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Detection of user interface elements on a webpage 
 

Abstract 

 

This thesis explores the application of computer vision for the detection of user 

interface elements on webpages. It delves into foundational concepts of artificial 

intelligence, machine learning, neural networks, deep learning, and computer vision. The 

methodology of the work involves the preparation of an experimental dataset, forming the 

basis for evaluating YOLO object detection models. 

The literature review spans these key domains, establishing a robust foundation for 

investigating element detection on images of web pages.  In the practical part, models were 

trained and evaluated using publicly available data. The results section includes an analysis 

of the used approach, a comparison of models, and suggestions for further development. 

 

Keywords: Computer vision, user interface, detection, recognition, artificial intelligence, 

neural networks.  
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Detekce prvků uživatelského rozhraní na webové stránce 

 
 

Abstrakt 

 

Tato práce zkoumá aplikaci počítačového vidění pro detekci prvků uživatelského 

rozhraní na webových stránkách. Ponoří se do základních konceptů umělé inteligence, 

strojového učení, neuronových sítí, hlubokého učení a počítačového vidění. Metodika 

práce zahrnuje přípravu experimentální datové sady, která tvoří základ pro hodnocení 

modelů detekce objektů YOLO. 

Přehled literatury zahrnuje tyto klíčové domény a vytváří robustní základ pro 

vyšetřování detekce prvků na obrázcích webových stránek.V praktické části byly modely 

proškoleny a vyhodnoceny pomocí veřejně dostupných dat. Sekce výsledky obsahuje 

analýzu použitého přístupu, porovnání modelů a návrhy na další vývoj. 

 

Klíčová slova: Počítačové vidění, uživatelské rozhraní, detekce, rozpoznávání, umělá 

inteligence, neuronové sítě. 
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1 Introduction 

As technology evolves and becomes more sophisticated, it requires more complex 

tools to be developed. There are multiple approaches to solving this problem, and one of 

the most promising is artificial intelligence. It is often undertaken in conjunction with 

machine learning and data analytics [1]. Artificial intelligence algorithms are designed to 

make decisions in a way similar to humans. An exponential growth of information and data 

in the world leads to an opportunity to use it for developing such algorithms. Machine 

learning is a field of science that specifically focuses on gathering, processing, and 

analysing datasets and using them for training machines to select and perform actions 

based on a certain input. Because of the availability of diverse data sources, different types 

of data now exist for training, such as images, videos, and numerical and textual datasets. 

Deriving information from visual inputs is a challenge that computer vision as a scientific 

field deals with. It focuses on developing methods to acquire, process, and analyse such 

inputs as well as extract high-dimensional data. Computer vision has multiple subdomains, 

which include object detection, object recognition, event detection, video tracking, etc.  

Specifically in the software domain, object detection and recognition of images are 

widely used. As most of the software is created so that human beings can interact with it, 

one of the main requirements is its intuitive, responsive, and effective interface. Modern 

user interfaces are mostly visual and provide users with extensive functionality. Another 

important characteristic is their adaptability to the current needs of the user. It became 

possible due to the analysis of human-computer interaction, which means the interaction of 

the user with the interface. Graphical user interfaces (GUI) evolved from rigid interfaces 

with images, buttons, and texts to ones that dynamically adapt to the current tasks, adjust 

input and output processes, and allow for complex interactions in a user-friendly manner. 

The process of interaction between the user and the interface itself contains a lot of 

information, that can be derived through computer vision and machine learning. It can be 

used immediately to predict future user actions and adjust accordingly, or, saved and 

analysed later for further improvement of the UI.  

Thus, the detection and recognition of user interface elements is the foundation of 

many software engineering tasks. 

In this work, different recognition methods are analysed and compared.  
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2 Objectives and Methodology 

2.1 Objectives 

The main objective of this work is to detect elements of the user interface on the 

image of the webpage, e.g., text, graphic elements, or form items. 

The partial objectives: 

- To create a literature review with a focus on computer vision. 

- To find the public or create and annotate an experimental data set. 

- To select model/s for experimental evaluation 

2.2 Methodology 

The methodology of solving the theoretical part of the Bachelor thesis is based on the 

study materials and analysis of professional information sources. Firstly, the experimental 

data set is gathered either by using publicly available data or by creating and annotating a 

new set. Based on the theoretical part, the most appropriate method/s for the 

implementation is selected. After that, the method/s is evaluated using chosen metrics. 

Based on the synthesis of theoretical knowledge and the results of the practical part, 

conclusions are formulated. 
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3 Literature Review 

3.1 Artificial intelligence 

3.1.1 The concept of artificial intelligence 

Artificial intelligence is a multidisciplinary field of computer science that focuses 

on creating intelligent machines capable of imitating human behaviour to solve specific 

tasks. It involves training these machines using received information and is closely 

connected to the study of the properties of the human brain. Researchers believe that 

understanding the principles of the brain is crucial in achieving the creation of artificial 

intelligence. Within the field of artificial intelligence, researchers employ a diverse range 

of techniques and methodologies to simulate various cognitive processes observed in 

humans, such as learning, reasoning, problem-solving, perception, and decision-making. 

By simulating these processes, we aim to develop machines that possess human-like 

abilities in learning, thinking, and decision-making. Through the emulation of the cognitive 

processes occurring in the human brain, we can create intelligent machines capable of 

replicating these abilities. The main components that make up the bulk of artificial 

intelligence systems are natural language processing; knowledge representation; machine 

learning tools; computer vision; automated reasoning tools; and robotics tools. Artificial 

intelligence and machine learning are often confused with each other, but they are two 

different things. Machine learning is a branch of artificial intelligence that focuses on 

developing algorithms that can learn from data and improve their performance over time 

without being programmed. Some artificial intelligence systems use machine learning to 

achieve their goals, but others do not. [1] 

3.1.2 Key components of artificial intelligence 

Two pivotal components that play a crucial role in advanced artificial intelligence are 

machine learning and computer vision. Machine learning, a branch of artificial 

intelligence, creates algorithms that allow machines to learn from data, improving 

performance autonomously. Through data analysis, these algorithms make predictions or 

decisions without explicit programming. This is vital for artificial intelligence's 

experiential learning and task enhancement. Computer vision, a branch of artificial 

intelligence, empowers machines to interpret visual data. It develops algorithms for 

extracting information from images/videos, understanding content, and comprehending the 
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visual environment. Tasks include object recognition, image classification, detection, and 

segmentation. Machine learning, especially deep learning, significantly advances computer 

vision. Deep learning models like Convolutional Neural Networks excel in image tasks. 

