
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

MACHINE LEARNING IN AUDIO EFFECTS
STROJOVÉ UČENÍ V AUDIO EFEKTECH

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JAKUB SYCHRA
AUTOR PRÁCE

SUPERVISOR prof. Dr. Ing. JAN ČERNOCKÝ
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Graphics and Multimedia (DCGM)

Student: Sychra Jakub

Programme: Information Technology

Category: Signal Processing

Academic year: 2023/24

Assignment:

1. Get acquainted with principles of digital music effects and software tools for their creation and
integration.

2. Survey current techniques for machine learning applied in the area of aduio effects (for example
from ICASSP or DAFx conferences).

3. Select a suitable music processing technique including its software implementation and analyze it.
4. Based on your findings, suggest and implement audio effect classification and parameter estimation

technique.
5. Design, perform and analyze objective assessment and subjective listening tests.
6. Create a poster or short video about your work

Literature:
according to supervisor's recommendation

Requirements for the semestral defence:
points 1-4

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Černocký Jan, prof. Dr. Ing.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 11.4.2024

Bachelor's Thesis Assignment
155963

Machine learning in audio effectsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
Reverse engineering audio effects from mixed tracks is a complex topic requiring signal pro-
cessing and music engineering experience. This work aims at creation of a system capable of
identifying the sequence and parameters of guitar effects from a mixed audio track. Train-
ing data was created using clean guitar sounds from IDMT-SMT-Audio-Effects, augmented
by known effects (BitCrush, Chorus, Clipping, Compressor, Delay, Distortion, High-pass
filter, Ladder filter, Low-pass filter, Limiter, Phaser and Reverb), all implemented with
a Python wrapper around standard VST effects. The system is based on VGGish neural
network architecture with several classification (presence of effects) and regression (param-
eters of effects) heads. The performance of the algorithm is evaluated on classification and
regression accuracy, as well as in informal listening tests.

Abstrakt
Získávání hudebních efektů z mixovaných skladeb je složité téma, které vyžaduje znalosti
jak v oblasti zpracování signálů, tak zkušenosti s audio inženýrstvím. Tato práce cílí na
tvorbu systém, který by byl schopen identifikovat sekvence a parametry kytarových efektů
z mixovaných skladeb. Trénovací data byla vytvořena za využití čistých kytarových zvuků
z datasetu IDMT-SMT-Audio-Effects. Tyto data byla následně augmentována populárními
kytarovými efekty (BitCrush, Chorus, Clipping, Compressor, Delay, Distortion, High-pass
filter, Ladder filter, Low-pass filter, Limiter, Phaser a Reverb), které byly implementovány
pomocí knihovny Pedalboard tvořící mezivrstvu mezi jazykem Python a standartními VST
efekty. Samotný rozpoznávací systém je založený na architektuře VGGish, k níž jsou
přidány klasifikační (přítomnost efektu) a regresní (parametry efektů) hlavy. Výkon modelu
je hodnocen na základě přesnosti klasifikace a regrese, a také v neformálních poslechových
testech.

Keywords
sound, signal, audio effect, guitar, music, source separation, machine learning, neural net-
work

Klíčová slova
zvuk, signál, zvukový efekt, kytara, hudba, separace zdrojů, strojové učení, neuronové sítě

Reference
SYCHRA, Jakub. Machine learning in audio effects. Brno, 2024. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor prof. Dr. Ing. Jan
Černocký

Rozšířený abstrakt
Tato práce vychází z průzkumu hudebních nástrojů a schopoností digitálních hudebních
efektů. Hudební efekty jsou podstatnou částí tvorby hudby a v některých žánrech se jedná
o element, který je vždy přítomen. Tyto efekty mohou být buď analogové ve formě kra-
biček, které ovlivńují elektrický signál kytary a tvarují ho dle specifických potřeb umělce,
nebo mohou být implementovány digitálně, obvykle v rámci softwarových nebo efektových
balíčků. Samotný proces výběru je velice závislý na každém umělci a lze konstatovat, že
takovýto proces není řízen nějakým souborem pravidel.

Už fakt, že hudební efekty které ovlivňují nějaký nástroj, lze považovat za chaotický
element, značně komplikuje proces replikace těchto efektů. Zkoumaný nástroj je navíc
mixovaný v rámci skladby s dalšími nástroji, které také mohou být ovlivněny dalšími druhy
efektů. Ve finále je tedy námi pozorovaný nástroj s efekty součástí celku, ve kterém lze
velice těžko odhadovat, které efekty byly použity, jelikož dané frekvence a charakteristiky,
které můžeme se specifickým efektem spojovat mohou splývat ve skladbě.

Celý tento proces stojí na odhadu, který je pro amatérské hudebníky nedosažitelný a i
s danou zkušeností může být tento odhad daleko od reality. Na základě této problematiky
se tato práce soustředí na analýzu tohoto problému a implementaci řešení, které by bylo
schopné efekty odhadnout včetně jejich parametrizace, lépe než lidský odhad.
Práce je rozdělena do následujících bodů:

• Analýza a průzkum řešení věnující se separaci mixovaných skladeb

• Implementace algoritmu, schopného odhadnout efekty a následně jejich parametrizace
z kytarové skladby

• Poskytnutí odhadu a následná replikace efektového řetězce

Výběr separačního systému byl založen na existující soutěži, která mapovala jejich
výsledky. Následná analýza výběru systémů proběhla v profesionálním studiovém prostředí
a za pomocí těchto výsledků byl vybrán specifický systém, který danou analýzu nejlépe
zvládal. Tento systém i přes dobré výsledky není perfektní a obsahuje nedostatky v
podobě ořezávání frekvencí nebo prolínaní s jinýmy nástroji. Implementovaný detekční
systém byl trénovaný na datasetu augmentovaném v rámci této práce a dosahoval do-
brých výsledků v rámci klasifikace přítomnosti efektu s průměrem 75 % přesnost mezi 12
efekty. Následný odhad parametrů poskytuje dobré výsledky pouze v podmnožině případů
a dosahuje průměrné chyby střední hodnoty 0.23, kde parametry jsou normalizovány do
rozmezí 0.00-1.00.

Systém, který provede samotný odhad a následně rekonstrukci je implementován jako
aplikace konzolové řádky, kde uživatel poskytne část skladby s efektem, který chce odhadovat
a je mu v textové podobě ukázán odhad těchto efektů a parametrů. Následně je uživateli
poskytnuta rekonstrukce efektového řetěžce, na uživatelem specifikovaném vstupním a výs-
tupním zařízení.

Machine learning in audio effects

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the au-
thor under the supervision of prof. Jan Černocký. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Jakub Sychra

May 8, 2024

Acknowledgements
I would like to thank my supervisor Jan Černocký for his guidance, advices and support
throughout this thesis. I would also like to thank Tomáš Trkal for the help and provided
resources during the Source Separation testing. Finally i would like to thank all the people
that participated in the Listening Experiments.

Contents

1 Introduction 2

2 Basics of Audio Effects and Machine Learning 4
2.1 Digital audio and signals . 4
2.2 Audio effects . 5
2.3 Neural Networks . 9

3 Evaluation of Music Source Separation Evaluation Techniques 13
3.1 State of the Art . 14
3.2 Demucs . 15
3.3 Testing in Professional Environment . 15
3.4 Conclusion . 16

4 Data 18
4.1 Reference Data . 18
4.2 Data Augmentation . 18
4.3 Data types . 20
4.4 Data manager and loader . 21

5 Neural Network design and training 23
5.1 Past Architecture Experiments . 23
5.2 Proposed Model . 24
5.3 Training . 25
5.4 Results . 27

6 Design and Implementation of the software 28
6.1 Pre-processing . 29
6.2 Inference and results . 29

7 Listening Experiments 31
7.1 Conclusion from experiments . 33

8 Conclusion 34

Bibliography 36

A Contents of the included storage media 38

B Poster 39

1

Chapter 1

Introduction

Audio effects are important building blocks of modern music, no matter the genre. The
process of choosing effects does not follow rules, and as such, this process can be highly
unpredictable. Due to this complexity, reverse engineering audio effects affecting an instru-
ment in a mixed track can be quite difficult. Recreating a specific effect chain based on
a sample requires experience in audio engineering, musical expertise, or both. With this
knowledge, the process still highly relies on guessing based on specific features of the audio
effects, and to make the process worse, the sample usually contains more than one stem,
which can be defined as an instrument or a sound present in a mix. And thus some features
may blend in together with other instruments. Even with the correct guess for an effect,
the result may be sensitive to the effect’s parameters or position in the effect chain, adding
further unpredictability. With the ever-expanding field of machine learning, these methods
can and are being used to improve tasks, which can be either very time-consuming or almost
impossible to solve for people. This opens up an opportunity to explore the field of audio
effects and experiment with machine learning methods with the goal of retrieving audio
effect information. If this field were to improve, it would not only help musicians in terms
of inspiration, practice, or just recreational playing, but it would also yield an opportunity
for exploitation as the world of digital audio effects and various systems that work with
audio can be quite an expensive venture. The coverage of this topic in the literature is quite
scarce, and while some papers exist, their scope is rather limited as they focus on either
single effects without parameters or heavily controlled combinations of effects.

