain the efficiency in the remaining parts of the 

working range), the design with the highest efficiency at 76 % of QOPT was selected for 

further investigation. As far as the results from the simplified optimization CFD model are 

considered, it clearly dominates the old design. The efficiencies at the two higher flow rates, 

at QOPT and at 120 % of QOPT are excellent, too. 

 
Figure 47: Normalized hypervolume in the objective space - Stochastic RBF vs K-RVEA. 

For this design, the complete CFD model, including the sealing rings, was assembled. Next, 

the full set of CFD simulations for multiple flow rates was performed. The results can be 

seen in Figure 46. Unfortunately, the results did not meet expectations. The performance 

with the effect of the sealing rings is considerably worse than expected. While it is still higher 

than the performance of the original design, the efficiency drop in the sub-optimal flow rates 

is severe (when compared to the simplified CFD model). While the K-RVEA design 

dominated the solution found by Stochastic RBF, it does not hold true for the more complex 

model. The peak efficiency at QOPT is still higher, but overall, the Stochastic RBF design is 

preferable. The probable explanation is that that the “side-flow”, caused by the leakage at 

the impeller inflow and outflow, can disturb the flow in the passage and change the angle, at 

which the fluid is entering the blades. To further test the performance of the optimization 

methods, another two larger samplings (with sizes comparable to Stochastic RBF and K-

RVEA runs) of the parametric space was created. For one set it was 181 samples - the number 

of created samples in the K-RVEA run (including the initial sampling). For the larger one, 

it was 472 samples. Of these, 140 and 390 was successfully created and evaluated on the 

HPC cluster. The intention was to test whether running the optimization is more efficient 

than a simple random sampling. The results can be seen in Figure 48. The sampling of the 

size 172 did not even surpassed the hypervolume of the original sampling of size 46. This is 

a good example of problems faced when dealing with simulation-based, computationally 

expensive objective functions. For the heuristic optimization methods, there is always an 

element of randomness, especially when combined with numerical simulations. Of course, 

it is not possible to make conclusion from one such comparison. The results are in a good 

agreement with the expectations, though. Thanks to utilizing additional information, such as 

the response surface(s), the optimization can easily outperform the random approach. 
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7.6. Conclusion 

The pump performance was successfully improved by shape optimization of the diffuser. 

Two methods were employed for the task – the previously used (single-objective) Stochastic 

RBF, and more modern and sophisticated K-RVEA, designed for computationally expensive 

multi objective optimization. Due to technical limitations, the sealing ring were not 

considered during the optimization. With this optimization CFD model, K-RVEA displayed 

superior performance, clearly outperforming Stochastic RBF. Both methods also found an 

improvement over the original design. However, the original assumption, that the leakage 

can be ignored for the optimization, has been proven to be incorrect. Instead, the superior 

(by the simplified CFD model) design, found by K-RVEA, did not perform well once the 

leakage was added to the model. This clearly demonstrates one of the biggest concerns when 

dealing with the optimization of the hydraulic shapes. For the lack of better options, the 

amount if information that can be used for the objective function(s) is limited. I.e., it is not 

possible to perform a “complete” simulation, with a model that would provide all 

characteristics relevant for judging the pump performance. Instead, simplifications need to 

be considered, to make the automation and computational costs acceptable. This on the other 

hand pose a risk, that the optimized design displays an excellent performance according to 

the simplified objectives, and poor real-world performance. 

Due to this, optimization as a stand-alone tool for hydraulic design is still problematic. The 

better option is to utilize it to extend the scope of tools hydraulic experts have at their 

disposal. Overall, this optimization case was still successful, as the baseline design was 

improved, nonetheless. The K-RVEA method was tested, and displayed performance 

superior to Stochastic RBF. As it was designed as a truly multiobjective optimization 

method, it is also capable of finding designs with various trade-offs between the objectives. 

In our case this means finding pump designs with performance tuned more to lower flow 

rates and pumps performing better at higher flow rates. Even when doing so, K-RVEA was 

still able to surpass K-RVEA performance with a lower number of samples. 

 
Figure 48: Normalized hypervolume in the objective space - Stochastic RBF vs K-RVEA vs larger sampling. 
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8. Case 5 - multi-objective optimization of a complete 
pump 

Objectives: Improving the pump performance, meet prescribed head at QOPT. 

Solution: Python codes + premade templates (ANSYS BladeGen, TurboGrid and CFX), 

transient simulation (full geometry). Six objectives (efficiency at QOPT, efficiencies at lower 

flow rates, efficiency at higher flow rates, head at design point and estimation of cavitation 

performance). DYCORS optimization method + scalarization, K-RVEA. 

Results: Hydraulic design performed by “classical” methods was not surpassed. 

8.1. Introduction 

Based on the previous positive experience with diffuser optimization, it was decided to 

perform a more difficult optimization of a complete pump. While the basic principles of the 

optimization remain the same, the complexity of such task is considerably increased. First, 

the DesignModeler was already at the limit of its capabilities when dealing with a diffuser 

parametric model. There were problems with creating the geometry and managing the 

parameters, especially the more complex ones. ANSYS Workbench is also problematic for 

such tasks – slow, clumsy and prone to errors. The plan was to build a completely new 

framework based on ANSYS BladeGen and TurboGrid. BladeGen is a very versatile tool 

for Turbomachinery, fast, stable and completely script-based. It is thus very easy to generate 

complex hydraulic designs and to change the parameters. A considerable advantage is a fact 

that thanks to the scripts, it is possible to use BladeGen with parameters, that are already a 

result of executing a complex code. In Workbench this is not quite possible, as the 

parameters are basically limited to internal scripting capabilities. 

 
Figure 49: The optimized pump geometry, with a detail of the impeller and diffuser. 
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For example, when dealing with the beta angle curve, prescribing its shape with expression 

in Workbench is already a problematic task, prone to errors. But with BladeGen scripts, it is 

possible to create external codes, responsible for dealing with the optimization parameters, 

and to manage the geometry creation in more complex and efficient way – smoothing the 

curves, adding camber lines, managing the number of blades etc. A Python-based framework 

for managing the automation of whole workflow (geometry and mesh creation, CFD model 

assembly and computations and results evaluation) also give considerably more freedom in 

how the optimization problem can be handled.  

 
Figure 50: An example of graphical output of the parametric model 

An axial pump with diagonal diffuser (specific speed ns=680) was considered for this case. 

The 3D model of the pump can be seen in Figure 49. The goal was optimizing both rotor and 

stator, while considering hydraulic performance in multiple flow rates. The remaining parts 

of the pump remained fixed, to keep the complexity within reasonable limits. Impeller 

optimization increases the optimization complexity considerably, as – unlike in the stator 

optimization – the cavitation properties cannot be ignored anymore. As the multiphase head-

drop curves simulations (necessary for NPSH3 curve determination) are too computationally 

expensive, an estimation of cavitation performance, based on the so-called “Blade Loading” 

(static pressure distribution along the impeller blades) was used. Another challenge is 

ensuring the head value at the design point QOPT. This cannot be granted by the parametric 

model itself, as changing the shapes can have considerable impact on the head value. Still, 

the pump has to meet the value, and for optimization this poses a challenge. Penalization of 

the objective function(s), based on (not) meeting the head value, is not well suited for the 

SAO methods. The penalization changes the objective function, and as a result, it also 

changes the shape of the response surface. This has a negative effect on the quality of the 

predictions given by the response surface. Considering the head as an objective is a 

problematic solution, too, as will be shown later in this chapter. 

As part of the solution, a complex parametric model, with a parametric description of both 

impeller and diffuser, was created. Next, multiple objectives formulations and optimization 

approaches were used. First, an improved version of Stochastic RBF, named DYCORS, was 

used. Next, the K-RVEA method was utilized. In the end, the resulting designs are compared 

against each other and against a classically created hydraulic design (by human expert). In 

the conclusion, the results are discussed. 
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8.2. Parametric model and automation 

The parametric model was completely new and different from the previous cases, based on 

premade ANSYS templates and various Python codes. 

The model creation works as follows: 

1. Generate the meridional section and beta angles distribution (for both rotor and 

stator). 

2. Pass the data to a pre-made BladeGen bgi templates and create the inputs for 

TurboGrid. 

3. Generate the meshes calling TurboGrid in batch mode. 

4. Call CFX-Pre with a premade model and replace the rotor and stator meshes. 

Positioning the inflow and outflow meshes is also required in order to match the 

interfaces. Then create a solver input (.def) file. 

5. Call CFD-Post and create graphical / text outputs – meridional section, mesh 

appearance and quality criterions. 

The Python codes allow for a lot of variability. Overall, 71 parameters were used for 

generating the geometry. Due to various reasons, some of these were kept fixed, and 59 were 

“active” and used for the optimization. Some of these were passed directly to the BladeGen 

template, other serve as an input to subroutines. In the next section, a detailed description of 

all the parameters, follows: 

1. Impeller meridional shape: 

The goal when creating the hub curve was to have a control over the transition of the shape 

from inflow to outflow. The geometry was created from boundary angles, relative distance 

for keeping the angles and one interior point. Shroud curve was created with a semi-

adjustable variant of the pump in mind, i.e., as a part of a circle with the appropriate 

dimension. Three camber lines were used in total, the middle one (defined at 50 % of the 

Hub-to-Shroud distance) was created as a linear approximation between the hub and shroud. 

The parameters served as an input for a Python routine, which created the curves.  

- “Impeller_length” – meridional length of the impeller. As both of the rotor-stator 

interfaces (inflow-impeller and impeller-diffuser) are created as perpendicular to the 

axis of rotation, one value, same for hub and shroud, is sufficient. 

- “Impeller_Hub_R_OUT” – radius of the hub at the impeller outflow, i.e., at the 

interface between the impeller and the diffuser. 

- “Impeller_Hub_angle_IN” – hub meridional angle at the impeller inflow, defined 

to the axis of rotation (i.e., 0°… axial, 90°… radial direction). 

- “Impeller_Hub_hold_IN” – the distance (defined as a fraction of the hub curve 

length), for which the inflow angle (defined by Impeller_Hub_angle_IN) is held. If 

this parameter is greater than zero, the appropriate section of the curve is created as 

linear one, i.e., as a straight line defined by the angle and length. 

- “Impeller_Hub_angle_OUT” – hub meridional angle at the impeller outflow, 

defined by a difference from the following diffuser hub angle. 

- “Impeller_Hub_hold_OUT” – the distance (defined as fraction of the hub curve 

length), for which the outflow angle (defined by Impeller_Hub_angle_OUT) is held. 

If this parameter is greater than zero, the appropriate section of the curve is created 

as linear one, i.e., as a straight line defined by the angle and length. 

- “Impeller_Hub_arc_offset” – additional parameter for driving the hub curve shape. 

First, the section between the linear inflow and outflow parts is created as a spline 

defined by two points and two angles. Next, a point is taken in the middle of the 

spline, and moved by the offset value in a direction perpendicular to the spline. 

Finally, a new spline is created from the two edge points and angles and from this 

middle offset point. 
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2. Impeller blades position and shape: 

- "Impeller_LE_relative_position_Hub" – leading edge relative position at the hub 

(defined as a fraction of the hub curve). 

- "Impeller_LE_relative_position_Shroud" - leading edge relative position at the 

shroud (defined as a fraction of the shroud curve). 

- "Impeller_LE_arc_offset" – “curvature” of the leading edge, defined by the arc 

distance from the straight line in the middle of the curve between hub and shroud. 

- "Impeller_TE_relative_position_Hub" - trailing edge relative position at the hub 

(defined as a fraction of the hub curve). 

- "Impeller_TE_relative_position_Shroud" - trailing edge relative position at the 

shroud (defined as a fraction of the shroud curve). 

- "Impeller_TE_arc_offset" - “curvature” of the trailing edge, defined by the arc 

distance from the straight line in the middle of the curve between hub and shroud. 

- "Impeller_HubLE_EllipseRatio" – aspect ratio of the ellipse driving the shape of 

the leading edge at the hub. 

- "Impeller_ShrLE_EllipseRatio" - aspect ratio of the ellipse driving the shape of the 

leading edge at the shroud. 

- "Impeller_HubTE_EllipseRatio" - aspect ratio of the ellipse driving the shape of 

the trailing edge at the hub. 

- "Impeller_ShrTE_EllipseRatio" – aspect ratio of the ellipse driving the shape of 

the trailing edge at the shroud. 

 
Figure 51: Visualisation of selected parameters (meridional shapes). 

The shape of the impeller blades in described by the angle, defined at three different camber 

lines – hub, shroud, and in the middle. Each of these three curves is defined by end point, 

constant segments and a segment defined by four points and derivatives. The goal was to 

maintain a smooth transition between leading and trailing edges, and to have control over 

the character of the change. Some examples are given in Figure 53. The values at 25 % and 

50 % of the curve length are important for the pressure generation, i.e., related to the value 

of head. The beta angle curve is generated from the parameters by a separate Python code, 

and inserted to the BladeGen script. 

- "Impeller_BetaHubLE" – beta angle of the impeller blades, defined for the hub 

curve at the leading edge. 

- "Impeller_BetaHubTE" - beta angle of the impeller blades, defined for the hub 

curve at the trailing edge. 

- "Impeller_BetaHubLE_derivative" – coefficient of derivative of the hub beta angle 

curve at the leading edge. Its value can be between 0 and 1, When creating the 

appropriate segment of the curve, first a spline is fit to the four already known points. 
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Next, the value of derivative at the end points is multiplied by the appropriate 

coefficients, and a new spline is created. 

- "Impeller_BetaHubTE_derivative" - coefficient of derivative of the hub beta angle 

curve at the trailing edge. 

- "Impeller_holdBetaHubLE" – length of the straight segment at leading edge, where 

the angle value is held constant. Its value is considered as relative to the length of the 

whole curve. 

- "Impeller_holdBetaHubTE" - length of the straight segment at trailing edge, where 

the angle value is held constant 

- "Impeller_diffBetaHub25" – increase of beta angle at 25 % (of curve length) 

relative to the value at leading edge. 

- "Impeller_diffBetaHub50" – a value of beta angle “added” to the curve at 50 % of 

the curve length. When using a negative value, this control point helps creating the 

desired “saddle” shape of the curve 

- "Impeller_BetaMidLE" - beta angle of the impeller blades, defined for the middle 

curve at the leading edge. 

