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Abstract 

The thesis focuses on analyses of relations between risk factors and dengue fever incidence in 

a selected area of Southeast Asia region. Specifically, it focuses on the Philippines, where the 

governmental organizations provide relatively sufficient amount of data. First, general 

problematic of Neglected Tropical Diseases with focus on dengue fever is introduced. Its 

transmission and influencing factors are specified. Then, current methods of dengue incidence 

and risk factors relationship modelling are reviewed. Furthermore, statistical processing of 

available data is carried out, especially, in terms of detailed analysis of the relationship 

between climatic factors and dengue incidence in the Philippines. Based on the obtained 

results, a mathematical model describing the relationship between dengue, cumulative 

precipitation and mean temperature on regional and weekly basis, is created. Model estimation 

is performed with generalized linear regression by applying negative binomial distribution. 

With the model, the dengue incidence dependency on selected risk factors was verified. 

Concurrently, overall complexity of the disease development and transmission was verified by 

the model. 

Key words 

Neglected Tropical Diseases, dengue, Southeast Asia, the Philippines, risk factors, generalized 

linear model 

Abstrakt 

Práce se zaměřuje na analýzu vztahů mezi rizikovými faktory a výskytem horečky dengue ve 

vybrané části Jihovýchodní Asie. Práce je konkrétně zacílena na Filipíny, jejíž vládní 

organizace poskytují relativně dostatečné množství dat. Na úvod je nastíněna obecná 

problematika tzv. zanedbaných tropických nemocí s podrobným zaměřením na horečku 

dengue, způsoby jejího šíření a ovlivňující faktory, včetně současných metod modelování 

vztahu mezi rizikovými faktory a výskytem horečky dengue. Praktická část se věnuje 

statistickému zpracování dostupných dat, zejména podrobné analýze vztahu mezi 

klimatickými faktory a výskytem dengue na Filipínách. Na základě obdržených poznatků je 

vytvořen matematický model popisující vztah mezi výskytem dengue, kumulativními 

srážkami a průměrnou teplotou na regionální a týdenní bázi. Odhad modelu je proveden 

pomocí zobecněné lineární regrese s využitím negativně binomického rozdělení. Pomocí 

modelu byla ověřena závislost incidence dengue na vybraných rizikových faktorech, ale také 

celková komplexnost rozvoje a šíření nemoci, kterou je nutné sledovat na regionální úrovni. 

Klíčová slova 

Zanedbávané tropické nemoci, dengue, Jihovýchodní Asie, Filipíny, rizikové faktory, 

zobecněné lineární modely  
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1 INTRODUCTION 

The World Health Organization created a list of 17 Neglected Tropical Diseases (NTDs). Such 

diseases became a priority of focus in terms of Neglected Tropical Diseases. They affect over 1 

billion population worldwide and are often referred to as communicable and infectious.
1
 

Generally, it is believed that these diseases have been neglected by national and worldwide 

governments and organizations for decades. Therefore, there have been insufficient amount of 

involvement e.g.; prevention and control programs, invention and supply of drugs and 

investment in general. According to some, the diseases have been also neglected because they 

influence the world’s poorest population. The diseases are characterized by occurrence in hot, 

tropical geographical areas, affecting rural or suburban populations and their presence in low 

income countries. They are disabling, disfiguring and stigmatizing.
2
 

Within the Southeast Asia region a large hidden burden of poverty and NTDs is present. 

Large portion of the population living in the region is affected by at least one of NTDs. They 

represent a crucial public health issue within the region. The diseases promote poverty in the 

region, as they are chronic and debilitating. Thus, seriously affect the productive and social lives 

of the population. The two countries at high risk are Indonesia and the Philippines, as they share 

30% of the region’s population living in extreme poverty. It is essential, for the Southeast Asia 

region as a whole and each specific country, to focus on active surveillance and defining the 

extent or burden of the diseases. Simultaneously, a need for new medicine, diagnostics and 

vaccines is in place.
3
 

Since the 19
th
 century, when dengue was a scarcely recognized disease, it arose to be the 

most important mosquito borne viral disease in the world. Currently, it is present in 112 

countries all over the world. It occurs mainly in tropical and sub-tropical areas with incidence 

primarily located in urban and suburban locations. Around 2.5 to 3 billion people worldwide are 

estimated to be at risk.
4
 It occurs in most Asian countries and is locally a leading cause of 

hospitalization and death.
5
 The vector responsible for majority of dengue infections and its 

transmission is the Aedes aegypti mosquito.
4
 Dengue represents a health burden in most of the 

Southeast Asian countries, Cambodia, Malaysia, Vietnam and the Philippines account for over 

90% of the total cases registered within the region. In the Philippines, dengue is the most 

significant vector-borne disease.
6
 

Epidemiology is an important field of study and research in understanding and 

implementing knowledge to control diseases and advance public health. There exist many 

different sources of data for epidemiology e.g.; census, vital registrations etc. The quality of 

data is essential for epidemiology, although, there exist distinct sources of errors. Epidemiology 
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defines and utilizes many terms such as; incidence, prevalence or risks and odds.
7
 It also uses 

different statistical and mathematical methods and models when studying aspects and behaviors 

of distinct diseases, for example, Logistic regression
8
 or Poisson regression model

7
.  

When studying diseases, specifically dengue fever, it is essential to focus on the risk 

factors which occur in the places of incidence and facilitate the transmission. Such factors can 

be; demographic, economic, behavioral, social and environmental. It is crucial to understand 

these factors and to review their impact.
9
 According to some current studies; temperature, 

rainfall and relative humidity as climatic factors and urbanization, population growth, trade and 

transport as non-climatic risk factors, represent major contributing factors to dengue incidence 

and transmission.
10

 Many of the recent studies put focus on studying the relationship between 

climatic risk factors and dengue incidence, as it is perceived as essential.
11

 

In this work, Poisson regression model was first selected for determination of the relation 

between dengue incidence and climatic risk factors. However, further analysis showed that due 

to the fact, that dengue data do not meet one of Poisson’s regression prerequisites, another 

mathematical approach was utilized, the Negative Binomial regression. Geographical area of 

focus, the Philippines, was selected based on the information about current situation of dengue 

incidence within the country and also in connection to the availability of data, surveillance 

systems within the country and its diverse climatic conditions. The raw data obtained for the 

climatic risk factors, population data and dengue cases were processed with basal statistical 

methods e.g.; conversion, formula derivation, averaging, interpolation, correlations etc., in order 

to be able to further obtain statistically significant data and then, results. Each of the dengue 

cases, population and climatic data sets were first processed and adjusted separately. Then, the 

data were put together within a mathematical interaction and compared and accounted for. At 

last, the dengue incidence predictive model was proposed, based on the final assessed climatic 

variables and dengue incidence rate. Finally, results of the model were reviewed, critically 

discussed and further, a conclusion was provided.  