Computer vision also aids machine learning by providing complex datasets for training. In 

GUI (graphical user interface) detection research, computer vision identifies graphical 

elements (buttons, menus) in user interfaces. Coupled with machine learning, it accurately 

detects and localizes GUI components. Trained on GUI datasets, models offer insights for 

analysis and automation. [1] 

3.2 Machine learning 

3.2.1 Fundamental concepts of machine learning  

Machine learning is a common application of artificial intelligence in modern 

businesses and is expected to be a crucial component of the IT (information technology) 

strategy for many enterprises. It plays a significant role in transforming the IT industry, 

applicable to various workflows in software development, research, production processes, 

and even the products themselves. [2] 

Machine learning is based on three equally important components: 

1. Data, collected through various means. The efficiency of machine learning and the 

accuracy of future results increase with a larger volume of data. 

2. Features, defining the parameters on which machine learning operates. 

3. Algorithm, serving as the foundation of machine learning. These are sets of rules 

and procedures that handle the data, producing models capable of predictions or 

classifications. The selection of a machine learning method impacts the accuracy, 

speed, and size of the final model. 

In terms of types of learning, there are four categories: 

1. Supervised Learning: 

The machine learning algorithm learns from input-output pairs supervised learning 

algorithms experience a dataset containing features, and each example is also associated 

with a label or target. The algorithm learns to map inputs to outputs by finding patterns and 

relationships in the data. The goal is to train a model that can accurately predict outputs for 

new, unseen inputs. Example: suppose there is a dataset of customer reviews for a product, 

where each review is accompanied by a sentiment label indicating whether the review is 

positive or negative. A supervised learning algorithm can analyse this dataset and learn to 
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classify future customer reviews as either positive or negative based on the text content. 

This can be particularly useful for sentiment analysis in customer feedback analysis or 

product review platforms, helping businesses understand the overall sentiment of their 

customers towards their products or services. [3] 

2. Unsupervised Learning. 

It involves learning patterns and structures in unlabelled data without explicit 

feedback or labels. The algorithm explores the data and discovers hidden patterns, 

relationships, or clusters within it. Clustering is a common unsupervised learning task 

where similar examples are grouped based on their intrinsic similarities. 

3. Semi-supervised learning. 

Is a type of machine learning that combines elements of supervised and 

unsupervised learning. It leverages both labelled and unlabelled data to train a model. 

While supervised learning relies solely on labelled data and unsupervised learning works 

with unlabelled data, semi-supervised learning takes advantage of the additional 

information provided by unlabelled examples to improve model performance. The idea 

behind semi-supervised learning is that the unlabelled data can help in discovering and 

modelling the data's underlying distribution. By incorporating the unlabelled examples, the 

model can better generalize and make more accurate predictions on new, unseen data. 

4. Reinforcement Learning. 

It is a learning process where an agent explores and interacts with its environment, 

receiving positive or negative feedback based on its choices, and continuously adapts its 

behaviour to maximize its overall rewards. Through trial and error, the agent learns to take 

actions that lead to higher rewards and avoid actions that result in penalties. Reinforcement 

learning is often used in scenarios where an agent must make sequential decisions, such as 

game playing or robot control. 

The most common supervised learning tasks are: 

1. Regression is a machine learning approach that utilizes data to predict continuous 

numerical values by modeling the correlation between an outcome variable and its 

contributing variables. The goal is to create a mathematical model that can 

accurately predict the value of the dependent variable based on the given 

independent variables. Regression models can help understand the relationship 

between variables and make predictions about future outcomes.  
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2. Classification, on the other hand, is a machine-learning technique used for 

predicting discrete categories or labels. It involves training a model with a set of 

labelled examples, where each example is associated with a specific class or 

category. The model then learns to classify new, unseen examples into one of the 

predefined categories. Classification models are widely used in various 

applications, such as email spam filtering, image recognition, and sentiment 

analysis. [1] 

3.3 Neural networks 

3.3.1 Neural networks architecture 

A neural network is a structure consisting of interconnected neurons, inspired by 

the biological model. This architecture enables machines to analyse and even store various 

information, thereby acquiring the ability to perform complex tasks. Neural networks excel 

at tasks that involve analytical calculations similar to those performed by the human brain. 

Some common applications of neural networks include: 

1. Classification: Neural networks can classify data based on specific parameters. For 

instance, given a group of individuals, a neural network can assess factors such as 

age, solvency, and credit history to determine who should be granted a loan and 

who should not. 

2. Prediction: Neural networks possess the capability to predict future outcomes. For 

instance, they can analyse the stock market situation to forecast whether stock 

prices will rise or fall. 

3. Recognition: Neural networks are extensively used in recognition tasks. For 

example, they are employed by Google for image searches, as well as in phone 

cameras for facial recognition and other related functions. 

In summary, neural networks emulate the biological structure of interconnected 

neurons, enabling machines to perform tasks involving analysis, prediction, and 

recognition. [3] 

3.3.2 Neuron 

Neurons are the fundamental units of a neural network, inspired by their biological 

counterparts in the human brain. They receive input signals, perform computations, and 

generate output signals. In a neural network, neurons are organized into layers:   
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- Input Layer: The input layer receives the initial data or input features and passes 

them to the next layer.  

- Hidden Layers: Hidden layers are intermediate layers between the input and output 

layers. They perform computations and extract features from the input data.  

- Output Layer: The output layer produces the final output of the neural network. The 

number of neurons in the output layer depends on the type of task the network is 

designed for (e.g., classification, regression).  

 

 

Figure 1. Deep neural networks. Source: [4] 

 

The main computational element (model neuron) is often called a node or unit. It 

receives input data from some other devices or possibly from an external source. A model 

neuron consists of three main components: 

- Inputs: A model neuron receives input signals from other neurons or external 

sources. Each input signal has a corresponding weight. 

- Weighting: Each input signal is multiplied by its corresponding weight. Weights 

represent the strength of the connection between the input neuron and the model 

neuron. 

- Activation Function: The weighted inputs are summed together, and the result is 

passed through an activation function. The activation function determines whether 

the model neuron should fire or not. 

