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Abstrakt 
Asymetrický multiprocessing (AMP) je způsob rozdělování zátěže počítačového systému 
na heterogenní hardwarové a softwarové prostředí. Tato práce popisuje princípy AMP 
se zaměřením na A R M Cortex-A9 procesor a Altera Cyclone V hardwarovou platformu. 
Postup tvorby AMP systému založeného na OpenAMP frameworku ukazujícího komunikaci 
mezi procesorovými jádry, dokumentace a prognóza budoucího vývoje jsou výstupy této 
práce. 

Abstract 
Asymmetric multiprocessing (AMP) is a way of distributing computer system load to 
heterogeneous hardware and software environment. This thesis describes the principles of 
the AMP focusing on the A R M Cortex-A9 processor and Altera Cyclone V hardware plat
form. Development of a OpenAMP framework based AMP system showing communication 
among the processor cores, documentation and future work suggestion are the products of 
this thesis. 
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Chapter 1 

Introduction 

Today's computer systems are required to be fast, safe, cheap and energy efficient. There 
are a lot of ways how to achieve this. One of them is asymmetric multiprocessing (AMP). 

A M P systems typically contain several homogeneous or heterogeneous processing cores 
(for example devices from Texas Instruments O M A P SoC [ ] family contain A R M pro
cessor, GPU and DSP). System load is distributed among the cores forming functionality 
of entire system. The cores usually run different software including Linux, bare-metal or 
RTOS. Symmetric multiprocessing (SMP) systems balance computer system load among 
homogeneous processing cores. 

Heterogeneous AMP systems benefit from different processing cores. This diversity 
makes it possible to accelerate some tasks on a specialized processing core. Hardware 
multimedia codec support allows the system to be more energy-efficient and faster than 
software multimedia codec. Implementing control mechanisms to real-time applications 
can break real-time response. One of the solutions is splitting control mechanism and the 
real-time application to different processing cores. Control processing core runs Linux and 
uses existing networking and management tools while worker core can run a RTOS for time 
critical tasks. One way of increasing computer system security is to separate secure and 
non-secure applications to different processors. Insecure applications run on processor core 
with reduced permissions and separated memory. 

New information was discovered since creation of corresponding term project. Because 
of that, this thesis is rework and extension of the term project. 

Chapter (2) contains brief introduction to AMP systems and some available platforms. 
Chapter (3) provides short description of the A R M Cortex-A9 processor and A R M v 7 - a 
architecture. Altera Cyclone V SoC FPGA is described with focus to processor subsystem 
in chapter (4). Proposed application, development plan and implementation is summarized 
in chapter (5). Thesis results and possible future work is in chapter (6). 
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Chapter 2 

Asymmetric multiprocessing 

Information in this chapter can be found in an OpenAMP documentation [ ]. Other 
information sources are mentioned below. 

According to chapter (1), asymmetric multiprocessing (AMP) is an approach to com
puter system load distribution among heterogeneous software or hardware environments. 
AMP system is formed by processing cores running subtasks. Because of that, communi
cation among the processing cores is important. 

Altera Cyclone V [9], Xil inx Zynq [2. ] and O M A P platform [15] are examples of het
erogeneous SoC hardware devices capable of forming AMP system. 

Heterogeneous SoCs 

Altera Cyclone V and Xil inx Zynq contain A R M Cortex-A9 processors and a FPGA. This 
combination allows developers to partition the application between general-purpose single-
core or multi-core A R M processors and the FPGA. The Altera Cyclone V device is described 
in chapter (4). Following figure shows simplified block diagram of the Altera Cyclone V 
and Xil inx Zynq SoC FPGAs. 

ARM Cortex-A9 
MPcore processor 

Memory 
subsystem Peripherals 

A i A A > A 
V 

Interconnect 

> 

A 
f V > f 

FPGA 

Figure 2.1: Altera Cyclone V and Xil inx Zynq SoC FPGA structure. 
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Texas Instruments O M A P 3 platform is a combination of general-purpose A R M pro
cessor and coprocessors including DSP and G P U . OMAP3530 device contains: 

• Up to 720 MHz A R M Cortex-A8 processor with N E O N SIMD coprocessor and MMU. 

• Up to 520 M H z TMS320C64x V L I W DSP core. 

• PowerVR S G X graphics accelerator with OpenGL ES 2.0 and OpenVG 1.0 support. 

The O M A P 3 platform is designed to provide video, image and graphics support for 
video streaming, video conferencing and high-resolution still images. The platform is able 
to run Linux, Windows C E and Android operating system. Detailed information is available 
in datasheet [27]. 
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Camera 
subsystem 
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\t > f \ f 
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\ r 

Peripherals 

Figure 2.2: O M A P 3530 structure. 

A M P system organization 

A M P system contains multiple processor units that share or cooperatively use hardware 
resources. Following things are important in an AMP system: 

• Memory organization. 

• Boot sequence. 

• Peripheral access. 

• System security. 

• Software being run. 

2.1 Memory organization 

Memory is vital system resource in a computer system. Address map, alignment and types 
of available memories are important aspects of AMP system. The memory is typically 
partitioned to shared and private memory regions. Following figure shows example memory 
partitioning. 
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0x20000000 

Peripherals 10 MiB 
0X1F600000 

310 MiB Linux 0X0C000000 Linux 

GPU 128 MiB GPU 0X04000000 

32 MiB Shared 
0X02000000 memory 

RTOS 32 MiB 
0X00000000 

Memory map 

Figure 2.3: Example memory partitioning. 

Several address space separation techniques exist. A R M memory protection unit (MPU) 
(see section 3.4) provides separation of physical address spaces by defining physical memory 
regions and access permissions. Another technique is to use a virtual memory. Virtual 
address (VA) is an address at which item seems to reside from application's point of view. 
Physical address (PA) is a hardware address at which the item actually resides. The virtual 
address needs to be translated to a physical address before the memory is accessed, thus 
translation process is required. Memory management unit (MMU) is a hardware unit that 
performs this translation. 

r v 
CPU 

data J 
virtual 

address 
MMU 

physical\ 
address 

MEM 

Figure 2.4: Memory management unit and virtual and physical address. 

The MMU is used to: 

• Perform memory access and permission checks. Typically, read, write and execute 
permissions can be set for each memory mapping. 

• Isolate virtual address spaces. Each processing core maps only it's own virtual ad
dresses to distinct physical memory regions. Access to any other than mapped virtual 
address causes memory access violation. 

• Create shared memory segments by mapping regions of multiple virtual address spaces 
to the same physical memory region. 

• Relocate code that needs to be placed at specific address. 

• Allocate fragmented memory regions. The regions can be allocated without need to 
be contiguous in physical memory. 
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2.2 Boot sequence 
Booting is a hardware-specific initialization process of a computer system. The computer 
system enters initial state after power on event by a hard/cold reset operation. A soft/warm 
reset operation does the same except it takes the system from running state to initial state. 
It is possible to skip power-on self-test (POST) [6] after the warm reset. A boot loader is 
a software that performs initial stages of the computer system initialization. 

Multiple stage boot loaders exist because boot loader storage memory is typically small 
(about 64 K i B ) . First stage boot loader initializes basic hardware components and executes 
second stage boot loader. This way it is possible to remove the size constraint and use more 
powerful boot loader. Some boot loaders are shown below: 

• BIOS [ ] is a boot loader used by an I B M compatible computers. The BIOS boot 
process contains a power-on self-test phase. The POST is used in several embedded 
systems as well. 

• Das U—boot [ ] is an universal boot loader for embedded devices. It boots embed
ded device's kernel [1 ]. The U-boot boot loader is used in AMP application in this 
thesis. 

Processor startup 

A processor starts executing code at address specified by a reset interrupt vector. This ad
dress points to some sort of boot loader. Single processor computer system starts execution 
of the boot loader by completion of a reset operation. Multi-core computer system typi
cally resets all processor cores but completes only single one's reset. Initialized processor 
executes the boot loader and is free to setup reset interrupt vectors of other processors and 
complete their's reset operation. Multiple AMP system processing cores can boot at the 
same time. 

2.3 Peripheral access 

Two basic peripheral access strategies besides turning the peripheral off exist: 

• Reserve peripherals for a specific processing core. 

• Cooperatively use peripherals by multiple processing cores. A mechanism of deter
mining who and when owns the peripheral is needed. 

A direct memory access (DMA) capable peripheral is potential security risk. The D M A 
engine operates with physical addresses. Buggy or malicious code can use the D M A engine 
to access memory without MMU permission checking. A n IOMMU provides similar func
tionality as the MMU. It adds virtual address space and permission checking for peripheral 
D M A access. This avoids this risk and also provides interrupt remapping [14]. A device 
address (DA) is a virtual address used by the D M A engine to address physical memory. A 
physical address is an address where the data transferred by the D M A engine reside in the 
physical memory. 
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address/ MEM 10 BUS I0MMU MEM 

Figure 2.5: 10 memory management unit (IOMMU). 

Usage of the IOMMU brings the same benefits as MMU. IOMMU is able to restrict 
device to access specific subset of address space. 

2.4 System security 

A M P systems can be supervised or unsupervised [ ]. Supervised AMP system is charac
terized by presence of a hypervisor that enforces isolation and cooperative resource usage. 
Unsupervised AMP system contains modified software that ensures cooperative usage of 
system resources. Memory address space isolation enforced by a MMU or IOMMU and 
usage of technologies like A R M TrustZone increases safety of unsupervised AMP system. 
This thesis is focused on unsupervised AMP systems. 