11 

 

2 NEGLECTED TROPICAL DISEASE 

Neglected Tropical Diseases (NTDs) are known worldwide as a group of 17 communicable; 

infectious diseases. Although there exist more than 40 of the diseases worldwide, the World 

Health Organization (WHO) prioritized 17 of them as these affect over 1 billion people 

worldwide, especially those living in poor conditions.
1
 According to some resources the 

diseases have been neglected for several decades. This fact is supported by the connection of 

those diseases to the developing world and the general disregard towards it. The latter primary 

focus on HIVS/AIDS, malaria and tuberculosis impacted had an impact as well. Thus, until 

recently research, investment, pharmaceuticals invention, prevention and control programs 

appointed by policy makers have been scares.
2
  

There are several common features to justify the reason for the diseases to be placed into a 

group as a whole. The diseases are disabling, disfiguring and stigmatizing and thus, believed to 

be contributing as one of the causes of poverty. Their predominant occurrence can be 

determined in hot, tropical areas geographically near the equator. There is a close coherence to 

remote rural areas, urban outskirts and displaced populations. According to some authors NTDs 

should be considered as the diseases of the “bottom billion”; the poorest of the world 

population. The diseases cause acute illnesses, long term disabilities and early deaths. All of the 

low income countries are believed to be affected by at least five NTDs concurrently. As 

important contributors to the diseases’ incidence and transmission are considered, among 

others: the access to safe water, sanitation or housing conditions. Such listing suggests the 

preventability and eradicable potential of the diseases.
2
 Among other collective characteristics 

of the NTDs belong: impact on developing countries in terms of disease burden, quality of life 

or loss of productivity. The population affected by these diseases has generally no visibility or 

voice in terms of political influence on administrative or governmental decisions. In contrast 

with HIV/AIDS, malaria and tuberculosis the NTDs do not spread across vast areas and 

therefore do not, in general, affect populations of high income countries.
1
 

As mentioned above, the diseases cause disabilities and disfigurement leading to social 

discrimination and stigma, which can highly affect women in terms of marriage prospects, 

vulnerability to abuse or adverse pregnancy. When compared to the morbidity and mortality 

numbers of HIV/AIDS, malaria and tuberculosis the numbers for NTDs seem visibly lower, 

however, late evidence published in peer reviewed medical and scientific journals suggests the 

severity of such morbidity and mortality numbers for NTDs. Although recent evaluations have 

convinced the governments, pharmaceutical industry, donors and other agencies to invest in 

prevention and control of the diseases still, more research is needed in order to develop new 

diagnostic tools, medicines and complication management.
1
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Out of the 17 mentioned diseases, 9 are caused by microparasites and 8 by macroparasites. Most 

of the microparasites are believed to have simple life-cycles and tend to replicate within their 

host. They transmit either directly, through environmental contamination or through intimate 

contact, including transplacental route. Or they transmit indirectly, through a vector either being 

or not an intermediate host and through blood transfusions or organ transplants. The infections 

caused by microparasites range from acute (death or recovery), recurrent (repeated growth and 

decay of organisms in the host) or inapparent (dormant and difficult to detect) to subclinical 

(symptomless but detectable).
1
 

On the contrary, macroparasites have complex life-cycles involving both intermediate and 

reservoir hosts, a tendency is seen not to replicate within the definitive human host. Exceptions 

exist in soil-transmitted helminths which do not require intermediate host. They transmit 

directly, through ingestion from contaminated environment or through skin penetration. Or 

indirectly, through ingestion of an infected intermediate host or tissues of a reservoir host, 

through a vector which serves as an intermediate host. The infections are mostly chronic with 

rather low mortality rates.
1
 

It is even more complex to cure some of the micro and macroparasitic infections as some 

exploit a zoonotic component. Zoonotic infection is described as such in which a human 

becomes incorporated into the transmission cycle of a pathogen responsible for disease in wild 

or domestic animal.
1
  

The following diseases are caused by the microparasitic pathogens: Buruli ulcer, Chagas 

disease, Dengue, Human African trypanosomiasis, Leishmaniases, Leprosy, Rabies, Trachoma 

and Treponematoses. The diseases caused by the macroparasitic pathogens are: Cysticercosis, 

Dracunculiasis, Echinococcosis, Foodborne trematodiases, Lymphatic filariasis, Onchocerciasis, 

Schistosomiasis and Soil-transmitted helminthiases.
12

 

Another division of the diseases is based on the causative pathogen they result from: virus, 

including Dengue/Severe dengue and Rabies, protozoa, including Chagas disease, Human 

African trypanosomiasis and Leishmaniases, helminith, including Cysticercosis, Dracunculiasis, 

Echinococcosis, Foodborne trematodiases, Lymphatic filariasis, Onchocerciasis, 

Schistosomiasis and Soil-transmitted helminthiases and bacteria, including Buruli ulcer, 

Leprosy, Trachoma and Treponematoses.
13

 

Tab. 1 comprises the NTDs and their stratification into groups according to the causative 

pathogen and further lists the causative agents of each disease. It continues by listing global 

distribution, transmission and generally used control of the diseases. The last two columns 

provide data for approximate prevalence and people at risk for each disease. 
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Tab. 1: NTDs, causative pathogen stratification, causative agents, global distribution, transmission/control, 

prevalence and population at risk. 

