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Abstract 
In-lab analysis of microbia l colonies grown on Pe t r i dishes is on the frontier of efforts for 
to ta l laboratory automation. The core of this issue lies i n precise local izat ion of the colonies 
during image analysis. The state of the art solutions often employ machine learning models. 
However, these models tend to be heavily reliant on existence of quali ty labels which leads 
to a data scarcity problem. The proposed thesis addresses this issue by creation of a sam­
ple generator. The robustness of the proposed solution was corroborated by successfully 
applying the generator both i n our segmentation and colony clustering efforts, significantly 
raising the F l segmentation score from 0.518 to 0.729 and achieving a subsequent V-measure 
clustering score of 0.830. This approach to generating synthetic data brings us one step 
closer towards to ta l laboratory automation. 

Abstrakt 
L a b o r a t o r n í a n a l ý z a mikrob iá ln ích kolonií pěs tovaných na Petr iho mi skách je v současné 
d o b ě p ř e d m ě t e m in t enz ivn ího v ý z k u m u ve snaze o dosažen í t o t á l n í l a b o r a t o r n í automa­
tizace. J á d r o tohoto p r o b l é m u spoč ívá v p ře sné lokalizaci kolonií p ř i obrazové ana lýze . 
Současná řešení nejčastěj i využívaj í s t ro jové učení , k t e r é je však obecně závislé na kvali t­
ních datech, k t e rých je v tomto o d v ě t v í k dispozici jen velmi m á l o . A b y c h adresoval tento 
p rob lém, vy tvoř i l jsem víceúčelový g e n e r á t o r syn te t i ckých dat. Ú s p ě š n ě jsem jej aplikoval 
jak př i segmentaci tak př i sh lukování kolonií . Výs ledné s e g m e n t a č n í F l skóre se m i p o d a ř i l o 
navýš i t z 0,518 na 0,729 a př i sh lukování jsem s v y u ž i t í m t é t o segmentace dosáh l V-measure 
skóre 0,830. P r a c í n a v r ž e n ý p ř í s t u p ke generování syn te t i ckých dat n á s posouvá o krok blíže 
k p lné l a b o r a t o r n í automatizaci . 
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Rozšířený abstrakt 
J e d n í m z h lavn ích využ i t í Petr iho misek s agarem v biologických l a b o r a t o ř í c h je m n o ž e n í 
a n á s l e d n á a n a l ý z a mikrob iá ln ích kolonií . P ř e s t o ž e je tohle b ě ž n á a n e z b y t n á praxe, dosud 
nebyla p lně a u t o m a t i z o v á n a . P ř í s t r o j e dnes sice u m í naočkova t misku s agarem a analyzo­
vat izolované vzorky, jsou to však s tá le l a b o r a t o r n í technici, k t e ř í m u s í rozhodovat, k t e ré 
z m o ž n ý c h stovek kolonií jsou h o d n é další , sofistikovanější ana lýzy . Automat izace tohoto 
kroku spočívá v p ř e s n é lokalizaci m i k r o b n í c h kolonií na misce a jejich sh lukování dle p řed­
p o k l á d a n ý c h mikrob iá ln ích d r u h ů . P ř í s t r o j by n á s l e d n ě mohl navzorkovat m i n i m á l n í poče t 
t ě c h t o kolonií pokrývaj íc í rozmanitost celé misky, a to bez nutnosti l idské interakce. 

Ačkoli lokalizace byla j iž vědeckou komuni tou ad resována , s t á le chybí obecně funkční 
řešení pokrývaj íc í š i rokou šká lu r ů z n o b a r e v n ý c h a g a r ů a mik rob iá ln ích d r u h ů , o sh lukování 
l ibovolného p o č t u mikrob iá ln ích d r u h ů se naproti tomu dle m é h o n á z o r u z a t í m nikdo 
nepokusil . O b a tyto p r o b l é m y se po týka j í s nedostatkem kval i tn ích dat. P r o zapo jen í 
p ř í s t u p ů h loubkového učení , k t e r é j inak ve s n a h á c h o automatizaci v tomto pol i p ř e v l á d á , 
jsou p o t ř e b a kva l i tně po ř í zené o b r á z k y ku l t ivovaných Petr iho misek spolu se s e g m e n t a č n í m i 
a sh lukovacími maskami. S e g m e n t a č n í b i n á r n í maskou jsou p ře sně definovány oblasti 
v ý s k y t u mikrob iá ln ích kolonií . Shlukovací maska naprot i t omu indikuje, k t e r é kolonie lze 
seskupit na zák l adě svých v izuá ln ích v l a s tnos t í . Vy tvá řen í a značen í o b r á z k ů ku l t ivovaných 
Petr iho misek je v šak d r a h é a časově n á r o č n é . Pro to jsem navrhl způsob , k t e r ý m lze 
o p ě t o v n ě využ í t j iž existuj ících o b r á z k ů ku l t ivovaných Petr iho misek za úče lem d a t o v é aug-
mentace. 

Nejdř íve jsem z d o s t u p n ý c h a b i n á r n ě označených o b r á z k ů extrahoval j edno t l ivé kolonie 
spolu s odpovída j íc í čás t í jejich s e g m e n t a č n í masky a vy tvoř i l jejich d a t a b á z i . J edno t l ivé 
kolonie jsem roz t ř íd i l dle jejich v izuá ln í podobnosti . N á s l e d n ě jsem j e d n o t l i v ý m z í sk aným 
v ý ř e z ů m kolonií p o m o c í techniky kl íčování barev zvýšil p r ů h l e d n o s t v mís tech , kde byla 
barva kolonií p o d o b n á oko ln ímu agaru. Č á s t i o b r á z k u ind ikované s e g m e n t a č n í maskou jako 
neobsahuj íc í kolonii jsem zp růh ledn i l úp lně . Výs ledkem je d a t a b á z e s e m i - t r a n s p a r e n t n í c h 
kolonií bez p o z a d í a s odpovída j í c ími s e g m e n t a č n í m i maskami. S v y u ž i t í m gene t ického al­
gori tmu nás l edně umisťuj i tyto kolonie na o b r á z k y Petr iho misek s neku l t i vovaným agarem. 
T y t o p r á z d n é misky jsem získal p r á v ě pro tento účel a obsahuj í proto velmi š i rokou šká lu 
r ů z n o b a r e v n ý c h a g a r ů . Z a úče lem dosažen í realismu nakonec simuluji jev pozorova te lný 
pobl íž n ě k t e r ý c h kolonií , k t e r ý m je p o z m ě n ě n í barvy agaru, n a p ř í k l a d v l ivem hemolýzy. 
I m p l e m e n t o v a n ý g e n e r á t o r je schopen produkovat r o z m a n i t é misky ve velkém množs tv í , 
a to rovnou s odpovída j í c ími maskami jak pro segmentaci, tak shlukování . 

A b y c h zhodnot i l prakt ickou využ i t e lnos t t ě ch to dat, n a t r é n o v a l jsem s e g m e n t a č n í U-Ne t 
model na p ů v o d n ě d o s t u p n é , r eá lné d a t o v é sadě . D o d a t e č n ě jsem n a t r é n o v a l č tyř i dalš í 
modely s te jné architektury, na č ty řech modif ikovaných d a t o v ý c h s adách . A b y c h otesto­
val, zda funguje kl íčování i s imulování poškozen í agaru, rozšíři l jsem p ř i p r a v e n é d a tové 
sady o č ty ř i identicky generované syn te t ické d a t o v é sady. Z a t í m c o v y b r a n é kolonie, jejich 
modifikace, u s p o ř á d á n í i agar byly vždy skrze d a t o v é sady ident ické, lišily se v použ i t í 
kl íčování a simulaci poškození agaru. Po v y h o d n o c e n í všech pě t i n a t r é n o v a n ý c h m o d e l ů 
na p ů v o d n í t es tovac í d a t o v é sadě , k t e r á byla rozš í řena o dř íve nev iděné reá lné o b r á z k y 
s r ů z n ý m i barvami aga rů , lze tvrdi t , že tento p ř í s t u p funguje a v ý r a z n ě zlepšuje ú spěšnos t 
segmentace. Kl íčování , s te jně jako simulace poškození agaru, modely vylepšuj í , a to jak 
nezávisle na sobě , tak př i s o u b ě ž n é m použ i t í . Celková ú spěšnos t segmentace v y j á d ř e n á 
p o m o c í metr iky F l skóre se zvýši la z 0,52 na 0,73. 

P ř i ad resován í p r o b l é m u sh lukování kolonií jsem se rozhodl využ í t algori tmu K -Means . 
P ro na lezen í o p t i m á l n í h o p o č t u sh luků v y u ž í v á m metody K n e e / E l b o w Point Detection. 



Z hlediska extrakce p ř í z n a k ů navrhuji t ř i p ř í s t u p y : sh lukování R G B hodnot j edno t l i vých 
pixelů a n á s l e d n é p ř i ř azen í shluku kolonii dle její pixelové kompozice, extrakci p ř í z n a k ů 
U-Net a u t o e n k o d é r u o p ě t pro j edno t l ivé pixely a nakonec ručn í specifikaci p ř í z n a k ů pro 
k a ž d o u izolovanou kolonii zvlášť. A u t o e n k o d é r , z něhož jsem extrahoval př íznaky , by l 
t r é n o v a n ý na p ů v o d n í m datasetu reá lných o b r á z k ů . Vlas tnos t i jsou e x t r a h o v á n y z v ý s t u p u 
pos ledn í k o n k a t e n a č n í vrs tvy po f inálním převzorkován í v r á m c i s í tě . R u č n ě e x t r a h o v a n é 
p ř í z n a k y t ř e t í h o p o p s a n é h o p ř í s t u p u jsou j e d n o d u c h é v izuá ln í vlastnosti , jako je p r ů m ě r n á 
barva, velikost nebo tvar. 

Všechny tyto p ř í s t u p y dosáh ly s rovna te lných výs ledků , n i c m é n ě nej lepš ího výs ledku 
dosáh l p ř í s t u p zahrnuj íc í m a n u á l n í extrakci p ř í z n a k ů pro j edno t l ivé kolonie. P ř e s t o ž e 
dosažené výs ledky nelze srovnat s j i n ý m i v ý z k u m e m , V-measure je p e v n ě v y m e z e n á metr ika 
a dosažené skóre 0,91 je blízko t eo re t i ckému l i m i t u ideá ln ího shlukování , k t e r ý činí 1.0. 
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Chapter 1 

Introduction 

Agar-based media (or s imply agar plates) are used throughout the world to study mi ­
croorganisms in microbiology and medical diagnostics. Cu l t iva t ing dishes wi th the purpose 
of further analysis is a dai ly occurrence i n many laboratories, often requiring a highly 
qualified personnel to perform repetitive and t ime consuming tasks based on professional 
knowledge, such as inspecting each dish visual ly for signs of a specific microbe or man­
ually selecting colonies of interest for the purpose of isolation on a dedicated agar plate. 
E l imina t ing the need for such tasks or at least reducing them to a m i n i m u m w i t h the use 
of automation can help medical professionals and researchers around the world by reducing 
expenses and t ime spent performing mundane tasks manually. 

Machine learning models are nowadays widely used for the purposes of image analysis. 
Aga r plate in-lab analysis is no exception and deep learning is now being used to analyse 
high-resolution images of agar plates i n many laboratory software solutions from various 
manufacturers. A common hurdle whenever machine learning is employed, however, is 
a lack of data to t ra in on. Images of these plates are hard to obtain, since their successful 
cul t ivat ion and image acquisit ion takes up significant t ime and resources. 

This problem is usually addressed by altering available data samples to augment the 
dataset. In case of agar plates, augmentation is a very viable and potent solution, as 
producing their largely original yet realistic images is a feasible task. Despite its potential 
in this matter, it is often underuti l ized by the scientific community. Generat ion of these 
new data samples is a key part of this thesis, as it directly improves any deep learning 
models employed in any form of image analysis of these agar plates. 

This thesis deals p r imar i ly w i th the steps usually taken in between obtaining an already 
cultivated agar plate and a single microbia l sample analysis. It proposes several methods 
of introducing automation or opt imiz ing automation already in place wi th in these steps, 
details the process of their implementat ion and i n the end evaluates their effectiveness in 
comparison to other known existing approaches. 
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Chapter 2 

Laboratory analysis of agar plates 

W h e n a sample presumed to contain microbes is obtained, it can rarely be analysed as is by 
the laboratory equipment. Regardless of its origin, the microbes are generally too diluted 
to be reliably retrieved or inspected. For this reason, cul t ivat ing media are used to mul t ip ly 
any microbes present in obtained samples to allow for easier isolation, retrieval and analysis. 