- "Impeller_BetaMidLE_derivative" - coefficient of derivative of the middle beta 

angle curve at the leading edge. 

- "Impeller_BetaMidTE" - beta angle of the impeller blades, defined for the middle 

curve at the trailing edge. 

- "Impeller_BetaMidTE_derivative" - coefficient of derivative of the middle beta 

angle curve at the trailing edge. 

- "Impeller_holdBetaMidLE" - length of the straight segment at leading edge, where 

the angle value is held constant. Its value is considered as relative to the length of the 

whole curve. 

- "Impeller_holdBetaMidTE" - length of the straight segment at trailing edge, where 

the angle value is held constant. 

- "Impeller_diffBetaMid25" - increase of beta angle at 25 % (of curve length) relative 

to the value at leading edge. 

- "Impeller_diffBetaMid50" - a value of beta angle “added” to the curve at 50 % of 

the curve length. 

- "Impeller_BetaShroudLE" - beta angle of the impeller blades, defined for the 

shroud curve at the leading edge. 

- "Impeller_BetaShroudLE_derivative" - coefficient of derivative of the shroud beta 

angle curve at the leading edge. 

- "Impeller_BetaShroudTE" - beta angle of the impeller blades, defined for the 

shroud curve at the trailing edge. 

- "Impeller_BetaShroudTE_derivative" - beta angle of the impeller blades, defined 

for the shroud curve at the trailing edge. 

- "Impeller_holdBetaShroudLE" - length of the straight segment at leading edge, 

where the angle value is held constant. Its value is considered as relative to the length 

of the whole curve. 

- "Impeller_holdBetaShroudTE" - length of the straight segment at trailing edge, 

where the angle value is held constant. 

- "Impeller_diffBetaShroud25" - increase of beta angle at 25 % (of curve length) 

relative to the value at leading edge. 

- "Impeller_diffBetaShroud50" - a value of beta angle “added” to the curve at 50 % 

of the curve length. 

- "Impeller_SweepMid_relative" – Relative value of the sweep-angle for the 

midline, used for a linear interpolation (0 for hub, 1 for shroud). 
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- "Impeller_SweepShroud" – The so-called sweep angle defined for the blade at the 

shroud. I.e., the circumferential angle between the blade leading edge position at the 

hub and at the shroud. 

 
Figure 52: Impeller and diffuser blades for various settings of the parameters. The parametrized part of the geometry is 

displayed in blue. 

- "Diffuser_length" – Meridional length of the diffuser, i.e., a distance between 

Impeller – Diffuser and Diffuser – Outflow interfaces. 

- "Diffuser_LE_relative_position_Hub" - leading edge relative position at the hub 

(defined as a fraction of the hub curve). 

- "Diffuser_LE_relative_position_Shroud" - leading edge relative position at the 

shroud (defined as a fraction of the shroud curve). 

- "Diffuser_LE_arc_offset" - “curvature” of the leading edge, defined by the arc 

distance from the straight line in the middle of the curve between hub and shroud. 

- "Diffuser_TE_relative_position_Hub" - trailing edge relative position at the hub 

(defined as a fraction of the hub curve). 

- "Diffuser_TE_relative_position_Shroud" - trailing edge relative position at the 

shroud (defined as a fraction of the shroud curve). 

- "Diffuser_TE_arc_offset" – “curvature” of the trailing edge, defined by the arc 

distance from the straight line in the middle of the curve between hub and shroud. 

- "Diffuser_HubLE_EllipseRatio" - aspect ratio of the ellipse driving the shape of 

the leading edge at the hub. 

- "Diffuser_ShrLE_EllipseRatio" - aspect ratio of the ellipse driving the shape of the 

leading edge at the shroud. 

- "Diffuser_HubTE_EllipseRatio" - aspect ratio of the ellipse driving the shape of 

the trailing edge at the hub. 

- "Diffuser_ShrTE_EllipseRatio" - aspect ratio of the ellipse driving the shape of the 

trailing edge at the shroud. 

- "Diffuser_BetaHubLE" - beta angle of the diffuser blades, defined for the hub curve 

at the leading edge. 

- "Diffuser_BetaHubLE_derivative" - coefficient of derivative of the hub beta angle 

curve at the leading edge. 

- "Diffuser_BetaHubTE" - beta angle of the diffuser blades, defined for the hub curve 

at the trailing edge. 

- "Diffuser_BetaHubTE_derivative" - coefficient of derivative of the hub beta angle 

curve at the trailing edge. 

- "Diffuser_holdBetaHubLE" - length of the straight segment at leading edge, where 

the angle value is held constant. 

- "Diffuser_holdBetaHubTE" - length of the straight segment at trailing edge, where 

the angle value is held constant. 

- "Diffuser_diffBetaHub25" - increase of beta angle at 25 % (of curve length) relative 

to the value at leading edge. 
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- "Diffuser_diffBetaHub50" - a value of beta angle “added” to the curve at 50 % of 

the curve length. 

- "Diffuser_BetaShroudLE" - beta angle of the diffuser blades, defined for the shroud 

curve at the leading edge. 

- "Diffuser_BetaShroudLE_derivative" - coefficient of derivative of the shroud beta 

angle curve at the leading edge. 

- "Diffuser_BetaShroudTE" - beta angle of the diffuser blades, defined for the shroud 

curve at the trailing edge. 

- "Diffuser_BetaShroudTE_derivative" - beta angle of the impeller blades, defined 

for the shroud curve at the trailing edge. 

- "Diffuser_holdBetaShroudLE" - length of the straight segment at leading edge, 

where the angle value is held constant. 

- "Diffuser_holdBetaShroudTE" - length of the straight segment at trailing edge, 

where the angle value is held constant. 

- "Diffuser_diffBetaShroud25" - increase of beta angle at 25 % (of curve length) 

relative to the value at leading edge. 

- "Diffuser_diffBetaShroud50" - a value of beta angle “added” to the curve at 50 % 

of the curve length. 

- "Diffuser_SweepShroud" – Sweep angle of the blade, defined at the shroud for the 

leading edge. 

 
Figure 53: Visualisation of blade angle curves for different parameter settings (left) and sweep angle definition (right). 

Stator hub and shroud meridional shape is defined as a straight line connecting two points. 

The outlet shroud diameter is fixed, to respect the outflow pipe diameter. 

Beta angle distribution is generated from following parameters: 

• Starting and ending angles. Optimal values of these angles are known from the 

hydraulic theory. They are decided from the velocity triangles. 

• Distances of “holding” the starting and ending angles (“zero” length, i.e., no segment 

with constant angle, is also possible). 

• Spline connecting the starting and ending segments. It is prescribed by values and 

derivatives at the edges, and values at 25% and 50% of the length. This helps 

obtaining the desired “saddle” shape of the curve. 

The angles are generated at three streamlines (hub, middle and shroud) for the impeller 

blades and at two streamlines (hub and shroud) for the diffuser blades. 

Other parameters were for the impeller blade “sweep” (middle and shroud) and meridional 

positions of leading and trailing edges of the blades. 
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An example of a comprehensive visualization of a generated geometry, created 

automatically by the framework, is in Figure 50. It displays slice of the CFD model, 

meridional sections, blade views and beta angles (for both rotor and stator), mesh 

information and normalized (in the objective space hypercube) parameter values – in 

comparison with a reference design. Such visualization serves for a quick inspection of the 

parametric model. 
Table 11´Parameter ranges. Grey denotes parameters with value fixed during the optimization. 

Name min max 

Impeller_length 90 130 

Impeller_Hub_R_OUT 75 90 

Impeller_Hub_angle_IN 35 40 

Impeller_Hub_hold_IN 0 25 

Impeller_Hub_angle_OUT -5 5 

Impeller_Hub_hold_OUT 0 25 

Impeller_Hub_arc_offset -5 5 

Impeller_LE_relative_position_Hub 0.05 0.15 

Impeller_LE_relative_position_Shroud 0.25 0.35 

Impeller_LE_arc_offset -5 5 

Impeller_TE_relative_position_Hub 0.85 0.95 

Impeller_TE_relative_position_Shroud 0.7 0.8 

Impeller_TE_arc_offset -5 5 

Impeller_HubLE_EllipseRatio 1 10 

Impeller_ShrLE_EllipseRatio 1 10 

Impeller_HubTE_EllipseRatio 1 3 

Impeller_ShrTE_EllipseRatio 1 3 

Impeller_BetaHubLE 35 45 

Impeller_BetaHubLE_derivative 0 1 

Impeller_BetaHubTE 55 65 

Impeller_BetaHubTE_derivative 0 1 

Impeller_holdBetaHubLE 0 

Impeller_holdBetaHubTE 0 

Impeller_diffBetaHub25 5 10 

Impeller_diffBetaHub50 -4 0 

Impeller_BetaMidLE 20 30 

Impeller_BetaMidLE_derivative 0 1 

Impeller_BetaMidTE 30 40 

Impeller_BetaMidTE_derivative 0 1 

Impeller_holdBetaMidLE 0 

Impeller_holdBetaMidTE 0 

Impeller_diffBetaMid25 -1 3 

Impeller_diffBetaMid50 -4 0 

Impeller_BetaShroudLE 10 16 

Impeller_BetaShroudLE_derivative 0 1 

Impeller_BetaShroudTE 20 26 

Impeller_BetaShroudTE_derivative 0 1 
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Impeller_holdBetaShroudLE 0 

Impeller_holdBetaShroudTE 0 

Impeller_diffBetaShroud25 -1 3 

Impeller_diffBetaShroud50 -4 0 

Impeller_SweepMid_relative 0.2 0.8 

Impeller_SweepShroud 0 16 

Diffuser_length 100 200 

Diffuser_LE_relative_position_Hub 0.02 0.1 

Diffuser_LE_relative_position_Shroud 0.02 0.1 

Diffuser_LE_arc_offset -5 5 

Diffuser_TE_relative_position_Hub 0.9 0.98 

Diffuser_TE_relative_position_Shroud 0.9 0.98 

Diffuser_TE_arc_offset -5 5 

Diffuser_HubLE_EllipseRatio 1 10 

Diffuser_ShrLE_EllipseRatio 1 10 

Diffuser_HubTE_EllipseRatio 1 

Diffuser_ShrTE_EllipseRatio 1 

Diffuser_BetaHubLE 127 137 

Diffuser_BetaHubLE_derivative 0 1 

Diffuser_BetaHubTE 85 95 

Diffuser_BetaHubTE_derivative 0 1 

Diffuser_holdBetaHubLE 0 

Diffuser_holdBetaHubTE 0 

Diffuser_diffBetaHub25 -15 -5 

Diffuser_diffBetaHub50 -2 4 

Diffuser_BetaShroudLE 122 132 

Diffuser_BetaShroudLE_derivative 0 1 

Diffuser_BetaShroudTE 85 95 

Diffuser_BetaShroudTE_derivative 0 1 

Diffuser_holdBetaShroudLE 0 

Diffuser_holdBetaShroudTE 0 

Diffuser_diffBetaShroud25 -15 -5 

Diffuser_diffBetaShroud50 -2 4 

Diffuser_SweepShroud -5 5 

In Table 11, all the 71 parameters used for creating the geometry are listed, including their 

minimal and maximal values. As was mentioned in the previous text, only some of these 

parameters are passed directly to the BladeGen script. Instead, most of them serve as an input 

for separate Python routines, responsible for creating the BladeGen input data. There are 

routines for impeller meridional curves, diffuser meridional curves and blade angle beta 

curve. Another routine ensures the necessary displacement of the fixed hydraulic parts 

(inflow and outflow), so that their position in the assembled solver input file matches the 

position of the created impeller and diffuser. The Python codes also give a lot of flexibility 

for managing the parameters. The geometry is created from all the available 71 parameters, 

but some of them are simply marked as “inactive”. When the script finds an inactive 

parameter, it simply uses a pre-set default value, instead of considering it among the 

optimized parameters. 
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Figure 54: Examples of generated designs, including a slice through the computational mesh, for three different 

parameters settings. The parametrized parts of the pump are in blue. 

8.3. Initial sampling and objectives 

The “baseline” hydraulic design, manually created by an experienced hydraulic expert, was 

used for setting the parametric model. First, the selection of active parameters was set (after 

a discussion with the hydraulic expert) according to this design. 

 
Figure 55: Optimization results. Comparison of BL at 110 % of QOPT. 

Then, lower and upper bounds were decided as reasonable offsets to the values used for the 

baseline design. For the start, the initial sampling was generated. Its size was decided by the 

2 * (N + 1) formula, same as in the previous cases. For 59 active parameters this means 120 

samples. Out of these 120 samples, 3 failed for various geometry reasons, and another 2 had 
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a very poor mesh quality. In total there were 115 samples left for the expensive CFD 

evaluation. Every sample was evaluated in five pre-set flow rates – 60, 70, 80, 100 and 120 

% of QOPT. The intention was to perform a more thorough analysis than in the diffuser’s 

case, so five flow rates instead of three were considered. The simulations were run on an 

HPC cluster. To capture the BL transient behaviour, it was necessary to analyse the data for 

every single timestep of the run. For this mesh sizes, the trn file, containing the intermediate 

results, has ca. 1 GB per timestep. A typical run requires approximately 2000 timesteps, thus 

almost 2 TB od data had to be processed for each design and for each flow rate. To avoid 

excessive data transfers, the results were processed on-the-fly, with only csv files with values 

being transferred. 

 
Figure 56: Blade loading plot example. 

An example of the Bl data can be seen in Figure 56. The LE to TE direction is displayed 

from left to right, red colour is for the suction side and blue for pressure side. The pressure 

data were processed at 19 layers (0.05, 0.10, … of Hub-to-Shroud distance) and averaged to 

a single curve, with weights 0.05, 0.10, … This reflects the fact that the flow character at the 

shroud is more important for the overall performance, as the velocity increases with the 

increasing distance to the axis of rotation. Another technical problem was transferring the 

large number of files, related to the BL values. In CFD-Post, values for each of these 19 

layers can only be extracted into a separate csv file. When considering 19 files for both rotor 

and stator, and for every design, flow rates and time steps, hundreds of thousands of files 

had to be transferred every two hours – putting a pressure on the network connection. To 

solve this problem, the csv files had to be packed into a single archive prior to data transfer. 