NTDsa 
Causative 

agent1, 13 

Global 

Distribution1, 13 

Transmission/

Control1, 13 

Prevalence 

(million)14, 15 

Population at 

risk (million) 
14, 15 

Viral infections 

Dengue 
Aedes aegypti, 

Ae. albopictus 

the Region of 

the Americas, 

the South-East 

Asia Region 

and 

the Western 

Pacific Region, 

African and 

Eastern 

Mediterranean 

region 

Bites of infected 

Aedes 

mosquitoes/ 

Environmental 

management 

and vector 

control 

50  

Unknown, but 

increasing 

numbers at risk 

Rabies  

Global 

distribution 

(especially Asia 

and Africa) 

Bites or 

scratches from 

rabid animals 

(dogs, bats etc.) 

/ controlling 

rabies in both 

wild and 

domestic 

animals, pre-

exposure 

immunization 

to humans, post-

exposure 

prophylaxis 

Unknown; 0.05  Unknown 

Protozoan infections 

Chagas disease 
Trypanosoma 

cruzi 
Latin America 

Contact with the 

faeces of a 

triatomine bug/ 

parasite and 

vector 

control 

8-9  25  

Human African 

trypanosomiasis 

Trypanosoma 

brucei 

gambiense, 

Trypanosoma 

brucei 

rhodesiense 

Africa 

Bite of the 

tsetse fly 

(Glossina spp.)/ 

control of the 

animal 

reservoir, 

surveillance 

0.3  60  

Leishmaniases 

different 

species of 

Leishmania e.g. 

Leishmania 

donovani, L. 

tropica etc. 

African, 

Americas, 

South-East Asia  

and the Eastern 

Mediterranean 

regions 

Bites of infected 

sandflies/ active 

case-detection, 

early treatment 

12  350 
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Helminith infections 

Cysticercosis 
Taenia solium, 

Taenia saginata 

Africa, Asia and 

Latin America 

Ingesting the 

tapeworm’s 

eggs/ 

surveillance 

mechanisms, 

more reliable 

epidemiological 

data 

50  Unknown 

Dracunculiasis 
Dracunculus 

medinensis 

Ethiopia, 

Ghana, Mali 

and Sudan 

Ingestion of 

water 

containing 

infected 

Cyclops / 

community-

based 

surveillance 

systems, access 

to safe sources 

of drinking-

water, vector 

control 

0.01 Unknown 

Echinococcosis 

Echinococcus 

granulosus,  E. 

multilocularis 

Global 

distribution 

(pastoral 

communities), 

particularly 

South 

America, 

Mediterranean, 

Eastern 

Europe, Near 

and Middle 

East, East 

Africa, Central 

Asia, China, 

Russia 

Ingestion of 

eggs through 

direct contact 

with definitive 

hosts (dogs) or 

indirectly 

through food, 

water or soil 

contaminated 

with eggs/ 

deworming of 

dogs, public 

information 

campaigns 

Unknown Unknown 

Foodborne 

trematodiases 

(Clonorchiasis, 

opisthorchiasis, 

fascioliasis, and 

paragonimiasis) 

Clonorchis 

sinensis, 

Opisthorchis 

viverrini or O. 

felineus, 

Fasciola 

hepatica or F. 

gigantica, 

Paragonimus 

spp. 

Eastern Asia, 

Southeast Asia, 

Africa, 

Americas 

Ingestion of 

food 

contaminated 

with the minute 

larval stages of 

the worm 

(metacercariae)/ 

Preventive 

chemotherapy, 

case-

management 

approach 

20–40  Unknown 

Lymphatic 

filariasis 

Wuchereria 

bancrofti, 

Brugia malayi, 

B. timori 

Africa, Asia, 

Central and 

Southern 

America 

Mosquito bites/ 

mass drug 

administration 

programmes 

120  1.3 bil. 

Onchocerciasis 
Onchocerca 

volvulus 

Africa, small 

parts in 

Southern and 

Central 

America 

Bite of 

infected black 

flies/ vector 

control (aerial 

application of 

insecticides), 

mass treatment 

37  90  

Schistosomiasis    207  779  

Soil-transmitted Ascaris Global Environment  Ascariasis: 807 Ascariasis: 4.2 
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helminthiases lumbricoides, 

Trichuris 

trichiura, 

Ancylostoma 

duodenale, 

Necator 

americanus 

distribution (water, 

soil)contaminate

d by the 

worms’ 

infective stages/ 

deworming, 

vaccination, 

access to safe 

water and 

proper 

sanitation 

Trichuriasis: 

604 Hookworm: 

576 

bil. Trichuriasis: 

3.2 bil. 

Hookworm: 3.2 

bil. 

Bacterial infections  

Buruli ulcer 
Mycobacterium 

ulcerans 

Australia, 

Guyana, 

Malaysia, 

Mexico, 

Papua New 

Guinea, Peru, 

Sri Lanka, 

West and 

Central Africa 

Mode of 

transmission is 

unknown/ Early 

detection and 

treatment, 

vaccine 

development 

0.05 Unknown 

Leprosy 
Mycobacterium 

leprae 

tropical and 

sub-tropical 

regions 

Mode of 

transmission is 

unknown/ early 

diagnosis, 

multidrug 

therapy 

0.4 Unknown 

Trachoma 
Chlamydia 

trachomatis 

Africa, Asia, 

Central and 

South America, 

Australia 

and the Middle-

East 

Living in close 

proximity to an 

infected person/ 

lid surgery, drug 

treatment, 

environmental 

improvement  

84 590 

Treponematoses 

(bejel, pinta, 

yaws) 

Treponema 

pallidum 

Global 

distribution 

(highest rates in 

tropical regions) 

Poor personal 

hygiene and 

overcrowding / 

identification, 

case finding, 

treatment, 

surveillance 

Unknown Unknown 
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2.1 The WHO and NTDs 

As it is described in the first WHO report on neglected tropical diseases, WHO strongly 

believes that it has never overlooked or neglected the NTDs, as already in 1952 during the Fifth 

World Assembly in Geneva, it addressed the need of countries for technical assistance to deal 

with treponematoses, rabies, leprosy, trachoma, hookworm, schistosomiasis and both forms of 

filariasis. In 2003 WHO shifted the focus of elimination and control from specific diseases 

towards the health needs of poor communities.
16

 It has also shown its belief that many of the 17 

diseases can be either effectively controlled or eliminated or even eradicated.
17

