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ABSTRACT 
Tato diplomová práce je zaměřená na evoluční algoritmy používané v diagnostickém 
ul t ravzuku, které by měly pomoci v při akvizici a úpravě diagnostické křivky získané 
pomoci techniky Bolust burst. 
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ROZŠÍŘENÝ ABSTRAKT 

Tato diplomová práce se zaměři la na hodnocení výkonnost i různých mode lů v 

rámci různých meta-heur is t ických opt imal izačních a lgor i tmů pro konkré tn í datové 

sady ul t rayvukových smímku z da t a se tů 1 a 2. V první část i je kladen důraz na 

genetické algoritmy ( G A ) , kde je p rozkoumáno jejich inicializace, selekce, mutace, 

křížení a ukončení procesů. 

P ráce dále pokračuje pokroči lými evolučními algoritmy, včetně Particle Swarm 

Optimizat ion (PSO), Differential Evolut ion (DE) , Art i f ic ia l Bee Colony Algor i thm 

( A B C ) , Spider Monkey Optimization, An t Colony Optimizat ion ( A C O ) , Cuckoo 

Search (CS) a Firefly Algor i thm (FIR) . Každý z těch to a lgor i tmů je p o d r o b n ě 

p rozkoumán s cílem porozumět jeho u n i k á t n í m vlastnostem a možnos tem použi t í 

v kontextu perfúzního u l t razvukového zobrazování. 

V rámci každého algoritmu je provedena detai lní analýza, jak tyto algoritmy 

fungují, jaké jsou jejich klíčové komponenty a jak mohou být použi ty pro optimalizaci 

v u l t razvukovém perfúzním zobrazování. P ráce tedy poskytuje hluboké pochopení 

těch to evolučních a lgor i tmů, k te ré jsou klíčové pro pokročilé techniky zpracování 

obrazu a jejich aplikace v medicínské diagnostice. 

Tato diplomová práce také obsahuje detai lní p rozkoumání několika matemat

ických mode lů používaných v u l t razvukovém perfúzním zobrazování. P r v n í model, 

k te rý je p rozkoumán, je model lognormální distribuce. Tento model je založen na 

p ředpokladu , že hodnoty zobrazené v datech jsou lognormálně dis t r ibuované. De

tai lní ana lýza tohoto modelu ukazuje, jak je tato distribuce využívána v kontextu 

perfúzního zobrazování. Dále byly využi ty modely L D R W , Gamma Variate, k terý 

je mezij inými široce používán v medic ínském zobrazování pro modelování př íchodu 

krve do různých část í těla. Dále je zkoumán model F P T a Lagged Normální . Každý 

z těch to modelů je p o d r o b n ě p rozkoumán s cílem porozumět jeho klíčovým vlast

nostem a použi t í pro interpretaci dat získaných z u l t razvukového perfúzního zobra

zování. Tato část práce tak poskytuje hluboké pochopení různých modelů , k teré 

mohou být použi ty pro interpretaci dat získaných z u l t razvukového perfúzního zo

brazování. 

Dalš ím důleži tým aspektem t é t o práce je ana lýza perfúze, k t e rá se zaměřuje na 

hodnocení p r ů t o k u krve v tělesných tkán ích a orgánech pomocí specifických ultra

zvukových technik. 

P ráce detai lně prozkoumává Dopplerův ultrazvuk, k te rý je široce používán pro 

sledování a měření p r ů t o k u krve v těle. Tato metoda využívá Dopplerův efekt pro 

zjištění rychlosti pohybu krve v cévách. 

Následně je pod robně popsáno použi t í mikrobublin, k teré se v medicínském zo

brazování čas to využívají jako kon t ras tn í činidla. Jsou zde zkoumány dva hlavní 



postupy sledování mikrobublin: sledování bolusu a metoda reperfúze. Sledování 

bolusu se zaměřuje na moni torování p r ů t o k u krve po injekci kon t ras tn ího činidla, 

za t ímco metoda reperfúze zkoumá obnovu p r ů t o k u krve po dočasné ischémii. 

V diplopmové prácí byly poži tz dva různé datasety. P r v n í dataset, označený 

jako "Dataset 1," pochází z fantomových dat. Model pro tato data byl vy tvořen s 

využ i t ím dia lyzá toru (cartridge pro dialýzu) a dvou robustnějš ích t rubiček poskytu

jících kons tan tn í tok v sys tému bez recirkulace. Experiment byl opakován pro čtyři 

různé hodnoty p rů toku . Jako kon t ras tn í l á tka byl použi t Sonovue, ř ádně naředěný, 

aby nedocházelo k výraznému ú t l u m u mikrobublin. Zobrazování bylo prováděno po

mocí sys tému G E System F iVe s 2,5 M H z sektorovou sondou v harmonickém módu . 

Druhý dataset, označený jako "Dataset 2," byl odvozen z obrázků myokardu prasete 

otevřeného h rudn íku . Obrázky byly pořízeny př ímo na srdci pomocí sys tému G E 

V i v i d 7 s l ineární sondou o frekvenci 3,5 M H z . Tyto obrázky, pořízené v takz

vaném pohledu krá tké osy, byly klíčovány pomocí E K G pro zobrazení maximáln ího 

naplnění komor. 

Empir ické výsledky získané z tohoto výzkumu poskytuj í významné poznatky. 

Zjištění zdůrazňuj í model Lagged Normál jako konzis tentn ího hráče např íč všemi 

opt imal izačními algoritmy z hlediska skóre R2 a N R M S E . Skóre R2 , k te ré je ukaza

telem, jak dobře se předpovědi modelu shodují s ak tuá ln ími výsledky, bylo nejvyšší 

pro model Lagged Normál např íč všemi algoritmy. To ukazuje, že tento model byl 

schopen vysvětli t větší část variance v datové sadě. Podobně N R M S E , ukazatel 

odchylky předpovězených hodnot od pozorovaných hodnot, byl nejnižší pro model 

Lagged Normál , což ukazuje na superioritu předpovědi . 

Zajímavé je, že model Log Normál konzis tentně prokázal špa tný výkon, s neg

at ivní hodnotou R2 např íč více algoritmy, což naznačuje , že tento model datovou 

sadu dobře nevystihoval. Spearmanova korelace, nepa ramecká mí ra korelace podle 

pořadí , naznači la silnou souvislost mezi předpovězenými a pozorovanými daty pro 

větš inu modelů , př ičemž model F P T ukázal nejvyšší korelace u většiny a lgor i tmů. 

V da tovém souboru 1 se zdá, že model L D W R používající algoritmus Cuckoo 

Search dosáhl nej lepšího výkonu přes všechny metriky s R2 0,8460, Spearmanovou 

korelací 0,9134 a N R M S E 0,4057. Tyto hodnoty naznačuj í vysoký s t upeň vysvětlu

jící síly, silnou korelaci a nízkou chybu, odpovídající jejich významům. N a druhou 

stranu ve da tovém souboru 2 není snadné identifikovat j ednoznačného vítěze mezi 

algoritmy. 

Celkově výsledky t é t o diplomové práce potvrzuj í uži tečnost meta-heur is t ických 

opt imal izačních a lgor i tmů při zvyšování predpovední přesnost i da tových modelů . 

Konkrétněj i , tato studie poskytuje silné empirické důkazy podporuj íc í použi t í mod

elu Lagged Normál při použi t í těchto a lgor i tmů pro danou datovou sadu. Avšak 

tyto výsledky jsou specifické pro datovou sadu použ i tou v t é t o studii a extrapolace 



na j iné datové sady by měla být prováděna s opa t rnos t í . 

Budoucí výzkum může rozšířit tyto poznatky t ím, že se zaměří na výkon těchto a 

dalších mode lů pod různými opt imal izačními algoritmy, nebo t ím, že aplikuje stejné 

modely a algoritmy na různé datové sady. Takové studie by přispěly k ucelenějšímu 

pochopení výkonnostn ích charakteristik těchto modelů a a lgor i tmů a potenciá lně by 

poskytly další vhledy pro výběr vhodných mode lů a a lgor i tmů v praxi. 
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Introduction 
Ultrasound perfusion imaging is a widely adopted technique that provides critical 

insights into tissue health and function by allowing the visualization of blood flow. 

To extract meaningful conclusions from these images, a sophisticated combination of 

mathematical modeling and computational algorithms is utilized. Central to these 

processes is the application of nonlinear regression and evolutionary algorithms, used 

for the estimation of unknown model parameters. 

This thesis aims to delve into the principles of nonlinear regression and the uti

lization of evolutionary algorithms, wi th a primary focus on their role in ultrasound 

perfusion imaging. It seeks to critically review the different mathematical models 

employed in this imaging technique, shedding light on the strengths and limitations 

of each. 

Moreover, a curve-fitting task wi l l be carried out using suitable mathematical 

models on simulated and phantom datasets. A t least two evolutionary algorithms, 

implemented in Python, wi l l be employed in this exercise. The objective of this task 

is to assess the efficacy and accuracy of these algorithms in accurately fitting the 

models to the dataset, thus providing reliable image interpretation. 

To enhance the diversity of the tools available for perfusion imaging, this study 

also intends to develop and implement at least three novel evolutionary algorithms 

that are currently not available in freely published packages. These algorithms wi l l 

be tested using both phantom and clinical datasets. This approach wi l l provide a 

comparative understanding of these newly developed algorithms versus conventional 

algorithms available in existing software packages. 

The results wi l l be analyzed and discussed in the context of the reliability of fits. 

This refers to the accuracy wi th which the mathematical models can be fitted to the 

imaging data using the evolutionary algorithms, which is a crucial aspect influencing 

the reliability and practicality of perfusion imaging. 

In summary, this study wi l l contribute to the field of ultrasound perfusion imag

ing by enhancing the understanding of current modeling techniques and potentially 

providing novel and more efficient algorithms for image interpretation. Through a 

methodical evaluation and comparison, this study also hopes to guide future research 

in the selection of optimal mathematical models and algorithms for ultrasound per

fusion imaging. 
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1 Regression analysis 
In diploma thesis we work with data of continues character. This chapter describes 

basic concepts ans principles of regression methods, learning, problems and possi

bilities of usage or evaluation. Due to nonlinear character of the provided data, 

nonlinear methods and models wi l l be introduced. In the matter of fact most data 

in the world of computing are nonlinear, rarely linear computation methods are used 

or seen. Regression applications are used in variety of models in financial sector, 

insurance or agricultural research. 

Regression is a statistical method for estimating the relationships among variables. 

In other words regression aims to find a continuous function which captures a relation 

between labels and data, then generalizing following inputs into it. In machine 

learning regression plays important role in work wi th continuous variables a thus is 

able to complement a common discrete classification. Linear regression intend to 

fit a line to data-label space by estimating its parameters. The aim of nonlinear 

regression intends to fit a curve to the data-label space. In literature mapping 

function is also known as a regressor 

where x represents a set of n d-dimensional vectors x — Xi, X 2 , X n Its appli

cations are used in variety of models in financial sector, insurance or agricultural 

research. 