This is just an example of problems faced when solving a real-world, computationally 

expensive, simulation-driven optimization problem – something, that is often not considered 

in theory. 

For practical reasons, the CFD runs were split into a sequence of shorter 2-hours runs, 

continued “until ending criterion” (“convergence” or maximum number of timesteps). At 

the end of each 2-hours run, the BL data (for both rotor and stator and every timestep) were 

extracted to csv, packed (to prevent unnecessary load on the file servers) and sent to the 

central storage. Once the CFD simulations for the initial sampling was finished, the results 

were analysed. There were multiple objectives to consider and evaluated, to decide the 

formulation of objectives later: 
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1. The peak efficiency, respective the efficiency at the design point. (The actual 

optimum can occur at a different flow rate.) 

2. The overall efficiency at the working range. 

3. The NPSH3 (cavitational) properties in the working range. 

4. Meeting the desired head at the design point. 

 
Figure 57: Efficiency curve approximated from five points (flow rates). The initial sampling is in black, DYCORS in blue 

and the baseline design in green. The lines are bolder for design that are within the tolerance for the design head. 

Evaluating the efficiencies and head is trivial. The cavitation properties, however, are more 

challenging, as the correlation between NPSH3 and BL properties is not completely known. 

Based on hydraulic experts’ opinions and (2), three main measurable qualities of the BL 

shape were considered: 

- The percentage of the curve where the pressure drops below the water vapour pressure 

(3169 Pa). In our case the pump was designed to operate at water level, i.e., at the 

atmospheric pressure. Thus, the threshold was set to approximately -1e5 Pa. The 

pressure drop occurs at the leading edge, and the designs with a good NPSH3 typically 

have this peek very narrow. The problem with this criterion is that once the cavitation 

develops, the BL changes. Thus, this metric only gives a hint about the cavitational 

behaviour up to a point where the cavitation starts to develop. 

- A “linearity” of the curve at the main passage, i.e., between the leading edge and trailing 

edge. The total pressure difference between TE and LE is basically given (by the head), 

but the distribution of the change between these two boundary points should optimally 

be as uniform as possible. To measure this quality by a single numerical value, the 

Pearson correlation coefficient was used. First, the inner part of the blade is identified 

in the BL data. Next, a linear fit to this part is created using Least squares method. Then 

the correlation between the selected inner part and the linear curve is measured by the 

Pearson correlation coefficient. 

- The “transient” stability of the BL curves. This one is supposed to be related to the 

stability of other hydraulic characteristics (efficiency, head), which is desirable in 

general. It was evaluated as Pearson correlation coefficient between BL curves for each 

subsequent pair of timesteps. For N timesteps, the resulting output was a curve 
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containing 𝑁 − 1 values. This was evaluated as part of the testing, but it is already 

correlated with the other available characteristics. 

For all available data from the initial sampling, the efficiency and head values and BL 

properties were evaluated and examined. Understanding the data was important for the 

following part, to decide the importance of various characteristics and to guide the process 

of formulation of the objectives for optimization purposes: 

8.4. Optimization – DYCORS 

For the first optimization run and testing, the single-objective DYCORS (28) method was 

used. This method is an improvement over its predecessor, Stochastic RBF, and uses a more 

sophisticated approach for generating the Candidate points. Instead of variating all available 

parameters, it continually narrows the search as the optimization progresses. According to 

the numerical testing, it is more efficient for higher dimensions, especially if the number of 

parameters exceeds 30. Based on the results obtained from the initial sampling data, the 

considered objectives were: 

1. Efficiency at the design point - the goal was to ensure meeting efficiency objective 

at the design point QOPT.  

2. Efficiency curve – multiple flow rates were considered to ensure a good performance 

at the whole working range. The objective was based on a sum of their values. 

3. BL curve – the percentage of the curve where the pressure drops below the water 

vapour pressure and the linearity of the BL curve at the suction side of the blade. 

4. Difference from the head (at the design point) – this was to ensure that the optimized 

design meets the required value of head, instead of finding a geometry with great 

efficiency, but with an unacceptable value of head. 

For the scalarization, the approach recommended in (24) was used. For each objective Ji, its 

value is normalized as 

𝐽𝑖_𝑛𝑜𝑟𝑚 =  
𝐽𝑖 − 𝐽𝑖_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐽𝑖 − 𝐽𝑖_𝑢𝑡𝑜𝑝𝑖𝑎𝑛
 

 Where 𝐽𝑖_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a selected threshold value, and 𝐽𝑖_𝑢𝑡𝑜𝑝𝑖𝑎𝑛 an ideal (but unreachable) 

value. The scalarized objective function is then assembled as 

𝐽𝑡𝑜𝑡𝑎𝑙 = max
𝑖=1,…,𝑁

𝐽𝑖_𝑛𝑜𝑟𝑚 +  ∑
𝐽𝑖_𝑛𝑜𝑟𝑚

"𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟"
𝑖=1,…,𝑁

 

The “large number” can be selected arbitrarily, but such, that the sum is relatively small 

when compared to the max part of the formula. Thanks to this, the scalarized objective can 

capture changes to objectives that are lost in the max, and the desired properties of the 

scalarization are still preserved. This way it is possible to capture the Pareto front more 

efficiently. The choice of the threshold and utopian values influence the “weights” of the 

objectives. In our case, the results of the initial hydraulic design were used for the thresholds. 

The objective functions and the scalarized value are shown in Figure 58. This approach was 

used for testing purposes and for a lack of better options (with the DYCORS method).  

However, it can be assumed the scalarization of multiple heterogenous objectives is 

problematic for the response surface quality. 
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Figure 58: Objective functions and the scalarized objective function for DYCORS. 

The optimization run was initiated from the data obtained from the initial sampling. To 

improve the exploration, the method was set differently from previous case. Instead of 

generating multiple samples at once and running them in parallel, there were four 

independent “instances” of DYCORS optimization, operating on the same data, but with 

different objective functions. The first objective was for the maximal efficiency (at QOPT), 

the second one was working with the whole efficiency curve, the third one used the 

scalarized value of the two BL metrics, and for the last one, the scalarization of the first three 

objectives was available. Every DYCORS “instance” was set to generate a single new 

sample in each iteration, i.e., depending on the failed design, there were up to four new 

samples to evaluate per iteration. To guide all the optimizations for meeting the design head, 

it was necessary to penalize the first three objectives by the difference from the desired value. 

Such solution was expected to improve the optimization results. 

 
Figure 59: Optimization results. Comparison of hydraulic performance (efficiency and head) with the baseline design. 
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Once created, all the designs were computed on the HPC cluster. All the data were then 

copied to the local disc and processed with Python codes. This routine included efficiency 

and head curves processing from the monitor points data, BL data processing, objectives 

evaluation and various graphical outputs for better understanding of the data and 

optimization process. Examples of such graphical outputs can be seen in Figure 54, Figure 

56, Figure 57 and Figure 59. The intention was to compare the results to the baseline design, 

and to judge how the objectives are being improved by the DYCORS search. As the 

simulation times were relatively long (ca. 2 to 3 days) and the processing of the data very 

complex and time-consuming (hours for every DYCORS iteration), the whole process was 

not fully automated. 

In total, 12 iterations of this DYCORS optimization were executed. Hypervolume plot is 

shown in Figure 60. The hydraulic performance of the best design obtained from these 12 

iterations can be seen in Figure 59. The BL shape for selected flow rate (110 % of QOPT) is 

in Figure 55. In both figures there is a comparison with the baseline design. As can be seen, 

the performance figures of the baseline design were still not matched. 

 
Figure 60: Hypervolume of generated samples in objective space. 

After the 12 iteration, the hypervolume of the solutions was still growing. By analysing the 

results, though, it was decided that the optimization is still not sufficient to surpass the 

baseline design, and the run was terminated. The biggest concern was with the objectives 

related to the BL, and with the penalty function. None of the designs evaluated during the 

optimization run has managed to improve over the BL characteristics displayed by the 

baseline design. As for the performance characteristics, there was no improvement, either. 

Many of the samples were missing the head value, despite the penalization. The probable 

explanation is that the problem was too complex and too difficult for the DYCORS method 

to handle. The high number of parameters, together with a complicated scalarization 

approach, makes approximating the objective function landscape very difficult. 
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Figure 61: Hypervolume for both DYCORS and K-RVEA. For the comparison, the DYCORS samples were evaluated by 

the same objectives that were used for K-RVEA optimization. 

8.5. Optimization – K-RVEA 

For the second run, a multi-objective K-RVEA method, described in the previously studied 

case, was used. This time, six different objectives were considered: 

1. Efficiency at the design point 

2. Efficiency in the range of 60 to 100 % of the design point 

3. Efficiency in the range of 100 to 120 % of the design point. 

4. BL curve – percentage below the threshold 

5. BL curve at the suction 

6. Difference from the design head (at the design point) 

Instead of the scalarization, necessary for DYCORS, each objective was considered 

independently now. Also, overall efficiencies for the sub-optimal, and “above-optimal” flow 

rates were considered separately. The intention was to have better control on optimizing the 

design for lower or higher flow rates. The difference from the design head was added to the 

objectives, too. To start the K-RVEA optimization, data from the same initial sampling as in 

the DYCORS optimization were used. As in the diffuser case, the method was set to generate 

three new samples in each iteration. Overall, ca. 60 samples were created – the non-

dominated solutions can be seen in Figure 62, hypervolume of the objective space is shown 

in Figure 61. 

K-RVEA displayed better performance than DYCORS. However, the improvement was still 

too slow, and the optimization run was finally ended. Despite the fact that the hypervolume 

was still increasing. One source of problems was the “difference from design head” 

objective. Setting the objective in such way actually means that the optimization was trying 

to find solutions with good performance, but with head value different than what was 

required. This in the end means wasting computational resources, as many of the designs did 

not meet the “design head” condition. Another complication was caused by the BL 

objectives. As measuring the BL properties is only a “replacement” for the true NPSH3 

computation, these two qualities are not completely correlated. These problems are further 

discussed in the following section. 
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Figure 62: Efficiency curve approximated from five points (flow rates). The K-RVEA samples are in red, DYCORS in 

blue and the baseline design in green. The lines are bolder for design that are within the tolerance for the design head. 

8.6. Conclusion and future plans 

To perform the shape optimization of both impeller and diffuser, a new framework, based 

on ANSYS BladeGen and TurboGrid and Python codes was created. Then the framework 

was successfully tested and used to solve the optimization problem of an axial pump. When 

compared to the previously used ANSYS Workbench script, this new framework enabled a 

better control over the geometry creation and simulations. Its main advantage was avoiding 

the limitations of available tools offered by ANSYS. Thanks to this, a more complex 

approach to geometry creation and post-processing was possible. Multiple objectives were 

evaluated, including those based on analysing the Blade Loading over impeller blades. While 

not overly complicated in principle, driving multiple sequential simulations and processing 

of large amount of data on an HPC cluster is a complex task. Thus, the technical solutions 

related to these objectives were fairly challenging. 

The ultimate goal of such approach was to have a general framework, ready to be a part of 

the hydraulic design process. The intention was to formulate the hydraulic design in a more 

abstract way, and to be able to optimize a given design (delivered by a hydraulic expert) by 

a combination of an efficient multiobjective optimization and automated parametric model. 

The framework is ready for this task, as by driving the BladeGen and TurboGrid via scripts, 

the full range of hydraulic capabilities (included in these software tools) is available for the 

automation. As BladeGen is commonly used for the hydraulic design, continuation of the 

process is very straightforward. The values of the hydraulic parameters (blade angles, 

thickness, dimensions, …) delivered by the hydraulic experts can be easily used for defining 

the parametric space – simply by creating the lower and upper bounds by offsetting the 

baseline values. Unlike the shape-deformation approach, described in Chapter 3, such 

parameters-based hydraulic shapes creation can include much wider range of designs and 

still allows for a good mesh quality. 

When applied to the axial pump of specific speed 𝑛𝑠 = 680, the results were not better than 

the baseline design. The high number of parameters, combined with multiple objectives, 
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makes the optimization very complex and difficult. A proper formulation of the objectives 

has also proven to be very challenging. The problems are related to the way the objectives 

are handled in the multiobjective optimization. Basically, by searching for the Pareto front, 

the optimization tries to find all possible trade-offs between all the objectives. But for 

example, searching for trade-offs between efficiency and BL shape is problematic. The 

efficiency is a numerical value, but the BL shape is just an estimation of the real NPSH3 

characteristics.  I.e., the efficiency should be preferred by the optimization, which is difficult 

to obtain. 

The suggested solution for the future development is to modify the optimization in such way, 

that it is capable of processing different types of information. The classical codes work on a 

strictly numerical basis. I.e., all the inputs it can use are numbers. But the optimization 

methods are nowadays generally based on the principle of maximizing the information that 

is obtained by (computationally expensive) evaluation of the objectives. With currently used 

codes, it is of course possible to include the additional information in a form of a penalty 

function. Meeting the head value, visually smooth blade shapes, desired BL curves – 

pursuing all these goals can be in principle supported by a proper formulation of a penalty 

function, added to the efficiency objectives. However, such approach interferes with the 

surrogates. A penalty function distorts the shape of the response surface, and, as a 

consequence, influences the selection of new samples for evaluations. Optimization method 

like K-RVEA, on the other hand, allows incorporating such objectives in a form of 

preferences or classification. The response surfaces of efficiency objectives than keep the 

original shape, and the additional information become part of the process of selecting new 

samples for objective function(s) evaluation. 

 
Figure 63: CFD of the baseline design - streamlines at QOPT. 
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9. Conclusion 
In this thesis, experience with practical implementation of mathematical optimization for 

pump hydraulic design is summarized. Multiple real-world optimization cases were 

presented – ordered from lower to higher difficulty / complexity. The first presented case is 

not an actual optimization, but only uses iterative sampling in the parametric space. Next, 

the automated parametric model was created and connected with a suitable surrogate-based, 

single objective method. In the following cases, multiobjective optimization of pump stator 

was presented. Finally, in the last case, the optimization of the rotor and stator parts with 

respect to multiple objectives was presented. 