2.5 System software 

A M P system is characterized by simultaneous running of multiple operating systems. It is 
common to use following operating system types within single AMP system: 

• Linux operating system. 

• RTOS. 

• Bare-metal firmware. 

The software run within AMP system needs to be patched in a way that it will coop
eratively use hardware resources. It is common practice for an operating system (OS) to 
initialize interrupt controller during startup. This is a correct behavior in a SMP system. 
But this can ruin AMP system because of other software run on different processor core 
with shared interrupt controller. 
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Chapter 3 

A R M Cortex—A9 processor 

Information in this chapter comes from A R M v 7 - A architecture reference manual [24], Xil inx 
Zynq [28] and Altera Cyclone V [23] manuals. Other information sources are mentioned 
below. 

The A R M Cortex-A9 processor is a single core processor with full virtual memory 
support. The processor implements A R M v 7 - A architecture and runs an A R M , Thumb 
and Jazelle instruction sets. Typical single core Cortex-A9 design contains: 

• A R M Cortex-A9 uniprocessor. 

• L2 cache controller. 

• Interrupt controller. 

-APB-

<-Events— 

Debug 
interface 

Performance 
monitor unit 

(PMU) 

Data engine 
(optional) 

Either MPE 
of FPU 

Preload 
engine 

(optional) 

<-FIQ-

<IRQ-

Cortex-A9 
uniprocessor 

Instruction 
interface 

Data 
interface 

\ / \ 

1 
L2 cache controller 

Program 
trace 

interface 

Generic 
interrupt 
controller 

(GIC) 
A A A 

V 

X X 
Figure 3.1: A R M Cortex-A9 uniprocessor system. 

Trace delivery 
infrastructure 

The processor can include optional media processing engine and a FPU (floating-point 
unit). 

3.1 Variants 
The Cortex-A9 processor can be used in uniprocessor and multiprocessor configurations. 
In the multiprocessor configuration, up to four Cortex-A9 processor cores are available in 
cache-coherent cluster. 
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ARM CoreSight multicore debug and trace 

ARMv7 
32b CPU 

NEON 
data engine 

Floating point 
unit 

16-64K 
l-cache 

16-64K 
D-cache CORE 

1 

ACP SCU 

Dual 64-bit AMBA3 AXI 

Figure 3.2: A R M Cortex-A9 MPcore processor. 

The multi-core cluster contains: 

• Up to four A R M Cortex-A9 processors. 

• A snoop control unit (SCU) that is responsible for: 

— Coherency among L I data caches. 
— Accelerator coherency port (ACP) operations. 

— Uniprocessor accesses to private memory regions. 

• A generic interrupt controller (GIC). 

• Private timer and private watchdog. 

• A global timer. 

3.2 Configurable options 

Configurable options are implementation dependent options like amount of L I cache. Some 
of the options for the A R M Cortex-A9 processor are listed below. For a full list of config
urable options refer to A R M Cortex-A9 technical reference manual [8]. 

Option Value 
Instruction and 
data cache size 

16/32/64 K i B 

T L B entries 64...512 
B T A C entries 512...4096 
G H B descriptors 1024...16384 
Instruction / / T L B entries 36/64 

N E O N 
F P U 

Included or not 

Table 3.1: Some of the A R M Cortex-A9 configurable options. 
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3.3 Programmer's model 

The processor implements A R M v 7 - A architecture. This section in brief summarizes some of 
A R M v 7 - A architecture features. For a detailed description refer to the A R M Architecture 
reference manual [ ]. 

Processor operating mode and state determine: 

• Set of registers available to the processor. 

• Privilege level of software being executed. 

• Instruction set being used. One of A R M , Thumb, Jazelle and ThumbEE. 

• Security state that is either secure or normal. Some system resources are accessible 
only from secure state. Implementation with no security extensions provides only 
secure state. 

• Debug state determines whether the processor can be halted for debug purposes. 

Privilege levels dictate accessible architecture resources. The processor supports following 
privilege levels: 

• Unprivileged (PLO) level. Software running at this level has limited access to the 
architecture resources and capabilities. 

• Privileged (PL1) level. The processor permits access to all features of the architec
ture except virtualization functionality. 

• Virtualization (PL2) level. Software running at PL2 can perform all operations 
available at PL1 level plus virtualization functionality. 

Non-secure state 

Non-secure PLO: 
user mode 

Non-secure PL1: 
system mode 

supervisor mode 
FIQ mode 
IRQ mode 

undef mode 
abort mode 

Non-secure PL2: 
hyp mode 

Secure state 

Secure PLO: 
user mode 

Secure PL1: 
system mode 

supervisor mode 
FIQ mode 
IRQ mode 

undef mode 
abort mode 

Secure PL2: 
monitor mode 

Figure 3.3: Processor operating modes and privilege levels. 
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Following processor operating modes are supported: 

• User mode for unprivileged execution. 

• F I Q , I R Q modes for FIQ and IRQ interrupt servicing mode. 

• Supervisor mode is default mode to which a supervisor call exception is taken. 

• Monitor mode is secure mode used to switch between secure world and normal world 
within A R M TrustZone security extension. 

• Abort mode is a mode for servicing data and prefetch abort exceptions. 

• Hyp mode is a virtualization mode. 

• Undefined mode is default mode to which an instruction-related exception, including 
any attempt to execute an undefined instruction, is taken. 

• System mode has the same registers available as user mode. This mode uses PL1 
privilege level. 

3.3.1 Exceptions 

A n exception is an event that causes the processor to interrupt normal program flow. The 
exception is handled by an exception handler. The handler's start address is stored in an 
interrupt/exception vector. The processor supports following exceptions: 

• Reset. 

• Interrupts. 

• Memory system aborts. 

• Undefined instructions. 

• Supervisor calls (SVC). 

• Secure monitor calls (SMC). 

• Hypervisor calls (HVC). 

Most of exception handling mechanisms is hidden from application developer. However, 
following details are visible: 

• SVC instruction causes a supervisor call exception. This provides mechanism for un
privileged software to call an operating system or privileged software. 

• SMC instruction causes secure monitor call exception if executed at PL1 or at higher 
privilege mode. 

• HVC instruction causes a hypervisor call exception if executed at PL1 or at higher 
privilege level. 

• WFI instruction provides a hint that nothing needs to be done until interrupt or similar 
action. This allows the processor to enter low-power state. 
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• WFE instruction does the same as WFI instruction plus it waits also for SEV instruction 
generated event. 

• Floating-point exceptions. 

• Jazelle exceptions. 

• Debug events. 

• ThumbEE checks events. 

Wait for event (WFE) mechanism permits a processor in a multiprocessor system to 
request entry to low-power state and remain in that state until it receives an event generated 
by a send event (SEV) operation. Wait for interrupt (WFI) operation is also available. 

3.3.2 Memory model 

The processor views memory as a linear collection of bytes addressed from zero in ascending 
order. Instructions are always treated as little-endian. Following memory orderings are 
supported: 

• Normal ordering is used for R A M and R O M devices. Code executed by the processor 
must be in normal memory region. The processor can do following actions on normal 
memory regions: 

— Repeat read and write accesses. 

— Prefetch or speculatively access memory locations. 

— Perform unaligned memory access. 

— Merge multiple accesses. 

• Device and strongly—ordered orderings are more strict when compared to normal 
memory ordering. These orderings are used for memory mapped peripherals. These 
memory access rules are followed: 

— Number and size of accesses are preserved. Accesses are atomic and uninterrupt
ible. 

— No speculative accesses and no caching is allowed. 

— Accesses can't be unaligned. 

— Order of accesses arriving at device memory is the same as program order of 
instructions. This applies only within the same peripheral or memory block. 

— The processor can reorder normal accesses around strongly ordered or device 
accesses. 

Device and strongly ordered memory differs in completion: 

— A write to strongly ordered memory is allowed co complete only when it reaches 
destination memory. 

— A write to device memory is allowed to complete before it reaches destination 
memory. 
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Memory attributes 

Memory attributes also define the ordering of accesses for regions of memory. 

• Shareability defines bus topology zones within which memory accesses are kept con
sistent and potentially coherent. Masters may not see the same order of memory 
accesses outside these zones. Refer to [28] for more information. 

• Cacheability attributes apply only to normal ordered memory. This attribute con
trols coherency with masters outside shareability domain for a memory region. Each 
normal ordered memory can be assigned following cacheable attributes: 

— Write-back cacheable. 

— Write-through cacheable. 

— Non-cacheable. 

Memory barriers 

The A R M Cortex-A9 processor supports following memory barriers: 

• Data memory barrier (DMB) is triggered by DMB instruction and ensures that 
all memory accesses caused by instructions before the barrier are completed before 
memory accesses of instructions after the barrier. 

• Data synchronization barrier (DSB) has the same effect as D M B plus it synchro
nizes the memory accesses with the full instruction stream, not just other memory 
accesses. Execution stalls after the DSB instruction until all pending explicit memory 
accesses have completed. This does not affect instruction prefetch. 

• Instruction synchronization barrier (ISB) flushes the pipeline and prefetch 
buffers. A l l next instructions are fetched from cache or memory. This ensures that 
changes in processor configuration before ISB instruction are visible to all current and 
future instructions. 

3.4 Memory system 

A R M v 7 architecture provides two implementations of memory system: 

• Virtual memory system that uses memory management unit (MMU). 

• Protected memory system that uses memory protection unit (MPU). 