2.1 C u l t i v a t i o n and analysis 

Laboratories a l l over the world have diverging procedures and rules regarding producing and 
handling cult ivated agar plates. They also employ different technologies i n regards to their 
analysis and there is no objectively correct way to perform it . Despite this, several common 
steps can be generalized before the solutions start diverging significantly. Due to a lack 
of consensus on procedures intensified by a lack of relevant literature dealing wi th this 
issue, this section draws largely from a book summarizing the current science i n regards 
to microorganisms [10]. 

There are mult iple kinds and forms of media used to cultivate microbes i n laboratory 
conditions. Usual ly these contain nutrients necessary for growth of any microbes delib­
erately placed in them. These media can vary in density, consistency and general make­
up broadly. The most commonly used solid medium is an agar stored i n Pe t r i dishes. 
Such a dish, whether cult ivated or not, is then often and w i l l be further referred to as 
an agar plate. M a n y agars have selective properties and induce growth of only specific 
kinds of microbes. Some agars are chromogenic, meaning they change color when a certain 
type of microbe is present based on its biochemical activity. Generally, agar plates are 
used for determining the presence of part icular microbes i n samples of human origin, foods 
and other materials alike. P lac ing antibiotic capsules wi th in an agar plate is a biologi­
cal research technique also used for checking whether any given microbes have developed 
resistance for antibiotics. 

Cul t iva t ing the plate entails moving a smal l amount of microbes onto the medium. 
The inoculat ion itself can be done manually or automatically, usually by spreading the mi ­
crobes i n t h in long lines over the surface of the medium. If the line is sufficiently long, 
the microbia l substrate is usually di luted enough towards its end to produce single mi ­
crobes i n sufficient distance from each other to form easily observable colonies originating 
from a single cell. A n example of these "inoculat ion smears" can be observed in Figure 2.1. 

After the plate is inoculated it is left i n appropriate conditions usually for 1 2 - 4 8 hours. 
W h e n retrieved, the grown microbes on the dish can be analysed. Often - prior to any 
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Figure 2.1: Three distinct microbia l lines formed from mater ial released from the inoculat ion 
swab. The th inning of the lines resulting in the formation of singular isolated colonies can 
be noted i n each of the three cases. 

further processing - a species needs to be isolated. A procedure called colony picking is 
then employed, which entails carefully obtaining very smal l amounts of microbes from what 
is perceived to be a single colony and cul t ivat ing it i n a different agar plate meant to house 
only this part icular microbe. 

M i c r o b i a l colonies (also called colony forming units - C F U s ) can be defined as circular 
masses of microorganisms a l l originating from a single mother cell. A n example of such 
colonies can be seen i n Figure 2.2. Depending on the k ind of analysis being performed, 
it can be done either manually or automatical ly w i th the use of dedicated instruments. 
The colonies can be analyzed based on their smell, they can be tested for their chemical and 
physical properties, or just s imply observed visually. V i s u a l observation is often a precursor 
to colonies of interest being analyzed further by other methods, usually after having been 
isolated, and is therefore often an integral part of the overall analysis. 

V i sua l ly observable features are, e.g., size, shape, texture, opacity or color. Information 
can also be derived from the layout of the observed material on the dish, for example, when 
antibiotic capsules are placed upon the agar, as seen i n Figure 2.3. The agar itself can 
also provide useful information, as is the case wi th the aforementioned selective agars or 
chromogenic agars. A n agar plate can be sufficiently analyzed by a laboratory technician 
visually. A n y ambiguity or uncertainty however often calls for an analysis by a dedicated 
instrument. 

2.2 C u r r e n t degree of automat ion 

Machines are nowadays fully capable of cul t ivat ing dishes, picking colonies and reliably 
analysing microbes. H u m a n interaction and direct input is, however, s t i l l required - as can 
be seen outl ined in Figure 2.4 - to decide which part icular colonies on a plate are of interest 
and worthy of further analysis, often expensive or t ime consuming on its own. 

4 



Figure 2.2: Four microbia l colonies presumably originated from their respective mother 
cells. The diameters of these part icular colonies range between 1 - 2 m m . W h a t can be 
noted is the apparent roundness as well as color diversity. The apparent sickle-shaped 
gleams are reflections of the lights surrounding the dish when the image was taken. 

Figure 2.3: Image of a cult ivated agar plate w i th two antibiotic capsules placed wi th in . 
The capsule on the left is surrounded by an area untouched by the microbia l material , 
imply ing the antibiotics successfully prevent growth of the tested microbe. The capsule on 
the right is either defective or the microbes are resistant, as the they seem to have no issue 
growing nearby. 

The company Bruker Daltonics G m b H & C o . K G has developed an instrument used for 
accurately classifying microbia l species called the M B T Biotyper [9]. Th is instrument uses 
a technique called M a t r i x Assisted Laser Desorpt ion/Ionizat ion, often abbreviated M A L D I . 

M A L D I is a technology used to produce molecular ions from the analysed samples. 
These ions are created once the sample is hit by a laser pulse, which causes the sam­
ple's desorption. Mass spectrometers - usually also employing a technology called T ime 
of Fl ight ( T O F ) - accelerate the created ions using a magnetic field i n a tube of a known 
length. Heavier ions are detected later than lighter ones, as they are slower. The result 

5 



Inoculation instrument Cultivated dish Human assisted instrument Sampled colony Analysis instrument 

Figure 2.4: A sequence of steps usually taken when analysing a dish i n a semi-automated 
laboratory environment. The dish is inoculated by a fully automatic instrument. A human 
using a semi-automated machine can then select and pick colonies of interest, and transport 
those to a machine doing the analysis. 

of this analysis is a mass spectrum. Since each microbe has its own unique spectral "finger­
print", it can be compared wi th a databank of known spectra and identified. [10]. The M B T 
Bio typer is pictured in Figure 2.5. 

Figure 2.5: The M B T Biotyper - an instrument for classifying microbia l species based on 
the M A L D I - T O F technique. Samples for analysis are fed into the machine on prepared 
M A L D I target plates. 

To analyze and classify a sample wi th this instrument, said sample must first be properly 
transferred upon a M A L D I target plate ( M T P ) . The sample then has to be deposited 
wi th a special reagent crucial for the mass spectrometry analysis called M A L D I matr ix . 
On ly then can it be inserted into the instrument. 

The M B T Pathfinder is another instrument developed by the same company, which 
aims to automate the process of transferring samples of microbia l colonies from agar plates 
to the previously mentioned M T P s . The instrument is at this point (May 2023) i n the pro­
totype stage and its task is to automate the process of colony picking. A crucial feature is 
a robust pre-selection algori thm of microbia l colonies on the agar plate. 

The M B T Pathfinder w i l l usually come accompanied wi th a machine called Feeder -
a rotat ing carousel w i th six columns, where stacks of agar plates intended for analysis can 
be placed, and a movable a rm capable of handling single plates. Feeder can cooperate w i th 
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M B T Pathfinder, inserting single plates from its stacks into the latter. After the M B T 
Pathfinder is done wi th a plate, Feeder can again retrieve the plate and place it back into 
one of the stacks. These instruments can be seen pictured i n Figure 2.6. 

Figure 2.6: P ic tu red from left to right are Feeder, M B T Pathfinder and an M B T Pathfinder 
combined wi th Feeder. 

W h e n a dish is inside the M B T Pathfinder, the instrument takes images of it under six 
different i l luminat ion modes and presents them in the accompanying software running on 
a dedicated machine. The i l luminat ion modes consist of various combinations of differently 
placed light sources either being turned on or off. A demonstration of these modes can be 
seen i n Figure 2.7. The segmentation model - which is a part of the accompanying software 
- then analyzes the resulting images and pre-selects several of the colonies detected i n them. 
The operator can override the selection before authorizing i t . The authorizat ion step, which 
basically renders the M B T Pathfinder semi-automatic, is at this point necessary, main ly due 
to the strict regulations in the field of biomedicine which requires the final decision to be 
made by the operator. Once the selection is authorized, the instrument proceeds to pick 
the selected colonies and transfer the samples taken onto the prepared M T P . The M T P is 
then deposited wi th the reagent, placed into the M B T Biotyper and a proper analysis using 
the M A L D I - T O F technique can proceed. 

2.3 Possible improvements 

The M B T Pathfinder is able to pre-select colonies fit for picking based on their successful 
detection and precise local izat ion. Ana lys ing every detected colony on a dish is however 
impract ical and redundant. The pre-selection offered by the M B T Pathfinder could be more 
sophisticated and targeted. 

Should there, e.g., be more microbia l species present on the dish, it would potential ly 
be very useful to be able to automatical ly pick every k ind of microbia l species for analysis 
precisely once, and to do so wi th high reliability. 

This can be achieved by employing clustering methods. Once a colony gets detected, 
distinctive features and properties can afterwards get extracted from i t . Based on these fea­
tures, the colonies can be grouped opt imal ly ' balancing the need for min imiz ing the amount 
of unnecessary picking, while guaranteeing a max ima l amount of variance among the re­
sulting picked colonies. 

Ex t rac t ing features from the ind iv idua l colonies, however, relies heavily on the instru­
ment's abi l i ty to detect and segment them well . Th is problem should therefore be addressed 
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(a) Top (b) Top and bottom (bright) (c) Bottom 

(d) Bottom (bright) (e) Top and bottom (f) Top (bright) 

Figure 2.7: M B T Pathfinder's different modes of i l luminat ion demonstrated on a single 
dish. The relevance of the difference i n i l luminat ion can best be seen upon inspecting what 
is probably mold i n the top left part of the dish or the dark strip traversing the dish from 
top to bot tom, which is its label wri t ten at the bot tom. 

before any attempts at clustering. A very well performing segmentation model combined 
wi th clustering of the detected colonies based on visual similarities could one day eliminate 
human input dur ing this stage entirely, as outl ined in Figure 2.8. 

Cultivated dish Segmentation Clustering Representatives 

Figure 2.8: Steps to be potential ly taken to render human input unnecessary i n the picking 
stage indicated in Figure 2.4. Combin ing precise segmentation wi th precise clustering could 
lead to a successful sampling of a l l the species on the dish precisely once and without human 
supervision. 
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2.3.1 Segmenta t ion 

Precise localisation of colonies on an agar plate is a key step in any automatic process­
ing of said plate, whether the task is colony counting, colony picking, image analysis or 
any other. A solid segmentation model is therefore imperative, as a l l the other possible 
procedures are directly dependant on i t . 

A n interesting issue regarding agar plate image analysis is, that on one hand the image 
variance is fairly contained. Provided a standardized image format is guaranteed, coming 
from a specific instrument or company, one can usually define quite well the area of interest 
and expect s imilar l ighting conditions. O n the other hand, this advantage is par t ia l ly offset 
by the fact that there is already a very large number of cul t ivat ing media and other such 
media can possibly be developed in the future. Said media can come i n a variety of colors 
or degrees of transparency, and their coloring capabilities may differ. An t ib io t i c capsules 
may or may not be present, they can be scattered basically anywhere wi th in the dish, be 
of any color or even shape. Also , since Pe t r i dishes, as well as most agars, are transparent 
and often tagged wi th stickers or magic markers on the bot tom, any algori thm must be 
able to differentiate what is on top of a dish, and what is on the bot tom, and therefore 
irrelevant. 

M a n y different approaches have already been experimented wi th i n the matter of seg­
mentation. One of the better known tools is the O p e n C F U designed to detect circular 
colonies w i th the use of thresholding and particle filtering [6]. Th is was later outperformed 
by the AutoCel lSeg which used the watershed segmentation [7]. The article however focuses 
more on each colony's detection, rather than its precise localizat ion, as counting the colonies 
is also an important laboratory task yet to be fully and properly automated. B o t h these 
tools also require human interaction and do not uti l ize machine learning. 