The goal of this work is to analyse current music separation techniques and create a
system that can be used to replace subjective evaluation and help musicians and audio
engineers with the process of approximating reference audio effects from complete audio
mixtures. More specifically, this work focuses on the guitar branch of the mix and works
with its effects.

This work focuses on identifying the used audio effects and their parameters in tracks.
The main challenge of this process is the presence of other instruments in that track, as
these instruments cause overlapping sounds, and the feature detection and its subsequent
association with parameters becomes harder. This problem and its proposed solution are
described in Figure 1.1.

The underlying theory for the entire work is described in Chapter 2. This work analyses
the current state of Music Source Separation models in Chapter 3 which lays the foundation
for the proposed system as it allows for extracting isolated instrument tracks. For precise
effect determination, a robust data set is needed as is described in Chapter 4, where a gen-
erative system is proposed to cover all needed aspects for model training based on accessible

2

Effects

Guitar

Guitar Track

Other Stems
(Instruments)

Other Stems
(Instruments)

Other Tracks

Mix & Postproduction Song

Source Separation

Guitar Track

Other StemOther StemOther Tracks

Effect Classification

Parameter Estimation

Result Parsing

Effect Description

Effect Chain
Reconstruction

Process behind Song creation

Effect Detection System

Musician

System User

Song With Desired
Effect Chain

Hidden

Designed System

Figure 1.1: Problem and its solution.

audio effects that can be exactly replicated with the correct parameters. This chapter also
describes the process of optimizing the upcoming model using datasets of various data types.
In Chapter 5, the system for effect evaluation and parameter estimation is proposed, briefly
mentioning experiments with several model architectures and commenting on the proposed
model architecture utilising multiple model heads, establishing an effective way to load and
train models within a single architecture. Chapter 6 implements the system utilising the
proposed model architecture and describes the process of inference and reconstruction of
detected effects as well as the issues with implementing this final layer. Chapter 7 presents
the evaluation of the implemented system using listening tests. Chapter 8 summarises the
results, achievements, and shortcomings of this work and describes the ways, in which this
work could be improved based upon ideas that were partially implemented. Finally, this
chapter goes over the potential use of this work in its current and potential future improved
state.

3

Chapter 2

Basics of Audio Effects and
Machine Learning

For the needs of this work, the reader will be presented with theory, underlining important
topics that are either used in this work or that form together used systems or methods.

This begins with the essential signal theory, used in the pre-processing part and most
importantly in the audio effects themselves. Afterwards, the reader is introduced to audio
effects and most importantly their characteristics and implementations that are important
for the Neural Network and Data augmentation. Then we deal with the general process
and goals of Music Source Separations, which is an essential part of retrieving the needed
data for effect determination in the final system architecture. Finally, Neural Networks are
introduced with some basic theory and functions used later in this work.

2.1 Digital audio and signals
To capture, process, and reproduce sound, it is essential to understand the methods for
transforming analogue audio into digital formats. These transformations involve convert-
ing continuous audio signals into a digital format that can be manipulated using digital
processing techniques. This section provides a theoretical framework for understanding
concepts used in this work either directly (Mel-spectrogram processing) or indirectly (Au-
dio effects).

Fourier Transformations

The Fourier Transform is a fundamental tool used in signal processing to convert time-
domain audio signal to frequency-domain representation.

The Fast Fourier Transform is a computationally efficient version of the standard Fourier
Transform. It is instrumental in decomposing complex audio signals into their frequencies.
This transform is essential for spectral analysis, filtering, and tasks that require identifying
frequency components.

The basic equation of Fourier Transform that transforms a time-domain signal into its
frequency-domain, is as follows:

𝐹 (𝜔) =

∫︁ ∞

−∞
𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡, (2.1)

4

where 𝑓(𝑡) is a function in time domain, 𝜔 represents the frequency and 𝑡 represents the
time.

Logarithmic Mel-spectrogram

The Mel-spectrogram is a representation of audio signals that modifies the standard fre-
quency spectrogram by aligning its frequency to the Mel scale.

The Mel scale is constructed to approach spectral analysis to human hearing. Humans
perceive pitch differently than computer-based description methods, which becomes more
apparent with higher frequencies. This scale tries to model the human perception of sound
pitch and is based on empirical data. The most common formula is shown in equation 2.2.
Using a specific frequency 𝑓 , this formula finds its corresponding Mel value 𝑚 on the Mel
scale.

𝑚 = 2595 log10(1 +
𝑓

700
) (2.2)

Additionally, the Mel scale can be employed in audio processing using Mel filter banks
consisting of overlapping triangular filters. These filters are spaced uniformly on the Mel
scale, highlighting the lower frequencies. Afterwards, using logarithmic scaling compresses
the dynamic range, which helps highlight acoustic features that might be lost in linear scale.

2.2 Audio effects
The main goal of audio effects is the modification of sound characteristics of the input
signal. This modification is usually achieved by either manipulating the electrical signal
directly using analog devices such as guitar pedals, or by utilising software tools, that are
often aimed at digitally replicating the effects of analog devices.

To fully understand the features of sound that are results of modifying signal with
various effects, we have to analyse the used effects first. The following section dissects audio
effects used in this work and describes their features and characteristics using resources that
can be found in [8, 10, 14, 15, 17].

Upcoming effects use the following general definitions as well as the dry/wet setting,
controlling the ratio of the original (dry) and the processed (wet) signal:

• 𝑦[𝑛] represents output signal

• 𝑥[𝑛] represents the input signal

Delay based audio effects

These effects utilise the Delay Lines and their notable characteristic, is as the name suggests,
delaying the input signal. This however is a variable process and does not only mean
delaying the input by a set amount. It can for instance simulate quasi-periodic variations
in pitch of a tone.

• Delay
This effect plays back an audio signal after a specified delay. It is often mixed with
the original audio, resulting in an echo effect. With feedback modification, the signal
reoccurs continuously while losing strength with each echo until it fades completely.

5

The basic implementation of feedback delay:

𝑦[𝑛] = 𝑥[𝑛−𝑁] + 𝑔𝐹𝐵 × 𝑦[𝑛−𝑁] (2.3)

Where

– 𝑁 represents the delay in samples
– 𝐺𝐹𝐵 represents the feedback gain

Such effect has two parameters, the delay time and the feedback. With feedback set
to 0, the delayed sample repeats only once. This effect can be also considered the
digital delay line, and as such, is the base of other delay based effects.

• Chorus
Simulates timing and pitch variations, using copies of the original signal. Through
recombining the original signal and its altered copies, the effect creates an illusion of
several instruments playing together.
Basic chorus implementation:

𝑦[𝑛] = 𝑥[𝑛] + 𝑥[𝑛−𝑀 [𝑛]], (2.4)

where 𝑀 [𝑛] is a modulated delay time, generally controlled by a Low-Frequency
Oscillator, which can utilise various waveforms.

Filter effects

Any audio effect could be considered a filter effect based on the way they affect the signal.
This section focuses on a specific types of filters, being the low-pass and high-pass, special
type of filter used in synthesizers and an effect based on the all-pass filter.

The upcoming three filters are not a typical type of audio effect and their presence in
this work is to enhance the tonal shaping and to allow for integration with other effects, to
capture effects outside the training scope.

• High-pass and Low-pass filters
These types of filters aim to eliminate a specific range of frequency from their input.
The low-pass filter passes low frequencies below some cutoff frequency 𝑓𝑐 while atten-
uating frequencies above this threshold. In a similar fashion, the High-pass performs
the inverse process of attenuating frequencies below the cutoff frequency 𝑓𝑐 and pass-
ing the frequencies above. Attenuation is the ability of the filter to gradually reduce
the amplitude.
A basic first-order low-pass filter can be modelled after the following equation:

𝑦[𝑛] = 𝛼𝑥[𝑛] + (1− 𝛼)𝑦[𝑛− 1] (2.5)

where 𝛼 is the filter coefficient that determines the amount of influence of the current
input 𝑥[𝑛]. Its value is determined by following the formula, using the cutoff frequency
and the sampling rate represented by 𝑓𝑠:

𝛼 =
𝑓𝑐

𝑓𝑠 + 𝑓𝑐
(2.6)

6

• Ladder filter
This filter is based on the Moog synthesizer design. It can operate in various filter
modes consisting of low-pass, high-pass and band-pass modes with various levels of
attenuation per octave below or above the cutoff for that specific filter, meaning that
the strength of frequency reduction increases by the specified level for every doubling
of the cutoff frequency below or above the cutoff point.
As the band-pass filter was not defined up until this point, the filter operates by
cutting frequencies within a range around the cutoff frequency.