1.1.1 Nonlinear regression 

Nonlinear regression is used in the cases when relationship between data and ob

servations is nonlinear. Unlike linear regression it does not fit a line into data-label 

space but searches for a curve wi th significantly less error. Solving nonlinear regres

sion problems is way more harder than finding parameters for linear line. It is more 

flexible and accurate, more versatile in the terms of curves it can accept. Nonlinear 

regression can be very efficient in working wi th complex and multidimensional data, 

which does not mean it results without a loss in prediction. 

1.1 Regression 

14 



Ridge Regression (L2 regression) 

This regression method estimates the coefficients of models where the independent 

variables are highly correlated. In literature it is also known as Tikhonov regu-

larization. Generally method provides improved efficiency in parameter estimation 

problems also with minor, acceptable impact on bias and variance. The penalty 

is defined as a square of the Euclidean norm of the coefficients controlled by com

plexity parameter, a. Ridge regression is no other than L A S S O wi th squared sum 

penalization of weights. 

(3est = argminpest\\Xp-y\\l + a\\P\\l (1.2) 

L2 regularization is able to learn complex data patterns and gives more accurate 

predictions when the output variable is the function of whole input variables also is 

not robust to outliers. 

1.1.2 Kernel Ridge Regression 

Many real world problems cannot be described by linear function. If linear regression 

is used it wi l l naturally have poor prediction error. A common approach is to map 

samples to higher dimensional space using nonlinear mapping and after that train 

the model in high dimensional space. 

Lim-ar 0>(x,, xj) = XjTxj 

Polynomial *(jf J s xj) = (axiTxj + rf 

Gaussian <&{xuxj) = e x p H | * i -xj\\2l{2a2)) 
Sigmoid $(xtt Xj) = tanh(ax,-Tjr 7 + r) 

F ig . 1.1: Kernel functions [2] 

For this purpose Kernel method is applied to conduct learning procedure. 

Figure 1.1 shows commonly used kernel functions. A Kernel is nothing but a function 

of our lower-dimensional vectors x, and x* that represents a dot product of $ (x) 

and <&(x*) in higher-dimensional space. Kernel functions are making non-linear data 

linearly separable also helping in avoidance of high computational demand in higher 

feature space. 

K(x,x*) = $ ( x ) T $ ( x * ) (1.3) 

15 



K R R (Kernel Ridge regression) is a combination of both methods mentioned above: 

Kernel and Ridge regression. It is represented by equations: 

argmin- \\ft - yt\\l + X\\f\\2

H 
(1.4) 

i=l 

n 
(1.5) 

In training phase algorithms tries to figure out final parameter a to predict the 

regressand. The algorithm searches for the best a and A, which means K R R is 

iteration process of finding the best parameters sets. In practise the best parameters 

are found by cross-validation process. For more information about modern kernel 

techniques read [14] 

1.1.3 Support Vector Regression (SVR) 

Support vector regression (SVR) is a robust computational machine learning method 

based on the support vector machine algorithm. It is supervised learning algorithms 

which predicts discrete values. For more details about see [15]. 

Similarly to S V M it is looking for the best fit line ( S V R the best hyperplane wi th 

maximum number of points). Unlike other regression models which main objective is 

to minimize error between the real and predicted values, S V R tries to fit line wi thin 

given treshold. Threshold is nothing else than distance between the hyperplane 

and boundary line. S V R uses three hyperparameters: hyperplane, kernel, boundary 

lines - e to control learning process. Mode l produced by S V R is dependant only on 

subset of training data, because cost function ignores training data which are close 

to prediction. 

16 



SVC with linear kernel LinearSVC (linear kernel) 

Sepal length 

SVC with RBF kernel 

M 

Sepal length 

Sepal length Sepal length 

F ig . 1.2: graphical representation of kernels [3] 

Support Vector Machine ( S V M ) 

S V M method was engineered by M I T professor Vlad imi r Vapnik in 1979 [9]. In case 

of classification, method is based on finding a separating hyperplane in feature space 

between data of different classes. The uniqueness of this method is, in fact that it 

always searches for optimal split hyperplane. In other words it maximizes the width 

of the boundary that divides data. In this matter loss function helps out. 

L{he,y) 

h0(x) 

max(0,1 — 9Tx), if y = 1 

max(0,1 + 9Tx), if y = 0 

1, if 0Tx > 0 

0 otherwise 

; i .6) 

;i .7) 

To equation above we have to add regularization parameter A helping in balancing 

a margin maximization and loss. Adding regularization parameter A in form of C = 

1/A, equation now has a form of: 

m i n 
m = £ y ' L C f l V ) + (1 - y*)L(6x*) + - £ 0? (1.8) 

i=l Zj=l 

Large values of C cause wider margin and higher sensitiveness to outliers. 

e -SVR 

It is similar to S V M but wi th notable differences like tunable parameter e, which 

determines the width of the "tube" around the hyperplane. Next difference is that 
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support vectors lay outside the tube unlike the ones on the margin in S V M . A d 

ditionally we have "slack" £ measuring the distance of the support vector to the 

hyperplane. Generally speaking, the a im is to define the minimal possible error by 

a hyperplane which puts most original points in the tube, reducing £ at the same 

time. 

1 n 

min-\\w\\2 + CXI&I (1-9) 
- i=l 

\yi - WiXi\ < e + (1.10) 

Generally S V R s have couple advantages, namely in robustness in to outliers, they 

are relatively easily updated also are excellent in generalization wi th relatively high 

prediction accuracy. 

A s another machine learning methods, S V R s are not an exception and also have 

drawbacks. S V R s are not suitable for large datasets, noisy data, class overlaping 

and cases where features for each data point exceed the number of training data 

samples. 

o 1  

0 1 2 3 4 S 

X'. 

Fig . 1.3: S V R [15] 
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2 Evolutionary Algorithms 
Evolutionary algorithms are popularised since Charles Darwin introduced the the

ory of Natural Selection, the theory which became a driving force behind evolution 

and its scientific fields like molecular biology, evolutionary computing etc. In 20th 

century discovery of D N A took place wi th huge impact on unlocking the key to 

genetic code by determining hereditary traits and later structure of molecule. Neo-

Darwinism, newly accumulated knowledge, was a fundamental pillar for family of 

evolutionary algorithms. Biological evolution is powerful, problem-solving mecha

nism which attempts to find solutions good enough for a individual capability of 

survival in current environment. E A s use mechanisms such as mutation, recombi

nation, selection and reproduction. Each individual in population is represented by 

a chromosome on which genetic operators are applied. B y a selective force a popu

lation is updated wi th better individuals. The quality of the individual in relation 

to the given problem is determined by the so-called fitness function. 

F ig . 2.1: General schema of evolutionary algorithm [5] 

Evolutionary algorithms are divided into four main groups: evolutionary program

ming, evolutionary strategy, genetic algorithms and genetic programming. In thew 

past they were evolving separately, thus having very similar approaches and strong 

similarities. Next chapters describe their implementations and techniques they use. 
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2.1 Genetic algorithms - GA 

Development of algorithms mostly took place in 1960s and were popularised in 1970s 

by Mr .Hol land [4]. Generally, G A s solve optimisation and adaptation problems in 

complex system. This chapter explains basic keyword terms in genetic algorithms 

usage. For a purpose of optimisation genetic operators such as selection, crossover 

and mutation are used working together in conjunction to achieve successful result 

of the algorithm. 

2.1.1 Initialization 

For a start here we need to define how many individuals wi l l be in the population. 

Population size is represented by popsize variable. 

2.1.2 Selection 

Initialization is followed by process of selection, which is interpreted as natural 

selection in Darwin theory, fitter individuals have higher opportunity to breed. In 

bioinformatics a memory of selected individual capable of mating is called mating 

pool. Process ends with two variation operators, mutation and crossover. Muta t ion 

and crossover are imitation of reproduction, generating offspring, we cam embody 

natural selection in many ways. 

roulette wheel selection (rws) 

Roulette wheel selection (RWS) can be thought of as spinning a roulette wheel, 

where the fitter individuals are allocated more space on the wheel. First we must 

determine an individual fitness value f as follows. 

fi 
Pi = : 
1 popsize 

E fi 
i=l 

In programming a rotation of the wheel is an accumulated process in which after 

generating a random integer rand, we know position of the pointer on a wheel. 

A l l individuals probabilities are accumulated into memory and compared to rand. 

Whenever we find an individual, who satisfies condition 2.2 is selected into mating 

pool. 
k fe+1 

Pi < rand < ^ pi (2.2) 
i=l 1=1 

(2.1) 
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Fig . 2.2: Roulette selection[6] 

tournament selection 

Programmatically, proccess of selection is based on roulette wheel selection (RWS). 

In this process fitter individuals have more space allocated. The fittest individual 

in the current population is always the tournament winner. See 2.3. 

rank selection 

The rank of an individual is a number indicating how many individuals in the 

population have poorer fitness. This rank number is then used to calculate the 

probability of the selection of an individual. The rescaled fitness values rather 

than the original fitness values are used in the selection process. The equations for 

recalculation can take several forms. 

frank = 2-P + 2(P- l ) ^ " 1 (2.3) 

where n is a number of members in population, P is a scaling factor determining a 

selection pressure, rank is the fitness ranking of individual in population (the least 

fit unit has rank = 1) 

T a b l e 3 .6 . R a n k order ing and selection fitness 

R a n k i n g 1 2 3 4 5 
Rescaled fitness 0 0.5 1 1.5 2 
Selection probabi l i ty 0 0.10 0.20 0.30 0.40 

Fig . 2.4: Rank selection[6] 
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Rank selection has two advantages. First , is that it lessens the risk of biasing the 

search process as a result of too-intensive selection of the better solutions in the 

early generations of the G A . Second, is that it only requires relative measures of 

fitness. This could be an advantage if fitness measures are noisy. 

2.1.3 Mutation 

Mutat ion is analogous to biological mutation. Muta t ion is a process wi th high im

portance in G A because it ensures that the search process never stops. In iteration 

process it might discover a novelty. Muta t ion rate implicates the usefulness of se

lection and crossover process. High mutation leads to highly overpower selection 

and crossover and G A is capable of effective reassembly of a random search pro

cess. But it is desirable to balance mutation, higher mutation could lead to faster 

convergence, thus destroying possible novelty along the search. In E A all mutation 

operators apply following requirements: 

1. every point must be reachable by one or more mutations 

2. no drift, no preference in direction in the search space 

3. small mutations more likely occur then large ones 

Bit Flip 

It is used in binary encoded G A s . It selects one or more bits randomly and flips 

them to opposite values. 

0 0 1 1 0 1 0 a l a -> 0 0 1 0 0 1 0 0 1 0 

Fig . 2.5: B i t F l ip [7] 
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Swap 

Swap is very common in permutations, it randomly selects two positions on the 

chromosome. 

