
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RÁDIOELEKTRONIKY

D E S I G N O F A D A P T I V E W I R E L E S S VIDEO A N D D A T A

T R A N S M I S S I O N
NÁVRH ADAPTIVNÍHO BEZDRÁTOVÉHO PŘENOSU VIDEA A DAT

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Tomáš Lorenc
AUTOR PRÁCE

SUPERVISOR doc. Ing. Tomáš Götthans, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

T
VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY
TECHNICKÉ A KOMUNIKAČNÍCH
V BRNĚ TECHNOLOGIÍ

Diplomová práce
magisterský navazující studijní program Elektronika a komunikační technolog ie

Ústav rádioelektroniky

Student: Bc. Tomáš Lorenc ID: 206777
Ročník: 2 Akademický rok: 2022/23

NÁZEV TÉMATU:

N á v r h a d a p t i v n í h o b e z d r á t o v é h o p ř e n o s u v idea a dat

P O K Y N Y P R O VYPRACOVÁNÍ:

V teoretické části práce prostudujte technologie bezdrátového přenosu dat a videa, která mohou pracovat v I S M

pásmech. Předpokládejte minimální rozlišení videa 720x480 při 15fps. Při návrhu přenosu, uvažujte též zpětný

kanál. Dále prostudujte možnosti zpracovávání videa (komprese) vjednotce NVIDIA Jetson Nano. Pro kompresi

zvolte vhodný kodek, výběr zdůvodněte. Realizujte hardware navrženého řešení (návrh, osazení).

Realizovaná zařízení zprovozněte - vysílací a přijímací jednotku. Vytvořte firmware pro obě strany. Uvažujte, že

bude vysílací jednotka připojena k NVIDIA Jetson Nano a přijímací jednotka bude připojena k osobnímu počítači.

Vytvořte uživatelské rozhraní pro počítač a implementační knihovnu pro NVIDIA Jetson Nano.

Dodatečné informace (doporučení):

Doporučené znalosti: práce s programy C A D , návrh obvodů, schopnosti programovat v M A T L A B U , C a Python,

znalosti v oblasti zpracování signálů, znalosti v oblasti měření.

DOPORUČENÁ L I T E R A T U R A :

[1] DOBEŠ J . ; ŽALUD V. Moderní radiotechnika, B E N - technická literatura, ISBN: 9788073001322

Termín zadání: 6.2.2023 Termín odevzdání: 22.5.2023

Vedoucí práce: doc. Ing. Tomáš Gôtthans, Ph.D.

doc . Ing. Luc ie Hudcová, Ph .D.

předseda rady studijního programu

UPOZORNĚNÍ:
Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným

způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského

zákona č. 121/2000 Sb . , včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku

č.40/2009 Sb .

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10/616 00 / Brno

ABSTRACT
The aim of this thesis is to build a device that will be able to establish a wireless
transmission of a real-time video stream and send the video to a computer where it will
be displayed. The device is powered by the NVIDIA Jetson Nano and video is streamed
wirelessly through a WiFi interface. In theoretical part described the problem of video
transmission and video compression. The used codecs are h264, h265, and VP8 . A
subjective test to find the minimum acceptable value of video quality was performed.
Measurements have been made to find the best codec for real-time video streaming.
Measurements were also performed in real conditions. In conclusion, the results of the
measurements and the selection of the best codec for real-time video streaming are
commented.

KEYWORDS
Real-time video streaming, WiFi video streaming, codec description, h264, h265, VP8,
Video, Nvidia Jetson Nano, RTP, GStreamer, USB Camera capture, GstShark, Outdoor
measurement conditions, Subjective test.

ABSTRAKT
Cílem této diplomové práce je sestavit zařízení, které bude umět vytvořit bezdrátový
přenos real time videa a posílat video do počítače, kde bude zobrazeno. Zařízení je
postavené na jednotce NVIDIA Jetson Nano a vysílání videa probíhá bezdrátově pomocí
WiFi rozhraní. V teoretické části je popsána problematika přenosu videa a komprese
videa. Používají se kodeky h264, h265 a VP8 . Byl proveden subjektivní test pro nalezení
minimální akceptovatelné hodnoty kvality videa. Bylo provedeno měření, které odhalí
nejlepší kodek pro real time přenos videa. Měření probíhalo i v reálných podmínkách. V
závěru jsou komentovány výsledky měření a výběr nejlepšího kodeku pro real time video
přenos.

KLÍČOVÁ SLOVA
Streamování videa v reálném čase, streamování videa přes WiF i , popis kodeků, h264,
h265, VP8 , Video, Nvidia Jetson Nano, RTP, GStreamer, snímání kamerou USB,
GstShark, venkovní podmínky měření, subjektivní test.

Typeset by the thesis package, version 4.07; ht tp: / / la tex.feec.vutbr .cz

http://latex.feec.vutbr.cz

LORENC, Tomáš. Design of adaptive wireless video and data transmission. Brno:

Brno University of Technology, Fakulta elektrotechniky a komunikačních technologií,

Ústav rádioelektroniky, 2023, 69 p. Master's Thesis. Advised by doc. Ing. Tomáš

Gótthans, Ph.D.

Author's Declaration

Author: Be. Tomáš Lorenc

Author's ID: 206777

Paper type: Master's Thesis

Academic year: 2022/23

Topic: Design of adaptive wireless video and

data transmission

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would especially like to acknowledge my supervisor, doc. Ing. Tomas Gotthans, Ph.D.

for his valuable advice, and support with multiple issues I had through the whole way of

making this thesis.

Contents

Introduction 11

1 Theoretical Part 13
1.1 Video processing 13

1.1.1 Compression Parameters 13
1.1.2 Interlaced / Progressive Video 14
1.1.3 Video Compression 15
1.1.4 Codec 15
1.1.5 Lossy compression 16
1.1.6 Human Visual System (HVS) 16
1.1.7 Color space conversion 17
1.1.8 Color space subsampling 17
1.1.9 Transform Coding - D C T 18
1.1.10 Quantization 20
1.1.11 Entropy Coding 21
1.1.12 Predictive Coding 23

1.2 Codec in NVIDIA Jetson Nano 24
1.2.1 H.264/MPEG-4 A V C 25
1.2.2 H.265/MPEG-H H E V C 25
1.2.3 VP8 26

1.3 Protocols transmission 26
1.3.1 U D P / T C P 26
1.3.2 RTP 27
1.3.3 R T C P / R T S P 28

1.4 Device design 29
1.4.1 NVIDIA Jetson series 29
1.4.2 Jetson Nano 30
1.4.3 JetPack SDK 32
1.4.4 GStreamer 32
1.4.5 U-Blox 33
1.4.6 Camera 35

2 Implementation Part 36
2.1 NVIDIA Jetson setup 36

2.1.1 Power adapter and SD card 36
2.1.2 JetPack instalation 36
2.1.3 Linux preparation 37

2.1.4 Remote access 38
2.1.5 GStreamer setup 39
2.1.6 GstShark setup 41
2.1.7 N T P setup 42

2.2 U - B L O X setup 43
2.3 Software implementation 44

3 Measurement Results 46
3.1 File Encoding 46
3.2 Subjective test 49
3.3 Real-time video transmission measurement 52

3.3.1 Methodology of measurement 53
3.3.2 Measurement of internal parameters in the unit and in the

computer 55
3.3.3 Outdoor measurement when both stations are stationary . . . 57
3.3.4 Outdoor measurement when one station is in movement 61
3.3.5 Artefacts in video transmission 63

Conclusion 64

Bibliography 67

List of Figures
1 Device concept block diagram 12
1.1 Example of Interlaced Error artifacts 14
1.2 A basic block diagram of Video Compression 16
1.3 R G B to Y C b C r conversion 18
1.4 D C T basis functions for an 8x8 input block 20
1.5 Example of Quantization issues 21
1.6 Example of power distribution using D C T transform and quantization 22
1.7 A n example of spatial redundancy in a video frame 23
1.8 The difference of splitting the frame into blocks 26
1.9 Device block diagram 29
1.10 Jetson Nano Development Kit 31
1.11 List of the most important tools included in the JetPack 32
1.12 GStreamer pipeline 33
1.13 U-blox EVK-NINA-W101 development board 34
2.1 Fully Complete Device 45
3.1 Bit rate of the final file 48
3.2 Example of sample compression test 49
3.3 Bit rate of the 600 kb/s sample 50
3.4 Bit rate of the 300 kb/s sample 51
3.5 Result of the subjective assessment 52
3.6 Codecs comparison of average ratings score 53
3.7 implementation of the latency measurement method 54
3.8 Encoder output bit rate during real-time transmission 57
3.9 Device enclosed in a plastic box 58
3.10 Outdoor measurement result with static stations for h264 codec . . . 59
3.11 Outdoor measurement result with static stations for h265 codec . . . 60
3.12 Outdoor measurement result with static stations for VP8 codec . . . 61
3.13 Outdoor measurement result with one move station for h264 codec . . 62
3.14 Outdoor measurement result with one move station for h265 codec . . 62
3.15 Outdoor measurement result with one move station for vp8 codec . . 63
3.16 Examples of Artifacts in video transmission 63

List of Tables
1.1 RTP Packet header 28
1.2 Jetson comparison table 30
1.3 Jetson Nano performance modes 31
3.1 Uncompressed video File Parameters 46
3.2 Codec parameters 47
3.3 Result of file encoding 48
3.4 List of test Bit Rate 49
3.5 Average C P U load in the Jetson unit during real-time transmission . 56
3.6 Average bit rate in the Jetson unit real-time transmission 56
3.7 Average bit rate on the encoder output during real-time transmission 56
3.8 Average latency during real-time transmission 57
3.9 Encoder latency during real-time transmission 58

Introduction
Nowadays, it's a matter of course for everyone to play videos on their devices.
Playing video has become part of our lives. But to play the video on the user's
device, there are a lot of operations behind it. The main reason is that video is very
bit rate intensive. And that's why it is necessary to use tools that can reduce the
bit rate without degrading the resulting video quality. These tools are called codecs,
and their function is to modify the video to make it size as small as possible.

There are two ways to play video. Video can be playback from a recording file
or in real-time mode. For example, playback from a recording can be when the
video is played from a file stored on a local drive or playback on some internet T V
e.g. youtube. It doesn't matter how long it took to encode the video and how
long it takes to decode and how large the latency is. The most important thing is
that the final quality is as good as possible. Real-time mode means that when the
video is captured, it is immediately displayed on the monitor. In most cases, the
video source is the output from the camera. A real-time system is more difficult
than a system that plays videos from a file. The real-time system has the opposite
requirements than a system playing from a file. The latency between video capture
and display must be as short as possible regardless of the quality of the video. The
problem is more complicated if it is by a wireless connection. A n example of the use
of real-time video can be with security cameras or drone camera.

The aim of this thesis is to build a device that will be able to establish a wireless
transmission of real-time video and send the video to a computer where it will be
displayed. On the transmitter unit, the video will be created using a camera and
transmitted via W i F i wireless technology to a computer. Using this device, several
measurements are made to determine which codec and with which parameters are
best for real-time video streaming. The best codec are used to create the final
device. The application of this device will be, for example, that it will be attached
to a robot or a car and will transmit video from a camera that should capture the
scene in front of the vehicle. This means that the transmitter unit will move during
the transmission. To ensure that the transmitter has a sufficiently powerful video
compression chip, a single board NVIDIA Jetson Nano computer will be used, which
has a hardware accelerator for h264, h265, and VP8 codecs. By using a powerful
unit, it will also be possible to use it for other tasks in the future, such as obstacle
detection.

In the theoretical part, the possibilities of video compression will be explored.
A n introduction to video is first described. Then the principle of video compression
will be described step by step as they occur in the codec. It will describe all the
most important parts of compression, which are used by all modern video codecs.

11

It will be explained what the differences between h264, h265, and VP8 codecs.
The next chapter in the theoretical part is focused on the protocols used for video
sharing over an IP network. The greatest attention will be given to the description
of the principle of the RTP protocol, which is used for real-time transmissions of
multimedia content. The final chapter in the theoretical part will be about the
design of a device for testing real-time video streaming. The NVIDIA Jetson Nano
computer will be described. The NVIDIA Jetson Nano will be used as a transmitter
unit, where the camera video capture and video encoding will be done. For work
with video under Linux, the GStreamer framework will be used. The functionality
of the GStreamer framework will be described in detail. A software program will be
created for the Jetson unit and computer. Several tests will be performed using the
device to find the best codec for real-time video streaming. The measurement will
also take place in real conditions.

transmission

Camera WiFi Wireless
Transmitter

WiFi Wireless
receiver

NVIDIA Jetson Nano Computer Monitor

Fig. 1: Device concept block diagram

12

1 Theoretical Part

1.1 Video processing

The digital video consists of a group of many images that are quickly projected to the
viewer. These images are called Frames[l]. Due to the imperfection of the human
eye, the human brain perceives this projection as a moving image. The faster the
Frames are projected, the smoother the motion seems for viewer. This speed is called
the Frame Rate. It is one of the main parameters of the video. Another important
parameter for streaming video is the Data Rates. This depends on the frame rate
and the resolution of the frame. The Resolution of a frame indicates how many
pixels are in rows and lines. Pixel means the smallest color element in the image
and contains a numeric code of color. Color is represented by three colors: red, green
and blue (RGB). Almost any color can be created by using different combinations
of these three colors.