• Phaser
This effect attenuates or eliminates frequencies, based on a set of notches in the audio
spectrum. These notches are implemented using all-pass filters, that do not change
the magnitude but rather introduce phase lag. The output of all-pass filters is added
to the original signal, where this process creates destructive inference.
Destructive inference occurs when two sound waves of the same frequency and ampli-
tude converge but are out of phase by 180 degrees. This results in the waves cancelling
each other out, leading to amplitude of zero.
An example of the Phaser effect can be seen in Figure 2.1, where the left sine wave
was altered using the Phaser effect into the signal on the right.

Figure 2.1: Example of the Phaser on a sine wave.

Distortion effects

These types of effects transform the signal using nonlinear transformations, creating con-
cepts such as clipping and saturation.

• Compressor
This effect is used to reduce the difference between the loudest and softest parts of
audio. The following equation utilises 𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑, to control above which gain level
is the compression applied and 𝑟𝑎𝑡𝑖𝑜 determines the amount of gain reduction:

𝑦[𝑛] = 𝑥[𝑛]× (1− 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑− |𝑥[𝑛]|
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

× 𝑟𝑎𝑡𝑖𝑜) (2.7)

Figure 2.2 shows the effect of compression on a sine wave. The signal starts the same,
but its amplitude is gradually compressed towards the threshold.

• BitCrush
Reduces the bit depth of the digital audio, introducing a quantization noise. This
process results in a distorted and digitized-sounding tone. The process of this effect

7

Figure 2.2: Effect of compression on a sine wave.

can be described by utilising 𝑄 as a quantization step that is determined by the bit
depth:

𝑦[𝑛] = 𝑟𝑜𝑢𝑛𝑑(𝑥[𝑛]×𝑄)/𝑄 (2.8)

• Clipping
This effect implements a type of distortion, by forcing the signal to exceed the dynamic
range, creating a clipped sound by shearing the peaks.
Clipping can be described by Equation 2.9, which limits the output to the range of
the negative threshold and the positive threshold.

𝑦[𝑛] = min(max(𝑥[𝑛],−threshold), threshold) (2.9)

Figure 2.3 demonstrates the abrupt cut-off caused by the clipping, where the threshold
is represented by a dotted line.

Figure 2.3: The effect of clipping on a signal.

• Distortion
The distortion effect can be as simple as applying one function to the input. The
following equation demonstrates this with the hyperbolic tangent type distortion:

𝑦[𝑛] = tanh (𝑔𝑎𝑖𝑛× 𝑥[𝑛]) (2.10)

8

Figure 2.4: Example of Distortion on a sine wave.

• Limiter
The main goal of the limiter is to control the dynamic range of the signal, so it does
not exceed a specified level. The notable characteristic of the limiter is its ability to
prevent clipping while maintaining a consistent loudness. Limiter can be implemented
using a set of compressors, that reduce the gain of the signal followed by hard clipping.
The effect of the limiter can be observed in Figure 2.5, the main difference from the
Clipping effect, is that the signal is not abruptly cut off.

Figure 2.5: The effect of limiter on a signal.

Reverb

Reverb is designed to simulate the acoustics of physical space, adding the effect of sound
reflection of surfaces, ambience and spatial depth. This effect can be implemented using
a combination of feedback delay networks and filtering techniques that mimic the sound
absorptions and reflections of a real environment.

2.3 Neural Networks
Based on a biological concept of neurons in a brain, an Artificial Neural Network consists of
layers made of neurons modelling the synapses of a biological nature to process information.
The goal of this process is to identify phenomena, weigh options and arrive at conclusions
based on complex patterns in data.

In an Artificial Neural Network, neurons are assembled in layers. These layers include
an input layer, output layer and one or more hidden layers as can be seen in the example
in Figure 2.6.

The purpose of the input layer is to pass values into the Neural Network without mod-
ifying these values. These values are passed into the first connected hidden layer. The

9

Figure 2.6: Four-layer neural network with two hidden layers. Source: [6].

depth of the neural network is represented by the amount of hidden layers, where a neural
network consisting of two or more hidden layers is considered a Deep Neural Network. Each
hidden layer applies some transformation to the input and passes the result into the next
connected layer. The final hidden layer is connected to the output layer, which produces
the final output.

Each neuron in a hidden layer consists of any number of inputs 𝑥⃗, weights 𝑤⃗, bias 𝑏⃗ and
forms connections to other neurons as output 𝑦⃗. To calculate the output of the neuron,
the input data are multiplied by the weight of that specific input. The weighted inputs
are afterwards summed and bias is added. Bias shifts the results towards a certain point,
affecting the activation function. The activation function affects the output of the neuron
by enabling non-linearity.

The output of a neuron can be defined as:

𝑦 = 𝑓(𝑏+
𝑛∑︁

𝑖=1

𝑥𝑖𝑤𝑖), (2.11)

where 𝑛 is the number of inputs, 𝑥𝑖 represents the inputs, 𝑤𝑖 represents their corresponding
weight, 𝑏 represents the bias and 𝑓 is the chosen activation function.

The Matrix 2.12 represents a neural network layer with 3 neurons using the notation
specified earlier. The input layer consists of 4 neurons, which are multiplied by the weight
matrix. Afterwards, a bias corresponding to the given layer consisting of 3 components is
added and finally, the output is passed through an activation function denoted by 𝑓 .

y⃗ = 𝑓

⎛⎜⎜⎝
⎡⎣𝑤11 𝑤12 𝑤13 𝑤14

𝑤21 𝑤22 𝑤23 𝑤24

𝑤31 𝑤32 𝑤33 𝑤34

⎤⎦
⎡⎢⎢⎣
𝑥1
𝑥2
𝑥3
𝑥4

⎤⎥⎥⎦+

⎡⎣𝑏1𝑏2
𝑏3

⎤⎦
⎞⎟⎟⎠ (2.12)

The end goal for neural networks is to adjust their weights and biases (the parame-
ters), so that when applied to a yet-unseen example in the input, they produce the desired
output [4].

10

2.3.1 Activation Function

The activation function determines the output of a neuron and introduces non-linearity to
the neural network. The choice of an activation function shapes the output of the neural
network and affects learning dynamics and model accuracy.

• Sigmoid Activation Function
The sigmoid scales the input in the range of 0.0 to 1.0:

y =
1

1 + 𝑒−𝑥
, (2.13)

where 𝑦 represents the output of the function and 𝑥 represents the input of the
function.

• Rectified Linear Activation Function
One of the most widely used non-linear functions, its value is mainly in its speed and
efficiency:

y =

{︃
𝑥 𝑥 > 0

0 𝑥 ≤ 0
(2.14)

This function introduces non-linearity to data without affecting neurons with positive
outputs.

• Softmax Activation Function
This activation function transforms the output into a distribution of probabilities for
each defined class. The target class has the highest value. The output is shaped into
the range of 0 and 1.
This function can be represented by:

𝑦𝑖 =
𝑒𝑥𝑖∑︀
𝑗 𝑒

𝑥𝑗
, (2.15)

where 𝑦𝑖 is the probability score for class 𝑖 and the denominator
∑︀

𝑗 𝑒
𝑥𝑗 represents the

sum of all input scores, which normalizes the sum of the output probabilities to 1.

Generally, neural networks use two activation functions, the first function is used in hidden
layers and usually stays the same for each layer and the second function is used in the
output layer for the final result.

2.3.2 Loss Function

To properly train a neural network model, a calculation must occur that measures its error.
This process improves the model’s accuracy and confidence.

Loss is the error of the model and the goal is to get it as close to 0, as possible. There
are various types of loss functions, that are each optimal for different tasks.

• Binary Cross-Entropy Loss
Common function for binary classification used between binary predictions and actual
binary targets.

11

The calculation of the loss is based on the distance of the predicted value from the
target value, where the actual target can be either 0 or 1:

𝐵𝐶𝐸 = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 × 𝑙𝑜𝑔(𝑦𝑖) + (1− 𝑦𝑖)× 𝑙𝑜𝑔(1− 𝑦𝑖)] (2.16)

Where

– 𝑁 is the number of samples
– 𝑦𝑖 is the actual binary label of the sample
– 𝑦𝑖 is the predicted probability of the sample

• Mean Squared Error Loss
Common for regression models. This function calculates the squared and averaged
difference between the predictions and the ground truth

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 (2.17)

Where

– 𝑦 is the ground truth
– 𝑦 is the prediction

2.3.3 Training

All previously mentioned parts play a role in the training process. This process starts with
random weight values assigned to the network and using loss calculations, backpropagation
and an optimization algorithm, the network adjusts the weights in the correct direction over
some number of iterations, that are specified based on the model goals and complexity [1].

The training process is repeated over numerous iterations with the goal of minimizing
the loss function. A significant impact on this process is also the quality of the data, on
which the model is trained. This data is split into batches and fed gradually into the
network while calculating their loss.