The main goal of the work was to approach the hydraulic design more as an abstract 

optimization problem, that can be solved by a combination of sophisticated optimization 

methods and raw computational power. In principle, such solution could benefit from the 

increasing available computational power, caused by the technical development. However, 

in its most general form (a parametric model allowing for any possible pump hydraulic 

shapes), resulting optimization problem is still too difficult to be solved by the means of 

mathematical optimization. In practice, the best option is to build the optimization on the 

basis of the “classical” hydraulic design. The design performed by a hydraulic expert can 

serve as a baseline design, and the optimization is performed over a limited parametric space, 

“in a vicinity” of the baseline design. Practically, this can be realized by defining a hypercube 

(parameter ranges are set by lower and upper bounds) such, that is contains the baseline 

design. Narrowing the searched parametric space then significantly alleviates the complexity 

of the optimization. 

The practical results have shown that for the smaller partial problems (of a shape 

optimization of some selected hydraulic parts, such as a diffuser), the optimization displayed 

great performance, and the performance of the baseline model was improved. For the more 

complex parametric model (impeller and diffuser), the results were not convincing. The high 

number of parameters, and difficult formulation of objectives, pose a big challenge for the 

selected optimization methods. Nonetheless, many practical aspects of the computationally 

expensive optimization have been tested in the presented cases, and the codes and techniques 

will be used for future development. Difficulties faced when optimizing pump hydraulic 

design can be like: 

- Pump geometry creation. 

- Mesh creation 

- Automation of the process 

- Computational demands of the numerical simulations 

- Objectives formulation and evaluation 

- High complexity of the optimization 

Different ways of creating the geometry have been tested. From relatively simple parametric 

models, limited by the capabilities of DesignModeler, to complex Python-driven BladeGen 

models. The Python allowed for much more versatile shaping of the geometry, and also 

made a better control over the geometry and mesh quality possible. Automated mesh 

creation is a difficult task. Fortunately, ANSYS TurboGrid uses an effective combination 

of premade mesh topologies and optimization of control points, and works with great results 

on a vast majority of designs. Thus, impeller or diffuser meshes could be easily generated 

ad hexahedral and with high quality. 

For the automation, batch mode of ANSYS program, driven by scripts, was used. Usually, 

a sample script was created, the parameters replaced by keywords, and used as a template 

for the Python routines. Overall, apart from complications caused by ANSYS limitations 

(lack of programming guide for Workbench etc.), the automation of geometry and mesh 

creation and CFX model assembly was relatively easy. 
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CFD simulations are computationally very expensive. To obtain at least a basic level of 

accuracy, computational meshes with millions of nodes are necessary for pump. Combined 

with high number of timesteps, on a single computer the transient simulation takes many 

hours or even days. For cavitational simulations it is even worse, as the sequence of 

simulations, necessary for obtaining a head-drop curve, can take even weeks. This severely 

limits the maximum number of objective evaluations. It is also necessary to use HPC 

resources and to use parallelization as much as possible, on both simulation and optimization 

level. Performing the automated optimization on an HPC cluster is considerably more 

complicated, as the individual tasks need to be first sent to a queue, and are not guaranteed 

to start at the same time. For optimal utilization of the resources, the long CFD simulations 

were split into a sequence of 2-hours runs. Another problem is frequent moving of the data 

between the temporary and central shared storages. 

Formulation of the objectives proved to be possibly the biggest challenge. In case of diffuser 

optimization, considering only efficiency is sufficient. Three points (flow rates) at the 

efficiency curve is believed to be a good compromise between the computational costs and 

control over the hydraulic characteristics. For the impeller, the situation is much more 

complicated. For example, the cavitational properties represented by the NPSH3 curve 

cannot be used for the optimization, as the evaluation of the curve takes too much time. A 

newly designed pump has also to meet a prescribed head value at the design point QOPT. 

Ensuring this during the optimization is not easy, as penalizing the objective functions (when 

the head value is not met) interferes with the surrogate models. Evaluation of the objectives 

was based on time data obtained from the simulations. In most case, the values averaged 

over last two rotations of the impeller were used. For the Blade Loading, a more extensive 

approach, based on processing a large amount of data, had to be used.  

General problem faced in hydraulic shapes optimization is that the optimization only works 

with partial information, and with added “noise” (caused by limited accuracy of the 

numerical simulations). Situation, where the objective value is not given, can also happen 

due to geometry or mesh failures. This is caused by the fact that within the computational 

budget, only limited complexity of the numerical models can be allowed. This means that 

some of the physical phenomena, relevant for the pump performance evaluation, cannot be 

given by an objective function based on the numerical simulations. With technical 

development of CPU performance, it can be expected that in the future more advanced 

simulations will be used for optimization – such as models containing acoustics or Fluid-

Structure interaction. Still, the most logical option for future development is an optimization 

routine such, that can effectively utilize all available information. Ideally in such way, that 

fast available information is used fast. For example, some combinations of the parameters 

lead to geometries with undesirable shape. Human expert can tell this by a visual control. 

But optimization, based purely on the computationally expensive evaluations, wastes hours 

of time to confirm information, that could have been obtained from (much faster) analysis 

of the geometry. In the same way it is possible to classify the Blade Loading results, 

efficiency curve shape, or meeting the head. I.e., it is possible to combine “hard” objectives 

(efficiency) with “soft” ones, based on classifications or user preferences. Framework 

developed in this work is a starting point for such future development. 

Overall, when used properly, the shape optimization based on numerical simulations can be 

a valuable addition to the tools available to hydraulic designers. Apart from the optimization 

itself, there are other benefits. Understanding multiple objectives and possible trade-offs can 

be invaluable. It is still not possible to replace a human expertise with raw computational. 

But, with growing power available for the numerical simulations, the optimization can give 

the designer more and more insight into the design process, and allows for faster and cheaper 

development of new products. 
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1. Introduction 
Mathematical optimization is an important part of mathematical theory. 

It can be applied to many theoretical and real-world problems. With the 

rapid development of numerical modelling in last decades, engineering 

optimization has become a hot topic. By connecting the tools of 

mathematical optimization and numerical simulations, it is possible to 

guide many design and technical problems, such as shape / topology 

optimization, or inverse problems. In modern society, virtually every 

product has been optimized with respect to some objectives. 

In this work, the goal is to present how the optimization can be used in 

pump industry. To succeed in the competition, every pump design needs 

to be carefully optimized. This is done on multiple levels – mechanical 

and material solutions, production technologies and costs and hydraulic 

shapes. The hydraulic design typically utilizes exact analytical formulas, 

combined with data and experience-based corrections. For this purpose, 

numerical modelling of fluid is commonly used. It is capable of 

describing the pump performance and operation with a high level of 

accuracy, and gives the designer a tool to fine-tune the pump and balance 

the trade-offs between various conflicting objectives. 

Here we focus on shape optimization as a part of the hydraulic design. 

The pump design uses input in the form of numerical geometry 

parameters (dimension, blade angles etc.) and numerical output such as 

performance characteristics (efficiency at a given flow-rate etc.). Thus, 

in principle it is possible to view the hydraulic design as an optimization 

task. When performed by a hydraulic expert, it is approached as a manual, 

semi-intuitive optimization. However, numerical simulations can be 

automated, and connected with an optimization code. This way, we can 

utilize the full potential of modern optimization methods, developed 

specifically to help aiding the design process. Still, there remain many 

challenges related to the practical incorporation of optimization into the 

hydraulic design process. This thesis deals mostly with the practical side 

of the pump design and optimization. On multiple selected examples, the 

goals and practical challenges are shown and explained. 
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2. Centrifugal Pumps - basic concepts 
Centrifugal pumps are machines that convert mechanical energy to a 

kinetic energy of the moving fluid. It typically comprises of a rotating 

impeller, driven by an engine through a shaft, a stator part and a casing. 

The impeller adds the kinetic energy to the fluid, and the stator helps to 

convert the kinetic energy into static pressure. They are utilized in many 

areas, such as water or petroleum pumping. Any pump can be described 

by its performance and operational characteristics. 

 
Figure 1: Centrifugal pump schematics (source: Wikipedia) 
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The most important characteristics related to the hydraulic performance 

of the pump are: 

1. flow rate Q - volume of fluid transported per time unit. The flow 

rate where the pump reaches peak efficiency is called optimum 

and denoted QOPT. 

2. Head H – difference of the total pressure between the outlet and 

the inlet 

3. efficiency ƞ - the ratio between energy transferred to the fluid 

kinetic energy and mechanical energy spent on the pump 

operation 

4. NPSH3, the so-called suction ability of the pump – it denotes the 

Net Positive Suction Head (i.e. the inflow pressure), below which 

the pump performance (measured by head) is degraded by 3 

percent. 

2.1. (Centrifugal) pumps classification and specific 
speed 

The size of centrifugal pumps can vary from a few watts up to hundreds 

of MWs. However, all these pumps can be classified by the so-called 

specific speed. 

𝑛𝑠 =  𝑛 ∙
√𝑄𝑂𝑃𝑇

(𝐻𝑂𝑃𝑇)0.75
 

Where n is the pump speed (in rpm) and HOPT is the head at QOPT. If we 

follow the so-called Affinity laws: 𝑄𝜆 =  𝜆3 ∙ 𝑄, 𝐻𝜆 =  𝜆2 ∙ 𝑄, we get:  

𝑛𝑠,𝜆 =  𝑛 ∙
√𝜆3 ∙ 𝑄𝑂𝑃𝑇

(𝜆2 ∙ 𝐻𝑂𝑃𝑇)0.75
= 𝑛𝑠 

I.e. the specific speed remains the same when scaling the pump. Pumps 

range from “low Q, high H” types (low specific speed – radial pumps) to 

“high Q, low H” specifications (high specific speed – axial pumps). 

Two pumps are called hydraulically similar, if both the hydraulic shapes 

and the fluid dynamics are similar. I.e. there exists a real coefficient λ > 

0 such that the hydraulic shape of the second pump is λ-scaled geometry 

of the first pump (including the surface roughness). 
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Of course, the conditions of hydraulic similarity are not met rigorously 

in real life. Obviously, gravity or speed of sound remain the same. But, 

for practical applications this can be safely ignored. This is useful for 

both so-called model testing (i.e. testing a scaled-down version of a large 

production pump) and also for the methods of hydraulic design. The 

hydraulic similarity plays an important role for the pump design, as any 

pump can be classified by the specific speed. Thus, a pump can be 

designed by its type, no matter the scale. 

 
Figure 2: Pump types by specific speed. Source: www.introtopumps.com/pump-terms/ns-

specific-speed/ 

2.2. Hydraulic design 

By hydraulic design we mean designing the hydraulic (wetted) shapes of 

the pump. No direct analytical method for optimal design is known. 

Instead, multiple “hybrid” (semi-analytical) design theories, each 

suitable or recommended for a certain interval of specific speeds, have 

been proven for the impeller design. “Hybrid” means that these methods 

combine exact analytical formulas with “engineering” approximations, 

based on experience and simplifications. The theory originates from 

Euler’s pump equation and velocity triangles (between the 

circumferential and relative velocity components). The good practice is 

to approach the impeller design process as a sequence of steps: 

1. Deciding the Main dimensions, i.e. the inflow and outflow 

dimensions. This is mostly dictated by the required performance 

parameters (flow rate and head). 
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2. Meridional shape of the impeller, i.e. the transition from inflow 

to outflow part. The goal is to distribute the fluid momentum 

change in the “optimal” way. 

3. Blades – number of blades, relative position in the passage and 

leading and trailing angles. The blades are shaped at multiple 

camber lines, in case of an impeller there are usually at least three 

– hub, midline and shroud. 

If the stator part contains blades (i.e. for example in a case of axial 

diffuser), the design methods are similar to the impeller. For different 

parts (volute, suction), different design methods exist. Generally, the 

designer tries to minimize the energy dissipation (= efficiency loss), 

caused by the whirls. I.e. from the geometrical perspective, the energy 

conversion needs to be as smooth as possible. 

All the design theories are very well elaborated and described in literature 

(1), with many experimentally verified examples. Thanks to these 

verifications, experiment-based corrections are also available. These 

corrections are useful, as the hydraulic theory does not consider the three-

dimensionality of the flow (and other physical phenomena, such as 

cavitation). As a result, for one particular flow-rate, it is typically 

possible to design a highly-efficient pump – very quickly and using solely 

analytical tools and experience. However, vast majority of pumps is not 

operated at a single point. Instead, a whole working range has to be 

considered. As in the practical applications the pumps speed (rpm) 

remains fixed (and the same obviously holds for the shape), the velocity 

triangles change with the flow rate. As a consequence, any pump 

inevitably displays sub-optimal performance when it is not working at its 

design point. This all means that pump design is a very complex process, 

that involves balancing multiple conflicting objectives and utilize many 

“layers” of information – from fast analytical methods to demanding and 

costly numerical simulations and experimental measurements. Here are 

some examples what needs to be considered by the designer: 

- Peak efficiency (at the design point) 

- Efficiency in the whole working range 

- Head at the design point 

- NPSH3 
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- Technical limits (minimal thickness of the blades, 

manufacturability, dimension limits specified by customer, …) 

And the tools available for estimating / evaluating the design 

performance: 

- Analytical methods based on “one-dimensional” flow properties 

- Engineering approximations based on previously measured 

designs 

- Numerical simulations 

- Experimental measurements, typically performed on model 

(scaled down) pump. 

The analytical methods, together with the corrections, are very fast and 

efficient. But since fluid dynamics is highly non-linear phenomenon, 

they have limited accuracy for non-optimal flow rates, or in cases where 

the assumptions of the methods cannot be quite met for some reasons. 

(For example, limits on pump dimensions that do not allow for the “best 

practice” main dimensions, etc.) 

The numerical simulations and experimental measurements are both 

used as a tool of assessing the performance. These methods can give 

valuable information to guide the designer, but they are also much 

slower and more expensive than the analytical methods. The workflow 

is typically like: 

1. Hydraulic design – analytical methods. 

2. Evaluate hydraulic performance by numerical simulations 

3. If changes needed then back to 2. 

4. Evaluate the NPSH3 by more complex, multiphase simulations 

5. If changes needed then back to 2. 

6. Construction 

7. Mechanical simulations. 

8. If changes needed then back to 2 or 6 (depending on what needs 

to be improved). 