1.1.1 Compression Parameters

Frame Rate

The frame rate is a parameter that represents how many static frames are projected
per time[2]. The most common unit of time is one second, and that's why the
basic unit is FPS (Frames per Second). The higher the FPS, the smoother the
movement appears to people. But if the value is too large, it will be very demanding
on computing performance. If the value is too low, the viewer sees the choppy
and flickering video. The frame rate must be at least 8 FPS for smooth video
perception^]. For example, most movies have 24 FPS.

Data Rate

The data rate indicates how many data bits are transferred per time. This parameter
is important for the design of the communication link. The data transfer rate is
typically represented in bits per second (bps), and the amount of bits depends on the
quality of the frames and frame rate. The compression efficiency is also determined
by the ratio of the original to the new data rate value.

As the scene in the video changes over time, the data rate also changes. This is
called Variable Bit Rate (VBR) [1]. The advantages of V B R are better quality
and better optimization of storage space. Use more bits in a complex scene and use
fewer bits for a simple scene to save disk space. But for the playback player and the
storage disk, V B R is processing very intensively. The video output can be switched

13

w
(a) Progressive (b) Interlaced

Fig. 1.1: Example of Interlaced Error artifacts [3]

to the opposite mode, namely Constant Bit Rate (CBR). At a constant bit rate,
the video quality must change over time to keep the same value of bit rate. C B R is
very often used because the required data capacity of the communication link can be
designed in advance. Though the resulting video quality is reduced and the storage
capacity is not optimal (for simple scenes the storage capacity is wasted).

1.1.2 Interlaced / Progressive Video

Interlaced

Interlaced technique [5] is a video distribution and display technique that reduces bit
rate and doubles frame rate. The interlacing technique consists in not broadcasting
the whole frame at once. The first frame only odd lines are transmitted and the
second frame only even lines are transmitted. Again, the imperfections of the human
eye are exploited, which cannot detect these missing lines. The disadvantage of this
technique is that it creates error artifacts in a very fast moving scene because the
fast object is in different positions in each frame. A n example of an error artifact
can be seen in the figure 1.1.

Progressive

Progressive technique of video distribution is opposite of Interlaced technique. Pro­
gressive technique transmits all line of all frames. This method of transmitting is
demanding in terms of data rate, but is nowadays already used by modern televisions
and computer monitors.

The method of video distribution can be determined by the letter after the res­
olution value. If there is an " i " (e.g. 10801), it means that the interleaved method[l]
is used and the "p" (e.g. 720p) means the progressive method.

14

1.1.3 Video Compression

Uncompressed video recording requires a huge amount of data rate. Let's take a
simple case for a 1280x720 video at 60 FPS. If you wanted to broadcast this video,
the bit rate calculation would be as follows:
1280(Width) •720(height)-3(colorsperpixel)-8(bitsperpixel)-60(FPS) = 1, 33Gbps.
With such a high bit rate, it is not possible to establish a data link, so it is necessary
to reduce the video bit rate before sending and saving. For this, a method called
video compression is used. It is a process in which the data intensity is reduced[l].
How much the data consumption is reduced depends on the choice of codec and also
on the requirement of the final video quality.

The tool that provides data compression is called C O D E C . Codec is an acronym
that stands compressor / decompressor[4]. The compressor converts the data into
a form that takes up as little space as possible and the decoder reconstructs the
data to its original form. Codecs are very demanding on computing performance,
so they are often implemented as a hardware accelerator in processors or graphics
cards. There are many codecs exist and it is impossible to say which one is the best.
In the case of the NVIDIA Jetson Nano, the M P E G 2 , MPEG4, H.264, H.265, VP8
and VC1 [11] hardware codecs are implemented in the chip. In general, they can be
classified according to the fidelity of the quality of the resulting video, the file size,
computing performance requirements, popularity, and licensing[l].

1.1.4 Codec

The basic operation of the compression codec is simple. The codec analyzes the
video content and converts it into a form that takes up much less space. However,
the codec must be able to convert this compressed video beck into its original form.
Compression codecs are mainly divided into lossy and lossless codecs[l]. With
lossless compression, the data can be reconstructed exactly as it was before encoding.
The reconstructed data is identical to the original data. A n example is the Huffman
coding [4] method, where the symbols that occur most frequently in the signal are
encoded using shorter code words. Lossless compression is not as efficient, so lossy
data compression is used for multimedia applications. After using lossy compression,
the reconstructed data will never be identical to the original data. In the case of
multimedia data, items that cannot be detected by the human senses are most often
removed. Below we will discuss a few basic methods used by the video codecs in
the NVIDIA Jetson Nano. The block diagraml.2 shows the basic structure of the
codec.

15

C o l o r space
conversion

C o l o r space
subsampling

Divided into
smaller blocks

ZigZag scan H Entropie coding

Fig. 1.2: A basic block diagram of Video Compression

1.1.5 Lossy compression

The lossy compression method is a type of encoding that does not need to retrieve
exactly the original data during decoded. Lossy compression can reduce the file size
several times more than lossless compression[l], while the resulting quality is still
satisfactory for the application. Lossy compression is most commonly used for data
such as audio, music, and video because it can take advantage of the imperfections
of the human senses. This information is called irrelevant data, which means re­
dundant data that will be permanently deleted. Several studies and subjective tests
have been conducted to understand the human vision. Based on these, a model
Human Visual System(HVS) [6] has been constructed to show what the human
vision is very sensitive to and what it is less sensitive to. Using this model, the codec
determines which components in the image can be completely removed, which com­
ponents can be compressed at a higher compression level, and which components
need to be kept at the best quality.

1.1.6 Human Visual System (HVS)

The human eye is sensitive to wavelengths between 380 nm and 780 nm (visible
spectrum) [5]. Any color outside this spectrum is irrelevant and can be removed.
The human eye consists of rods and cones. Rods are sensitive to low light levels
but only perceive brightness intensity. The cones allow color perception and are
best in bright light. The cones are not equally sensitive to all colors in the visible
spectrum, but the predominant colors are at 420 nm (blue), 534 nm (green), and 564
nm (red). This is one of the reasons why we describe color using these three colors.
A very important fact is that human vision is more sensitive to brightness than to
color. Therefore, it is more appropriate to represent the image in the Y C B C R format
than in the basic R G B format [2]. Y stand for luminance (brightness) component
and C stands for chroma (colors) components. This format will be described below.
Because the eye is more sensitive to brightness than color, color components may
be encoded with lower resolution

The HVS model also describes what a person sees more sensitively than less
sensitively. [6] The following are some examples of imperfect human vision:

16

• In fast scenes, the sensitivity of the eye decreases, while in slow scenes it is
more sensitive.

• In areas where the difference in color contrast is small, the perception of sen­
sitivity is poor.

• Human vision perceives the finer structures of an image in less detail than
coarse structures.

The number of possibilities presented in the HVS model, where human perception
of the image is limited, is many times more, but this is not the focus of this thesis.
These perception imperfections are used to compress. Structures in the video where
the eye sensitivity is high are therefore coded with a lower compression rate and
where the eye sensitivity is lower are coded with a higher compression rate.

1.1.7 Color space conversion

As mentioned earlier, HVS is more sensitive to brightness information compared to
sensitivity to color information. Therefore, a method is used for image transmission
where the brightness component is extracted from the image and transmitted sep­
arately. This method of image transmission was already used for analog television.
The most widely used color scheme with a separate brightness component is called
Y C B C R and was part of the NTSC analog television standard[5, 6]. The Y C B C R

color scheme consists of three components. The Y component contains luminance
information and corresponds to the gray-level representation of video. The C B and
C R components contain color information. C B indicates the colour difference signal
between the blue and luminance components. And C R indicates the colour differ­
ence signal between the red and luminance components. The green color is not
transferred, but both C B and C R components are calculated based on Y , the green
color can be calculated and the original R G B values can be restored. A n example of
how Y C B C R looks like is in the figure 1.3. There are several methods for conversion
exist, below is the most used conversion method according to ITU-R BT.601[7].

Y~ "0,299 0,587 0,144 " ~R
CB = -0,169 -0,331 - 0 , 5 G

CR_ 0,5 0,419 -0,081_ B_

1.1.8 Color space subsampling

Taking advantage of the imperfection of the HVS, the quality of the color informa­
tion can be reduced without significant visual loss for the viewer. This makes it
possible to use subsampled chrominance formats[2]. Subsampled the chroma com­
ponent is one of the most basic compression and data-rate reduction technique. It

17

Orig ina l Y channe l Cr channe l Cb channe l

Fig. 1.3: R G B to Y C b C r conversion

is used not only for video, but also for static images (JPEG). Subsampling works in
such a way that the individual colour points of the chroma component are not all
transferred, but fewer. The subsampling used is commonly expressed as 4:a:b ratio
and this ratio is defined for an area of 4 x 2 pixels. The first digit indicates the
luminance component and in all cases has a value of 4, which means that the lumi­
nance component is transmitted at full resolution. The second and third digits (a
and b) indicate the number of chrominance samples in the top row and the number
in the bottom row. Below is a list of the formats used. The luminance component
is always kept at full resolution.

• Format 4:4:4 - It keeps the chroma components at their original resolution.
No subsampled is used, so there is no data compression.

• Format 4:2:2 - Subsampling the horizontal resolution of the chroma compo­
nents by half, but the vertical resolution is full.

• Format 4:2:0 - Subsampling the horizontal, and even vertical resolution of
the chroma components by half.

• Format 4:1:1 - Subsampling the horizontal resolution of the chroma compo­
nents by a quarter.

1.1.9 Transform Coding - DCT

In the original image, all individual color points are equally significant, so when
transferring, all points must be transferred. This method of transmission is not good
at all. When the image is subdivided into blocks, it is possible to detect the similarity
of each pixels in the small block. This means they have spatial redundancy. To assign
different significance to all image points, a method is used that can concentrate the
energy into a few coefficients. Discrete Cosine Transform (DCT) [5] function
is most commonly used in video compression. The result of the transform is to
decorrelate the original signal and redistribute the signal energy among a small
set of transform coefficients. For image or video frame transformations, the 2D

18

version of the Discrete Cosine Transform is used and the inverse transform is called
the Inverse Discrete Cosine Transform (IDCT). The D C T is very similar to
the Fourier transform, but the output is real numbers, while the output of the
Fourier transform is complex, so the D C T is less computationally demanding. The
D C T expresses a finite sequence of discrete frequency points in terms of a sum of
cosine functions. Before applying the transformation, the video frame is divided
into smaller blocks. The small block size depends on the codec used. For example,
for basic J P E G compression, the image is divided into 8 x 8 blocks. Theoretically,
it would be possible to transform the whole image at once, but it would be very
difficult. D C T transforms each color component separately, so if the image has
been converted to the Y C b C r color scheme, D C T transforms the three components
separately.

The two-dimensional D C T can be expressed as follows:

M N (2m + 1)WK

2M cos
(2n + l)vir

2N
;i.2) X(u, v) = a(u)a(v) ^ ^ x(m, n) cos

m=0 n=0

Here, u and v are the horizontal and vertical spatial frequencies, range is same like
an input block; a{u) and a(v) are a normalizing factor; x(m, n) is the pixel value at
spatial location (m,n). Normalizing factor equal to:

a\u)
l

fM

M

alv]
,u = 0

,u > 0

The decoder uses the IDCT function, which is expressed as follows:

N
2_
N

v = 0

v>0
;i.3)

M N

x(m,n) = ^2 cx(u)a(v)X(u, v) cos
m=0 n=0

(2m + 1)M7T

2M cos
(2n+ l)vir

2JV
;i.4)

When the equations for DCT1.2 and IDCT1.4 function are compared, it can be
seen that they are very similar. The same part of both equations is called the Basic
Function of D C T and looks like this:

a(u)a(v)cos
(2m + 1)M7T

2M cos
(2n+ l)vir'

2JV
;i.5)

This part is always constant, it is not recalculated for each point. A constant
matrix is created for all samples, which is called the Basic Function of D C T .
The figure 1.4 shows the visualization of the 8x8 matrix Basic Function of D C T . The
horizontal frequency increases from left to right and the vertical frequency increases
from top to bottom. In the upper left corner the frequency is zero, so the value is
constant there (DC coefficient).

The figurel.6 shows an example of power distribution using D C T transform.
The left upper figure is the original image that inputs to the D C T function. The

19

1 llllllllllllll A
• o 0<

= * S :
= * £ H S S S S S S E S I

n n
Fig. 1.4: D C T basis functions for an 8x8 input block

table input contains only integer values and each value has a similar significance
(energy is evenly distributed). The right upper figure represents the output of the
D C T function. The resolution has the same size as the input, but the values are
non-integer and the main energy is concentrated in the upper left corner. The D C T
function does not reduce the number of bits, quantization and entropy coding must
follow.

1.1.10 Quantization

As already mentioned, HVS is less sensitive to high-frequency structures than to low-
frequency structures. This feature allows high-frequency information to be truncated
without the viewer noticing. For this, a quantization is used, which removes the
spatial redundancy in the D C T block[7]. Quantization is a lossy process in which
high-frequency information is truncated and cannot be recovered in the inversion
operation. There are many types of quantization. The simplest method is division,
rounding, and zeroing. In the case of image or video compression, a quantization
table is used where the quantization coefficients for all D C T elements are listed.
For higher frequency elements, the quantization coefficient is larger because the
HVS is lower sensitive. After the D C T is completed, each element is divided by a
quantum coefficient from the quantum table according to the specific coordinate.
The quantization tables are different, they vary depending on the codec used, what
color component it is for, and what compression ratio is set. In most cases, the
resulting number is rounded to an integer. Another quantization mechanism is
thresholding. If the resulting value is below a specified threshold, it is neglected.

