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ABSTRACT
The National Institute for Standards and Technology (NIST) has initiated a process to
solicit, evaluate, and standardize one or more quantum-resistant public-key cryptography
algorithms through a public competition. An objective of this thesis is to study the
available post-quantum algorithms for key establishment, that were published in the
third round of this competition. After a proper analysis and comparison, one of the
studied algorithms was implemented using available libraries for the chosen algorithm,
the created program was optimized and documented.

KEYWORDS
Post-quantum cryptography, key-establishment, NIST, standardization, McEliece,
NTRU, CRYSTALS-KYBER, SABER, lattice-based cryptography, MLWE

ABSTRAKT
Národný inštitút pre štandardy a technológie (NIST) zahájil proces na získanie, vyhodno-
tenie a štandardizáciu jedného alebo viacerých kryptografických algoritmov využívajúcich
verejný kľúč prostredníctvom verejnej súťaže. Cieľom tejto dimplomovej práce je naštu-
dovať dostupné postkvantové algoritmy pre ustanovenie kľúča, ktoré boli zverejnené v
treťom kole tejto súťaže. Po dôkladnej analýze a porovnaní bol jeden zo študovaných
algoritmov implementovaný s využitím knižníc dostupných pre daný algoritmus, následne
bol program optimalizovaný a zdokumentovaný.
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Introduction
Cryptography in the present day is based on complicated mathematical problems,
such as factorization or a discreet algorithm problem, which are all considered to
be safe against known attacks performed on a standard computer. In the future
however, in case of a successful production of a quantum computer using Shor’s
quantum algorithm for factorization, cryptography as we know it today would be
defenceless as the mathematical problems would be solvable in a polynomial time.
For this reason, post-quantum cryptography was created and now offers a variety
of protocols and cryptosystems that should be safe against attacks performed on
quantum computers. These new protocols are based on new mathematical problems,
unsolvable in a polynomial time.

Even though a quantum computer functioning outside of laboratories in everyday
conditions does not exist yet, the fast progressing development of technologies poses
a potential threat to cryptography as we know it today, and peaks interest in post-
quantum cryptography by many professionals.

The National Institute for Standards and Technology (NIST) has initiated a
process to solicit, evaluate, and standardize one or more quantum-resistant public-
key cryptography algorithms through a public competition. As of July 22, 2020,
candidates of the third round were published [1].

An objective of this thesis is to study the available post-quantum key-establishment
algorithms published by NIST in the third round of the competition. After a proper
analysis and comparison, one of the mentioned algorithms will be implemented using
available libraries for the chosen algorithm.
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1 Quantum Computers
Quantum computing makes use of the quantum phenomenon such as superposition
of electrons to perform an enhanced computation. Superposition is a system that
has two different states that define it and it can exist in both. An electron has two
possible quantum states, known as spins: spin up and spin down. When an electron
is in superposition, it is both up and down at once, it is a complex combination of
both. Only after measuring it drops out of superposition and is observed to be in
a specific spin state. In everyday life, this phenomenon can be compared to a coin
tossing. While the coin is still in the air, it is both, heads and tails. Only after the
coin falls down a specific result can be observed [2]. Computers that perform such
computations are known as quantum computers and are believed to be able to solve
computational problems like factorization faster than classical computers.

The first mentions about possible usage of a quantum phenomenon as a way
to provide secure transmission of information date back to the sixties of the 20’th
century. Only 20 years later Richard Feynman and Yuri Manin came up with an
idea for a quantum computer [3].

A basic unit for a quantum computer is a quantum bit or a qubit. On the
contrary of a bit, which is either 0 or 1, a qubit is a superposition of probabilities
between 0 and 1, therefore its value lies on a spectrum and only by measuring, the
value reaches 0 or 1. Two bits are required to describe a state of a single qubit,
thus the amount of information contained in one qubit expands exponentially. For
example, 10 qubits already contain 210 bits of information. However, based on
Holevo’s theorem, also known as Holevo’s bound, the amount of information we
get after measuring 𝑛 qubits, cannot exceed the 𝑛 bits [4]. To use the advances of
a quantum computer, certain algorithms need to be implemented to calculate the
upper bound without having to measure it in the process. The most popular ones
are Grover’s algorithm [5] and Shor’s algorithm [6].

The first demonstration of a quantum algorithm took place in 1998 when the
Nuclear Magnetic Resonance (NMR) 2-qubit quantum computer was introduced
and solved Deutch’s problem [7]. In 2011 a machine produced by D-Wave Systems
became the first-ever commercial quantum computer [8]. The company nowadays
supplies Nation Aeronautics and Space Administration (NASA) with quantum com-
puters using 2 000 qubits. In comparison, companies like IBM and Google use quan-
tum computers with 50 - 72 qubits. The reason for the difference in the number
of qubits is the technology each one of them uses (D-Wave uses so-called quantum
annealing – a way of using quantum physics to solve optimization problems). Shor’s
algorithm cannot be running on a computer that uses this method. To be able to
use all the possibilities of the quantum computer, the technology of the quantum
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computer must be based on a quantum logic gate [9]. In 2018, Google announced
the creation of a 72-qubit quantum chip called Birstlecon, but later it was proven
to be difficult to control. In late September 2019, however, Google claimed to have
reached quantum supremacy with a 53 qubit design called Sycamore. Quantum
supremacy is a goal of demonstrating that a programmable quantum device can
solve a problem that no classical computer is capable of solving in polynomial time.
To reach quantum supremacy, a computer needs to consist of at least 50 qubits [10].

The latest progress in the field of quantum computing includes a creation of a
silicone quantum processor that is able to function in a temperature of 1,5 Kelvin
(many times warmer than common quantum processors) and a creation of a modi-
fication that allows quantum systems to stay operational (in other words coherent)
for 10 000 times longer than before.

A group of researches in Sydney proved in April 2020 that a silicone-based quan-
tum processor can operate in higher temperatures than other already existing pro-
cessors. Even though this quantum processor was able to work in the temperature
of 1,5 Kelvins, it is still far from daily conditions. The temperature needed for such
processor is still very low, at −271, 65∘C after conversion from Kelvins [12].

In August 2020 a study titled Universal coherence protection in a solid-state
qubit was released. A coherence equals to a lifetime of a single spin. The longer
the lifetime of a spin, the more manipulations and quantum calculations can be
performed, making the system more efficient. The usual way of keeping the system
coherent is to physically isolate the system from the noisy surroundings, but this
solution can be very complex and expensive due to an amount of materials needed.
The study mentioned above proposes a new, more efficient way for reaching high
coherence. Along with the usual electromagnetic pulses used to control quantum
systems, an additional continuous alternating magnetic field is applied. When the
field is precisely tuned, it is possible to rapidly rotate the electron spins, which
allows the system to be unaffected by the rest of the noise. With this kind of a noise
protection, the lifetime of a spin is 10 000 times longer than ever before [11].

Although there were some notable breakthroughs in the field of quantum com-
puters in the past years, they are still far from being ready to be used in everyday life.
Due to the necessity of cooling down to extreme temperatures, protection against
magnetic fields and other external influences, the existing computers are for now
unusable outside of laboratories.

13



2 Post-Quantum Cryptography
Cryptosystems used nowadays are mostly based on hard mathematical problems,
i.e. integer factorization, discreet logarithm problem, Diffie-Hellman problem and
an elliptic curve discrete logarithm problem (ECDLP). With a sufficiently powerful
quantum computer using Shor’s algorithm, the mentioned mathematical problems
would be easily solvable in a polynomial time.

Tab. 2.1: Security of cryptographic algorithms against quantum computers.

Algorithm Type Purpose Secure against
quantum computers

AES-256 Symmetrical cryptosystem Symmetrical encryption Secure with longer keys
SHA-256, SHA-3 Hash function One way compressing Secure with longer outputs

RSA Asymmetrical cryptosystem
Signing
Asymmetrical encryption
Key distribution

Not secure

ECDSA, ECDH Asymmetrical cryptosystem Signing
Key distribution

Not secure

DSA Asymmetrical cryptosystem Signing
Key distribution

Not secure

Table 2.1 shows the security of cryptographic algorithms with respect to the
quantum computer attacks. Grover’s algorithm [5] could offer a quadratic acceler-
ation for quantum computers, making AES, SHA-2 and SHA-3 algorithms solvable
even with larger key sizes or outputs. So far, cubic acceleration is impossible, there-
fore longer keys and outputs seem to be a sufficient solution in protection against
quantum attacks. When it comes to ECDH, ECDSA, RSA, DSA and other cryp-
tosystems based on similar mathematical problems that Shor’s algorithm is able to
solve, they cannot be considered safe [13].

The future vulnerability of currently popular algorithms has been brought to
an attention at a PQCrypto conference in 2006 [14]. Since then, during a devel-
opment of post-quantum ciphers, a great emphasis has been put on implementing
different mathematical problems that would be capable of withstanding an attack
by a quantum computer. More specifically problems, that are for now considered as
unsolvable in a polynomial time. However, as mentioned in Chapter 1, a quantum
computer powerful enough is still just a hypothetical machine as the existing ex-
perimental quantum computers do not posses the power needed to break an actual
cryptographic algorithm. Thus, post-quantum cryptography currently consists of
cryptographic algorithms that are only believed to be resistant to quantum com-
puter attacks.

14



The post-quantum cryptography is divided into classes according to the problems
each algorithm is based on [15].

2.1 Hash-Based Cryptography
A hash function is a one-way function that can be used to map data of any size to
fixed-size data. It then creates a fingerprint of the input data, called a hash, for
which it is very difficult to find the input data. A hash function 𝐻 : {0, 1}* → {0, 1}𝑠

is crytographically safe when it is preimage resistant, second preimage resistant and
collision resistant [16].

• Preimage resistance
A hash function 𝐻 is preimage resistant, if it is hard to find any 𝑚 for a given
ℎ with ℎ = 𝐻(𝑚).

• Second preimage resistance
A hash function 𝐻 is second preimage resistant if it is hard to find any 𝑚2 for
a given 𝑚1 with 𝐻(𝑚1) = 𝐻(𝑚2).

• Collision resistance
A hash function 𝐻 is collision resistant if it is hard to find a pair of 𝑚1 and
𝑚2 with 𝐻(𝑚1) = 𝐻(𝑚2).

The security of hash functions might not be efficient enough for post-quantum
cryptography when it comes to the collision resistance. In the post-quantum cryp-
tography an attacker is not looking for same two values of a single hash, but for two
same superpositions of a single hash.

In 2016, Professor Unruh introduced a reinforced security hash function, the so-
called "collapsed" hash function. If the attacker knows the value of 𝑀 , there are two
possibilities for where this value came from. The system either determines the value
𝑀 by measuring the superposition 𝑚, or the value 𝑀 is estimated as 𝐻(𝑚). The
attacker using the quantum computer does not know whether a value 𝑚 or hash
𝐻(𝑚) is being used, therefore it will not be possible to find the original message
[17].

2.2 Code-Based Cryptography
This category includes cryptographic algorithms, which functionality is based on
error-correcting codes. An example of a code-based post-quantum algorithm is the
McEliece cryptosystem, which uses Goppa codes. More about this cryptosystem is
explained in chapter 3.1.
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2.3 Lattice-Based Cryptography
Lattice cryptography is a general term for the construction of cryptographic algo-
rithms used for key establishment, encryption and signing. Lattices are sets of points
in a 𝑛-dimensional space arranged periodically. In case of 2-dimensional space, lat-
tices could be described as a set of points in a field Z2 (Z2 is a cryptographic notation
for a general field, denoted as K2)[18].