1 2 3 4 5 6 7 a 9 0 => 1 e 3 4 5 2 7 8 9 0 

Fig . 2.6: Swap mutation [7] 

Inversion 

Inversion in the first phase selects a subset of genes, then inverts them entirely 

without shuffling. 

0 1 2 3 4 S 6 7 8 9 => 0 1 e 5 4 3 2 7 S 9 

Fig . 2.7: Inversion mutation [7] 

Scramble 

Scramble is used in permutation representations. It selects a subset of genes from a 

whole chromosome and shuffles their values randomly or scrambles them. 

0 1 2 3 4 5 6 7 8 9 = > 0 1 3 S 4 2 5 7 s 9 

Fig . 2.8: Scramble mutation [7] 

Random reset 

This type of mutation is for a integer representation. In this case a randomly chosen 

value from a set is assigned to random gene. It is basicaly a bit flip with integer 

values. 
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2.1.4 Crossover 

In literature is also known as recombination. Cross over combines the genetic in

formation of two parents to generate new offspring. In contrast, crossover benefit 

allows to search more intensively around previously discovered good solutions. It is 

analogous to reproduction and biological reproduction. In G A s it is usually applied 

wi th a high probability. 

single point 

Single point crossover belongs to binary operations. One point is selected and one 

part of the parent are switched wi th another part of the second parent. 

| » | i | , | . | «TTIT7TIT71 | . | i | , | . | . | , | . | , [ 7 T 7 1  

|»|. | . |4|, 7T7T7T7T71 _ > | , | . | . | 4 | a | , | . | 7 [ ? ] 7 l 

Fig . 2.9: Single point [6] 

multi-point 

This process works very similarly to single point, but wi th multiple separation points. 

Alternating segments are swapped to get a new off-springs, his technique is com

monly used in genetic algorithms because it allows for the exchange of information 

between solutions while maintaining diversity in the population, leading to faster 

convergence towards the optimal solution. 

I" I1 I2 6 I7 I3 I9 1 | Q 11 | 2 | 4 2 I J! I 0 I - 3 T. | 

5 y , - y , w V s > y 8 y 3 | „ 5 ; 5 [ ; 5 „ 

F ig . 2.10: Two point [6] 

uniform 

In uniform crossover the chromosome is not divided into segments, each gene is 

treated separately. This process randomly chooses a gene, thus decides if the gene 

wi l l be included in the off-spring. Uniform crossover is useful for maintaining diver

sity in the population and exploring the search space more thoroughly, leading to 

faster convergence towards the optimal solution. 

25 



| . H . H « H » H , | . | 
> f°T° 1̂  | a |2 |3 |6 |7 | a |B | 

Fig . 2.11: Uniform crossover [6] 

whole arithmetic recombination 

This operation is mostly used in integer operations using a weighted average of the 

two parents. Whole arithmetic recombination takes a percentage of each parent 

gene and adds them to produce new solutions. The percentage of each parent gene 

present in the child gene is determined by a parameter alpha. Ch i ld formula is equal 

to: 

Child = +(1 - a)y (2.4) 

Where X and y are parent genes. A n alpha of 0.5 wi l l produce identical child 

chromosomes as shown in the image below. 

o11o.i I 0; | 03 03 | 0.3 10-4 I HA I 0.5 | o7| 10-1S | 0.1 | o.i | 0.2 | 0.3 | O.Zi 10.35| 0.3 I 0.1 I 0.35 
=> 

0.2 " 0.3 ' 0.3 | 03 0.3 I P.I I 0.3 02 | 0.3 [ 0.1 | P.15 | 0 2 | 0.2 | 0.2 ' 0.3 | CM | C.3S [ 0.3 | 0.1 0.3S 

Fig . 2.12: Whole arithmetic recombination [6] 

David's order crossover (OX1) 

O X 1 is used in permutation based crossovers. Its intention is to transmit information 

about relative ordering to the off-springs. O X 1 is a genetic algorithm that is used 

to solve optimization problems. It operates on a set of solutions represented as 

ordered chromosomes, and the algorithm works by taking two parent solutions and 

generating two offspring solutions by combining the order of elements from the 

parents. The idea is to maintain the useful features of both parents, while allowing 

for exploration of new solutions. O X 1 is widely used in evolutionary algorithms for 

problems in scheduling, routing, and permutation-based optimization. 

There are several similar genetic algorithms that operate on ordered chromosomes, 

and some of the commonly known ones include: Cycle Crossover ( C X ) , Part ial ly 

Mapped Crossover ( P M X ) , Edge Recombination Crossover ( E R X ) . 

l - H « H « H . H . | i 1 

H . | . H » l » H d » H 
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Fig . 2.13: 0 X 1 [6] 

2.1.5 Termination 

In evolutionary algorithms, the optimization process is an iterative one that involves 

the generation of a population of solutions and the evaluation of their fitness (or 

quality) over time. The termination criteria determine when the optimization pro

cess has reached a satisfactory state, such as when the best solution has converged to 

a satisfactory level of quality, or when a maximum number of generations has been 

reached. Termination criteria are crit ical to the success of evolutionary algorithms, 

as they control the duration of the optimization process and determine the quality 

of the final solution. Common termination criteria include: 

1. Convergence - process stops when the quality of the best solution has stabi

lized, or when the improvement in quality over a number of generations has 

slowed to an acceptable rate 

2. M a x i m u m number of generations - process stops after a fixed number of gen

erations have been reached 

3. Time limit - process stops after a specified amount of time has passed 

4. Solution quality threshold - process stops when the best solution reaches a 

specified quality threshold 

The choice of termination criteria depends on the nature of the problem being solved, 

as well as the desired balance between computational time and solution quality. 

2.2 Advanced Evolutionary algorithms 

A E A s are widely used in a variety of applications, including machine learning, data 

analysis, and engineering design optimization, among others. They are particu

larly useful for problems where the search space is large and the solution space is 

complex and non-linear. They are a type of metaheuristic algorithms and include 

genetic algorithms, particle swarm optimization, differential evolution, ant colony 

optimization, and artificial bee colony algorithm, among others. They differ from 
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traditional optimization algorithms in that they are not based on gradient-based 

methods, but instead rely on random search and exploration. 

2.2.1 Particle Swarm Optimization - PSO 

Particle Swarm Optimization (PSO) is a swarm intelligent algorithm, inspired from 

'birds' flocking or fish schooling for the solution of nonlinear, nonconvex or combina

torial optimization problems that arise in many science and engineering domains. [16] 

What differs swarm intelligent algorithms from standard evolutionary algorithms 

is a principle of cooperation. A s we know Standard evolutionary algorithms are 

based on competition. 

In short, in evolutionary algorithms a new population is evolved in every gen

eration iteration while in swarm intelligent algorithms in every generation iteration 

individuals make themselves better. Identity of the individual does not change over 

the iterations. Creators of P S O model Kennedy and Eberhart defined five funda

mental principles that determine if group of agents is swarm or not [16]: 

• Proximity - the population should be able to respond to quality factors in the 

environment. 

• Quali ty - the population should be able to respond to quality factors in the 

environment 

• Diverse Response - the population should not commit its activity along exces

sively narrow channels 

• Stability - the population do not change mode of behaviour when environment 

changes 

• Adapt iv i ty - the population should be able to change its behaviour mode when 

it is worth 

process 

P S O is a swarm intelligent search algorithm. This search is done by a set of randomly 

generated potential solutions.This collection of potential solutions is known as swarm 

and each individual potential solution is known as a particle [16]. 

P S O search is influenced by two types of learning: social learning (ability to 

learn from others) and cognitive learning (own learning process). Result of social 

learning is gbest, the best solution which the particle stores in memory, wheres pbest 

is the best solution of individual it met on its way. 

A n y particle also have a factor of velocity, which represents a change of direction 

and the magnitude in time (iteration). Velocity update equation follows as: 

via 1 = vU + cm(p\dx\d) + c 2r 2(p l

g d - x\d) (2.5) 
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Where d represents a dimension, i is iteration, t is time, c\ and c 2 are constants 

called cognitive and social scaling parameters, respectively or simply acceleration 

coefficients r\ and r 2 (in range from [0,1]). Next is position update equation. 

xt+iid = Ad + Ad1 (2-6) 

This algorithm has also a stopping criteria parameter. Popular stopping criteria 

are usually based on maximum number of function evaluations or iterations which 

are proportional to the time taken by the algorithm and acceptable error[16]. If 

an algorithm does not improve in a certain number of iterations, search should be 

stopped. 

for t= 1 to the maximum bound on the number of iterations do 
for i=l to S do 

imd=l to D do 
A p p l y the v e l o c i t y update e q u a t i o n 1; 

A p p l y pos i t i on update equa t i on 2 : 

end 
C o m p u t e fitness o f upda ted p o s i t i o n ; 

I f needed , update h i s to r i ca l i n f o r m a t i o n f o r pbes t and gbes t ; 

e n d 

T e r m i n a t e i f gbest mee ts p r o b l e m r e q u i r e m e n t s : 

end 

F ig . 2.14: Basic Particle Swarm Optimization[16] 

2.2.2 Differential Evolution - DE 

Differential Evolut ion (DE) is a powerful and popular algorithm in the field of evo

lutionary computation. Its success lies in its simplicity, robustness, and ease of use. 

In the following subsections, we detail each step of the algorithm. 

The D E process begins wi th the initialization of a population of potential solu

tions. These solutions, often selected randomly wi thin predefined boundaries, form 

the base for the search of an optimal solution. If the optimization problem is D-

dimensional, we initialize a population with NP individuals, each represented as a 

D-dimensional vector. A n individual vector is denoted as X [ i , G ] , where % is the 

individual 's index, and G is the current generation [17] 
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Next the process of mutation follows, in which D E generates new parameter 

vectors by adding the weighted difference of two vectors from the population to a 

thi rd vector. This operation, known as mutation, is described mathematically as 

V[i, G + l] = X[rl,G] + F * (X[r2, G] - X[r3, G]) (2.7) 

r l , r 2 , r 3 : three randomly selected individuals from the current population 

F : scaling factor, values 0.0 and 2.0 

After mutation, D E performs a crossover operation to produce tr ial vectors 

U[i,G + 1]. These vectors are a combination of the mutant vector and the orig

inal target vector X[i,G}. For each parameter j in vector U[i,G + 1], the value is 

taken either from the mutant vector V[i, G + 1] or the original vector X[i, G]. The 

choice depends on whether a random number is less than the crossover probability 

CR. If the random number is less than CR, the value from the mutant vector is 

used. Otherwise, the value from the original vector is chosen. However, to ensure 

diversity, at least one parameter is always taken from V[i, G + 1]. 

In the selection phase, the tr ial vector U[i, G + 1] is compared wi th the target 

vector If the tr ial vector yields a better fitness score, it replaces the target 

vector in the next generation. 