As mentioned, quantization is a lossy process, and if the quantization level is
set too high, issues can appear in the resulting video. For example: quantization

20

(a) Blur (b) Block artifacts

Fig. 1.5: Example of Quantization issues

noise, block artifacts or image blurl.5. The figurel.6 shows an example of the
power distribution after using quantization and IDCT. The bottom left graph shows
the power distribution after quantization is applied. It shows the change in the
maximum Z-axis value and the smoothing of the other values. The bottom right
graph shows the power distribution after IDFT. The shape is similar to the original
image, but the values are more flat.

1.1.11 Entropy Coding

The goal of entropic coding is to encode the transmitted data into a form where it
takes up fewer bits, and at the same time, this compression is lossless[7]. This is
achieved by using Variable Length Coding (VLC) and a method of reading D C T
coefficients. The reading of the coefficient after quantization is done using a ZigZag
scan pattern, where the individual coefficients are read diagonally. The result is
that a sequence of non-zero values will follow first, and then a sequence of zero
values. Therefore, do not transfer a sequence of zeros, but only the count of zeros
in the sequence. If there are only zeros until the end of the block, only the EOB
(End Of Block) mark is transmitted. The DC component is coded separately so is
differentially coded with respect to the previous DC block. The easiest algorithms
for entropic coding are Huffman coding and Arithmetic coding. The entropic coder
reduces statistical redundancy.

Huffman code

The Huffman coding uses a conversion table where defined all possible input symbols
that can occur and an encoding code for them. To create the conversion table, it

21

(c) Quantization (d) IDCT

Fig. 1.6: Example of power distribution using D C T transform and quantization

is necessary to know the probability of occurrence of each input symbol before
the encoding begins. Encoding codes are created according to the probability of
occurrence of each input symbol. More frequent symbols are represented by a shorter
code and symbols that are less frequent are represented by a longer code. Huffman
coding is prefix coding, which means that encoders do not need to send how long
the code is. The code words are made so that the decoder can recognize where one
code symbol ends and where the next one begins. For decoding, the decoder needs
to know the conversion table. Because the Conversion Table adapts to the actual
input symbols, the table is transmitted with the data. Huffman coding is optimal for
symbol-by-symbol coding and the probability of distribution of the input symbols
is known in advance. Otherwise, it is better to use other coding methods.

Arithmetic code

Arithmetic code differs from Huffman coding in that it does not separate individual
input symbols from each other but encodes the entire message into a single number.
The resulting number is a fraction and ranges from 0 to 1. Arithmetic coding
assumes that the probability of each symbol occurring is the same. Depending
on how the input symbols stream, the resulting number increases or decreases. The
requirement is that the decoder must know all possible input symbols that can occur,

22

Reconstructed frame Predicted frame from Difference signal
information already received (coded & transmitted)

Fig. 1.7: A n example of spatial redundancy in a video frame [5]

their combinations and their count. For more efficient coding, probability models
are also used, which can adapt to the current stream of input symbols during the
coding process. Arithmetic coding is also prefix code.

1.1.12 Predictive Coding

The neighboring frames in the video stream are very similar. This similarity can be
used in video compression. This is a compensation of spatial redundancy using inter-
frame prediction coding, where the similarity of neighboring frames is exploited[4, 5].
For example, in T V news, where the presenter is in the studio and just reads the
news, most of the screen is the same over time and only the presenter's face is
changing. Figure 1.7 shows an example of spatial redundancy present in a video
frame. Therefore, there is no need to send the whole frames, but only changes to
neighbor frames. Only the different information is enough for the decoder to be
able to reconstruct the frames. Thanks to this method, the compression ratio can
be increased several times, but it also increases the complexity of the conversion.
The neighboring frame doesn't only have to be the previous frame, it can also be
the future frame. Simultaneously, it is not necessary to refer only to frames that are
in close contact, it is also possible to refer to frames that are far. There are many
methods that are used. Some methods compare individual pixels, some compare
energy distribution after D C T transformation, and others compare color similarities
and individual objects in the scene. The method of comparing individual pixels is
called Differential Pulse Codemodulation (DPCM) technique. Compares neighbor
pixels across frames and sends the difference using a variable-length code.

A popular prediction coding method is Group of pictures (GOP). This method
was first used with the MPEG-1 codec. Predictive coding is used between frames
only within this group. The count of frames in the GOP is determined by the codec.
The advantage is that if the decoder receives one GOP corrupted, it will not affect
the other GOPs. And it also makes it easy to jump across in the video. Frames in

23

the GOP block are divided into three types:
• I-frame (intra-coded frame) - This frame is compressed without depen­

dencies on other frames and does not need any additional data to reconstruct
it. It is required that the GOP block contains at least one I-frame.

• P-frame (predictive coded picture) - The frame is encoded using predic­
tive coding. For decoding, it is necessary to know the form of the reference
frame. The reference frame can be only the previous frame and only one the
I-frame or P-frame.

• B-frame (bipredictive coded picture) - The frame is encoded using pre­
dictive coding. Can use multiple frames to reference. Reference frames can be
either earlier or later. This increases the efficiency of compression, but also
increases the complexity of decoding. B-frame cannot be used as a reference
frame.

As a result, these images are compressed with high data reduction. Before the
GOP block is transmitted, the frames are sorted in a queue according to which frames
are referenced to which. Older codecs had a strictly defined GOP block structure
(number of individual frames, frame order, number of reference frames, etc.). Newer
codecs have much more flexibility in modifying the GOP block structure. If the
parameters are selected incorrectly, boundary artifacts may appear in the resulting
video.

In a video stream, there are objects or blocks that are the same but have only
changed their position in the frame. This is also used in video compression and only
the location coordinates of the same block in the reference frame and its movement
are transmitted. The movement is called motion vectors and defines the movement
in the vertical and horizontal dimensions. The process that finds the positions of
similar blocks is called motion estimation. Divides the frame into smaller blocks
(macroblocks) that can be of various sizes. It then searches for similar blocks across
frames and determines motion vectors. It does not have to be the whole block, it
can be a combination of several blocks or just part of them. The motion estimation
technique is complex for both encoder and decoder, but greatly reduces the data
rate.

1.2 Codec in NVIDIA Jetson Nano

The Jetson Nano unit includes three hardware encoders for h264, h265 and VP8
codecs [11].

24

1.2.1 H.264/MPEG-4 AVC

The h264 code was published in 2003 [4, 6]. It is a collaboration between M P E G
(Moving Picture Experts Group - ISO) and V C E G (Video Coding Experts Group -
ITU). The codec has several names for historical reasons: H.264, A V C (Advanced
Video Coding) or MPEG-4 Part 10. Compared to older codecs, the h264 codec is
already designed only for compressing video in a rectangular format. The goal of
the codec was to be at least 50% more efficient than previous codecs, and to do
so without increasing the complexity too much. And this was also achieved. The
principle of the codec is based on the previous MPEG-4 Part 2, MPEG-2 , H.263,
MPEG-1 , and H.261. It may seem that the codec h264 is very old, but it is still
very much popular. Which also corresponds to the fact that it's still being updated
and got its last update in 2021. The h264 codec is used in almost every application:
video storage, D V D and Blu-ray discs, Internet T V (YouTube, iTunes), online video
calls, and broadcasts T V over terrestrial, cable, and satellite channels.

The codec uses similar features as its previous codecs. Only a few features will
be listed. It introduces a hybrid D P C M block coding technique that reduces the
spatial and temporal domains. Improves entropic coding with adaptive word length
and statistical correlations. Improves movement prediction and movement vectors.
The encoder introduces the ability to adaptively size macroBlocks. Improves the
encoding of B and P frames that can reference multiple reference frames. Improves
Inter-Coding where 16x16, 8x8 or 4x4 blocks can be predicted from blocks in the
same frame.

1.2.2 H.265/MPEG-H HEVC

The codec was published in 2013[4, 6]. The codec has several names for historical
reasons: H.265, H E V C (High Efficiency Video Coding) or M P E G - H . It is the suc­
cessor to the h264 codec, and compared to it achieves about 50% better efficiency.
This has been achieved by many times more complex algorithms, which required
more computer power. The basic version of the codec supports up to 8K resolution.
The h265 codec is a licensed product. It is still less popular than its previous h264.
It is used in many area, for example video storage, Internet T V , Internet video calls,
or terrestrial DVB-T2 T V broadcasting.

The algorithm is again based on its previous design. To achieve even higher
compression ratios, most techniques are modified, but only a few will be listed here.
The biggest change was the size of the blocks. In the h264 codec the largest block
was 16x16, but in the h265 codec the largest block is 64x64. The change can be
seen in the image 1.8. Improvements have been made to the prediction, coding, and
segmentation of I-frames. Improved entropy coding. Improved reconstruction filter

25

to reduce artifacts. Intra-frame block prediction was improved by increasing the
number of possible motion vector directions from 8 to 33. For faster coding process,
multi-threading has been a lot improved.

H - 2 6 4 H.265

Fig. 1.8: The difference of splitting the frame into blocks [4]

1.2.3 VP8

This is an open-source codec from 2010[4, 6]. This codec can be used without paying
a license fee. It was developed mainly for the needs of web applications. It has been
developed for online real-time video calling and Internet T V (e.g. YouTube). The
codec is supported by all web browsers. For storage purposes it also developed the
Matroska video format. However, when creating a new device, it is preferable to use
the successors, which are V P 10 or A V I .

The codec is much simpler than the h264 and h265 codecs. Only supports
progressive video in Y U V 4:2:0 format. It uses similar principles as the h264 codec.
It also uses the D C T transformation, but the blocks are strictly sliced to a defined
size. It also uses intra-predictive block coding in frames using moving vectors but
moving vectors have limited precision. It also uses I, B and P frames to predict the
frames in the stream. It widely supports multi-threaded processing.

1.3 Protocols transmission

1.3.1 UDP/TCP

For communication between the video source unit (NVIDIA Jetson Nano) and the
receiver (Computer), a communication network with T C P / I P protocol will be used,
in which two transport protocols are most used[2]. The first one is U D P (User
Datagram Protocol), which implements an unreliable data link. This means that

26

the sender has no information about the condition in which the message was deliv­
ered to the receiver. The advantages of this link are: lightweight, low link capacity
requirements, and short response time. It is therefore suitable for streaming mul­
timedia content, where a several packet loss with video or audio will not matter.
The opposite of U D P is T C P (Transmission Control Protocol). T C P implements
reliable transmission where a channel is established between the sender and the re­
ceiver before the actual transmission begins. The T C P protocol guarantees delivery
of messages, delivery in the correct order. The disadvantage is higher latency and
therefore not suitable for streaming multimedia content. The most used transport
protocol in practice is U D P for Real-Time transmissions.

1.3.2 RTP

The main part of this project is transferring video from the Jetson unit to the
receiving computer. This is called Streaming Videos. For Streaming Videos in
an IP network, the RTP (Real-time Transport Protocol) is most used[2, 4], which
provides for the end-to-end transfer of data in the shortest possible time. The
protocol is designed to transfer packets of multimedia content over an IP network
in real-time and provides mechanisms for jitter compensation, packet loss tolerance,
and synchronization. Since U D P packets are used for transmission, packet loss is
highly probable. RTP also supports the possibility of using the T C P transport
protocol, but this method is not usual in practice.

The RTP protocol divides the multimedia data stream into separate packets
and assigns them a header. RTP only describes the format of the packet, not the
way how the packet is transmitted over the network. This is handled by the U D P
protocol. A multimedia stream can be video, audio or text. For the receiving side
to know what codec the transmitter is using, there is a Payload-Type field in the
header which indicates the codec used by a numeric code.

The size of the header depends on the RTP protocol version and specification
used. The most popular RTP protocol specification is structured into 11 fields. Only
the most important fields will be described below. The complete header can be seen
in the table 1.1.

• Sequence number: Represents the RTP packet identification number. Each
packet has a sequence number 1 number greater than the previous packet.
When the maximum value is reached, the value is reset to zero. The sequence
number is used to identify packets that were not delivered in the correct order
or to determine if a packet was lost.

• Timestamp: It is determined by the sampling period of the multimedia con­
tent. It is used for synchronization on the receiver side. The timestamp

27

Tab. 1.1: RTP Packet header[2]

Bit 0-1 2 3 4-7 8 9-15 16-31
Offset Ver. P. Ext. CSRC count Mark PT Sequence number

32 Timestamp
64 Synchronization Source Identifier (SSRC)
96 Contributor Identifier (CSRC)

Payload

number is given by sum of the previous packet's timestamp number and the
time to produce the next packet. If the contents of a single frame are divided
into multiple packets, the timestamp number will be the same for all of these
packets.

• Synchronization source identifier (SSRC): Identifies the source of the
data flow. It is used when there are multiple active streams between stations.
Each source is assigned a random ID number.

• Contributing Source Identifier (CSRC): It is used when there are mul­
tiple sources of RTP content in the network. Each RTP content source is
assigned a random number.

• Payload Type (PT): It determines what data is transmitted and what com­
pression is used. The code number is given by a table from RTP defines
document.

1.3.3 RTCP/RTSP

RTP only provides transmission from the transmitter to the receiver(s). For a
transmitter to respond to packet drops or degrading channel conditions, it needs
an R T C P (RTP Control Protocol) feedback channel [2]. R T C P is a monitoring tool
that sends quality of service (QoS) information from the receiver to the transmitter,
such as the number of packets received, data loss, jitter, etc. It does not transmit
any multimedia data. The transmitter can then react, for example, by reducing
the bit rate (e.g. reducing the resolution of the video). R T C P usually uses a port
number one higher than RTP. The problem can occur with large multicast (multiple
receivers) where the R T C P bit rate can exceed the limit. Therefore, R T C P limits
the bandwidth so that it does not exceed 5% of the total link capacity.