In a newer article, the researchers trained a convolutional deep belief network which 
acted as a feature extractor, while the segmentation itself was performed by a support 
vector machine [15]. Th is article however used a smal l unpublished custom made dataset, 
which makes any attempts at comparison complicated. Support vector machines were used 
in another article, along wi th convolutional neural networks, to detect and localize colonies 
in blood-based agars [5]. The team had achieved very good results and could even correctly 
detect and segment colony aggregates, but the focus on high-contrast, purely blood-based 
agars means the general applicabi l i ty of their solution may be l imi ted. The used dataset 
of 28 500 images has not been published. 

A similar issue is addressed in a different article, i n which the authors aimed for im­
provement i n the foreground/background contrast by acquiring the image wi th near infra­
red l ightning [20]. However, as the article is once again focused more on the task of colony 
counting, it lacks a proper evaluation of the segmentation's precision itself. 

A more general approach is presented i n the paper introducing Cen t ro idNetV2 [4]. 
The presented a lgor i thm is specifically designed to detect and localize many smal l and even 
overlapping objects. The team has achieved very good results, specifically i n images of agar 
plates. It should be noted, however, that a l l the tested plates have contained an opaque 
black agar w i th a highly contrasting white colonies on top of i t . The algori thm performs 
significantly worse when presented wi th lower contrast data, such as cell-nuclei images. 

Lastly, another article applies semantic segmentation u t i l iz ing U-Nets trained on a cus­
tom unpublished dataset of 108 images [1]. The article was then extended by another 
article [13]. B o t h these articles focused on segmentation along w i t h t ry ing to classify 
the detected colonies into two groups based on their presumed virulence. W h i l e the ár­
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t ides achieved favourable scores i n terms of precision and recall, the custom dataset used 
along wi th its l imi ted size makes good comparison complicated. 

The M B T Pathfinder's solution also uses deep learning to solve this issue. The model 
uses a modified E N e t architecture wi th a t r ipled filter count and an addi t ional convolutional 
block wi th in the encoder. It was trained on the company's own B R U K E R C O L O N Y dataset 
consisting of hand-labeled agar plate images taken by the M B T Pathfinder. B o t h the model 
and the dataset are described in a publ ic ly available article [2]. Models , such as this one, 
are used frequently for segmentation of any sort. 

Rather than t ry ing to come up wi th a better performing alternative model or approach, 
a case could be made that a l l the machine learning attempts at segmentation could be 
helped at once i f provided good labeled data. The deployed model has been observed to have 
trouble wi th agar plates of different colors, than of the ones it has seen prior. Th is suggests 
the problem is probably rooted wi th in the dataset used for t raining. Similar ly, the articles 
in the previous section often shared a common flaw - a smal l custom made dataset. 

Obta in ing cult ivated agar plates to take images of is however no simple matter, espe­
cial ly i n high numbers and high variance. Even assuming said plates are obtained; to be 
used for t raining and evaluating of the segmentation model, each image needs to have a cor­
responding binary mask indicat ing where the microbia l material is. A n example of such 
a mask can be seen i n Figure 2.9. Th is mask is used as ground t ru th during the super­
vised learning, therefore it has to be as precise as possible. Cu l t iva t ing the plates, acquiring 
the images and then creating these solutions is expensive, complicated and time consuming. 

f A 

• _ T * .*• 

(a) Cultivated agar plate 

O 
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(b) Segmentation mask 

Figure 2.9: A n image of a cult ivated agar plate can be seen i n (a) w i t h a corresponding b i ­
nary mask indicat ing the presence of biological material in (2.9b). Th is mask was produced 
manually and a s imilar ly precise result would be desirable coming from the segmentation 
algori thm when given a s imilar image of a previously unseen agar plate. 

To my best knowledge, aside of the B R U K E R C O L O N Y , there is currently only one 
dataset of labeled cult ivated agar plates publ ic ly available, which is the A G A R dataset [11]. 
Th is one is however suitable mostly for colony counting applications, as it does include 
18 000 images of plates, but it only labels each colony w i t h a bounding box and not a pre­
cise pixel-wise binary mask. I have encountered several mentions of another dataset accross 
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the more recent articles, called M i c r o b l A . I have not succeeded in finding it , nor its orig­
inal article. There is also a fairly large dataset of good-resolution images of agar plates 
used i n urine tests [3], this one is however not labeled neither for the purposes of colony 
segmentation, or even their detection. 

A n elegant solution to a l l of these problems possibly lies in synthetic data generation. 
Being able to fabricate images in line w i t h the real data samples should in theory solve 
the issue of the dataset lacking variance, there would be no need for spending t ime cul t i ­
vating the dishes, obtaining images, and most importantly, manually creating binary masks 
for them. 

2.3.2 C o l o n y c lus ter ing 

A n y k ind of more complex or advanced image analysis of microbia l colonies on agar plates 
beyond their simple detection and local izat ion is to this day very rare. 

One team of scientists i n a previously mentioned article has managed to predict two 
distinct kinds of colony forming units [13], while another team has classified two species 
of bacteria based on their visual properties [14]. One article has focused on classifying two 
types of colonies based on their influence on purely blood-based agars [19]. To the best of my 
knowledge, however, nobody has yet at tempted creating a general solution for clustering 
microbia l material on agar plates into an arbi trary number of clusters based on their visual 
properties. 

The issue w i t h evaluating any hypothet ical approaches to clustering, however, is once 
again the lack of good data. Samples from the B R U K E R C O L O N Y dataset are not anno­
tated for this purpose. The company does not possess any more images of cult ivated agar 
plates, even less so ones where colonies can be grouped intuitively. To my knowledge, no 
publ ic ly available datasets annotated for the purposes of clustering species exist. Order ing 
custom-made cult ivated plates w i th a known number of microbes present, possibly even an­
notated, would be expensive and time consuming. Once again, the solution lies i n synthetic 
data generation. 
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Chapter 3 

Data augmentation using synthetic 
samples 

The following section addresses the issues identified i n the previous section by proposing 
a procedure for data augmentation. Taking into consideration the points made in the pre­
vious section, the following resources are available: 

• the company's prototype colony picking robot M B T Pathfinder, 

• M B T Pathfinder's current segmentation model, along wi th its original t ra ining and 
testing B R U K E R C O L O N Y dataset, 

• and the company's software tool for quickly producing binary masks of agar plate 
images. 

For s implic i ty and convenience, the rest of the thesis w i l l therefore l imi t its focus solely 
to data in-line w i t h the M B T Pathfinder's specifications only. The data samples worked 
wi th w i l l be 1900x1800 images of agar plates taken wi th in the i l luminat ion modes provided 
by the M B T Pathfinder, as is the case wi th a l l of the data wi th in the B R U K E R C O L O N Y 
dataset. Access to the M B T Pathfinder's segmentation model offers a great opportuni ty 
to bu i ld upon it and also to compare any improvement of it on the same data. 

3.1 L i m i t a t i o n s 

M B T Pathfinder's dataset i n itself is severely lacking in both microbia l and agar variance. 
W h i l e the microbes present i n the images are unknown, the dataset does not seem to cover 
the known variety of colony shapes, textures and colors. A n d while the agars also come 
in many color and texture variations and new agars are s t i l l being developed, the dataset 
on the other hand contains only b lood agars ranging from maroon to orange, clear agars 
and white-ish agars, as demonstrated i n Figure 3 . 1 . 

It has been established before that getting new cult ivated plates to produce images 
of is not a simple task. It is however not so complicated to obtain empty agar plates. 
Avoiding the need for cul t ivat ing them properly saves both t ime and money. A wide range 
of empty agar plates can be obtained i n bulk, covering many different textures and colors. 
These empty plates can then be photographed by the M B T Pathfinder. 

In terms of obtaining colony images - while the original dataset may be l imi ted, it s t i l l 
contains imagery of some tens of thousands of colonies, a l l of them wi th a manually created 
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Figure 3.1: Several samples from the M B T Pathfinder's original B R U K E R C O L O N Y 
dataset. The examples picked are among the most diverse of the whole dataset, yet only 
clear, white or blood-based agars can be seen. In most of these examples the distinct mi ­
crobial smears produced by the operator during dish inoculat ion can be noted. 

binary mask. These colonies can be extracted according to the mask and superimposed upon 
the image of the empty agar medium. Such an approach would significantly improve data 
augmentation capabilities and provide a posibi l i ty to generate samples tailored to a specific 
task. 

W h i l e the dataset leans heavily towards what is presumably a single microbe species, 
many dishes contain a different looking material , in terms of color, shape, and texture. 
A n d while these colonies are usually low i n numbers, possible alterations could mitigate 
this issue. The collection of said predominant microbe on different media however contains, 
apart from singular colonies, also its groups and fused lumps. Mos t importantly, it con­
tains the distinct smears created by a laboratory technician or a machine when inoculat ing 
the dish. A s these are often present i n real images of cult ivated dishes, they are invaluable 
to the purposes of synthetic data generation. A n example of these smears can be seen 
in Figure 3.1 

Simply placing a colony in the shape of its corresponding binary mask on an agar plate 
image however does not yield par t icular ly impressive results. Since the binary mask used 
a threshold to obtain the sharp edges defining a colony contour, this threshold is then clearly 
visible once the colony has been placed on an empty agar plate image. The colonies are often 
semi-transparent, which means the original agar's color is visible underneath the colony. 
Since the original dataset had only red and white agars, this l imits the use of this technique 
to only agars of said colors. Even i f the colors are reasonably matched, however, the edge is 
usually s t i l l very prominent and the dish could not be passed for a real one by any means, 
as demonstrated by Figure 3.2. 
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Figure 3.2: Even when colonies taken from a maroon agar plate are superimposed on another 
maroon agar plate, it is clear that even slight variations in shade result in visible edges. 
A deep learning algori thm could easily learn to search for these edges not present i n real 
agar plate images. 

The issue can be par t ia l ly mit igated by s imply blurr ing the edges of a l l the colonies. 
Th is is however a destructive approach severely altering the original p ixel composit ion. 
B l u r r i n g itself also does not remove the original agar's tint, which can s t i l l be prevalent 
throughout the colony. Since it destroys the information without mi t igat ing the original 
problem, it can be ascertained that b lurr ing is not a useful tool i n this matter. 

Lowering opacity around the edges of the colony is a comparably less destructive process, 
however it is not targeted at a l l and can lead to a decrease i n relevant information being 
transferred. Some colonies do have sharp edges not influenced by the underlying agar 
color. Some colonies are also vis ibly transparent throughout, even i n their center. Lowering 
the opacity throughout the entire colony however leads to very faint and faded results in 
comparison wi th real images. 

Another problem is a phenomenon often observed when dealing w i t h cult ivated agar 
plates, which is the agar alteration near some of the colonies. Th is can be at t r ibuted 
to a biological process called haemolysis [10] when dealing wi th blood-based agars, though 
faded or otherwise vis ibly altered areas have been observed even on other types of agars 
as well . A n example of both can be seen i n Figure 3.3. Haemolysis is the ruptur ing 
of b lood cells spi l l ing out their content (haemo = "blood", -lysis = "loosening"), which on 
a blood-based agar can look like a wide-spread gradient discoloration. 

A related phenomenon occurs near some types of colonies, which is often described 
as a "halo". Halos usually t ight ly surround a single colony's border and appear to be a part 
of i t . The reason it is now being described as its own phenomenon is that it is sometimes 
observed on agars which do not contain any blood, so it i n a l l l ikel ihood is not haemolysis. 

These phenomena are often a prominent part of agar plates and the segmentation al­
gor i thm should be exposed to them sufficiently dur ing the learning phase. They are also 
important in regards to determining the species of a colony. 
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(a) Haemolysis in a blood-based agar (b) Cultivated C B L agar 

Figure 3.3: A n example of agar being altered near some of the colonies. In its top part 
the image in (a) shows the effect of haemolysis on a blood-based agar. The image in (b) 
shows a varying degree of saturation in the C h i n a Blue Lactose agar i n various parts 
of the dish. In this case it is unlikely to be haemolysis, as this agar does not contain 
blood. It serves to demonstrate that a degree of agar alteration can possibly be expected 
on agars of other composit ion too. 

Figure 3.4: A n example of "halos" forming near unknown colonies on an unknown agar. 

3.2 P r o p o s e d solut ion 

Taking into consideration a l l of the l imitat ions described i n the previous section, a general 
workflow can be defined: 

1. Acquire diverse empty agar images. 
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2. Scrape isolated colony images from the original dataset and pair them w i t h their 
binary mask counterparts. 