 Since 2004 the 

effort and recognition of the NTDs’ importance has emerged. WHO has produced many 

documents which remain a baseline for elimination and control programs. Objectives for 

control, elimination and eradication of the diseases have been published in many of the World 

Health Assembly resolutions.
18

 

The WHO developed two important strategic interventions; preventive chemotherapy and 

intensified disease management. However, some of the 17 diseases require specific intervention 

approaches e.g., dengue, dracunculiasis and human dog-mediated rabies. Still, other 

interventions are needed to support the above mentioned.
17

 Thus, the WHO developed and 

recommended five public-health strategies for the prevention and control  

of NTDs: preventive chemotherapy; intensified case-management; vector control; the provision 

of safe water, sanitation and hygiene; and veterinary public health. According to the evidence 

more effective control results are obtained when all five strategies are combined and 

implemented.
1
 

The main goal of preventive chemotherapy strategy is to control morbidity in populations 

at risk of infection and illness. It uses large-scale distribution of high quality, safe, single-dose 

medicines currently used for four helminthiases: lymphatic filariasis, onchocerciasis, 

schistosomiasis and soil-transmitted helminthiases. The results of this measure depend on the 

use and mass distribution of seven broad-spectrum anthelminthic medicines: albendazole, 

diethylcarbamazine, ivermectin, levamisole, mebendazole, praziquantel and pyrantel. The 

medicines show efficacy, safety profile, and minimal side-effects and are easy to administer.
1
 

The aim of the intensified disease management strategy is to reduce morbidity, prevent 

mortality and interrupt transmission. The key aspects used to fulfill this aim are: early diagnosis, 

provision of specialized care and treatment, and management of complications. This strategy 

substitutes in diseases for which there are no preventive chemotherapy medicines. The focus is 

on the following diseases: Buruli ulcer, Chagas disease, human African trypanosomiasis, 

leishmaniasis, leprosy and yaws.  Most of the NTDs involve vector transmission e.g. insects, 

snails, crustaceans transmit infectious agents. Therefore, it is essential to understand the vector 

biology in order to be able to explain and predict the epidemiology of vector-borne diseases.
1
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A crucial vector-borne disease control measure is the use of pesticides, thus, it is essential to 

ensure the efficiency, ecological soundness and sustainability of such measures.
17

 There are 9 

NTDs related to water and sanitation in terms of their development and transmission, thus, it is 

important to focus on the safe water, sanitation and hygiene strategy. As there still are 900 

million people with no access to safe-drinking water and 2,500 million people who lack access 

to improved sanitation. It is essential to improve the situation otherwise both MDG 7 “Ensure 

environmental sustainability” and the elimination and eradication of NTDs will not be met.
1
 

Several of the NTDs are caused by agents originating from or involving vertebrate animals 

in their life-cycle. Those are called neglected zoonotic diseases (zoonoses) e.g. brucellosis 

cysticercosis, echinococcosis, foodborne trematodiasis, human African trypanosomiasis, 

leishmaniasis and rabies. It is essential to understand the veterinary sciences and through an 

integrated human and animal health approach improve the prevention and control  

of zoonoses.
17

 

In 2007 the first Global Partners’ Meeting took place and as a result there was a rise in 

shared commitment to support WHO strategies and targets. It triggered scaling up of control and 

elimination programs, enhanced access to medicines for the poorest. The first WHO report on 

neglected tropical diseases was published in 2010 describing both progress and challenges 

which occurred since 2007. The WHO Strategic and Technical Advisory Group for Neglected 

Tropical Diseases and partners adopted a roadmap for control, elimination and eradication in 

2011. The main goal of the roadmap was to set targets for NTDs for 2015 and 2020. The targets 

for neglected zoonotic diseases were published in a separate report of the Interagency Meeting 

on Planning the Prevention and Control of Neglected Zoonotic Diseases (NZDs) also in 2011.
17

 

The WHO effort has brought over the recent years several improvements e.g.; increased 

advocacy for new approaches to the control, elimination and eradication of NTDs, commitment 

from pharmaceutical companies to supply drugs, renewed government commitment and 

especially, the acknowledgement that the diseases ought to be addressed as part of the 

Millennium Development Goals (MDGs) agenda. Where they are considered within MDG 6 

“Combat HIV/AIDS, malaria and other diseases”, as “other diseases”.
18

 It is perceived that 

relieve in burden from suffering the NTDs will also bring an immense contribution to the 

achievement of the MDGs. By solving or improving the issues related to NTDs, does not only 

the NTD community help in achieving the MDG 6. It will impact other MDG outcomes e.g. by 

treating school-aged children for schistosomiasis and soil-transmitted helminthiases, helps to 

improve their nutritional and educational status (MDGs 3, 4, 5 and 6).
1
 

As discussed earlier, there has been a shift towards universal health coverage (UHC) 

instead of aiming the focus solely on disease-specific goals. The term universal health coverage 

has been defined by WHO as: “ensuring that all people can use the promotive, preventive, 

curative, rehabilitative and palliative health services they need, of sufficient quality to be 
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effective, while also ensuring that the use of these services does not expose the user to financial 

hardship”.
19

 

In connection to the UHC the Sustainable Development Goals (SDGs) also recognize the 

need to tackle inequity and provide health for all. The NTDs are included in SDG 3 “Ensure 

healthy lives and promote well-being for all at all ages” within which the target is to “end the 

epidemics of AIDS, tuberculosis, malaria, and neglected tropical diseases and combat hepatitis, 

water-borne diseases, and other communicable diseases” by the year 2030. The inclusion of 

NTDs was crucial not only because of their influence at country level, but especially due to their 

impact on the distribution within populations e.g. across socioeconomic groups. There are other 

SDG targets e.g. target 3.8. or 13.3. which although indirectly, still provide framework for 

investment in universal coverage against NTDs and simultaneously, for long-term investment in 

vector control.
19

 