There are various types of activation functions used in model neurons, each with its 

characteristics. Some commonly used activation functions include: 
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1. Sigmoid function: Outputs a value between 0 and 1, representing the probability of 

the neuron firing 

2. Tanh function: Outputs a value between -1 and 1, similar to the sigmoid function. 

ReLU (Rectified Linear Unit): Outputs the input directly if it is positive, and 

outputs 0 if it is negative. 

The weights of the connections between neurons in a neural network are adjusted 

during the training process. This adjustment is based on the error between the network's 

output and the desired output. The process of adjusting weights is called learning. 

Neural networks are used in a wide range of applications, such as: 

1. Image classification: identifying objects in images. 

2. Speech recognition: converting spoken language into text. 

3. Natural language processing: understanding and generating human language. 

4. Machine translation: translating text from one language to another. 

This concept of weighted inputs and activation functions is fundamental in neural 

network architecture. The single-layer perceptron (SLP) model, illustrated in Figure 2., 

which is the simplest form of a neural network, employs this mechanism. In SLP, the 

values in the input layer are multiplied by weights and a bias is added to the cumulative 

sum. The resulting sum is then passed through an activation function to determine the 

output. The SLP model is often used in classification problems, where data observations 

are labelled based on the inputs. It serves as a foundational concept for more advanced 

neural network models developed in the field of deep learning. It's worth noting that the 

concept of model neurons, weighted inputs, and activation functions has been studied since 

the 1940s by researchers such as McCulloch and Pitts. This demonstrates the longstanding 

history and importance of these concepts in the field of neural networks. [4] 

The main computational element, commonly referred to as a node or unit, is the 

model neuron. It receives input data from some other devices or possibly from an external 

source. The unit calculates some function f of the weighted sum of its inputs, equation (1): 

𝒴𝑖 = 𝑓 (∑𝒲𝑖𝑗

𝒾

𝒴𝑖𝑗) 

(1) 

- The weighted sum ∑ 𝒲𝑖𝑗𝒾 𝒴𝑖𝑗 is called the net input to unit i, often written neti. 

- Wij refers to the weight from unit j to unit i. 

- Function f - is the device activation function. 
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Figure 2. Single-layer perceptron network. Source: [4]. 

 

In summary, a neural network consists of interconnected neurons organized in 

layers. Neurons receive inputs, perform computations using activation functions, and 

produce outputs. Connections between neurons are established through synapses with 

weight coefficients. Activation functions introduce non-linearity and determine the flow of 

signals through the network, enabling it to learn and make predictions.  

3.3.3 The work of neural networks 

The input layer of neurons receives some information, which goes to the next layer 

through synapses. At the same time, each synapse has its coefficient weight, and any 

subsequent neuron in a new layer can have several inputs. Information is transmitted 

further until it reaches the final exit. For example, a handwriting recognition algorithm 

should be able to cope with a huge variety of ways of presenting data. Each digit from 0 to 

9 can be written in many ways: the size and exact shape of each character can vary greatly 

depending on who writes and under what circumstances. The input layer is given values 

representing the pixels that make up the image of the handwritten digit. The output layer, 

in turn, predicts which symbol is depicted in the picture in Figure 3.  
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Figure 3. Layers of neural network. Source: [4] 

 

The circles in the diagram are neurons that are organized into interconnected 

vertical layers. The colours of references also differ: they indicate the importance of 

connections between neurons. Red links increase the value when switching between layers, 

which increases the chance of activating the neuron to which the value enters. In the 

diagram, the activated neurons are shaded in red. In Hidden Layer 1, they mean that the 

handwritten figure image contains a certain combination of pixels resembling a horizontal 

line at the top of the handwritten number 3 or 7. "Hidden Layer 1" can detect feature lines 

and curves that make up handwritten shapes. 

3.3.4 Types of neural networks 

In total, there are about 30 different types of neural networks that are suitable for 

different types of tasks. For example, convolutional neural networks (CNNs) are 

commonly used for computer vision tasks, while recurrent neural networks (RNNs) are 

used for language processing. Each has its characteristics. 

CNNs shown in Figure 4. are designed to handle the spatial structure of images 

effectively. They employ specific layers and operations that make them well-suited for 

visual data analysis. Some key components and concepts related to CNNs include: 

1) Convolutional Layers: These layers consist of filters or kernels that slide across the 

input image, performing element-wise multiplications and summations. This process 

captures local patterns and features, preserving the spatial relationship between pixels. 



 

 19 

2) Pooling Layers: Pooling layers downsample the spatial dimensions of the input, 

reducing its size and extracting the most important information. 

3) Activation Functions: Activation functions introduce non-linearity into the network, 

enabling it to learn complex relationships. Popular activation functions in CNNs 

include the Rectified Linear Unit and its variants. 

4) Fully Connected Layers: These layers connect every neuron in one layer to every 

neuron in the next layer, enabling higher-level feature learning and classification. 

Overall, CNNs have had significant success in various computer vision tasks, 

achieving state-of-the-art performance on image classification challenges. They have 

become a fundamental tool in deep learning for visual data analysis. [11] 

 

 

Figure 4. CNN. Source: [6] 

 

Recurrent Neural Networks (RNNs) are a type of neural network commonly used 

for sequential data analysis, such as natural language processing and speech recognition. 

Unlike feedforward neural networks, which process data in a strictly sequential manner, 

RNNs have a feedback mechanism that allows information to persist and be shared across 

different time steps. The key feature of RNNs is their ability to capture sequential 

dependencies by maintaining an internal memory state or "hidden state." This hidden state 

serves as a memory that retains information about the previous inputs it has encountered. It 

allows the network to consider the context and history of the input sequence when making 

predictions or decisions. RNNs operate recurrently by processing one input at a time while 

updating the hidden state. The hidden state is updated based on the current input and the 

previous hidden state, combining information from both. This recurrent process enables the 

network to model temporal dynamics and capture long-term dependencies in the data. One 

common variant of RNNs is the Long Short-Term Memory (LSTM) network. LSTM 

networks address the vanishing gradient problem that can occur in traditional RNNs, 
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allowing them to effectively capture and propagate information over long sequences. 