Both of the implementations provide mechanisms to split memory to regions. Each region 
has specific memory types and attributes. The implementations differ in following main 
areas: 

• M P U does not use translation tables. It uses configuration registers only. 

• M P U uses only physical addresses. 

• MMU is more complex than M P U . M P U is able to provide deterministic memory 
access. 
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M M U 

Key feature of the MMU is address translation. It translates software virtual addresses of 
code and data to hardware physical addresses. This enables software to have no knowledge 
about physical memory map and about other software that may run at the same time. The 
MMU allows virtual address space separation and sharing. 

r 

Not 
mapped, < 

trap 

1 *l Private: AO 

Private: B 

Private: A l 

Software 
A virtual 
address 

space 

Physical 
address 

space 

Shared: AB 

Softwa re 
B virtual 
address 

space 

> 

J 

Not 
mapped, 

trap 

Figure 3.4: Memory address space isolation and sharing using MMU. 

The translation process is based on translation tables containing translation entries. 
The MMU contains two major functional blocks: 

• A table walker is hardware unit that automatically retrieves the correct translation 
table entry for a requested translation. 

A translation look-aside buffer (TLB) that caches recently used translation entries. 

MMU Virtual memory 
space 

Physical memory 
space 

Process TLB 
A 
V 

Page table 
walk 
logic 

Translation 
tables 

Figure 3.5: M M U functional blocks and it's surroundings. 

16 



A R M v 7 - A MMU features 

• Page table entries that support 4 K i B , 64 K i B , 1 M i B and 16 M i B page sizes. 

• 16 domains. A domain is a collection of memory regions. This way it is possible to 
group memory regions to domains. 

• Global and address space identifiers. This removes need for context switch T L B flush. 

• Extended permissions checking. 

• Hardware page table walk. 

The MMU uses two level T L B structure. T L B entries can be global or assigned to 
a process using address space identifiers (ASID). ASIDs allow T L B entries to be persis
tent during context switches. T L B maintenance and configuration is done through C P 15 
coprocessor. The T L B is organized to / / T L B and main T L B . 

Virtual address Data 
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Data 
U.TLB 

U.TLB 
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uTLB 

uTLB 
miss 

Main TLB 

Data 

Physical 
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Page tables 
in physical 

memory 
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(LI) page 

table 

L2 
page 

tables 

Figure 3.6: T L B organization. 

• Level 1 (master) page table that divides full 4 G i B address space to 4096 sections, 
each of size 1 M i B . There are following L I page table entry types: 

— Fault that generates prefetch or data abort exception. Exception type depends 
on type of memory access. Fault entry indicates usage of unmapped virtual 
address. 

— 1 M i B section translation. 

— 16 M i B supersection translation (special kind of 1 M i B entry, occupies 16 1 
M i B entries in a row). 

— L2 translation table base address. 

Base address of L I translation table (TTB) is known and is accessible through CP15 
coprocessor. 

• Level 2 translation table that divides 1 M i B to: 

— 64 K i B page. 
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— 4 K i B page. 

— A fault entry that generates abort exception like fault in L I translation table. 

/ / T L B 

/ / T L B provides fully associative lookup of the virtual address within single clock cycle. The 
/ / T L B returns physical address to the cache. A l l main T L B operations flush instruction 
and data / /TLBs . 

Main T L B 

Main T L B handles cache misses from / /TLBs . Main T L B access takes variable number of 
cycles. 

3.5 Coprocessor 

A coprocessor is a non-intrusive way of extending an instruction set. Peripheral devices 
are usually attached to the processor by mapping it's physical registers into the coprocessor 
space [ ]. Coprocessor instructions provide access to sixteen coprocessors described as CPO 
to CP 15. Following coprocessors are reserved by A R M : 

• CP15 provides system control functionality: 

— Feature identification. 

— Control and status information. 

— System configuration including virtual/protected memory system configuration 
and performance monitor. 

• CP 14 supports following areas: 

— Debug registers. 

— Thumb execution environment. 

— Jazelle direct bytecode execution support. 

• CP 10 and CPU support floating-point and vector operations and control and config
uration of the F P U and SIMD architecture extensions. 

• CP8, CP9, CP12, and CP13 are reserved for future use. 

• CPO to CP7 can provide vendor-specific features. 

Most CP14 and CP15 functions can't be accessed by software running at PLO level. 

3.6 A R M TrustZone 

A R M TrustZone [ ] is a system-wide approach to security. It divides computer system 
to secure and normal world. Both normal and secure world software runs at user and 
privileged levels. Monitor mode software is a gatekeeper controlling migration between 
secure and normal world modes. 
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Figure 3.7: A R M TrustZone worlds and processor modes. 

Processor transitions to monitor mode from the normal mode (SMC instruction, etc.) are 
tightly controlled and are viewed as exceptions to monitor software. A TrustZone-enabled 
processor starts in the secure world when powered on [ ]. The following sequence is typical 
use of the security extensions: 

1. Exit from reset in secure state. This happens after power on reset. 

2. Configure security state of memory and peripherals. 

3. Initialize the secure operating system. 

4. Initialize secure monitor software to handle transitions between secure world and 
normal world. 

5. Optionally disable modification of secure world configuration. 

6. Pass control to normal world software using S M C instruction. 

7. The normal world software now can initialize it's components and hardware resources 
it has access to. 

Performance monitoring unit 

The performance monitoring unit (PMU) is a per-core hardware unit for gathering statis
tics about operation of the processor and memory subsystem. The P M U supports 58 events 
and 6 counters for real-time accumulation of events. P M U counters are accessible through 
the processor itself using C P 14 coprocessor or from an external debugger. The events are 
also accessible to P T M . 

MPcore timers 

Each processor core has interval and watchdog timer. Watchdog timer can be configured 
as second interval timer. Both of the timers have following features: 

• 32 counters with interrupt generation at zero reach. 

• Configurable starting value. 

• 8-bit prescaler to qualify clock period. 

• Single-shot or auto-reload mode. 
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Generic interrupt controller 

The generic interrupt controller (GIC) supports up to 180 interrupt sources including 
peripheral and FPGA interrupts. In case of dual-core system the GIC is shared among 
both cores. Each processor has 16 banked software-generated interrupts (SGI) and 16 
banked private-peripheral interrupts (PPI). These interrupts occupy number range from 0 
to 31. GIC configuration registers are memory mapped by the S C U . For list of interrupt 
numbers refer to [23]. 

Snoop control unit 

The snoop control unit (SCU) manages data traffic among Cortex-A9 processors, memory 
system and L2 cache. The S C U is responsible for: 

• Maintaining data coherency between processor cores when set to S M P mode. 

• Initiation of L2 cache memory accesses. 

• Arbitration between processors requesting L2 access. 

• Managing A C P access with cache coherency capabilities. 

Following figure shows data flow among L I data caches and the S C U . 
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Figure 3.8: Data flow among L I data caches and the SCU. 
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Chapter 4 

Cyclone V SoC FPGA 

SoC FPGA (system-on-chip field programmable gate array) is a device that consists of a 
processor system and a FPGA. This combination minimizes external connections between 
processor system (HPS) and FPGA and offers platform for custom hardware acceleration. 
The Altera Cyclone V [9] and Xil inx Zynq [21] are examples of SoC FPGAs. 

Cyclone V SoC FPGA device 
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controller 
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(LUTs, RAMs, 

multipliers & routing) 

PLLS Hard 
PCIe 

Hard memory 
controller 

Figure 4.1: Simplified Altera Cyclone V SoC FPGA block diagram. 

The Cyclone V consists of following components: 

• A HPS that contains: 

— Support peripherals (system control, clock control, etc). 

— Interface peripherals (ethernet, USB, etc). 

— Cortex-A9 MPU (microprocessor unit) subsystem. 

— P L L s and debug circuitry. 

— Memory controllers and on-chip memory. 

• A FPGA portion: 

— FPGA fabric. 
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— Control block. 
— Phase-locked loops (PLLs). 
— Depending on the variant, high-speed serial interface transceivers, hard P C I 

Express controllers and hard memory controllers. 

• Bridges between HPS and FPGA portion. 

The HPS and the FPGA portions are distinctly different. HPS is able to boot from 
multiple sources not excluding external flash memory and FPGA fabric. Both portions have 
their own pins and separate external power supplies. The portions can be independently 
power on. The HPS must be power on before or at the same time as the FPGA portion. 
Xil inx Zynq has similar architecture. 

4.1 Block diagram 

Configuration 
controller 

FPGA-
-to-

-HPS 

HPS-
-to-

-FPGA 
Lightweight 
HPS-to-FPGA FPGA FPGA-to-HPS 

SDRAM 

FPGA 
manager 

ETR 
trace 

SD/MMC 
controller 

Ethernet 
2x 

USB OTG 
2x 

NAND flash 
controller 

DMA 
controller 

Debug 
access port 

HPS 

Level 3 
interconnect 

MPU subsystem 
ARM Cortex-A9 MPcore 

T 
CPUO 

ARM Cortex-A9 
with NEON/FPU, 
32 KiB L2 data 
and instruction 
cache and MMU 

CPU1 
ARM Cortex-A9 
with NEON/FPU, 
32 KiB L2 data 
and instruction 
cache and MMU 

ACP SCU 

512 KiB L2 cache 

STM 

64 KiB boot ROM 

64 KiB boot ROM 

Multiport 
DDR SDRAM 

controller 
with 

optional ECC 

Peripherals 
(UART, timer, IIC, watchdog timer, GPIO, SPI, clock manager, reset manager, 

scan manager, system nanager, QSPI) 

Figure 4.2: Altera Cyclone V SoC FPGA block diagram [23]. 
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Short description of the Altera Cyclone V blocks follows. 