Definition 2.3.1. Assuming we have 𝑛 linearly independent vectors 𝑏1, . . . 𝑏𝑛 ∈ R𝑛.
A structure 𝐿 is called a lattice over the vectors 𝑏1, . . . 𝑏𝑛, that could be mathemat-
ically described as:

𝐿 = {𝑎1𝑏1 + . . . 𝑎𝑛𝑏𝑛 | 𝑎𝑖 ∈ Z}

Definition 2.3.2. If 𝐿 is a lattice over vectors 𝑏1, . . . 𝑏𝑛, these said vectors form the
base of the lattice 𝐿. The number 𝑛 is a dimension of the lattice.

In cryptography, the dimension of the lattice 𝑛. Lattice-based cryptographic
systems are considered resistant to both classical and quantum attacks, due to the
use of mathematical problems that cannot be resolved effectively. These are the
Shortest Vector Problem (SVP), the Closest Vector Problem (CVP) and the Shortest
Independent Vectors Problem (SIVP) [18].

An example of a lattice-based cryptosystem that uses SVP is NTRU. More about
NTRU and SVP is explained in Chapter 3.2. Another example of an algorithm based
on lattices would be protocol Crystals-Kyber, that uses module learning with errors
and is introduced in Chapter 3.3. Protocol Saber (Chapter 3.4) is also based on
lattices and uses module learning with rounding problem.

2.4 Multivariate Cryptography
This type of post-quantum cryptography includes cryptographic algorithms based
on multivariate polynomials over a finite field F. In case the polynomials are of
second-degree, we are talking about multivariate quadratic cryptography. These
cryptosystems use multivariate polynomial equations, of which the solution is proven
to be nondeterministically polynomial-hard. Multivariate cryptography has proven
to be the most successful in creating signature methods due to the fact that this
type of post-quantum method provides the shortest signatures [19].
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2.5 Supersingular Elliptic Curve Cryptography
An elliptic curve-based cryptography (ECC) is a public key method based on alge-
braic structures of elliptic curves over finite fields. Today’s algorithms using elliptic
curves (such as ECDH - Elipctic Curve Diffie-Helman) are not resistant to quan-
tum attacks. The ECDH protocol uses points on a single curve, while supersingular
curves are a group of at least five elliptic curves using unusually large endomorphism
rings1. Another difference is that private keys in post-quantum elliptic-curve cryp-
tography are isogenies. Isogeny is a function that projects the points of one elliptic
curve to another one, while preserving the vertices. The secret keys are the isogenies
that lead from one elliptic curve to another. The public key is the supersingular
elliptic curve itself [20].

In the next chapter we will introduce and analyze the finalists of the NIST stan-
dardization competition. As the protocols are part of some types of post-quantum
cryptography mentioned above, we will describe a couple of the principles in greater
detail on the following pages.

1Endomorphism ring is a ring formed from an abelian group 𝑋 using endomorphism. Endo-
morphism is a type of projection, a morphism from a mathematical object to itself.
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3 NIST Standardization Competition
The National Institute for Standards and Technology (NIST) has initiated a process
to solicit, evaluate, and standardize one or more quantum-resistant public-key cryp-
tography algorithms through a public competition in December 2016. As of July
22, 2020, NIST has begun the third round of public review. From the original 69
submissions are now only 15 eligible candidates for standardization. At the time of
submitting this thesis, NIST has not made a decision on which of these algorithms
will be added to national standards and considered officially quantum-safe [21].

In this thesis we will focus on the finalists in the field of post-quantum public-
key encryption and key-establishment algorithms. In the following chapters we
will analyze the McEliece, CRYSTALS-KYBER, NTRU and SABER post-quantum
cryptosystems. These cryptosystems will be compared based on variety of param-
eters, such as computational complexity, availability of the source codes, hardware
requirements, etc. After analyzing all the available data for comparison, we will be
able to determine a possible best candidate for standardization.

3.1 McEliece
The McEliece cryptosystem is an asymmetric algorithm developed by Robert McEliece
in 1978. It is one of the oldest cryptosystems with a public key, based on error-
correcting codes, more specifically Goppa codes.

The basic general idea of the McEliece cryptosystem lies in syndrome decoding
of linear error-correcting codes1. If the number of errors is not bounded, the problem
falls under the category of NP-complete problems. There are classes of linear codes
with a very fast decoding algorithm. For this reason, McEliece takes one of these
linear classes and disguises them. While the attacker is forced to used syndrome
decoding to decrypt the shared information, the receiving side can remove the dis-
guise and use the fast decoding algorithm. Any linear code with a good decoding
algorithm can be used, McEliece suggested to use Goppa Codes [22].

McEliece uses a binary version of a Goppa code, which is an error-correcting code.
The binary structure comes with several mathematical advantages over non-binary
variants and provides a better use in computer technology and cryptography.

Definition 3.1.1. For each irreducible polynomial of degree t over 𝐺𝐹 (2𝑚) exists
a binary irreducible Goppa code of a length 𝑛 = 2𝑚 and a dimension 𝑘 ≥ 𝑛 − 𝑡𝑚,
capable of correcting any pattern for decoding these codes [23].

1Syndrome decoding is a method of decoding a linear code over a noisy channel (one on which
errors are made).
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McEliece consists of three algorithms:
• a probabilistic key generation algorithm which produces a public and a private

key,
• a probabilistic encryption algorithm,
• a deterministic decryption algorithm.

Key Generation

All participants in the communication use the same secured parameters - n, k, t [23].
Value 𝑛 defines the length of the Goppa Code, as mentioned in the definition 3.1.1.
Value 𝑡 is a degree of an irreducible polynomial and a value 𝑘 sets the dimension for
the chosen matrices.

• A matrix 𝐺 of a size 𝑘× 𝑛 is created. This matrix is a generator for the code.
• A random binary non-sungular matrix 𝑆 of a size 𝑘 × 𝑘 is chosen.
• A random permutation 𝑃 of a size 𝑛× 𝑛 is chosen.
• From the generated matrices 𝑆, 𝐺 and a permutation 𝑃 a matrix 𝐺′ is calcu-

lated; 𝐺′ = 𝑆𝐺𝑃 . The matrix 𝐺′ is called a public generator matrix, since this
value will be publicly known. 𝐺′ is therefore the disguised matrix mentioned
at the begining of this chapter.

• return 𝑃𝑘 = (𝐺′, 𝑡).
• return 𝑆𝑘 = (𝑆, 𝐺, 𝑃 ).

As mentioned before, the attacker has an access to the disguised matrix 𝐺′ and
in order to get the original 𝐺′ matrix he needs to use syndrome decoding. Since
the number of errors used to disguise the matrix is not defined, the problem can be
considered as unsolvable.

Key Agreement Protocol

The following process serves for a quantum key distribution (QDK). The QDK is
not a part of an official submission for the NIST competition. As a result of this
protocol, both parties should obtain the same shared key 𝑘 [24].

• Alice sends a request to reserve a pair of QKD servers.
• Alice generates a random number 𝑚. This number should have the same

length as the desired length of a shared key 𝑘. Value 𝑚 gets encrypted using
a part public key generated in the previous step and then sent to a her QKD
server.

𝐸 = (𝐺′, 𝑚)
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• Bob generates a random number 𝑚′ that is of a same length as key 𝑘. Value
𝑚′ gets encrypted using a part public key generated in the previous step and
then sent to his QKD server.

𝐸 = (𝑡, 𝑚′)

• The QDK servers decrypt the values 𝑚 and 𝑚′ using Alice’s and Bob’s secret
keys and generate the key 𝑘.

• The servers calculate:
𝑥 = 𝑘 ⊕𝑚

𝑥′ = 𝑘 ⊕𝑚′

• Alice receives the value 𝑥 and recovers 𝑘 = 𝑥⊕𝑚.
• Bob receives the value 𝑥′ and recovers 𝑘 = 𝑥′ ⊕𝑚′.

While in classic cryptography this algorithm did not gain much acceptance nor
popularity, mostly due to the big size of the keys (for example for reaching an 80-
bit security, a Goppa code-based cryptosystem needs 460 647-bit public keys [25]),
it seems to be a perfect candidate for quantum cryptography, as it is immune to
attacks using Shor’s algorithm.

Even though the McEliece cryptosystem is only being cosidered for standardiza-
tion in the field of key-establishment, it is also a suitable algorithm for encryption,
decryption or digital signatures. As mentioned above, the only disadvantage of the
algorithm is the need for longer keys in order to reach a desirable level of security
against quantum computers.

3.2 NTRU
The NTRU protocol is a key encapsulation mechanism (KEM) scheme based on a
shortest vector problem (SVP) and a Ring Learning with errors. The issue of a
SVP is associated with a search for the shortest base vector. As an example, we can
imagine a given lattice 𝐿 with a random base, where the goal is to find the shortest
non-zero vector that still belongs to the lattice (the lattice structure and its base
are explained in chapter 2.3). We are therefore looking for a vector, that is close to
zero, but its value still is not equal to zero [26, p. 370–372].

The Learning With Errors problem was not originally created for lattices. The
SVP problem was proved to be equivalent to LWE, making the LWE applicable on
lattices and making the LWE officially post-quantum proof (after proving the same
hardness of the problem) [27, article 129].
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The LWE problem works with arbitrary lattices, that were already introduced
and described in chapter 2.3. Arbitrary lattices use real numbers in order to build
the lattice structure. The LWE also uses an error distribution (usually a Gaussian
error distribution with a relative error rate 𝛼 < 1) in order to make the solution of
the problem harder.

Definition 3.2.1. Taking a 𝑛 number of LWE samples, the associated vector b =
𝑏1, . . . 𝑏𝑛 can be defined as (b = A𝑠+𝑒). A is a random matrix in 𝑍𝑚×𝑛

𝑞 , 𝑠 is a secret
uniform random vector in Z𝑛

𝑞 and 𝑒 is a small noise value from a chosen distribution.
The LWE problem is based on the fact that it is difficult to find values that solve
(b = A𝑠 + 𝑒), even when the values for A and b are publicly known.

A RLWE uses ideal lattices instead of arbitrary ones.

Definition 3.2.2. Informal definition: An ideal lattice is a general name for any
cyclic lattice. A cyclic lattice is a sublattice of a set Z𝑛 preserved with a rotational
shift operator.

The specific type of an ideal lattice that is used for NTRU protocol is a poly-
nomial ring, which is a cyclic structure built by a set of polynomials over a finite
field Z. A RLWE also uses an error distribution, in case of NTRU it is usually a
discretized Gaussian distribution, with the same relative error rate as in the orig-
inal LWE. The principle of the RLWE problem stays the same as described in a
definition 3.2.1, with a difference of using polynomials as vector spaces, creating an
n-dimensional ring , rather than just a single scalar as in LWE.

A use of an ideal lattice in a cryptosystem decreases the number of parameters
necessary to describe a lattice by a square root, requiring less computational time
and making the algorithm more efficient [28].