When using RTP and RTCP, a reliable data stream can be created, but the client
receiving the content is unable to control it. By control we mean P L A Y , R E C O R D ,
PAUSE and so on. The Real-Time Streaming Protocol (RTSP) is used to control the

28

stream[2]. Communication takes place primarily using the T C P transport protocol
and communicates bidirectionally. The communication is classified into commands
and responses, so that the other side knows if the command was successfully executed
or not.

1.4 Device design

RTP Stream

Camera WiFi Wireless ^
Transmitter
WiFi Wireless ^
Transmitter

USB
Ethernet

NVIDIA Jetson Nano

RTCP \
Command N

N

C<T>:
WiFi Wireless
receiver

Computer Monitor

Fig. 1.9: Device block diagram

1.4.1 NVIDIA Jetson series

NVIDIA Company developing a platform called Jetson that focuses for creating
embedded systems that need computing power for machine learning and Artificial
intelligence[9]. This is a series of processing modules that contain NVIDIA T E G R A
mobile chip. Second main advantage is low power consumption and small dimen­
sion. The application countless such as object identification, video live
processing, high-speed signal processing, machine learning and much more. Thanks
for small dimension and low power consumption is perfect choice for car, drones,
robots etc.

The NVIDIA T E G R A mobile chip integrates a processing unit (CPU) and pow­
erful graphic unit (GPU) into one package. The graphic unit used in this chip is
directly designed for effective processing multimedia and AI (Artificial intelligence).
This performance is achieved by using many of hundreds C U D A cores that support
parallel computing. This parallel computing is suitable for AI and multimedia pro­
cessing. Best practical example is screen rendering. The screen is divide to many
pieces and each piece is render in parallel [10, 13].

29

Today is Jetson available in many variants. Jetson Nano has the lowest level of
performance around all modules. This module includes a 128-CUDA Core Maxwell
architecture G P U unit and quad-core A R M A57 C P U running at 1.43 GHz. The
memory size is either 2 GB of 4 GB[10]. For first look this specification is too
poor, but it for small AI project is sufficient. High-performance modules are names
Xavier and newest Orin. Difference with the Nano is that it has more C U D A and
Tensor cores and obviously more memory and better C P U . In marketplace is still
possible to buy an old module called TX1 and TX2 , but NVIDIA they marked as
obsolete and therefore will not be described further. In 2021, NVIDIA company
announced Jetson Orin that has 6 time better performance than Jetson Xavier[10].
Detail describe can be found in the table 1.2.

Tab. 1.2: Jetson comparison table[10]

Jetson Nano Jetson Xavier N X Jetson Orin N X

AI Performance 472 GFLOPs 21 T F L O P s 100 T F L O P s
G P U cores 128 C U D A 384 C U D A /48Tensor 1024 C U D A /32Tensor

G P U Architecture NVIDIA Maxwell NVIDIA Volta NVIDIA Ampere

C P U
Quad-Core Arm® 6-core NVIDIA 8-core NVIDIA

C P U
Cortex®-A57 Carmel Arm®v8.2 Carmel Arm®v8.2

Memory 2 G B / 4 G B L P D D R 4 8 G B / 16 G B LPDDR4x 8 GB / 16 GB LPDDR5x
Storage 16 G B eMMC 16 G B / 32 G B eMMC 64 G B eMMC
Power 5 W / 10 W 10 W / 20 W 10 W / 25 W

Announcement 2018 2017 2021

In this table is describe only main product of Jetson product line and omitted
obsolete products. In this thesis use only Jetson Nano therefore will be describe in
next paragraph.

1.4.2 Jetson Nano

Connectivity of Jetson Nano is relatively various and fine for most projects. Main
communication interface are lOOOMb/s Ethernet port and USB ports. The pity
is absence of wireless connectivity over W i F i . It sounds like bagatelle thing, but
W i F i speeds up the development of small projects. USB ports are both in version
2.0 and 3.0[8]. The display interface can connect an external monitor via HDMI,
DisplayPort or MIPI-DSI, and two monitors can be connected simultaneously. SD
card is used for main storage and loading the operating system. A PCI Express port
with four lines can be used to connect a high-speed device. For embedded device
is very commonly used low-level interface. Jetson Nano equipped U A R T , SPI, I2C,
CSI a GPIO ports. Unfortunately, the C A N Bus is missing between the interfaces.
C A N bus is very often used in automotive vehicles[10, 11].

30

Jetson Nano can work in two performance modes. In energy-saving mode, the
consumption is 5W and in performance mode the consumption is 10 W. This dif­
ference in consumption is achieved by turning off 2 cores in the C P U and reducing
the clock speed in the C P U and GPU[11]. Details are written in the tablel.3.

Tab. 1.3: Jetson Nano performance modes[ll]

Performance Mode Energy-Saving Mode

Power Consmption 10 W 5W
Activate CPU core 4 2
Max. CPU Clock 1479 MHz 918 MHz
Max. GPU Clock 921.6 MHz 640 MHz

Jetson Nano Development Kit

NVIDIA sells a set of development boards for Jetson modules for ease of development
of the final product by customers. NVIDIA publishes a detailed description of these
boards, and they can be used to build your own product like a template.

The Jetson Nano development board will be used in this thesis. The board
provides most of the connectivity that the Jetson module has. Commonly used
interfaces include: Ethernet, HDMI, DisplayPort, 4xUSB 3.0, Camera CSI and a
40-pin GPIO connector where there are U A R T , SPI, I2C[14]. There are two power
options. The first option is via the DC jack and the second via the USB connector.
On the bottom side of the board is include P C B pads for soldering small battery
case if customer want to archived time over power off [12].

Fig. 1.10: Jetson Nano Development Kit[10]

31

1.4.3 JetPack SDK

NVIDIA provide a software packet for Jetson module called JetPack. Packet Jetpack
can be divided into two parts. The first part is the Linux operating system, which is
modified to working on the NVIDIA Tegra chip (Linux for Tegra L4T). It's include
Linux kernel and also bootloader and drivers. The second part is software libraries
(SDKs) that have been optimized to work on Jetson. Primarily contain tools needed
to develop a project for AI. In the picturel . l l you can see a list of the most important
tools included in the JetPack. In this work, tools from the multimedia container
will be used, mainly GStreamer and the video decoding library. A l l Jetson modules
supported the same JetPack and thanks to this you can move your project created
on once Jetson to any other Jetson module [11].

Artificial intelligence Computer vision

CUDA Toolkit
compile] j e G° n

Developer took

Te jra i/stem pro fier

Tegra ji'Mi s
Debugs r

Flashing ii i ipt i .in.I
support lech

Fig. 1.11: List of the most important tools included in the JetPack[11]

1.4.4 GStreamer

GStreamer is a popular multimedia framework that can be used to create a me­
dia processing application[16]. The basic principle of the GStreamer design is the
creation of a diagram called a pipeline. It is the connection of a function block
(Elements) to a line that represents the flow of data. GStreamer can be used for
any multimedia content modification and to provide connection data flow from/to
another application. A n example of a pipeline can be seen in the picturel.12. Data
flow is always one direction and line can be divided and merged. There are three
types of elements: sources, filters and sinks[16, 17].

Sources are elements concerned input of data. It always stands as the first
element in the pipeline. Such elements are the generation of a video/audio signal,
reading from a file of from camera or read stream from the Internet. For example,
a source element called videotestsrc can produce a video signal of various formats.

32

Filter elements have both and outlet pads. They are the elements that change
the input data into the final form. A n example of such elements is adding a new
effect to the audio signal or changing the resolution of the video signal. The second
main function is to split pipes and merge them again. These elements are usually
called mux and demux. The third important function of filter elements is format
conversion. These operations are called encode (conversion to a compressed format)
and decode (conversion from a compressed format).

Sink elements are endpoint of the pipeline and always stand at the end. It
typically sends data to a sound card, video display, or hard drive[16, 17].

Almost all elements have customizable properties. Some properties are read-only
and some can be edited, it depends on the rules. GStreamer makes sure that all
function blocks run and communicate with each other after the pipeline completes.
It also provides data buffering, queuing ahead of slow blocks, and keeping track of
synchronization between blocks. Thanks to this a comprehensive pipeline will be
look like one pack processing block and user easy to use.

Fig. 1.12: GStreamer pipeline[16]

1.4.5 U-Blox

It was decided to use W i F i at 2.4 GHz for video transmission. The Jetson Nano
does not have a wireless transmitter, so it was required to find a device that could
provide wireless transmission. Only the Ethernet connector on the Jetson unit can
be used for video transfer. So that means that it will have to find a solution to cre­
ate a bridge from Ethernet to W i F i . The simplest option would be to use a router
and switch it to bridge mode. But the planned device is to be battery powered
and as small as possible. Since the standard router is difficult to powered from the
battery and is relatively large, it was necessary to find an alternative solution. After
searching for suitable devices, the following three modules were shortlisted:

33

Fig. 1.13: U-blox EVK-NINA-W101 development board[22]

. U-blox NINA-W10,

. U-blox ODIN-W2,

. Microchip WFI32E01PE.
A l l three modules have very similar parameters. After review, the U-blox NINA-
W10 module was selected. The biggest reason for the choice was that the module
has an ESP32 processor[21] inside. Since I have previous experience with ESP32
processors, using this processor will be simpler for me. The other modules use an
architecture I've never worked with before and would therefore be harder to use.

The NINA-W10 module contains a dual-core ESP32 processor, and the compo­
nents required for the processor: 16 M B F L A S H memory and high-quality crystal.
Also includes components for wireless transmission: R F filter, R F amplifier and an­
tenna matching. Thanks to these extra components, the wireless transmission char­
acteristics should be better than with a regular ESP32 module. The module provides
support for W i F i transmission at 2.4 GHz with 802.11b/g/n specification[21]. It can
transmit with power of 15 dBm (module output without antenna) and receiver sen­
sitivity is -96 dBm. U-blox writes in the datasheet that the module has a maximum
throughput of 25 Mbit/s. Of course, this value cannot be trusted, but the value is
still many times higher than what is needed for this work. The module does not
have a direct input for the Ethernet port, but only an input for the RMII bus. It
is necessary to add an Ethernet <-> RMII converter on the P C B . In addition, the
module provides many other peripherals, but they will not be in the final product,
so they will not be listed. The NINA-W10 version is special in that it is open, and

34

you can upload custom programs.
After consulting with the supervisor, it was decided to purchase a development

board and not to create a custom P C B . The selected development board is E V K -
NINA-W101. The development board is equipped with the NINA-W101 module.
The NINA-W101 module does not use an internal antenna, but has it connected to a
pin and an external antenna can be used. In the box together with the development
board there is an antenna (3 dBi monopole), which will be used for measurement.

1.4.6 Camera

A camera will be used to capture the actual video signal. For this work, a video
camera from company UP will be used, which works with USB U V C (USB Video
Class) [19] protocol. Includes a 2-megapixel sensor[20] and has support across oper­
ating systems thanks to the U V C protocol.

35

2 Implementation Part

2.1 NVIDIA Jetson setup

This project will use an NVIDIA Jetson Nano module as the main transmitting unit
and a motherboard will be use a standard development board also from NVIDIA.
NVIDIA sells both products as a set called Developer Ki t . The Developer Ki t in­
cludes the module, motherboard and passive heatsink[14], which are already factory
assembled. But the developer kit does not include any accessories and you need to
buy at least a power adapter and an SD card to get it to work.

2.1.1 Power adapter and SD card

As already mentioned in the theoretical part, the unit can be powered in several
ways. The easiest way to deliver power to the unit is through the Micro USB port.
The datasheet specifies that the maximum current required for the unit to operate
state is 2 A at 5 V[14]. Unfortunately, the USB port does not support Quick Charge
function like a modern mobile phone and the unit will not turn on with these types
of power adapters. This unsuccessful situation occurred on the first attempt to
switch on the unit. Replacing the power adapter with another one fixed it. The
unsuitable adapter was replaced by a common adapter with 3 A output current.
Another negative aspect of the unit is that it is sensitive to power supply voltage
drops. Specifically, when the voltage drops below 4.75 [8], the unit becomes unstable.
Therefore, it is also necessary to take care about the quality and length of the power
USB cable.

The second thing that is needed to get the unit working is to get an SD card. The
SD card slot is in microSD format and is located at the bottom side of the module.
The manufacturer specifies a minimum recommended size of SD card is 32 GB with
UHS-1 speed class[14], which indicates a theoretical write speed of 10 M B / s . For
this work, it was chosen a 64 G B SD card from SanDisk Ultra with UHS-1 speed
class and A l standard, which indicates that the card is designed for frequent storage
of small blocks. Before inserting it into the unit, it is necessary to install the JetPack
operating system from which it will boot.

2.1.2 JetPack instalation

There are two ways to install the JetPack operating system[14]. The first and easier
way is to flash the JetPack image directly to the SD card. Download the completed
JetPack image in .iso format from the NVIDIA website and then use the writing

36

software to flash the image to the SD card and create the bootloader partition.
Then just plug the SD card into the NVIDIA Jetson unit and connect the power
supply. The advantage of this way is simplicity, but the disadvantage is that you
cannot customize the JetPack image. The image, which can be downloaded from
the NVIDIA website, does not include all the modules that JetPack provides. If the
user would like to use these modules, they must install JetPack using the second
way. Fortunately, the image contained all the modules needed for this work, so the
installation was done using the first way.