LSTM networks achieve this by introducing specialized memory cells and gating 

mechanisms that regulate the flow of information. Another variant is the Gated Recurrent 

Unit (GRU), which is a simplified version of the LSTM. GRUs also incorporate gating 

mechanisms but with fewer parameters, making them computationally less expensive 

while still being effective for capturing temporal dependencies. RNNs are widely used in 

various applications such as language modelling, machine translation, sentiment analysis, 

and speech recognition. [14] 

To understand how RNN works under the hood, an example of an NLP (Natural 

Language Processing) application named entity recognition is illustrated in Figure 5, this 

technique is used to detect names in a sentence: 

 

 

Figure 5. NLP application. Source: [5] 

 

In the examples above, for each instance of training (sentence), we map each word 

with an output, if the word is named (john, Ellen …) we map it to 1. Otherwise, we map it 

to 0. So, to train RNN on sentences to recognize names within, the RNN architecture 

would be something like that in Figure 6.  
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Figure 6. Example of RNN architecture. Source: [5] 

 

Generative adversarial networks (GANS) consist of two neural networks at once: a 

generator that creates content and a discriminator that evaluates it. 

The discriminator network receives training or generator-generated data. The 

degree of guessing by the discriminator of the data source further participates in the 

formation of the error. There is a competition between the generator and the discriminator: 

the first learns to deceive the second, and the second — to reveal the deception. It is 

difficult to train such networks because it is necessary not only to train each of them but 

also to adjust the balance between them. A typical application of GAN architectures is the 

stylization of photos, the creation of deep fakes, the generation of audio files, etc. [13] 

 

 

Figure 7. GAN. Source: [5] 
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3.4 Computer vision 

3.4.1 Introduction to computer vision 

Computer vision is a field that focuses on developing algorithms and mathematical 

techniques to enable computers to analyse images and videos, recognize objects, 

understand scenes, and infer relevant information from visual data. While humans can 

effortlessly perceive the three-dimensional structure of objects, interpret emotions from 

facial expressions, and effortlessly segment objects from a scene, replicating these abilities 

in computers remains a challenging task. Computer vision researchers have made 

significant progress in recovering three-dimensional shape and appearance from images. 

They have developed methods for computing 3D models of environments from 

photographs, creating dense 3D surface models, and even delineating objects and people in 

images to a certain extent. However, fully understanding images at the level of detail and 

causality that humans achieve remains an elusive goal. The difficulty of computer vision 

arises due to the inverse nature of the problem, where the goal is to recover unknowns 

based on insufficient information. Researchers use physics-based and probabilistic models 

or machine learning from large datasets to disambiguate potential solutions. Unlike 

modelling simple systems, such as the vocal tract for speech production, the visual world's 

complexity poses unique challenges. Computer vision relies on forward models from 

physics and computer graphics, which describe how objects move, how light interacts with 

surfaces, and how images are formed. In contrast, computer vision aims to reconstruct the 

world from images, describing properties like shape, illumination, and colour distributions. 

This inverse problem nature, coupled with the complex visual world, makes computer 

vision a challenging task.  Despite the challenges, computer vision has found numerous 

practical applications across various domains. Some examples include: 

1. Optical Character Recognition (OCR) for reading handwritten postal codes and 

number plate recognition. 

2. Machine inspection for quality assurance in manufacturing, using stereo vision and 

X-ray imaging. 

3. Retail applications like object recognition for automated checkout and fully 

automated stores. 

4. Warehouse logistics with autonomous package delivery and robotic parts picking. 
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5. Medical imaging for registering pre-operative and intra-operative imagery and 

studying brain morphology. 

6. Self-driving vehicles capable of driving point-to-point and autonomous flight. 

7. 3D model building using photogrammetry for constructing 3D models from aerial 

photographs. 

Additionally, computer vision has consumer-level applications, such as image 

stitching, exposure bracketing, morphing, 3D modelling, video stabilization, face 

detection, and visual authentication. The combination of engineering and scientific 

approaches, along with statistical techniques, allows for the formulation and solving of 

complex vision problems. The emphasis on algorithms that are robust to noise and efficient 

ensures practicality in real-world scenarios. Computer vision continues to advance rapidly, 

with a wide range of real-world applications and consumer-level possibilities, shaping the 

way we interact with visual data and revolutionizing various industries. As a result, it 

remains an exciting area of research and development for the future. [7] 

3.4.2 Development of computer vision 

Computer vision has undergone significant development over the years, evolving 

from its early beginnings in the 1970s to its current state in the 2010s. In the early days, 

computer vision was viewed as a way to mimic human intelligence and equip robots with 

intelligent behaviour. Researchers believed that solving the "visual input" problem would 

be a straightforward step towards tackling more complex challenges like higher-level 

reasoning and planning. One of the key differentiators of computer vision from digital 

image processing was its emphasis on recovering three-dimensional structures from images 

to achieve a comprehensive understanding of scenes. Early attempts involved extracting 

edges and inferring 3D structures from 2D lines. Various algorithms for line labelling and 

edge detection were developed during this period. In the 1980s, computer vision saw 

advancements in mathematical techniques for quantitative image and scene analysis. Image 

pyramids and wavelets were widely used for tasks such as image blending and 

correspondence search. Researchers also explored shape-from-X techniques, which 

included shape from shading, photometric stereo, and shape from texture. The concept of 

variational optimization and Markov random fields became prevalent in addressing 

complex vision problems. The 1990s witnessed the emergence of projective invariants for 

recognition and factorization techniques for structure-from-motion problems. Physics-



 

 24 

based vision and optical flow methods were further improved. Moreover, researchers 

started using statistical learning techniques, particularly for face recognition and curve 

tracking. In the 2000s, there was a notable shift towards data-driven and learning 

approaches in computer vision. Computational photography techniques, such as image 

stitching, HDR imaging, texture synthesis, and inpainting, gained prominence. Feature-

based techniques combined with machine learning became essential for object recognition 

and scene understanding tasks. The 2010s marked a revolution in computer vision with the 

widespread adoption of large labelled datasets and deep learning techniques. Deep neural 

networks, especially convolutional architectures, dominated recognition and semantic 

segmentation tasks. Computational photography and vision algorithms found extensive 

applications in smartphones, enabling features like panoramic image stitching, high 

dynamic range imaging, and real-time augmented reality. Most of the existing computer 

vision systems were created based on ImageNet. But they still contained a lot of errors. 