9. (Model) pump production 

10. Experimental measurements 

A visualisation of the workflow can be seen in Figure 3. The later the 

stage of development, the more expensive any changes become. 
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Figure 3: Scheme of hydraulic design. 
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2.3. Hydraulic design and optimization 

As was described in the previous text, the “good practice” approach to 

hydraulic design is, in principle, a multi-objective (and “multi-level”) 

optimization. The pump geometry is always described by (a finite 

number) N parameters, and we also have a finite number M of objectives. 

Thus, the problem of hydraulic design can be viewed as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽: 𝛺  𝑅𝑁 → 𝑅𝑀 

where Ω is a (bounded) set of N parameters describing the pump 

geometry, and J 

is an evaluation of pump performance. In the “classical”, i.e. expert 

approach to the hydraulic design, this optimization is not performed in a 

strictly mathematical sense. Instead, it is combined with human 

“impressions”, where many of the objectives are not evaluated solely by 

numbers. It is of course possible to perform a “true” optimization, but it 

brings considerable challenges: 

1. It is necessary to fully automate the evaluation of the objectives. 

I.e. geometry creation, mesh generation, computational model 

assembly, running simulations and the post-processing. While 

this is no problem in theory, in real applications it is not an easy 

task. 

2. In many cases, exact formulation of the objectives can be 

challenging. 

3. Numerical simulations are computationally very demanding. 

Having a high-accuracy, multi-physics model is not a viable 

option for an optimization run. Instead, compromises and 

simplification are necessary. This, on the other hand, further 

(together with 2) limits the set of objectives that can be actually 

used for the optimization. 

In theory, it is possible to make a general parametric model, that can 

cover all possible pump shapes. And to optimize it just for any physically 

possible pump performance. This is ensured by the fact that both the 

parameters and objectives are bounded, and their numbers are finite. 

However, such optimization would be extremely demanding due to large 

number of both parameters and objectives, combined with multimodality. 
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When practical limitations are considered, the optimization becomes not 

a replacement, but instead an addition for the design process performed 

by human experts. I.e. it is usually incorporated into the steps 2 and 3 (as 

mentioned in the workflow description in the previous chapter) of 

hydraulic design process. This means that the initial design is still 

performed by a hydraulic expert, and the consecutive optimization uses 

this initial design as a starting point. This can save a lot of 

(computational) resources. And, since the fidelity of the numerical 

modelling is limited in practice, it limits the chance that the optimization 

arrives at an impractical design due to not having complete information 

about some aspects of the pump performance. 

In the next chapter, the most common optimization approaches currently 

used in pump hydraulic design are described. 

3. Current approach to hydraulic shapes 
optimization 

There are multiple ways of approaching the hydraulic design as an 

optimization problem. Or, more generally, how the approach the so-

called Computationally-expensive optimization problems. First 

classification would be by the type of the optimization routine: 

1. Gradient-based methods. These methods can converge (to a 

local minimum) very fast, even for large number of parameters. 

However, these methods suffer from multiple drawbacks in 

practical application. First, in many commercial simulation 

packages, the derivatives (of the objective function) are not 

available (to the user). Second, these are local methods, and the 

objective functions in hydraulic design can be multi-modal. 

Another problem is, that the objective function evaluation can fail 

for various reasons, and such methods were not designed with 

such situation in mind. 

2. Global heuristic methods. such as genetic algorithms, DE (2), 

PSO (3), etc (4). These are global methods, typically very robust, 

capable of dealing with very difficult objective functions. They 

also require relatively big number of the (computationally 
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expensive) objective function evaluations. This makes their 

application for hydraulic design problematic, as the 

computational costs can be too prohibitive. 

3. Surrogate-assisted optimization. In this case, the objective 

function is replaced by an approximation, usually called a surro-

gate or response surface. The surrogate can help in guiding the 

search and speeding the optimization process. Of course, building 

and updating the surrogate cost computational resources, too. But 

in a case of computationally expensive objective functions the 

overhead is negligible. A survey of various methods performance 

is in (5). 

4. Case 1 - Pump stator 
Objectives: Pump efficiency and circumferential velocity at the outflow, 

at the optimal flow rate. 

Solution: ANSYS Workbench parametric model driven through text 

script files, Transient Blade Row model. Best design selected from 

Latin hypercube sampling of the parametric space in second iteration. 

Results: Efficiency increased from 3% up to 8% in the working range. 

4.1. Introduction 

The studied pump was a diagonal one, designed for specific speed ns = 

240, with adjustable blades of the impeller and a diagonal diffuser. The 

“adjustable blades” means the attack angle of the blades can be set 

within a range of values, and allows for operating the pump in wider 

range of flow rates. The hydraulic parameters were only mediocre, and 

as the CFD analysis revealed, this was mainly due to the diffuser. A 

well-designed diffuser can transfer most of the circumferential velocity 

(inevitably found at the outlet of the rotating impeller) to the desired 

forward movement. In our case, the residual circumferential part of the 

velocity was still significant, even at the optimal flow rate. As a result, 

the total (combined) velocity of the flow in the outlet parts was 

increased. Thus, the efficiency was lowered significantly due to the 
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hydraulic losses in the elbow. Because of this, the stator was deemed as 

the ideal starting point for pump optimization.  

 
Figure 4: Original pump (left) vs the new design (right) 

4.2. Parametric model and automation 

ANSYS Workbench was used for creation of the computational models. 

Parametric diffuser model in DesignModeler was connected to 

automated structured (hexahedral) mesh generation in TurboGrid. Next, 

the diffuser mesh was updated in a premade CFX model. The other 

parts (Inflow, Impeller and Outflow) remained fixed. These steps 

(updating the diffuser geometry, mesh and CFX model) were recorded 

as a Workbench script. Next, the numerical values of the considered 

parameters were replaced by keywords (par_1, par_2, …) and the script 
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file was used as a template. With Excel macros, a set of Workbench 

replay files could be easily created, based on a table containing a list of 

names and appropriate parameters. In total, 13 geometric parameters 

were considered. 

The design was based on the “standard” methods for hydraulic design, 

and the parameter ranges were determined by an offset from these 

initial values. Since the intention was to only consider the design point 

QOPT, it was possible to use the so-called TBR (Transient Blade Row) 

method (6), (7). In this method, only one passage of the impeller and 

diffuser was considered.  

 
Figure 5: Full (left) vs TBR (right) CFD model 

Timestep was chosen with respect to count of impeller and diffuser 

blades. One timestep represents 2.5° and has this value: 

(1) 𝛥𝑡 =
1

𝑖⋅𝑛⋅𝑝
=

1⋅60

18⋅294⋅8
= 0.00141723(𝑠) 

with p being the impeller blades count, i being the number of timesteps 

per passage and n (rpm) the rotor rotation speed (in rpm). 
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As a turbulence model, SST (Shear Stress Transport) model has been 

chosen. In general, SST is the recommended choice for modelling fluids 

in geometries containing rotating parts. 

 
Figure 6: Examples of the stator geometry for various parameters settings 

4.3. Optimization and results 

Using ANSYS DesignXplorer tool, an initial sampling for the hypercube 

was created. In the first step, only 11 parameters were considered. 

Parameters 8 and 12 remained fixed at value of 0.35. The sampling had 

151 items, of these 147 were created and computed successfully.  

 
Figure 7: CFD results (efficiency) for the 1st and 2nd sampling. The arrows show the selected 

(s the best) designs for each sampling. 
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There were 105 samples in total, and only 77 were successfully generated 

and computed. Once again, all the CFD simulations were run. The 

efficiency results can be seen in Figure 7. From the new samples, the best 

design was selected. It displayed both excellent efficiency and minimal 

residual circumferential velocity at QOPT. 

After minor modifications (mainly by rounding – i.e. setting the 

dimensions to sensible values), it was used as the final design. For this 

design, the full CFD model (all impeller and diffuser passages, and with 

the outflow elbow) was created, and complete performance curves were 

evaluated for three different settings (of attack angle) of the impeller 

blades – 0, 6 and 9 degrees. In total, 21 performance points (3 

adjustments, 7 flow rates) were computed. The results can be seen in 

Figure 8. 
Table 1: Comparison of parameter bounds – 1st vs 2nd sampling. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

1st 

sampling 

1 45 5 45 -20 -75 -60 0.35 -3 -70 -60 0.35 -3 

15 70 100 90 -5 -45 -30 0.35 12 -40 -30 0.35 12 

2nd 

sampling 

1 55 5 30 -15 -70 -65 0.25 -10 -70 -65 0.25 -10 

10 67 15 55 -5 -55 -50 0.5 3 -55 -50 0.5 3 

As can be seen, the optimized design clearly dominates the old one. The 

difference ranges from 3% up to 8%. For a high-performance pump, this 

is a very significant improvement. The real product can vary in size a bit, 

as it can be scaled down or up in accordance with the laws of hydraulic 

similarity. The maximum power can exceed 5 MW in its largest form, 

and for such power consumption, every single per cent of efficiency 

matters when the pump is operated for a long period of time. 

The head has improved by similar margin. This is only natural, as the 

impeller remained the same during the optimization. I.e. the pressure 

generated by the impeller is the same, only the energy loss in the diffuser 

was lowered. In Figure 9, a comparison of backflow areas between the 

old and optimized design can be seen. There is an evident and significant 

difference, and the lower dissipated energy translated into higher overall 

efficiency of the pump. 
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Figure 8: Efficiency for different blade adjustments. The original (black) vs optimized (red) 

design. 

4.4. Summary and conclusion 

The automated parametric model was successfully assembled and used 

as a part of CFD-driven hydraulic design of a pump diffuser. The 

optimization only worked with a simplified TBR model at QOPT, but the 

outcome was very good. The newly designed and optimized diffuser 

display performance superior to the original one – by 3 % up to 8 % in 

majority of the working range. It should be noted, however, that 

randomness can play an important role in the process, as the parametric 

space and initial sampling influence the results. For the first scenario, 

only one sample helped guiding the search and further narrowing the 

parametric space to the promising area. 

It is also necessary to mention that considering a single flow rate for the 

optimization can be risky, as high efficiency at one point (flow rate) does 

not guarantee a good performance in the whole working range. This 

means that it is possible obtain an one-point-optimized design with a 

great maximal efficiency, and still have a poor overall performance in the 

working range. 
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Figure 9: Backflow areas (in yellow) for the original (left) and optimized (right) design. 

5. Case 2 - Pump suction 
Objectives: Pressure loss and uniformity of velocity profile at the output 

of the suction part (at QOPT). 

Solution: ANSYS Workbench parametric model driven through text 

script files, steady-state and transient simulations, Stochastic RBF 

optimization method 

Results: Efficiency increased by 0.5%, NPSH3 by 20%. 

5.1. Introduction 

In this case, a radial pump of specific speed ns = 135 was considered. In 

order to improve the suction ability (NPSH3 characteristic) of the pump 

for a specific application, an inducer1 was developed. CFD analyses of 

the pump performance revealed, however, a problem at the inflow part 

of the pump. For optimal performance, the flow that comes into the rotor 

(i.e. the inducer in this case) should be perpendicular to the entrance and 

uniform. In this case, however, the CFD analyses revealed significant 

variations in the inflow profile. 

 
1 An inducer is added in front of the impeller and shares the same shaft. Its blades are 

designed to generate static pressure and help feeding the impeller to help to delay the 

cavitation occurring there. In exchange, the efficiency of the pump is lowered by a 

few per cents. 
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Figure 10: The pump CFD model and the detail of the suction 

Based on the data, it was decided that optimizing the suction shape is a 

good opportunity for improving the pump performance. The expectation 

was that such optimization can be based on steady-state simulations of 

the suction only, significantly limiting the computational expense and 

efforts invested into the automation of the numerical modelling. The plan 

was to further develop the automation and connect it with a suitable 

optimization method. 

5.2. Parametric model and automation 

The parametric creation of the suction was done using ANSYS 

Workbench and DesignModeler. The approach to the hydraulic design 

and choice of parameters were mostly based on recommendations in (1). 

In total, there were 18 geometry parameters. Visualisation of selected 

parameters can be seen in Figure 11. The computational mesh was 

created as unstructured, i.e. tetra + prism for the boundary layers. The 

numerical modelling was fully automated, using ANSYS Workbench, 

Linux shell and Python scripts and codes. First, the update process in 

Workbench (DesignModeler, Meshing and CFX/Pre updates) was 

recorded as a script. By replacing the file name and parameter values by 

keywords, a source template for the automation was then created. 
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Figure 11: Visualization of selected parameters 

The workflow of the automation is as follows: 

1. The Python routine accepts csv file with parameter values as an 

input. 

2. The Workbench template is loaded, keywords are replaced by the 

actual values, and a new script is saved – named after the input 

csv file. 

3. The Workbench script is executed in command line. As a result, 

a CFX input file is created. 

4. For pre-set flow rates (and possibly other solver settings defined 

in a premade ccl files), the CFX input file is solved in batch mode. 

5. For each result file, monitored variables (efficiency, head, …) are 

extracted and stored in a csv file (with appropriate name). 

6. The csv files are processed by a Python script, and efficiencies 

(for each result file of a particular design) values are saved into a 

csv file. This csv file then acts as an input for an optimization 

routine. 

The step 4 (the solver) is typically performed on an HPC cluster via a 

PBS scheduler. This brings many technical challenges to the automation 

procedure. Apart from difficulties with data transfers between the 

“global” shared storage and local computation nodes, the simulation can 

fail for various reasons (licensing problems etc.). To maximize the 

utilization of the available resources and to make the simulation “flow” 
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more manageable, the CFX model creation and assembly is separated 

from the solver run. The scripts work like this: 

1. For all wbjn files (the Workbench scripts) present on the shared 

storage, the corresponding jobs are created and send to the queue. 

2. Once the “model creation and assembly” job starts, it copies the 

necessary data to the local storage and tries to execute Workbench 

in the batch mode. As the Workbench run can “freeze” frequently 

(for various technical reasons), special measures needed to be 

taken. As the time spent for the generation of the solver file is 

known quite well (typically between five and ten minutes), the 

Workbench process is limited to 30 minutes (and killed after that, 

if necessary). At the end of the script run, a log file is created. 