After attaining a growth in the global community recognition of the severity of morbidity 

and mortality resulting from NTDs. And a change of thinking and approach towards prevention 

and control. The focus has also turned to strengthening health systems and programs in 

countries where the NTDs hit the hardest in terms of health and productivity.
1
 In capacity 

building WHO is responsible for formulating appropriate training and strengthening existing 

capacity. All this in order to respond more effectively to the integrated delivery of control 

strategies. Three tools are used: monitoring, evaluation and surveillance to verify and improve 

the quality of interventions and to determine whether a specific program delivered expected 

outcomes.
17
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2.2 NTDs in Southeast Asia 

First, it shall be explained the diversity of perspective according to which countries belong to 

the list of Southeast Asia (SEA) countries. Because further in this chapter it might be referred to 

some countries as being part of distinct regions according to the source used. The WHO 

distincts the South-East Asia Region (SEAR) of the World Health Organization into a list of 11 

countries: Bangladesh, Bhutan, Democratic People’s Republic of Korea, India, Indonesia, 

Maldives, Myanmar, Nepal, Sri Lanka, Thailand, Timor-Leste.
20

 

Another division is closely linked to the Association of Southeast Asian Nations (ASEAN) 

which constitutes of 10 member states: Brunei Darussalam, Cambodia, Indonesia, Lao People’s 

Democratic Republic (Lao PDR), Malaysia, Myanmar, the Philippines, Singapore, Thailand, 

Viet Nam.
3
 

Other sources divide SEA into 11 distinct countries: Brunei Darussalam, Cambodia, 

Indonesia, Lao People’s Democratic Republic (Lao PDR), Malaysia, Myanmar, the Philippines, 

Singapore, Thailand, Timor-Leste and Viet Nam.
21

 

It ought to be mentioned that out of the 37 countries listed as countries of WHO Western 

Pacific Region some would be, according to above defined distribution, perceived as countries 

of SEA: Brunei Darussalam, Cambodia, Lao PDR, Malaysia, the Philippines, Democratic 

People’s Republic of Korea, Singapore and Viet Nam.
22

 

Despite of several ASEAN member countries being economic powers, there still is a major 

hidden burden of poverty and NTDs within the region.
3
 Concurrently, NTDs represent an 

immense public health issue within the SEAR of WHO.
20

 Many of the near 200 million people 

living within ASEAN region are affected by at least one NTD.
3
 Within the WHO SEAR the 

diseases do not only affect vast number of people and cause high morbidity and mortality, they 

seriously affect the productive and social lives of the people.
20

 In ASEAN region roughly 30% 

of the population live in extreme poverty, the highest share, three-quarters of the poor, is 

divided among Indonesia and the Philippines. As it was already explained in previous chapters, 

NTDs do not only affect those living in extreme poverty, but too promote poverty into larger 

depth, as they are known to be chronic and debilitating.
3
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There are 13 major NTDs affecting ASEAN countries, these are selected from the WHO’s list 

of 17 NTDs. A stratification according to the causative pathogen and the list of the diseases is 

shown in Tab. 2. There are other simultaneous major NTDs affecting the ASEAN countries, 

however, these do not correspond with the WHO’s list of 17 NTDs.  

Tab. 2: List of major NTDs present in ASEAN countries stratified according to their causative pathogen.3 

Helminiths Bacteria 

Cysticercosis Lymphatic filariasis Buruli ulcer Trachoma 

Echinococcosis Schistosomiasis Leprosy Yaws 

Foodborne trematodiases 
Soil-transmitted 

helminthiases 
  

Protozoa Virus 

Leishmaniasis Dengue/Severe dengue Rabies 

The overview of the neglected helminth infections follows: it has been determined that there are 

126.7 million people in Southeast Asia infected with Ascarsis roundworms, there are 115.3 

million people infected with Trichuris whipworms, and 77.0 million infected with hookworms. 

High proportion is accounted for by the Ancylostoma ceylanicum a unique zoonotic hookworm 

infection found especially in Malaysia, Thailand, Cambodia and Lao PDR. Therefore it is 

possible to determine that around one-half of those people living in poverty in SEA, have one or 

more soil-transmitted helminth infection. Within the region, hookworm infections have been 

known for being the leading cause of anemia and iron deficiency anemia which leads to low-

birth-weights, inadequate growth and mental development of children, high maternal mortality 

and low productivity in adults.
3
 

According to the WHO database ASEAN countries account for more than 13% of global 

population eligible for deworming for soil-transmitted helminth infections. Simultaneously, 

ASEAN countries account for more than 13% of global population requiring mass treatment for 

Lymphatic filariasis.
3
 

Out of the protozoan infections none are considered as highly endemic to Southeast Asia. 

Nevertheless, Visceral Leishmaniasis has recently emerged in Thailand.
3
 

Leprosy and Trachoma are considered as the major bacterial infections present in SEA. 

Trachoma is endemic solely in Cambodia and Lao PDR, in Viet Nam the surveillance for 

elimination is currently applied. It is estimated that ASEAN countries account for 10% of the 

world’s registered leprosy cases, with three-quarters in Indonesia. Yaws remains endemic in 

parts of Indonesia, in general, Buruli ulcer and Yaws can be found in SEA even though not to 

such an extent as in other world regions.
3
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Viral infections in SEA are represented by two major viral NTDs: dengue and rabies. Dengue 

infection within ASEAN countries accounts for more than 17% of global disease burden. An 

important public health threat is represented by canine rabies, especially, in the poorest areas of 

Indonesia and the Philippines.
3
 

There is a summary showing number of cases for some of the major NTDs within ASEAN 

countries in Tab. 3. Not all listed diseases are provided with number of cases due to the 

unavailability of data both locally and regionally. This is also the reason for some of the other 

major NTDs present in ASEAN countries not being listed at all. Tab. 3 also provides the 

information on Disability-adjusted life years (DALYs) for SEAR. The numbers presented as 

DALYs are per 100 000 population. 