Backpropagation

This process begins with the loss calculation. The backpropagation then calculates the
gradient of the loss function by moving backwards through the network layers from the
last to the first. The derived gradients indicate the direction and magnitude by which the
weights need to be adjusted to reduce the loss.

12

Chapter 3

Evaluation of Music Source
Separation Evaluation Techniques

As seen in Figure 1.1, popular songs come only in a mixed form and obtaining the original
files that these songs are composed of is a nearly impossible task, especially for more popular
samples, the need for source separation arises. After demixing existing songs, we can further
analyse them and utilise this knowledge for our work.

This work utilises the Deep Neural Network type of Source Separation to analyse mixed
tracks to extract the guitar stem and analyse its features for effect determination and sub-
sequent reconstruction. As highlighted in Chapter 2, the field of Music Source Separation
(MSS) is not flawless and as such, an optimal method has to be chosen, to best suit the
needs of this work. As this work focuses on extracting information from the separated stem,
its quality is a deciding factor in the quality of the final outcome, as bad separation will
introduce artefacts, distortion, noise and frequency cuts to the outgoing stem which would
negatively affect the effect determination. A major need is also the correct labelling of the
extracted data.

This chapter aims at analysing the current market and choosing the system best suited
for the needs of this work. Afterwards, tests and various experiments are performed with
the chosen system to verify its suitability.

The upcoming section analyses the current state of Music Source Separators. Using
this information the most suitable System is chosen and is afterwards tested using listening
tests in a studio environment for its suitability for this work.

The Music Source Separation revolves around the decomposition of a mixed signal into
its components. The main challenge of this process is the extraction of these components
without the knowledge of the original mixture and its sources.

To tackle this topic, various methodologies have been developed over the years focusing
on the separation using various features.

Spectral Clustering

This method uses the similarity measures between different components of a signal, typ-
ically frequencies across time frames to group similar sounds into clusters. Clusters then
theoretically represent audio sources such as individual instruments. This method requires
the selection of a number of classes, which may vary across audio samples and thus this
method is not optimal for blind separation.

13

Non-negative Matrix Factorization

This statistical technique decomposes the magnitude spectrogram of a sample into a set of
additive components, typically associated with the spectral profiles of individual sources.
This method effectively isolates different instruments or sounds within a mixed audio track
by approximating the original signal as a linear combination of non-negative basis functions.
Each component in the resulting matrices 𝑊 (basis matrix) and 𝐻 (activation matrix)
represents distinct sound sources and their temporal activation, respectively [13].

This method is also negatively affected in blind separation as it also requires an estima-
tion of the number of sources.

Deep Learning Models

This approach to Music Source Separation is a trending topic due to the ever-increasing
popularity of AI and machine learning in general. These models utilise Convolutional Neural
Networks and Recurrent Neural Networks trained on extensive datasets to extract features
and perform highly accurate separation, that surpasses the traditional methods. Utilising
architectures like U-Nets allows the models to learn from local contextual information across
the audio spectrum.

3.1 State of the Art
Music Source Separation is a growing space because of its various potential uses. Due to
the demand for such software, there are various options to choose from when it comes to
picking the right separator.

To efficiently analyse the current state of these systems, using the Music Demixing
Challenge [5] organised by Sony is an efficient approach. This challenge performs a crowd-
based competition, with Music Source Separation on a hidden dataset using Signal-to-
Distortion Ratio as an evaluation metric. It only measures four instrument stems (Vocals,
Drums, Bass, Other), meaning that the target of this work is not within the scope of
the rating (focusing on a single stem accuracy is not possible) and as such, the system
performance as a whole is the key to choosing the right system for this work. Additionally,
some of the systems rated within this work do not include the ability to separate the guitar
stems and as such, they are discarded from the inclusion in this system.

As this challenge featured two leaderboard, where the first focused on system trained ex-
clusively on MUSDB18-HQ [9] and the second posed no limitations, both of the leaderboard
forerunners were analysed for this work.

• AudioShake: This system was placed in first place on the leaderboard with no
limitations. It performs slightly better than the second-best-performing system, which
is also the upcoming Hybrid Demucs. The major downside of this system is that it
is a closed system running on a paid model. As such this system is unusable for this
work.

• Hybrid Demucs: As a system that placed first in the controlled dataset leaderboard
and second in the leaderboard with no limitations with just a slight difference from
the winning system. This system poses a good choice for further analysis due to its
performance and also the open-sourced nature [11].

14

3.2 Demucs
This system was created by Meta Research and features two versions: the standard Demucs
and the Hybrid Demucs, the successor to the original design.

Standard Demucs

The standard Demucs features a Deep Learning Model that operates on raw input waveform
data and generates a waveform for each output source. It utilises U-net architecture with
a convolutional encoder and a decoder based on wide transposed convolutions with large
strides. Additionally, this model uses bidirectional Long Short Term Memory (LSTM)
between the encoder and decoder [2].

• Encoder-Decoder Structure: allows the model to capture both low-level and high-
level semantic information. The encoder reduces the dimensionality of the input,
capturing features while the decoder reconstructs the output from the compressed
feature representation

• LSTM Layers: are formed between the encoder and decoder. They are a type of
recurrent neural network layers that help the model capture temporal dependencies
in audio data, which helps with understanding the musical structure over time.

Hybrid Demucs

Building upon the original Demucs architecture, the Hybrid Demucs utilises both convolu-
tional and transformer layers to process audio data. Additions from the original architecture
include:

• Cross-Domain Feature Processing
By using transformers alongside convolutional layers, the transformer blocks are capa-
ble of modeling relationships across long sequences, making them useful in capturing
temporal dynamics in music.

• Self-Attention Mechanism
Self-Attention allows the model to weigh the importance of different parts of the signal
differently. This helps the model to focus on relevant features for each source.

The architecture of the Hybrid Demucs can be seen in Figure 3.1.
For the purpose of this work, an experimental model under the Hybrid Demucs archi-

tecture is used, which will be tested alongside other models in the upcoming section. This
model htdemucs_6s separates additional 2 stems to the original vocal, bass, drums and
other stems: guitar and piano, form which this work utilises the guitar stem.

As the architecture itself is not flawless and the extraction of the guitar is an exper-
imental feature, it may come with various deficiencies that will be further discussed in
Section 6.1.

3.3 Testing in Professional Environment
To evaluate the selected separator, an opportunity was presented, to consult Ing. Tomáš
Trkal, due to his experience with professional sound mixing1.

1http://www.tntrecords.cz/

15

http://www.tntrecords.cz/

After choosing the models to be analysed a set of tests were conducted in a studio setting
to test the accuracy of these separators and verify their suitability for this work. The most
important model to analyse was the experimental model allowing for the separation of the
guitar stem, the other models were analysed to observe the system’s general performance.
The analysed models were:

• htdemucs - The default version of the model.

• htdemucs_ft - Fine-tuned version of the default model promising better results.

• htdemucs_6s - Default model expanded with piano and guitar separation.

For the purpose of this test, studio tracks were provided with their original sources, thus
allowing the comparison between the separated stem and the ground truth. The comparison
was performed by listening tests and in some cases, spectrum analysis.

First, to test out the general separation, hip-hop tracks were processed. These tracks
were correctly separated without any stems leaking to others, but with light frequency
cutoffs. These were minimal and the separation was very successful. Afterwards, tracks
containing the guitar stem were processed. The results were identical to the previous tests
without a noticeable change in quality.

After these, tests focused specifically on the guitar stem quality were run on tracks
predominated by a guitar.

Tested genres were Pop, Rock and Metal. These tests were again evaluated by listening
tests and results were more diverse then the previous tests. These tests shown that the
model is able to separate the guitar from all track successfully, but the quality vastly differs
case by case. The most problematic are tracks where the guitar blends or creates a ”wall
of noise“. In these cases, the guitar stem becomes scattered over other stems and the
resulting quality of the isolated guitar stem is inadequate. All results did not contain any
major change in the quality of the stems, confirming, that the use of the expanded model,
will not drastically affect the quality of the separation.

Another observation from the tests was that the guitar and bass stems do very oc-
casionally cause issues between the two. If the track contains a higher-pitched bass or a
lower-pitched guitar, one of these stems may be falsely classified as a part of the other.
This issue will be expanded upon in Chapter 6.

Samples tested in the professional environment cannot be shared due to privacy reasons
and as such, a reference to the quality of separation can be taken from the example page
for the Hybrid Demucs2, containing the separation of two samples and comparison of the
model variations.

3.4 Conclusion
For the purpose of this work, the selected separator Hybrid Demucs with model version
htdemucs_6s might perform well in certain cases, but there is still a level of uncertainty
for edge cases as was described in testing. Fortunately for this system, the separator only
forms one part of the final pipeline and thus, with the gradual improvement of Music Source
Separator systems, this part can be eventually replaced if it ends up underperforming.