Everything changed in 2012, when the AlexNet model, which used ImageNet, significantly 

reduced the error rate in image recognition, opening up the modern field of computer 

vision. [12] 

Computer vision has come a long way from its early aspirations to mimic human 

intelligence. The field has evolved through the decades, leveraging mathematical 

techniques, statistical learning, and most significantly, the advent of deep learning. These 

advancements have enabled computer vision to find widespread applications in various 

industries, from smartphones to autonomous vehicles, transforming the way we interact 

with and understand visual data. [7] 

3.4.3 Description of computer vision tasks 

Computer vision is a dynamic and rapidly evolving field within computer science 

and artificial intelligence. It revolves around the development of algorithms and techniques 

that enable machines to interpret and understand visual information from the world around 

them. Among the fundamental tasks in computer vision, three key areas stand out: image 

classification, object detection, and image segmentation. These tasks play a crucial role in 

enabling machines to analyse and process visual data, ranging from simple image 

categorization to complex scene understanding. With advancements in deep learning and 

the availability of large labelled datasets, computer vision has witnessed significant 

progress in recent years, achieving remarkable results in various real-world applications. 
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1. Image classification 

Image classification in computer vision has seen significant evolution over time. It 

began with traditional approaches like the "bag of words" method illustrated in Figure 8., 

which treated images as collections of visual words extracted from key points using 

descriptors like Scale-Invariant Feature Transform. Machine learning techniques, such as 

support vector machines, were used for classification. Another class of algorithms focused 

on part-based models, identifying objects by their constituent parts and geometric 

relationships, often using pictorial structures and trees. Part-based models found 

applications in face recognition, pedestrian detection, and pose estimation. Deep neural 

networks brought a revolution to image classification. They outperform traditional feature-

based methods, especially with large labeled datasets. Context and scene understanding 

have further improved image classification by considering spatial relationships between 

objects. These algorithms enhance recognition accuracy, refine object detections, infer 

object locations, and predict object presence based on scene context. 

In summary, image classification has evolved from classic feature-based methods 

to powerful deep neural networks, with context and scene understanding enhancing real-

world applications. [7] 

 

 

Figure 8. A typical processing pipeline for a bag-of-words category recognition system. Source: [7] 

 

2. Object detection methods  

In the realm of computer vision, modern object detection has undergone remarkable 

advancements through the integration of cutting-edge techniques. This journey of 

innovation has led to the development of powerful object detection methods, each with its 

unique approach. Among these methods, Convolutional Neural Networks (CNNs), YOLO 

(You Only Look Once), and SSD (Single Shot MultiBox Detector) stand as prominent 

pillars, shaping the landscape of object detection.  
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R-CNN: Region-based Convolutional Network (R-CNN), represents an early 

breakthrough in object detection with neural networks. It follows a two-stage process, 

commencing with the selective search algorithm to propose potential regions of interest. 

It works by first generating a set of potential object regions, extracting features from each 

region using a CNN, and then classifying and refining the bounding boxes for the predicted 

object categories, illustrated in Figure 9. Approximately 2,000 region proposals are 

extracted and then resized to a uniform size before undergoing classification using a neural 

network such as AlexNet [12]. This method evolves in subsequent versions like Fast R-

CNN and Faster R-CNN, enhancing training and testing efficiency while significantly 

improving detection accuracy. The Faster R-CNN system replaces the slow selective 

search with a more efficient convolutional region proposal network (RPN), contributing to 

expedited inference. Notably, the introduction of a Feature Pyramid Network (FPN) further 

advances scale invariance, allowing for more robust detection across different object sizes. 

[6] 

 

 

Figure 9.  The R-CNN and Fast R-CNN object detectors. Source: [7] 

 

YOLO: You Only Look Once (YOLO) is a family of object detection algorithms 

known for their speed and accuracy. They are well-suited for real-time applications. YOLO 

uses a single-stage detector, enabling it to identify and classify objects in a single pass of 

the input image. This makes YOLO significantly faster than other algorithms, but it can 

also come at the expense of accuracy.  

The overview of how YOLO works: 

1. Image Preprocessing: The input image is resized to a standard size, for example, 

448x448 pixels. This is done to make the image compatible with the YOLO network 

architecture. 

2. Feature Extraction: The input image is passed through a convolutional neural network 

(CNN) to extract features. The CNN extracts features from the image that are relevant for 

object detection. 
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3. Output Layer Predictions: The output layer of the CNN produces a prediction for each 

cell in a grid that is imposed on the input image. For each grid cell, the model estimates the 

bounding box coordinates (x, y coordinates, width, and height) along with a confidence 

score. Additionally, a class prediction is assigned to each grid cell. 

4. Bounding Box Refinement: The bounding boxes and class probabilities from the output 

layer are refined using techniques such as non-maximum suppression (NMS). NMS 

removes overlapping bounding boxes and ensures that only the most confident detections 

are kept. 

5. Object Detection: The final output of YOLO is a set of bounding boxes and class 

probabilities for all objects detected in the image. 

The difference between YOLO and R-CNN algorithms was described in the paper 

by Redmon et.al [20]. Here are the reports of the summary of the accuracy and speed of R-

CNN and YOLO in the following mean average precision scores on the PASCAL VOC 

2007 dataset: 

- RCNN: 62.4% 

- YOLO: 44.1% 

The paper describes speed as the frames per second (FPS) that an object detection 

algorithm can achieve. FPS is a measure of how fast an algorithm can process images and 

make detections. A higher FPS indicates faster speed. 

Speed: 

- RCNN: 7 FPS 

- YOLO: 45 FPS  

Looking at the paper research, the YOLO method is significantly faster than the 

RCNN method, while only sacrificing a moderate amount of accuracy. This makes YOLO 

a good choice for UI detection applications where real-time detection is critical.  

YOLO offers significant advantages in terms of speed, but it has limitations, 

including lower accuracy for small or occluded objects and sensitivity to noise in the input 

image. Despite these limitations, YOLO remains a popular object detection algorithm due 

to its real-time capabilities and is likely to continue to be used extensively in various 

applications. It is used in a wide variety of applications, including self-driving cars, video 

surveillance, robotics, augmented reality, and virtual reality. 
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YOLO has evolved through several versions, each with its strengths and 

weaknesses. The most recent version is YOLOv8, released in 2023, and is the fastest and 

most accurate model to date. [15] 

SSD: The Single Shot MultiBox Detector (SSD) represents another single-stage 

object detection technique, akin to YOLO. However, SSD uses a more complex 

architecture than YOLO, as illustrated in Figure 10. This means it can be less resource-

efficient and more difficult to learn and set up.  

SSD involves dividing an image into a grid and employing a set of predefined 

default boxes (anchors) with diverse aspect ratios to predict object locations and class 

scores. This method is tailored to handle objects of varying sizes efficiently. By integrating 

multiple convolutional layers with different scales in its architecture, SSD captures object 

information at multiple resolutions, aiding in object recognition across different contexts. 