Key Generation

Keys generated by NTRU have a form a matrix, therefore for the generation three
parameters are necessary - 𝑁, 𝑝, 𝑞.

• For 𝑝 and 𝑞 a rule must hold, where 𝑔𝑐𝑑(𝑝, 𝑞) = 1 ∪ 𝑞 ≫ 𝑝.
• All the polynomials lie in the ring 𝑅 = Z[𝑋]/(𝑋𝑁 − 1).
• Polynomials 𝑓 and 𝑔 are chosen, so that the polynomial 𝑓 has an inverse

modulo to 𝑝 and 𝑞.
• These inverse values are then denoted as 𝐹𝑝 and 𝐹𝑞:

𝐹𝑝 × 𝑓 ≡ 1 mod 𝑝

𝐹𝑞 × 𝑓 ≡ 1 mod 𝑞
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• The public key is the polynomial:

ℎ ≡ 𝑓−1 × 𝑔 mod 𝑞

• Parameters 𝑁, 𝑝, 𝑞 are public too.
• The private key is the polynomial 𝑓 along with 𝐹𝑝.

The above mentioned way of establishing the keys is a part of the NTRU Encrypt
protocol. NTRU can also be used for digital signatures with its NTRU Sign variant
[29]. Even though the protocol was patented in the 90’s, an open-source code is
now publicly available on the official website of the submission and a linked GitHub
repository [43].

Key Agreement Protocol

The Key Agreement Protocol for NTRU [30] is graphically shown and described
below. This protocol uses the public key ℎ created during the Key Generation in
previous section.

Alice Bob
ℎ𝐵 ≡ 𝑓−1

𝐵 × 𝑔𝐵 mod 𝑞

𝑒𝐵 ≡ 𝑟𝐵 × ℎ𝐵 + 𝑓𝐵 mod 𝑞
ℎ𝐵, 𝑒𝐵

𝑒𝐴 ≡ 𝑟𝐴 × ℎ𝐴 + 𝑓𝐴 mod 𝑞

ℎ𝐴 ≡ 𝑓−1
𝐴 × 𝑔𝐴 mod 𝑞

𝑒𝐴

𝑥𝐴 ≡ 𝑓𝐴 × 𝑒𝐵 mod 𝑞 𝑥𝐵 ≡ 𝑓𝐵 × 𝑒𝐴 mod 𝑞

𝑘𝐴 ≡ 𝑥𝐴 mod 𝑝 ≡ 𝑓𝐴 × 𝑓𝐵 mod 𝑝 𝑘𝐵 ≡ 𝑥𝐵 mod 𝑝 ≡ 𝑓𝐴 × 𝑓𝐵 mod 𝑝

𝑘 ≡ 𝑘𝐴 ≡ 𝑘𝐵 ≡ 𝑓𝐴 × 𝑓𝐵

Fig. 3.1: Key agreement for NTRU.

The flow shown in the figure 3.1 is described in the following steps.
• Alice computes her public key ℎ𝐴 and sends it to Bob. As described in a

previous section, the computation is:

ℎ𝐴 ≡ 𝑓−1
𝐴 × 𝑔𝐴 mod 𝑞

• Bob computes his public key ℎ𝐵 and value 𝑒𝐵, where 𝑟𝐵 is a randomly chosen
polynomial with small coefficients:

ℎ𝐵 ≡ 𝑓−1
𝐵 × 𝑔𝐵 mod 𝑞
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𝑒𝐵 ≡ 𝑟𝐵 × ℎ𝑏 + 𝑓𝐵 mod 𝑞

• Bob sends ℎ𝐵 and 𝑒𝐵 to Alice.
• Alice chooses 𝑟𝐴 and computes 𝑒𝐴:

𝑒𝐴 ≡ 𝑟𝐴 × ℎ𝐴 + 𝑓𝐴 mod 𝑞

• Alice sends 𝑒𝐴 to Bob and computes 𝑥𝐴 and 𝑘𝐴:

𝑥𝐴 ≡ 𝑓𝐴 × 𝑒𝐵 mod 𝑞

𝑘𝐴 ≡ 𝑥𝐴 mod 𝑝 ≡ 𝑓𝐴 × 𝑓𝐵 mod 𝑝

• Bob computes 𝑥𝐴 and 𝑘𝐵:

𝑥𝐵 ≡ 𝑓𝐵 × 𝑒𝐴 mod 𝑞

𝑘𝐵 ≡ 𝑥𝐵 mod 𝑝 ≡ 𝑓𝐴 × 𝑓𝐵 mod 𝑝

• A shared session key is 𝑘:

𝑘 ≡ 𝑘𝐴 ≡ 𝑘𝐵 ≡ 𝑓𝑎 × 𝑓𝐵 mod 𝑝

3.3 CRYSTALS-KYBER
Protocol KYBER is one of the two cryptographic primitives contained in the Crypto-
graphic Suite for Algebraic Lattices (CRYSTALS). Kyber is an IND-CCA2-secure2

key encapsulation mechanism (KEM), which security is based on the hardness of
solving the learning-with-errors problem over module lattices (MLWE).

The difference between a MLWE and RLWE (described in chapter 3.2), is that
the MLWE uses module structures instead of rings.

Definition 3.3.1. A module is an algebraic structure generalizing rings and vector
spaces, and module lattices generalize both arbitrary lattices and ideal lattices.

Definition 3.3.2. Informal definition: A Module Learning With Errors is the
RLWE problem, where the elements of the ring are replaced by the elemets of the
module.

Most constructions based on RLWE can be adapted to MLWE, however with
higher requirements on memory [31]. As MLWE is a version of LWE, a formal
definition 3.2.1 is also applicable in this case.

2The scheme achieves the indistinguishability notion, even if an attacker has access to a public
key and a decryption oracle.
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Key Generation

The key generation algorithm KeyGen returns a pair (𝑝𝑘, 𝑠𝑘) consisting of a public
key and a secret key [32]. The parameter 𝑛 = 256. Parameter 𝑘 defines the number
of dimensions for the used vectors. The key generation algorithm follows these steps:

• A public seed 𝜌 is chosen from {0, 1}𝑛.
• A uniform matrix A ∈ 𝑅𝑘×𝑘

𝑞 is created, using the seed 𝜌, where 𝑅𝑞 is a ring
and 𝑘 × 𝑘 defines the size of the matrix A over the ring 𝑅𝑞.

• Secret coefficients (s, e) ∈ 𝛽𝑘
𝜂 are chosen, where 𝛽𝑘

𝜂 is a binomial distribution
for a positive integer 𝜂.

• Value of b is calculated: b = (A𝑠 + e, 𝑑𝑡); 𝑑𝑡 is a chosen positive integer
parameter, a recommended value for 𝑑𝑡 is 𝑑𝑡 = 10 or 𝑑𝑡 = 11.

• return 𝑝𝑘 = b, 𝜌; 𝑠𝑘 = s.

The algorithm in the NIST submission lists three different parameter sets aiming at
different security levels. Specifically, Kyber-512 aims at security roughly equivalent
to AES-128, Kyber-768 aims at security roughly equivalent to AES-192, and Kyber-
1 024 aims at security roughly equivalent to AES-256 [33].

Key Agreement Protocol

A key agreement is in case of Crystals-Kyber labeled as a key encapsulation. The
result of this process is a shared key 𝑘. The process of establishing the key works with
some of the values introduced in the key generation part above 3.3. The following
steps describe in detail the key-establishment visually documented in Figure 3.2.

• Alice and Bob generate their public and secret keys as described above.
• Bob sends his 𝑝𝑘𝐵 to Alice.
• Alice chooses the value 𝑚 from {0, 1}𝑛.
• Alice calculates 𝑐𝐴. This value is calculated by using the hash functions.

𝐺 : {0, 1}* → {0, 1}2×𝑛 and 𝐻 : {0, 1}* → {0, 1}𝑛, Bob’s public key 𝑝𝑘𝐵 and
𝑚 ∈ℳ;ℳ = {0, 1}𝑛:

𝑐𝐴 = 𝐺(𝐻(𝑝𝑘𝐵), 𝑚

• Alice sends values 𝑝𝑘𝐴 and 𝑐𝐴 to Bob.
• Bob also chooses his value 𝑚 from {0, 1}𝑛.
• To calculate the value of 𝐾𝐵, Bob does the following:

– Parameters 𝑑𝑢 and 𝑑𝑣 are chosen, both being positive integers.
– Secret coefficients (𝑒1, 𝑒2) ∈ 𝛽𝑘

𝜂 are chosen, where 𝛽𝑘
𝜂 is a binomial distri-

bution for a positive integer 𝜂.
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Alice Bob
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑘𝐴 𝑎𝑛𝑑 𝑠𝑘𝐴 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑘𝐵 𝑎𝑛𝑑 𝑠𝑘𝐵

𝑝𝑘𝐵

𝑚 ∈ {0, 1}𝑛

𝑐𝐴 = 𝐺(𝐻(𝑝𝑘𝐵), 𝑚)
𝑝𝑘𝐴,𝑐𝐴

𝑐𝐵 = 𝐺(𝐻(𝑝𝑘𝐴), 𝑚)

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑢𝐴, 𝑣𝐴

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑢𝐵, 𝑣𝐵

𝐾𝐵 = (𝑠𝑘𝐵(𝑢𝐵, 𝑣𝐵))

𝐾 ′′ = 𝐻(𝑐𝐵, 𝐻(𝑐𝐴))
𝑐𝐵

𝐾𝐴 = (𝑠𝑘𝐴(𝑢𝐴, 𝑣𝐴))

𝐾 ′ = 𝐻(𝑐𝐴, 𝐻(𝑐𝐵))
𝑘 = 𝐻(𝐾𝐴, 𝐾 ′) 𝑘 = 𝐻(𝐾𝐵, 𝐾 ′′)

𝑚 ∈ {0, 1}𝑛

Fig. 3.2: Key agreement for Crystals-Kyber.

– A value 𝑢 is calculated (𝐴𝑇 being a transpose of the matrix A created
during the key generation):

𝑢 = (𝐴𝑇 𝑟 + 𝑒1, 𝑑𝑢)

– A value 𝑣 is calculated:

𝑣 = (𝑡𝑇 𝑟 + 𝑒2 + 𝑞

2 ×𝑚, 𝑑𝑣)

• Using the values 𝑣𝐵 and 𝑢𝐵 calculated as described above, and his secret key,
Bob then calculates 𝐾𝐵:

𝐾𝐵 = (𝑠𝑘𝐵(𝑢𝐵, 𝑣𝐵))

• Bob calculates 𝑐𝐵 in a similar manner as Alice:

𝑐𝐵 = 𝐺𝐻(𝑝𝑘𝐴), 𝑚

• Bob calculates the value of 𝐾 ′′ = 𝐻(𝑐𝐵, 𝐻(𝑐𝐴)).
• Bob sends the value of 𝑐𝐵 to Alice.
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• Value 𝐾𝐴 is calculated using 𝑠𝑘𝐴 and 𝑢𝐴, 𝑣𝐴 (values of 𝑢𝐴, 𝑣𝐴 are obtained
with the same calculations as performed by Bob):

𝐾𝐴 = (𝑠𝑘𝐴(𝑢𝐴, 𝑣𝐴))

• Alice calculates 𝐾 ′ = 𝐻(𝑐𝐴, 𝐻(𝑐𝐵))′.
• Both sides now calculate the shared key. For Alice, the shared key k =

𝐻(𝐾𝐴, 𝐾 ′) and for Bob the shared key k = 𝐻(𝐾𝐵, 𝐾 ′′). These values are
equal.