The overall burden of any disease can be assessed by DALYs, it is a time-base measure 

combining years of life lost due to premature mortality (YLLs) and years of life lost due to time 

lived in states of less than full health, or years of healthy life lost due to disability (YLDs).  One 

DALY is represented as one lost year of ‘healthy’ life. The burden which is measured by using 

DALYs is: the gap between a population’s health status and that of a normative reference 

population. By using DALYs it is possible to compare the burden of diseases that cause 

premature death but little disability and those that do not cause death but do cause disability. In 

other expression, DALYs for a given disease or condition are the sum of (YLLs) and (YLDs) 

due to prevalent cases of the disease or health condition, in a population.
23

 

Tab. 3: Number of cases and DALYs for SEAR in selected NTDs. 

Disease 
Number of cases ASEAN 

[millions]3 

DALYs SEAR 2012 (per 

100 000 population)24 

Lymphatic filariasis N/A 94.8 

Schistosomiasis 1.0 0.0 

Soil-transmitted 

helminthiasis 

Ascariasis: 126.7 

Trichuriasis: 115.3 

Hookworm infection: 77.0 

Ascariasis: 31.0 

Trichuriasis: 7.3 

Hookworm infection: 49.8 

Leishmaniases N/A 92.2 

Leprosy 0.02 10.8 

Trachoma N/A 0.4 

Dengue 68.2 35.3 

Rabies N/A 34.1 

N/A - not available. 
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There is a need for active surveillance for NTDs and for defining the extent of NTD-caused 

illnesses within countries and the region as a whole. Besides other reasons, because of the 

incomplete information on burdens only being available. A need for new drugs, diagnostics and 

vaccines remains a goal.
3
 

There has been success within the region in establishing some of the needed support 

mechanisms for development. As for example, in 2009 the ASEAN Network for Drugs, 

Diagnostics, Vaccines, and Traditional Medicines Innovation (ASEAN-NDI) was founded. The 

network is supported by the World Health Organization Special Programme for Research and 

Training in Tropical Diseases (WHO-TDR). Its activities include the assessment of the product 

research and development (R&D) landscape for the triple burden of disease in the region; one of 

the burden being infectious tropical diseases.
3
 

Another Asia Pacific NTD Initiative supported by the WHO Regional Strategic Plan for 

Integrated NTD Control in the South-East Asia Region (2012–2016) and the WHO Regional 

Action Plan for Neglected Tropical Diseases in the Western Pacific (2012–2016) was 

established. The initiative serves as a framework for countries and areas, donors, research 

institutes and other partners. It supports the following activities; programme planning and 

capacity-building, health education, mass drug distribution, curative care and morbidity 

management, monitoring and evaluation and surveillance, and knowledge management and 

operational research. The supported countries are those included in the WHO’s South-East Asia 

and Western Pacific regions.
25
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3 DENGUE 

During the 19
th
 century, dengue was perceived as a sporadic disease which caused epidemics 

only at long term intervals. However, changes took place and currently, dengue is considered as 

the most important mosquito borne viral disease in the world. Within the past 50 years its 

incidence has increased by 30-fold with outbreaks which occur in five of six WHO regions. 

Currently, dengue is present in 112 countries in Southeast Asia, the Pacific, the Americas and 

Africa. It is found mainly in tropical and sub-tropical regions worldwide, especially in urban 

and semi-urban areas. There are around 2.5 to 3 billion people estimated to be at risk of 

dengue.
4
 There are 50–100 million new infections estimated to occur every year. Severe dengue 

was first recognized in the 1950s during dengue epidemics in the Philippines and Thailand. It 

occurs in most Asian countries and has become a leading cause of hospitalization and death.
26

 

There are three forms of the dengue infection; dengue fever (DF) also known as break 

bone fever, in severe dengue there are: dengue haemorrhagic fever (DHF) and dengue shock 

syndrome (DSS).
5
 DF is characterized as asymptomatic or self-limiting. In severe dengue, DHF 

is characterized by plasma leakage in severity grades 1 and 2 and it can lead to DSS a life-

threatening syndrome with grades 3 and 4. However, the pathogenesis of DSS has not been yet 

fully understood. The severe dengue has also been defined by severe bleeding and organ 

impairment.
26

   

Dengue is a systemic viral infection which can be found globally both in endemic and 

epidemic transmission cycles.
27

 The dengue virus is a single stranded Ribonucleic acid (RNA) 

virus which belongs to the Flaviviridae family. There exist four serotypes of dengue (DEN 1-4), 

those are classified according to biological and immunological criteria. In general, a person 

infected by one serotype develops protective immunity against that specific serotype. However, 

it does not develop immunity against the remaining serotypes. Furthermore, when a person is 

infected again with another serotype a more severe infection may occur.
4
 Based on a 

pathogenesis from a different source the term dengue viruses (DENV 1-4) can be also found. 

All four viruses evolved in non-human primates and each entered the urban cycle independently 

around 500–1,000 years ago.
27

 

Despite differences among each DENV the serotypes cause nearly the same syndromes in 

humans and circulate in the same biological area. The syndromes produced are often 

conditioned by age and immunological status. Thus, for an example, in initial dengue infection 

children will most likely experience subclinical infection or mild undifferentiated febrile 

syndromes. On the other hand children with secondary dengue infection will experience a 

dramatic change of the pathophysiology of the infection e.g. particularly sequential infections, 
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meaning differential serotype order occurrences. This can lead to DSS, its severity is age-

dependent.
27

 

On the contrary, in adults, primary infections with each of the four DENV serotypes, often 

result in DF. Some outbreaks of primary infections have been predominantly subclinical. Still, 

infections in adults bring the tendency for bleeding which leads to DHF. Secondary dengue 

infections in adults can produce both DSS and DHF. As mentioned above, the immunological 

status can affect the infection process e.g.; in individuals with asthma, diabetes and other 

chronic diseases the infection can be life-threatening. Some host factors can also affect the 

increase of risk of severe dengue e.g. female sex or AB blood group etc., or decrease the risk 

e.g. race or degree of malnutrition etc.
27

 

There are still no vaccines or drugs available for treating dengue, however it can be 

managed by careful monitoring of the warning signs and early initiation of aggressive 

intravenous rehydration therapy.
28

 The efforts to diminish dengue transmission are focused on 

vector control, by using combination of chemical and biological targeting of the vector 

mosquitoes and management of their breeding sites.
27

  