Memory controllers 

Following memory controllers are included: 

• S D R A M controller supports DDR2, DDR3 and low-power L P D D R 2 devices. E C C 
including single-bit error correction and write back is supported. S D R A M controller 
is able to address full 4 G i B address space and supports 8, 16, and 32-bit data 
widths. The controller provides command and data reordering with deficit round-
robin arbitration with aging and high-priority bypass for latency sensitive traffic. 

• N A N D flash controller. 

• QSPI flash controller. 

• S D / M M C controller. 

Support peripherals 

Support peripherals provide SoC FPGA device control. These support peripherals are 
included: 

• Clock manager allows clock settings for processor system and dynamic clock tuning. 
The clock manager contains these P L L clock groups: 

— Main group clocks for the Cortex-A9 MPcore processor, L3 interconnect, L4 
peripheral bus and debug logic. 

— Peripheral group clocks for P L L clocked peripherals. 

— S D R A M group clocks S D R A M memory subsystem. 

• Reset manager manages reset signals of the processor system. There are following 
reset domains: 

— Test access port (TAP) that targets J T A G T A P controller. 

— System domain contains all processor system except T A P domain and FPGA 
fabric connected to processor part reset signals. 

— Debug contains all debug logic (DAP, CoreSight, trace logic, etc.), Cortex-A9 
MPcore processor and FPGA fabric. 

There are three reset types: 

— Cold reset (power-on reset) ensures that hardware is placed to sufficient state 
to boot. Resets all reset domains and all logic possible. 

— Warm reset occurs after processor system completed cold reset. Cold reset is 
used to recover Cyclone V device from non-responsive condition. This reset is a 
subset of cold reset and affects only system reset domain. 

— Debug reset takes place after cold reset and affects only debug reset domain. 
Debug reset is used to reset debug logic from a non-responsive condition. 
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• System manager controls these features: 

— E C C monitoring and control. 

— Pin multiplexing. 

— Low-level control for peripheral features unaccessible through CSR registers. 

— Freeze controller for freezing 10 elements to state safe for configuration. 

— D M A engines. 

— Ethernet, processor subsystem, etc. 

• Scan manager controls HPS I /O pins and communicates with the FPGA J T A G test 
access port controller. 

• F P G A manager offers following features: 

— Configuration of of the FPGA part of the Cyclone V device. 

— FPGA fast passive configuration interface. 

— Partial reconfiguration. 

— Compressed FPGA configuration images. 

— A E S encrypted FPGA configuration images. 

• Timers. 

• Watchdog timer. 

• D M A controller. 

Interface peripherals 

Interface peripherals are communication bridge to SoC F P G A ' s surrounding environment. 
The SoC FPGA contains following interface peripherals: 

• Ethernet. 

• USB O T G . 

• IIC. 

• UARTs . 

• C A N controllers. 

• SPI controllers. 

• GPIO. 
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On—chip memory 

• 64 K i B on-chip R A M with E C C support. 
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Figure 4.3: On-chip R A M block diagram. 

The on-chip ram serves as a general-purpose memory accessible from the FPGA. A l l 
memory accesses use strong order type. Contents of the on-chip R A M preserve reset. 

• 64 K i B boot R O M with. Boot R O M contents preserve reset. 

Endian support 

The HPS is a little-endian system. A l l HPS slaves are little-endian. Processor masters 
are configurable to interpret data as little or big-endian. H P S - F P G A interfaces are li t t le-
endian. 

Address map 

There are multiple address spaces within Cyclone V device. 

Name Description Size 
M P U 
L3 
S D R A M 

M P U subsystem 
L3 interconnect 
S D R A M controller subsystem 

4 G i B 
4 G i B 
4 G i B 

Table 4.1: Cyclone V device address spaces. 

S D R A M address space can be accessed by F P G A - t o - H P S interface from the FPGA 
fabric. Total amount of S D R A M accessible from other address spaces can be configured at 
runtime. The M P U address space is 4 G i B and applies to addresses generated inside the 
M P U . The address space contains following regions: 

• S D R A M window region provides access to portion of the 4 G i B S D R A M address 
space. 

• M P U L2 cache controller connects to L3 interconnect and to the S D R A M . Address 
filtering start and end registers in the L2 cache controller define the S D R A M window 
boundaries. 
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Figure 4.4: Address space relationships. 

Window regions provide access to other address spaces. A C P window in L3 address 
space maps to 1 G i B region in the M P U address space. S D R A M window in M P U address 
space is able to grow or shrink modifying size of FPGA slaves and boot region. The 
A C P window can be mapped to any region in the M P U address space on a G i B aligned 
boundaries. 

4.2 M P U subsystem 

This section describes the M P U subsystem in more detail. Following figure shows the M P U 
subsystem with surrounding blocks. 
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Figure 4.5: M P U subsystem block diagram. 
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The Cyclone V device's M P U subsystem contains: 

• A R M Cortex-A9 MPCore: 

— One or two A R M Cortex-A9 processor cores in a cluster. 

— N E O N SIMD coprocessor and vector F P U per processor core. 

— Snoop control unit (SCU) to maintain cache coherency within the cluster. 

— Accelerator coherency port (ACP) that accepts coherency memory access re
quests. 

— Interrupt controller (GIC) 

— One general-purpose timer and one watchdog timer per processor core. 

— Debug and trace features. 

— 32 K i B L2 instruction and data cache per processor core. 

— Memory management unit (MMU) per processor core. 

• Shared 512 K i B A R M L2-310 L2 cache. 

• A C P ID mapper that maps 12-bit ID from L3 interconnect to 3-bit ID of the A C P . 

The A R M Cortex-A9 processor is configured with options shown if following table. 

Feature Options 
Cortex-A9 processors 1 or 2 
Instruction cache size (per core) 32 K i B 
Data cache size (per core) 32 K i B 
T L B size (per core) 128 entries 
N E O N media processing engine Included 
Preload engine (per core) Included 
Preload FIFO entries 16 
Jazelle D B X extension Full 
Program trace macrocell interface Included 
Parity error detection Included 
Master ports 2 
Accelerator coherency port Included 

Table 4.2: A R M Cortex-A9 MPcore configuration. 

Debugging 

Each Cortex-A9 processor is capable of handling six hardware breakpoints and four hard
ware watchpoints. 

LI caches 

L I caches are four-way set associative with 32 bytes cache line size and parity checking. 
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Memory management unit 

The MMU cooperates with L I and L2 caches to translate software virtual addresses to 
hardware physical addresses. Each processor core has private MMU. 

T L B type Memory type Number of entries Associativity 
/ / T L B Instruction 32 Full 
/ / T L B Data 32 Full 
Main T L B Combined 128 Two-way 

Table 4.3: T L B s supported by the MMU. 

M P U address space 

OxFFFFFFFF-
0XFC0000O0-

3GiB:0xC0000OOO-

2GiB:0x80000000-

lGiB:0x40000000-

lMiB:0x00100000-
0x00000000-

HPS peripherals (-64 MiB) 

HPS-to-FPGA 
(FPGA-based peripherals) 

SDRAM 

Boot region 

Mapping options: 
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SDRAM (IMiB) 

On-chip RAM (64KB) 

Figure 4.6: Altera Cyclone V SoC FPGA HPS memory map. 

The M P U memory region consists of following regions: 

• Boot region is 1 M i B in size. It's base is located at address 0x00000000. After 
reset of L3 interconnect the boot region is mapped by boot R O M . This allows the 
processor to boot. Access above first 64 K i B if the boot region is illegal because boot 
R O M is 64 K i B in size. 

• S D R A M region starts at address 0x00100000 (1 M i B ) . Top of the region is deter
mined by the L2 cache filter. L2 cache address filtering defines address range of the 
S D R A M region. Access between start and end address of S D R A M region is routed 
to S D R A M . Access outside this range is routed to L3 interconnect. 

• F P G A slaves region can be used to allow M P U to communicate with FPGA-based 
peripherals. 

• HPS peripherals region is placed at top 64 M i B in the address space. This region 
is always allocated to the HPS dedicated peripherals of the M P U subsystem. 

Accelerator coherency port 

The accelerator coherency port (ACP) allows peripherals and FPGA fabric to be cache 
coherent within Cortex-A9 processors and the S C U . Entire 4 G i B address space can be 
accessed coherently through the A C P . 

28 



L2 cache 

The M P U subsystem contains 512 K i B L2 shared unified cache. The L2 cache is eight-way 
associative, configurable down to one-way. L2 cache controller consists of A R M L2C-310 
controller with following configuration: 

• 512 K i B cache size. 

• Eight-way associativity. 

• Physically addressed, physically tagged. 

• 32 bytes cache line size. 

• Critical first world line fills. 

• Support for all A X I cache modes. 

• Single event upset protection including parity on T A G R A M and E C C on L2 data 
R A M . 

• Two slave ports mastered by the SCU. 

• Two 64-bit master ports connected to S D R A M controller and to L3 interconnect. 

• Cache lockdown capabilities: 

— Line lockdown. 

— Lockdown by way. 

— Lockdown by A X I master. 

• TrustZone support. 

• Cache event monitoring. 

L2 cache can access either L3 interconnect or S D R A M subsystem. The L2 cache address 
filtering determines how much memory is mapped to S D R A M and to H P S - t o - F P G A bridge 
depending on the MMU configuration. E C C does not affect performance of the L2 cache. 
E C C is performed for 8-byte aligned 64 bit writes to R A M . In order to use E C C , the 
software is required to meet following requirements: 

• L I and L2 cache must be configured to write-back and write-allocate mode for any 
cacheable region. 