The mutation, crossover, and selection operations are iteratively repeated unti l 

a termination condition is met. This could be reaching a maximum number of gen

erations, achieving a minimum fitness threshold, or finding a satisfactory solution. 
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generate initial population of size NP ; 
Do 

For each individual i in the population 

generate 2 random integers, n r-± e {l,2,---,NP}, r\ #75 * i; 

generate a random integer jranll e {\,2,---,D} ; 

For each parameter j 

diff=F*(xht,stj - Xfj + x r l j - xr2tj) ; 

2.2.3 Artificial Bee Colony Algorithm - ABC 

A B C algorithm was developed in 2005 which simulates behaviour of honey bees. It 

tries to find the most profitable source by using local and global search mechanisms 

wi th various selection mechanisms performed by bees. Algor i thm is based on three 

different groups of bees (Employed, Onlooker, Scout). These groups also represent 

phases in iterative process of the algorithm. 

I: Inilialkiilion 
2: repeat 
3: Employed Beei ' Phase 
4: Onlooker Bees' Phase 
5: Memorize the best solution achieved so far 
6: Scout Bee Phase 
7; until Termination criteria is satisfied 

Fig . 2.16: Art i f ic ial Bee Colony algorithm[16] 

In initialization phase a population is generated randomly by equation: 

In employed bee phase a local search is performed by local searching algorithm. 

F ig . 2.15: Differential Evolution[17] 

process 
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After it selection between the current solution and its mutant is carried you. The 

local and greed selection is applied to each food source in the population. 

After first phase Onlooker phase continues. In this search solutions are selected 

stochastically depending on their fitness values. Aga in high fitness values are likely 

selected, based on probability in 2.10. 

Next the Scout Bee Phase follows. In this phase exploration of the new sources 

takes place, it is a fluctuation effect which can bring innovation in availability in 

food sources. 

0, ;(.r, ; - ./'/,,) (2.9) 

fitnessi 

J2i=i fitnessi Pi = ^SN 7Z (2-10) 

where i is iteration, S N is the number of food sources, D the number of design 

parameters, xrfim and x™ax are lower and upper boundary of j - t h dimension, 0 is a 

real random number [-1,1], k is neighbour solution chose randomly by <f>. 

Regardless all phases above, A B C algorithm has three control parameters: num

ber of food sources, the maximum number of cycles, limit of exhausted sources. Nowa

days a lot of modifications of A B C exist and each of this modifications can have its 

own parameters. A B C has proved itself in many engineering fields like filter design, 

hydrology, c ivi l engineering, mechanic, control systems, scheduling, data mining etc. 

Its performance is compares to those of k-means, fuzzy-c-means ans particle swarm 

optimization. 

2.2.4 Spider Monkey Optimization - SMO 

Spider monkeys have been categorized by biologists as fission-fusion social structure 

(FFS) based animals. This means they follow fission-fusion social systems, which 

means they have a mutual interest in working in a large group and sometimes based 

on need, they divide themselves in smaller groups for more effective foraging. There

fore, their strategy for survival and foraging was implemented in algorithm. For a 

better understanding of foraging see 2.17. 
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Fig . 2.17: Spider Monkey Foraging [16] 

process 

Whole process has four steps. First the group led by dominant female starts food 

foraging and distance evaluation from the food. Next group members evaluate and 

if beneficiary update them. After update evaluation of the distance happens again. 

In the third step, local leader updates its best position within the group but if the 

position is stick (not updated), all members of the group start searching for food 

in the different directions. Last step, the forth one, is when a leader of the group 

updates the best met position. In case of stagnation groups is divided into a smaller 

groups. A l l steps before are executed unti l the desired output is achieved. 

For a better control of the process, there are two parameters GlobalLeaderLim.it. 

LocalLeaderLimit. Bo th of them help the leaders to take appropriate decisions. 

Loca l Leader Phase ( L P P ) equation helps all spider monkeys to update their 

position. Modification is based on local leader. 

SMneWij = SMid + U(0, l)(LLkJ - SMid) + U(-l, l ) ( S M r j - - SMid) (2.11) 

Here U(0, 1) is a uniformly distributed random number in the range (0, 1) and same 

applies to U ( - l , l ) wi th own appropriate range. After completion of Global Leader 

Phase ( G L P ) follows where update is based on selection probability thanks to fitness 

function. 
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fitness function = fiti = < IT/ iffi > 0 (2.12) 

The selection probability probi is determined by roulette wheel selection. 

probi = 0.9-
max fit 

+ 0.1 (2.13) 

Update position of a global leader is identical to 2.11, where L L is replaced wi th 

G L . S M O better balances between exploitation and exploration trying to search 

optimal solution. It also posses an inbuild mechanism for stagnation check thanks 

to local and global learning processes. . The local leader decision phase creates an 

additional exploration while in the global leader decision phase, a decision about 

fission or fusion is taken. Therefore, in S M O exploration and exploitation are better 

balanced while maintaining the convergence speed. [16] 

S M O shows that it has a great optimizer wi th a huge potential, however its 

downsides when using a large number of self dependent parameters. Some studies 

show S M O in some cases is capable of outpacing A B C , D E and P S O . 
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Fig . 2.18: Spider Monkey Optimization[16] 
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2.2.5 Ant Colony Optimization - ACO 

The A C O is a probabilistic technique used for founding approximate solutions to 

difficult optimization problems, developed by Marco Dorigo in 1992. It belongs to 

group of swarm intelligence algorithms. The whole algorithm is modeled on the 

actions of an ant colony finding source of food and its natural behaviours guided by 

pheromone-based communication of biological ants. Generally it is t rying to find 

shortest possible path through graphs. 

process 

Informally, an A C O algorithm can be imagined as the interplay of three procedures: 

Construct Ants Solutions, UpdatePheromones, and Daemon Actions. 

ConstructAntsSolutions manages a colony of ants that concurrently and asyn

chronously visit adjacent states of the considered problem by moving through neigh

bor nodes of the problem's construction graph. They move by applying a stochastic 

local decision policy that makes use of pheromone trails and heuristic information[19]. 

This is the way how ants are building solutions. Once the solution is constructed or 

is stil l under construction ant evaluates the partial solution in UpdatePheromones 

procedure in order to decide how much pheromones should be deposited. 

k = — i f • Nk , 2 1 4 N 

where r^- is the pheromone level on edge (i,j), is the heuristic value of node j , 

a and (3 are parameters that control the influence of pheromones and heuristics, 

respectively, and the denominator is a normalizing factor. 

UpdatePheromones is the process in which pheromone trails are updated/modified. 

When and ant finds a great source of food, it starts to strengthen pheromone trai l 

back. This has valuable information provided to ant coworkers so that they can 

find a source of food more easily, but we also should remember that pheromones 

are evaporating. In other cases when food source was not found or inefficient in 

nutrients, ant worker wi l l not mark the t ra i l on its return. Evaporating can be 

interpreted as a form of forgetting. Due to a forgetting A C O avoids a too rapid 

convergence towards a suboptimal region, thus favoring the new exploration areas 

in search space. Pheromone evaporation: 
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T i j ^ { l - p ) T i j V(i,j)eL (2.15) 

where p is the pheromone evaporation rate and <5tjj is the amount of pheromone 

deposited on edge (i,j), which depends on the quality of the solution that uses that 

edge. 

Pheromone deposit: 

t u ^ t u • £ A r £ , V(i,j)eL (2.16) 

where 8r^ is the amount of pheromones ant k 

The final and optional procedure is Daemon Action serving as a main component 

for implementation of centralized actions, which cannot be done by single ants. Ex 

amples of daemon actions are the activation of a local optimization procedure, or 

the collection of global information that can be used to decide whether it is useful 

or not to deposit additional pheromone to bias the search process from a non-local 

perspective. A s a practical example, the daemon can observe the path found by 

each ant in the colony and select one or a few ants (e.g., those that built the best 

solutions in the algorithm iteration) which are then allowed to deposit additional 

pheromone on the components/connections they used [19]. 

procedure ACOMetaheurist ic 

ScheduleAcilvities 
ConstruetA ritsSolutions 

UpdatePheromones 

DaennonActions % op t i ona l 

end-ScheduleActivities 
end-procedure 

Fig . 2.19: An t Colony Optimizat ion pseudo-code[19] 

A s mentioned before, like other swarm algorithms, it has many modifications and 

extensions. Most ly known and used modified versions are: A n t colony system (ACS) , 

Ant system (AS), Max-min ant system ( M M A S ) , Parallel ant colony optimization 

( P A C O ) . A C O has been applied in many case e.g network routing problem, vehicle 

traffic. 
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2.2.6 Cuckoo Search - CS 

Cuckoo Search is nature-insipired metaheuristic algorithm developed by in 2009 by 

Xin-She Yang and Suash Deb. CS is based on brood parasitism, which is typical fea

ture of Cuckoo birds. What ' s more algorithm does not use simple isotropic random 

walks, but combines them with Levy's flights. For better general understanding CS 

uses 3 rules: 

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest 

• The best nests wi th high-quality eggs wi l l be carried over to the next genera

tions 

• The number of available host nests is fixed, and the egg laid by a cuckoo is 

discovered by the host bi rd with a probability p (0, 1). In this case, the host 

bird can either get r id of the egg, or simply abandon the nest and build a 

completely new nest [18] 

A s mentioned before A C O is combination of locally applied random walk and glob

ally Levy's distances. Random local walk can be written like: 

xl+1=aS H(pa-e) {x) - x\) (2.17) 

whereas global random walk is carried out by using Levy's flights. Levy flight 

involves generating new solutions by performing a random walk, inspired by the 

Levy flight pattern of cuckoo birds. The new solutions are generated by adding a 

random perturbation to the current solution, where the perturbation is generated 

according to a Levy distribution. The Levy distribution has a heavy tai l , which 

allows for larger steps in the search process [18]. 

xl+1 = x \ + aL(s, A) (2.18) 

where L is the characteristic scale of the problem of interest: 

r , Ar(AWn(7rA/2) 1 . . . 
L(s, A) = — ^ 1 ' ' 7-T, (s » s0 > 0) (2.19) 

In equations above a > 0 is a step size scaling factor, pa is a switching parameter, 

H is heuristic function, e is a random number drawn from a uniform distribution, s 

is the step size, x*- and x\ are two different solutions selected randomly by random 

permutation. 
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process 

1. Randomly generate an initial population of ft nests at the positions, X = 
\x®t jr!J, jc" }, then evaluate their objective values so as to find the current global 
best gP, 

2. Update the new solutions/positions by 

x j ^ - x r + a e W (14) 

3. Draw a random number r from a uniform distribution [0, J ]. Update jcf'+1' if 
r > pa> Then, evaluate the new solutions so as to find the new, global best g*> 

4. If the stopping criterion is met, then is the best global solution found so far. 
Otherwise, return to step (2), 

Fig. 2.20: Cuckoo Search process [18] 

CS has been applied in many areas wi th high demand on optimization proving its 

promising efficiency In has superiority in terms of performance over other algo

rithms for a continuous optimization problems e.g spring design and welde beam 

design problems. Cuckoo search has many modifications made by different authors. 