3.4 SABER
Protocol Saber is yet another protocol based on lattices that made it into the final
round of the NIST standardization competition. SABER is an IND-CCA2 secure
Key Encapsulation Mechanism, which security relies on the hardness of the Module
Learning With Rounding problem (MLWR). Module structures are defined in the
chapter 3.3.

The principle of LWR is also described by the definition 3.2.1. A small noise value
𝑒 however is not determined by an error distribution. While the LWE problem adds
a random small error to various samples < 𝑎, 𝑠 > ∈ Z𝑞 to hide their exact value, the
LWR uses a deterministically rounded version of < 𝑎, 𝑠 >. LWR can be seen as a
de-randomized LWE, more closely defined by the definition 3.4.1.

Definition 3.4.1. For some 𝑝 < 𝑞, the elements of Z𝑞 are divided into 𝑝 contiguous
intervals of roughly 𝑞/𝑝 number of elements each and define the rounding function
𝑓𝑟𝑜𝑢𝑛𝑑 : Z𝑞 → Z𝑝. This function maps 𝑥 ∈ Z𝑞 into the index of interval that 𝑥

belongs to. For example if 𝑞 and 𝑝 are both powers of 2, this could correspond to
the log(𝑝) of the most significant bits of 𝑥.

In simpler words: In LWR based schemes, the noise is deterministically obtained
by scaling down from a modulus 𝑞 to a modulus 𝑝. This naturally reduces the size of
the public keys and ciphertexts and lowers the overall number of secret polynomials
that need to be sampled. The use of LWR also reduces the amount of randomness
required compared to LWE based schemes to a half, and with the smaller sizes of
keys decreases the bandwidth [34, p.2-5],[35].

Key Generation

Parameters that are specified for Saber, including some recommendations to make
the algorithm quantum-safe are:
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• 𝑛, 𝑙: The degree of the polynomial ring Z𝑞[𝑥]/(𝑋𝑛 +1) is 𝑛 = 256. The rank of
the used module 𝑙 determines the dimension of the lattice problem. A specific
value for this dimension is not defined, the higher the dimension the higher
security, this however might reduce correctness.

• 𝑅𝑞 is a quotient of the ring Z𝑞[𝑥]/(𝑋𝑛 + 1) and the value 𝑛

• 𝑞, 𝑝, 𝑇 : The values of 𝑝, 𝑞, 𝑇 are meant to be any power of 2. 𝑞 = 2𝜖𝑞; 𝑝 = 2𝜖𝑝;
𝑇 = 2𝜖𝑇 , where 𝜖𝑞 > 𝜖𝑝 > 𝜖𝑇 . Not following this recommendation will result
in lower security.

• 𝜇: A parameter used to specify the coefficient of a secret vector in the lattice
according to a binomial distribution; 𝜇 < 𝑝.

• 𝑔𝑒𝑛: An output function that is used to generate a pseudo-random matrix
from a seed 𝑠𝑒𝑒𝑑𝐴.

• NOTE: 𝑅𝑙×𝑙 denotes the ring, defined by the matrices of a size 𝑙 × 𝑙 over the
ring 𝑅.

The Saber key generation is specified by the following process:
• A 𝑠𝑒𝑒𝑑𝐴 is picked from {0, 1}𝑛.
• A pseudo-random matrix A is generated using the seed chosen in the first step:

A = 𝑔𝑒𝑛(𝑠𝑒𝑒𝑑𝐴); A ∈ 𝑅𝑙×𝑙
𝑞 .

• The secret vector s, is sampled according to a binomial distribution 𝛽𝜇(𝑅𝑙×𝑙
𝑞 ):

s = 𝛽𝜇(𝑅𝑙×𝑙
𝑞 ).

• The value of b is calculated using the generated matrix A, the secret vector 𝑠

and a constant vector ℎ used for rounding3: b = (A𝑇 s + ℎ).
• return 𝑝𝑘 = (𝑠𝑒𝑒𝑑A, b).
• return 𝑠𝑘 = s.

Due to the use of powers of 2 in parameters 𝑝, 𝑞 and 𝑇 , the scaling and rounding
operations are significantly simplified and thanks to the use of MLWR, the band-
width necessary for the algorithm is notably lower than in other similar systems
using MLWE (for example Crystals-Kyber, explained in chapter 3.3) [35].

Key Agreement Protocol

The key agreement protocol works with some of the values calculated during the key
generation. In the figure 3.3 we can see the flow of establishing the key. In SABER
scheme, according to the documentation the two communicating parties sometimes
fail to agree on the same key. The probability of this failure can be made negligibly

3The constant vector is used to replace the rounding operations by a simple bit shift to the
right. The bit shift however still mimics the rounding operation.
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small by sending some additional reconciliation data c. The key exchange flow is
described by the following steps [36]:

Alice Bob

𝑠𝑒𝑒𝑑𝐴 ← {0, 1}𝑛

𝐴 ← 𝑔𝑒𝑛(𝑠𝑒𝑒𝑑𝐴)
𝑠𝐴 = 𝛽𝜇

(
𝑅𝑙×𝑙

𝑞

)
𝑏𝐴, 𝑠𝑒𝑒𝑑𝐴

𝑠𝐵 = 𝛽𝜇

(
𝑅𝑙×𝑙

𝑞

)
𝑏𝐴 = 𝐴𝑠𝐴 + ℎ

𝐴 ← 𝑔𝑒𝑛(𝑠𝑒𝑒𝑑𝐴)
𝑏𝐵 = 𝐴𝑠𝐵 + ℎ

𝑣𝐵 = 𝑏𝑇
𝐴𝑠𝐵 + ℎ

𝑐 = (𝑣𝑏, 𝜖𝑝 − 1, 𝜖𝑡)
𝑏𝐵, 𝑐

𝑣𝐴 = 𝑏𝑇
𝐵𝑠𝐴 + ℎ

𝑘𝐴 =
(
𝑣𝐴 − 2𝜖𝑝−𝜖𝑡−1𝑐 + ℎ, 𝜖𝑝, 1

)
𝑘𝐵 = (𝑣𝐵, 𝜖𝑝, 1)

𝑘 = 𝑘𝐴 = 𝑘𝐵

Fig. 3.3: Key agreement for SABER.

• Alice calculates 𝐴, 𝑠𝐴 and 𝑏𝐴 as described in previous section.
• Alice sends the value 𝑏𝐴 and the 𝑠𝑒𝑒𝑑𝐴 to Bob.
• Bob calculates the values 𝑠𝐵 and 𝐴 using the seed received from Alice. He

then calculates 𝑏𝐵, 𝑣𝐵 and 𝑐:

𝑏𝐵 = 𝐴𝑇 𝑠𝐵 + ℎ

𝑣𝐵 = 𝑏𝑇
𝐴𝑠𝐵 + ℎ

𝑐 = (𝑣𝐵, 𝜖𝑝 − 1, 𝜖𝑡)

• Bob sends the values 𝑏𝐵 and 𝑐 to Alice.
• Alice computes the value 𝑣𝐴:

𝑣𝐴 = 𝑏𝑇
𝐵𝑠𝐴 + ℎ

• Alice then computes the key 𝑘𝐴:

𝑘𝐴 = (𝑣𝐴 − 2𝜖𝑝−𝜖𝑡−1𝑐 + ℎ, 𝜖𝑝, 1)
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• Bob computes the key 𝑘𝐵.
𝑘𝐵 = (𝑣𝐵, 𝜖𝑝, 1)

• The shared key k = 𝑘𝐴 = 𝑘𝐵.

3.5 Comparison of the Algorithms
After a technical introduction of all the finalists of the NIST competition in the key-
establishment category, it is now possible to analyze and compare these algorithms.

The overview of similarities and differences of the algorithms is noted in the table
3.1. On the following pages we analyze the advantages and disadvantages of each of
the algorithms.

As the cryptosystems NTRU, CRYSTALS-KYBER and SABER are all based
on lattices and a learning problem, it is easier to compare the pros and cons of their
mathematical problems. The LWE is a well studied and now understood problem,
giving NTRU and CRYSTALS-KYBER an advantage in general knowledge of how
the system works [33, p.28].

Module lattices have more complicated algebraic structures than ideal lattices.
Thus, MLWE might be able to offer a better level of security than RLWE and still
have performance advantages over plain LWE. However, this assumption is still only
weakly supported, therefore it cannot be said for sure, whether MLWE is better than
RLWE [38].

Thanks to the MLWR that is used for SABER, the band-width necessary for
the algorithm is notably lower than in other similar systems using MLWE, which
is used for Crystals-Kyber. This happens due to reducing the randomness that is
required to a half [34, p.2-5].

The McEliece protocol very obviously requires much bigger key sizes than other
protocols. While using Goppa codes, the recommended parameters are length 𝑛 =
6 960, dimension 𝑘 = 5 413 and number of errors 𝑡 = 119. With parameters set
like this, McEliece is expected to be secure against quantum attacks, however the
size of the public key goes all the way up to 1 046 738,875 bytes [39]. McEliece key-
generation software is not very fast. Even though none of the publications specify
the exact time needed, it is mentioned in multiple documents, that due to the large
length of the key, the time to generate this key is also longer. Therefore, applications
must continue using each public key for long enough to handle the costs of generating
and distributing the key [37].

Protocol CRYSTALS-KYBER uses the longest keys compared to other lattice-
based cryptosystems [40]. The table includes the key sizes for Kyber-1 024, that
aims at security roughly equivalent to AES-256. Despite the length of the keys, the
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algorithm is capable of establishing the keys in the shortest amount of time [45,
p.20] using Application-specific integrated circuit (ASIC) hardware.

The sizes of keys for CRYSTALS-KYBER and SABER are taken from official
websites of submissions to the NIST competition [40][41], just like the times needed
to establish the keys. The information about NTRU key sizes are taken from the
official algorithm specification documentation [44] and the size of a public key for
McEliece was taken from the publication [39]. Some of the data needed for a proper
comparison unfortunately was not available at any sources. When it comes to com-
paring the time necessary for establishing the keys, the times available from sources
were not measured on the same device, making the comparison less accurate.

Considering that the next part of this thesis is an implementation of a chosen,
most suitable algorithm for a post-quantum cryptography, it is important to evaluate
whether the source codes are available, which language they are written in, and
compare their software and hardware requirements. All the information relating to
the code and implementations stated in the table was taken from the official websites
of the protocols [40][41][42][43] and their linked GitHub repositories.

As all of the source codes are publicly available and mostly use C as its primary
programming language, there is not much to compare. When it comes to deciding
which hardware or software implementation will be used, it is a matter of personal
preference, however this does not make any of the algorithms better than the other.
Rather than a comparison, the "code" part of the table gives an overview of the
options each algorithm has to offer when it comes to their implementation.

3.5.1 Conclusion

The table 3.2, contains conclusions of the advantages and limitations. The infor-
mation in this table is based on the content of previous pages and extra supporting
documentation.