The vector of the dengue infection are mosquitoes from the aedes genus. The following 

species: Aedes aegypti, Aedes albopictus, and Aedes polynesiensis play an important part in 

transmission of dengue. The primary and most important vector of the three is the Aedes 

aegypti, the other two may act as vectors depending on the geographical location. For example, 

Aedes albopictus can be found as a vector in Thailand, Samui Island, India, Singapore, and 

Mexico. Aedes aegypti is found in tropical and subtropical areas, it bites during the day and 

breeds within containers. It rests indoors, within a house, it can be found especially in living 

rooms and bedrooms. Thus, it is rather complicated to control this vector, as it is out of the 

range of outside insecticides and it maximizes the man-vector contact. It breeds within polluted 

water or small containers such as flower vase or buckets and the eggs survive for long time 

periods.
4
 

High mosquito densities in endemic areas can be caused among other causes by: improper 

disposal of garbage or inadequate wastewater drainage. Elevated mosquito larval populations 

can be found during rainy season. This is also a reason why epidemics of dengue coincide with 

the rainy season. The viral propagation in mosquitoes is affected by ambient temperature and 

humidity. The mosquitoes are not able survive cold winter, thus the temperature should not 

decline below 10 °C. After biting an infected human, the dengue virus enters an adult female 

mosquito and it then, further transmits the virus to another human. As the infected mosquitoes 

take longer to finish their blood meal, it is perceived as a contributing factor to the efficiency of 

this particular mosquito as a vector.
4
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3.1 Vector life cycle and dengue virus transmission cycle 

The life cycle of Aedes aegypti involves 4 life stages: adult, egg, larva, pupa. The entire life 

cycle lasts around 10–12 days. An adult, female mosquito lays the eggs around inner, wet walls 

of containers with water, above the water line. The eggs stick to the wall and can survive up to 8 

months of drying out. Mosquitos generally lay around 100 eggs at a time. When the water level 

rises (often after a rainfall) and covers the eggs, the larvae emerge. Larvae feeds on 

microorganisms in the water. There are 4 larval stages during which the larvae molts and sheds 

the skin three times, then larva becomes pupa. The pupae will develop, usually for 2 days, until 

the body of a new mosquito emerges from the pupal skin and leaves the water. The life cycle of 

the primary dengue vector Aedes aegypti mosquito is depicted in Fig. 1 a) below.
29

 

 

Fig. 1: a) Aedes aegypti mosquito life cycle; eggs (1), 1st larval stage (2), 2nd larval stage (3), 3rd larval stage (4), 4th 

larval stage (5), pupa (6), new mosquito (7). Source:30. b) The transmission human-to-mosquito-to-human life cycle 

of dengue virus. Source:31. 

Fig. 1 b) shows the human-to-vector (mosquito)-to-human dengue transmission cycle. An 

infected human is bitten by a mosquito, which then is infected, it further infects another human 

with the following blood feeding, whom then may infect another mosquito. The symptoms of 

the infection usually present 4–7 days after the mosquito bite, they typically last for about 3-10 

days. Concurrently, a person will develop within 4 days from the bite a so called viremia. It 

lasts approximately 5 days, during this time there are high levels of the dengue virus in the 

blood. In order for the transmission to occur a mosquito must feed on a person during this 5 day 

period. After the virus enters the vector mosquito, it takes about 8–12 days of incubation for the 

virus to develop and then, it can be further transmitted.
31

 

3.2 Dengue in South East Asia 

Dengue is the most rapidly spreading arboviral disease in the tropics and subtropics.
32

 It 

presents as a health burden in many countries of the world, but especially in South East Asia 

countries: Thailand, the Philippines, Indonesia, Singapore, Malaysia, Myanmar, Lao People's 
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Democratic Republic, Brunei Darussalam, Cambodia and Vietnam. Concurrently, it is 

recognized as a major health problem in the WHO Western Pacific Region countries, especially 

in Cambodia, Malaysia, the Philippines and Vietnam. These countries make up over 90% of the 

total cases reported in the region. In Vietnam it is a leading cause of hospitalization. In the 

Philippines, dengue is currently the most significant vector-borne disease. Although, the amount 

of dengue cases differs in various areas of the country. For an example, there were 36 cases per 

100,000 population in 2010 in southern Autonomous Region in Muslim Mindanao and 

simultaneously, 372 cases were reported in northern Cordilera Admistrative Region. In addition, 

overall number of reported cases increased with the onset of rains.
6
  

According to 
27

 there were 96 million estimated apparent dengue infections globally in 

2010. Apparent dengue infection would be characterized as an infection with visible clinical 

symptoms e.g. rash, nausea etc. Thus, affecting the daily routines of an individual. Asia alone 

accounted for 70% of this burden. Asia is also typically perceived as disproportionate in 

distribution of the disease within its countries. Additionally, there were 294 million inapparent 

infections estimated worldwide in 2010. An inapparent infection would be one with no clinical 

symptoms visible and thus, has no impact on the daily life of an individual. This type of 

infection is not detected by the public health surveillance systems. However, it represents an 

immense potential reservoir of the infection.  

Fig. 4 represents the annual number of infections for all ages as a proportion of national 

geographical area. It also depicts the above mentioned disproportionate distribution of the 

disease in Asia. The colored scale ranges from 0 infections in dark green color to 7.5–2.5 

million infections in dark red color. As it is visible the highest amount of infections within 

South East Asia countries is present in Indonesia, the Philippines, Vietnam and Thailand.
27

 

 

Fig. 2: Annual number of dengue infections for all ages as a proportion of national geographical area. Source:27. 
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4 EPIDEMIOLOGY FUNDAMENTALS 

According to Schoenbach & Rosamond
7
 epidemiology is: “both a field of research to advance 

scientific understanding and also of application of knowledge to control disease and advance 

public health, a (primarily observational) science and a public health profession”.  