The second way to use a tool called NVIDIA SDK Manager. With this tool it
is possible to customize JetPack modules. For example, some modules that will not
be used can be removed to save disk space. The process of installing the JetPack
into the Jetson unit is much more complicated than the first way. It is required
to connect the Jetson unit to the computer via a USB cable and switch the unit
to the Force Recovery Mod using a several pins on the board. With this NVIDIA
SDK Manager tool, it is also possible to install the operating system program in
the internal memory, not only on to the SD card. But for the units from the Nano
series, installing the operating system on the SD card is the only one possible way
to install JetPack, because they don't have their own non-volatile memory[8]. The
SD card is the only memory the Jetson Nano units have.

At the time of writing this work, the latest version of JetPack is 5.1.1 [10], but this
version does not support the Jetson Nano, only the newer X A V I E R and ORIN series
units. The latest version that supports the Jetson Nano unit is version 4.6.3. The
biggest difference between JetPack versions 4 and 5 is that version 4 uses Ubuntu
18, while version 5 uses Ubuntu 20.

2.1.3 Linux preparation

After successfully booting the unit and passing the startup wizard where the user-
name, password, timezone etc are set, it needs to connect the unit to the internet
and download the updates using the apt package tool. Internet connection can be
done using an Ethernet cable or a W i F i USB dongle. In Ubuntu there are several
default applications pre-installed and it is suitable to remove applications that will
not be used to save disk space. Then it is the installation of programs according
to personal preference. For example, I prefer GEdit as a GUI text editor and Nano
as a text editor in the terminal. It is not comfortable to use the command line
to navigate through the folders, so I prefer Midnight Commander, which makes it
easier to navigate through the folders in the terminal. Midnight Commander is a
fully text-based program, so it can also be used in remote SSH access. To monitor

37

the unit's resource usage and check the status of the hardware video accelerators,
was installed the JTop program.

2.1.4 Remote access

There are several ways to control the N V I D A Jetson unit. The first and easiest way
is to connect unit to monitor via HDMI/DisplayPort[14] and mouse and keyboard to
USB port and control it directly gular desktop. JetPack contains the Ubuntu
distribution with several desktop environments. As default graphic environment is
set to Unity, but you can switch to more lightweight L X D E environment. Longer
work is not comfortable, and there can also be situations when it is physically
impossible to get to the unit and connect the monitor to it. For this reason, remote
access is used, where one computer can control other computers. Nowadays it uses
SSH protocol for remote control (Secure Shell) [24]. It is a secure communication
channel that works under T C P / I P protocol. It allows to provide remote access to
the terminal. The SSH protocol is implemented in the JetPack and is automatically
run when the unit is powered on. If the controlling computer has a Linux system,
using SSH is easy. Just type $ ssh <username>@<IP address> into the terminal
and then the system will ask for the password.

It is also useful to be able to share files between the unit and the computer
accessed remotely. SSH allows to transfer files, but it is not very handy. It is
more convenient to use the F T P (File Transfer Protocol) [25] protocol. The protocol
is very simple, reliable, and widely supported. The F T P client is not part of the
JetPack system and has been installed. After successful installation it was necessary
in the configuration file to enable remote writing, because by default the F T P client
is only allowed to read only. For connecting to the unit from a Linux system, you
can use the Midnight Commander terminal program. The program is very simple
and completely sufficient. The program uses a two-window topology, where on one
side of the window you can have folders displayed from your computer and on the
other side you can have displayed folders from a remote drive. The F T P protocol
has several disadvantages, namely that communication is not secure and sharing
small files is not too fast.

There are also options where you can control the unit remotely, not only using
the command line, but you can also share the whole desktop with windows. This is
possible for example with the V N C (Virtual Network Computing) protocol, but the
response time when using it was too long and the control was uncomfortable.

38

2.1.5 GStreamer setup

In the JetPack pack, GStreamer is included, but only the basic part of it, which
cannot be used to create custom applications. When developing applications with
GStreamer it is required to download the develop libraries. How to install them is
described in the instructions on the NVIDIA document [15]. On the computer the
situation is the same, you also need to install additional GStreamer develop libraries
to be able to create your own applications.

As mentioned in the theoretical part, the functionality of GStreamer is based on
the creation of a pipeline that can transfer large amounts of data very efficiently.
This is very well suitable for multimedia content that requires a high data through­
put. This work will be working only with video elements. The Jetson Nano unit
includes three hardware encoders for h264, h265 and VP8 codecs [11]. Of course,
it is possible to use a software encoder, but they would be too slow for real-time
video applications. To work with hardware encoders, NVIDIA provides two libraries
[15]. One is called OpenMAX and the second is called Video4Linux2. Both libraries
contain all three codecs. The OpenMAX library is older, and last year NVIDIA
announced that they stopped developing it, but it can still be used. On the other
hand, the Video4Linux2 (v412) library is newer and still supported. It was decided
to use only elements from the v412 library in this work. The names of encoder in
the v412 library are called nvv4l2h264enc for the h264 codec, nvv4l2h265enc for the
h265 codec and nvvv4l2vp8enc for the VP8 codec. Encoders can be configured using
several parameters. Only a few of them will be listed here:

• Setting the bit rate mode (variable or constant output bit rate).
• Setting the average bit rate and maximum peak.
• Setting the interval by inserting I frames.
• Setting the Hardware Preset Level. The mode determines the accuracy of the

motion vectors and the size of the macroblocks.
• Setting codec profile settings (Baseline, Main, High). Only works with h264

and h265 codecs.
The input to the encoders is only from N V M M memory and format of the uncom­
pressed video input must be in 1420 format only. To work with N V M M memory,
it's possible to use the nvvidconv function included in JetPack.

RTP and UDP will be used for transmission over the IP network. To transmit
video over RTP, the stream must be split into parts and added an RTP header.
This is done by an element from the Gstrtppay library [16]. For video encoded with
the h264 codec the element is called rtph264pay, for the h265 codec it is rtph265pay
and for the VP8 codec it is rtpvp8pay. To let the receiver know how to manipulate
with the received video, it is recommended to turn on the option of transmitting

39

the configuration block with the video. Specifically, these are the SPS (sequence
parameter set) and PPS (picture parameter set) configuration blocks. To transmit
the configuration block, it is necessary to enable the configuration output in the
encoder. By default, it is disabled. Finally, just send the RTP packets using the
U D P protocol. For this purpose, the udpsink element is used. Since the U D P
protocol is used, you just need to specify the destination IP address and port. The
port to be used is 5000, which is the standard port for RTP transfers.

The source of the video will be a live camera stream. In this work, the cam­
era works with the USB U V C protocol [20]. To insert the camera video into the
GStreamer pipeline, the v4l2src element is used [15]. Several parameters need to be
set: Camera address, sync clock source, video format, video resolution, and frame
rate. Parameters need to be set with regards to what a specific camera can deliver.
For example, the camera used in this work for measurements can capture video at
these resolutions and frame rates:

Index 0
Type Video Capture
P i x e l Format YUYV 4:2:2

S i z e : Discre te 1920x1080
I n t e r v a l Discre te 0.200s (5.000 fps)
I n t e r v a l Discre te 0.333s (3.000 fps)

S i z e : Discre te 1280x720
I n t e r v a l Discre te 0.200s (5.000 fps)

S i z e : Discre te 640x480
I n t e r v a l Discre te 0.050s (20.000 fps)

S i z e : Discre te 320x240
I n t e r v a l Discre te 0.033s (30.000 fps)

Index 1
Type Video Capture
P i x e l Format 'MJPG' (compressed)

S i z e : Discre te 1920x1080
I n t e r v a l Discre te 0.033s (30.000 fps)
I n t e r v a l Discre te 0.040s (25.000 fps)
I n t e r v a l Discre te 0.050s (20.000 fps)
I n t e r v a l Discre te 0.067s (15.000 fps)
I n t e r v a l Discre te 0.100s (10.000 fps)
I n t e r v a l Discre te 0.200s (5.000 fps)
I n t e r v a l Discre te 1.000s (1.000 fps)

S i z e : Discre te 1280x720
I n t e r v a l Discre te 0.033s (30.000 fps)

S i z e : Discre te 640x480
I n t e r v a l Discre te 0.033s (30.000 fps)

S i z e : Discre te 320x240
I n t e r v a l Discre te 0.033s (30.000 fps)

40

This list was found using the following command: v412-ctl -d /dev/videoO

— l i s t - f ormats-ext As can be seen, the camera can transmit video in two for­
mats. The first is the uncompressed YUYV4:2:2 format, with which high frame
rates cannot be delivered. The second format is Motion-JPEG. It is a format with
compression. The video quality will be lower, but the frame rate will be higher.
To use Motion-JPEG format, it is necessary to decompress the video before any
manipulation. In this work, the nvv4l2decoder from the v412 library[15], which is
able to use a hardware accelerator, will be used.

On the receiving computer, the pipeline is like this. The input to the GStreamer
pipeline is U D P packets, the udpsrc element is used for this [16]. The receiving
U D P element needs to set the port and format in which to expect input data. The
following function can sort RTP packets into the correct order and delete duplicate
messages. From the RTP form, the video is back assembled into a continuous
stream using elements from the Gstrtpdepay library (rtph264depay, rtph265depay,
rtpvp8depay). For decoding it was used an element from the F F M P E G libav library
(avdec_h264, avdec_h265, avdec_vp8). Before displaying on screen, it is useful to
add a videoscale element to the pipeline that scales the video resolution. Now the
video is decoded and ready to display on the screen using the xvimagesink element.

2.1.6 GstShark setup

GstShark is a tool for measuring and analyzing the internal behavior of GStreamer[18]
GstShark can tracers many parameters and events. To illustrate, here is a listing of
some of the tracers:

• Buffer utilization monitoring,
. C P U load,
• Element delay tracking,
• Frame rate measures,
• Bit rate measures inside the pipeline,
• and many more

GstShark generates the measured values into a large file. It was required to create
a script that can extract the measured values from the generated file and convert
them into a format that M A T L A B understands. The script was written in Bash
language. The script creates classic .mat files and separates them by parameters.
Then just open the files in M A T L A B and plot the measured values. This can also
identify possible sources of instability that may occur when running the GStreamer
pipeline.

This tool is not a standard feature of GStreamer and must be installed separately.
GstShark is an open-source tool and can be downloaded from GitHub[18]. GstShark

41

is installed using the make file. To enable GstShark, you need to switch GStreamer
to debug mode by writing the parameter GST_DEBUG="GST_TRACER:7" before the
gst-launch-1.0 command. This parameter switches GStreamer into debug mode
and starts sending pipeline information. GstShark captures this information and
writes it to a file. To prevent the generated file not being too large, the user can
select only the relevant parameters. It does this by adding another parameter. For
example, to measure bit rate and frame rate, the new parameter would look like
this: GST_TRACERS="bitrate; framerate".

2.1.7 NTP setup

Time synchronization between the P C and the Jetson unit is very important, because
it will make it possible to measure video latency. The synchronization topology will
be as follows: the computer will serve as the reference time source and the Jetson
unit will synchronize to it. The computer has a Linux distribution Ubuntu and
it contains only N T P client but does not contain N T P server, so it needs to be
installed. After installation, it is a good idea to set the internet addresses of the
N T P servers, preferably the closest ones to you in the configuration file. To do
this, you can use the ntppool.org cluster which unifies the N T P server's distributors
and recommends the one with the best parameters for the user. In the case of
the Czech Republic, just add the address cz.pool.ntp.org to the configuration file.
The specific address for another country can be found on the web. For a more
reliable connection, it is a good idea to add more addresses if some N T P servers
are down. In most cases four addresses are enough. When the P C is without an
internet connection, N T P will try to synchronize time over internet unsuccessfully
repeatedly and will cause the P C to stop synchronizing Jetson unit. To prevent
this, the address of the computer itself, i.e. localhost, is added to the configuration
file, and the address is modified with the lowest priority stratum 10 parameter. To
activate the setting, the entire N T P process needs to be restarted with the command
$ sudo systemctl restart ntp .

To set up the Jetson unit as a client, no additional software needs to be installed.
In Ubuntu, the program timedatectl is used for N T P synchronization client. Again,
it is necessary to set up a configuration file where you need to set the IP address of
the computer. It is not strictly necessary, but it is a good idea to add parameters
for synchronization intervals to the configuration file. The configuration file on the
Jetson unit looks like this:

42

http://ntppool.org
http://cz.pool.ntp.org

NTP=192.168.1.1
RootDistanceMaxSec=5
Pol l In te rva lMinSec=32
PollIntervalMaxSec=2048

Again, you need to restart the whole process timedatectl and enable N T P syn­
chronization with these command: $ sudo systemctl restart systemd-timesyncd
$ sudo timedatectl set-ntp true .