Now three situations can occur: 

a. Neither the solver input file nor the log file is created. This 

means Workbench “froze” and got terminated by the timer. In 

this case, the job is sent to the queue again. 

b. Only the log file is created. This means the Workbench script 

was executed successfully, but the geometry or mesh 

generation failed. In this case, the design is written to a log file 

on the shared storage as “failed”. 

c. The solver input file is created. In this case for each pre-set 

solver setting (uploaded at the shared storage), the solver jobs 

are set to the queue (in parallel). 

3. The “solver” job copies the necessary data to the local storage and 

runs the CFX solver with the appropriate model and settings in 

batch mode. As no problems with “freezing” were observed 

during the CFX runs, no measures similar to running Workbench 

needed to be deployed. One the simulation end (typically in ca. 

10 minutes), the results are copied back to the shared storage and 

an “objectives evaluation” script is run. 

4. The evaluation script is created in Python, and process the data 

extracted from the result file. The outcome is an objective 

function value stored in a csv file. If all the results for the design 

(i.e. all result files corresponding to the defined list of solver 

settings) are available, the scalarized objective is generated and 
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written to a file. The design is also flagged as “finished” in 

another log file on the shared storage. 

With this approach, it is possible to maintain sufficient control over 

multiple simulations running in parallel, without a central “driving” 

script. Such script would be technically very difficult to create, as both 

the user’s control over the scheduler and knowledge about running and 

finished jobs are very limited. Instead, any optimization code can just 

check for newly added “finished” jobs in regular intervals. 

  
Figure 12: Geometry error (left) and mesh error (right). 

5.3. Testing the parametric model 

For the start, a relatively large sampling of size 100 was created and 

used for testing of the parametric geometry. Of these 100 samples, 43 

failed due to geometry or mesh errors. This is a common problem faced 

when creating the parametric model, as ensuring a consistent geometry 

generation for all possible combinations of the parameters is often a 

challenging task. 

After improving the geometry creation, 88 samples (out of the 100) 

were successfully generated. This rate was decided to be acceptable. 

Next, a smaller sampling, intended for CFD evaluation and testing the 

parametric space, was created. For the 18 parameters, 38 samples (the 

default size for 18 parameters in the Stochastic RBF method codes) 

were created and used as an input for the batch processing. 
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Table 2: Parameter ranges 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

200 130 30 380 220 5 5 2 2 30 5 10 190 250 5 10 90 250 

450 200 50 510 300 50 50 25 25 100 25 45 230 280 35 50 220 280 

With this setting, 31 models were successfully generated and 7 failed 

because of geometry errors. These 31 samples were evaluated by CFD 

at QOPT. For the optimization, only the suction, together with prolonged 

inflow and outflow (for better numerical stability), were considered. As 

there are no moving parts in the suction, the simulation was set as 

“steady-state”, significantly faster than the transient option. SST k-ɷ 

model was used as the turbulence model. The original intention was to 

use both total pressure loss (denoted as H) and outlet velocity 

uniformity (denoted as v) as optimization objectives. 

𝐻 =
𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐼𝑛𝑙𝑒𝑡 − 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑂𝑢𝑡𝑙𝑒𝑡

𝜌𝑊𝑎𝑡𝑒𝑟 ∙ 𝑔
 

𝑣 = ∫ |𝑣 −  𝑣𝑎𝑣𝑔|
 

𝑂𝑢𝑡𝑙𝑒𝑡

 

Unfortunately, upon more thorough testing the results proved to be 

significantly mesh and model dependent. Thus, only the pressure loss at 

the design flow rate was selected as the cost function. 

5.4. The optimization method 

When selecting an optimization method for a CFD-driven optimization, 

one has to consider multiple criteria: 

1. The numerical simulations are computationally very expensive, 

this severely limits the maximum number of the objective 

function evaluations. This means that a method that can improve 

the objective(s) fast is preferable to a method that can do better, 

but only after very high number of (objective function) 

evaluations.  

2. It needs to be a derivative-free method. In special cases and with 

in-house or open source (such as OpenFOAM) codes, it is 

possible to use the so-called adjoint method (8). But generally, 

especially for commercial codes such as ANSYS CFX, no 
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derivatives are available. Numerical differentiation is not a 

viable option here, due to accuracy limits of numerical methods 

and high number of parameters. 

3. The objective functions are supposed to be multimodal, i.e. 

global optimization methods are preferable. 

4. Failed simulations / crashes can occur for various reasons. I.e. 

for some input values, the objective function returns no output. 

The non-existent values can be “faked”, but this can distort the 

optimum search. Thus, having a method that can handle such 

situations easily is preferable. 

Point 1 is a problem for classical population-based methods, points 2, 3 

and 4 practically rule gradient based methods (steepest descent, 

Newton's method, etc.) out. Currently, the so-called Surrogate-Assisted 

Optimization (SAO) is the preferred option for computationally 

expensive engineering optimization. In SAO, the approximation of the 

objective function (surrogate) is used instead of the objective function 

itself. In every iteration, the optimization is performed on this 

(computationally cheap) surrogate. Once the new point for evaluation is 

decided, it goes through the computationally expensive simulations and 

the surrogate is updated. SAO has been studied extensively in literature, 

such as (5), (9) or (10).  

For the suction optimization, the so-called Stochastic Radial Basis 

Function (Stochastic RBF) method, described in (11), (12), was selected 

for this task. There were two main reasons for the choice: 

1. According to the testing done by the authors, it is very 

competitive when maximum number of evaluations is a concern. 

2. Matlab codes were freely available 

[https://ccse.lbl.gov/people/julianem/index.html], and easy to 

understand and modify. 

It is a single-objective, SAO method, working as follows: 

1. Generate initial sampling and evaluate the samples. 

2. Use already computed samples and fit the response surface. 

3. Generate large number (ca. ten thousand) random testing points 

to cover the response surface uniformly. 
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4. From these testing points, select N new candidate points for 

evaluation. The selection is a compromise between exploiting 

local minima of the response surface and exploring areas further 

away from the already sampled points. 

5. Evaluate the candidate points. 

6. Repeat (2) until ending criteria are met. 

The number N can be selected arbitrarily; the authors recommend either 

4 or 8 for optimal performance. To deal with the technical difficulties in 

real-world application for the shape optimization (namely failed 

samples and heterogenous HPC cluster environment with a scheduler), 

the original method was modified to work with something that could be 

called “pipeline”. 

1. Generate initial sampling and evaluate the samples. 

2. Use already computed samples and fit the response surface. 

3. Generate large number (ca. ten thousand) random testing points 

to cover the response surface uniformly. 

4. Select N new candidate points for evaluation and add them to 

the queue. 

5. Wait until at least one computation finishes. Then wait for a few 

more minutes and read all available results. (Due to the nature of 

the scheduler system, the results often come within very short 

interval.) 

6. Select k new points, where k = number of samples computed + 

number of samples failed. 

7. Add the newly selected samples to queue. 

8. Repeat (5’) until ending criteria are met. 

This way, the failed samples are simply ignored, and the “slower” ones 

are just used once they finish. Because of this, there are no bottlenecks 

caused by waiting for “stuck” computations. As the method always 

work with “all data available”, it is possible to insert new samples 

manually. It is thus for example possible to manually “tune” a selected 

design (an experienced hydraulic expert can often do this) and add it to 

the already evaluated data. 
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5.5. Optimization and results 

The optimization continued from the results of the initial sampling. The 

number of newly generated samples was set to N = 4. The optimization 

was ended manually once no significant improvement in the objective 

have been observed for multiple iterations. The results can be seen in 

Figure 13. In this case, the optimization has shown hardly an 

improvement over the random sampling. As the results were not 

convincing, though, another, more complex parametric model was 

created. 

 
Figure 13: Objective function progress. The bold line connects the best values reached. 

5.6. Parametric model – suction and inducer 

After analysing the outcome of the optimization, the inducer was added 

to the parametric model. As the next step, a different way of evaluating 

the velocity uniformity was chosen. The inducer was added to the model, 

and the simulation was set as transient. 

The inducer domain rotated around the z axis, with rotor-stator interface 

to the static suction domain. These changes were supposed to help in 

capturing the velocity objective v with higher accuracy. Inflow and 

outflow parts were again modified to improve the numerical stability.  
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Figure 14: Parametric CFD model with the inducer and a detail of the Hub-to-Shroud line. 

Using ANSYS CFD-Post built-in functions, the Hub-to-Shroud line was 

defined and meridional velocity 𝑣𝑚 was exported in multiple points. The 

objective function was then defined as: 

𝐽 =  ∑
(𝑣𝑚

(𝑖)
−  �̅�𝑚)

2

�̅�𝑚

𝑁

𝑖=1

 

where �̅�𝑚 =  
1

𝑁
∙ ∑ 𝑣𝑚

(𝑖)𝑁
𝑖=1  is the average meridional velocity on the 

selected Hub-to-Shroud line. The number of points N was selected as 32. 

The boundary conditions and turbulence model remained the same as in 

the previous case. The transient simulation gives more accurate results, 

as the rotor / stator interaction and inertia forces are considered. 

However, it also brings a steep increase in computational time and adds 

complexity to the automation process and post-processing. In a steady 

state simulation, only one “converged” value is used for the objective 

function. In the transient case, average values (typically over two last 
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rotations of the impeller) need to be used.  Unlike head, the v values were 

not averaged over time interval. Instead, only the last value was 

considered. This was a limitation forced by technical reasons, as 

processing the data with CFD-Post every timestep would be 

computationally too taxing. 

With objective function defined this way, the intention was to ensure as 

uniform fluid entrance to the inducer as possible. Supposedly, this should 

lead to better pressure distribution along the blades and slower creation 

of the cavitational areas. 

5.7. Optimization and results – suction plus inducer 

The optimization was started from the initial sampling. The number of 

samples remained the same, i.e. 38. The geometries for all the initial 

sampling were generated and computed on an HPC cluster. Then, started 

from these results, the Stochastic RBF optimization was performed. The 

procedure was set to generate 4 new samples in each iteration (same as 

in previous case), and run in an HPC environment.  

 
Figure 15: Optimization progress. The dashed line connects the best values. 
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For the best design, the complete pump CFD model was assembled and 

full set of simulations was performed. The geometries and results 

comparison between the original and optimized designs can be seen in 

the following section. 

 
Figure 16: Suction designs and results of CFD analyses. The colours show differences in 

velocity profile at the suction outlet. 

Quite unexpectedly, this objective function yielded inferior results to the 

pressure drop version. Further analysis of the results has revealed that the 

suction shape has very little to no effect on the velocity profile in the 

middle and trailing parts of the inducer blades. Due to this, the shape 

optimization with respect to the meridional velocity uniformity has no 

significant effect once the cavitational areas start to develop. Lowering 

pressure loss in the suction, on the other hand, gives more NPSH reserve. 

5.8. Summary and conclusion 

The automated parametric model was successfully created, tested and 

connected with a selected optimization method. Two different 

approaches were tested. First, a simple model with the suction only and 

set as computationally (relatively) inexpensive steady-state simulations. 

Second, a more complex model with the rotating inducer included, and 

using the computationally demanding transient simulations. In the end, 

the simpler model worked out better. The results of the numerical 

simulations of a complete pump suggest the model with suction 

optimized for 𝐻𝑆𝑢𝑐𝑡𝑖𝑜𝑛 displays both the best efficiency and cavitational 

properties. The objective defined by velocity uniformity did not work 
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very well, possibly because of lower accuracy on the rotor-stator 

interface. Overall, results of this optimization were not convincing. 

 
Figure 17: Hydraulic and cavitational performance of the optimized designs. The results are 

related to the original suction design. 

6. Case 3 - multi-objective optimization of a 
stator 

Objectives: Pump efficiency at working range. 

Solution: ANSYS Workbench parametric model driven through text 

script files, transient simulation (full geometry). Three objectives 

(efficiencies at 90%, 100% and 110% of QOPT). Stochastic RBF 

optimization method + scalarization. 

Results: Efficiency increased from 2% up to 5% in the working range. 

6.1. Introduction 

The next case for stator optimization was a diagonal pump with 

adjustable blades, of specific speed ns = 360. It was an already existing, 

but outdated pump from SIGMA. When compared to the newer designs, 

the efficiency was not competitive. The numerical simulations identified 

the diffuser to be responsible for significant part of the efficiency loss. 
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The impeller efficiency was very high (over 90 %), but the 

circumferential component of the velocity remained very high through 

the diffuser. This increased the hydraulic losses in the outflow part, 

lowering the hydraulic performance of the pump. Based on previous 

experience with diffuser optimization, it was decided to do another 

diffuser optimization. Unlike in the first studied case, the plan was to 

perform an optimization in multiple flow rates – to ensure a good 

performance in the whole working range. 

 
Figure 18: 3D model of the pump with bent diffuser blades 



31 

Just as in the previous case, the plan was to produce a design that can be 

manufactured by the so-called metal sheets bending. I.e. relatively simple 

blades (with constant thickness, defined on two camber lines) and 

“straight” meridional profile. But this time the intention was to consider 

multiple flow rates and the Stochastic RBF method. It should be noted 

that in the ideal case, the actual bent shape should be considered for 

optimization. The bending in general has a small negative impact on the 

hydraulic performance, as sharp edges are created on the blade. For each 

blade shape, there are practical limits for the bending. As a result, it can 

happen that one shape of the blade is deformed more than another, 

resulting in bigger performance drop. However, for the optimization this 

needs to be ignored, as doing the optimization with respect to the bent 

shape would pose a major challenge. This is because the software tools 

used for the parametric model creation are not suitable for such option. 

I.e. both geometry creation and mesh generation cannot be automated in 

the bent shape. Thus, the optimization was based on the assumption that 

the resulting design will display performance good enough to have a 

reserve for the decrease caused by the bending. 

 
Figure 19: Examples of angle distribution for selected coefficient settings 
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Another empirically verified assumption was that only one selected 

impeller blades adjustment can be considered for the optimization. I.e. if 

the pump displays good performance for one setting, then it performs 

well for a range of adjustments. 

6.2. Parametric model and automation 

For geometry and mesh parametric creation, a WorkBench project was 

created. The process of setting the parameters, geometry and mesh 

creation, and consequent CFD model assembly was recorded as a 

template script. The objective function, used for the optimization, then 

simply replaces keywords in the template by the input parameters, calls 

WorkBench in batch mode, does the CFD simulations, extracts and 

evaluate the results and sends the objective value(s) back to the 

optimization routine. The geometry shape was driven by 18 parameters. 