2https://ai.honu.io/papers/htdemucs/index.html

16

https://ai.honu.io/papers/htdemucs/index.html

Figure 3.1: Hybrid Demucs Architecture, adopted from [2].

17

Chapter 4

Data

This chapter introduces the datasets and the methods used for augmenting the data with
various Audio Effects for model training and testing of this system. This chapter also
describes the methods of creating the additional data used in the system, such as Mel-
spectrograms and pre-processed Tensors that optimise the Neural Network training process.
Finally, the modules that handle the data splitting and loading are introduced.

4.1 Reference Data
To be able to recognise effects in mixed tracks, the training process must have a broad
dataset containing not only various guitar tones and chords, but also taking into account
the varying state of the instrument, different timbre, types of guitar pickups and other
variables, that may alter the sound.

For this purpose, it would be appropriate to use a dataset of some music samples con-
taining the target instrument and run it through the Music Source Separator to obtain
isolated guitar parts. The downside of this method is the unknown in the form of used
effects, which is the essential part of this system. Labelling such data poses another chal-
lenge as such process would rely on previously mentioned know-how and with the way that
audio effects work, the final labels may not represent the true setup used by the musician.

For this reason, data has to be obtained with known effects and known parameters and
also optimally with a way to recreate these effects and parameters for reconstruction.

With these points in question, a method of creating a custom dataset was chosen. To
ease the creation process a reference dataset containing clear guitar samples of tones and
chords, played with various guitars was selected.

IDMT-SMT-Audio-Effects Dataset [16] contains 2 electric guitars with various plucking
styles and pick-up settings. This results in around 500 clean guitar samples with total
length of 17 minutes, that can be further augmented for the purpose of this work.

4.2 Data Augmentation
Audio effect can be applied using either mathematical functions to some signal, or by
using an existing tool, usually in the form of a VST plugin. VST plugins are loaded
into Digital Audio Workstations and operated in a way, that usually does not allow for a
procedural generation, that is needed for the augmentation. For this purpose, systems like
Pedalboard [15] exist. Serving as a Python library that allows the use of VST within code,

18

and thus allowing for easy data augmentation. This library also implements basic effects,
that are used to generate data for this system. The types of effects used and their general
features are described in Chapter 2.2.

The augmentation is implemented with a simple methodology. The augmentation sys-
tem randomly picks a sample from all available guitar samples, randomly determines how
many effects to use, randomly chooses their parameters and creates a configuration string
to be saved in a CSV file. The system then hashes the configuration string to be used as
a file name for two purposes, the first being that the whole configuration would exceed the
character limit of files, and the second being that it allows for easy checking, if a duplicate
exists, in which case the configuration is discarded. Unique configurations are then written
into a CSV file containing a list of files and their configurations and the augmented sample
is created with that configuration.

Using this method, a total of 101k audio samples are created with a total duration of 61
hours, affected by 0-12 audio effects with varying number of parameters. These parameters
are afterwards scaled into a range of 0.0 to 1.0 for description purposes.

Table 4.1 highlights the distribution of effects over the dataset and Table 4.2 highlights
the used parameters and their ranges.

BitCrush 54720
Chorus 54951

Clipping 54986
Compressors 54923

Delay 55005
Distortion 54875

High-pass filter 55041
Low-pass filter 55220
Ladder filter 55179

Limiter 55146
Phaser 55114
Reverb 55110

Total Samples 101694

Table 4.1: Data augmentation statistics.

As the parameters are also randomized, Figure 4.1 shows the distributions of three
selected effects.

• Limiter: with the threshold (blue) and release (orange) parameters.

• Chorus: with the rate (blue), depth (orange), centre delay (green), feedback
(red) and mix (purple) parameters

• Reverb: with the room size (blue), damping (orange), wet level (green), dry
level (red), width (purple) and freeze (brown) parameters.

Each graph represents one effect and each different colour in histogram represents different
parameter. It is important to note that some parameters can’t be scaled over the whole
range, as demonstrated in the Reverb graph, where the parameter represented by the brown
colour has only a state of 0 or 1.

19

BitCrush Depth
1.0 to 16.0

Chorus Rate (Hz) Depth Centre Delay (ms) Feedback Mix
0.1 to 10.0 0.0 to 1.0 0.1 to 20 -1.0 to 1.0 0.0 to 1.0

Clipping Threshold
-12.0 to 0.0

Compressor Threshold Ratio Attack Release
-12.0 to 12.0 1.0 to 10.0 0.1 to 100.0 10.0 to 1000.0

Delay Delay (s) Feedback Mix
0.1 to 2.0 0.0 to 1.0 0.0 to 1.0

Distortion Drive
-12 to 12

High-pass Cutoff (Fq)
Filter 20.0 to 2000.0

Ladder Filter Cutoff (Fq) Resonance Drive
20.0 to 2000.0 0.0 to 1.0 1.0 to 10.0

Limiter Threshold Release
-20.0 to 0.0 10.0 to 1000.0

Low-pass Cutoff (Fq)
Filter 20.0 to 2000.0

Phaser Rate (Hz) Depth Mix Feedback Centre Frequency
0.1 to 10.0 0.0 to 1.0 0.0 to 1.0 -1.0 to 1.0 20.0 to 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒

2
Reverb Room Size Damping Wet level Dry level Width Freeze

0.1 to 0.9 0.1 to 0.9 0.1 to 0.9 0.1 to 0.9 0.1 to 1.0 0 or 1

Table 4.2: Used parameter limits.

4.3 Data types
The dataset is created and stored in three data types, due to the need for optimizing the
model and ever-changing architecture needs. The main types included are:

• Waveform files: These files contain the basic augmented guitar samples in a wave
format matching the format of the original dataset. The format of these files matches
the original polyphonic samples with a 44.1kHz sample rate and a bit depth of 16
bits.

• Mel-spectrograms: These files are the direct next step in dataset creation and are
directly tied to the waveform files. As the model requires input in Mel-spectrograms
rather than waveform, these data can be used as input without the need to process
every single waveform loaded. These Mel-spectrograms are created with a window
length of 25 milliseconds, an overlap of 10 milliseconds, a 64 Mel band and an NFFT
value of 512.

• Tensors: Due to the time complexity of the model with processing this amount
of data every epoch, a way to optimise the model efficiency further presented itself
in a way of storing the features output by the model itself. As will be explained
further in the next chapter, the model is separated into two sections, where the first
section performs the extraction of features from the input. This process is again quite
time-consuming when repeated over a large dataset in every epoch, so by storing the
features themselves as tensors, a significant amount of time is saved. The feature
extraction model is frozen, so its output stays the same.

The dataset augmentation occurs in the dataGenerator script and the Mel-spectrogram
and Tensor creation is handled in dataPreprocessing script. All these scripts are imple-
mented in Python.

20

4.4 Data manager and loader
The final module of the data handling part of the system is the data manager and data
loader. This part is essential for the training of neural networks as it provides the data
itself and manages its labels and batching. This module also manages data splitting for the
training, validating and testing of a model.

The module defines arrays and dictionaries of labels (the presence of an effect) and set-
tings (effect parameters). With a defined root of a dataset, it loads the CSV file containing
links between files and their configuration. Afterwards, a dictionary of labels and settings
is filled with keys corresponding to filenames and values to the labels or settings of the key
file. These dictionaries are processed into arrays containing the filename and either label
or settings. This is separated due to training never requiring both the file label and the
settings at the same time. These arrays serve as the main data point.

For regression, an additional method exists that discards every file from the array, that
has the currently trained effect disabled. This avoids issues, that may be caused by training
the model on data, that do not even contain that specific effect.

Finally, a getter is implemented that takes the filename and label/settings from the
currently used array and returns these data with the addition of the loaded file based
on the filename. Each training session uses a data manager, that splits the dataset into
training, validation and testing segments. These data are randomized and are different for
each subsequent training session. The data manager is implemented using the data split
module, which takes the dataset as an argument and splits it into portions based on the
given tasks. This module was implemented using the code available at GitHub1.

In this phase, dictionaries are loaded that tie specific files to labels (effect presence) and
settings (effect parameters). In the batch phase, where there are batches of 100 samples
created, these labels and settings can be used to reference their configuration and compare
them with the model predictions.

1https://palikar.github.io/posts/pytorch_datasplit

21

https://palikar.github.io/posts/pytorch_datasplit

Figure 4.1: Parameter Distributions for Limiter, Chorus and Reverb.

22

Chapter 5

Neural Network design and
training

This chapter describes the process of implementing the model and its training. Both are
implemented using PyTorch. Previously implemented and tested methods will also be
discussed as they played a major role in our research.

As seen in Figure 5.1, the final model consists of two major parts, the first part being
the Backbone and the second part being split into Model heads, that form abstract Audio
Effect Heads, where each abstract head targets one specific audio effect and its parameters.