When using N T P set up like this, it worked but was unstable. The time between
the computer and the unit was only sometimes synchronized. Due to testing, it was
necessary to restart the unit multiple times in one day and after restarting the unit,
the N T P did not work reliably. After troubleshooting the problem, it was discovered
that the N T P protocol has a mechanism that prevents frequent querying. To solve
the problem, a new parameter restrict 192.168.1.0 mask 255.255.255.0 nomodify
notrap was added to the configuration file on the computer that removes this re­
striction for devices connected to the local network. The complete configuration file
on the computer looks like this:

server 0 . c z . p o o l . n t p . o r g
server 1 . c z . p o o l . n t p . o r g
server 2 . c z . p o o l . n t p . o r g
server 3 . c z . p o o l . n t p . o r g
server 127.127.1.0
fudge 127.127.1.0 stratum 10

r e s t r i c t 192.168.1.0 mask 2 5 5.255.255.0 nomodify notrap
broadcast 192.168.1.255

2.2 U-BLOX setup

For this project will be used the development kit EVK-NINA-W101. Therefore,
there was no need to create a custom P C B board. From the NINA module series,
the W10 version was selected, because it has an open processor [21] and allows up­
loading of custom programs. To create a custom program, it was necessary to install
the Espressif SDK version 4.4 [22]. The installation steps are clearly described on
the Espressif website [23]. Creating a program for the NINA module is the same as
creating a program for a regular ESP32. After installing the Espressif SDK is neces­
sary to install a patch. From U-blox github download several .c files which overwrite
the files in the Espressif SDK directory. The patch provides several modified features

43

for proper function of W i F i and memory. Before compiling the program it is neces­
sary to set the configuration flag C O N F I G _ S P I _ F L A S H _ U S E _ L E G A C Y _ I M P L
to set.

The NINA module connects to the computer using a converter U A R T <-> USB.
The development board includes many peripherals, but you cannot run them all at
the same time. For activating the periphery there are used several jumpers. In this
work only W i F i and RMII bus will be used. To activate the RMII bus it is necessary
to put the jumpers in the positions specified in the documentation [22]. Since the
RMII uses most of the available pins, therefore it is not possible to use any other
peripheral. Unfortunately, the RMII peripheral shares a pin with the B O O T pin,
which is used when uploading a new program. It is always necessary to swap this
jumper before uploading a new program. To upload a program, it must follow these
steps: First the jumper on the B O O T pin must be swapped. Then you need to use
the R E S E T and B O O T buttons in that sequence: Press RESET, then press BOOT,
then release RESET, then release BOOT. The ESP32 processor gets into uploading
mode. After uploading the program, just return the jumper and press the R E S E T
button.

The program for this work is created by following several examples and snippets
that can be found in the Espressif SDK documentation [23]. The FreeRTOS operat­
ing system is running in the program, which organizes the running of the program.
The program works by first initializing both communication peripherals. Then, a
set up a data tunnel in FreeRTOS to transport packets from the RMII and W i F i
peripheral. The development kit is assembled with a KSZ8081 RMII transceiver
chip. Unfortunately for this specific chip Espressif does not supply a ready-made
configuration file, but fortunately it is very similar to another chip. The difference
is only in the reference clock parameter. This difference was solved by modifying
the value in the registry.

The program has been compiled and uploaded to the module. When the module
starts, it first waits for active communication through the Ethernet port. Then, it
starts a W i F i A P transmitter to which the computer can connect. The program
works only on the second ISO/OSI layer. This means that the module cannot send
packets to the network.

2.3 Software implementation

Running the GStreamer pipeline from the command line is only used for initial func­
tionality testing. For more advanced operation and customization, it is necessary
to create a program for the GStreamer pipeline. It is possible to use C /C++ or
Python[16]. The Python was chosen for this work. To link Python and GStreamer,

44

it is necessary to download and install the library python3-gst-1.0. Several programs
were created with functions that handled the operation of GStreamer pipelines and
broadcast management. It created programs for both the Jetson unit and the com­
puter.

In the Jetson unit, the program will be executed automatically at startup. This
solution means that the codec cannot be changed automatically during operation but
must always be changed manually. The GStreamer pipelines contains the elements
described earlier. The programs are designed with multi-threaded support, with
one thread used for the GStreamer pipeline and the second thread used for control.
There is also a third thread that was created for measurement purposes. It services
the latency measurement element. This thread will of course not be used in normal
operation. Separate programs have been created for each of the three codecs.

The computer program is written to be compatible with the PyQt graphical
framework. Individual programs were created for each codec separately. As with
the Jetson unit, the program is written to allow multi-threading. One thread is
used for the GStreamer pipeline, and the second thread is used for control. For
measurement purposes, the third thread provides measurements of latency, frame
rate, and packets received and lost. GStreamer Elements have been described earlier.
To connect PyQt and GStreamer video output, the PyQt module QMediaPlayer is
used.

Fig. 2.1: Fully Complete Device

45

3 Measurement Results
For digital video transmission applications, it will be necessary to select a proper
video codec and determine the required bit rate. As mentioned in the theoretical
part, the NVIDIA Jetson Nano includes a video encoding hardware accelerator for
three codecs: h264, h265 and VP8. In the case of real-time video transmission, the
use of a hardware accelerator is crucial. Software encoding is too slow, so using a
hardware accelerator will be necessary. This paragraph reports of four measurements
that determine the best video codec and data rate for real-time video transmission.

3.1 File Encoding

As a first step, it was required to verify the characteristics of all codecs. To un­
derstand the basic characteristics of codecs, it will be done to encode the video
into a file. During the encoding process, parameters such as C P U load, output bit
rate characteristics, and the time it takes for the encode whole video file will be
measured. The input video will be an uncompressed video downloaded from a free
test video library https://media.xiph.org/. The reason why uncompressed video was
chosen is so that it reflects the real characteristics of the codecs and does not have
to decode the video before encoding. Details of the uncompressed video can be
seen in the table 3.1. The individual frames are in Y U V 1420 format, which means
that the video is only compressed by subsampling both chromatic components by
the number 2. This means that in a 2x2 square there are four Y components, one
U component and one V component.

Tab. 3.1: Uncompressed video File Parameters

File Parameters

File name Elephants dream
Video type Uncompressed video

Format .y4m (YUV 1420)
Resolution 704x480
Frame Rate 24 FPS

Size 7.7 GB
Time 10 min 53 sec

Average bit rate 97000 kb/s

For the first introduction to the codecs, each codec was set to the default values
according to the NVIDIA document [10]. As mentioned earlier, this work will use
GStreamer elements from the nvvJ^l2 library. The second gst-omx library will not

46

https://media.xiph.org/

be used because it is no longer supported by NVIDIA and it is also recommended
not to be used further[10]. The table 3.2 shows a list of the basic parameters that
were set for the first test run. The codecs are set to use a variable bit rate, with a
setpoint of 4000 kb/s and a maximum peak that will be 1.2 times the setpoint bit
rate. Profiles for h264 and h265 were set to Baseline mode. The VP8 codec does
not have any mod switching.

Tab. 3.2: Codec parameters

h264 (nvv4i2h264enc) h265 (nvv4i2h265enc) VP8 (nvv412vp8enc)
Bit Rate Control Mode Variable Variable Variable

Bit Rate 4 000 kb/s 4 000 kb/s 4 000 kb/s
Peak Bit Rate 1.2*Bit Rate 1.2*Bit Rate 1.2*Bit Rate

I Frame Interval 30 30 30
Profile Baseline Baseline -

Pipeline in GStreamer was created like this: First, the filesrc element was used
to read the video from the file. Because it is an uncompressed video, there is no
need to use a decoder, just split the video file into frames using the yJ^mdec element.
It is a useful practice to use a buffer queue to read from a file. Since elements
from the nvv4l2 library only support input from the hardware N V M M buffer, the
video stream needs to be switched from the C P U buffer to the N V M M buffer by
using the nvvidconv element. Stream is now ready to be encoded with one of the
encoding elements (nvv4l2h264enc, nvv4l2h265enc, nvv4l2vp8enc). For the h264 and
h265 codecs, they need to be split into individual blocks using the h264parse and
h265parse elements before saving. Finally, just pack the compressed video into a
file. For h264 and h265 codecs, the QuickTime format will be used, and the file will
have a .mp4 extension. For the VP8 codec, the Matroska format will be used and
the file will have the .mkv extension. Below are the pipelines for all three codecs:

$gst—launch—1.0 f i l e s r c location=elephants dream .y4m ! y4mdec !\
queue ! nvvidconv ! ' video/x—raw(memory :NVMM) , format = (s t r i ng) 1420 ' !\
nvv412h264enc ! h264parse ! qtmux ! f i l e s i n k location=output.mp4

$gst—launch—1.0 f i l e s r c location=elephants dream .y4m ! y4mdec !\
queue ! nvvidconv ! ' video/x—raw(memory :NVMM) , format = (s t r i ng) 1420 ' !\
nvv412h265enc ! h265parse ! qtmux ! f i l e s i n k location=output.mp4

$gst—launch—1.0 f i l e s r c location=elephants dream .y4m ! y4mdec !\
queue ! nvvidconv ! ' video/x—raw(memory :NVMM) , format = (s t r i ng) 1420 ' !\
nvv412vp8enc ! matroskamux name=mux ! f i l e s i n k locat ion=output .mkv

The GstShark tool was used for the measurements. As can be seen from the table
3.3, the overall processed times are very much the same. This means that when using

47

a hardware accelerator, the encoding time is equal for all codecs. C P U load was
measured to see what effect the C P U has on video encoding, even though the main
encoding is done by the hardware accelerator. Since the Jetson unit is switched to
Performance Mode, it has all four cores activated. The measured results from all
four cores are averaged into one average value, which is written in the table 3.3.
However, even though the encoding is done by a hardware accelerator, the C P U is
also heavily loaded. As expected, h265 is the most complex to encode. From the
figure 3.1, we can see that the h264 and h265 codecs made a bit rate waveform that
are very close to the set threshold, but the VP8 codec bit rate is more floating. This
can also be seen in the file size, where the VP8 file is smaller than the others. This
means that VP8 has worse bit rate control than the h264 and h265 codecs.

Tab. 3.3: Result of file encoding

h264 h265 VP8
Processing time 73 s 71 s 68 s
Average C P U load 52,97 % 75,43 % 67,15 %
Final file size 305,3 M B 305,4 M B 237,6 M B

Fig. 3.1: Bit rate of the final file

48

3.2 Subjective test

The change of bit rate has a direct effect on the change of video quality. For this
work, it was decided to make a subjective test to find an optimal bit rate that is
still acceptable to humans. Since this work focuses on real-time video transmission,
it is therefore necessary to select bit rates as small as possible.

First, for the subjective test, it was necessary to determine the test range of bit
rates. The minimum value was determined by increasing from the minimum bit
rate until the video was acceptable. For the VP8 codec, the lowest bit rate is 500
kb/s, so the last value is this one. For codecs h264 and h265 it was possible to
create video with a lower bit rate, but the quality of the video was so bad that it
was decided that the lowest bit rate for codecs h264 and h265 is 300 kb/s. A total
of 17 values were selected, with a care to ensure that respondents did not have too
many samples. The list of test samples can be seen in the table 3.4.

Tab. 3.4: List of test Bit Rate

Bit Rate [kb/s]
h264 h265 V P 8
2000 2000 2000
1000 1000 1000
800 800 800
600 600 600
400 400 500
300 300

(a) Bit Rate = 200 kb/s (b) Bit Rate = 2000 kb/s

Fig. 3.2: Example of sample compression test

49

The test video sequence was recorded on the camera, specifically the car ride.
This view was chosen because the final application of this device will be a video
broadcast of a car ride. This view is specific because the scene contains the sky and
the road, which change very few times while driving. The surrounding landscape
and oncoming cars change the most from the scene. In the figure 3.2 you can see
an example of a video compression result with a very low bit rate, such quality was
considered unsatisfactory and did not make it into the test samples.

The graph 3.3 shows the waveforms of the real output bit rate with the center
bit rate set to 600 kb/s. The encoders were switched to constant bit rate mode.
As can be seen from the graph 3.3, the h264 codec has the best constant bit rate
waveform and the VP8 codec has the worst waveform.

in 21 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

Time [s]

in 21 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

Time [s]
x i O 5 V P 8

V \ ^ \ _

^ V J\l\r~-/ _ n V v
 \ V \r V

1
0 20 40 60 80 100 120 140 160 180

Time [s]

Fig. 3.3: Bit rate of the 600 kb/s sample

The graph 3.4 shows bit rate 300 kb/s is also very interesting. The h265 codec
has the best waveform to handle this very low bit rate. The waveform in this case
is better with the h265 codec than with h264 as was the case with the previous
waveform with a center bit rate at 600 kb/s. The waveform of the h264 codec very
often spikes up to 1.5 times the set bit rate. This is another reason why bit rate
300 kb/s was set as the lowest possible in test range. Again, the VP8 codec was
the worst waveform, unable to encode video at the 300 kb/s bit rate. It can be
seen from the waveform that the lowest bit rate for the VP8 codec is 500 kb/s and
therefore this is the lowest value in the test range for the subjective test.

As mentioned earlier, for the subjective test 17 bit rate values were selected and
test video samples of duration 26 s with 720p resolution and 30 FPS were created.
A sample of the test video is shown in the figure 3.2. A text about the codec

50

Fig. 3.4: Bit rate of the 300 kb/s sample

used and the bit rate set was inserted in the video for better orientation in the
samples. The questionnaire was completed by a total of 10 respondents who rated
the scores from 1 (best) to 5 (worst) and could use a floating number. The result of
the questionnaire can be seen in a graph 3.5 where the MOS (Mean Opinion Score)
is plotted, accompanied by a confidence interval. The MOS can be calculated as
follows [4]:

MOS= - J -

Here, N is number of respondents and u is respondent's result. Confidence interval
is calculated according to the ITU-R BT.500 standard. The standard ITU-R BT.500
defines the formula for calculating the confidence interval as follows:

S

N

i=l
(3.1)

S = 1.96
N

(3.2)

Here, N is number of respondents and S is standard deviation. The standard devi­
ation can be calculated as follows:

S
(MOS - U i

i=l N
(3.3)

As can be seen from the graph, respondents were less consistent in their ratings for
the h264 and h265 codecs, and therefore the confidence interval is quite wide. In
contrast, for the codec VP8, respondents very often agreed on their results. This
shows that the output quality of h264 and h265 codecs is very subjective.