The beta angles (at both hub and shroud) were defined at leading edge, 

trailing edge and three inner points (25%, 50% and 75% of the blade 

length). As it is often recommended to “hold” the angle towards the blade 

end, the value at 95 % was considered the same as at the trailing edge.  
Table 3: Parameter ranges 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1st 

sampling 

30 0.3 0.3 0.3  15 0.3 0.3 0.3  700 700 15 20 20 -10 25 25 

40 0.7 0.7 0.7  35 0.7 0.7 0.7  1300 1300 25 200 200 15 150 150 

2nd 

sampling 

31 0.3 0.25 0.25 80 17 0.5 0.4 0.5 80 1100 1100 15 20 20 -10 25 25 

37 0.5 0.45 0.4 90 23 0.7 0.6 0.7 90 1300 1300 25 200 200 15 100 100 

ANSYS DesignModeler was used for diffuser and outflow geometry 

creation. The structured impeller mesh was generated by TurboGrid, and 

ANSYS Meshing was used for elbow meshing. The mesh size was ca 1.5 

mil. Nodes, and solution time ca. 20 hours. With a WorkBench script, the 

CFD model is then updated and solver input file created. The solver is 

run for each desired setting, defined in a ccl file. Once the run finishes, 

the results are extracted, processed and sent as output. As each solver 

setting runs independently on the others, it is possible to run multiple 

setting at once to speed up the optimization process. 
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Figure 20: Visualisation of selected parameters 

6.3. Testing the parametric model 

First, the trailing edges were set as fixed to 90 degrees. For the 16 

remaining parameters, the initial sampling was created. The default size 

of the Stochastic RBF method was used, i.e. 2 * (N + 1) = 34 samples, 

where N = 16 is the number of parameters. Out of the 34 samples, 25 

were successfully created. The remaining samples failed for geometry 

reasons. 

 
Figure 21: Examples of diffuser geometry (in blue). 

All the samples were evaluated at three different points (flow rates) – 

90%, 100% and 110% of the design point QOPT. After careful evaluation 

and consideration of the results, the parametric model was adjusted. First, 
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the beta angles at trailing edge were enabled as parameters, instead of 

being fixed to a constant value. Second, the ranges of the parameters were 

modified, mostly narrowed. The comparison can be seen in Table 3. With 

these changes, a new sampling of size 38 was created. Out of it, 36 solver 

input files were successfully generated. After CFD simulations at the 

three specified flow rates, this initial sampling was used for starting the 

optimization. 

6.4. Optimization and results 

The same method as in the previous case (“Case 2”) - Stochastic RBF – 

was used. As it is a single objective optimization method, the 

scalarization of the three objectives (efficiencies at 90%, 100% and 110% 

of QOPT, further denoted as ƞ90, ƞ100 and ƞ110) had to be used. Based on 

recommended scalarization methods in (13), the objective function was 

defined like this: 

𝐽 = 𝑚𝑎𝑥(90 −  ƞ90, 91 −  ƞ100, 88 −  ƞ110 ) +  
ƞ90 + ƞ100 + ƞ110

1000
 

90, 91 and 88 were “thresholds”, i.e. efficiencies required to be exceeded 

(at the respective flow rates). By considering the maximum of the 

“missing efficiencies”, the optimization is basically forced to try to meet 

all the required thresholds. Unlike a scalarization by summing the 

objectives, where gain in one objective can outweigh the loss in another. 

The small additive member in the scalarized function is usually 

recommended (13) to help guiding the optimization in a case when an 

objective is improved, but the maximum remains the same. 

The optimization was performed at an HPC cluster. The limiting factor 

for the parallelization was the number of available ANSYS CFX licences, 

there were 25 of them. Thus, for maximum performance, Stochastic RBF 

was set to generate 8 new samples in every iteration. Three flow rates 

mean three working points per sample, this means 24 CFD simulation per 

optimization iteration – each utilizing 16 CPU cores. There were 8 

Stochastic RBF iterations in total. Out of the 64 samples, 11 failed and 

53 was successfully generated and evaluated. The optimization was 

stopped once there were no significant improvements over successive 
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iterations. The optimization record (efficiency objectives and the single 

scalarized objective) can be seen in Figure 22. 

 

 
Figure 22: The objectives and scalarized function during the optimization. The grey dashed line 

shows the hypervolume of the Pareto front. 
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The optimization successfully exceeded the efficiency thresholds in all 

three flow rates. For the final comparison, the design found by the 

Stochastic RBF was then modified for the manufacturing (by sheet metal 

bending technology). For all considered blade adjustments (-3, 0, 3, 6, 9 

and 12 degrees), the meshes were created, and full sets of CFD 

simulations were performed. The comparison of Q-Efficiency 

characteristics between the pump with original diffuser and optimized 

diffuser with the bent blades can be seen in Figure 23. 

 
Figure 23: Comparison of original (left) and optimized (right) design. 

The improvements vary from 1% up to ca. 7%. The optimized design has 

a bit narrower operation area with high efficiency. For a pump with 

adjustable blades this is not a problem, as the setting can be adjusted to 

the optimal configuration for any scenario. Thus, in practical application, 

the performance improvements are in a range from 4 to 7%. 

6.5. Conclusion 

The automated optimization was successfully used as part of the 

hydraulic design process. The parametric model was created, connected 

to a Matlab optimization code and run in an HPC environment. The 
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scalarization approach worked reasonably well, and the efficiency was 

improved for the whole relevant working range. The final sets of 

numerical simulations for various impeller blades adjustments (and with 

the bent diffuser blades) confirmed the simplifications of the CFD model 

(not considering the bent blades, only one impeller blades adjustment) as 

justified. Overall, we can conclude such approach to diffuser 

optimisation works reasonably well, if the necessary computational 

resources are available. 

 
Figure 24: Efficiency comparison with the old design 

7. Case 4 - multi-objective optimization of a 
stator 

Objectives: Improving efficiency for the sub-optimal flow rates, 

maintaining it at the higher flow rates. 

Solution: ANSYS Workbench parametric model driven through text 

script files, transient simulation (full geometry). Three objectives 

(efficiencies at 80%, 100% and 120% of QOPT). Stochastic RBF 

optimization method + scalarization, K-RVEA. 

Results: Efficiency increased from 2% up to 5% in the working range. 
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7.1. Introduction 

Another case for stator optimization was a diagonal pump with axial 

diffuser, of a specific speed ns = 200. The hydraulic design was 

challenging, as the operation site constraints forced relatively short total 

length of the pump. This caused some troubles, as the short meridional 

length did not really fit into the recommended ranges for this specific 

speed. The customer also required high efficiency in a wide working 

range. The resulting design, created by an experienced hydraulic expert, 

met these demands. However, the CFD simulations suggested a sharp 

decrease of performance at ca. 80 % of the design point QOPT. It was thus 

decided to perform an optimization of the design. 

 
Figure 25: CFD model of the pump. 

Based on the previous experience, the optimization was focused on the 

diffuser. Efficiencies at three different points were chosen as the 

objectives. First, the Stochastic RBF method and scalarized objective 

function were used. Next, a more modern, Kriging-based multi-objective 

method, K-RVEA, was used. For the optimization, a simplified CFD 

model without sealing rings was considered. Then, a more complex 

model was assembled, and the optimized design performance was 

thoroughly evaluated in the whole working range of the pump. In the 

conclusion, there results were compared with the old design. 



39 

7.2. Parametric model and automation 

The parametric model was created in a similar way as in the previous 

diffuser optimization case. I.e. an ANSYS Workbench project, driven by 

Python-controlled scripts. As can be seen in Figure 26, the sealing rings 

were also included in the model. The flow from the sealing rings can 

enter the passage in a direction perpendicular to the “main” flow, and 

influence the rotor-stator interaction. The sealing rings are rarely 

included in CFD simulations, as the geometry and mesh creation are 

challenging. Instead, the effect on pump performance is estimated 

empirically. 

 
Figure 26: Meridional section of the CFD model. Rotating parts (impeller and shaft) are 

displayed in blue, the sealing rings are in red. 

For the parametric model, the leakage part had to be omitted. Creating a 

parametric model of the leakage and its automation would be very 

difficult, as TurboGrid cannot be used for this. It was also assumed that 

this would not affect the comparison of different design significantly. For 

these reasons, the CFD model for optimization was simplified in this 

way. 

The CFD model was set as fully-transient, with 154 time-steps per 

impeller rotations. This equals to 2.34 degrees of an impeller rotation 

during each time-step. The pump has 995 rpm; thus, the time-step value 

was ∆t = 60 / (154·995) = 0.00039157s. Boundary conditions (BC) were 

set as Mass Flow Rate at the outlet and Total Pressure at the inlet. As the 

turbulence model, SST k-Ω was used. 
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Figure 27: CFD model used for optimization. The diffuser is in blue, impeller-diffuser interface 

is in red. 

 
Figure 28: CFD results – with and without rings. The red dots show the three flow rates at 

which the efficiency was optimized 
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The simplified CFD model with diffuser detail can be seen in Figure 27, 

and the comparison of results between the models with and without 

sealing rings can be seen in Figure 28. In total, there were 22 geometric 

parameters. Some of the parameters are displayed in Figure 29. 

 
Figure 29: Parameters driving the diffuser shape 

7.3. Optimization run 1 – Stochastic RBF 

For the designs of the initial sampling (created by the “premade-

topology” approach), the CFD simulations were run for the three selected 

flow rates (76 %, 100 % and 120 % of QOPT). Just as in the previous case, 

the three objectives were selected as reasonable compromise between 

computational costs and ensuring good performance (of the pump) in the 

whole working range. 76 % of QOPT was placed right below the 

problematic in-stability flow rate of the original design. After checking 

these initial results, the optimization was continued with a scalarized 

objective function defined like: 

𝐽 = 𝑚𝑎𝑥(84 −  ƞ76, 90 −  ƞ100, 84 −  ƞ120 ) 

The threshold values 84, 90 and 84 (per cents of efficiency) for the 

respective flow rates were believed to be enough to ensure improvement 

over the original design.  



42 

 
Figure 30: Parameter ranges normalized by the starting values. 

 
Figure 31: Objectives during optimization. The dashed lines show the optimization thresholds. 

During the course of the optimization, some modifications were made to 

the settings. First, some of the parameters seemed to converge to the 

boundary values – indicating the results could be further improved 
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bounds is relatively straightforward. Of course, it can be assumed that 

RBF approximation of the extended areas is sub-optimal. Still, for a lack 

of better information, such option was preferred to running a new initial 

sampling and optimization. Overall, the parameter ranges were modified 

twice during the course of the optimization. Further, analysing the 

available results, the objective thresholds were modified, too. The new 

objective function was: 

𝐽(2) = 𝑚𝑎𝑥(86 −  ƞ76, 90 −  ƞ100, 87.5 −  ƞ120 ) 

Also, as an additional information, a manually tuned sample was inserted 

to the list of computed samples. As the final design, sample number 311 

was selected. The results were compared with the initial design, on both 

simplified and more complex geometry. The Stochastic RBF 

optimization took more iterations than expected, but the results were 

promising. The newly found design dominated the old one, and the more 

thorough CFD simulations confirmed the results. In the whole working 

range, the efficiency was improved over the old design. 

 
Figure 32: Performance of the original and Stochastic RBF - optimized designs. The dots show 

optimization objectives 
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7.4. Optimization run 2 – K-RVEA 

As the next step, a more advanced, truly multiobjective optimization 

method was used. Kriging-assisted evolutionary multiobjective 

optimisation (K-RVEA) was introduced in (14). It is an optimization 

algorithm designed to solve computationally expensive multiobjective 

optimization problems. It is based on RVEA, introduced in (15). RVEA 

uses the reference vectors in the objective space in order to guide the 

population development. The goal of this is to promote exploration in the 

search, and to ensure an efficient search of the Pareto front. In K-RVEA, 

this approach is further enhanced by Kriging model for the surrogates. 

The objective spaces are approximated (separately for each objective) 

and RVEA operates on these approximations. This helps to speed up the 

optimization process, and less computationally expensive evaluations of 

the objective functions is then required (16). 

 
Figure 33: Normalized hypervolume in the objective space - Stochastic RBF vs K-RVEA 
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Thanks to its more sophisticated design, K-RVEA displayed superior 

performance to Stochastic RBF. As can be seen in Figure 33, the 

hypervolume of objective values (of the design found by the 

optimization) grows much faster for K-RVEA. This means that K-RVEA 

is able to guide the search much more efficiently, probably due to more 

sophisticated way of maintaining the balance between exploitation and 

exploration, as it uses the reference vectors, i.e. information from the 

objective space, to its advantage. Stochastic RBF, on the other hand, only 

works with the information about the samples in the parametric space. 

Thus, it needs more time to get from a local-minima trap. Of course, with 

the scalarization approach to the objective function it is also more 

dependent on the scalarization coefficients. 

 
Figure 34: Nondominated solutions found by K-RVEA. Black line is for the old design, and the 

red line shows the design selected as the best one. 

The nondominated solutions found by K-RVEA are shown in Figure 34. 

Multiple designs displayed performance superior to the old one. As the 

main goal of the optimization was to improve the efficiency of the pump 

in the sub-optimal flow rates (and to at least maintain the efficiency in 

the remaining parts of the working range), the design with the highest 

80%

82%

84%

86%

88%

90%

92%

0.75 0.85 0.95 1.05 1.15

Ef
fi

ci
e

n
cy

Q / QOPT



46 

efficiency at 76 % of QOPT was selected for further investigation. As far 

as the results from the simplified optimization CFD model are 

considered, it clearly dominates the old design. The efficiencies at QOPT 

and at 120 % of QOPT are excellent, too. For this design, the complete 

CFD model, including the sealing rings, was assembled. Next, the full set 

of CFD simulations for multiple flow rates was performed. The results 

can be seen in Figure 35. Unfortunately, the results did not meet 

expectations. The performance with the effect of the sealing rings is 

considerably worse than expected. While it is still higher than the 

performance of the original design, the efficiency drop in the sub-optimal 

flow rates is severe (when compared to the simplified CFD model). 