Mel-Spectrograms

VGGish

Model Backbone

Detector

Abstract Effect Head

Regressor

Audio effect
presence

Audio effect
parameters

Figure 5.1: General Model Architecture.

5.1 Past Architecture Experiments
The proposed system went through many iterations of implementation. Some of the past
implementations are noteworthy, to map the process towards the current implementation.

The first iteration of the system utilized Mel-Spectrograms as images, and as such the
overlining architecture was an image-based model. This model consisted of two models,
one for effect detection and one for parameter estimation. Both models followed the same
architecture of two convolutional layers and two fully connected linear layers, where each
layer was followed by a batch normalization, their difference was in the final activation
function, where parameter estimation used Sigmoid to squash final results into the correct
range. These models focused on data affected by a single effect and as such, the result was
the class of detected effect. Results of this experiment yielded a detection accuracy of 61 %
and parameter estimation accuracy with a mean absolute error of 0.34.

23

These results were not optimal and when retrained with multiple effects, the accuracy
significantly dropped. The accuracy of the multiple effects was measured as a success if all
the effects present were correctly detected. The multi-effect model has achieved an accuracy
of 1.5 %, and as such brought up the need to restructure the process.

5.2 Proposed Model
The main issue in the first iteration was the detection of multiple effects in a sample. From
this inadequacy, a new proposed system was conceptualized, that utilized an architecture
of multiple heads which can be defined as modules, that work as separate models. This
allows to separate effects into their detection and regression within the scope of one single
model implementation, while allowing the separate training and loading of these parts.

This proposed architecture needs a Backbone that extracts features for these model
heads to process. After testing this architecture with Image based models, that were unable
to extract proper features for improvement of the model heads, Audio based models were
the next step in this architecture evolution.

Audio-based models that focused on feature extraction from waveform data were usually
designed for speech recognition tasks, and due to this were unable to properly extract
features relevant for effect estimation, these waveform effects formed another issue, as their
technical requirements were quite larger than the previous methods and work could not
continue due to the technical limitations of the hardware used for creation of this work.

Finally, the last model tested that was ultimately chosen for the needs of a model
backbone was VGGish, which will be further explained in the upcoming section.

Backbone VGGish

VGGish is a variant of the VGG model [12] trained with audio features. In particular,
this modification is based on the VGG Configuration A. This configuration contains 8
convolutional layers and 3 fully connected layers. The convolutional layers use 64, 128, 256
and 512 filters in sequence each followed by max–pooling layer. The final 3 fully connected
layers contain 4096, 4096 and 1000 units in sequence followed by softmax in the output
layer. The input of this model is a 224×224×3 RGB image and the output is probability
distribution across 1000 classes.

VGGish changes the input size to 96×64 for the Log Mel-spectrogram inputs framed
into non-overlapping frames of 0.96 seconds in length. The last group of convolutional and
maxpool layers is discarded changing the structure to four groups of convolution/maxpool
layers and the fully connected layer at the end is changed from width of 1000 to 128, acting
as a compact embedding layer [3].

Due to this model being implemented for TensorFlow, an experimental PyTorch port has
been used, that replicates the procedures of the original variation and promises negligible
differences.

The output of this model as mentioned in the previous section, uses raw embedding in
a format of 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒× 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑟𝑎𝑚𝑒𝑠× 128.

24

Effect Heads

Figure 5.2 shows the architecture of an Abstract Effect Head. This term envelops the
detection and regression heads under the specific effect, on which they are trained. Each
audio effect has one detection head and one regression head.

Detection heads are composed of three linear layers followed by the ReLU function.
Regression heads contain four linear layers. The first three linear layers are followed by
a Batch Normalization and the ReLU function. Both model head architectures have the
same output layer composed of one linear layer followed by the sigmoid function.

Figure 5.2: Architecture of an Abstract Effect Head.

Input of this model is the direct output of the Backbone model which has the input of
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒×𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑟𝑎𝑚𝑒𝑠×128 features which are subsequently flattened into a single
layer. The 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑟𝑎𝑚𝑒𝑠 represents the number of Mel-spectrograms, that entered the
Backbone model. This number is based on 𝑠𝑎𝑚𝑝𝑙𝑒𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑒𝑐𝑜𝑛𝑑𝑠/0.960, creating the non-
overlapping 960 ms frames. In general, the model works with two of these windows due to
the length of samples in the dataset and the implemented limitation of input length further
defined in 6.1.

5.3 Training
As previously mentioned, multi-head architecture allows, for a individual training of each
effect detector and regressor. Due to this, the training is split into 24 sessions, 12 for effect
detectors and 12 for effect regressors.

This allows for every individual part of the model, to work independently with the only
constraint being the presence of the effect. This means that regressor results are ultimately
discarded if the detection yields that the effect is not present.

25

In the initialization phase of training, all the necessary data are loaded and split using
the data manager described further in detail in Chapter 4 and the device used for training
is declared based upon the availability of cuda devices.

All training experiments used PyTorch [7] and were trained using the Adam optimizer.
The learning rate was chosen based on a number of experiments with various values, and
the chosen learning rate was 0.001.

In detection training, the loss calculation is performed using the Binary Cross-entropy.
Regression utilises the Mean Square Error loss function.

Pseudoalgorithm 1 describes the general training process:

Algorithm 1 Training process.
Choose and initialise a training device
Define dataset source
Define currently trained model head
Create dataset splits for training, validation and testing
Define the Optimizer and Loss function
Define result arrays
for Number of epochs do

for Batch in total batches of data do
Convert batch data to the currently used device
Pass batch data to model
Calculate loss
Measure current accuracy
Log the results

end for
if Validation results exceed the best validation results then

Save model head state
end if

end for
Save the result log files

26

5.4 Results
For measuring the detection accuracy, a separate test set was defined. The obtained average
effect detection accuracy was 75 %, while parameter estimation had an average mean error
of 0.23 from target parameters. Parameters are scaled to the 0.00-1.00 range for consistency.

The detailed results can be seen in Table 5.1 and 5.2. These results are individual for
each head, from samples containing multiple effects.

BitCrush Chorus Clipping Compressor Delay Distortion
77.5 % 83.8 % 67.4 % 65.8 % 74.9 % 67.7 %

High-pass Filter Low-pass Filter Ladder Filter Limiter Phaser Reverb
74 % 88.5 % 73.5 % 76.4 % 78.7 % 69.2 %

Table 5.1: Results of effect detection.

BitCrush Chorus Clipping Compressor Delay Distortion
0.24 0.24 0.23 0.24 0.24 0.23

High-pass Filter Low-pass Filter Ladder Filter Limiter Phaser Reverb
0.30 0.24 0.24 0.25 0.23 0.37

Table 5.2: Results of parameter estimation.

27

Chapter 6

Design and Implementation of
the software

This chapter focuses on the design and implementation of the final system. This system
is implemented as an interface between the user and the effect determination. The basic
scheme of the system’s inner workings, its inputs and outputs can be seen in 6.1. The user
inputs either a mixed track containing a guitar with effects to be determined or an isolated
guitar track. This distinction is passed as a parameter. This input is further limited to 2
second long samples.

One of the options for implementation of such system was implementing it as a VST
plugin, but due to the time constraint of the work, a simpler solution in the form of an
inference script was chosen.

Audio Sample Music Source
Separation

Guitar stem
Model Preprocessing

Model Result Parsing

Effect Chain
Configuration

Live Audio
Reconstruction

Model Inference

Audio Interface
Configuration

User Input

Figure 6.1: Inference System architecture.

28

6.1 Pre-processing
This section describes the choices behind input limits, the ways the pre-processing part of
the system works, how the model inference is managed and the process of parsing the final
results with their reconstruction.

The system accepts 2 second long waveform samples. This choice was made to avoid the
input of whole songs, as such input would pose issues. Firstly the extraction of the guitar
stem, from a minutes long input would vastly increase the processing time. This, combined
with the fact that the system detects a single audio effect chain, that would ideally have to
stay the same for the whole duration of the song, the choice of shortening the input forces
the user to pick a certain section containing the effect chain up for determination. This
makes the processing time shorter as well as avoids the issues of possible multiple effect
chains that could cause undefined system behaviour.

A major part of the pre-processing process is the source separation. The user can specify
whether the input track is already separated using an optional parameter, if the parameter
is not specified, the track is assumed to be up for separation. The reason behind the need
for manually specifying the nature of the input is due to the experimental nature of the
used separation model demucs_6s. As the experimental part of this system is the extraction
of the guitar, its handling of clean guitar tracks can be unpredictable. In some tests, this
model tends to classify the isolated guitar as a bass track rather than a guitar, thus the
distinction for such cases has to be made, in which case the separation is skipped.

The separation system Demucs offers an API, that simplifies working with the sepa-
rated sample. This API uses a specific version of PyTorch, that conflicts with the ver-
sion used for the experimental backbone model VGGish. Due to this, the API is not
used and the separation is done in a way, where the input is saved into a special folder
/separated/htdemucs_6s/nameOfSample, from which it is subsequently loaded. Although
this process is more tedious, it offers the user the ability to check the quality of the sepa-
ration.