• L3 interconnect masters write transactions must follow 8-byte alignment and 64-bit 
data size. 

E C C corrects correctable errors and asserts correctable error signal on the A X I bus. 
Uncorrectable error asserts S L V E R R signal in L I memory system. Both correctable and 
uncorrectable signals can trigger interrupts. 
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Global timer 

M P U contains global 64-bit auto-increasing timer typically used by an operating system. 
The timer is memory mapped and accessible through the S C U . Timer has following features: 

• Continues to count after sending an interrupt. 

• Accessible only in secure state. 

Each Cortex-A9 core has private 64-bit comparator for generating a private interrupt 
when the global counter reaches specified value. 

Boot sequence 

CPUO is released from reset automatically. If present, CPU1 is left asserted. CPUO can 
de-assert CPU1 reset signal by clearing the CPU1 bit in the M P U module reset register 
(MPUMODRST). HPS boot starts when CPUO is released from reset and executes code from 
boot R O M at the reset exception address. The boot process ends when the boot R O M 
code jumps to next stage of the boot process. The processor is able to boot from following 
sources: 

• N A N D flash memory. 

• S D / M M C flash memory. 

• QSPI flash memory. 

• FPGA fabric. 

Boot ROM Preloader U-boot Linux 

Figure 4.7: HPS boot chain example [12]. 

The boot R O M and preloader stages are required for the device to boot. The boot 
R O M content is responsible for minimal configuration of the hardware and loads preloader 
into 64 K i B on-chip R A M . The preloader configures clocking, pin multiplexing, D D R A M 
and loads next stage boot loader into R A M (U-boot in this case). Following stages are 
application specific. The U-boot configures the F P G A , loads Linux kernel into R A M and 
passes program flow to the kernel. 
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Chapter 5 

Proposed application 

AMP systems with dynamic firmware loading define master and remote processor roles. 
Master processor is a processor that brings up remote processor. 

The proposed application consists of following components: 

• Master processor running Linux. 

• Remote processor running bare-metal firmware. 

• Communication interface among the processors. 

It was discovered that open asymmetric multiprocessing (OpenAMP) framework project 
[ ] offers functionality for managing remote processors and communication. The Ope
n A M P was available only for the Xil inx Zynq hardware platform and PetaLinux software 
environment. 

Because both Altera Cyclone V and Xil inx Zynq SoC FPGAs contain the A R M Cortex-
A9 processor, a decision to port OpenAMP to Altera Cyclone V and to linux-socfpga [13] 
was made. 

The OpenAMP contains demonstration applications. Porting plan of the OpenAMP 
was constructed: 

1. Port the OpenAMP from PetaLinux to xilinx-2014.4 Linux. Test the demo applica
tion functionality. 

2. Port the OpenAMP demonstration application from Xil inx Zynq to Altera Cyclone 
V SoC FPGA. 

3. Port Linux-specific parts of the OpenAMP from xilinx-2014.4 Linux to linux-socfpga. 

4. Test OpenAMP on the Altera Cyclone V SoC FPGA. 

5.1 OpenAMP 

OpenAMP [17] is a framework that provides software components for development of ap
plications for AMP systems. 

Supported environments 

• Software: PetaLinux v2013.10 . 

• Hardware: Xi l inx Zynq-7000 all programmable SoC ZC702 evaluation kit. 
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Capabilities 

• Communication among software contexts present in AMP system using shared mem
ory and inter-processor interrupts for notifications. 

• Proxy infrastructure for transparent interface to remote contexts from Linux master. 

This thesis is focused on the life cycle management and communication. 

O p e n A M P components 

• Remoteproc provides life cycle management of remote processors. This involves 
processor boot and shutdown. 

• Rpmsg is responsible for message-based communication among processors within 
AMP system. 

• Virtio is a transport abstraction that implements memory buffer management and 
notification mechanism for signaling availability of data in a data queue. The rpmsg 
uses the virtio for communication. 

• Hardware and environment initialization libraries. 

Rpmsg, remoteproc and virtio are part of the Linux kernel. This enables Linux applica
tions to manage remote processors using remoteproc and to communicate with them using 
rpmsg. The OpenAMP can be used with RTOS, bare-metal firmware and Linux, as shown 
in figure (5.1). 
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Figure 5.1: OpenAMP configurations. 
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Functional description 

1. Master boots and uses remoteproc component to load remote firmware, allocate re
sources (memory and interrupts) and boot remote processor. 

2. Remote boots, initializes it's resources and notifies master context that initialization 
is completed. 

3. Master and remote do their's work and communicate. 

4. Master sends shutdown request to remote context. Remote context deinitializes it's 
resources and halts execution. 

5. Master deinitializes it's resources. 

6. Master is free to shutdown entire system, continue execution or boot the same or 
different remote firmware. 

5.1.1 Virt io 

Virtio transport abstraction is an attempt to address problem of distinct virtualization 
systems in the Linux kernel [26]. 

Virtio components 

• Virtio: A Linux-internal abstraction A P I . 

• Virtqueue: A transport abstraction. 

• Virtio_ring: A transport implementation for virtio. 

Virtio 

Virtio drivers register themselves to the kernel and are probed when a suitable virtio device 
is found, struct virtio_device and struct virtio_conf ig_ops hold information about 
virtio device configuration. The configuration operations can be divided to following parts: 

• Device feature bits. 

• Device configuration space. 

• Device status bits. 

• Device reset. 

These operations allow Linux to probe and configure devices and to negotiate features 
in forward and backward compatible manner. 
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Virtqueue 

The virtqueue is a queue into which buffers are posted by the quest and consumed by the 
host. Each buffer is a scatter-gather array consisting of readable and writable generic data 
parts. Structure of the data is device specific. There are following virtqueue operations: 

• adcLbuf: Adds new data to the queue. 

• getJbuf: Gets data from the queue. 

• kick: Notifies a processor about queue state change. 

• disable_cb is used to disable notification when a pending buffer is ready. It is 
equivalent to disabling device's interrupt. Because of expensive synchronization it is 
not guaranteed that notification is not sent even when disabled. 

• enable_cb is used to enable notification about available data in the queue. 

Virtio_ring 

Virtio_ring is a transport implementation for virtio. It consists of three parts: 

• A descriptor table for chaining length and address pairs. 

Field Description 

addr 

len 

flags 

next 

Physical address of the buffer. 
Length of the buffer. 
Read/write only and next valid flags. 
Number of next descriptor for chaining. 

Table 5.1: virtio_vring descriptor table format. 

This allows a chained buffer to contain read-only and write-only buffers. By conven
tion, read-only buffers precede write-only buffers. 

• A n available ring for indication of which descriptors are available. 

• A n used ring for indication of used descriptors. 

Guest assumes all data is in it's native endianess. 
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Example virtio read 

Descriptor table 
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ring 
Used 
ring 
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1L> 

Address Len Flags Next 
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Status buffer 

-> 
Data buffer 

-> Transfer description data 

Figure 5.2: Example virtio read data structures. 
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<-
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Figure 5.3: Example virtio read guest and host flow. 

1. Read preparation: 

(a) The guest has an empty buffer the data will be read to (data buffer). 

(b) Transfer metadata buffer and status buffer are allocated and filled. 

(c) The data, metadata and status buffers are put into three free entries in the 
descriptor table and chained together. If the data buffer is not physically con
tiguous, multiple chained descriptor table entries are used. (1) 
The header is read-only. Status and the data buffers are write-only. 

2. The descriptor head is marked available (2). This is done by placing descriptor table 
entry index into the available ring and issuing memory barrier. A kick() operation 
is used to notify the host that there is pending data in the queue. 
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3. The host completes the request at some point in the future. The data buffer is 
filled and status information is updated. The descriptor head is returned to the used 
virtqueue and the guest is notified. The guest calls get.buf () until NULL is returned. 

5.1.2 Rpmsg 

Rpmsg is a virtio based bus for communication with remote processors. The rpmsg uses 
following terms: 

• Rpmsg channel is a representation of remote processor. The channel is used to 
communicate within rpmsg A P I . Each channel is identified by textual name. 

• Rpmsg endpoint is an association of rpmsg channel and callback function. The end-
point has 32-bit identification address. Single channel can have multiple endpoints. 

• Local (source) address and destination address. A l l addresses are 32-bit num
bers. The local address is an address of local endpoint. Destination address is an ad
dress of remote endpoint. Endpoint addresses below 1024 are reserved for predefined 
services. Endpoint RPMSG_NS_ADDR (53) is reserved for name service announcement. 
Example rpmsg channel with single endpoint on each side is shown in figure (5.4). 
Note source and destination address values. 

Master application Remote application 

... master_rx_cb(...) { ... remote_rx_cb(...) { 

} } 

t 
> 

V 
f 

y 
> 

V 
f 

Rpmsg endpoint Rpmsg endpoint 

Endpoint address: 1 
Callback: master_rx_cb 

Endpoint address: 2 
Callback: r e m o t e r x c b 

V 
> t 

I 
> t 

Rpmsg channel Rpmsg channel 

Channel name: c h n l l 
Local address: 1 
Destination address: 2 

Channel name: c h n l l 
Local address: 2 
Destination address: 1 

Figure 5.4: Rpmsg channel and endpoint. 