3. Convert the resulting cutouts to their semi-transparent versions min imiz ing informa­
t ion loss. 

4. Deploy the colonies over the dishes without having them overlap. 

5. Simulate the agar reaction phenomena. 

The basic idea of this workflow can be seen i n Figure 3.5. 

Original dataset Colony cutouts Processed colonies Selected altered colonies Valid layout 

o \ 
: O ; 
I • 

\ o 

OO0 
Empty agar images A single empty agar Colonies on agar Halos added 

Figure 3.5: A sequence of steps taken towards acquiring artificially generated samples. 

D a t a of empty agar plates that are to be used as base images for the image generator 
are not publ ic ly available. I thus decided to create my own dataset. For the purposes 
of this thesis, 230 agar plates, 10 plates of each agar type were obtained i n cooperation 
wi th the company Bruker Daltonics G m b H & C o . K G . The emphasis was on covering 
the broadest possible agar variety. 

I then used the M B T Pathfinder prototype for acquiring the images of a l l the plates 
under the six predefined i l luminat ion modes. 10 plates have been damaged during storage, 
but i n the end there is s t i l l 220 empty plates available. Images of these plates have been 
taken under the six available l ight ing conditions, resulting i n 1 320 available images. A n ex­
ample of several empty plates can be seen i n Figure 3.6. A summary of a l l the agar plates 
obtained can be seen in Table A . l . 

3.2.1 C o l o n y scrap ing 

Based on the available hand-made binary masks of the original dataset, I have split each 
image into ind iv idua l segments by isolating continuous shapes i n the binary mask. The re­
sulting cutouts have been paired wi th their corresponding masks of the same dimensions, 
as demonstrated by Figure 3.7. In total , I have extracted 21144 colony-mask pairs from 
the original dataset. 

Since the microbia l species have not been labeled, I have manually categorized the 
colonies scraped from the available dataset's images based on their perceived visual sim­
ilarity. A tota l of 40 distinct collections of colony-mask pairs have been prepared, w i th 
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(a) C L E D (b) Brilliance E S B L (c) C B L 

(g) H E (h) Chocolate with vitox (i) D C A 

Figure 3.6: A n example of several of the acquired empty agars. The aforementioned color 
variance can be noted, along w i t h the varying degree of transparency. The full list of ac­
quired agars can be seen in Table A . l . The images displayed have not necessarily been 
taken under the same l ighting mode, as for example the creamy white agars reflect a lot 
of the light back when i l luminated pr imar i ly from above. 

volumes of images ranging from 5 to 7 293. Some of these collections contain the inocu­
lat ion spread streaks. For simplicity, I w i l l from now on refer to these visual ly distinct 
collections as species. 
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Figure 3.7: A n example of an image containing a single colony cutout along wi th its binary 
mask. The white line cut t ing through the colony is a gleam caused by the i l luminat ion 
lights. A total of 21144 pairs such as this have been created during the scraping phase. 

3.2.2 Pre -proces s ing the colonies 

The most viable solution to the issue of removing agar tint from the colonies and smoothly 
softening their edges without losing information seems to be chroma keying. 

Chroma keying is a technique used heavily by the fi lm industry in the last century. 
A sufficiently contrasting color can be used as a background of any image and removed 
in post-production to than superimpose said image over a different background. W h i l e in 
movies this process is most often used on solid objects, which makes things simpler, it can 
be used wi th semi-transparent objects as well. 

The colonies on agar plates pose a problem here, however, since nobody was deliber­
ately choosing an agar color contrasting wi th the colonies. O n the contrary - the colonies 
themselves can often be colorless naturally, and if they do display significant coloring, it can 
be caused by the underlying agar. To address this issue properly, I proposed the following 
set of rough rules: 

• If a color is completely different to that of the agar, it w i l l remain unchanged. 

• If a color is s imilar to that of the agar, the R G B components w i l l be balanced in such 
a way that the resulting color is more neutral depending on the degree of similarity. 

• Depending on how much each pixel was manipulated in this manner, its opacity w i l l 
be lowered accordingly. 

This approach should lead to semi-transparent images of colonies which retain their unique 
colors completely, do not possess any more agar tint, and i n places where they d id previously 
display signs of agar tint, they are transparent enough to let the color of the new agar prevail. 

To apply these rules, first the color of the surrounding agar must be obtained. G iven 
that the agar's color can vary in different areas of the dish, a convenient way of obtaining 
the background color near the colony i n question is just taking the single colony and mask 
image pair and averaging the R G B channels of a l l the image's pixels not marked as colony 
wi th in the mask. 

Once that is done, the s imilar i ty between the color of each pixel wi th in the colony and 
the background is calculated as follows: 

In these equations s denotes an arbi t rary degree of s imilar i ty between two colors, rp, gp 

and bp denote the R G B channels of the currently compared pixel respectively, r e , gs and 

a = 255 - \(rp - rB)\ + |(<7P - 9B)\ + |(6p - M l 

A a = a — s 
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denote the average value of the R G B channels of the background respectively, a denotes 
the alpha channel of the currently compared pixel and A a denotes the altered alpha channel 
of the currently compared pixel . 

This s imilar i ty s obtained in Equa t ion 3.1 is then subtracted from the alpha channel 
a of the compared pixel , as seen i n Equa t ion 3.2. Note that while this equation can yield 
different results, the new value of the alpha channel an must be of values i n range 0 - 2 5 5 
and must therefore be t r immed, if necessary. 

The opacity has now been reduced accordingly. A similar approach to keying out 
the background has been used i n an article also dealing wi th generating synthetic agar 
plates [16]. I propose an addi t ional improvement i n at tempting to also remove the back­
ground's color influence from the pixels that were faded but s t i l l remain possibly off-colored. 
The background color t int is faded i n a s imilar manner. The following equation describes 
how a single R G B channel value is adjusted according to its s imilar i ty to the background: 

a rB + 9B + bB n a 
Ac = c <*•(!-—) (3.3) 

This equation is applied on every R G B channel of every processed pixel . Symbols r e , gs 
and bs denote the R G B channels of the background color respectively, CB denotes the value 
of the currently addressed R G B channel of the background, c denotes the unmodified value 
of the same R G B channel of the currently processed pixel , A c denotes the new value and 
a denotes the currently processed pixel 's a lpha channel's value. 

The basic idea behind this equation can be formulated as follows: How much and in 
which directions should the R G B channels of the background be shifted to achieve a gray 
color of roughly the same brightness? Such a color can be obtained by populat ing each 
of the R G B channels w i th the original background's channel average. To answer the ques­
t ion, for every color a set of channel shifts can be obtained which would result i n this 
color. A p p l y i n g these shifts to pixels wi th in the colony to some degree now effectively fades 
the background color's influence. How much to apply these shifts has been calculated be­
forehand and is represented as the alpha value. The more a p ixe l is transparent, the more 
similar it is to the background, and therefore the more its respective channels should be 
shifted towards gray from the background color's perspective. 

After applying these weighted alterations to a l l the pixels wi th in the colony, we can see it 
yields comparatively good results even when used on a large variety of possible background 
colors, as demonstrated i n Figure 3.8. 

3.2.3 C o l o n y a u g m e n t a t i o n 

To maximize sample diversity, I modify the colonies superimposed on the agar plates in 
a variety of ways. These modifications are done during generation, so each keyed colony 
is stored paired wi th its segmentation mask only once, unaltered. Some modifications are 
done for each of the colonies separately, such as rotation, some can be done en masse for 
species, such as hue shifting. 

Other modifications done are saturation shifting, value shifting, mir ror ing and scaling. 
Saturation and value shifting is done wi th in ranges set by the colony image itself so that 
no overflow happens i n any of the manipulated pixels. The scaling factor range has been 
set to 9 0 - 1 3 5 % of the original size. Ro ta t ion is done to a resolution of a single degree. 
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Figure 3.8: A demonstration of the chroma keying technique on a part icular ly large lump 
of biological mater ial found on one of the dishes of the original dataset. The original cutout 
along wi th the corresponding binary mask can be seen i n the top left. The other examples 
are this cutout keyed and superimposed over solid color backgrounds. It can be noted that 
the rough edges seen in the original superimposing attempt i n Figure 3.2 can no longer be 
seen. The light reflections are left intact and the lump has mostly preserved its original 
color. A t the same t ime, the color of the new background can clearly be seen prevailing 
in the less opaque regions of the lump w i t h l i t t le to no traces of the original dark maroon 
agar. 

3.2.4 C o l o n y pos i t ion ing 

Having both the plates and the colonies prepared, a reliable way of superimposing them 
onto one another has to be created. The growth on the dish often covers more than a half 
of its total surface. A t the same time, the keyed colonies are not fit to be placed over each 
other, as it would look unnatural . 

I have decided to use a genetic a lgori thm to a id w i t h the task of dis t r ibut ing the colonies 
in large numbers over the dish in such a way that they do not overlap. Genetic algorithms 
apply the process of natural selection to a populat ion of solutions to a problem, given that 
it is possible to evaluate a single solution in terms of correctness. Such an evaluation is done 
by a fitness function [12]. 

The fitness function is very simple yet effective. G iven a solution, which means a l l 
colonies have been i n some way placed upon the dish, it s imply counts a l l the pixels of a l l 
the colonies which do not overlap w i t h colonies' pixels and lay wi th in the dish area: 

/ = V ~ (3.4) 
P 

In this equation / denotes the resulting fitness, pu denotes the sum of a l l of the the colonies' 
pixels which do not collide w i th another colonies' pixels and which lay wi th in the dish are 
and p denotes the sum of a l l of the the colonies' pixels. The fitness function is visually 
demonstrated in 3.9. 
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(a) f = 0.93 (b) f = 1.0 

Figure 3.9: To deploy the colonies wi th in the plate there has to be no overlap. A n y over­
lapping pixels as seen in (a) w i l l therefore lead to a lower fitness function evaluation. 

The problem itself is defined by a circular area i n the shape of a dish and a list of colonies 
to be placed wi th in said The total Ml CM of these colonies must be less then the Ml CM 
of the dish. It was however empirical ly discovered that it is already very hard to find solu­
tions for lists of colonies w i th an area larger than 60 % of the dish, since many of the colony 
images take shape of complex smears. 

In the beginning of a single generation run, a populat ion of solutions is created, each 
of them evaluated by the fitness function. A solution is represented by a list of coordinates 
(integer pairs). E a c h pair signifies a pos i t ion 1 of one colony on the dish. These integer 
pairs are i n the context of this a lgori thm referred to as "genes". A l l the positions are 
in i t ia l ly defined randomly, al though i n ranges defined by the dish dimensions. Should any 
solution be evaluated by the fitness function wi th the result of 1.0, the computat ion ends as 
the perfect solution has been found. Otherwise, a number of solutions is selected to enter 
the "mat ing pool". I have opted for the easy to understand and predictable Steady-State 
Selection type, which means the parents are selected randomly [12], and set the number 
of parents to mate to 6. 

Once these candidates enter the mat ing pool , they are paired. For each of these pairs, 
another pair of offsprings is created by combining the genes of their parents. Th is oper­
ation is called a "crossover". Here I have decided to use a uniform approach, so for each 
of the genes there is a 50% chance it is inherited from either parent, as demonstrated in 
Figure 3.10. 

After the crossover phase, a "mutat ion" can occur for each of the genes of every newly 
generated candidate. Here I have opted for a random type of muta t ion and set the proba­
bi l i ty of it happening to 4 %, as both notably lower or higher values have lead to a slower 
convergence during development. A random mutat ion means that a completely new pair 
of coordinates w i l l be generated wi th in the allowed range should a gene mutate. After mu­
tat ion, a l l of the offspring is evaluated. 

Then, since I have selected Steady-State Selection, the offspring are along wi th their 
parents a l l gradually compared wi th against the worst candidate wi th in the original pop­
ulat ion i n terms of fitness. Every t ime a candidate wi th in the mat ing pool is found to be 

1 To the fitness function it does not matter whether these are the coordinates of the top left pixel 
of the colony or its center. Any colony which reaches beyond the borders of the dish results in a lower 
fitness. 
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Parent 1 

(204, 1602) (1367, 23) (967, 531) (278, 698) 

Parent 2 

(1733, 375) (602, 287) (985, 1122) (505, 12) 

Crossover mask 

0 1 0 0 

Offspring 

(1733, 375) (1367, 23) (985, 1122) (505, 12) 

Figure 3.10: The crossover operation producing new solutions. A randomly generated 
binary crossover mask determines which gene is inherited from which parent. 

more fit then the worst candidate in the original populat ion, the worst candidate is replaced 
by the candidate from the mat ing pool . Th is ensures the populat ion number is stable, hence 
the name Steady-State Selection [12]. 