In the final step of pre-processing, the guitar sample is processed using the internal
VGGish processor, that converts the waveform input into a tensor consisting of a log Mel-
spectrogram.

6.2 Inference and results
This section uses the methods described in Chapter 5. The input of the inference model
is the tensor composed of log Mel-spectrograms created in the pre-processing part. The
model inference part then loads 24 individual model head states, representing the detector
and the regressor for each of the effects in the scope this work. After processing the input,
inference returns a tensor containing the states of the 12 effects. This state is composed of
the effect’s presence and its individual parameters.

These states are parsed into comprehensive text that is displayed to the user and during
the string construction, the effect information is loaded as an effect into a new effect chain.
This process uses effects which have their value in tensor above a certain value. From
system tests, the value was set to 0.7 even with the model training consisting of a threshold
of 0.5. When it comes to samples outside of the dataset, the effect detection needs a slight
tuning in the form of threshold adjustment to properly filter all the effects.

After displaying the text information to the user, the program takes the specified input
and output device from the user input and loads the effect chain onto this configuration.

29

Afterwards, the system stays in the state of reconstruction while transforming the audio on
the set device, until the user manually ends with a press of a key.

During the testing of the final system, a few shortcomings were detected, the upcoming
list goes over the major issues.

• Problematic Effects
The first notable issue was with the effects, the detection itself is closely tied to the
quality of separation as will be discussed later. But another issue formed with two
specific effects. First, the effect BitCrush did not perform as expected and rather
introduced an unsatisfactory hiss to tracks. Another problem with this effect was its
prominence in major number of tested samples. The second problematic effect was
Reverb, that was also detected in almost all samples. The first logical reason might be,
that the training of this certain head was not conducted properly, but after analyzing
the effect further, it is entirely possible that due to the dataset being single tones or
chords, the reverb effect would multiply these sounds. This would be the prominent
feature of this effect and as such, analysed tracks that contain any repetitions would
get falsely classified.
Due to this reason, these two effects are disabled by default in detection and can be
enabled by changing a global variable.

• Music Source Separation Issues
As described in Chapter 3, the separation can have issues with some tracks, this
became prominent when combining the inference with separation, as the separation
very often found these edge cases and was unable to properly extract the guitar
sample. Either the sample was completely displaced or affected by too much noise.
This issue unfortunately does not have clear answer and as such, the system behavior
for mixed tracks can be unexpected.

• Reconstruction Quality
The reconstruction is done within the Python script on an audio stream, from a
selected input device, which is not the most professional approach when compared to
Digital Audio Workstations. This approach also suffers from high latency and reduced
quality. As such, the quality of reconstruction can audibly suffer.

30

Chapter 7

Listening Experiments

This chapter will introduce experiments with various samples testing the capabilities of
the implemented system. These tests focus on the subjective evaluation by the listeners.
Listeners were selected to form a specific sample of potential users. These users include
amateur musicians, casual listeners and people with music production experience. The
number of surveyed users was 8.

The tests were split into two parts. The first part included the comparison of isolated
guitar samples, affected by audio effects different from the ones, used in the dataset and
reconstruction. In this part, the similarity of the reconstruction to the original and its
overall sound quality was rated. The second part demonstrated the use of the full system
including the Source Separation. In this test, users were able to listen to the original mixed
track, the separated guitar for the reference and the reconstruction of that effect chain. For
the reconstruction part, clean guitar samples were recorded to match the original samples.
The rated part of this section was also the similarity of the reconstruction to the separated
guitar and its overall sound quality, and also the quality of the separated guitar stem after
the separation.

The goal of tests is to observe how well the system performs, its strengths and short-
comings.

The upcoming lists analyse the key points of the experiments and their results in the
two mentioned parts. The similarity and quality were rated on ten ten-point scale, where
0 represented very poor results and 10 represented great results. The samples used in the
tests can be found in a Google Drive1.

Isolated Guitar Samples with known effects
• Test 1: Chorus & Drive & Boost

This test includes known effect type chorus and two unknown effects: Drive and
Boost. The purpose of including different types of effects is to observe the ability
of the system to adapt to the unknown and observe the similarity of its subsequent
reconstruction.
Similarity score: 6.67
Sound quality of reconstructed sample: 4.67

• Test 2: Octaver & Distortion
1https://drive.google.com/drive/folders/1_HxN2qGksFUsZpV0N4yWXwiQ0RLUudHm

31

https://drive.google.com/drive/folders/1_HxN2qGksFUsZpV0N4yWXwiQ0RLUudHm

Similarly to the first test, this one also includes an unimplemented type of effect.
This effect was specially chosen as it manipulates the octave, which could possibly
invalidate the result due to a tone deviation from the training dataset.
Similarity score: 4.67
Sound quality of reconstructed sample: 3.83

• Test 3: Reverb & Distortion
This and the upcoming sample feature the known types of effects, to test the accuracy
with known audio effects.
Similarity score: 6
Sound quality of reconstructed sample: 5.8

• Test 4: Phaser & Compressor
Similarity score: 8.5
Sound quality of reconstructed sample: 8.8

The system performed better with known types as is expected. The reconstruction for
unknown types was not the worst and the similarity would be even better if the model did
not include additional effects that invalided the result, as the determined effects reassembled
the actual configuration aside from the unknowns.

Blind tests utilising Music Source Separation
• Sample 1: Jimi Hendrix - Purple Haze

Quality of separated stem: 8.83
Similarity score: 4.17
Sound quality of reconstructed sample: 4.5

• Sample 2: Gojira - Silvera
Quality of separated stem: 6
Similarity score: 5.67
Sound quality of reconstructed sample: 4

• Sample 1: Ghost - Square Hammer
Quality of separated stem: 7.6
Similarity score: 4.33
Sound quality of reconstructed sample: 5.33

• Sample 1: Pink Floyd - Comfortably Numb
Quality of separated stem: 8.5
Similarity score: 6.17
Sound quality of reconstructed sample: 6.33

32

• Sample 1: Chuck Berry - Johnny B. Goode
Quality of separated stem: 9.5
Similarity score: 6.67
Sound quality of reconstructed sample: 6.5

The overall quality was significantly lower than with an isolated guitar. The similarity
also significantly dropped which could be the consequence of the separation, but the model
did not perform well even with samples that featured a good separation.

7.1 Conclusion from experiments
The subjective experiments conducted in this chapter demonstrate the ability of the system
to reconstruct audio effects from reference samples, either isolated or mixed within a track.
These results do not achieve perfect levels of similarity and in some cases, even produce
samples of bad sound quality due to incompatible effect combinations. After analysing
additional comments from the experiments, users commend the system for its ability to
at the very least approximate the features of the reference samples. While not achieving
perfect similarity, some of the notable features of the reference tracks can be heard, which
demonstrates the system’s potential. Overall, these results highlight the need for future
enhancements to refine the system’s accuracy and expand its capabilities.

33

Chapter 8

Conclusion

In this work, the reader is introduced to the subject of Neural Networks and Music Source
Separation and most importantly the characteristics of Digital Audio Effects. Afterwards,
methods for source separation are analysed and a system for audio effect detection and
parameter estimation is proposed. Furthermore, a system is introduced, that connects
these topics and offers the user audio effect description and reconstruction based on the
provided input.

An augmented dataset is introduced alongside with methods used for said augmentation.
This dataset can not be provided due to copyright constraints of the reference data, but
an augmentation script is included alongside the system to allow for reproducibility of
our work. From the results, the model is capable of learning the features of the audio
effects included in the system for their determination. The model even shows the capability
of determining the effects in tracks affected by audio effects of the same distinction, but
differing implementation. The parameter estimation is not as capable as effect detection,
as the used model and previously tested variations had issues with the learning process and
only a handful of parameters of certain effects correctly learned to associate the inputs with
target values.

The final system is conceived as a console application with rather simple implementation
due to time constraints. An optimal implementation of such system would be a VST plugin,
that can be used in Digital Audio Workstations, which would have more appeal to the
average user as well as an optimal place for the effect chain reconstruction.

Future work
This system has a lot of potential to be improved. As the topic of Music Source Separation
will improve in the future, the currently used separator could be replaced, which would
certainly result in improvement of separated instrument effect estimation. Furthermore,
improvements to the model would certainly improve the results.

These improvements could stem from more complex datasets, that would introduce more
effects or variations of the same effect. Another improvement could focus on determining the
family of the effect rather than the specific type, and afterwards constructing these effects
based on this information. Another big improvement could be in the form of additional
model heads, that would focus on the positional index of the effect in its effect chain. Our
system so far does not have this capability and as such, the reconstruction can possibly
contain all the correct effects, but their order in the chain can completely devaluate the

34

result. As such, the positional information would greatly improve the reconstruction and
would also give additional effect information to the system user.