It was applied in e.g neural network optimizations, embedded systems, optimized 

semantic web search process, training neural network. Also CS has been used to 

solve nurse scheduling problems, software testing and test data generation. More 

can be found [18]. The applied 

2.2.7 Firefly algorithm - FIR 

The Firefly Algor i thm (FA) is a metaheuristic algorithm for global optimization, 

which was introduced by Yang in 2008, and is inspired by the flashing behavior of 

firefly insects [22]. Fireflies utilize flashing behavior to attract other fireflies, pri

marily for signaling purposes to the opposite sex. Since its development, F A has 

received significant attention and has been successfully applied in various applica

tions. For instance, F A has been employed for efficient clustering [23], tracking 

expanding oil spills and estimating their areas, discovering opinion leaders in online 

social networks, and solving optimization problems in the computer-aided processing 

planning system [23]. 

Flashing lights serve as two purposes: to warn potential predators and to attract 

mating partners. Flashing light intensity obeys three idealized rules [22]. 
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• Fireflies are unisex so that one firefly wi l l be attracted to other fireflies regard

less of their sex. 

• The attractiveness is proportional to the brightness and they both decrease as 

their distance increases. Thus for any two flashing fireflies, the less brighter 

one wi l l move towards the brighter one. If there is no brighter one than a 

particular firefly, it wi l l move randomly. 

• The brightness of a firefly is determined by the landscape of the objective 

function. 

This algorithm faces two principal main issues, which are: the variation of light 

intensity and formulation of the attractiveness. For simplicity we assume that the 

attractiveness of a firefly is determined by its brightness which in turn is associated 

wi th the encoded objective function [23]. The attractiveness of a firefly, represented 

by j3, is dependent on the distance r^- between itself and other fireflies. The bright

ness J of a firefly at a specific location x can be determined as I(x) oc f(x). The 

light intensity I(r) decreases wi th distance r from the source, and its absorption in 

the medium depends on the light absorption coefficient 7. To avoid singularity at 

r = 0, the combined effect of both the inverse square law and absorption can be 

approximated using a Gaussian form. This is given by 

Together with a distance of any two fireflies i and j the distance variable r 

can be define by the Eucledian distance or any another distance equations can be 

used Mahattan, Minkowski , Cherebychev, Jaccard etc. Each of them has its own 

strengths and weaknesses. 

\ k=l 

So if we combine two equations above, we get an equation of the movement of a 

firefly % which is attracted to more brighter (attractive) firefly j. 

Here, the second tern represents attraction and the third term randomization. 

Rand is a random number generator [0,1], where a is randomization parameter, 

gamma characterizes the variation of the attractiveness. The gamma is crucial in 

determining the speed of convergence, which implies to whole algorithm behaviour. 

(2.20) 

(2.22) 
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process 

Firefly Algorithm  

Objective function / ( x ) , x = [xi,.... x<i)T 

Generate initial population of fireflies x^ (i = 1,2, 
Lifj/itf intensity U at Xt is defermmetf by / (xt) 
Define light absorption coefficient •) 
W h i l e •'• < .]'<!.<(•< fit lut'OU ..' 
for i = 1 : n all n fireflies 

for j = 1 : i alln fireflies 
if (Ij > Ii), Move firefly i towards j in d-dimension; end if 
Attractiveness varies with distance r via exp[ —yr] 
Evaluate new solutions and update light intensity 

end for j 
end for i 
Rank the fireflies and find the current best 
end while 
Postprocess results and visualization 

Fig . 2.21: Firefly pseudo algorithm [22] 

A s the authors of the the research paper claim [23], the firefly algorithm is highly ef

ficient in its basic form. However, as the optima approach, the solutions continue to 

change. B y gradually reducing the randomness and varying the randomization pa

rameter , the solution quality can be improved and the algorithm's convergence can 

be further enhanced. These are important topics for future research. Additionally, 

the firefly algorithm can be extended to solve multi-objective optimization problems 

and combined wi th other algorithms for even more exciting research possibilities. 
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3 Basic models in perfusion US imaging 
Perfusion is defined as the flow of blood (or other body fluids) through the tissues. 

Adequate blood flow is necessary for the proper function of a tissue or organ, en

sures the supply of oxygen and nutrients, and also ensures the outflow of metabolic 

products. 

Perfusion is influenced by blood pressure, the activity of the heart, the amount of 

blood and fluids in the body. Perfusion analysis is mainly used for oncological and 

ischemic observations and patient examination. Perfusion is a promising tool for 

the exclusionary resolution of cancer or inflammation. The advantage of ultrasound 

perfusion measurement is real-time measurement and monitoring along wi th the low 

cost of the examination. Nevertheless, ultrasound images suffer from noises, such as 

poor image quality, artifacts (especially attenuation), which can cause difficulties in 

quantitative analysis. The basis for monitoring perfusion is the temporal recording 

of changes in contrast agent concentration in tissue after intravascular administra

tion. There are two basic approaches for quantitative analysis, namely the perfusion 

method and bolus tracking. 

3.1 Models 

A l l perfusion models mentioned in this chapter belong to article A multi-model 

framework to estimate perfusion parameters using contrast-enhanced ultrasound imag

ing [8]. Model ing of perfusion curves is important for comparison of physiological 

perfusion parameters and phantom models to verify their accuracy. Comparison of 

models and perfusion curves is based on perfusion parameters. Basic parameters 

are: 

M T T 

Blood flow 

Volume 

A U C 

mean transit time, which represents mean time of the 

flow through region of interest (ROI) [s] 

time-to-peak, time in which a contrast agent riches a 

maximum concentration [s] 

in T O I per tissue weight [ml • g~x] 

in T O I per tissue weight [ml • min~1g~1] 

under the curve [g-min • ml 1] 

The flow rate (F) and volume model (V) are calculated by using Steward-Hamilton 

relations, where (m) represent a mass [12]. 
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AUC 
V — F • MTT (3.2) 

The single perfusion model is used for a estimation of perfusion parameters because 

of the sensitivity to ini t ial values for perfusion parameters and selection of appro

priate boundary conditions for algorithms, which may result in unrealistic values. 

Nowadays in clinical C E U S we face wi th 5 different perfusion models: 

AUC : Area under the curve 

i 0 : Time offset 

C : Baseline intensity offset 

MTT : Mean time to resolution 

H : Mean 

a : Standard deviation 

a : Number of equally sized homogeneous compartments in a series 

(3 : Volume of each compartment divided by the flow rate 

T : Count of compartments 

A : Péclet number divided by 2 

In clinical practice, empirically lognormal model is used in Hearth and Breast diag

nostics. This model is based on the vessels wi th bifurcations, which lead to fractal 

behaviour [8]. 

3.2 Lognormal distribution model 

i(t) 
AUC ln(t — tQ) — /j, 

2*2 + C (3.3) 
\/2Ťřa(t 

e 
to) 

MTT 

•p 

(3.4) 

(3.5) 
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3.3 Gamma variate 

This model takes in count constant flow through series of equally-sized, homogeneous 

compartments. Distr ibution fits best to a carotid imaging [8]. 

AUC 
f ( t ) = / 9 » » r ( a + l ) ( t + C ( 3 ' 6 ) 

MTT = (3(a + 1) (3.7) 

tp = a(3 (3.8) 

In ultrasound imaging, Gamma variate fitting is often used to evaluate tissue per

fusion. This technique tracks the enhancement of an ultrasound contrast agent over 

time in Dynamic Contrast-Enhanced Ultrasound ( D C E - U S ) imaging. B y analyzing 

the resulting time-intensity curves, information about blood flow and tissue perfu

sion can be obtained. 

3.4 LDRW - local density random walk model 

L D R W distribution represents a fluid model with diffusion within a vessel. Model 

assumes the microbubbles pass vessel boundaries multiple times [8]. 

lit) = A U C & J ^ - r ^ e - 1 * * ^ ^ + C (3.9) W V V 2tt (t - 1 0 ) K J 

MTT = fi (3.10) 

tp = ^ ( V l + 4 A * - l ) (3.11) 

3.5 FPT 

Model also considers fuidity and diffution in a vessel, similarly to L D R W . Difference 

is that F T P assumes a microbubbles pass only once through the vessel. First pas

sage time model best fits to a carotid[8]. 

' ^ * ^ ( ( 4 ) l t H l w " ) + c ( 3 - 1 2 ) 

MTT = fi (3.13) 

t p = ^(V9 + W-3) (3.14) 
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3.6 Lagged Normal 

This model was created for a situation in which dispersion of microbubbles in large 

vessels is random and followed by merging in micro-vascular network. Authors of 

the [8] article recommend using this model for a liver modeling. 

/ ( t ) = £ ^ l A e ( o ) " 2 - 2 + 2 - 2 ) [ + ^ ] + C (3.15) 

MTT = / x + l A (3.16) 
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4 Perfusion analysis 
Perfusion is the process of l iquid flow through the tissues. B lood flows is essential 

for the proper functioning of the tissue and organs ensuring the supply of the nu

trients and oxygen, also provides the drainage of the metabolic wastes. Perfusion is 

dependent on couple of factors, namely: blood pressure, heart activity, amount of 

the blood and fluids, condition of the vessels supplying the organ and rheological 

characteristics of the blood and fluids. 

Perfusion is the act of a fluid traversing through body tissues. It is crucial for 

tissues and organs to function correctly because it ensures that they receive necessary 

nutrients and oxygen. It also helps to eliminate metabolic by-products. Numerous 

factors influence perfusion, including blood pressure, heart function, blood volume, 

the health of blood vessels serving the organ, and the flow properties of the blood 

and fluids. 

Ultrasound technology can be employed to visualize perfusion in two primary 

ways: the conventional method using Doppler and a newer method involving mi-

crobubble contrast agents. The Doppler method is straightforward and cost-effective, 

but it is restricted to larger vessels with higher flow speeds. It is ineffective for ex

amining the microvasculature because the general tissue motion exceeds capillary 

flow speed. This method has been used for assessing liver and tumour blood flow. 

O n the other hand, contrast studies offer more comprehensive insights and can 

evaluate both macro and microcirculation. One strategy involves examining time-

intensity curves in a specific such tumour, heart muscle, or brain, after 

an intravenous bolus injection. Another strategy gauges the duration it takes for 

microbubbles to traverse a vascular bed of interest. These time measures can be 

advantageous in assessing both widespread and localized liver diseases and kidney 

conditions. 

Information derived from time-intensity curves after microbubbles' bolus intra

venous injections forms sensitive early indicators of how tumours respond to anti-

vascular medications. This method, called dynamic contrast-enhanced ultrasound 

( D C E - U S ) , has gained recognition as a valid procedure for monitoring tumour re

sponse by several authorities. [20] 

4.1 Doppler 

In its very classic form, Doppler ultrasound method measures the change in fre

quency in pulses of long or continues character thanks to reflection from a moving 

target. The difference between sent and received bounced signal is processed to 

determine direction of the flow and the speed of moving fluids. 
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It has limitations during movement of the tissue (cardiac activity and breath

ing),when frequency shifts are indistinguishable from blood flow. Especially slow 

flows under 1 mm/s in capillaries. 