Solution 1 > 
Random 
selection ^ 

Parent 1 

Solution 2 

> 
Random 
selection ^ Parent 2 

Solution 3 
> 

Crossover 
f 

Solution 4 
> 

Crossover 
f 

Solution 4 Offspring 

Solution 5 Mutation 

Replacement 
< 

> f 
Solution 6 

Replacement 
< Mutated offspring 

Figure 3.11: A visualisation of the genetic algorithm's cycle. Parents are randomly selected 
from the populat ion, offspring is generated, mutated, and i f better than the worst solution 
in the populat ion, it replaces i t . Otherwise it is discarded. The parents are always kept 
in the populat ion. 

This whole process is then repeated unt i l a flawless solution is found. Depending on 
the number and nature of colonies selected to be placed, the a lgori thm can fail to find 
a fitting solution wi th in the predefined amount of generations. It has been found empirical ly 
that let t ing the a lgori thm run for extended periods of t ime after it hit the 500 generations 
only very rarely led to actually finding a result. A n y run which does not find a solution 
wi th in 500 generations, which usually happens wi th in a single minute 2 , is therefore assumed 
to be stuck in a local m a x i m u m and cancelled and a new run is ini t ia ted w i t h a different 
batch of colonies and a new in i t i a l populat ion. 

2The resulting script was ran on a machine with an NVIDIA Quadro T2000 G P U and an Intel Core 
i7-10850H C P U 
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3.2.5 S u p e r i m p o s i n g the colonies 

The semi-transparent colonies i n the R G B A color format have now been distr ibuted over 
the dish without collisions. N o w they have to be superimposed upon the background image 
of an empty dish, which is in the R G B format. Once again, the resulting value of each 
pixel's R G B channel has to be weighed by the colony's alpha channel to determine its 
influence on the modified pixel : 

ACB = CB • (1 — a) + c0 • a (3-5) 

In this equation ACB denotes the value of a channel of the background pixel after being 
modified, CB denotes the value of a channel of the background pixel prior to being modified, 
a denotes the value of an alpha channel of the overlay pixel and cQ denotes the value 
of a channel of the overlay pixel . The overlaying colonies now blend wi th the background 
naturally, as can be seen i n Figure 3.8. 

3.2.6 S i m u l a t i n g agar react ion 

To add another level of accuracy, both the previously mentioned "halos" and the presumed 
haemolysis are simulated. The segmentation masks of colonies set to have halos or dam­
age the agar by developing haemolysis are in i t ia l ly di lated and blurred, as demonstrated 
in Figure 3.12. The degree of di la t ion affects the reach. The resulting mask is then used 
to determine the degree of pixel alteration at a l l the affected points i n the empty plate 
image. 

(a) Segmentation mask (b) Dilated and blurred mask 

Figure 3.12: To model the various kinds of agar reaction, a segmentation mask as seen i n (a) 
indicat ing only colonies which have been set to develop one of the described phenomena is 
dilated and blurred. The resulting mask, as seen i n (b) is used as a weight map to determine 
the degree of pixel alteration i n various places of the dish. 

W h e n creating a halo, its color is defined beforehand, after that it is superimposed on 
the empty agar dish image using the same Equa t ion 3.5 as w i th colonies. O n l y difference 
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being the alpha value is now taken from the blurred mask to simulate the fading nature 
of the simulated phenomena. 

The presumed haemolysis is simulated by lowering the Value and Saturat ion of the af­
fected pixels in the H S V color model . The blurred binary mask serves the same purpose as 
w i th halos and sets the degree of alteration. A n example of the effect of haemolysis being 
applied can be seen i n Figure 3.13. 

(a) No haemolysis (b) Haemolysis 

Figure 3.13: A detail of a single synthetic agar plate image. In (a), a cluster of colonies 
has been keyed and superimposed on the agar. In (b), the haemolysis effect has been 
applied according to the weight map created by di la t ing and blurr ing the segmentation mask 
of preselected colony species. Even though the MacConkey agar used in this example does 
not contain b lood and is therefore not able to develop haemolysis, the abi l i ty to simulate 
this phenomenon on any dish is s t i l l useful and w i l l a id the generalization of the deep 
learning model. 

Changing the Hue was originally implemented as well, it turned out however that it 
is only l imi ted to 179 distinguishable values, since the angular value wheel for hue must 
fit into a single byte i n most P y t h o n libraries. This creates undesirable contours and 
leads to a terrace-like phenomenon when creating the smooth agar damage gradient, as 
the difference of 2° on a Hue spectrum is noticeable even to a human eye. A machine 
learning algori thm could easily learn to react to these edges, which would undesirably lead 
to overfitting. 

It is also important w i th these alterations to watch out for any overflowing values. 
How much the Value and Saturat ion can be lowered throughout the picture must be checked 
beforehand. F i x i n g overflows s imply by thresholding the values at zero could lead to visible 
edges. To prevent this, the lowest Saturat ion and Value values are found beforehand among 
al l of the potential ly affected pixels. These values then define the m a x i m u m degree of agar 
alteration. 
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(a) Haemolysis (b) Haemolysis wih halos 

Figure 3.14: A n example of the simulated agar alterations caused by the microbes and 
agar interacting. The plate i n (a) has been generated to display signs of haemolysis around 
the species of purple colonies. The plate in (b) also contains faded parts and several colonies 
wi th prominent greenish "halos". 

3.3 A g a r plate generator 

The approaches described in the previous sections were meant to result i n realistic data 
samples capable of substi tut ing real data i n both segmentation and clustering attempts. 
The produced generating script was therefore designed in such a way, so that it not only 
produces the images paired wi th segmentation masks, but also wi th corresponding clus­
tering masks, where each class is represented by a single arbi trary color, as demonstrated 
in Figure 3.15. 

(a) Generated agar plate (b) Generated binary mask (c) Generated clustering mask 

Figure 3.15: A n example of the generator's output. As ide of the segmentation being gener­
ated, a clustering mask is generated as well labeling the colonies according to their shared 
visual properties and presumed species. The colors are arbitrary, each uniquely assigned to 
a single species. 
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The abi l i ty to specify the numbers and ratios of species was also implemented. The re­
sulting dish_generator .py script 's available parameters go as follows: 

• agar_directory - Conta in ing empty agar plate images 

• species_directory - Conta in ing subdirectories of keyed distinct colony-mask pairs 

• —cult_min - M i n i m a l number of species generated on a dish [1-MAX] 

• —cult_max - M a x i m a l number of species generated on a dish [1-MAX] 

• —halo_prob - P robabi l i ty that a single species develops a halo [0-100] 

• —haemo_prob - P robabi l i ty that a single species causes haemolysis [0-100] 

• —area_min - Smallest possible percentage of a dish area to be covered [0-100] 

• —area_max - Largest possible percentage of a dish area to be covered [0-100] 

• —balanced_prob - Probabi l i ty , that species w i l l be represented in equal quantities 
(in percent) [0-100] 

• — i t e r a t i o n s - Number of G A iterations before discarding a dish and at tempting 
a new layout [1-X] 

• — e d i t _ h s v - Creates more distinct species by manipula t ing their H S V channels 
en masse 

For each dish attempted, the ratios and parameters are regenerated wi th in the specified 
ranges. This way the script can generate datasets according to the current needs. Balanced 
dishes wi th many species are good for the purposes of teaching a model to generalize 
when training for segmentation, dishes wi th less species where some can be only present as 
inconspicuous outliers can be used to fine tune the upcoming clustering algorithms. 

Since the colonies have to be keyed only once, the keying itself is not a part of the 
dish_generator.py script and has been implemented separately. The generator there­
fore works over a directory structure containing already keyed colony-mask pairs sorted 
according their presumed species. E a c h species is dur ing generation assigned a unique 
color by which it is then marked on the output clustering mask pictured i n Figure 3.15c. 

Depending on the type of dishes desired, the generator script can produce fairly con­
sistent, realistic looking and diverse results. A n example of some of these can be seen in 
Figure 3.16. 
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Figure 3.16: A n example of several cherry-picked artificially generated plates demonstrating 
the generator's versatility. 
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Chapter 4 

Segmentation using synthetic data 

To evaluate the synthetic data for the purposes of data augmentation, the most direct 
method is to use it to t ra in segmentation models and see i f they improve when compared 
to the original one. It is also useful to evaluate the effectiveness of the ind iv idua l realism 
improvements the generator offers, such as the background keying and the agar reaction 
simulation, as opposed to just a simple cutout placement. 

The performance of segmentation models can be evaluated by several metrics. I decided 
to use the F l score (also known as S0rensen-Dice coefficient or Dice s imilar i ty coefficient) 
along wi th the Jaccard index (Intersection over Union) , since these metrics are frequently 
used to assess similar tasks. I also included Precision, Reca l l and Accuracy for the sake 
of completeness. 

To explain these metrics, the terms "true positives", "true negatives", "false positives", 
and "false negatives" ( T P , T N , F P , F N ) need to be defined. The terms "posit ive" and 
"negative" correspond to the actually retrieved result. The terms "true" and "false" express 
the results' relationship wi th the ground t ruth . Us ing these terms the metrics can be defined 
as follows: 

TP 
Precision = —— —— (4.1) 

TP + FP v ' 

TP 
Recall = — — (4.2) 

TP + FN v ' 

TP+TN / A , 
A c C U m C y = TP + TN + FP + FN ( 4 - 3 ) 

The F l score is a known and widely used metric and the Jaccard index is often used 
to evaluate the effectiveness of 2D segmentation. A n F l score combines the precision and 
recall metrics: 

Precision • Recall 
Fl = 2- - (4.4 

Precision + Recall 

The Jaccard index is s imply calculated as an intersection over union as demonstrated by 
Figure 4.1. 

28 



Figure 4.1: Intersection over union - also called the Jaccard index. The Ground t ru th set is 
al l the pixels indicated as positive in the ground t ru th mask. The Result set is a l l the pixels 
indicated as positive in the output mask of our segmentation models. 

4.1 A c q u i r i n g the datasets 

The models to be trained on the par t ia l ly synthetic data should respond better to images 
of agars other than white and red. The issue is the B R U K E R C O L O N Y dataset contains 
no such agars and using synthetic data to validate the usage of synthetic data does not 
make sense. For a more general evaluation, I have decided to expand the testing subset 
of the B R U K E R C O L O N Y dataset as well . 

For this purpose I chose to use the previously obtained 240 empty agar plates. I inocu­
lated a l l the plates w i th dust samples taken from various indoor surfaces and left the plates 
i n room temperature for 48 hours. 

M a n y of the plates have developed microbia l growth. A large por t ion was overrun by 
mold, which often occurs in samples of microbia l mixtures, and some agar kinds have proven 
completely resilient to everything. Despite that, a number of these plates had sufficient 
microbia l growth to serve as real data samples. I have manual ly selected the successfully 
cultivated dishes, I sorted out those which also contained large masses of mold, and I have 
scanned a l l of these dishes i n the M B T Pathfinder prototype. Examples of several of these 
dishes can be seen i n Figure 4.2. 

Figure 4.2: Several samples from the newly acquired real dishes. W h i c h species are present 
on each of the dishes has not been determined. It is however important to note the agar color 
variance i n comparison to the original B R U K E R C O L O N Y dataset as seen i n Figure 3.1. 
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For 43 of these images I have manual ly created labels i n the form of corresponding 
segmentation masks. Since the synthetic data features these agar kinds, the models should 
overall respond better to real images of these agar plates. 

To obtain t ra ining data, I have then ut i l ized the generator to produce four identical 
datasets of 1 000 samples each. T h e y differ solely in the use of keying and simulat ing agar 
reactions. The colony layouts, used agars and colorings are otherwise identical . This can 
be seen demonstrated i n Figure 4.3. A l o n g w i t h the images themselves the corresponding 
binary segmentation masks were also generated, identical for a l l four variations. The gen­
erator's parameters were set as follows: 

• 40 species, 

• 25 % halo probability, 

• 33 % haemolysis probability, 

. 5-50 % of Ml CB. to be covered by growth, 

• 100% probabi l i ty of a balanced dish, 

• H S V edit ing enabled. 