51

Fig. 3.5: Result of the subjective assessment

Putting all three results into one graph 3.6 shows what was written in the the­
oretical part. The best codec is h265, which according to a subjective test achieves
better video quality at the same bit rate. In the middle place is the h264 codec and
the worst codec is VP8. Another thing that can be seen from the graph is that the
lower the bit rate used, the smaller the MOS differences become. The result of the
subjective test is that the minimum bit rate that is still acceptable for the viewer is
around 1000 kb/s.

3.3 Real-time video transmission measurement

The main goal of this work is real-time video transmission, which means that the
most important parameter is low latency and stability at the expense of video qual­
ity. Real-time video will be transmitted using the RTP protocol and individual
packets will be transmitted over the T C P / I P network using the UDP protocol. The
disadvantage of using U D P is that the transmitter has no information if the packet
arrived well, but the transmission is faster. Video transmission will be tested using
three different codecs and for simplicity of measurement, the bit rate will be set to

52

Fig. 3.6: Codecs comparison of average ratings score

1000 kb/s for most situations. The point of this measurement should be to determine
which codec is best for real-time video transmission in outdoor environments.

3.3.1 Methodology of measurement

To measure real-time transmission, it was necessary to define methods to measure
latency, frame rate, packets received and lost, and bit rate.

Latency

Latency means the amount of time it takes for a frame to go from being processed
in the unit to being displayed on the monitor. It may seem like a very simple task,
but the implementation is very complex. Packets are sent using the U D P protocol,
which has no delivery control and individual packets do not carry information about
the time of sending, so cannot be used to measure latency. Another way is to send
additional packets containing information about the timestamps when each frame
was sent. This method is good, but it increases the data rate and is difficult to
implement, because individual frames must be tracked with a timestamp. For the
latency measurement, an effort was made to keep the method as simple as possible.
The selected method works by inserting the text with the current time into the
frame before compression and then also insert the current time after decompression
at the receiver. By inserting time directly into each frame, the problem of matching

53

timestamps to frames is solved. You can see the final implementation in the sample
frame 3.7. At the top is the encoding time and at the bottom is the decoding time.
For proper operation, it is required to successfully synchronize the time between the
unit and the computer using the N T P protocol.

3 ^ 8 1 2 ^ 7 8 2 8 7

Fig. 3.7: implementation of the latency measurement method

In GStreamer element library, there is no element that can insert the current time
into the video, so it was necessary to create one. As mentioned earlier, the GStreamer
implementation is written in python. In the Jetson implementation, the frame
is always extracted from N V M M memory (which is the memory used by C U D A
kernels) into regular R A M before being inserted into the encoder. Then it is very
easy to insert the current time into the frame using the available python libraries. For
simplicity, the time is in millisecond format. Then the frame is returned to N V M M
memory and inserted into the encoder. The situation is similar on a computer side,
but the frames don't have to be moved between memories.

In the process of using it, the disadvantage was found that the time value could
not be automated read and it was necessary to manually read the times and subtract
them

Packet measurement

The goal of this measurement is to get the number of packets that were delivered
correctly and on time and the number of packets that were lost, arrived late or
arrived multiple times. For this measurement it uses the identification marks in the
RTP header and the PTS (presentation timestamp) block where the frame rate is
included. Thanks to the identification marks in the RTP header, it is very easy to
see how many packets have been lost. Because if a packet arrives and it does not
have a mark one higher than the previous one, it means that the packets have been

54

lost between them. In addition, the marker can be used to determine the correct
ordering of packets if they arrive out of order. Thanks to PTS, it is possible to
calculate how often each frame should be received.

Frame Rate

For the frame rate measurement, the GstFPSDisplaySink element was used, which
is located in the GStreamer library. The element measures the current and average
frame rate. The element has two data outputs. The first one is writing the frame
rates directly to the video as a text, and the second one is callback function from
which the frame rates can be read. In this project the callback function is used, and
the measured values are stored in a csv file.

Bit Rate

The bit rate was measured using WireShark. WireShark is a very advanced analysis
tool that can be used to analyze all network communications. In the case of this
project, only U D P packets were analyzed. Afterwards, the data was saved in a csv
file.

3.3.2 Measurement of internal parameters in the unit and in the
computer

It is useful to measure the internal states of the Jetson unit and the computer during
video processing and transmission. With this measurement, it is possible to know
how much performance the video transfer process takes and how much performance
is available for other applications. C P U load, elements latency and bit rate between
elements were measurements on the Jetson unit. Measurements were made on all
three codecs with different output bit rate settings. Latency and bit rate were
measurements on the computer.

To measure the C P U load in the Jetson unit, the GstShark measurement tool
was used. The value of the average C P U load was based on a measure for 60 s period.
Measured for all three codecs and with the bit rate set to 800 kb/s, 1000 kb/s and
2000 kb/s. The video was in 720p resolution, and the frame rate was 30 FPS. As
can be seen from the table 3.5, all values are very similar, and it can be determined
that the C P U load was the same for all situations. This is due to the fact that a
hardware accelerator is used.

To measure the bit rate, the GstShark measurement tool was used. The average
bit rate at the element outputs, which are the same for all codecs, is listed in the
table 3.6. The length of the measurement period was 60 s and the video was in 720p

55

Tab. 3.5: Average C P U load in the Jetson unit during real-time transmission

h264 h265 VP8

800 kb/s 32.65 % 31.46 % 33.18 %
1000 kb/s 33.32 % 31.21 % 32.03 %
2000 kb/s 31.82 % 31.82 % 32.83 %

resolution with 30 FPS. The camera output is compressed with the jpeg codec, so
it is necessary to decode the video before any manipulation. To the encoder inputs
uncompressed video in 1420 format at a bit rate of 330.5 Mbps.

Tab. 3.6: Average bit rate in the Jetson unit real-time transmission

Camera output Camera output decoder Measure Latency Element Encoder input
26.1 Mb/s 330,5 Mb/s 330,5 Mb/s 330,5 Mb/s

The table 3.7 shows the average values of the output bit rate of all encoders. The
length of the measurement period was 60 s and the video was in 720p resolution
with 30 FPS. Codecs are set to a constant bit rate mode. The graph 3.8 compares
the output bit rate of all three codecs for a set bit rate of 1000 kb/s. As can be seen,
the h265 codec has the smoothest and most stable waveform. A very interesting
waveform has the VP8 codec, which has a large spike after about 8 seconds. The
reason for this phenomenon is unknown.

Tab. 3.7: Average bit rate on the encoder output during real-time transmission

h264 h265 VP8
800 kb/s 792.860 kb/s 791.690 kb/s 793.400 kb/s
1000 kb/s 996.900 kb/s 987.790 kb/s 992.560 kb/s
2000 kb/s 2001.300 kb/s 1997.300 kb/s 1994.719 kb/s

To measure latency, the GstShark measurement tool was used. The elements,
which are the same for all codecs, are listed in the table 3.8. The latency element was
measured to have a latency of 7 ms in Jetson and 3 ms in the computer. Decoding
the video on the computer side takes the same time for all codecs, 5 ms. Thanks
to the measured latency inside the unit and the computer, the real latency of the
wireless link can be calculated.

The table 3.9 lists the latency of all codecs for 800 kb/s, 1000 kb/s and 2000 kb/s
bit rate and the latency for elements that pack the video stream into RTP and U D P
packets. As can be seen from the table, the larger the bit rate value is set, the higher

56

iÖ g g | I I I I I I I I
5 10 15 20 25 30 35 40 45 50

Time [s]

x 1 0 6 h265

S g g| I I I I I I L
10 15 20 25 30 35 40 45

Time [s]

Fig. 3.8: Encoder output bit rate during real-time transmission

Tab. 3.8: Average latency during real-time transmission

Latency in the Jetson unit
Camera capture Camera decode Latency Element

0.073 ms 2.856 ms 7.513 ms

Latency in the computer
Processing U D P and RTP Video decode Latency Element

0.267 ms 5.020 ms 3.061 ms

the overall latency. The h264 codec had the lowest latency and the VP8 codec had
the highest.

3.3.3 Outdoor measurement when both stations are stationary

The most important chapter of the measurement is the effect of distance on the
parameters of the video. After consulting with the supervisor, it was decided that
the W i F i adapter built into the laptop would be used as a receiver. Because using
an external antenna would only increase the distance, but the parameter waveform
would remain unchanged. On the U-Blox NINA W i F i transmitter a 3 dBi omni­
directional antenna was installed and the transmitter was set to maximum output
power. For protection reasons, the Jetson unit and the W i F i transmitter were en­
closed in a plastic box 3.9. The measurements were done outdoors, and the receiver

57

Tab. 3.9: Encoder latency during real-time transmission

h264
Encoder UDP and RTP Process

800 kb/s 5.201 ms 0.176 ms
1000 kb/s 5.209 ms 0.184 ms
2000 kb/s 5.934 ms 0.338 ms

h265
Encoder UDP and RTP Process

800 kb/s 5.939 ms 0.210 ms
1000 kb/s 5.923 ms 0.244 ms
2000 kb/s 5.934 ms 0.338 ms

VP8
Encoder UDP and RTP Process

800 kb/s 8.763 ms 0.124 ms
1000 kb/s 8.777 ms 0.148 ms
2000 kb/s 8.852 ms 0.180 ms

always had a direct line of sight to the transmitter. The test video was live output
from a video camera with 720p resolution and 30 FPS.

Measurements when both stations were stationary were done by placing the

Fig. 3.9: Device enclosed in a plastic box

58

Jetson unit in a visible location and the user with the computer moved in steps
of 10 meters. At each step, measurements were taken for 60 s. During this time,
the average frame rate and latency were measured. The packet count is the sum of
packets received and lost during this time.

The first graph 3.10 is for the h264 codec. The graphs show very clearly the
characteristic of digital video where small errors can be recovered by the receiver
using error correction codes, but when the number of errors exceeds a specific limit,
the video will stop. In the case of h264, this limit distance occurred at 170 m. Until
this distance, the average frame rate was kept at around 28 FPS. The average latency
started at 38 ms and also increased with increasing distance up to 65 ms. According
to the subjective ratings of users, the h264 codec was good. Synchronisation at
startup was fast and there were relatively few error artefacts or other image problems
in the resulting video. Most often the video stopped, but after a while it continued
again.

15000

Average FPS

*e

100

B 40

Average Latence

20

50 100 150
Distance [ml

200 250 50 100 150
Distance [m]

200 250

Pass and Lost packets

-Q— packets pass

- Q — packets lost

250
Distance [m]

Fig. 3.10: Outdoor measurement result with static stations for h264 codec

The second graph 3.11 is for the h265 codec. The difference from the h264 codec
is that the h265 codec has a more stable frame rate and the average rate was close to
the maximum frame rate of 30 FPS. Latency started at 50 ms up to 90 ms. Latency
is about 20 ms higher than h264. The range where video could be played was 210 m
and this is 50 m more than the h264 codec. This shows that the h265 codec has much

59

more robust methods for repairing errors caused by transmission. Very interesting
were the h265 codec errors, which were represented by green horizontal bars or the
whole green screen. The frequency of freeze and the number of artifacts was the
same as for the h264 codec. Synchronization was fast when the stream started. The
transmission made a good subjective impression on user.

Average FPS Average Latence

250

- packets pass

100 150
Distance [m]

Fig. 3.11: Outdoor measurement result with static stations for h265 codec

The third graph 3.12 is for the VP8 codec. The average frame rate was around
25 FPS. During transmission, there were many freeze that affected the measure­
ments. The maximum distance at which the video transmission could be played
was 160 m. This is the same distance as for the h264 codec. From the latency plot
it looks like an ideal transmission, where latency does not increase with distance.
Which of course is not possible and therefore the latency of VP8 will be ignored. I
assign the reason for the error to high frequency of streaming failure. Synchroniza­
tion took longer when starting the stream, compared to other codecs. The most
common artifacts were multiple small white squares spread randomly across the
frame. The second most common defect was that the loss of color and then the
video was gray. The transmission did not make a good impression on the user.

60

Fig. 3.12: Outdoor measurement result with static stations for VP8 codec

3.3.4 Outdoor measurement when one station is in movement

To verify the functionality of the device, it was done a test where the transmitting
unit was moving, and the receiver was stationary. The set-up was exactly the same
as the last measurement. The test used an area of 80 x 80 m. Unfortunately, it was a
small space, and therefore all three codecs had no problem with the range. The test
of each codec took about 4 minutes. Unfortunately, the track line for the moving
unit could not be made to always be the same, so the track line for the moving
unit changed for each measurement. Unfortunately, the most common reason for
the freeze was covering the antenna with body parts. In the graphs below, there is
always a selection of a part of the measurements.

The h264 codec had the same characteristics as the last measurement. The initial
synchronization was fast and when the quality of signal degraded, the video stopped.
When the quality of signal improved the video resumed automatically. The most
common artifacts were represented by blurred squares. On the graph 3.13 you can
see the bit rate waveform on the receiving computer and the frame rate. There are
visible dropouts in the frame rate.

The h265 codec also had the same characteristics as in the previous test. The
initial synchronization was fast and when the quality of signal degraded, the video
stopped. When the quality of signal improved the video resumed automatically.
The most common artifacts are green stripes and blurred squares. The graph 3.14
shows a section of a very bad signal. But it showed that the h265 codec could handle

61

C O D E C : h264

Bitrate

100 110

Fig. 3.13: Outdoor measurement result with one move station for h264 codec

the bad signal and would reconstruct the videos even if it contained errors. When
testing real-time video, users agreed that transmission using the h265 codec was the
best. The video did have defects, but they didn't disturb as much as other codecs.