Channel management 

Current rpmsg implementation supports dynamic channel management. Each created chan
nel has default endpoint. It is possible to bind multiple endpoints to single channel. Cre
ation and deleting of a rpmsg channel causes name service announcement messages trans
mission. 

Name service announcement 

Creation and deletion of an endpoint is announced between channel participants through the 
RPMSG_NS_ADDR (53) endpoint. This endpoint is used to exchange rpmsg_ns_msg messages. 
Endpoint callback parses the message and allocates or deletes specified rpmsg channel. 
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Communication format 

Every rpmsg message starts with a rpmsg header (struct rpmsg_hdr). The header contains 
endpoint addresses and payload information. 

Field Description 
src 
dst 
reserved 
len 
flags 

Source endpoint address. 
Destination endpoint address. 

Size of data payload. 
Message flags. 

Table 5.2: Rpmsg header. 

Rpmsg driver implementation uses callbacks for handling message events: 

• A message rx callback is called every time a rpmsg channel receives kickO notifica
tion. The callback does the following steps: 

1. Checks for incomming messages in channel associated virtqueue. 

2. Extracts information from a rpmsg header. 

3. Finds a rpmsg endpoint with the address equal to the address in the rpmsg 
header. 

4. Calls the endpoint's callback function with data payload. 

5. Returns message buffer to the virtqueue and issues the kickO notification to 
the remote processor indicating free buffer in the virtqueue. 

• A message tx callback is called when the remote processor finished processing a mes
sage. This callback is used to wakeup potentially blocked rpmsg message send oper
ations because free buffer is available. 

• Name service message rx callback creates or deletes a rpmsg channel specified by 
the name service message content. The flags field determines whether a creation or 
deleting of the rpmsg channel is to be performed. 
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Figure 5.5: Rpmsg communication system overview. 

5.1.3 Remoteproc 

Remoteproc (remote processor) is a framework for life cycle management of remote proces
sors in platform-independent manner. The remoteproc supports the following operations: 

• Power on the remote processor. 

• Boot the remote processor with a specified firmware. 

• Power off the remote processor. 

Resource table 

A resource table is a data structure contained in remote processor firmware binary file. In 
case of ELF binary format, the table is located in the 
.resource_table section within the firmware binary file. The table is a list of system 
resources required and offered by the remote firmware. Resource table header format is 
shown in table (5.3). 

Field description 
version Resource table version. 
num Number of table entries. 
reserved [2] Reserved, zero. 

offset [num] 
Table entry offsets 

from beginning of the table. 

Table 5.3: Resource table header format. 
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Table entries follow the table header. Each entry starts with an entry header containing 
unsigned 32-bit integer. The entry header identifies table entry type. Following table entry 
types are defined: 

• RSC_CARVEOUT: information about physically contiguous memory region. 

• RSCJDEVMEM: information about a memory-based peripheral. 

• RSC-TRACE: announcement of a trace buffer into which the remote processor will be 
writing logs. 

• RSC-VDEV: announcement of a virtio device. 

• RSC-LAST: maximal resource entry header value. Used internally for resource entry 
header checking. 

Example resource table is shown in figure (5.6). 

Resource table parsing 

The resource table is parsed before remote processor firmware is booted. Resource table 
parser goes through resource table entries and calls entry parsing functions according to 
entry types. The functions are organized in array of pointers to parser functions. It is 
possible to parse only specific resource table entries. 

Remote processor states 

The remote processor is in one of the following states: 

• Offline state is a default remote processor state. The remote processor enters this 
state before remote firmware boot. 

• Running state represents successfully booted remote processor. 

• Crashed state is entered by an iommu fault event caused by the remote proces
sor. The iommu fault event is caused by a violation of the iommu memory mapping 

Entry type: 
RSC_VDEV 
data ... 

Figure 5.6: Example resource table. 

settings. 
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Figure 5.7: Remote processor finite state machine. 

Remote processor boot 

Master application boots a remote application on the remote processor in these steps: 

1. Fetch and decode firmware ELF image. 

2. Find firmware resource table and parse it's entries. 

3. Allocate memory regions for remote firmware and setup necessary mappings. 

4. Load code and data sections of the firmware to appropriate memory regions. 

5. Release the remote processor from reset. 

6. Remote processor begins execution of the firmware. Firmware initializes it's re-
moteproc and creates virtio and rpmsg devices necessary for communication with 
master processor. 

7. The master receives name service announcement message. Channel created callback 
registered by the master application is called. The master responds to remote with a 
name service acknowledgement message. 

8. Remote receives the message and call's it's channel created callback. 

9. The rpmsg channel is established. 

Master 
application 

Remote 
application 

Channel 
created 
callback 
called. 

Name service announcement: 
channel created 

< 

ACK 
-> 

Rpmsg communication 

Channel 
created 
callback 
called. 

Figure 5.8: Remote processor rpmsg channel creation messages. 
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5.1.4 Hardware initialization library 

The OpenAMP contains a hardware initialization library. The library is able to initialize: 

• Stacks. 

• Interrupt controller and distributor. 

• Memory management unit. 

• Interrupt vector table. 

Macro $PLATF0RM stands for socfpga for Altera Cyclone V SoC FPGA or zc702evk for 
Xil inx Zynq SoC FPGA. 

MMU and caches 

The MMU is controlled by following functions from 
open-amp/libs/system/$PLATORM/baremetal/baremetal.c: 

• arm_ar_enable_mmu 

• arm_ar_map_mem_region 

The MMU requires translation look-aside buffer (TLB) address defined by TLB_MEM_START 
preprocessor symbol. Memory region mapping also sets caching options for the region being 
mapped. 

In order to map I M i B memory region from physical address 0xB3000000 to virtual 
address 0x80000000 with caches disabled, perform these steps: 

1. Cal l arm_ar_enable_mmu(). 

2. Cal l arm_ar_map_mem_region(0x80000000, 0xB3000000, 0x100000, 1, N0CACHE). 

The MMU is disabled after the processor core reset. Note that created mappings must 
make sense and any violation causes the processor core to enter abort mode. 
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Interrupts 

The interrupt controller and distributor are controlled by the following functions from 
open-amp/libs/system/$PLATORM/baremetal/baremetal.c: 

• zc702evk_gic_initialize 

• zc702evk_gic_interrupt_enable 

• zc702evk_gic_interrupt_disable 

• zc702evk_gic_pr_int_initialize 

• arm_arch_install_isr_vector_table 

• restore_global_interrupts 

• disable_global_interrupts 

• init_arm_stacks 

The interrupt controller supports eight interrupt types. Each type has it's own interrupt 
vector (IVEC) table entry. The IVEC format is shown in table (5.4). 

Offset Interrupt type 

0x00 Reset 
0x04 Undefined instruction 
0x08 Software interrupt 
OxOC Prefetch abort 
0x10 Data abort 
0x14 Unused 
0x18 IRQ 
OxlC FIQ 

Table 5.4: Interrupt vector table format [3]. 

Each IVEC contains an interrupt service routine (ISR). The IVECs ISR is called for 
all interrupts belonging to the IVEC. It's up to the ISR to identify optional IRQ or FIQ 
number and to take an appropriate action. Example IVEC data is shown in table (5.5). 

Address Content 

0x2C000000 

0x2C000004 

0x2C000020 

0x2C000024 

LDR pc, [pc, #24] ; [0x2C000020] = 0x2C000040 

LDR pc, [pc, #24] ; [0x2C000024] = 0x2C00E74C 

DCI 0x2C000040 ; Reset isr = __cs3_reset 

DCI 0x2C00E74C ; Undefined instruction ISR 

Table 5.5: Interrupt vector table content from matrix multiply firmware. 

Note that IVEC table is followed by a table of ISR handler addresses. The IVEC 
table contains code that calculates correct position in handler address table for appropriate 
interrupt type. 
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In order to register a handler for a inter-processor interrupt (IPI) 8, perform following 
steps: 

1. Setup ARM_AR_PERIPH_BASE, INT_GIC_CPU_BASE and INT_GIC_DIST_BASE and ELF.START 
preprocessor symbols. 

2. Cal l arm_arch_install_isr_vector_table(IVEC_ADDR) with address of your IVEC 
table. 

3. Call zc702evk_gic_initialize(). 

4. Define your interrupt handler function: 

void _ _ a t t r i b u t e _ _ ((interrupt("IRQ "))) _ _ c s 3 _ i s r _ i r q () { 

unsigned long raw_irq; 

int i r q _ v e c t o r ; 

/* Read the Interrupt ACK r e g i s t e r */ 

raw_irq = MEM_READ32(INT_GIC_CPU_BASE + 

INT_GIC_CPU_ACK); 

/* mask interrupt to get vector */ 

irq.vector = raw.irq & INT_ACK_MASK; 

i f ( i r q _ v e c t o r == 8) { 

/* process the IRQ */ 

} 

/* Clear the interrupt */ 

MEM_WRITE32(INT_GIC_CPU_BASE + INT_GIC_CPU_ENDINT, 

raw.irq); 

} 

Listing 5.1: IRQ handler from OpenAMP's baremetal library. 

5. Call zc702evk_gic_interrupt_enable(8, INT_TRIG_TYPE, prio) with desired trig
ger type and IRQ priority. For list of trigger types see 
open-amp/libs/system/$PLATORM/baremetal/baremetal.h. 

A l l interrupts are disabled after the processor core reset. 

Stacks 

In order to setup stacks: 

1. Define preprocessor symbol ARM_AR_ISR_STACK_SIZE. The library creates four stacks 
for IRQ, FIQ, SUP and SYS processor modes. 