To cover the broadest possible range of species/agar combinations, a l l generated dishes ut i ­
lize a l l 40 of the dis t inct ly looking microbes I have managed to isolate and sort. B o t h halos 
and haemolysis can develop near each species. Dishes are set to be populated both sparsely 
and densely. To ensure an equal representation of a l l the species, a l l dishes were set to be 
balanced. E v e n though it w i l l possibly lead to unrealist ically looking colonies, H S V manip­
ulat ion was enabled. In my opinion this w i l l help w i t h the model's generalization, even i f it 
learns to recognize colonies which i n the real world are non-existent. The dishes themselves 
do not look realistic either. A s the segmentation models w i l l however processes the dish in 
parts, the broader context of the dish w i l l not be as relevant. 

This data is to be used as an extension of the B R U K E R C O L O N Y dataset to test its 
effectiveness when confronted wi th previously previously unseen real data. 

4.2 E v a l u a t i n g the synthetic data 

Combin ing the available B R U K E R C O L O N Y data, the newly generated synthetic data and 
the newly acquired and labeled real data, I have assembled five datasets for the segmentation 
experiment. The results w i l l make it clear whether the synthetic dataset is a val id substitute 
for real data and i f a l l the proposed features are relevant. 

To eliminate the influence of M B T Pathfinder's model architecture, I have trained five 
slightly modif ied 1 U-Net segmentation models [17] on the four alternative par t ia l ly synthetic 
datasets and the original B R U K E R C O L O N Y . The architecture does not use residual layers. 
Ba t ch normalizat ion is ut i l ized. E a c h sample was split into 16 images of size 512 to 512 
pixels to fit more images into the t ra ining minibatches. E a r l y stopping was employed wi th 
the patience of 10 epochs and an exponential decrease of the learning rate starting from 
the 15th epoch. A diagram of the experiment can be seen in 4.4. A summary of volumes 
of the final datasets on which the experiment was conducted can be seen in Table 4.1. 

1 Architecture taken from: h t t p s : / / g i t h u b . c o m / p i e t z / u n e t - k e r a s 
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(a) Unkeyed colonies, agar never damaged (b) Unkeyed colonies, agar can be damaged 

(c) Keyed colonies, agar never damaged (d) Keyed colonies, agar can be damaged 

Figure 4.3: A detail of a single dish generated i n four different ways as part of four different 
datasets. The first two images show excerpt from datasets which do not use keying, the first 
and th i rd do not simulate agar reaction phenomena. A l l four combinations of these options 
are therefore covered. 

The results of the appl icabi l i ty experiment can be seen i n Table 4.2. The first and 
most important th ing to be noted is the fact that every single one of the models trained on 
the extended datasets achieved better results in every metric (aside of recall) than the one 
trained purely on the original B R U K E R C O L O N Y dataset. A lower recall score means less 
actual microbia l mater ial was correctly detected, or i n other words, more false negatives. 
A n increase i n a l l the other metrics on the other hand also means that there was a significant 
decrease in false detections. 

31 



Synthetic 
(unkeyed w/o reactions) 

Synthetic 
(unkeyed w/ reactions) 

Synthetic 
(keyed w/o reactions) 

> r\ n n r 

Synthetic 
(keyed w/ reactions) 

B R U K E R C O L O N Y Real 
(newly acquired plates) 

5x 

Figure 4.4: A n overall diagram of the segmentation on differently processed synthetic data 
experiment. One model was trained on the unmodified original B R U K E R C O L O N Y dataset, 
four models were extended by synthetic data, each wi th slight variations, and a l l of the mod­
els were evaluated on B R U K E R C O L O N Y testing data extended w i t h some newly acquired 
real data featuring more unusual agars. 

Table 4.1: A l l four datasets assembled to verify that the synthetic data helps segmenta­
t ion i n contrast to the original B R U K E R C O L O N Y dataset. Four of them were extended by 
100 % wi th identically laid-out synthetic data differing only in the used features. A l l the test­
ing sets were extended by real images of newly acquired agar plates. These plates contain 
agars not included in the entire original B R U K E R C O L O N Y dataset. 

Dataset t ra in (real+synth.) val (real+synth.) test (real+new) 

B R U K E R C O L O N Y 383+0 114+0 51+43 

B R . + Unkeyed w / o reactions 383+383 114+114 51+43 
B R . + Unkeyed w / reactions 383+383 114+114 51+43 
B R . + K e y e d w / o reactions 383+383 114+114 51+43 
B R . + K e y e d w / reactions 383+383 114+114 51+43 

It seems that introducing any synthetic data is immediately helpful to precision but 
detrimental to recall. However, it can also be noted that gradually introducing the realism 
features gradually increases the recall score to the point where it almost matches the original 
value. The dataset containing both the realism features has therefore a comparable recall, 
while s t i l l benefitting from the drastically improved precision. 
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W h e n looking at the more complex metrics of F l Score and Jaccard index, the trend is 
obvious. Introducing any synthetic data makes a big difference i n itself, bo th the realism 
features themselves are more or less identical i n their effectiveness and they work really well 
combined. 

Table 4.2: Effectiveness of using keying, agar reaction phenomena simulation and synthetic 
data in general i n segmentation models. 

Tra in ing dataset Accuracy Precision Recal l F l Score Jaccard index 

B R U K E R C O L O N Y 0.770 0.525 0.781 0.518 0.453 

B R . + Unkeyed w / o reac. 0.950 0.743 0.697 0.671 0.609 
B R . + Unkeyed w / reac. 0.958 0.758 0.715 0.693 0.628 
B R . + Keyed w / o reac. 0.947 0.719 0.747 0.697 0.628 
B R . + Keyed w / reac. 0.952 0.741 0.768 0.721 0.648 

4.3 I m p r o v i n g the segmentation 

I have conducted an addi t ional experiment to determine the opt imal ratio of real/synthetic 
data. The goal is to improve the performance of the current segmentation model used in 
the prototype of the M B T Pathfinder instrument. F ive models of the same architecture 
as i n the previous experiment were trained on the B R U K E R C O L O N Y data again wi th 
synthetic data mixed in . Th is t ime a l l the synthetic data used both keying and simulated 
agar reactions. However, I have extended the B R U K E R C O L O N Y dataset by 33%, 66%, 
100 %, 150 % and 200 % respectively. A diagram of this experiment can be seen inFigure 4.5. 
A summary of volumes of the final datasets on which the experiment was conducted can 
be seen in Table 4.3. 

Table 4.3: Effectiveness of extending the B R U K E R C O L O N Y dataset by different volumes 
of synthetic data. The synthetic data is a l l generated keyed and utilizes agar reaction 
simulations. A l l the testing sets were extended by real images of newly acquired agar 
plates. These plates contain agars not included i n the entire original B R U K E R C O L O N Y 
dataset. 

Dataset t ra in (real+synth.) val (real+synth.) test (real+new) 

B R U K E R C O L O N Y 383/0 114/0 51/43 

B R . + 3 3 % K e y e d w / reac. 383+126 114+38 51+43 
B R . + 66% K e y e d w / reac. 383+253 114+75 51+43 
B R . + 100% Keyed w / reac. 383+383 114+114 51+43 
B R . + 150% Keyed w / reac. 383+575 114+171 51+43 
B R . + 200% Keyed w / reac. 383+766 114+228 51+43 

The results of the volume ratio experiment are summed up in Table 4.4. The differences 
in performance are less dramatic than in the previous experiment, however, a peak perfor­
mance wi th a drop-off in both directions can s t i l l be observed near the dataset containing 
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Figure 4.5: A n overall diagram of the segmentation on different volumes of synthetic data 
experiment. One model was trained on the unmodified original B R U K E R C O L O N Y dataset, 
five models were extended by synthetic data by different amounts. A l l of the models were 
evaluated on B R U K E R C O L O N Y testing data extended wi th some newly acquired real data 
featuring more unusual agars. 

150% of synthetic data. The recall is even closer to the baseline than in the previous 
experiment and both the F l and Jaccard scores have reached a better result too. 

Ult imately, I have managed to improve the performance of the segmentation algori thm 
by 0.211 for F l score and 0.203 for Jaccard index (a 40.73 % and 44.81 % increase respec­
tively) by solely augmenting the dataset w i t h artif icially created images. 

Table 4.4: Effectiveness of extending the dataset by different volumes of synthetic data. 

Tra in ing dataset Accuracy Precision Recal l F l Score Jaccard index 

B R U K E R C O L O N Y 0.770 0.525 0.781 0.518 0.453 

B R . + 3 3 % K e y e d w / reac. 0.944 0.698 0.739 0.677 0.606 
B R . + 66% K e y e d w / reac. 0.952 0.743 0.768 0.719 0.647 
B R . + 100% Keyed w / reac. 0.957 0.748 0.767 0.726 0.656 
B R . + 150% Keyed w / reac. 0.955 0.748 0.772 0.729 0.656 
B R . + 200% Keyed w / reac. 0.960 0.745 0.754 0.717 0.645 
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Chapter 5 

Colony clustering 

A s has been stated in the previous chapters, the abi l i ty to group colonies by their visual 
properties is a necessity in any future solutions for automated in-laboratory analysis of cul­
t ivated agar plates. The abi l i ty to reliably sample every species on a plate automatical ly 
and without human interaction while min imiz ing error is a potential game changer for 
laboratory technicians, who spend many hours a day performing these activities manually. 

In terms of evaluating the performance of any clustering attempts, it is unfortunately 
not clear whether it is more appropriate to penalize more a cluster count higher than 
necessary or lower than necessary. Since the actual cost of performing an unnecessary 
pick and analysis of a duplicate sample i n comparison to entirely missing a species from 
a plate is unknown to us, I propose my own scenario by the optics of which the clustering 
experiments w i l l be evaluated. I propose that the goal of the laboratory machine is to pick 
and analyze every single species present on a dish at least once. Therefore, redundancy 
is tolerated and preferable to missing (though it should s t i l l be noted and penalized in 
evaluation). For this reason, I w i l l be using both the complete V-measure metric as well as 
its submetric, the homogeneity. 

V-measure is a widely used metric for evaluating the performance of clustering algo­
rithms [18]. Its score is calculated by balancing two submetrics - Homogeneity and Com­
pleteness. Homogeneity i n general measures the algorithm's abi l i ty to produce clusters in 
which each data sample belongs to the same class label. Completeness on the other hand 
measures the algorithm's abi l i ty to map a l l data samples belonging to a single class la­
bel to a single cluster. Homogeneity is a metric accurately describing the degree of class 
labels overlapping i n clusters. It however yields a high score even for solutions wi th an 
unnecessarily high number of clusters. In a t r iv i a l scenario, a single class label divided into 
however many clusters yields a homogeneity score of 1.0. Completeness is a counter-weight 
to this. It does not deal w i th clusters overlapping, but yields a lower score when a class 
label is distr ibuted among more clusters. A t r iv ia l scenario in which several class labels 
are a l l mapped onto a single cluster, completeness yields a score of 1.0. The metrics are 
demonstrated in Figure 5.1. 

5.1 Challenges 

A n issue is once again a lack of data. Images of real agar plates annotated for the purpose 
of clustering are basically non-existent. Th is problem is however i n this case addressed by 
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Ground truth Result Ground truth Result 

(a) Homogeneity = 1.0 (b) Completeness =1.0 

Figure 5.1: In (a) we can see that even if the clusters do not align the Homogeneity can s t i l l 
be 1.0. This is true as long as no two objects w i th different class label map onto the same 
resulting cluster. Similar ly, in (b) we can see that i f there is only one resulting cluster, 
the Completeness w i l l always be 1.0. Th is is true as long as no two objects w i t h the same 
class label map onto different resulting clusters. 

the purpose-built sample generator, which can produce cul tural ly variant images of agar 
plates along wi th both the segmentation masks and corresponding class labels. 

More problems stem from the fact, that the number of species to look for, especially in 
cases where we are t ry ing to determine, whether a dish has been infested by an unexpected 
species, is not known beforehand. A n y solution selected needs to reflect this issue and be 
flexible enough to accommodate a variable number of clusters. 

A s the issue of detection and segmentation has already been tackled and improved in 
the previous chapter, the clustering algorithms can be proposed relying on the segmentation 
binary mask as an input alongside the plate image itself. This pair w i l l therefore be used 
to obtain a th i rd image, a class label mask where each class is represented by a single 
arbitrary color, as can be seen i n Figure 5.2. 