C O D E C : h265

Bitrate

Fig. 3.14: Outdoor measurement result with one move station for h265 codec

The VP8 codec also had the same characteristics as in the previous test. The
initial synchronization took longer to synchronize with the input video stream and
the video contained many artifacts. A very interesting phenomenon can be seen
in the graph 3.15, where it looks like a perfect video transmission even though the
quality of signal was not perfect. This is because where the h264 and h265 codecs
would stop the video due to missing data, the VP8 codec continued, but the video
was all grey. From the user's subjective assessment of view, the transmission was
annoying. It can be concluded that the VP8 codec is not suitable for real-time
applications.

62

C O D E C : VP8

1 5

0

30

0

1

1 1 1 1

1 1 1

1 1

1 1

10 20 30 40 50 60 70 80 9
Time [s]

FPS

1 v 1

1 .

U i ,1

-

0 10 20 30 40 50
Time [s]

Fig. 3.15: Outdoor measurement result with one move station for vp8 codec

3.3.5 Artefacts in video transmission

(a) Blurred squares in codec h264 (b) Green stripes in h265

(c) Small white squares in VP8 pens with all codecs

Fig. 3.16: Examples of Artifacts in video transmission

63

Conclusion
The aim of this thesis was to design a device that will be able to process video
from a camera and wirelessly transmit it to a computer where it can be displayed
on a monitor. The device is powered by the NVIDIA Jetson Nano and video is
streamed wirelessly through a W i F i interface. In theoretical part are described the
problems of video transmission and describe all the most important parts of the
compression process. It also explained the differences between h264, h265, and VP8
codecs. The next chapter described the protocols that work over IP network and are
used for the real-time transmission of multimedia content. The last chapter of the
theoretical part focuses on the analysis of individual parts of the resulting device.
As the transmitting unit, where the video is processed, the NVIDIA Jetson Nano
computer is used. Features and how to make the unit start-up operation and then
how to use it describe in detail. A computer is used as a receiver, where the video is
decoded and displayed on a monitor. It was decided to not use an external antenna
but to use the antennas integrated into the netbook for measurements. This reduces
the range, but the transmitting characteristics remain the same. The GStreamer
framework was used to work with the video in the Jetson unit and on the computer.
The control of GStreamer and the operation of the whole device was written in
Python. The theory around Gstreamer was described and the final pipeline for
real-time video streaming was explained. For video encoding, hardware accelerators
were used. U-Blox NINA W10 radio module was used for wireless transmitting,
which consists of an ESP32 processor and radio apparatus. It describes how to start
the module, how to write and upload the program and how the software work. The
complete device was successfully assembled and made operational. The software
libraries for the Jetson unit and the computer have been written. The library for
the computer is modified to be compatible with the PyQt graphical framework.
With this device, several measurements were made to compare the performance of
the codecs and their settings.

In the measurement part, the codecs were tested with several measurements. The
measured parameters are the C P U load of the Jetson unit, the total latency from the
camera to the monitor, the bit rate waveform, and the frame rate waveform. When
measured in real conditions, stability was measured at distances between stations. A
subjective test was done to determine the limit of acceptability of the video quality.
A total of 17 test video sequences were created for the experiment, from a bit rate of
300 kb/s to 2000 kb/s. A total of 10 respondents completed the questionnaire. The
subjective test proved that the limit of acceptability for 720p video is 1000 kb/s.
Another result from the subjective test determined that the h265 codec had the
best video quality and the VP8 codec had the worst video quality. This result

64

agrees with the theoretical predictions. For initial measurement of the performance
of all three codecs, they were tested for video encoding to file. From the results, it
was discovered that the difference between codecs when using hardware accelerator
takes compression time and C P U load similarly. For the h264 and h265 codecs
the waveform was nicely stable, but for the VP8 codec the waveform was unstable.
For real-time transmission, it is preferable when the bit rate is stable. The next
measurement of the codec parameters was to measure the internal behavior of the
unit and the computer when the transmission was active. It can be seen from the bit
rate waveform that the h264 and h265 codecs have a relatively stable waveform, but
the VP8 codec had a waveform with periodic spikes. The inter latency measurements
showed the latency of each element in the GStreamer pipeline. The h264 encoder
has a latency of 5.4 ms, the h265 has 6.2 ms, and the VP8 has 8.8 ms. When the bit
rate increased, the latency also increased. Video decoding on the computer takes
5.2 ms for all codecs.

For measurements in real conditions, total latency, average frame rate, bit rate,
and number of received and lost packets. The measurements were performed in
two different situations. The first situation was when the transmitter and receiver
were not moving, and the second situation was when the transmitter was moving.
Thus, when measuring the first situation, the phenomenon of digital videos was
evident. When small errors can be repaired by the error correction code, but when
the number of errors exceeds a limit, the video stops. For the h264 and VP8 codecs,
this limit occurred at 170 m. For the h265 codec, this limit occurred at 210 m.
When changing the encoder parameters (bit rate, I-frame frequency), the maximum
distance did not change. For latency measurements, the h264 codec had a 20 ms
lower average latency than the h265 codec.

In the second situation, when the transmitting unit was in motion, it was mea­
sured in an area of 80x80 m. In this area, all codecs had no problem with the range.
The VP8 codec took the longest time to initially synchronize the video stream and
the video contained many error artifacts. Compared to the other codecs, the VP8
codec did not stop when packets were lost but continued even when the screen was
garbled. The h264 codec was fast during the initial synchronization. The video
stream was freezing more often than showing error artifacts. The frequency of freez­
ing was relatively frequent. The h265 codec also had fast initial synchronization, and
the video was much more stable than the h264 codec. Even with a poor signal, the
h265 was able to reconstruct and display the video. The most frequent artifacts in
the h265 codec were green horizontal lines. Despite sometimes freezing and showing
artifacts, the video stream was the best to watch.

Measurements determined that the best codec to use for real-time streaming is
h265. The h265 codec was able to transfer the video at the longest distance. From

65

the measurements when the transmitting unit was in motion the h265 codec was the
best. Compared to the h264 codec, it has a 20 ms higher average latency. Thanks
to the use of a hardware accelerator, there was no problem with performance and
the encoding time is 6.2 ms.

66

Bibliography
[1] B E A C H , A. ; O W E N , A. Video compression handbook. Second edition. Berkeley:

Peachpit Press, 2019. ISBN 0-13-486621-5

[2] C I K A , P. Multimediální služby. Brno: Vysoké učení technické v Brně, Fakulta
elektrotechniky a komunikačních technologií, Ústav telekomunikací 2012.
ISBN 978-80-214-4443-0

[3] WIGGINS, P. Creating interlaced video from progressive footage in Final Cut
Pro X. [online]. Copyright © 2015 FCP.co [cit. 1.10.2022]. Dostupné z URL:
<https://fcp.co/final-cut-pro/tutorials/>

[4] POLÁK, L. Digitální vysílání a videotechnika: Přednášky. Brno: Vysoké učení
technické v Brně, Fakulta elektrotechniky a komunikačních technologií.

[5] M U R A T T E K A L P , A . Digital Video Processing, 2nd Edition. Pearson, 2015.
ISBN 0-13-399100-8

[6] A K R A M U L L A H , S. Digital Video Concepts, Methods, and Metrics: Quality,
Compression, Performance, and Power Trade-off Analysis. Berkeley: Apress
Media, 2014. ISBN 978-1-4302-6713-3

[7] JIROUŠEK, R.; IVÁNEK, J., MÁŠA, P., TOUŠEK, J., VANĚK, N Principy
digitální komunikace. Voznice: Leda, 2006. ISBN 80-7335-084-x

[8] NVIDIA . NVIDIA Jetson Nano DATA SHEET [specification]. Copyright ©
2020 NVIDIA Corporation [cit. 1.10.2022].

[9] NVIDIA. Embedded Systems Developer Kits & Modules from NVIDIA Jetson
[online]. Copyright © 2022 NVIDIA Corporation [cit. 1.10.2022]. Dostupné
z URL: <https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/>

[10] NVIDIA. NVIDIA Developer Center [online]. Copyright © 2022 NVIDIA Cor­
poration [cit. 1.10.2022]. Dostupné z URL: <https://developer .nvidia.
com/embedded/develop/>

[11] NVIDIA. NVIDIA Documentation Center [online]. Copyright © 2022 NVIDIA
Corporation [cit. 1.10.2022]. Dostupné z U R L : <https://docs.nvidia.com/

#nvidia-jetson-software_j etpack/>

[12] NVIDIA . NVIDIA Jetson Nano Developer Kit Carrier Board [specification].
Copyright © 2018 NVIDIA Corporation [cit. 1.10.2022].

67

https://fcp.co/final-cut-pro/tutorials/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
http://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://developer%20.nvidia.?com/embedded/develop/
https://developer%20.nvidia.?com/embedded/develop/
http://docs.nvidia.com/%23nvidia-jetson-software_j%20etpack/
http://docs.nvidia.com/%23nvidia-jetson-software_j%20etpack/

[13] W U , Elaine. NVIDIA Jetson Nano Developer Kit Detailed Re­
view, [online]. Copyright © 2018 Seeed Studio [cit. 1.10.2022].

Dostupne z URL: <https://www.seeedstudio.com/blog/2019/04/03/
nvidia-jetson-nano-developer-kit-detailed-review/>

[14] NVIDIA . NVIDIA Jetson Nano Developer Kit User Guide [specification].
Copyright © 2012 NVIDIA Corporation [cit. 1.10.2022].

[15] NVIDIA. NVIDIA ACCEIERATED GSTREAMER USER GUIDE [online].
Copyright © 2019 NVIDIA Corporation [cit. 1.10.2022]. Dostupne
z U R L : <https://developer.download.nvidia.com/embedded/L4T/r32-2_
Release_vl.0/Accelerated_GStreamer_User_Guide.pdf>

[16] GStreamer: open source multimedia framework. Application Devel­
opment Manual. [online], gstreamer.freedesktop.org [cit. 1.10.2022].

Dostupne z U R L : <https://gstreamer.freedesktop.org/documentation/

appli cat i on-development/>

[17] R A V I K , Haakon Wilhelm. A Real-Time Video Retargeting Plugin for
GStreamer . Master thesis. University of Oslo. 2016 [cit. 1.10. 2022]. Dostupne
z U R L : <https://www.duo.uio.no/handle/10852/53014>

[18] RidgeRun GstShark Wiki. [online]. RidgeRun [cit. 1.10.2022]. Dostupne
z U R L : <https://developer.ridgerun.com/wiki/index.php?title=

GstShark>

[19] USB video device class, [online]. Wikipedia [cit. 1.10.2022]. Dostupne z U R L :
<https://en.wikipedia.org/wiki/USB_video_device_class/>

[20] UP ED camera, [online]. UP Shop [cit. 1.10. 2022]. Dostupne z URL: <https:
//up-shop.org/up-hd-camera.html>

[21] U - B L O X . NINA-W10 series - Data sheet [online]. Copyright © 2022 u-blox
[cit. 1.5.2023]. Dostupne z U R L : <https://content.u-blox.com/sites/

default/files/NINA-W10_DataSheet_UBX-17065507.pdf>

[22] U - B L O X . NINA-W10 series - System integration manual [online]. Copyright
© 2023 u-blox [cit. 1.5.2023]. Dostupne z U R L : <https ://content .u-blox.
com/sites/default/files/NINA-Wl_SIM_UBX-17005730.pdf>

[23] ESPRESSIF . ESP-IDF Programming Guide [online]. Copyright © 2023
ESPRESSIF [cit. 1.5.2023]. Dostupne z URL: <https ://docs. espressif .
com/projects/esp-idf/en/latest/esp32/>

68

http://www.seeedstudio.com/blog/2019/04/03/nvidia-jetson-nano-developer-kit-detailed-review/
http://www.seeedstudio.com/blog/2019/04/03/nvidia-jetson-nano-developer-kit-detailed-review/
https://developer.download.nvidia.com/embedded/L4T/r32-2_?Release_vl.0/Accelerated_GStreamer_User_Guide.pdf
https://developer.download.nvidia.com/embedded/L4T/r32-2_?Release_vl.0/Accelerated_GStreamer_User_Guide.pdf
http://gstreamer.freedesktop.org
http://gstreamer.freedesktop.org/documentation/appli%20cat%20i%20on-development/
http://gstreamer.freedesktop.org/documentation/appli%20cat%20i%20on-development/
http://www.duo.uio.no/handle/10852/53014
https://developer.ridgerun.com/wiki/index.php?title=?GstShark
https://developer.ridgerun.com/wiki/index.php?title=?GstShark
https://en.wikipedia.org/wiki/USB_video_device_class/
http://content.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17065507.pdf
http://content.u-blox.com/sites/default/files/NINA-W10_DataSheet_UBX-17065507.pdf

[24] Secure Shell. Wikipedia: the free encyclopedia, [online]. Copyright © 2023
San Francisco (CA): Wikimedia Foundation [cit. 1.5.2023]. Dostupne z U R L :
<https://cs.wikipedia.org/wiki/Secure_Shell>

[25] File Transfer Protocol. Wikipedia: the free encyclopedia, [online]. Copyright
© 2023 San Francisco (CA): Wikimedia Foundation [cit. 1.5.2023]. Dostupne
z U R L : <https://cs.wikipedia.org/wiki/File_Transfer_Protocol>

69

https://cs.wikipedia.org/wiki/Secure_Shell
http://cs.wikipedia.org/wiki/File_Transfer_Protocol