The McEliece cryptosystem seems to have more limitations than advantages. De-
spite the Goppa codes promising a high security, the key sizes needed for a quantum-
level of security are very big, resulting into a slow key establishment [37, p.47].

The NTRU protocol comes with many advantages. It is correct, which means
that the IND-CCA2 KEM always establishes a key, therefore it never aborts because
of a failure. The problem NTRU is based on, LWE, is very well studied and under-
stood, giving NTRU an advantage in general knowledge on how the system works.
Another advantage of NTRU cryptosystem is its simplicity. The Deterministic Pub-
lic Key Encryption (DPKE) has only two parameters, 𝑛 and 𝑞, and can be described
entirely in terms of simple integer polynomial arithmetic. The transformation to an
IND-CCA2 secure KEM is conceptually simple. A major disadvantage of NTRU
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Tab. 3.2: Concluded advantages and limitations of the algorithms.
Algorithm Advantages Limitations

McEliece high security of Goppa codes big key sizes
slow key establishment

NTRU
correct
well studied
simple

difficult to choose the right parameters

CRYSTALS-KYBER fast
well studied

slightly bigger key sizes

SABER
low-bandwidth
relatively fast
short key sizes

NTT not natively supported

is the difficulty of choosing the right parameters as is currently limited by a poor
understanding of the non-asymptotic behavior of new algorithms for SVP. This is a
limitation that is shared with all lattice based cryptosystems [44, p.36].

CRYSTALS-KYBER is based on LWE just like the NTRU protocol, making
one of its advantages the fact that it is a well studied problem. Another major
advantage is its fast key establishment, as measured on ASIC. A small disadvantage
of this algorithm is its slightly bigger key sizes compared to other lattice based
cryptosystems [33, p.28-30]. CRYSTALS-KYBER is a relatively new protocol and
while the documentation when it comes to comparison with other protocols and
expected security strength is very detailed, a general theoretical background seems
to be slightly weak, making it harder to understand the general idea behind the
protocol without an excessive research in various publications.

The SABER protocol requires only half of the bandwidth compared to NTRU or
CRYSTALS-KYBER, thanks to its use of the MLWR problem. Although SABER
was not as fast as CRYSTALS-KYBER during the key establishment process, it was
only a matter of microseconds for the protocol to generate the keys on UltraScale+
FPGA. SABER also uses the shortest keys while still keeping the required level
of security. The use of two-power moduli makes NTT4-like polynomial multiplica-
tion not natively supported. For this reason, SABER uses asymptotically slower
polynomial multiplication algorithms such as ToomCook, Karatsuba, Schoolbook,
or hybrids of them. A possible disadvantage of the protocol could also be the fact,
that it is not capable of creating digital signatures, however for the purposes of this
thesis which is focused solely on key-establishing mechanisms, this information does
not make the protocol less valuable [35, p.22,23].

4Number Theoretic Transform Multiplication Algorithm (NTT). The NTT is a discrete Fourier
transformation defined over a ring or a finite field and is used to multiply two integers without
requiring arithmetic operations on complex numbers.
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3.5.2 The Best One Is. . .

It is safe to say that McEliece with its big key sizes and slow key establishment is not
the ideal candidate despite Goppa codes claiming to be very secure. As mentioned
before, the only way McEliece would be ideal for use is if an application would
continue using each public key for long enough to handle the costs of generating and
distributing the key.

Protocols NTRU, CRYSTAL-KYBER and SABER are all based on lattices. All
of the problems each cryptosystem is based on were compared and the SABER
protocol seems like the best candidate, as it uses the MLWR problem which helps
to cut the bandwidth to half compared to other lattice-based systems.

Unfortunately the information about the time needed to generate keys using
NTRU was not available, which makes it harder to compare. The only hint about
the speed of NTRU is in [44], mentioning that NTRU is unlikely to be the fastest
candidate, along with stating that NTRU is also unlikely to be the most compact
submission, and unlikely to be the most secure submission. With this information
coming directly from the authors of the submission, in addition to the knowledge
about RLWE, MLWE and MLWR obtained by now, it is safe to say that module-
based problems are more efficient than ring-based problems. With this statement
we can eliminate NTRU as the best candidate.

Cryptosystems CRYSTALS-KYBER and SABER are both very adequate, safe
and fast protocols. CRYSTALS-KYBER appears to be faster, but more memory
demanding than SABER. A notable advantage of SABER is the lower bandwidth
required. Choosing from these two cryptosystems would be done only based on
personal preferences, after establishing whether the algorithm needs to work fast
with the cost of having to use more of the memory, or whether it is preferred to
spare memory and having the algorithm work slightly slower.

For the further purposes of this thesis, we will deem CRYSTALS-KYBER as the
most suitable candidate.
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4 Implementation of CRYSTALS-KYBER
The implementation of the chosen protocol will be discussed on the following pages.
The goal of this part of the thesis is for the protocol CRYSTALS-KYBER to be
sufficiently set up and running.

4.1 Setting up the Environment
The source code of the protocol is available from the GitHub repository [46]. The
first environment used to run the code was Visual Studio Code. After importing the
code into the environment we followed the recommendation from the readme file to
use the ninja build tool for a fast build performance. Ninja is a cmake based build
system and due to the very little policy about how code is built, it is very fast [47].
The submitted code is indeed slightly chaotically structured, so it makes sense that
the creators recommend using this tool.

After downloading and installing the cmake and ninja package, the first attempt
for a build was carried out. Plenty of errors apeared, due to a wrong placement of
the CMakeLists.txt file and a wrong configuration. The CMakeLists.txt file requires
extra information that is not automatically included. In the Figure 4.1 we can see
all the details that were necessary to be added.

Fig. 4.1: Added information to CMakeLists.txt.

While the information and the location of the CMakeLists.txt file is now correct,
after running the build we receive many new errors related to the original code
in the above mentioned text file. All of the new errors are similar to this one
add_executable cannot create target "test_kyber_ref" because another target with
the same name already exists. The existing target is an executable created in source
directory, with the difference in the specific target. After checking however, the
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mentioned executable nor any file named the same exists in the directory. Many
sources offered a different approach of fixing a similar problem, none of them were
unfortunately successful. Visual Studio Code is also unable to read some of the
classes, due to the code not being written in one uniform language. In order to fix
the problem, we will try to run the code in a different IDE.

For the next attempt on running the source code CLion was used. After im-
porting the code to CLion a cmake build was automatically generated (Figure 4.2),
without having to manually download and install any extra tools. CLion IDE also
recognizes all of the files of the code. The whole code is now buildable and runnable.

Fig. 4.2: Automatically generated cmake build in CLion.

4.2 Exploring the Capabilities of the Code
As mentioned before in Chapter 3.3, CRYSTALS-KYBER is a protocol using a key
encapsulation mechanism to establish a shared key 𝑘.

The existing source code contains variety of classes executing vector calculations,
NTT algorithm, generation of a private and a public key, key encapsulation, key
decapsulation and also the shared key establishment.

The code has multiple parameters, most of them are defined in params.h. The
part of the code of the header file is shown below (Listing 4.1). KYBER_SYMBYTES
defines the size for hashes and seeds, KYBER_SSBYTES defines the size of the
shared key. Some of the parameters contain comments, most of them however do
not. A documentation to the source code does not exist, therefore for some of the
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parameters it is impossible to surely deduce what they are. We suposse, that KY-
BER_POLYBYTES defines the size of the polynomial and KYBER_POLYVECBYTES
defines a size of the vectors for lattices. The number of bytes of the public key is
a sum of the size of a vector in a lattice and the size of the seed. The size of the
secret key is equal to the size of the vector in a lattice.

1 #d e f i n e KYBER_SYMBYTES 32 /∗ s i z e in bytes o f hashes , and seeds ∗/
2 #d e f i n e KYBER_SSBYTES 32 /∗ s i z e in bytes o f shared key ∗/
3

4 #d e f i n e KYBER_POLYBYTES 384
5 #d e f i n e KYBER_POLYVECBYTES (KYBER_K ∗ KYBER_POLYBYTES)
6

7 #d e f i n e KYBER_INDCPA_PUBLICKEYBYTES (KYBER_POLYVECBYTES +
KYBER_SYMBYTES)

8 #d e f i n e KYBER_INDCPA_SECRETKEYBYTES (KYBER_POLYVECBYTES)

Listing 4.1: Code: Parameters in params.h.

In different parts of the code, the value of the seed is hard coded. In the
test_speed.c (closely discussed later, the output of the function can be seen on
figure 4.5), the value of the seed is set to 0 on all 32 positions. The seed used for
actual generation of the keys shown in Figure 4.6 is defined on line 3 of the List-
ing 4.2. It is also hard to understand, why the authors did not use the value of
KYBER_SYMBYTES (4.1) to define the size of the array, as it would simplify the
scalability of the protocol and add a purpose to defining this parameter in params.h.

1 uint8_t seed [KYBER_SYMBYTES] = {0} ;
2

3 s t a t i c uint32_t seed [ 3 2 ] =
{3 , 1 , 4 , 1 , 5 , 9 , 2 , 6 , 5 , 3 , 5 , 8 , 9 , 7 , 9 , 3 , 2 , 3 , 8 , 4 , 6 , 2 , 6 , 4 , 3 , 3 , 8 , 3 , 2 , 7 , 9 , 5 } ;

Listing 4.2: Code: Defined values of a seed.

The source code contains different test classes. Only the test classes contain
main functions. The test_kex.c tests the functionality of the key exchange and as
an output it returns the number of transferred bytes during the key establishment
(as shown in the Figure 4.3).

Fig. 4.3: Output: Bytes sent during the key establishment.
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A kyber_test.c tests the functionality of the entire protocol. When calling this
function, at first the process of generating the keys is executed (described in the
Chapter 3.3). Alice generates her pair of keys (public and secret key). Bob then
derives a secret key to get his shared key and creates a response, that is sent to
Alice. Alice then proceeds to use Bobs response to generate her shared key. The
code then proceeds to compare the values of the shared keys. If the values are equal
the output of the class kyber_test.c is numbers of bytes generated for the keys, as
seen in the Figure 4.4.

Fig. 4.4: Output: Generated key bytes.

From the test_speed.c the expected output would logically be the time it takes to
run specific parts of the code on the used device or an information about how many
𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 are processed. The output however returns values of 𝑐𝑦𝑐𝑙𝑒𝑠/𝑡𝑖𝑐𝑘𝑠. A
tick is an arbitrary unit for measuring internal system time, however some authors
also use tick as a synonym for processor clock cycle. The official documentation
does not specify what exactly a tick is in this case, as it is also not readable from
the code. When it comes to cycles, specifically cycles related to key establishment,
the system does 10 000 rounds of the key establishment process by default. This
number can be easily adjusted based on the users preferences in cpucycles.c. As an
example of the output for a speed of establishing the shared keys can be seen in the
figure 4.5.

Fig. 4.5: Output: Speed of establishing the shared keys.
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The shortcut AKE stands for a mutually authenticated key exchange. The source
code also contains a code for establishing a unilaterally authenticated key exchange.

The last test file is test_vectors.c. This file executes the whole process of key
generation, encapsulation and a shared key establishment. More about the key
establishment in the code implementation is in the separate chapter below (Chapter
4.3).