This multi-scale approach contributes to the effectiveness of SSD in detecting objects with 

improved accuracy and speed. [8] 

 

 

Figure 10. A comparison between two single shot detection models: SSD and YOLO. Source: [8] 

 

3. Image segmentation 

Image segmentation represents an advanced expansion of the concept of object 

detection. In this technique, the identification of objects within an image is taken to a more 

intricate level. Instead of merely outlining objects with bounding boxes, image 

segmentation involves creating pixel-wise masks that accurately define the boundaries of 

each object. This level of detail aids in ascertaining the shape of individual objects in a 

much finer manner. This approach is particularly beneficial in specialized areas like 
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medical image analysis and satellite imagery interpretation. In recent times, a multitude of 

methodologies for image segmentation have emerged. Among these, one of the notable 

techniques is Mask R-CNN, proposed by K He and collaborators in 2017. [16] 

Image segmentation can be categorized into three types: 

1. Instance Segmentation is a computer vision technique that detects and segments 

individual objects in an image. It goes beyond basic object detection by providing a 

more detailed understanding of the scene, including the precise location and 

boundaries of each object. This is achieved by generating pixel-level masks for 

each object instance. 

Instance segmentation has a wide range of applications, including medical imaging, 

robotics, and autonomous vehicles. It is also used in many other fields, such as agriculture, 

retail, and security. [9] 

2. Semantic Segmentation groups pixels in an image into common classes, assigning 

each pixel a label representing its object category. Unlike instance segmentation, 

which identifies separate instances, semantic segmentation highlights the 

distribution of different object categories by grouping pixels. This technique is 

crucial in various applications: 

- Scene Understanding: Used in urban planning, virtual reality, and environmental 

monitoring for understanding layout and content. 

- Autonomous Driving: Identifies lanes, pedestrians, signs, and vehicles, aiding 

navigation in self-driving cars. 

- Medical Imaging: Segments organs and structures, assisting in diagnosis and 

treatment planning. 

- Object Detection: Defines regions of interest, serving as a precursor to object 

detection. 

- Agriculture: Monitors crops and land cover for improved agricultural practices. 

- Augmented Reality: Aligns virtual objects with real scenes, enhancing augmented 

reality experiences. 

While lacking instance-specific details, semantic segmentation forms the foundation for 

advanced techniques, contributing to diverse applications across industries. [9] 

3. Panoptic Segmentation merges semantic and instance segmentation, aiming to 

comprehensively understand visual scenes. In semantic segmentation, each pixel is 

labeled with its semantic category, while instance segmentation associates pixels 
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with specific objects, providing pixel-accurate masks for each object. The goal of 

panoptic segmentation is to accurately segment and classify all objects and assign 

labels to contextual elements. Progress in this field includes a notable metric by 

Kirillov [9], evaluated across diverse datasets and compared to human consistency, 

with the COCO dataset expanding its scope to include panoptic segmentation 

assessment. This approach, combining precision from instance segmentation and 

broader context from semantic segmentation, decodes intricate object relationships, 

offering valuable insights for scene analysis and autonomous systems. [9] 

Figure 11 shows image segmentation types.  

 

 

Figure 11. Examples of image (a) original image; (b) semantic segmentation, (c) instance 

segmentation, and (d) panoptic segmentation. Source: [9] 

 

3.4.4 Other object detection solutions 

The paper "Object Detection for Graphical User Interface: Old Fashioned or Deep 

Learning or a Combination?" by Chen et al. (2022) [10] solves the problem of UI (user 

interface) detection by proposing a hybrid method that combines traditional image 

processing methods and deep learning methods. The paper's proposed method first pre-

processes the GUI image using a traditional edge detection algorithm. This helps to remove 

noise from the image and makes it easier for the deep learning model to detect the UI 

elements. 

The pre-processed GUI image is then fed to a deep-learning model to generate 

candidate UI element boxes. These candidate boxes are then filtered using a traditional 

color segmentation algorithm to remove false positives. 

Finally, the filtered UI element boxes are classified using a deep learning model to identify 

the type of UI element in each box. 

The paper's proposed hybrid method outperforms both traditional image processing 

methods and deep learning methods on a variety of UI element detection datasets. This 
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suggests that the hybrid method can solve the problem of UI detection more effectively 

than either traditional image processing methods or deep learning methods alone. 

Here is a summary of how the paper's proposed hybrid method solves the problem 

of UI detection: 

- Pre-processing the GUI image helps to remove noise and make it easier for the 

deep learning model to detect the UI elements. 

- Generating candidate UI element boxes helps to identify potential UI elements in 

the image. 

- Filtering the candidate UI element boxes using colour segmentation helps to 

remove false positives. 

- Classifying the filtered UI element boxes using a deep learning model helps to 

identify the type of UI element in each box. 

Overall, the paper's proposed hybrid method solves the problem of UI detection by 

combining the strengths of traditional image processing methods and deep learning 

methods. [10] 

3.4.5 Publicly available different datasets 

In the field of computer vision, the choice of datasets plays a pivotal role in model 

development and evaluation. To prepare a dataset, you can use one of two ways: create a 

custom dataset according to specific needs, or use one of the many publicly available 

datasets. Here are some of the well-known datasets of images with user interface elements.   

The COCO dataset is a big collection of pictures for computer vision tasks. It has 

over 200,000 images of 80 different objects, and each image has detailed labels that say 

where the objects are and what they are. COCO is very useful for tasks like finding object 

detection and classification. It has also been used to create competitions for computer 

vision, which has helped to improve the field. Scientists and programmers use COCO for 

many different things, so it is a very important dataset for object recognition and scene 

understanding. [17] 

Rico stands out as one of the most extensive mobile UI datasets, designed to 

support a range of data-driven applications, including design search, UI layout generation, 

UI code generation, user interaction modelling, and user perception prediction. The Rico 

dataset includes over 10,000 applications and 70,000 screenshots. It covers 27 different 

categories. [18] 
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 The ReDraw dataset is a collection of Android screenshots, GUI metadata, and 

labelled images of GUI components. It is designed to support machine learning-based tools 

for GUI prototyping and refactoring. The dataset includes over 14,000 screenshots, 

metadata for each screenshot, and over 190,000 of GUI components. It can be used for 

various tasks, including GUI element detection, layout generation, code generation, user 

interaction modelling and user perception prediction. [19] 
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4 Practical Part 

In this practical part of the bachelor's thesis, the detection of user interface elements 

(UI) on web pages is investigated using the YOLO version 8 nano (YOLOv8n) and small 

(YOLOv8s) object detection models. YOLOv8 was chosen due to its recent release and the 

lack of extensive research on its application in UI detection. By comparing the smaller 

YOLOv8n with the slightly larger YOLOv8s, the impact of model size on detection 

accuracy and inference speed is evaluated. This comparison may help in understanding 

how model size affects resource utilization and performance trade-offs. 