While the K-RVEA design dominated the solution found by Stochastic 

RBF, it does not hold true for the more complex model. The peak 

efficiency at QOPT is still higher, but overall, the Stochastic RBF design 

is preferable. The probable explanation is that that the “side-flow”, 

caused by the leakage at the impeller inflow and outflow, can disturb the 

flow in the passage. 

 
Figure 35: Performance comparison between original and optimized designs. The dots show 

optimization objectives. 
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7.5. Conclusion 

The pump performance was successfully improved by shape 

optimization of the diffuser. Two methods were employed for the task – 

the previously used (single-objective) Stochastic RBF, and more modern 

and sophisticated K-RVEA, designed for computationally expensive 

multi objective optimization. Due to technical limitations, the sealing 

ring were not considered during the optimization. With this optimization 

CFD model, K-RVEA displayed superior performance, clearly 

outperforming Stochastic RBF. Both methods also found an 

improvement over the original design. However, the original assumption, 

that the leakage can be ignored for the optimization, has been proven to 

be incorrect. Instead, the superior (by the simplified CFD model) design, 

found by K-RVEA, did not perform well once the leakage was added to 

the model. 

8. Case 6 - multi-objective optimization of a 
complete pump 

Objectives: Improving the pump performance, meet prescribed head at 

QOPT. 

Solution: Python codes + premade templates (ANSYS BladeGen, 

TurboGrid and CFX), transient simulation (full geometry). Six 

objectives (efficiency at QOPT, efficiencies at lower flow rates, 

efficiency at higher flow rates, head and cavitational properties). 

Stochastic RBF optimization method + scalarization, K-RVEA. 

Results: Efficiency increased from 2% up to 5% in the working range. 

8.1. Introduction 

In this case, an axial pump with diagonal diffuser (specific speed ns=680) 

was considered. The 3D model of the pump can be seen in Figure 36. The 

goal was optimizing both rotor and stator, while considering hydraulic 

performance in multiple flow rates. Impeller optimization increases the 

optimization complexity considerably, as – unlike in the stator 

optimization – the cavitation properties cannot be ignored anymore. As 
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the multiphase head-drop curves simulations (necessary for NPSH3 curve 

determination) are too computationally expensive, an estimation of 

cavitation performance, based on “Blade Loading” (static pressure 

distribution along the impeller blades, further denoted as BL) was used. 

Another problem is ensuring the design head at the QOPT. 

A complex parametric model, with a parametric description of both 

impeller and diffuser, was created. Next, multiple objectives 

formulations and optimization approaches were used and tested against a 

classically created hydraulic design (by human expert). 

 
Figure 36: The optimized pump geometry, with a detail of the impeller and diffuser. 

8.2. Parametric model and automation 

The parametric model was completely new and different from the 

previous cases, based on premade ANSYS templates and various 

Python codes. 
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The model creation works as follows: 

1. Generate the meridional section and beta angles distribution (for 

both rotor and stator). 

2. Pass the data to a pre-made BladeGen bgi templates and create 

the inputs for TurboGrid. 

3. Generate the meshes calling TurboGrid in batch mode. 

4. Call CFX-Pre with a premade model and replace the rotor and 

stator meshes. Positioning the inflow and outflow meshes is also 

required in order to match the interfaces. Then create a solver 

input (.def) file. 

5. Call CFD-Post and create graphical / text outputs – meridional 

section, mesh appearance and quality criterions. 

The Python codes allow for a lot of variability. In total, there were 59 

geometric parameters (decision variables). Some of these were passed 

directly to the BladeGen template, other serve as an input to 

subroutines. Overall, 71 parameters were used for generating the 

geometry. Due to various reasons, some of these were fixed, and 59 

were “active” and used for the optimization. 

 
Figure 37: Visualisation of selected parameters 

An example of a comprehensive visualization of a generated geometry, 

created automatically by the framework Figure 39. It displays slice of the 

CFD model, meridional sections, blade views and beta angles (for both 

rotor and stator), mesh information and normalized (in the objective 

space hypercube) parameter values – in comparison with a reference 

design. Such visualization serves for a quick inspection of the model. 
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8.3. Initial sampling and objectives 

To perform the optimization, the original hydraulic design was used as a 

reference one. I.e., the ranges of the input parameters were set (after a 

discussion with the hydraulic expert) as reasonable offsets to the values 

used for the reference design. For the start, the initial sampling was 

generated. Its size was decided by the 2 * (N + 1) formula, same as in the 

previous cases. For 59 parameters this meant 120 samples. Out of these 

120, 3 failed for geometric reasons, and another 2 had a very poor mesh 

quality. I.e. in total there were 115 samples left for the expensive CFD 

evaluation. Every sample was evaluated in five pre-set flow rates. 

 
Figure 38: Impeller and diffuser blades for various settings of the parameters. The 

parametrized part of the geometry is displayed in blue. 

The simulations were run on an HPC cluster. To capture the BL transient 

behaviour, it was necessary to analyse the data for every single timestep. 

As the intermediate trn file has ca. 1 GB, almost 2 TB od data had to be 

processed for each sample and flow rate. To avoid excessive data 

transfers, the results were processed on-the-fly, with only csv files with 

values being transferred. 

An example of the BL data can be seen in Figure 41. The LE to TE 

direction is displayed from left to right, red colour is for the suction side 

and blue for pressure side. The pressure data were processed at 19 layers 

(0.05, 0.10, … of Hub-to-Shroud distance) and averaged to a single 

curve, with weights 0.05, 0.10, … This reflects the fact that the character 

of the flow at the shroud is more important for the overall performance, 

as the velocity increases with the increasing distance to the axis of pump 

rotation. 
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Figure 39: An example of graphical output of the parametric model 

For practical reasons, the CFD runs were split into a sequence of shorter 

2-hours runs, continued “until ending criterion” (“convergence” or 

maximum number of timesteps). At the end of each 2-hours run, the BL 

data (for both rotor and stator and every timestep) were extracted to csv, 

packed (to prevent unnecessary load on the file servers) and sent to the 

central storage. Once the CFD simulations for the initial sampling was 

finished, the results were analysed. There were multiple objectives to 

consider and evaluate: 

1. The peak efficiency, respective the efficiency at the design point. 

(The actual optimum can occur at a different flow rate.) 

2. The overall efficiency at the working range. 

3. The NPSH3 (cavitational) properties in the working range. 

4. Meeting the desired head at the design point. 

Evaluating the efficiencies and head is trivial. The cavitation properties, 

however, are more challenging, as the correlation between NPSH3 and 

BL properties is not completely known. Based on our hydraulic experts’ 

opinions and (1), three main qualities of the BL shape were considered: 

- The percentage of the curve where the pressure drops below the 

water vapour pressure (3169 Pa). In our case the pump was designed 
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to operate at water level, i.e. at the atmospheric pressure. Thus, the 

threshold was set to approximately -1e5 Pa. The pressure drop occurs 

at the leading edge, and the designs with a good NPSH3 typically 

have this peek very narrow. The problem with this criterion is that 

once the cavitation develops, the BL changes. Thus, this metric only 

gives a hint about the true cavitational behaviour. 

 
Figure 40: Examples of generated designs, including a slice through the computational mesh, 

for three different parameters settings. The parametrized parts of the pump are in blue. 

- A “linearity” of the curve at the main passage, i.e. between the 

leading edge and trailing edge. As the total pressure difference 

between TE and LE is basically given (by the head), its distribution 

needs to be as even as possible. The numeric value was obtained as 

Pearson correlation coefficient between the (passage part of the) BL 

curve and the linear curve fit to it by Least squares method. 

- The “transient” stability of the BL curves. This one is supposed to be 

related to the stability of other hydraulic characteristics (efficiency, 

head), which is desirable in general. It was evaluated as Pearson 

correlation coefficient between BL curves for each subsequent pair 

of timesteps. For all the samples, the efficiency, head and BL 

properties were evaluated. 
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8.4. Optimization – DYCORS 

For the first optimization run and testing, the single-objective DYCORS 

(17) method was used. This method is an improvement over its 

predecessor, Stochastic RBF, and uses a more sophisticated approach for 

generating the Candidate points.  According to the numerical testing, it 

is more efficient for higher dimensions, especially if the number of 

parameters exceeds 30. 

 
Figure 41: Blade loading plot example 

The considered objectives were: 

1. Efficiency at the design point – the goal was to ensure meeting 

efficiency objective at the design point QOPT.  

2. Efficiency curve in the working range – multiple flow rates were 

considered to ensure a good performance overall. 

3. BL curve – percentage below the threshold and suction shape – 

these metrics are often used by the hydraulic experts. 

4. Difference from the head (at the design point) – this was to ensure 

that the optimized design meets the required value of head, 

instead of finding a geometry with great efficiency, but with an 

unacceptable head. 
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For the scalarization, the approach recommended in (13) was used. For 

each objective Ji, its value is normalized as 

𝐽𝑖_𝑛𝑜𝑟𝑚 =  
𝐽𝑖 − 𝐽𝑖_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐽𝑖 − 𝐽𝑖_𝑢𝑡𝑜𝑝𝑖𝑎𝑛
 

 Where 𝐽𝑖_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a selected threshold value, and 𝐽𝑖_𝑢𝑡𝑜𝑝𝑖𝑎𝑛 an ideal 

(but unreachable) value. The scalarized objective function is then 

assembled as 

𝐽𝑡𝑜𝑡𝑎𝑙 = max
𝑖=1,…,𝑁

𝐽𝑖_𝑛𝑜𝑟𝑚 +  ∑
𝐽𝑖_𝑛𝑜𝑟𝑚

"𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟"
𝑖=1,…,𝑁

 

The “large number” can be selected arbitrarily, but such, that the sum is 

relatively small when compared to the max part of the formula. Thanks 

to this, the scalarized objective can capture changes to objectives that are 

lost in the max, and the desired properties of the scalarization are still 

preserved. This way it is possible to capture the Pareto front more 

efficiently. The choice of the threshold and utopian values influence the 

“weights” of the objectives. In our case, the results of the initial hydraulic 

design were used for the thresholds. 

 
Figure 42: Objective functions and the scalarized objective function for DYCORS. 

-2

0

2

4

6

8

10

0 50 100 150

N
o

rm
al

iz
ed

 o
b

je
ct

iv
e 

va
lu

e
s

Number of designs

J1, J2, …

Jscalarized



55 

The DYCORS optimization was stopped after 12 iterations. The 

performance comparison between the “baseline” design and the result of 

the optimization can be seen in Figure 43 and Figure 44. 

 
Figure 43: Optimization results. Comparison of hydraulic performance (efficiency and head) 

with the baseline design. 

 
Figure 44: Optimization results. Comparison of BL at 110 % of QOPT. 
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8.5. Optimization – K-RVEA 

For the second run, a multi-objective K-RVEA method, described in the 

previous chapter, was used. Six different objectives were considered: 

1. Efficiency at the design point 

2. Efficiency in the range of 60 to 100 % of the design point 

3. Efficiency in the range of 100 to 120 % of the design point. 

4. BL curve – percentage below the threshold 

5. BL curve at the suction 

6. Difference from the design head (at the design point) 

Instead of scalarization, each objective was considered independently. 

Also, overall efficiencies for the sub-optimal, and “above-optimal” flow 

rates were considered separately. The intention was to have better control 

on optimizing the design for lower or higher flow rates. 

To start the K-RVEA optimization, data from the same initial sampling 

as in the previous case was used. Overall, ca. 60 samples were created – 

the non-dominated solutions can be seen in Figure 46, hypervolume of 

the objective space is shown in Figure 46. 

 
Figure 45 Efficiency curve approximated from five points (flow rates). The K-RVEA samples 

are in red, DYCORS in blue and the baseline design in green. The lines are bolder for designs 

that are within the tolerance for the design head. 
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Figure 46 Hypervolume for both DYCORS and K-RVEA. For the comparison, the DYCORS 

samples were evaluated by the same objectives that were used for K-RVEA optimization. 

8.6. Lessons learned and future plans 

First, setting the difference from the design head as one of the objectives 

is a valid, but very inefficient way of ensuring this design objective. As 

this objective is ”binary”, i.e. either passed or failed (the designs with a 

wrong head are of no use – only to guide the optimization), a lot of 

computational resources is spent on undesired designs. Unfortunately, 

penalization is a problematic approach for surrogates-aided-

optimization, as it distorts the surrogates. 

Second, considering the BL qualities as objectives competing with 

efficiencies was a mistake, too. 

Generally, only the efficiencies can be considered as the “true” 

objectives, as it makes sense to ask the “Pareto” questions such as “How 

much efficiency am I willing to sacrifice at flow rate 1 to improve the 

efficiency at flow rate 2?”. But asking like this in the efficiency vs meeting 

the design head scenario does not make sense. 
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9. Conclusion 
When implemented properly, automated optimization of hydraulic 

shapes can be a valuable addition to the tools available for hydraulic 

design of pumps. While theoretically such approach could replace the 

classical approach altogether, in practice there are several limitations. 

First, the computational cost of the necessary numerical simulations is 

very prohibitive and severely limits possibilities of exploring the 

parametric space. When considering the relatively high number of 

parameters, necessary for describing the hydraulic shapes, and lack of 

derivative information, Surrogate-aided optimization is the only viable 

solution. Creation of automated parametric models, and suitable 

formulation of the optimization objective(s) have also proven to be very 

challenging. 

In this thesis, multiple real-world optimization cases were presented – 

ordered from lower to higher difficulty / complexity. The first presented 

case is not an actual optimization, but only uses iterative sampling in the 

parametric space. Next, the automated parametric model was created and 

connected with a suitable surrogate-based, single objective method. In 

the following cases, multiobjective optimization of pump stator was 

presented. Finally, in the last case, the optimization of the rotor and stator 

parts with respect to multiple objectives was presented. 

Parametric models and their automation proved to be technically 

difficult. When optimizing stator parts, the optimization results were 

promising. The newly found designs exceeded the performance of the 

original models. Considering the rotor hydraulic parts posed bigger 

challenge, though. First, the hydraulic shapes are more complex and 

require even more geometric parameters, making the optimization more 

complex. Second, more objectives need to be considered in impeller 

design, such as cavitation properties. 

The results of the impeller optimization indicate that further development 

is needed. The goal is to have a method that combines the “fast-available” 

information (geometry features, analytical formulas) and “slow” 

(computationally expensive) objectives and can consider “classification” 

objectives – the same way as human designers do. 
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