4.2 Microbubbles 

In sonography microbubles are used for enhancing a a quality of ultrasound signal. 

First tires date back to 60s. Specialist at that time was Dr . Raymond Gramiak 

from Rochester University, U S A . His first attempts connected echography units to 

oscilloscope, which help h im wi th demonstration in ultrasound imaging with B-mod 

and M-mode. He was among first who propagate usage of microbubbles in cardiac 

examination. 

Microbubles are small complex units wi th size of diameter from 1 - 1 0 mum, 

nowadays even tens and hundreds of nanometers. Microbubles should met conditions 

of biodegrability and biocompatibility. A typical microbubble have a shell and 

gas core. The shell can be composed of surfactants, proteins, lipids, polymers or 

combination of mentioned materials. 

Microbubbles after injection into vascular system are less durable and more un

stable, especially when transporting contrast agents or drugs. Its stability is mostly 

influenced by internal environment. Most decisive factors are pressure and tempera

ture. W i t h higher pressure, which occurs in a heart and vessels during systole make 

sustainability requirements more demanding. Another important and decisive factor 

in stability of the molecule is concentration of dissolved inner gas wi th impact on 

surface tension and liquid-gas interface concentration gradient. Solubility and inner 

gas composition also have their role. Microbubbles are divided into three groups. 

1. Air-f i l led microbubbles 

Inner structure of the first generation of microbubbles consist of air. This bub

bles had couple disadvantages, namely high solubility in blood what instantly 

led to filtration via lungs affecting lifespan of microbubbles. This problem was 

partly solved by adding surface active substance which bonds into bubble sur

face prolonging lifespan for couple of seconds. A t first very basic physiological 

saline was used then followed Almubex®, Levovist®and Sonogel®. 

2. Transpulmonary vascular (with lifespan < 5 min) 

Second-generation contrast agents contain microbubbles that are stable and 
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small enough to enter the systemic circulation. After intravenous adminis

tration, they increase the Doppler signal in various vessels. However, their 

contrast effect ends after a few minutes because their lifetime is not very long, 

usually less than 5 minutes. Most of the molecules include Fluor atoms in the 

form of perfiuorocarbons or sulphur hexafluoride. This generation is commer-

tialy available, known as Opt ison®, SonoGen®, and SonoVue®. 

3. Transpulmonary vascular (with lifespan > 5 min) 

T h i r d generation of microbubbles uses physiologically inert gases wi th low 

solubility capable of prolonging time lifespan in bloodstream over 5 minutes. 

T h i r d generation is used in almost every organ of human body reachable for 

ultrasound diagnostic devices, also providing better stability and echogenity 

in B-mode. A n example of the thi rd generetaion is EchoGen®. 

4.2.1 Bolus tracking monitoring 

The bolus monitoring method is based on the administration of a bolus in the form 

of a compact contrast substance. Next the substance is being focused and tacked 

in bloodstream. Strength of the signal is monitored in time. The goal of bolus 

tracking is to monitor the perfusion of an organ, which provides information about 

blood flow and oxygenation. 

F ig . 4.1: Bolus tracking method [13] 
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Bolus tracking has a number of applications, including the evaluation of blood flow 

in the brain, liver, and kidney, and the assessment of organ function in patients 

wi th various medical conditions such as stroke, tumors, and heart disease. Bolus 

tracking can also be used to guide interventional procedures, such as catheterization 

and embolization, by providing information about the flow of contrast agent in real

time. 

4.2.2 Reperfusion method 

Reperfusion monitors blood flow through kidney tissue, liver and myocard, This 

method uses combination of very intensive destructive pulses at the beginning which 

destroy microbubbles within. Then the scanner switches to a imaging mode wi th 

low mechanical index. Next monitoring of microbubbles refill takes place. Refill 

is represented by raising slope (3 - velocity of inflow, while A refers to fractional 

vascular volume. 

Ml 2,0 high Ml destructive pulses 

> 

Time 

Fig . 4.2: Reperfusion [20] 
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4.3 Preparation 

The first encapsulated microbubbles were prepared by aerating a sample of the pa

tient's blood, and is still the simplest and most commonly used method for preparing 

microbubbles. Today a mechenical shaker, low-frequency ultrasound or coaxial elec-

trohydrodynamic atomization ( C E H D A ) , microfluid T-junction, higher shear rate 

emulsification or membrane emulsification is used. 
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5 Implementation of data in models, python 
This section provides a detailed overview of the program's design, formal structure, 

and functional capabilities. The program is organized into Python packages com

prising various classes, demonstrating adherence to the principles of Object-Oriented 

Programming ( O O P ) . Execution is initiated via the main .py script. 

Upon launch, the program autonomously loads data present in .mat files into 

a Data object. A s part of this loading process, signals are filtered and prepared 

for future utilization. The e v o l u t i o n a r y package encompasses the evolutionary 

algorithms employed within the program. 

The models outlined in Section 3.1 can be located within the f u n c t i o n s package, 

constituting the fundamental functional units of the program. 

5.1 Libraries 
PySwarms A n open-source research toolkit for Particle Swarm Op

timization (PSO) in Python. Chosen for projects deal

ing wi th optimization problems. 

Scipy A Python library for scientific and technical computing. 

Essential for projects involving mathematical computa

tions. 

Sklearn Also known as Scikit-Learn, this library is popular for 

machine learning in Python. Useful for projects involv

ing building predictive models. 

Numpy Adds support for large, multi-dimensional arrays and 

matrices in Python, along with numerous high-level 

mathematical functions. Fundamental for scientific 

computing in Python. 

5.2 Project structure 

data where data, load functions are stored, 

directory for statistical measurement functions 

contains evolutionary algorithms 

directory wi th models 

contains a different modules for processing previous 

structures and classes 

error 
evolutionary 

functions 

modules 
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5.3 Flow Diagram 

The flow diagram below represents how program works. More comments can be 

found in code project. 

RUN LOAD 

f ^ 

RUM ALGORITHM FIT RUN LOAD 

f ^ 

RUM ALGORITHM FIT 

END DISPLAY RESULTS 

>. t 

PLOT 

>. t 

f -\ 

RUN STATISTICS END DISPLAY RESULTS 

>. t 

K PLOT 

>. t 

K 

f -\ 

RUN STATISTICS 

Fig . 5.1: Flow Diagram 

5.4 Used data 

This diploma thesis incorporates two distinct datasets. Each of these datasets has 

been individually prepared for subsequent use. Bo th datasets consist of .mat files, a 

format commonly associated wi th M A T L A B . However, Dataset 1 possesses different 

properties compared to Dataset 2, necessitating the creation of two distinct functions 

for data loading. To facilitate further use, these datasets have been converted to a 

format readable by Python using the pymatreader library. 

Dataset 1: 

Phantom data was created using a dialyzer cartridge (for dialysis) and two stronger 

tubes wi th a constant flow in a non-recirculating system. The experiment was 

repeated for 4 different flow rates. Sonovue was used as a contrast agent in an 

appropriately diluted concentration to prevent significant attenuation on the mi-

crobubbles. Imaging was performed using the G E System F iVe with a 2.5 M H z 

sector probe in harmonic mode. 

• exp 13 _aifnova inp _ t is 111017. mat 

• exp 13 roinove inp_t i s 111017. mat 

• exp 13_roi velke_inp_tis_111007.mat 

• exp l4_AIF2_ inp_ t i s_111010 .ma t 

• expl4 roimale2 inp tis 111010.mat 

• exp 14 roivelke inp tis_110907.mat 

• exp l5_AIF_ inp_ t i s_111007 .ma t 

• exp 15 roimale i n p _ t i s _ 11100 7. mat 
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• exp 15_roi velke_inp_tis_111007.mat 

• exp l7_AIF_ inp_ t i s_111007 .ma t 

• exp 17 roimale i n p _ t i s _ 11100 7. mat 

• exp 17_roi velke_inp_tis_111007.mat 

Dataset 2: 

Images of a pig's myocardium were taken directly on the heart in an open chest 

setup using the G E V i v i d 7 system wi th a 3.5 M H z linear probe. The images were 

taken in what is called the short axis view and were keyed using an E C G to display 

the maximum filling of the ventricles. 

• per02_2_13 t r i g _ D R 6 0 inp_con_mreg_121113.mat 

• p er 0 2 _ 2 _ 4 _ t r i g _ D R 6 0 _ i n p _ c o n _ m r e g _ 121113.mat 

• p er 0 2 _ 2 _ 8 _ t r i g _ D R 6 0 _ i n p _ c o n _ m r e g _ 121113.mat 

• per02_3_2_t r ig_DR60_inp_con_mreg_121120.mat 

• per02_3_7_t r ig_DR60_inp_con_mreg_121120.mat 

• per02_3_8 t r i g _ D R 5 0 inp _con_mreg 130226.mat 

5.5 Evaluation 

When evaluating the performance of predictive models, it is important to use ap

propriate evaluation metrics that provide valuable insights into their effectiveness. 

R-squared, Spearman Correlation, and N R M S E (Normalized Root Mean Squared 

Error) are three commonly used measures that offer information about the accu

racy, relationship strength, and predictive power of models. Understanding these 

metrics is essential for researchers, data scientists, and decision-makers who want to 

effectively evaluate and compare different models. 

5.5.1 R-squared 

It is also known as the coefficient of determination, measures the proportion of 

the variance in the dependent variable that can be explained by the independent 

variables in a regression model. It ranges from 0 to 1, with higher values indicating a 

better fit to the data. A high R-squared suggests that a larger portion of the observed 

variation is captured by the model, demonstrating its ability to explain and predict 

the outcome variable. However, R-squared alone does not guarantee model validity, 

as it can be influenced by the number of variables and their interdependencies, The 

R-squared (coefficient of determination) is calculated as 5.1: 
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R2 = 1 -
EU^-y)2 

(5.1) 

Observed values of the dependent variable 

Predicted values by the regression model 

y Mean of the observed values 

77 Number of data points 

5.5.2 NRMSE (Normalized Root Mean Squared Error) 

N R M S E calculates the normalized error between predicted and actual values, offer

ing a measure of predictive accuracy. It is derived from the Root Mean Squared 

Error ( R M S E ) , which quantifies the average deviation between predicted and ac

tual values. N R M S E normalizes the R M S E by dividing it by the range of the data, 

providing a relative measure of error. A lower N R M S E indicates better predictive 

performance, as it represents a smaller average error relative to the data range. 

Hi : Observed values of the dependent variable 

iji : Predicted values of the dependent variable 

n : Number of data points 

max(y) : M a x i m u m value of the observed values 

min(y) : M i n i m u m value of the observed values 

5.5.3 Spearman Correlation 

Spearman Correlation measures the monotonie relationship between two variables, 

providing insights into their association regardless of linearity. It ranges from -1 to 

1, wi th values close to -1 or 1 indicating a strong negative or positive monotonie 

relationship, respectively. A Spearman Correlation of 0 suggests no monotonie re

lationship. Unlike R-squared, Spearman Correlation focuses on the order of the 

data points rather than the actual values, making it suitable for assessing non-linear 

relationships. 