A publicly available experimental dataset of images obtained from Roboflow, a 

computer vision development environment, is used for training and evaluating models. The 

dataset consists of images of user interface elements, including buttons, checkboxes, text 

fields, etc. 

The subsequent workflow includes model training, validation, and testing. The 

ultimate goal is to test the performance of the models and use them to detect user interface 

elements on the website images.  

4.1 Datasets 

The public experimental image dataset was obtained from Roboflow, a computer 

vision development environment. The dataset contains unique images, consisting of user 

interface elements, and their variations. They were created using simple transformation 

techniques, such as rotation and mirroring to enhance the accuracy and adaptability of 

detection models. Such variations extend the model's capabilities to recognize elements 

regardless of their orientation, which is crucial for real-world applications where user 

interface elements may appear in various orientations. The example of images is illustrated 

in Figure 12.  

The dataset is collected mainly from images of applications for mobile devices, and 

screenshots of website interfaces. To facilitate data organization and access, a 

configuration file named 'data yaml' is used. The file provides information about training, 

validation, and testing subsets directories. The total number of object classes is 14: 

'Button', 'CheckBox', 'CheckedTextView', 'EditText', 'EditText-' 'ImageButton', 

'ImageView', 'ProgressBar', 'RadioButton', 'RatingBar', 'SeekBar', 'Spinner', 'Switch', 
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'TextView'. Three subsets of the dataset: train, valid, and test contain 2086, 200, and 100 

files respectively, and are used to train, validate, and test the neural network model.  

Each subset has files with images in the jpg. format containing one or more user 

interface elements. There is another text file in the txt. format for each image with 

bounding box coordinates for each user interface object and corresponding class.  

 

Figure 12. Images from the dataset. 

 

4.2 Practical use of YOLOv8n and YOLOv8s 

An open-source machine learning framework PyTorch was chosen for further work 

with detection of the user interface elements on the image. The models YOLOv8n and 

YOLOv8s training and implementation were done on the same dataset and parameters.  
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First, the YOLOv8n model was taken to work with. The pre-trained yolov8n.pt 

weights were obtained from the open-source Ultralytics and loaded into the framework. 

The first step was the model training on the training subset. The data from the set was 

loaded from the data.yaml file. Hyperparameters were set as default by Ultralytics as 

image size 480, and batch size 16. The model was trained on the duration of 200 epochs.  

The next step was to validate model accuracy after it had been trained in the 

previous step. In this mode, the model is evaluated on a validation set to measure its 

accuracy and generalization performance. The subset valid is used for validation.  

After the training, the validation of the trained models was carried out again.  

The third step is testing the trained model on a test dataset. The test set is needed to 

evaluate the performance of the model on data that it does not see during training. This 

allows us to make sure that the model will be able to work well on new data.  

 The next work was done with the YOLOv8s model. The pre-trained yolov8s.pt 

weights were obtained from the open-source Ultralytics and loaded into the framework. 

The training was done on the same dataset and adjusted hyperparameters as model 

YOLOv8n. Then the model was validated and tested.  

After the YOLOv8n and YOLOv8s models were tested, they were used for the 

detection of the user interface elements webpage on the image of the chosen screenshot 

'webscreen.jpg' that is shown in Figure 13. 

 

 

Figure 13. The webpage screenshot from the site “Amazon” https://www.amazon.de/. 

https://www.amazon.de/


 

 36 

5 Results and Discussion 

5.1 Results of the practical part 

The model YOLOv8n has been trained at first for 200 epochs. The results of the 

validation on Graph 1. showed the model overfitting, meaning that it learns the training 

data too well, to the point where it cannot generalize to unseen data.  

 

 

Graph 1. The result of validation and training of the YOLOv8n on 200 epochs. 

 

Accordingly, the model YOLOv8n has been trained again with adjusted 

hyperparameters.  The image size is 640 because a larger input image size gives the model 

more information to work with and improves the detection performance. The 

recommended value for a batch on a dataset with 2086 images using a 16-core graphics 

processor is 16, so this value was set. The number of epochs was set as 70 with a patience 

of 20, meaning that if in 20 epochs there is no improvement in training, it stops to prevent 

overfitting.   

The early stop (patience) was triggered at epoch 63 and the training was stopped. 

The best result of the 43rd epoch was saved. The results of the training and validation are 

depicted in Graph 2. 
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Graph 2. The result of validation and training of the YOLOv8n. 

 

The precision recall shows mean average precision (mAp) for all classes is 0.392 at 

a threshold of 0.5, which means that the model more accurately decomposes the user 

interface elements in the images. The val/box_loss value is higher than the train/box_loss, 

but it still decreases over time. This indicates that the model learns to better predict the 

bounding boxes of objects, but may to some extent override the training data.  

The model YOLOv8s has been trained for 70 epochs. The results of the validation 

are in Graph 3. The val/box_loss value is higher than the train/box_loss, and there is a 

tendency for this value to decrease. The precision recall shows mean Average Precision 

(mAp) for all classes is 0.463 at a threshold of 0.5, which means that the model more 

accurately identifies the user interface elements in the images.  

 

 

Graph 3. The result of validation and training of the YOLOv8s. 

 

The F1 score is a metric that is used to evaluate the performance of a classification 

model. It is the mean of the model's precision and recall. Precision is the fraction of correct 
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positive predictions, and recall is the fraction of actual positive cases that are correctly 

predicted. 

The YOLOv8s model illustrated in Graph 5., has a higher F1 score (0.166) at a 

higher threshold than the YOLOv8n model F1 score (0.035), illustrated in Graph 4., 

suggests that it is better at detecting objects at higher confidence levels.  

The fact that the first model was trained for more epochs than the second model has 

contributed to its higher F1 score. A longer training period allows the model to learn more 

about the data and to better generalize to new data.  

 

 

Graph 4. F1-confidence of YOLOv8n. 

 

 

Graph 5. F1-confidence of YOLOv8s. 