5.2 P r o p o s e d approaches 

To address the issue of an uncertain number of classes I decided to use the K - M e a n s 
algori thm for a l l of the clustering itself and focus more on the possible ways of feature 
extraction. 

The clustering step follows the segmentation step i n the general workflow. For this rea­
son, the clustering algori thm w i l l be provided the segmentation mask produced by the seg­
mentation model . The image can therefore either be processed i n a pixel-wise manner, or 
each detected lump can be represented by a single data point and processed as a whole. 
This approach would allow for more features to be extracted, such as those pertaining 
to texture, since there is only very l i t t le information contained wi th in a single p ixe l aside 
of its color composit ion. These features can be extracted manually, which is i n line w i th 
how the agar plates are evaluated i n real laboratories nowadays. A laboratory technician 
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(a) Input: Image (b) Input: Segmentation mask (c) Output: Clustering mask 

Figure 5.2: A custom made artificially created agar plate w i t h two distinct species - one 
gray, the other slightly reddish - w i th a precise binary segmentation mask. These w i l l be 
used as hypothet ical inputs for the proposed clustering algorithms. The th i rd image rep­
resents the clustering ground t ru th . The colors indicate the class labels, but are otherwise 
arbitrary. A l l images show a smal l por t ion of itself enlarged for detail . 

looks at the colonies and judges their color properties, their shape, texture or discoloration 
of the surroundings. 

Alternatively, since the images have fixed resolutions, the pixel-wise approach also of­
fers the opportuni ty to employ machine learning. A neural network asked to reconstruct 
an image of a cult ivated agar plate extracts features from the image during the process 
of encoding. These extracted features can be used for clustering purposes too. 

I decided to set the pixel-wise clustering of R G B values to be the baseline, as this is 
probably the most simple approach one can take. T h e n I decided to use a U-Net architecture 
trained as an autoencoder to provide its obtained features for each pixel i n the image. 
Lastly, I propose a manual approach to extracting features from clearly separated lumps 
detected by the segmentation algori thm akin to what the laboratory technicians do. 

5.2.1 K n e e P o i n t D e t e c t i o n for K - M e a n s 

The issue wi th using the K - M e a n s a lgor i thm in a l l of these approaches is the fact, that 
the number of clusters has to be specified beforehand. I however do not possess any infor­
mat ion about the op t imal cluster count prior to analysing any plate. Th is issue is usually 
addressed by employing a technique called K n e e / E l b o w Point Detection. 

The K - M e a n s a lgori thm is ran a specific number of times, each t ime wi th a differ­
ent cluster count. E a c h run can then be evaluated either by Inertia scores or Dis tor t ion 
scores. Once these scores are projected onto a graph and interpolated, a knee/elbow point 
is the point w i th the biggest curvature, from which the numbers start decreasing i n a linear 
fashion, as can be seen demonstrated i n Figure 5.3. In my implementat ion I have used 
the P y t h o n l ibrary kneed1, which encapsulates this task and provides the knee points i f 
any are detected. 

A Dis tor t ion score is an average of the squared euclidean distances from the cluster 
centers of the respective clusters. It is therefore a metric describing cluster togetherness. 
A n Inertia is the sum of squared distances of samples to their closest cluster center. 

1 kneed library - h t t p s : / / p y p i . o r g / p r o j e c t / k n e e d / 
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Figure 5.3: This figure demonstrates the locat ion of the knee/elbow. P ic tured are either 
Inertia or Dis tor t ion scores for various cluster counts. The values of the scores themselves 
do not matter. To locate the knee, one must locate the point of the biggest curvature, 
after which the values start descending i n a more linear fashion. In this picture, the knee 
is v is ib ly located at the three cluster mark. Is is otherwise possible that a knee can not be 
located by one or even both metrics. 

In a l l the following clustering attempts the cluster counts examined w i l l be i n the range 
of 1- 10. Therefore, each clustering on a single dish w i l l have to be ran ten times to obtain 
a knee point. These numbers were selected arbitrari ly, as no more than ten species on 
a single dish s t i l l seems plausible. Since I however generate my own data to experiment on, 
I can make sure there w i l l never be more species on a single dish. 

5.2.2 Pixe l -wise R G B c lus ter ing 

Possibly the most straightforward approach towards clustering the colonies on an image 
is to create a posterized version of said image, where the knee point detection helps wi th 
determining the cluster count and the feature vectors are just each pixel 's R G B values 
normalized to a range of 0.0- 1.0. Once the pixels are clustered ten times and a knee point 
is found, they are colored according to their cluster identity. The colors are arbitrary, they 
only have to be unique wi th in the picture. Th is can be seen demonstrated i n Figure 5.4b. 

Once that is done, applying the binary mask on the resulting image produces something 
really close to the desired result, as demonstrated by Figure 5.4c. 

Each distinct lump can now be taken separately and analyzed i n terms of its newly 
gained color composit ion. The simplest way of determining the cluster to which it belongs 
to is to s imply take the most frequent color and fi l l the lump wi th it , as shown in Figure 5.4d. 

5.2.3 Pixe l -wise U - N e t feature ex trac t ion 

This approach is s imilar to the previous one. Instead of using the R G B channel values as 
features, it uses the features synthetised by a U-Net autoencoder for each of the pixels. 

To t ra in the m o d e l 2 a binary cross entropy loss function was employed along wi th a learn­
ing rate of le-4 and a batch size of 16 images wi th an A D A M optimizer[8]. The autoencoder 
was trained on the B R U K E R C O L O N Y dataset of real agar plate images. To save t ime and 

2Implementation taken from: https://github.com/zliixuliao/unet 
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(a) Original image (b) Clustered R G B values 

(c) Applied segmentation mask (d) Dominant colors decide cluster 

Figure 5.4: In (b) the result of clustering the original image's pixels based on their R G B 
values can be seen. The colors of the resulting clusters indicated are the mean values wi th in 
said clusters. Th is creates the posterization effect, al though for our purposes the colors 
could be completely arbitrary. The dishes surroundings has been cut to keep the cluster 
count relevant and min imal . In (c) the result after the applicat ion of the segmentation mask 
can be seen. The resulting mult icolored lumps are then filled w i th the most dominant color 
wi th in said lumps. This color then defines the cluster the lump belongs in . The resulting 
image is now in the correct format comparable to the ground t ru th seen i n (d). 

for easier manipulat ion, bo th the input and output of the U-Net were resized to 512x512, 
which significantly lowered the computat ional load and made up and down-sampling sim­
pler. A s this downscaling does not change the ratios of the clustered pixels, this resizing 
operation should have only min ima l effect on the overall result. 

39 



The model's architecture is outl ined in Figure 5.5. The features are extracted from 
the between the last block of convolutional layers after the last up-sampling is made 
wi th in the net, as demonstrated by Figure 5.6. The resulting feature tensor has the shape 
512x512x16. One vector of the sixteen values corresponding to a single pixel i n the original 
image represents that pixel 's feature vector. 

> 

> 

[~~| Conv 3x3 + ReLU [ ] Max pool 2x2 Q Up-conv 2x2 > Copy and crop 

Figure 5.5: A simplified scheme of the U-Net autoencoder. 
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Figure 5.6: A closer look at the output part of the U-Nets topmost layer. The output 
of the second concatenation layer is taken and used as a feature tensor. The numbers in 
the upper half of the blocks describe the shape of the data as it enters the block. The lower 
half describes the data as it leaves the block. A s this image describes the final section 
of the decoder, the resulting depth of the image is 3, which corresponds to the R G B channels. 

Once the feature vectors are extracted, they are normalized to a range of 0.0- 1.0, and 
then they are fed into the K - M e a n s a lgori thm ten times to get the opt imal cluster count 
by detecting the knee point. The result is then taken and the pixels are colored according 
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to their cluster, as can be seen in Figure 5.7b. T h e colors are once again arbitrary, as long 
as each color is unique. It is at this point that the image is enlarged to the original image's 
size. A s in the preceding approach, the binary mask is applied, creating multi-colored lumps 
of interest, seen i n Figure 5.7c. Once the dominant color is determined, the final colors can 
be assigned to each lump, as seen i n Figure 5.7d. 

(a) Original image (b) Clustered U-Net features 

(c) Applied segmentation mask (d) Dominant colors decide cluster 

Figure 5.7: In (b) the result of clustering the pixel-wise features extracted from the U-Net 
autoencoder can be seen. The colors are arbitrary, each color representing a single cluster. 
Simi lar ly as w i t h the R G B clustering, the surroundings of the dish was cut off to keep 
the clusters relevant. In (c) the result after the applicat ion of the segmentation mask can 
be seen. The resulting mult icolored lumps are then filled w i t h the most dominant color 
wi th in said lumps, which then defines the cluster the lump belongs in . 
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5.2.4 M a n u a l co lony feature ex trac t ion 

The last approach is more akin to what currently happens i n the laboratories when agar 
plates are analysed. Instead of clustering the pixels the a lgori thm clusters entire lumps 
of material based on their properties. 

Initially, the binary mask is applied and each resulting isolated lump is taken separately. 
Then an average agar color of the dish is determined by s imply taking a l l of the pixels wi th in 
the dish not indicated by the binary mask and averaging their channel values. Once that is 
done, the R G B image can be converted to an R G B A image, where the alpha channel is ob­
tained by applying Equa t ion 3.2 to each of the pixels. The pixels can therefore be inversely 
weighted i n terms of their s imilar i ty to the surrounding agar, which means the colonies 
can now effectively be worked wi th as i f their background agar was keyed out. This allows 
for features to be extracted from the lumps and the surrounding agar separately. Th is is 
useful for getting information about colonies weighted by their relevance (pixels very similar 
to surrounding agar are probably not as relevant), as well as for getting information about 
the surrounding agar only, as it could be for example be discolored and provide information 
about the species present on the dish as well. 

Once the alpha channel is available, the features extracted are: 

• {avg, median}_{value, saturation, red, green, blue} - weighted averages and medians 
of the H S V and R G B components. 

• stdev_{value, saturation, red, green, blue} - standard deviations of the H S V and 
R G B components. 

• avg_alpha - an average of the previously calculated alpha values. 

• street the sum of the lump's pixels d ivided by the dish street. 

• irregularity - length of the lump's contour divided by a square root of its area. 

• avg_agar_{red, green, blue} - weighted by inverted alpha to put more emphasis on 
the surrounding agar. 

A l l of the averages and medians are weighted by the pixels ' a lpha values and a l l values 
have been normalized i n the range of 0 .0 -1 .0 . The hue has been omitted, as because of its 
cycl ical nature it is not easily usable as a feature for the K - M e a n s algori thm. 

Once these features are extracted for each of the lumps, K - M e a n s knee detection can 
be run s imilar ly to the previous approaches to determine the op t imal number of clusters. 
These clusters are then indicated i n the cluster map as seen in Figure 5.8, again w i t h a single 
arbitrary color representing a single cluster w i th the colors being unique across the picture. 

5.3 E v a l u a t i n g the c luster ing approaches 

To accurately compare the proposed clustering approaches, several things have to be noted. 
Fi rs t - as has been mentioned before, no agar plate datasets annotated for the purposes 

of clustering exist. For this reason I w i l l be making my own custom made dataset using 
the dish generator. 

Next - a l l three of the described approaches rely heavily on good segmentation. A n y mis­
take done by the segmentation algori thm would only get propagated forward and can not be 
mitigated by clustering. For this reason and for the purposes of fair comparison, a separate 
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(a) Input: Image (b) Input: Segmentation mask (c) Output: Clustering mask 

Figure 5.8: A t first, the areas wi th in the contours marked in white are analysed and features 
are extracted from them. Then , once they are clustered, the final clustering mask as seen 
on the right can be created. 

experiment w i l l be conducted in which a l l clustering algorithms w i l l be provided the ground 
t ru th binary segmentation mask. This allows for a fair comparison among the clustering 
approaches. The resulting clustering masks are compared in a pixel-wise manner. Black pix­
els (those not indicat ing a presence of any species) represent their own cluster. They w i l l 
be therefore irrelevant i n the experiment i n which the ground t ru th segmentation mask is 
provided, as they w i l l map onto their class label counterpart perfectly. 