Another improvement may come in a form of a better interface between the system
and the user. The best approach would be to implement this system as a VST plugin
for the immediate availability of the reconstructed effect chain right in the Digital Audio
Workstation. This would require either reimplementing the Pedalboard effects in JUCE,
which is used for the creation of VST plugins, or the complete overhaul of the available
effects with the plugin implementation in mind.

Exploitation

This type of system could certainly be commercially exploited. The topic of digital audio
effects is currently a profitable topic as companies focused on making software plugins
offering these effects monetise these types of systems quite successfully. These plugins often
try to implement effects simulating analogue brands and offer a quite broad spectrum of
options and presets that emulate existing bands and artists. A system that could estimate
effects used in popular tracks and offer a user these effects to the detail of parameter settings
would certainly be a profitable venture, especially if combined with existing commercially
successful effect implementations.

35

Bibliography

[1] Chollet, F. Deep Learning with Python. 2nd ed. Manning, 2021. ISBN 1617296864.

[2] Défossez, A., Usunier, N., Bottou, L. and Bach, F. Music Source Separation in
the Waveform Domain. ArXiv preprint arXiv:1911.13254. 2019.

[3] Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A. et al.
CNN Architectures for Large-Scale Audio Classification. In: International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2017. Available at:
https://arxiv.org/abs/1609.09430.

[4] Kinsley, H. and Kukieła, D. Neural Networks from Scratch in Python. Harrison
Kinsley, 2020.

[5] Mitsufuji, Y., Fabbro, G., Uhlich, S., Stöter, F.-R., Défossez, A. et al. Music
Demixing Challenge 2021. Frontiers in Signal Processing. Frontiers Media SA.
january 2022, vol. 1. DOI: 10.3389/frsip.2021.808395. ISSN 2673-8198. Available at:
http://dx.doi.org/10.3389/frsip.2021.808395.

[6] Nielsen, M. A. Neural Networks and Deep Learning. Determination Press, 2015.
Available at: http://neuralnetworksanddeeplearning.com/.

[7] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, p. 8024–8035.
Available at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

[8] Pirkle, W. Designing Audio Effect Plug-ins in C++ with Digital Audio Signal
Processing Theory. Focal Press, 2013. ISBN 9780240825151. Available at:
https://books.google.cz/books?id=v0ulUYdhgXYC.

[9] Rafii, Z., Liutkus, A., Stöter, F.-R., Mimilakis, S. I. and Bittner, R.
MUSDB18-HQ - an uncompressed version of MUSDB18. August 2019. DOI:
10.5281/zenodo.3338373. Available at: https://doi.org/10.5281/zenodo.3338373.

[10] Reiss, J. D. and McPherson, A. Audio effects: theory, implementation and
application / by Joshua D. Reiss and Andrew McPherson. 1st editionth ed. Boca
Raton, FL: CRC Press, an imprint of Taylor and Francis, 2014. ISBN 0-429-09723-9.

[11] Rouard, S., Massa, F. and Défossez, A. Hybrid Transformers for Music Source
Separation. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2023, p. 1–5. DOI:
10.1109/ICASSP49357.2023.10096956.

36

https://arxiv.org/abs/1609.09430
http://dx.doi.org/10.3389/frsip.2021.808395
http://neuralnetworksanddeeplearning.com/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://books.google.cz/books?id=v0ulUYdhgXYC
https://doi.org/10.5281/zenodo.3338373

[12] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. ArXiv 1409.1556. September 2014.

[13] Smaragdis, P., Févotte, C., Mysore, G., Mohammadiha, N. and Hoffman, M.
Static and Dynamic Source Separation Using Nonnegative Factorizations [A unifed
view]. Signal Processing Magazine, IEEE. May 2014, vol. 31, p. 66–75. DOI:
10.1109/MSP.2013.2297715.

[14] Smith, J. Delay Lines
[http://ccrma.stanford.edu/~jos/pasp/Delay_Lines.html]. Online Book, 2010.
Accessed: 12.3.2024.

[15] Sobot, P. Pedalboard. Zenodo, July 2021. DOI: 10.5281/zenodo.7817838. Available
at: https://doi.org/10.5281/zenodo.7817838.

[16] Stein, M. IDMT-SMT-Audio-Effects Dataset. Zenodo. DOI:
10.5281/zenodo.7544032. Available at: https://doi.org/10.5281/zenodo.7544032.

[17] Zölzer, U., Amatriain, X., Arfib, D., Bonada, J., De Poli, G. et al. DAFX -
Digital Audio Effects. John Wiley & Sons, 2002. ISBN 9780471490784. Available at:
https://books.google.cz/books?id=h90HIV0uwVsC.

37

http://ccrma.stanford.edu/~jos/pasp/Delay_Lines.html
https://doi.org/10.5281/zenodo.7817838
https://doi.org/10.5281/zenodo.7544032
https://books.google.cz/books?id=h90HIV0uwVsC

Appendix A

Contents of the included storage
media

/
classify.py.............................The inference and reconstruction script
dataAnalysis.ipynb........................Graph generation from Data section.
data_generator.ipynb.............................Dataset augmentation script
datamanager.py................................Data manager for model training
datasplit.py.................................Module for splitting training data.
datatypes_processor.ipynb.......................Dataset data type processing
LaTeX/...LaTeX source files
model.py..Proposed Model Architecture
poster.pdf...Poster in format .pdf
samples/..Samples from Listening Tests
saved/..Current Model states

prod/
README.md..System Instructions
requirements.txt....................................Required Python libraries
thesis.pdf...Text of the Bachelor’s thesis
train.py..Module for training functions
typhon_individual.py. Trainer for detection
typhon_individual_r.py..................................Trainer for regression

38

Appendix B

Poster

Machine Learning in Audio Effects
Jakub Sychra
Supervisor: Jan Černocký

Audio Effects

Either analog or digital, audio effects modify the sound characteristics of instruments and are a necessary component in music creation.
This can alter from a light modification of the signal to a drastically changing the instrument signal from its original sound.

Motivation

Problem Description
▶ Guitar sound is a key to performance or recording

▶ Estimating the choice order, and setting of effects requires musical
and audio-engineering know-how

▶ Current Literature on machine learning for this task is very limited

Goals

▶ Isolate guitar sound from a recording

▶ Train a neural system estimating the effects and their parameters
from guitar track

▶ Test it by using numerical metrics and listening tests.

Data

Augmented version of IDMT Guitar Samples dataset was used for this specific work.

▶ 110k guitar samples with a total duration of 61 hours.

▶ Each sample contains between 0 and 12 effects with random parameters.

▶ Created using a Python wrapper that enables data augmentation with audio effects.

▶ Used effects: BitCrush, Chorus, Clipping, Compressor, Delay, Distortion, High-pass filter, Ladder filter, Low-pass filter, Limiter, Phaser, and
Reverb

System Architecture

Song Snippet

M
SS

Separated Guitar

Pr
ep

ro
ce

ss
in

g

Mel-Spectrograms

FX Model
FX List, Parameters

Real-Time FX
reconstruction

Model Architecture

VGGish

Li
ne

ar
R

eL
U

R
eL

U

Si
gm

oi
d

Li
ne

ar

Li
ne

ar

Li
ne

ar

Si
gm

oi
d

Classification

Regression
Embeddings

Sample

R
eL

U
Ba

tc
h

N
or

m
al

iz
at

io
n

Li
ne

ar
R

eL
U

Ba
tc

h
N

or
m

al
iz

at
io

n

Li
ne

ar
R

eL
U

Ba
tc

h
N

or
m

al
iz

at
io

n

Li
ne

ar

Effect Presence

Effect Parameters

Results

Detection accuracy:

BitCrush Chorus Clipping Compressor Delay Distortion High-pass Filter Low-pass Filter Ladder Filter Limiter Phaser Reverb
77.5 % 83.8 % 67.4 % 65.8 % 74.9 % 67.7 % 74 % 88.5 % 73.5 % 76.4 % 78.7 % 69.2 %

Parameter estimation error:

BitCrush Chorus Clipping Compressor Delay Distortion High-pass Filter Low-pass Filter Ladder Filter Limiter Phaser Reverb
0.24 0.24 0.23 0.24 0.24 0.23 0.30 0.24 0.24 0.25 0.23 0.37

39

	Introduction
	Basics of Audio Effects and Machine Learning
	Digital audio and signals
	Audio effects
	Neural Networks

	Evaluation of Music Source Separation Evaluation Techniques
	State of the Art
	Demucs
	Testing in Professional Environment
	Conclusion

	Data
	Reference Data
	Data Augmentation
	Data types
	Data manager and loader

	Neural Network design and training
	Past Architecture Experiments
	Proposed Model
	Training
	Results

	Design and Implementation of the software
	Pre-processing
	Inference and results

	Listening Experiments
	Conclusion from experiments

	Conclusion
	Bibliography
	Contents of the included storage media
	Poster