2. Cal l init_arm_stacks(). 

The init_arm_stacks switches the processor to mentioned modes and sets stack pointer 
and size to corresponding stack from point (1) of the list. 
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5.1.5 M a r i x multiply demo application 

The OpenAMP contains matrix multiply (matmul) demonstration application consisting of 
following components: 

• Kernel and user-space master applications running on CPUO Linux master. Kernel-
space parts include following loadable kernel modules (LKMs): 

— virtio. 

— virtio_ring. 

— virtio _rpmsg_bus. 

— rpmsg_mat_mul_kern_app or rpmsg_user_dev.driver. 

— remoteproc. 

— zynq_remoteproc. 

The matmul also contains a mat_mul_usr_app user-space application. Figure (5.9) 
shows all master matmul components. 

mat_mul_usr_app ; 
; User-space program 

I Loadable kernel module 

rpmsg_mat_mul_kern_app/ 
/rpmsg_user_dev_driver socfpga_remoteproc 

virtio_rpmsg_bus 

virtio 

remoteproc 

\ i 
virtio ring 

Figure 5.9: Matmul master components. 

• Bare-metal remote firmware running on Cortex-A9 CPU1 remote processor. 

Memory map 

The matrix multiply application uses 256 M i B for R A M region and 64 M i B for R O M region. 
Memory region parameters are shown in table (5.6). 

Region Size Permissions Address 
R A M 
R O M 

256 M i B 
64 M i B 

rwx 
r-x 

0x00000000 
0xE4000000 

Table 5.6: Matrix multiply memory regions. 
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The Linux master memory is located above the matmul firmware memory. The memory 
map is shown in figure (5.10). 

0XE8000000 
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ring_tx 

OxOFFFFFFF 

Figure 5.10: Matrix multiply application memory map. 

Master kernel—space LKMs 

• The zynq_remoteproc LKM is part of the xilinx-2014.4 Linux. The LKM con
tains: 

— Remoteproc operations for starting, stopping and notifying remote processor. 

— Inter-processor-interrupt (IPI) handler registration. 

— Remoteproc subsystem initialization. 

— Resource cleanup. 

The LKM performs following steps when probed: 

1. Declares D M A coherent memory for firmware. 

2. Registers IPI routine. 

3. Reads vring and firmware properties. 

4. Initializes remoteproc with remote processor management operations and con
figuration loaded from the device tree. 

5. Registers the remoteproc instance. 

Arrival of master kick notification IPI is deferred outside of IPI handler. Deferred 
work handler flushes caches and notifies remoteproc virtuque about received notifica
tion. 

Linux implementation of virtio, rpmsg and remoteproc handles remaining aspects of 
remote processor management and communication. 

45 



The zynq_remoteproc LKM is configured in two ways: 

— Device tree should contain entry with compatible property set to xlnx,zynq_remoteproc. 

This entry contains configuration information for the LKM. 

— It is possible to override some of the configuration options by modprobe com
mand line parameters. 

• The rpmsg_user_dev_driver does these operations: 

1. Registers a rpmsg driver for a rpmsg device named rpmsg-openamp-demo-channel. 
The matmul baremetal firmware contains a rpmsg device with the same name. 

2. When the rpmsg device with matching name is found, the LKM creates a char
acter device /dev/rpmsg allowing user-space programs to access created rpmsg 
channel. The LKM supports open, read, write and ioctl operations. 

• The rpmsg_mat_mul_kern_app LKM also registers a rpmsg driver for a rpmsg 
device named rpmsg-openamp-demo-channel. When the rpmsg device is found, the 
LKM generates two matrices, sends them to the remote, receives results and prints 
them. 

Master user—space application 

The master user-space application does following steps: 

1. Opens the /dev/rpmsg device. 

2. Queries the rpmsg device information using the ioctl call. 

3. Creates an ui.thread and a compute.thread threads. 

4. The ui_thread performs the following: 

(a) Generates random matrices. 

(b) Writes it's data to the /dev/rpmsg device causing the data to be sent via asso
ciated rpmsg channel. 

5. The compute.thread performs these actions: 

(a) Does a blocking read call waiting for data from the remote. 

(b) Prints the results. 

6. Sends shutdown message to the remote. 

7. Closes the /dev/rpmsg device. 
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Matmul firmware 

The firmware performs following steps on startup to initialize the hardware: 

1. A R M Cortex-A9 CPU1 jumps to firmware code. A l l interrupts are disabled and the 
CPU1 is in after-reset state. 

2. cs3 library is initialized and then execution jumps to main() function. 

3. CPU1 is switched to system mode. 

4. Interrupt vector table is placed to physical address of the firmware image. 

5. M M U is enabled. Mappings for firmware image, peripherals, caching options and 
translation table buffers are set. 

6. IRQ, FIQ, SVC and SUP stacks are initialized. 

7. Interrupt controller and distributor is configured and enabled. 

The A M P application is set up after the hardware is initialized: 

1. Resource table is parsed. 

2. The firmware sets up virtio, rpmsg and remoteproc resources. 

3. Interrupt handlers for virtio queues are registered. 

The firmware enters infinite loop and active waits for notification from the Linux master. 
Figure (5.11) shows firmware flowchart. 
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Figure 5.11: Matrix multiplication firmware flowchart. 

Data is exchanged through shared memory with disabled caching. Availability of data 
is signaled by IPIs. 
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Figure 5.12: Matrix multiplication firmware communication. 

Functional description 

1. Linux master boots. 

2. Linux remoteproc is initialized by loading zynq_remoteproc loadable kernel module 
(LKM). 

3. Remote processor is booted by user-space application (rpmsg_user_dev-driver and 
mat_mul_usr_app) or kernel-space LKM (rpmsg_mat_mul_kern_app) on Linux master. 

4. Rpmsg communication channel is established between the master and the remote 
processors. 

5. The master generates matrices and sends them to the remote. 

6. The remote receives the matrices, performs matrix multiplication and sends result 
back to the Linux master. 

7. The master prints received result. 

8. Removing of the both matmul and zynq_remoteproc LKMs shuts down the applica
tion. 
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5.2 Implementation 

Implementation of the proposed application involves: 

• Understanding of hardware operation. 

• Linux compilation, patching and bootable card image creation. 

• Bare-metal firmware compilation. 

• Bootloader and kernel debugging. Debugging symbols relocation. 

• Porting of the OpenAMP framework. 

• Creation of LKM for linux-socfpga remoteproc configuration. 

• Testing. 

5.2.1 O p e n A M P porting 

Following OpenAMP porting sequence was identified: 

1. Testing OpenAMP matrix multiply application with xilinx-2014.4 Linux instead of 
PetaLinux. 

2. Porting the matrix multiply application from Xil inx Zynq to Altera Cyclone V SoC 
FPGA. 

3. Porting the zynq_remoteproc LKM from xilinx-2014.4 Linux to linux-socfpga. 

4. Testing ported OpenAMP matrix multiply application with linux-socfpga. 

Running matrix multiply application with xilinx-2014.4 Linux 

The xilinx Linux needs to be compiled with following options: 

• Kernel/Load address = 0x10000000. 

• Kernel/Device tree support enabled. 

• Use device tree source with correct zynq_rpmsg and zynq_remoteproc sections. 

• Enable loadable module support enabled. 

• Kernel features/Memory split = 2G/2G user/kernel split. 

• Kernel features/High memory support enabled. 

• Device drivers/Generic driver options/Userspace firmware loading support 

enabled. 

• Device drivers/Remoteproc drivers/Support ZYNQ remoteproc enabled. 

It is also needed to modify the device tree source file [ ]. Sections containing zynq_remoteproc 
LKM settings were added to the device tree. The matrix multiply application was success
fully tested with xilinx-2014.4 Linux. 
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Porting matrix multiplication application to Altera Cyclone V SoC F P G A 

Although Altera Cyclone V and Xil inx Zynq use the same A R M Cortex-A9 processor, 
memory maps of the SoC FPGAs differ. It was needed to change memory addresses of the 
Cortex-A9 subsystem and modifications were also made to OpenAMP's bare-metal library. 
This step was completed successfully and final firmware has been produced. Later porting 
has shown that it is needed to change memory layout of the matrix multiply application, 
because the linux-socfpga with Kernel/Load address set to 0x10000000 did not boot. I 
was unable to solve this problem. I decided to change memory map of entire A M P system 
solving the kernel boot problem. Modified memory map is shown in figure (5.13). 
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Figure 5.13: Final Altera Cyclone V memory map for proposed application. 

Note that the bare-metal firmware is located above the Linux usable memory. This 
modification has required changes to the matrix multiply application ported to Altera 
Cyclone V SoC FPGA. The application linker script was changed according to memory 
region addresses in table (5.7). 

Region Size Permissions Address 
R A M 
R O M 

256 M i B 
64 M i B 

rwx 
r-x 

0x2C000000 
0x3C000000 

Table 5.7: New matrix multiply memory regions. 

The Linux is restricted from using memory reserved for bare-metal application by 
mem=704m kernel boot parameter. This implies rewrite of remoteproc memory allocation 
code because the socfpga_remoteproc LKM needs to allocate memory at specific physical 
address. The allocation and deallocation is done by ioremap_nocache () and iounmapQ. 

5.2.2 Socfpga_remoteproc LKM 

Zynq remoteproc LKM for loading OpenAMP demonstration applications is not present in 
linux-socfpga. Socfpga remoteproc LKM based on the Zynq remoteproc LKM was created. 
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Following changes were made: 

• Remote processor management and interrupt redirection functions are not accessible 
in the linux-socfpga. These functions were made visible. 