(5.2) 

P 1 - (5.3) 
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p : Spearman Correlation coefficient 

Ri : Ranks of the observed values for the first variable 

Si : Ranks of the observed values for the second variable 

n : Number of data points 

5.6 Results 

In this study, we compared the performance of six metaheuristic algorithms, namely 

the cuckoo search algorithm, spider monkey algorithm, artificial bee colony, firefly al

gorithm, pso, and ant colony algorithm on a set of benchmark functions. The results 

showed that all six algorithms were able to find good solutions to the optimization 

problems, but wi th varying levels of efficiency. 

5.6.1 Graphical representation of results 

The images below represent the application of each algorithm, with all five models 

fitted to the data. Subsections are divided based on whether they present results 

from the implemented algorithm or a commonly-used library algorithm for data 

fitting. These two approaches wi l l be compared in this thesis. 

implemented algorithms 

expl3_roinovejnp_tis_111017.mat ant per02 2 4_trig_DR60Jnp_con_mreg_121113.mat ant 

(a) Ant example - dataset 1 (b) Ant example - dataset 2 
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expl3_roinove_inp_tis_lllQ17.mat abc per02_2_S_trig_DR60_inp_con_mreg_121113.mat abc 

2 5 0 - m • data 

log n o r m a l 

g a m m a 

200 

# » • 1 

Idrw 

fpt 

lagged 

^ 1 5 0 " 

In
te

n
si
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j mjv / • 
• 

50 

• 

D -

0 20 40 60 SO 
T i m e [s] 

ICO 120 140 

(a) A B C example - dataset 1 (b) A B C example - dataset 2 

exp!4 AIF2 inp tis 111010.mat cuckoo search per02 2 S trig DR60 inp con mreg 121113.mat cuckoo search 

• data 250 
g a m m a 

Idrw 

fpt 200 
1 lagged 

150 -

1 c 
~ 100 -

/ 50 

o -
20 30 40 50 60 

T i m e [s] 
2 0 40 60 30 100 12 0 140 

T i m e [s] 

(a) CS example - dataset 1 (b) CS example - dataset 2 

exp!5AIF inp tis 111007.mat fir per02 3 8 trig DRS0 inp con mreg 130226.mat fir 

• da ta 

l o g n c r m a l 

ga m m a 

Idrw 

- fpt 
l agged 

20 • 

175 

150 -

125 

i 100 -

75 -

0 10 20 30 40 50 60 70 

T i m e [s] 

2 0 40 60 30 IOC 120 140 

T i m e [s] 

(a) F IR example - dataset 1 (b) F IR example - dataset 2 
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expl4_AIF2_inp_tis_111010.mat spider monkey per02_2_13_trig_DR60_inp_con_mreg_121113.mat spider monkey 

data 

log n o r m a I 

g a m m a 

Idrw 

fpt 

lagged 

(a) S M example - dataset 1 (b) S M example - dataset 2 

library algorithms 

expl4 AIF2 inp tis111010.mat pso perQ2 2 13 trig DR60 inp con mreg 121113.mat pso 
data 

log n o r m a I 
g a m m a 

d rw 

fpt 

lagged 

ID 20 30 40 50 60 
T i m e [s] 

0 2 0 40 60 SO 100 12 0 140 
T i m e [s] 

(a) PSO example - dataset 1 (b) PSO example - dataset 2 

expl3 roinove inp tis 111017.mat de per02 2 4 trig DR60 inp con mreg 121113.mat de 

• da ta 

log n o r m a I 
ga m m a 

Idrvj 

fpt 
l agged 

20 30 40 50 

T i m e [s] 

O 2 0 40 60 8D 100 L20 L40 

T i m e [s] 

(a) D E example - dataset 1 (b) D E example - dataset 2 
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5.6.2 Statistical results 

In this section, we wi l l present the statistical analysis of our dataset. This analysis 

includes a variety of metrics aimed at providing a comprehensive understanding of 

the underlying patterns and characteristics of the data. 

The statistics presented in the tables below represent the mean averages com

puted over the entire dataset. These statistics are indicative of the overall trends 

and can provide us wi th a general understanding of the data's behavior. 

The analysis of these statistical measures wi l l provide a broad and comprehensive 

understanding of the data, which is crucial for further processing, modeling, and 

interpretation. 

Results from dataset 1 

Implemented algorithms 

ants = 20, iterations = 100, decay = 0.1, alpha = 1, beta = 2 

Model R2 Spearman Correlation N R M S E 

Log Normal 0.08152 0.8191 0.7027 

Gamma Variate -0.0313 0.5870 0.8214 

L D W R 0.7554 0.9001 0.4870 

F P T 0.2071 0.8710 0.6403 

Lagged Normal 0.2347 0.8709 0.7027 

Tab. 5.1: An t Colony Algor i thm, Dataset 1 

The table presents the results of the A n t Colony Algor i thm applied to Dataset 1, 

wi th specific parameter settings. The algorithm was run for 100 iterations wi th 

20 ants, using a decay rate of 0.1, an alpha value of 1, and a beta value of 2. In 

summary, the An t Colony Algor i thm applied to Dataset 1 with the given parameters 

yielded varying results for different models. The L D W R model demonstrated the 

best overall performance, exhibiting a strong fit to the data and the lowest error. 

The Log Normal , F P T , and Lagged Normal models achieved moderate fits, while 

the Gamma Variate model struggled to capture the underlying patterns in the data. 
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bees = 15, iteration = 100, trials = 10 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.0471 0.4131 0.7425 

Gamma Variate -0.0150 0.4995 0.8102 

L D W R 0.7270 0.8802 0.5077 

F P T 0.2015 0.8588 0.6410 

Lagged Normal 0.2082 0.8472 0.6200 

Tab. 5.2: Art i f ic ia l Bee Colony Algor i thm, Dataset 1 

From the results, it is clear that the L D W R model exhibits the strongest per

formance across the three metrics. It has a notably high R-squared value of 0.7270, 

suggesting a good fit and strong predictive power. The Spearman correlation is also 

the highest amongst all models at 0.8802, indicating a strong monotonie relationship. 

Moreover, L D W R ' s Normalized Root Mean Square Error ( N R M S E ) is the lowest at 

0.5077, indicating the least amount of error. O n the other hand, the Log Normal 

and Gamma Variate models exhibit poor performance, indicated by their negative 

R-squared values and high N R M S E values. These results suggest that these models 

may not be suitable for this dataset. The F P T and Lagged Normal models show 

moderate performance wi th positive R-squared values and relatively lower N R M S E 

values when compared to Log Normal and Gamma Variate. In conclusion, based 

on the statistical measures, the L D W R model appears to provide the best fit and 

predictive accuracy for Dataset 1 when using the Art i f ic ial Bee Colony Algor i thm 

wi th the specified parameters. 

nests = 25, iterations = 100, pa = 1.0 

Model R2 Spearman Correlation N R M S E 

Log Normal 0.7716 0.8971 0.4927 

Gamma Variate 0.2378 0.6277 0.5948 

L D W R 0.8460 0.9134 0.4057 

F P T 0.2679 0.8769 0.5647 

Lagged Normal 0.3146 0.8907 0.4895 

Tab. 5.3: Cuckoo Search, Dataset 1 

The L D W R model demonstrates the strongest performance with an R-squared 

value of 0.8460, indicating a very good fit between the predicted and actual values. It 

also shows the highest Spearman correlation (0.9134), suggesting a strong monotonie 
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relationship. The N R M S E value for L D W R is the lowest at 0.4057, implying the 

smallest prediction error among the models. 

The Log Normal model, surprisingly, also exhibits strong performance wi th an 

R-squared value of 0.7716 and a high Spearman correlation of 0.8971. It has a mod

erately low N R M S E value (0.4927), indicating a reasonable accuracy in prediction. 

The Gamma Variate, F P T , and Lagged Normal models show lower R-squared 

values (0.2378, 0.2679, and 0.3146, respectively), suggesting a weaker fit to the data 

compared to L D W R and Log Normal . However, their Spearman correlations are 

relatively high, indicating a decent monotonie relationship. 

In summary, L D W R and Log Normal appear to offer the most reliable predic

tive performance for Dataset 1 under the Cuckoo Search algorithm wi th the given 

parameters. 

fireflies=10, max iter=100, a=0.5, /3=0.5, 7=1.0 

Model R2 Spearman Correlation N R M S E 

Log Normal 0.3731 0.7464 0.5468 

Gamma Variate 0.2265 0.6159 0.5940 

L D W R 0.8212 0.9016 0.4159 

F P T 0.2635 0.8715 0.5664 

Lagged Normal 0.3078 0.8892 0.5022 

Tab. 5.4: Firefly Algor i thm, Dataset 1 

The Gamma Variate, F P T , and Lagged Normal models exhibit lower R-squared 

values, implying weaker predictive accuracy compared to the L D W R and Log Nor

mal models. However, their Spearman correlations are relatively high, indicating a 

decent monotonie relationship. 

In summary, when employing the Firefly Algor i thm wi th the provided parameters 

on Dataset 1, the L D W R model shows the best overall performance in terms of fit, 

correlation, and prediction error. However, all these statistical results should be 

interpreted in the context of the specific dataset and problem at hand. 
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monkeys=30, spiders=10, radius=0.2, a—0.1, 7=0.1, ß—2 

Model R2 Spearman Correlation N R M S E 

Log Normal 0.4218 0.6632 0.6155 

Gamma Variate 0.0796 0.5198 0.6642 

L D W R 0.7544 0.8855 0.4738 

F P T 0.2290 0.8638 0.5919 

Lagged Normal 0.2630 0.8730 0.5659 

Tab. 5.5: Spider Monkey, Dataset 1 

The table summarizes the performance of different models on Dataset 1 for pre

dicting Spider Monkey behavior. The L D W R model outperforms other models wi th 

the highest R2 value of 0.7544, strong Spearman correlation coefficient of 0.8855, 

and the lowest N R M S E of 0.4738. The Log Normal model also performs reasonably 

well wi th an R? of 0.4218 and a moderate Spearman correlation of 0.6632. The 

Gamma Variate, F P T , and Lagged Normal models have lower performance in terms 

of R?, Spearman correlation, and N R M S E . 
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Library algorithms 

maxiter=100, swarmsize=10 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.0641 0.4137 0.7385 

Gamma Variate -0.0150 0.4995 0.8103 

L D W R 0.7401 0.8785 0.5003 

F P T 0.2073 0.8597 0.6310 

Lagged Normal 0.2107 0.8486 0.6200 

Tab. 5.6: P S O , Dataset 1 

The table shows the performance of different models on Dataset 1 using the Particle 

Swarm Optimizat ion (PSO) algorithm wi th maxiter=100 and swarmsize=10. The 

L D W R model performs the best with a high R2 of 0.7401, strong Spearman corre

lation of 0.8785, and low N R M S E of 0.5003. The Log Normal and Gamma Variate 

models perform poorly, wi th negative R2 values and relatively high N R M S E values. 