A n d lastly - it is irrelevant how long the clustering of each plate using any of the algo­
rithms takes, as the t ime complexity is not an issue i n the considered scenario. A n y actual 
real life implementat ion of these solutions would probably need to be wri t ten i n a language 
other than P y t h o n and opt imized. The performance of these algorithms w i l l therefore not 
be measured. 

5.3.1 G e n e r a t i n g the test ing dataset 

For this experiment a dataset of 200 samples has been generated by the generator. The pa­
rameters were set as follows: 

• 1-5 species, 

• 25 % halo probability, 

• 33 % haemolysis probability, 

. 5-50 % of 8.1 CO. to be covered by growth, 

• 50 % probabil i ty of a balanced dish, 

• H S V edit ing disabled. 

B o t h the binary masks and the class labels were generated alongside the images. 

5.3.2 C o m p a r i n g the approaches 

A l l three of the proposed clustering algorithms were given the generated testing dataset 
along wi th the ground t ru th binary segmentation masks. The algorithms were set to find 
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a Knee point in both the projected Distort ions and Inertias and then to prefer the higher 
value, since we are pr imar i ly t ry ing to maximize homogeneity. The resulting cluster maps 
were compared against the generated ground t ru th class label images in a pixel-wise manner 
and evaluated by the V-measure and homogeneity metrics. 
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Elbow detection 
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Figure 5.9: The three proposed approaches to clustering colonies summarized and com­
pared. 

The achieved scores of the experiment, i n which the algorithms were provided the ground 
t ru th segmentation mask, can be seen in Table 5.1. 

The autoencoder approach does not seem to yield par t icular ly good results when com­
pared to a simple clustering of the R G B values. It is at best on par, if not a l i t t le worse in 
both the V-measure and Homogeneity scores. The manual approach to feature extraction 
on the other hand yields better results. It surpasses the other two approaches clearly using 
either metric. 

Table 5.1: A comparison of the three proposed clustering algorithms. W h i l e the V-measure 
describes the overall precision of the clustering attempt, homogeneity is more important in 
the hypothet ical scenario outlined. 

Cluster ing approach V-measure Homogeneity 

R G B pixel-wise 0.908 0.926 
Autoencoder pixel-wise 0.906 0.919 
M a n u a l features 0.927 0.939 
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The results are very similar when the segmentation model is used, as can be seen 
in Table 5.2. W h i l e there is a significant drop i n the achieved scores across the whole 
table, it seems to be fairly uniform. The manual approach once again beats the other two 
approaches, which yield almost identical results. 

Table 5.2: A comparison of the of the same algorithms, but w i th the segmentation model 
producing the segmentation mask on the fly. N o segmentation mask or other addi t ional 
input was therefore provided, only the image of the agar plate. Th is table therefore in 
a way summarizes the entire proposed pipeline's performance. 

Cluster ing approach V-measure Homogeneity 

R G B pixel-wise 0.819 0.796 
Autoencoder pixel-wise 0.818 0.789 
M a n u a l features 0.830 0.813 

One can surmise from this, that the autoencoder feature extraction as described in 
this thesis is not a par t icular ly effective approach, as a much simpler clustering of R G B 
values yields as good, i f not better results. Manua l ly extracting features from the detected 
colonies, however, seems to be a good way of approaching this issue. 

Ult imately, it seems as though it is possible to perform clustering over different species 
on agar plates, and to even do so wi th reasonable efficiency. It is of course not real data 
upon which this experiment has been conducted, but s imilar ly created data has been proven 
to be efficient i n standing in for real data earlier in this thesis. W h e n the entire pipeline as 
described i n 2.8 is ut i l ized, a score of 0.830 for V-measure can be achieved. 

To better il lustrate this performance, I also processed several images of the unlabeled 
real data acquired during the creation of this thesis. A cherry-picked example i l lustrat ing 
the results produced by the proposed pipeline on real data can be seen i n Figure 5.10. 
W h i l e this result can be assessed only subjectively, the a lgor i thm does seem to localize and 
group s imilar ly colored colonies well. 
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(a) Real plate (b) Fully processed real plate 

Figure 5.10: In (a) one of the newly acquired real plates can be seen. A m o n g the blue 
colonies, several pale and orange ones can also be seen. In (b) a very good performance 
of the segmentation model can be noted. Possibly because of this, also the clustering yielded 
good results, as the orange colonies were sorted into their own cluster, pale colonies likewise 
and the blue ones were sorted into several clusters according to their overall brightness, 
which is in line w i th the previously stated preference for homogeneity over completeness. 
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Chapter 6 

Conclusion 

This thesis addressed two current issues i n laboratory analysis of agar plates: detection and 
localizat ion of microbia l colonies on agar plates, and grouping of said colonies according 
to visual ly perceived features. The lack of labeled data necessary for machine learning 
approaches to segmentation was overcome by synthetic data generation using a mul t i ­
purpose agar plate image generator. The generator utilizes images of empty dishes combined 
wi th pre-keyed and labeled colony cutouts gathered from available real data. Enlarg ing 
the t ra ining dataset w i th the generated synthetic data improved the segmentation model's 
performance by 41 % and 45 % for F l score and Jaccard index respectively. The improved 
segmentation model w i l l be deployed i n a prototype of the M B T Pathfinder colony picking 
instrument for testing i n a real-life laboratory environment. 

To group the colonies, a K - M e a n s a lghor i thm combined wi th the E l b o w / K n e e Point 
Detection was employed to determine an opt imal cluster count. Three approaches towards 
feature extraction have been proposed and tested on synthetic data. The approach based on 
manually extracting features from segmented microbia l colonies performed best, achieving 
a V-Measure score of 0.93 when tested on its own, and a score of 0.83 when combined wi th 
the segmentation model . W h i l e its performance on real data could not be quantified, upon 
subjectively assessing the results I believe the approach seems promising. 

A n y future work regarding this topic would make use of the M B T Pathfinder's various 
l ighting modes, as there is a lot of information to be extracted from a single plate just 
by changing up the l ighting conditions. I also believe that a well labeled and variable 
collection of colonies is imperative for the sample generator to produce good synthetic 
samples. These colonies can also be gathered while gradually exposed to the multiple 
l ighting conditions, which opens up the possibil i ty of generating differently l i t versions 
of realistic agar plates images. The abi l i ty to generate colonies in more realistic layouts 
better reflecting the inoculat ion process could also be introduced. 

I have presented this thesis at the E x c e l @ F I T 2023 conference where it received an award 
for a pract ical and uncomplicated solution, which contributes to efforts for achieving total 
laboratory automation. Overa l l , the approaches described i n this thesis offer a cheap, fast 
and very effective way of augmenting data for the purposes of segmentation and outline 
several promising ways of clustering microbia l colonies on agar plates, which is the next 
hurdle to overcome i n to ta l laboratory automation of this field. 
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Appendix A 

Acquired empty agar plates 

Table A . l : a table summarizing a l l of the agars acquired for the purposes of data augmen­
tat ion - by first taking images when empty and then after amateur inoculat ion. A l l agars 
were bought from Thermo Fisher Scientific B rno s.r.o. and are traceable by their Reference 
number. Damaged dishes were stored near refrigerator walls, which froze and irreversibly 
damaged their content. 

Reference Name Color Transparency O k / D m g 

P 0 5 1 6 3 A m C P Selective A g a r purple transparent 10/0 
P O 5 0 2 9 A M L C B Agar blue transparent 10/0 
P O 5 0 6 0 A C h i n a Blue Lactose Agar blue transparent 10/0 
P O 5 3 0 2 A Bri l l iance E S B L Agar white opaque 10/0 
P 0 5 1 4 6 A M a c C o n k e y Aga r red transparent 10/0 
P O 5 1 0 0 A Hektoen Enteric Agar green transparent 10/0 
P O 5 0 9 0 A Chocolate Aga r w / V i t o x brown opaque 10/0 
P B 5 0 2 3 A Aescul in B l o o d Aga r (Modified) red opaque 10/0 
P O 5 0 4 8 A P E M B A green transparent 10/0 
P O 5 0 9 1 A C C D A Selective M e d i u m black opaque 10/0 
P O 5 0 6 9 A Sorbitol M a c C o n k e y Agar pink transparent 10/0 
P O 5 0 9 8 A Bri l l iance Salmonella Aga r white opaque 10/0 
P O 5 0 0 9 A C . L . E . D . M e d i u m green transparent 7/3 
P B 5 0 0 8 A Co lumbia B l o o d Agar w / Sheep B l o o d red opaque 9/1 
P O 5 0 5 7 A X . L . D . M e d i u m red transparent 10/0 
P O 5 1 1 0 A M a c C o n k e y Aga r No . 2 maroon transparent 6/4 
P O 5 0 1 6 A Desoxycholate Ci t ra te Aga r pink transparent 10/0 
P O 5 0 2 7 A M a n n i t o l Salt Aga r pink transparent 10/0 
P O 5 0 5 5 A M a l t Ext rac t Agar yellow transparent 10/0 
P O 5 0 1 4 A B a i r d Parker Aga r yellow opaque 10/0 
P O 5 0 1 7 A Slanetz and Bar t ley M e d i u m beige transparent 10/0 
P O 5 0 0 1 A Sabouraud Glucose Agar yellow transparent 8/2 
P B 5 0 0 3 A Iso-Sensitest Agar w / Sheep B l o o d red opaque 10/0 
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Appendix B 

Autoencoder experiment 

Work ing wi th the cluster maps of features extracted from the autoencoder gave me the idea 
of using them to a id segmentation. M a n y of these maps at a first glance already indicate 
the presence of colonies fairly well, as seen i n Figure B . l . 

Figure B . l : Clus ter ing features extracted from the autoencoder yields images fairly close 
to a reasonably good segmentation mask. 

The issue is determining which clusters should be set to indicate the colonies and which 
clusters should indicate the various shades of the agar. Some dishes have growth covering 
more than 50 % of its surface and often the agar gets divided among several clusters. For this 
I thought the segmentation model - though not always precise - could s t i l l be used rather 
well . If the cluster overlaps more wi th where the mask indicates colonies are, the cluster 
corresponds to colonies, and vice versa. 

This approach lead to very promising results w i th a single plate which I used for de­
velopment. A s can be seen in Figure B . 2 , the acquired segmentation mask corrected two 
of the errors the segmentation model made, and was generally more precise. 

Based on these findings I have scaled up and at tempted a larger experiment on more 
plates. Sadly, it turned out the in i t ia l ly selected dish was a lucky pick. W h i l e w i t h some 
plates this approach d id genuinely help, overall, it d id more harm than good and I found 
no way of pre-determining which case any ind iv idua l plate w i l l be. If the segmentation 
model fails on a significant part of the dish, an entire cluster may then be falsely at t r ibuted 
to the wrong class and the error is aggravated, as seen i n Figure B .3 . 

Exper iment ing wi th this approach showed, that the results are generally better when 
the cluster count is higher, as it seems to help wi th the finer details. In the end I worked 
wi th a fixed cluster count of 10, as the effect of even more clusters seemed negligible. Nev-
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(a) Isolated colonies of a plate (b) Cluster map 

(c) Conventional segmentation map (d) Cluster based segmentation map 

Figure B .2 : The algorithm's input can be seen in (a), the surrounding of a dish is cropped 
and replaced wi th the agars average color, so that no unnecessary clusters are created. 
The resulting cluster map can be seen i n (b). In (c), the output of the segmentation U-Net 
model can be seen. It missed a big chunk of colonies in the upper right, as well as confused 
a reflection of the colonies caused by l ight ing for actual matter, creating the resulting 
warping effect. In contrast, both errors have been remedied by the proposed approach, as 
can be seen i n (d). 

ertheless, working wi th 30 dishes hand-picked for their diversity, I never achieved an overall 
score better than when using just the segmentation model alone. This approach therefore 
seems only si tuational, as I have found no way of generalizing it well . I have therefore aban-
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(a) Isolated colonies of a plate (b) Cluster map 

(c) Conventional segmentation map (d) Cluster based segmentation map 

Figure B .3 : We can see i n Figures B .3b and B.3c that the large piece of presumably mold 
was not detected. This has caused the pink cluster to be labeled an agar, which in return 
also labeled the other two correctly detected colonies an agar, aggravating the error. 

doned any efforts to uti l ize the clustered autoencoder feature maps to a id segmentation in 
this manner. 
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