• Minor changes were made to the LKM by renaming zynq to socfpga. 

• Linux-socfpga does not allow registration of custom IPI handlers by default. 

• Firmware memory allocation is split to firmware and buffer memory regions and IPI 
handler registration is made possible. 

• Firmware image is placed at specific memory address using ioremap_nocache. Shared 
buffers for communication are allocated by dma_declare_coherent_memory and 
dma_alloc_coherent. 

This split is needed because when using the dma_* functions, allocated memory region 
physical address depends on order of dma_alloc_coherent calls. Original Linux rpmsg 
drivers allocate firmware image memory region after communication buffers. This 
leads to misplacement of firmware image and A M P system malfunction. 

dmadeclarecoherentmemory 
dma alloc coherent 

ioremap_nocache 

Figure 5.14: Firmware memory split to image and buffer memory regions. 

Memory split required change of the device tree entry. 

/* socfpga_remoteproc entry */ 

compatible = "altr,socfpga_remoteproc"; 

/* new reg assignment */ 

/* Firmware region. Buffers region. */ 

reg = < 0x2C000000 0x08000000 0x34000000 0x08000000 >; 

/* o r i g i n a l reg assignment */ 

/* reg = < 0x2C000000 0x10000000 >; */ 

Listing 5.2: socfpga_remoteproc LKM device tree entry change. 

• IPI handler registration is added by a custom kernel patch. IPI 8 and 9 are redirected 
to socfpga_remoteproc LKM. 

Buffers 
region 

128 MiB 

0x34000000 

Firmware 
region 
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5.2.3 Other used tools, documents and software 

Several other additional tools and information sources were used during the develompent 
process. This subsection lists the additional sources. 

• Das U-Boot [20] is the Universal Boot Loader. The U-boot is used as a second stage 
boot loader on the Altera Cyclone V and Xil inx Zynq SoC FPGAs. 

• Buildroot [7] is a set of makefiles for simplifying creation of embedded Linux. The 
Buildroot was used to generate Linux images in this thesis as well. 

• Linux device drivers, third edition [ ] is a summary of loadable kernel module back
ground. This information source was used to get deeper understanding of the Linux 
LKMs. 

• A R M DS-5 development studio [ ] and debugging quick start document [ ] were used 
to debug the bootloader, Linux kernel and the firmware. 

5.2.4 Running matmul application 

It is necessary to meet following goals in order to run the matmul application (5.1.5): 

1. Patch the linux-socfpga. 

2. Compile the kernel. 

3. Compile the OpenAMP. 

4. Compile the OpenAMP kernel-space and user-space components. 

5. Copy the matmul application firmware file to a targed Linux filesystem. 

6. Create a bootable SD card image. 

7. Boot the Linux on the Altera Cyclone V SoC development kit. 

8. Connect to the kit via serial console. 

9. Login as root. 

• To run user-space matmul application, perform following steps: 

1. modprobe socfpga_remoteproc 

2. modprobe rpmsg_user_dev_driver 

3. . /mat _mul _demo 

4. modprobe -r rpmsg_user_dev_driver 

5. modprobe -r socfpga_remoteproc 

• To run kernel-space matmul application, follow these instructions: 

1. modprobe socfpga_remoteproc 

2. modprobe rpmsg_mat_mul_kern_app 

3. modprobe -r rpmsg_mat_mul_kern_app 

4. modprobe -r socfpga_remoteproc 
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5.3 Testing 

As the AMP systems are complex, it is needed to test them properly. It is very important 
to verify system's functionality in small steps. The proposed application testing has shown 
following information: 

1. Successful linux-socfpga kernel boot was achieved by modifying system memory 
map. Debugging of the kernel with default system memory map has shown hidden 
kernel Oops because of invalid virtual memory access. Reason of the kernel Oops is 
unknown. 

2. Booting of the CPU1 has been problematic. Although the CPU1 jumped to cor
rect address (0x2C000000), the firmware was corrupted. A change of a memory 
allocation in a remoteproc LKM solved the issue. ioremap_nocache places firmware 
binary at specific location to the R A M (0x2C000000). 

3. The linux-socfpga did not contain A P I for custom IPI handler functions. The A P I 
was added. 

4. Successful communication among the processors was achieved by a modification to 
env_map_vatopa function from open-amp/porting/env/bm-env.c. According to the 
virtio paper [26], buffer descriptors are required to contain physical addresses of the 
buffers. The Linux initializes the descriptors with invalid physical addresses moved 
by a constant offset. The modification calculates correct physical addresses. 

The matmul application works on the evaluation board. Captured communication is 
shown in chapter (B) and application console output is in chapter (C). 
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Chapter 6 

Conclusion 

The goal of this thesis is a demonstration of working AMP system allowing communication 
among A R M Cortex-A9 processor cores. Theoretical principles and background needed to 
form the application are documented. Communication is demonstrated by the OpenAMP's 
matrix multiply application. Port of the OpenAMP framework to the Altera Cyclone V 
platform and to linux-socfpga3.15 is the contribution of this thesis. The porting process is 
documented in section (5.2.1). 

The demonstration application is able to boot a custom baremetal firmware on a sec
ondary A R M Cortex-A9 processor. The firmware and the primary processor communicate 
using virtio, rpmsg and remoteproc components. Besides the firmware image, the applica
tion also contains user and kernel-space modules which are documented in section (5.1.5). 

As a future work I suggest deeper testing of the A M P system and minor changes to the 
OpenAMP and the demonstration application. Communication latency and speed mea
surement will show interesting data about the communication. Usage of a direct memory 
access (DMA) engine can be added to both Linux and the baremetal firmware. 

Arrival of platforms like Xil inx Zynq Ultrascale require effective communication and 
processor management mechanisms. OpenAMP may provide elegant solution. 

The Xil inx Zynq UltraScale [. ] family contains application, real-time and graphic 
processing units. Single device consists of Quad A R M Cortex-A53 processor, Dual A R M 
Cortex-R5 processor and A R M Mali-400 M P G P U plus a FPGA. This makes the Xil inx 
UltraScale platform an interesting candidate for AMP systems. 
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Appendix A 

CD contents 

• src/*: Source codes and patches for the linux-socfpga and the OpenAMP. 

• doc/*: Documentation source codes and final pdf file. 



Appendix B 

Captured virtio communication 

rpmsg_virtio RX: 

00 00 00 00 35 00 00 00 ....5... 

00 00 00 00 28 00 00 00 . . . . ( . . . 

72 70 6d 73 67 2d 6f 70 rpmsg-op 

65 6e 61 6d 70 2d 64 65 enamp-de 

6d 6f 2d 63 68 61 6e 6e mo-chann 

65 6c 00 00 00 00 00 00 e l 

01 00 00 00 00 00 00 00 

struct rpmsg_hdr hdr = { 

.dst = 0x35, //53 

.len = 0x28, //40 - s i z e o f ( s t r u c t rpmsg_ns_msg) 

.flags = 0x50, 

.data = [...], //NS announcement message 

NS announcement: 

72 70 6d 73 67 2d 6f 70 rpmsg-op 

65 6e 61 6d 70 2d 64 65 enamp-de 

6d 6f 2d 63 68 61 6e 6e mo-chann 

65 6c 00 00 00 00 00 00 e l 

01 00 00 00 00 00 00 00 

struct rpmsg_ns_msg ns_msg = { 

.name = "rpmsg-openamp-demo - channel", 

. addr = 1, 

.flags = 0 , 

Listing B . l : Captured NS announcement message from remote firmware. 
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Appendix C 

Matmul application output 

Demo Start - Demo rpmsg driver got probed 

since the rpmsg device associated with driver was found ! 

Create en dpoint and r e g i s t e r rx callback 

Master : Linux : Generating random matrices 

Master : Linux : Input matrix 0 

1 8 9 0 1 0 

8 3 7 9 0 1 

4 5 9 2 0 1 

7 9 8 6 4 5 

9 9 2 5 6 5 

1 9 3 1 5 4 

Master : Linux : Input matrix 1 

0 8 3 4 0 7 

4 8 6 5 6 4 

4 0 4 3 1 7 

5 9 4 7 4 2 

6 0 5 7 0 4 

6 9 6 6 2 5 

Master : Linux : Sent 296 bytes of data over rpmsg channel to 

remote 

Master : Linux : Received 148 bytes of data 

over rpmsg channel from remote 

Master : Linux : P r i n t i n g r e s u l t s 

74 72 92 78 57 106 

91 178 112 137 63 140 

72 99 92 88 49 120 

152 227 181 197 96 194 

135 234 169 194 86 172 

107 125 122 124 69 106 

Listing C . l : Matmul demo application Linux output. 
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Appendix D 

Modified linux-socfpga source 
codes 

IPI patch: 

arch/arm/include/asm/hardirq.h 

arch/arm/kernel/smp.c 

include/linux/smp.h 

kernel/irq/manage.c 

kernel/smp . c 

AMP patch: 

arch/arm/mach-socfpga/platsmp . c 

arch/arm/mach-socfpga/platsmp .h 

kernel/irq/manage.c 

GIC patch: 

include/linux/irqchip/arm-gic.h 

d r i v e r s / i r q c h i p / i r q - g i c . c 

remoteproc modifications: 

drivers/remoteproc/soscfpga_remoteproc.c : added 

drivers/remoteproc/remoteproc.core.c : ioremap.nocache 

Listing D . l : Modified Linux source codes. 
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