The F P T and Lagged Normal models have moderate performance wi th positive R2 

values and similar N R M S E values. In summary, the L D W R model outperforms other 

models in accurately predicting Spider Monkey behavior, while the Log Normal and 

Gamma Variate models perform poorly using the P S O algorithm. 

max iterations = 100 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.0471 0.4131 0.7426 

Gamma Variate -0.015 0.4995 0.8103 

L D W R 0.7271 0.8802 0.5077 

F P T 0.2016 0.8588 0.641 

Lagged Normal 0.2081 0.847 0.641 

Tab. 5.7: D E , Dataset 1 

The performance of the Log Normal and Gamma Variate models is particularly 

poor, as evidenced by their negative R2 values, low Spearman correlations, and high 

N R M S E values. These results suggest that these models fail to accurately capture 

the relationships inherent in the data. Contrastingly, the L D W R model shows a 

notable improvement with a high R2 value and Spearman correlation. This implies 

a strong fit and an effective capture of rank correlation, respectively. Al though 
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the N R M S E value isn't as low as desired, it's significantly better than the aforemen

tioned models. The F P T and Lagged Normal models exhibit moderate performance. 

Whi le their R2 values are low, their high Spearman correlations indicate that these 

models successfully capture the rank order of the data. However, the relatively high 

N R M S E values suggest larger prediction errors. 
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Results from dataset 2 

Implemented algorithms 

ants=50, iter=100, a—1, ß—1, evapora t ions .5 , Q=100, r = 2 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.4273 0.7155 0.3189 

Gamma Variate 0.5123 0.7786 0.2481 

L D W R 0.2240 0.7775 0.3136 

F P T 0.3377 0.7804 0.2841 

Lagged Normal 0.5695 0.7816 0.3189 

Tab. 5.8: A n t Colony Algor i thm, Dataset 2 

Here in a table, the Lagged Normal model demonstrated the strongest fit to Dataset 

2 using the An t Colony Algor i thm, based on the highest R2 value. However, all the 

models had relatively low R2 values, suggesting that they may not provide a strong 

fit to the data. The Gamma Variate and F P T models also showed reasonably good 

performance, while the Log Normal and L D W R models had weaker fits. 

bees = 15, iteration = 100, trials = 10 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.6659 0.6978 0.3527 

Gamma Variate 0.5360 0.7752 0.2446 

L D W R 0.2679 0.8273 0.3073 

F P T 0.1052 0.8147 0.3397 

Lagged Normal 0.5900 0.8370 0.2299 

Tab. 5.9: Atrif icial Bee Colony, Dataset 2 

Overall the Lagged Normal model showed the strongest fit to Dataset 2 using 

the Art i f ic ia l Bee Colony algorithm, based on the highest R2 value, Spearman corre

lation, and the lowest N R M S E . The Gamma Variate model also showed reasonably 

good performance, while the Log Normal, L D W R , and F P T models had weaker fits 

to the data. 
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nests = 25, iterations = 100, pa = 1.0 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.0426 0.7235 0.2808 

Gamma Variate 0.6574 0.8239 0.2102 

L D W R 0.4420 0.8269 0.2683 

F P T 0.5414 0.8471 0.2432 

Lagged Normal 0.7303 0.8374 0.1865 

Tab. 5.10: Cuckoo search, Dataset 2 

Among the models, the Lagged Normal model performed the best, achieving the 

highest R2 value of 0.7303, indicating a strong fit to the data. It also had a high 

Spearman correlation of 0.8374 and the lowest N R M S E of 0.1865. The Gamma 

Variate, L D W R , and F P T models also showed reasonably good performance wi th 

moderate to high R2 values and Spearman correlations. O n the other hand, the 

Log Normal model had the weakest fit to the data, reflected by a negative R2 value. 

Summarizing it, the Lagged Normal model exhibited the strongest performance, 

while the Log Normal model had the poorest fit among the models evaluated. 

fireflies=10, max iter=100, a=0.5, /3=0.5, 7=1.0 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.3892 0.6331 0.3225 

Gamma Variate 0.5859 0.7929 0.2311 

L D W R 0.4384 0.8304 0.2691 

F P T 0.3934 0.8487 0.2797 

Lagged Normal 0.6198 0.8391 0.2214 

Tab. 5.11: Firefly algorithm, Dataset 2 

Again , the Lagged Normal model showed the highest level of accuracy, as indi

cated by its superior R2 value of 0.6198, signifying a strong fit to the data. It also 

exhibited a high Spearman correlation of 0.8391 and the lowest N R M S E of 0.2214. 

The Gamma Variate and L D W R models also demonstrated reasonably good perfor

mance wi th moderate R2 values and strong Spearman correlations. Conversely, the 

Log Normal and F P T models exhibited weaker fits to the data. 
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monkeys=30, spiders=10, radius=0.2, a—0.1, 7=0.1, ß—2 

Model R? Spearman Correlation N R M S E 

Log Normal -0.6263 0.5949 0.3345 

Gamma Variate 0.6308 0.8324 0.2182 

L D W R 0.5019 0.8032 0.2535 

F P T 0.4922 0.8453 0.2559 

Lagged Normal 0.7053 0.8223 0.1949 

Tab. 5.12: Spider Monkey, Dataset 2 

The Lagged Normal model had the best fit to the data wi th an R2 value of 0.7053, 

a Spearman correlation of 0.8223 and the lowest N R M S E of 0.1949. The Gamma 

Variate, L D W R and F P T models also performed well wi th R2 values between 0.4922 

and 0.6308 and strong Spearman correlations. However, the Log Normal model had 

the weakest fit wi th a negative R2 value of -0.6263. Overall, the Lagged Normal 

model was the best performer while the Log Normal model had the poorest fit among 

the models evaluated using the Spider Monkey algorithm. 
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Library Algorithms 

maxiter=100, swarmsize=10 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.7105 0.6924 0.3502 

Gamma Variate 0.5360 0.7752 0.2446 

L D W R 0.2678 0.8273 0.3073 

F P T 0.1052 0.8147 0.3397 

Lagged Normal 0.7017 0.8202 0.1961 

Tab. 5.13: P S O , Dataset 2 

In Optimizat ion (PSO) algorithm, also The Lagged Normal model achieved the 

highest R2 value of 0.7017, indicating a strong fit to the data. It also had the lowest 

N R M S E of 0.1961, suggesting accurate predictions. The Log Normal and F P T 

models had the weakest fits wi th negative R2 values and relatively high N R M S E 

values. 

max itererations = 1 0 0 

Model R2 Spearman Correlation N R M S E 

Log Normal -0.6662 0.6977 0.3527 

Gamma Variate 0.4662 0.7346 0.2605 

L D W R 0.2089 0.7619 0.3177 

F P T 0.0612 0.753 0.3412 

Lagged Normal 0.7017 0.8202 0.1961 

Tab. 5.14: D E , Dataset 2 

The Log Normal model underperforms with a negative R? value, while the 

Gamma Variate and L D W R models show modest performance. The F P T model 

also shows limited predictive power wi th a low R2 value. The standout here is the 

Lagged Normal model, which showcases superior performance across all three met

rics, namely R2, Spearman Correlation, and N R M S E , indicating a strong fit, good 

correlation, and accurate predictions. 
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Results in histograms 

In histograms displayed below, I provide an informative visual summary of the 

performance metrics obtained from evolutionary algorithms. It allows us to analyze 

the distribution and variability of results, identify outliers or patterns, and compare 

the performance of different algorithms. 

• Gamma Variate 

• LDRW 

• FTP 

LaggedNormal 

• Log Normal 

Fig . 5.9: R-squared - dataset 1 

• Gamma Variate 

• LDRW 

• FTP 

LaggedNormal 

• Log Normal 

Fig . 5.10: Spearman - dataset 1 
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• Gamma Variate 

• LDRW 

• FTP 

LaggedNormal 

• Log Normal 

Fig . 5.11: N R M S E - dataset 1 

0.4 

• Gamma Variate 

• LDRW 

• FTP 

LaggedNormal 

• Log Normal 

Fig . 5.12: R-squared - dataset 2 
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Fig . 5.14: N R M S E - dataset 2 
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The Final Conclusion 
This study aimed to evaluate the performance of various models under the paradigm 

of different meta-heuristic optimization algorithms for a specific dataset (Dataset 2). 

The models evaluated included Log Normal, Gamma Variate, L D W R , F P T , and 

Lagged Normal. The meta-heuristic algorithms used for this purpose included A r t i 

ficial Bee Colony, Cuckoo Search, Firefly Algor i thm, Spider Monkey Optimization, 

Particle Swarm Optimizat ion (PSO) and Differential Evolutionary (DE) . 

The empirical results derived from this research provide significant insights. The 

findings highlight the Lagged Normal model as a consistent performer across all the 

optimization algorithms in terms of the R? score and N R M S E . The R2 score, being 

a measure of how well the model predictions conform to the actual outcomes, was 

highest for the Lagged Normal model across all algorithms. This indicates that this 

model was able to explain a larger proportion of variance in the dataset. Similarly, 

the N R M S E , a measure of the deviation of the predicted values from the observed 

values, was the lowest for the Lagged Normal model, indicating superior prediction 

accuracy. 

Interestingly, the Log Normal model consistently showed poor performance, wi th 

a negative R? value across multiple algorithms, signifying that this model did not 

fit the dataset well. The Spearman Correlation, a non-parametric measure of rank 

correlation, indicated a strong relationship between the predicted and observed data 

for most of the models, wi th the F P T model showing the highest correlations in most 

of the algorithms. 

In Dataset 1, the L D W R model using the Cuckoo Search algorithm appears 

to have performed the best across the metrics with an R2 of 0.8460, Spearman 

correlation of 0.9134, and N R M S E of 0.4057. These values indicate a high degree 

of explanatory power, strong correlation, and low error, respectively. O n the other 

hand, in Dataset 2, it is challenging to identify a clear winner among the algorithms. 

Overall , the results of this thesis reinforce the uti l i ty of meta-heuristic opti

mization algorithms in enhancing the prediction accuracy of data models. More 

specifically, this study provides strong empirical evidence supporting the use of the 

Lagged Normal model when using these algorithms for the given dataset. However, 

these results are specific to the dataset used in this study, and extrapolation to other 

datasets should be undertaken wi th caution. 

Future research may extend these findings by investigating the performance of 

these and other models under different optimization algorithms, or by applying the 

same models and algorithms to different datasets. Such studies would contribute 

to a more comprehensive understanding of the performance characteristics of these 

models and algorithms, and would potentially provide further insights to guide the 
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selection of appropriate models and algorithms in practice. 
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