4.3 Key Establishment
The key establishment uses the process of key generation, key encapsulation and
key decapsulation in order to create a mutually agreed shared key. The process of
a shared key establishment is described in Chapter 3.3.

The key establishment in the code follows these simplified steps:
• Alice generates a matrix A using the seed and sends the value of a seed to

Bob.
1 s t a t i c uint32_t seed [ 3 2 ] =

{3 , 1 , 4 , 1 , 5 , 9 , 2 , 6 , 5 , 3 , 5 , 8 , 9 , 7 , 9 , 3 , 2 , 3 , 8 , 4 , 6 , 2 , 6 , 4 , 3 , 3 , 8 , 3 , 2 , 7 ,
2 9 , 5} ;
3

Listing 4.3: Seed parameter for generating the matrix.

• Alice generates a key pair of predifned size, the code for generation is shown
in the Listing 4.9. Along with this generation a transpose of the matrix A is
created.

• Bob also generates his key pair the same way as Alice.
• Alice sends her public key to Bob and Bob sends his public key to Alice.
• Alice encapsulates Bob’s public key with her secret and sends this value to

Bob.
1 crypto_kem_enc ( send+CRYPTO_PUBLICKEYBYTES, tk , pkb ) ;
2

Listing 4.4: Called encapsulation function on Alice’s side.

• Bob encapsulates Alice’s public key with the encapsulated information he re-
ceived from her and sends it back.

1 crypto_kem_enc ( send+CRYPTO_CIPHERTEXTBYTES, buf+CRYPTO_BYTES,
pka ) ;

2

Listing 4.5: Called encapsulation function on Bob’s side.

• Bob decapsulates the received information using his secret key and creates a
shared key.
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1 crypto_kem_dec ( buf+2∗CRYPTO_BYTES, recv+CRYPTO_PUBLICKEYBYTES,
skb ) ;

2

Listing 4.6: Called decapsulation function on Bob’s side.

• Alice decapsulates the recieved information with her secret key and creates a
shared key.

1 crypto_kem_dec ( buf+CRYPTO_BYTES, recv+CRYPTO_CIPHERTEXTBYTES,
ska ) ;

2

Listing 4.7: Called decapsulation function on Alice’s side.

• The shared key is verified using a shake256.
1 shake256 (k , KEX_SSBYTES, buf , 3∗CRYPTO_BYTES) ;
2

Listing 4.8: Called shake function for verification.

All of the called functions mentioned above are included in the class indcpa.c.
Below a part of this c-file that includes the function for key generation is shown. As
the rest of the code is longer, complicated, points to a variety of different places in
the code and therefore would not offer valuable information, it was not included in
this thesis. The code is however available at the official GitHub Repository [46].

1 void indcpa_keypair ( uint8_t pk [KYBER_INDCPA_PUBLICKEYBYTES] ,
2 uint8_t sk [KYBER_INDCPA_SECRETKEYBYTES] )
3 {
4 unsigned i n t i ;
5 uint8_t buf [ 2∗KYBER_SYMBYTES] ;
6 const uint8_t ∗ pub l i c s e ed = buf ;
7 const uint8_t ∗ no i s e s e ed = buf + KYBER_SYMBYTES;
8 polyvec a [KYBER_K] , e , pkpv , skpv ;
9

10 randombytes ( buf , KYBER_SYMBYTES) ;
11 hash_g ( buf , buf , KYBER_SYMBYTES) ;
12

13 gen_a (a , pub l i c s e ed ) ;
14

15 #i f d e f KYBER_90S
16 #d e f i n e NOISE_NBLOCKS ( (KYBER_ETA1∗KYBER_N/4) /AES256CTR_BLOCKBYTES) /∗

Assumes d i v i s i b i l i t y ∗/
17 uint64_t nonce = 0 ;
18 ALIGNED_UINT8(NOISE_NBLOCKS∗AES256CTR_BLOCKBYTES+32) co in s ; // +32

bytes as r equ i r ed by poly_cbd_eta1
19 aes256ctr_ctx s t a t e ;
20 ae s256c t r_ in i t (&state , no i s e seed , nonce++) ;
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21 f o r ( i =0; i<KYBER_K; i++) {
22 aes256ct r_squeezeb locks ( co in s . c o e f f s , NOISE_NBLOCKS, &s t a t e ) ;
23 s t a t e . n = _mm_loadl_epi64 ( ( __m128i ∗)&nonce ) ;
24 nonce += 1 ;
25 poly_cbd_eta1(&skpv . vec [ i ] , c o i n s . vec ) ;
26 }
27 f o r ( i =0; i<KYBER_K; i++) {
28 aes256ct r_squeezeb locks ( co in s . c o e f f s , NOISE_NBLOCKS, &s t a t e ) ;
29 s t a t e . n = _mm_loadl_epi64 ( ( __m128i ∗)&nonce ) ;
30 nonce += 1 ;
31 poly_cbd_eta1(&e . vec [ i ] , c o i n s . vec ) ; }

Listing 4.9: Key generation.

The class test_vectors.c does by default 10 000 rounds of key generation, encap-
sulation and shared key establishment. The result of one of the cycles is shown in
Figure 4.6. The public (the size of the public key in this case is 1 568 bytes) and
secret keys (the size of the secret key in this case is 1 535 bytes) are cut off due to
a better readability of the shared secrets. The Shared Secret A is identical to the
Shared Secret B, it is therefore confirmed, that the code works correctly.

Fig. 4.6: Output: Generated keys.

As all of the input values (for example the seed) are predefined, the output values
of the source code are going to be the same every time the code is ran. This solution
would not work very well for a practical use and would dramatically lower the actual
security of the protocol. However, for the testing purposes the static input values
reduce the time needed to build and execute the code.

4.4 Time Needed to Establish the Keys
As the test_speed.c does not return the information that we would like to know
about the speed of the key establishment, the next step would be adjusting the code
that returns the information in desired form - bits/second.

The file test_vectors.c runs the entire process of key establishment, therefore
the additional function that calculates the time needed for establishment was im-
plemented in this class. The Listing 4.10 shows the added code, that uses the clock
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function which is included in C language. This function then measures the time
needed to execute the key establishment for NTSEST cycles, which was 10000 in
this case.

The time needed to execute one round of key establishment is then calculated
as an average. The original source code has the number of bytes used for the
establishment predefined and stored in KEX_AKE_SENDABYTES. This value is
then converted into bits.

The code then returns the information about the time needed to execute NTSEST
number of cycles, bits sent per one cycle, an average time needed for one cycle, how
many bits per second are generated and how long it takes to generate a single bit.

The time measured by the added code is a CPU time. CPU time does not take
into consideration the time when the application is waiting for inputs or outputs.
In this case, no wait was involved, therefore the time measured by the code (CPU
time) and the real time it takes to generate keys are very similar.

1 void speed_keyestab ( ) {
2 unsigned i n t i ;
3 unsigned char pk [CRYPTO_PUBLICKEYBYTES] ;
4 unsigned char sk [CRYPTO_SECRETKEYBYTES] ;
5 unsigned char ct [CRYPTO_CIPHERTEXTBYTES] ;
6 unsigned char key_a [CRYPTO_BYTES] ;
7 unsigned char key_b [CRYPTO_BYTES] ;
8

9 clock_t time ;
10 time = c lock ( ) ;
11

12 f o r ( i =0; i<NTESTS; i++) {
13 // Key−pa i r gene ra t i on
14 crypto_kem_keypair (pk , sk ) ;
15

16 // Encapsulat ion
17 crypto_kem_enc ( ct , key_b , pk ) ;
18

19 // Decapsulat ion
20 crypto_kem_dec ( key_a , ct , sk ) ;
21 }
22

23 time = c lock ( ) − time ;
24 double time_taken = ( ( double ) time ) / CLOCKS_PER_SEC;
25 double t ime_cycle = time_taken / NTESTS;
26 i n t b i t s = KEX_AKE_SENDABYTES ∗ 8 ;
27 i n t bits_per_sec = b i t s / t ime_cycle ;
28 double time_per_bit = ( time_cycle / b i t s ) ∗ 100000;
29

30 p r i n t f ( " \n∗∗∗ RESULTS ∗∗∗\n\n" ) ;
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31 p r i n t f ( "%d c y c l e s f i n i s h e d a f t e r : %f seconds \n " , NTESTS, time_taken
) ;

32 p r i n t f ( " B i t s sent per c y c l e : %d\n" , b i t s ) ;
33 p r i n t f ( "%f seconds / c y c l e \n " , t ime_cycle ) ;
34 p r i n t f ( "%d b i t s / second \n" , bits_per_sec ) ;
35 p r i n t f ( " %.10 f microseconds needed per b i t \n " , time_per_bit ) ;
36 }

Listing 4.10: Added lines of code: Key establishment time.

In order to make the time measuring more accurate, the printing of the generated
keys was paused. The keys were generated in the background and the only output
are the results of the newly created speed test.

The time measuring was carried out on a MacBook Pro with 2, 7 GHz Dual-Core
Intel Core i5 and 8 GB 1 865 MHz DDR3 SDRAM. The results of the measuring are
shown in Figure 4.7.

The time needed to generate a single bit is very low, at only 0, 0 113 463 030 𝜇s.
The average time needed to establish the keys on the above mentioned device was
0, 002 847 seconds, being 2 847 𝜇s. Compared to a claimed time needed to estab-
lish the key on an ASIC being at 1 500 𝜇s (mentioned in the Table 3.1), the value
measured on a personal computer is higher. This difference is understandable, as
the ASIC is a chip used for one specific purpose, whereas a personal computer runs
multiple operations at the same time.

Fig. 4.7: Output: Key establishment time (Test1).

The computer used for measuring the time needed to establish the keys above
is relatively old, to see how the performance would be affected by a more sufficient
device, a newer version of a MacBook Pro was used.

The second test was carried out on a MacBook Pro with 2, 4 GHz 8-Core Intel
Core i9 and 32 GB 2 400 MHz DDR4 SDRAM. The results of the measuring can be
seen in Figure 4.8.
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Fig. 4.8: Output: Key establishment time (Test2).

The time needed to generate a single bit is very low, at only 0, 0 072 077 583 𝜇s.
The average time needed to establish the keys on the newer, more sufficient device
was 0, 001 808 seconds, being 1 808 𝜇s .

The newer MacBook Pro was capable of establishing the keys in the time that
is comparable to the time needed to establish the keys on an ASIC (1 500 𝜇s). Con-
sidering that the personal computer runs multiple operations in the background at
the same time, it is a remarkable speed.

4.5 Suggested Adjustments
The standing documentation regarding the source code of CRYSTALS-KYBER pro-
tocol [33] does not offer a detailed description to understand how the protocol works,
nor does it offer a user manual. The documentation also misses some key explana-
tions related to the theory of the protocol. It is understandable, that the submission
makes sense to professionals even without the extra detailed information, however,
if the protocol becomes standardized, the interest will surely also come from the
direction of ordinary people.

The next step of this thesis therefore is a creation of a simplified CRYSTALS-
KYBER application, a documentation of the adjusted application and an easily
understandable user manual.

43



5 Adapted Implementation of CRYSTALS-
KYBER

This chapter covers the process of the CRYSTALS-KYBER simplification and op-
timization for a possible every-day use.