 

The precision and recall metrics from the YOLOv8n model testing are shown in 

Graph 6., and from the YOLOv8s model are shown in Graph 7. YOLOv8n: mAp is 0.152 

at a threshold of 0.5, which is lower than it was after training mode, which means that the 

model is not able to generalize well to new data, perhaps because the test data may be more 

complex than the training data. 
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Graph 6. Precision-Recall (test), YOLOv8n. 

 

YOLOv8s: mAp is 0.226 at a threshold of 0.5 is also lower in testing mode 

compared to training mode. The drop in mAp is not always a cause for concern. If the mAp 

in testing mode is still high enough for the model to be useful like in the YOLOv8s model, 

then the drop in mAp may be acceptable.  

 

 

Graph 7. Precision-Recall (test), YOLOv8s. 

 

 The final step involved the detection of user interface elements in the image using 

both YOLOv8n and YOLOv8s models. The recognition results of YOLOv8n are shown in 

Figure 14, and those of YOLOv8s are shown in Figure 15. As expected, the results of 

recognizing user interface elements with YOLOv8n were less accurate compared to 

YOLOv8s. This is because the YOLOv8s model is more complex. This increased 

complexity allows the YOLOv8s model to learn more complex features and patterns in the 

training data, which can improve its generalization performance.  
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Metrics: Model YOLOv8 small Model YOLOv8 nano 

mAP (training)  0.0.463 at threshold 0.5 0.392 at threshold 0.5 

F1 (training) 0.18 at threshold 0.166 0.15 at threshold 0.035 

mAP (testing) 0.226 at threshold 0.5 0.152 at threshold 0.5 

Table 1. Metrics of small and nano models. 

 

Table 1. compares the performance of two YOLOv8 models: nano and small, on 

the UI detection task. The table shows that the small model outperforms the nano model in 

terms of accuracy.  It is slightly larger than the nano model and is a good choice for 

applications where accuracy is important. Nano is very fast to run, but it also sacrifices 

some accuracy. This model is a good choice for applications where speed is critical, but 

accuracy is not as important.  

The work presented in this thesis has successfully demonstrated the effectiveness of 

YOLOv8 nano and YOLOv8 small object detection models for user interface detection on 

the images of webpages. Although these models show promising results, there is still room 

for further improvement and research. Several factors were found that impacted the work 

and could lead to improved recognition results in the future. 

1. Investigate the use of hybrid models: 

Hybrid methods refer to a combination of two or more different detection 

techniques to achieve a balance between speed and accuracy. These methods aim to 

leverage the strengths of each approach to overcome their individual limitations and 

provide a more comprehensive and robust detection solution. 

2. Explore the use of transfer learning: 

Transfer learning, a technique that utilizes a pre-trained model as a foundation for a 

new model, could prove to be a valuable tool in enhancing model performance. By fine-

tuning a pre-trained object detection model, such as YOLOv8, on a dataset of user 

interface element images, transfer learning could significantly improve the model's ability 

to detect elements accurately. 

3. Develop a more comprehensive UI detection dataset: 

The current dataset used in this work is relatively small and does not cover the full 

range of UI elements that are found on web pages. Developing a more comprehensive 
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dataset would allow for more rigorous evaluation of UI detection models and would also 

help to identify any weaknesses in the models 

Overall, this work demonstrates the importance of careful model selection and 

hyperparameter tuning to achieve optimal performance in object detection tasks. 

 

 

Figure 14. Result of detection UI elements. YOLOv8n. 

 

 

Figure 15. Result of detection UI elements. YOLOv8s. 
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5.2 Comparison of the work of Chen et al. (2022) and the current work 

on UI detection 

Chen et al. (2022) [10] explored the use of deep learning for object detection in 

graphical user interfaces (GUIs). They compared the performance of traditional image 

processing methods with deep learning models and found that deep learning models 

outperformed traditional methods on a variety of GUI detection tasks. 

In the current work, two YOLOv8 models were trained for GUI detection: YOLOv8 

nano and small. The small model outperformed the nano model in terms of mean average 

precision (mAP) and F1 score. The early stopping regularization technique was used in the 

work to prevent overfitting, while Chen et al. did not mention using any regularization 

techniques in their work. 

Chen et al. (2022) used a larger dataset of 10,000 images, while the current work 

used a smaller dataset of 2,086 images. This difference in dataset size may have 

contributed to the better performance of the models in the work of Chen et al. compared to 

the current work. Larger datasets typically provide more information for deep learning 

models to learn from, allowing them to capture more complex patterns and features. This 

can lead to improved generalization performance, meaning that the models are better able 

to perform on new data that they have not been trained on.   

Overall, the findings of the two works are consistent: deep learning models are 

effective for GUI detection. 
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6 Conclusion 

User interface (UI) element detection focuses on identifying and localizing UI 

components within digital interfaces. It is essential for various applications, including 

accessibility, automated testing, and the development of intelligent systems that can 

interact with graphical user interfaces. As technology continues to advance, UI detection 

methods are evolving to enhance accuracy, speed, and adaptability across different user 

interfaces and platforms. 

The described approach to detect UI elements, in the thesis, is machine learning. It 

uses artificial neural networks that are trained on large datasets that contain images with 

user interface elements. These images are gathered from websites and mobile applications.  

Three different object methods are described: R-CNN, YOLO, and SSD. YOLO and SSD 

are commonly used in UI detection tasks due to their ability to efficiently locate and 

classify multiple objects in an image. The YOLO algorithm has a less complex architecture 

than SSD which makes it easier to use and is faster than the R-CNN. YOLO excels at 

processing images quickly, making it suitable for real-time applications. 

In the practical part, two sizes of the latest version of the YOLO model are selected 

and evaluated. A publicly available dataset is used to train and evaluate these models to 

detect interface elements in webpage images. The performance of YOLO models is 

evaluated using precision, recall, and confidence metrics. The small model is better in 

terms of accuracy and the nano model is faster. However, the results of the comparison of 

using both models in UI detection on the image show relatively small differences between 

them. The choice between the nano and the small models depends on the specific 

application requirements and the desired balance between accuracy and speed. For 

applications that prioritize real-time performance, the nano model is a better choice, while 

for applications that require higher accuracy the better is the small model. 

Based on the practical work results and their comparison with another work, more 

comprehensive datasets of UI elements can be used for enhancing model performance. The 

combination of multiple detection techniques may help to achieve a favorable trade-off 

between processing speed and detection accuracy 
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