5.1 Changes and Specifications
The original CRYSTALS-KYBER code from the NIST submission only mimics the
key-agreement process in one single application, it does not allow for two parties to
agree on the key if they were physically in different places. The new implementation
should allow a key agreement for two parties through a local IP connection.

In this case, Alice and Bob communicate over a TCP connection. The process
of sending the information and establishing the shared key is shown in the picture
below (5.1). Calculations are described in more detail in Chapter 3.3.

Alice Bob
𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑘𝐴 𝑎𝑛𝑑 𝑠𝑘𝐴 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑘𝐵 𝑎𝑛𝑑 𝑠𝑘𝐵

𝑝𝑘𝐵

𝑢𝑠𝑖𝑛𝑔 𝑝𝑘𝐵, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 cA
𝑝𝑘𝐴,𝑐𝐴

𝑢𝑠𝑖𝑛𝑔 𝑝𝑘𝐴, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 cB

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 KB

𝑢𝑠𝑖𝑛𝑔 𝑐𝐴, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 K′′

𝑐𝐵

k = 𝐻(𝐾𝐴, 𝐾 ′) k = 𝐻(𝐾𝐵, 𝐾 ′′)

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 K𝐴

𝑢𝑠𝑖𝑛𝑔 𝑐𝐵, 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 K′

Fig. 5.1: Key establishment process.

For the above mentioned to work, the application needed to be separated - Alice
and Bob both needed to have an individual code, that would allow them to do the
calculations after receiving the necessary information from the other party. The
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flowchart of the new code for Alice and Bob can be found on the following pages
(flowchart for Alice is in the Figure 5.2 and for Bob in the Figure 5.3). In the context
of the TCP communication, Alice poses as a Server and Bob represents the Client.
Alice creates a socket and waits for Bob to connect. After accepting the Client, the
key establishment is executed.

The new implementation works with the necessary libraries from the original
NIST submission package [48] and consists of multiple parts. Those are specifically:

• Shell scrips for Server and Client that take the parameters and execute the
key establishment based on them.

• A code for Alice
– TCP connection code for Server
– Code for CRYSTALS-KYBER

• A code for Bob
– TCP connection code for Client
– Code for CRYSTALS-KYBER

The codes for Alice and Bob were used to create executables that are called by
the mentioned shell scripts. Executables that are a part of this project were created
for macOS BigSur version 11.1 and higher. The other version of the executables
attached is runnable on Ubntu 20.04.2. Every executable that is created using
cmake is adjusted to the operational system that it was created on. If a user wishes
to create new executables for a different operational system, attachment C provides
simple instructions on how to do so.

The newly created TCP implementation of CRYSTALS-KYBER was also made
publicly available on GitHub [49].
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5.2 Use of the New Implementation
If a user wishes to use the newly created implementation, the process is simple. The
first step is to open a terminal window for a Server or a Client and direct themselves
to a directory that contains the executable files. In the example scenario, both Alice
(Server) and Bob (Client) are executed on one computer.

After typing in the request for running the shell script, the user gets a brief
explanation of what the application does and how to work with it (shown in Figures
5.4 and 5.5).

Fig. 5.4: Terminal window server - input the parameters.

Fig. 5.5: Terminal window client - input the parameters.

As mentioned in the Chapter 3.3, CRYSTALS-KYBER offers three levels of
security, where Kyber-512 aims at security roughly equivalent to AES-128, Kyber-
768 aims at security roughly equivalent to AES-192, and Kyber-1 024 aims at security
roughly equivalent to AES-256 [33]. The application therefore also allows a choice
for the desired level of security by simply setting the parameter −𝑙. This parameter
needs to match on Server’s and Client’s side.

All the other parameters (number of cycles −𝑛 and the IPv4 address of the server
−𝑎) are required to be entered only on Client’s side. The number of cycles can be
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any positive integer. If both Client and Server are ran on one device, the address of
the Server will be a local-host address.

It is necessary to run the application for the Server first. The Server then waits
for the Client to connect (Figure 5.6).

Fig. 5.6: Terminal window server - server listening.

In the second terminal window the user enters the parameters for the Client.
In this case, the number of cycles is set to 1, therefore only one shared key is
generated. After successfully connecting to the Server, both sides start the Key
Generation process as described in Figure 5.1.

Fig. 5.7: Terminal window client - start of the key generation.

The Key Generation then runs automatically and results with outputting a suc-
cessfully calculated shared key (5.8).

Fig. 5.8: Successfully calculated shared key.

The entire key generation is very fast, however if the user wishes to take a look
at the information calculated and sent during the process, everything is listed in the
terminal window above the final shared key.

The application also calculates the time needed to establish the keys. This part
is covered in more detail in the following chapter (Chapter 5.3).
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5.3 Time Needed to Establish the Keys
The option to calculate the time needed to establish the keys was added into the
original NIST submission (4.4). The function was also implemented in the new
application. This time however, the time is calculated separately for Alice and Bob.
As shown in the flowcharts 5.2 and 5.3, the measuring of the time only starts after
the Client is successfully accepted by the Server.

As in the previous implementation (Chapter 4.4), the application calculates CPU
time instead of a real time. The decision to do so was based on the amount of the
data that needs to get printed out. The CPU time does not include the time taken
to print out an output. Therefore the time shown in the end only shows the time
needed to calculate the shared-keys in the given number of cycles.

In the chapter 4.4, the time was measured for the implementation of Kyber-
1 024 and 10 000 cycles. The time needed for 10 000 cycles was also measured for
the new implementation, for all of the available security levels. The time results are
automatically calculated after executing the chosen number of cycles and displayed
as an output in the terminal, as shown in the Figure 5.9.

Fig. 5.9: Time needed to establish the keys for Alice and Bob separately.

The measured time is almost two-times higher than within the original appli-
cation, which makes sense considering all the extra steps that are done in the new
implementation (sending the values to each other through the TCP communication).

The time was measured on two personal computers with different properties.
Results of the tests and the devices are more closely discussed below.

Values shown in the Table 5.1 were measured on a MacBook Pro with 2, 7 GHz
Dual-Core Intel Core i5 and 8 GB 1 865 MHz DDR3 SDRAM.

The second test was carried out on a MacBook Pro with 2, 4 GHz 8-Core Intel
Core i9 and 32 GB 2 400 MHz DDR4 SDRAM. Table 5.2 shows the results of this
test.

Alice always takes longer than Bob to generate her shared key. This is caused
by the fact, that Bob calculates his shared key before sending the last parameter
that Alice needs to calculate hers. This part cannot be optimized, because Bob
calculates the last parameter in the same step as he creates his shared key.
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Tab. 5.1: The time needed to establish the keys based on the level of security (1).

Level
of Security

Alice
(time/10 000 cycles) [s]

Bob
(time/10 000 cycles) [s]

Kyber-512 26.25495 24.53068
Kyber-768 40.06725 35.96198

Kyber-1024 53.55971 48.29086

Tab. 5.2: The time needed to establish the keys based on the level of security (2).

Level
of Security

Alice
(time/10 000 cycles) [s]

Bob
(time/10 000 cycles) [s]

Kyber-512 13.97371 12.35899
Kyber-768 20.98202 18.70328

Kyber-1024 28.51103 25.66362

The newer MacBook Pro was capable of establishing the keys in a relatively
similar time as the original application.

Even though the length of the shared keys is always the same (thanks to the hash
function at the end of all the operations), the time grows with the higher level of
security. The reason for this is the changing length of the values needed to establish
the keys.
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Conclusion
This master’s thesis had multiple goals. One of the objectives was to introduce the
topics of quantum computers, post-quantum cryptography and the principles differ-
ent types of the post-quantum cryptography are based on. The main goal was to
study, analyze and compare the submission of the third round of the NIST compe-
tition (introduced in Chapter 3), with an intention to find the best candidate. The
last objective of the thesis was to create an optimized application for key establish-
ment based on the chosen algorithm, along with creating an installation guide and
a user manual.

The theoretical part of the thesis introduces the post-quantum cryptography
based on hashes, codes, lattices, supersingular elliptic curves and a multivariate
cryptography. As the NIST finalists were cryptosystems based on codes and lattices,
these types of post-quantum are described in greater detail than the others. The
cryptosystems McEliece, NTRU, CRYSTALS-KYBER and SABER are analyzed in
depth. These cryptosystems use different unsolvable problems for reaching a desired
quantum security. The problems these cryptosystems are based on were introduced
and described both in formal and informal, simplified way. The thesis explained the
syndrome decoding of linear error-correcting codes in Chapter 3.1, a learning with
errors problem (Chapter 3.2) and its modification using modules (Chapter 3.3). A
learning with a rounding problem was also discussed in Chapter 3.4.

The available documentation related to the finalists of the NIST competition
was used and compared them in Chapter 3.5. Based on this part, the most suitable
candidate for the key establishment protocol was decided to be the CRYSTALS-
KYBER protocol. Protocol CRYSTALS-KYBER was defined as the fastest out
of all the finalists, with the reasonable key sizes and offering the desired level of
security.

The existing implementation of the CRYSTALS-KYBER was set up, analyzed
and tested. While the recommended build tool (ninja) did not prove to be a suc-
cessful tool for building the application, CLion ran the code without issues. The
protocol is capable of establishing keys in a reasonable time. A function for measur-
ing the time needed to establish keys was successfully implemented to the original
source code and the speed of establishment was compared on two different devices.
While the time needed to establish the keys on a personal computer is higher than
on an ASIC, the results were still adequate. The original application from the NIST
submission however only mimics the key-agreement process in one single applica-
tion, it does not allow for two parties to agree on the key if they were physically in
different places.

In the Chapter 5.3 an adapted implementation of CRYSTALS-KYBER was pro-
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posed. This implementation allows for a key establishment over a TCP connection,
allowing a user to choose the desired level of security, as well as the number of cycles
to be ran. The adapted implementation successfully generates the shared keys. The
time for establishing the keys was measured for the new application in a similar
manner as in the original code. The new implementation takes longer to establish
the keys, however this is understandable, due to the extra steps that are connected
to the TCP communication.

The adapted application was described and documented in Chapter 5.1 along
with visual flowcharts for an easier understanding of the functionality. The Chapter
5.2 describes how a user can execute the application in a few simple steps. Addition-
ally, an installation guide (A) and a user manual (B) were added to the appendices.

The instructions for this thesis also called for a usable graphical user interface
(GUI). This part was after consideration left out. The application aims to be simple
and minimalist, focusing on the functionality rather than appearance. Even without
a GUI, the created application is easy to use and understand, as well as the output
data is clear to read.

The goals of the master’s thesis were reached. Theoretical background of the
post-quantum cryptography was introduced, the NIST finalists were analyzed and
compared. The most suitable candidate was chosen and a software implementation
that was created based on the given algorithm successfully establishes the shared
key 𝑘.
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A Installation Guide
No special installation process is required. To make the application work, start by
downloading the entire package available on GitHub [49]. This package contains the
source code, as well as already created executable applications.

A.1 Application for macOS
The applications in the "Executables" folder are runnable on macOS Big Sur 11.1
and higher. When attempting to run the application, a pop-up like shown in Figure
A.1 might appear. This is a security precaution of the operating system, and can
be easily solved.

Fig. A.1: Pop-up while opening the downloaded app on macOS.

To solve the above mentioned problem, simply go to System Preferences →
Security & Privacy → General. At the bottom of this window, click the lock
to allow changes to the settings and click Open Anyway (as shown in the Fig-
ure A.2). The same process might be required for all of the runnable applications
(KyberServer, K2,K3 and K4 in the Server and the Client folder). When the com-
puter trusts all the necessary applications, it is possible to proceed with the usage
as described in the following chapter B.
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Fig. A.2: Security & Privacy settings to allow the application to run.

A.2 Application for Ubuntu
The package on GitHub [49] also contains applications created for Ubuntu 20.04.2.
When trying to run the downloaded application, terminal might say that the per-
mission to run this application is denied (as shown in Listing A.1).

1 ubuntu@ubuntu2004 :~/ Downloads/ Crysta l s −Kyber−main/ executables_ubuntu$
. / KyberServer

2 bash : . / KyberServer : Permiss ion denied

Listing A.1: Possible message after trying to run Crystals-Kyber.

To get the permission to run the application, it is necessary to use the follow-
ing command A.2. The same process needs to be done for all of the executables
(KyberClient, K2,K3 and K4 in the Server and the Client folder).

1 chmod u+x KyberServer

Listing A.2: Command to get the permission to run the application.
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After getting the permission to run the necessary applications , it is possible to
proceed with the use of the application as described in the chapter B.

A.3 Application for Other Operating Systems
If there is a necessity for the application to be ran on a different operating system,
new executables need to be created. The process of doing so is described in the
chapter C.
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B User Manual
The use of the application is identical for all operating systems.

The first step is to open a terminal window for a Server or a Client and direct
themselves to a directory that contains the executable files. If the application is
executed on one computer, it is necessary to open two separate terminal windows.

To run the application, type ./𝐾𝑦𝑏𝑒𝑟𝑆𝑒𝑟𝑣𝑒𝑟 and ./𝐾𝑦𝑏𝑒𝑟𝐶𝑙𝑖𝑒𝑛𝑡. Doing so
prompts an explanation and options of running the application B.1.

Fig. B.1: Terminal prompt after trying to run the application.

For both, KyberServer and KyberClient there is an option to choose from differ-
ent parameters. Parameter−𝑙 specifies the desired level of security, where Kyber-512
aims at security roughly equivalent to AES-128, Kyber-768 aims at security roughly
equivalent to AES-192, and Kyber-1 024 aims at security roughly equivalent to AES-
256 [33]. Parameter −𝑛 sets the number of key-establishment cycles (which can be
any positive integer), and parameter −𝑎 specifies the IPv4 address of the Server (Al-
ice). When using the application on one device, the address is a local host address
- 127.0.0.1.

Keep in mind to run the Server first!
From here, the entire key-establishment process is automatic. The output is a

successfully generated shared key, along with additional information about the time
that was needed to execute the command.
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C How to Create a New Executable
The project attached to this thesis contains already generated cmake build and
necessary files. To create a new executable for a different operational system, these
files will need to be disregarded and created from scratch. The process below is
using CLion, because this IDE offers the simplest solution.

The first step is to create a new project in CLion. In the left column, make sure
to select the C Executable option and select a place to save your new project. In
this case, the name of the project is labeled "example". To keep the integrity of the
project, it is recommended to use Alice and Bob as a new folder names.

Fig. C.1: Settings for the new project.

Upon creation of the project a cmake-build-debug folder is created. Do not
change anything in this folder, everything there is automatically matched to the
operational system ran on the computer.

In the next step, the highlighted contents from the Figure C.2 need to be copied
into the newly created project. Copy and paste these files into the "example" folder.
Accept the pop-up that appears about overwriting the existing main function (Figure
C.3).

Fig. C.2: Contents of the attached project.
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Fig. C.3: Pop-up question to confirm.

The CMakeLists.txt now probably looks like C.1. The line containing add_exe-
cutables needs to be edited. The brackets should contain names of all the files
in the project. For example the Listing C.2 is how the line would be changed
in CMakeLists.txt for Alice. Same would have to be done for Bob, changing the
"Server" parts to Client.

1 cmake_minimum_required (VERSION 3 .17 )
2 p r o j e c t ( example C)
3

4 s e t (CMAKE_C_STANDARD 99)
5

6 add_executable ( example main . c )

Listing C.1: CMakeLists.txt to be edited.

1 add_executable ( example main . c Kyber/params . h TCP/ Server . c TCP/ Server . h
Kyber/ ae s256c t r . c Kyber/ ae s256c t r . h Kyber/cbd . c Kyber/cbd . h Kyber/
f i p s 2 0 2 . c Kyber/ f i p s 2 0 2 . h Kyber/ indcpa . c Kyber/ indcpa . h Kyber/kem . c
Kyber/kem . h Kyber/ ntt . c Kyber/ ntt . h Kyber/ poly . c Kyber/ poly . h

Kyber/ polyvec . c Kyber/ polyvec . h Kyber/randombytes . c Kyber/
randombytes . h Kyber/ reduce . c Kyber/ reduce . h Kyber/ symmetric . h Kyber
/symmetric−aes . c Kyber/symmetric−shake . c Kyber/ v e r i f y . c Kyber/
v e r i f y . h Kyber/kex . c Kyber/kex . h)

Listing C.2: Changes in CMakeLists.txt for Alice.
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After making these changes, it should be possible to run the project without an
error, which is how the executables are generated.

The last step is to open the Kyber/params.h file. This file contains the definition
of the level of security. This is defined as shown in the Listing below (C.3). Number
2 sets the type of the application to Kyber-512, number 3 to Kyber-768 and number
4 to Kyber-1024.

1 #d e f i n e KYBER_K 4

Listing C.3: Level of security in params.h.

After creating an executable for one level of security, KYBER_K value needs to
be changed to generate an executable for a different level of security.

Generated executables need to be renamed and located into the right directory,
as shown below in Figure C.4.

Fig. C.4: Executables directory.

KyberClient and KyberServer are both shell scripts, that were in this case turned
into an executable. It is possible to open them as a plain text if necessary to change
something, or copy them from the listings in the Attachment D.
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D Shell Scripts
This attachment contains the listings of shell scripts used to execute the CRYSTALS-
KYBER applications.

1 #! / bin /bash
2 # Argument = − l s e c u r i t y l e v e l
3

4 usage ( )
5 {
6 cat << EOF
7 usage : $0 opt ions
8

9 This i s an a p p l i c a t i o n f o r e s t a b l i s h i n g a shared key based on Crysta l s −
Kyber p ro to co l . I t i s nece s sa ry to RUN THE SERVER FIRST . Parameter
f o r s e c u r i t y l e v e l needs to match on both s i d e s .

10

11 Example o f a command f o r Server : . / KyberServer − l 1024
12

13

14 OPTIONS:
15 −h Show t h i s message
16 − l S e cu r i ty l e v e l , can be 512 , 768 or 1024
17 EOF
18 }
19

20 cho i c e=
21 whi le ge topt s h l : OPTION
22 do
23 case "$OPTION" in
24 h)
25 usage
26 e x i t 1
27 ; ;
28 l )
29 cho i c e=$OPTARG
30 ; ;
31 esac
32 done
33

34 i f [ −z $cho i ce ]
35 then
36 usage
37 e x i t 1
38 f i
39

40 i f [ $ cho i c e == 512 ]
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41 then
42 echo You choose Kyber512
43 . / Server /K2
44 f i
45

46 i f [ $ cho i c e == 768 ]
47 then
48 echo You choose Kyber768
49 . / Server /K3
50 f i
51

52 i f [ $ cho i c e == 1024 ]
53 then
54 echo You choose Kyber1024
55 . / Server /K4
56 f i

Listing D.1: Shell script KyberServer.

1 #! / bin /bash
2 # Argument = − l s e c u r i t y l e v e l
3

4 usage ( )
5 {
6 cat << EOF
7 usage : $0 opt ions
8

9 This i s an a p p l i c a t i o n f o r e s t a b l i s h i n g a shared key based on Crysta l s −
Kyber p ro to co l . I t i s nece s sa ry to RUN THE SERVER FIRST . Parameter
f o r s e c u r i t y l e v e l needs to match on both s i d e s .

10

11 Example o f a command f o r C l i en t : . / KyberClient − l 1024 −n 100 −a
1 2 7 . 0 . 0 . 1

12

13

14 OPTIONS:
15 −h Show t h i s message
16 − l S e cu r i ty l e v e l , can be 512 , 768 or 1024
17 −n Number o f Cycles to be executed , has to be > 0
18 −a IPv4 o f A l i c e ( Server )
19 EOF
20 }
21

22 cho i c e=
23 number=
24 ip=
25 whi le ge topt s h l : n : a : OPTION
26 do
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27 case "$OPTION" in
28 h)
29 usage
30 e x i t 1
31 ; ;
32 l )
33 cho i c e=$OPTARG
34 ; ;
35 n)
36 number=$OPTARG
37 ; ;
38 a )
39 ip=$OPTARG
40 ; ;
41 esac
42 done
43

44 i f [ −z $cho i ce ] | [ −z $number ] | [ −z $ ip ]
45 then
46 usage
47 e x i t 1
48 f i
49

50 i f [ $ cho i c e == 512 ]
51 then
52 echo You choose Kyber512
53 . / C l i en t /K2 $number $ ip
54 f i
55

56 i f [ $ cho i c e == 768 ]
57 then
58 echo You choose Kyber768
59 . / C l i en t /K3 $number $ ip
60 f i
61

62 i f [ $ cho i c e == 1024 ]
63 then
64 echo You choose Kyber1024
65 . / C l i en t /K4 $number $ ip
66 f i

Listing D.2: Shell script KyberClient.
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E Contents of the Digital Attachment
The digital part attached to this thesis contains the final applications that exe-
cute the key-establishment process, as well as the source codes used to create these
executables. All of the files listed below are also available on GitHub [49].

As mentioned before, the original executables were created for macOS Big Sur
11.1 and higher. Additional applications were created on Ubuntu 20.04.2.

/...................................................................root directory
Executables_macOS ......................... executable files for Crystals-Kyber

KyberClient.............................executable for Client’s(Bob’s) side
KyberServer .......................... executable for Servers’s(Alices’s) side
Client

K2...................................executable for Kyber 512 for Client
K3...................................executable for Kyber 768 for Client
K4..................................executable for Kyber 1024 for Client

Server
K2...................................executable for Kyber 512 for Server
K3...................................executable for Kyber 768 for Server
K4..................................executable for Kyber 1024 for Server

Kyber...contains source code for Crystals-Kyber key establishment through TCP
Alice

cmake-build.debug ... contains cmake-files that help create an executable
CMakeLists.txt ....... executables are build based on contents of this file
main.c. .............................. controls the functionality for Alice
Kyber....contains source code for key-establishment using Crystals-Kyber
TCP ............. contains source code for TCP communication of a Server

Bob
cmake-build.debug ... contains cmake-files that help create an executable
CMakeLists.txt ....... executables are build based on contents of this file
main.c................................ controls the functionality for Bob
Kyber....contains source code for key-establishment using Crystals-Kyber
TCP..............contains source code for TCP communication of a Client

ubuntu_Kyber ...contains source code adjusted to create executables for Ubuntu
kyber_ubuntu_code....................same directory structure as in Kyber
executables_ubuntu.....same directory structure as in Executables_macOS
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