The key aspects of epidemiology are the following: it deals with populations and thus 

involves rates and proportions, averages, dynamics etc. It involves measurements thus, the need 

for definition of the phenomena, spectrum of disease, source of data and compromise. It mostly 

involves comparison and thus, considers standards of reference for baseline risk, equivalent 

measurement accuracy and adjustment for differences. Finally, it is multidisciplinary as it must 

consider: statistics, biology, chemistry, physics, demography, geography, environmental 

science, policy analysis etc. It involves interpretation e.g. consistency, mechanisms e.g. 

environmental or economic and policy e.g. implications or recommendations.
7
 

There exist two major sources of data for epidemiology: first, aggregate data, these are 

data obtained from some of the following sources: vital statistics (birth rates, death rates, etc.), 

data from the Census and other government data-gathering activities (demographic, housing, 

etc.), summaries of disease and injury reporting systems and registries, workplace monitoring 

systems, environmental monitoring systems (e.g. air pollution measurements) and production 

and sales data. Second type of data source is the individual-level data, vital events registration 

(births, deaths, etc.), disease and injury reporting systems and registries, national surveys, 

computer data files (e.g. health insurers), medical records, questionnaires, biological 

specimens.
7
 

The data quality in epidemiology is essential, however, it can still become a challenge to 

ensure it. This is due to many possible sources of error, especially, in observational studies of 

human populations. It became a major topic in epidemiologic methods to identify, avoid and 

control the potential sources of errors.
7
 

The best quantifiable and understood error yet is believed to be sampling error, it is a 

distortion that can occur from the “luck of the draw” in small samples from a population. 

Perceived as more problematic is the selection bias, it is an error that occurs when the 

study participants are not representative of the population of interest. This error can result from 

some of the following: self-selection (volunteering), nonresponse (refusal), loss to follow-up 

(attrition, migration), selective survival, health care utilization patterns, systematic errors in 

detection and diagnosis of health conditions, choice of an inappropriate comparison group 

(investigator selection).
7
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Another error determined as highly problematic is information bias, it is a systematic error due 

to incorrect definition, measurement, or classification of variables of interest. Sources of such 

error can be; recall or reporting bias, false positives or negatives on diagnostic tests, errors in 

assignment of cause of death, errors and omissions in medical records. Another error relevant 

for epidemiologists is confounding, an error in the interpretation of comparisons between groups 

that are not truly comparable.
7
 

4.1 Essential terms in epidemiology 

Data collected routinely are usually not adequate for most epidemiologic studies and so data 

must be collected specifically for the purpose of a given study. Although it might show as time, 

effort and expense consuming, it provides estimates of measures that are more suitable for the 

acquired purposes. The following measures represent such examples: prevalence, incidence and 

case fatality.
7
 

Prevalence 

Prevalence is the most of basic of epidemiologic measures. It measures the proportion of cases 

within a population. It is defined as the number of cases divided by the population at risk
7
: 

 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =
𝐶𝑎𝑠𝑒𝑠

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘
 . (1)  

It ought to be noted that prevalence is a proportion, so it must lie between 0 and 1, inclusive. 

Population at risk (PAR) means “eligible to have the condition”. Prevalence can be used to 

estimate the probability that a person selected at random from the PAR has the disease Pr(D). 

Prevalence is defined to have three components: existing cases, populations “at risk” to have the 

condition and point (or a period) in time to which the prevalence applies.
7
 

Incidence 

Incidence in connection is the measure of the occurrence of new cases. It is defined as the 

number of new cases divided by the population at risk over time
7
: 

 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 =  
𝑁𝑒𝑤 𝑐𝑎𝑠𝑒𝑠

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒
 . (2)  

Incidence includes three components: new cases, population at risk and interval of time. Note 

that incidence involves the passage of time. Incidence may be expressed as a proportion or as a 

rate. Incidence can be used to estimate the risk of an event during a stated period of time.
7
 

There exist two major types of incidence measures. They differ primarily in the method of 

constructing the denominator: cumulative incidence (CI) also known as incidence proportion 

(IP) and incidence density (ID) also known as incidence rate (IR). 



29 

 

Cumulative incidence 

CI represents the proportion of a population that experience an event or develop a condition 

during a stated period of time: 

 𝐶𝐼 =  
𝑁𝑒𝑤 𝑐𝑎𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘
 . (3)  

Furthermore, the definition of CI is based on an “ideal” scenario; a population known to be free 

of the outcome is identified at a point in time (a cohort). All members of the cohort are at risk of 

experiencing the event or outcome (at least once) for the entire period of time, all first events or 

outcomes for each person are detected.
7
 

It should be also noted that the period of time must be stated (e.g., “5-year CI”) or be clear 

from the context (e.g., acute illness following exposure to contaminated food source). Because 

CI is a proportion, each person can be counted as a case only once, even if she or he experiences 

more than one event. As a proportion, CI can range only between 0 and 1 and thus, can be used 

to estimate risk or the probability of an event.
7
 

Incidence density 

ID represents the rate at which new cases develop in a population, relative to the size of that 

population: 

 𝐼𝐷 =  
𝑁𝑒𝑤 𝑐𝑎𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 , (4)  

where the term “population time” stands for number of person years of observation e.g. person 

months.
7
 

Note that ID is a relative rate, not a proportion. The units of time must be stated, otherwise 

the numeric value is ambiguous (e.g., 15 cases/100,000 person-years = 15 cases/1,200,000 

person-months). Ideally, incidence density is the instantaneous rate of disease occurrence at 

each moment in time. In practice, epidemiologists generally compute average ID during one or 

more periods.
7
 

Risks and odds 

It is essential to define the terms risk and odds in terms of epidemiology. In general, the term 

risk means the probability (p) that an event will occur in a given stated or implicit time interval. 

Furthermore, within its epidemiologic use, risk is a conditional probability, because it is the 

probability of experiencing an event or becoming a case conditional on remaining “at risk” 

(eligible to become a case) and “in view” (available for the event to be detected).
7
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Concurrently, any probability can be transformed into a related measure, the odds. Odds are 

defined as the ratio of the probability of an outcome to the probability of another outcome. 

When the only outcomes are (case, non-case), then the odds are the ratio of the probability of 

becoming a case, to the probability of not becoming a case. If the risk or probability of 

becoming a case Pr(D) is p, then the odds of becoming a case are p/(1-p). If the risk, or 

probability, of developing disease X is 0.05 (5%), then the odds of developing disease X are 

0.05/0.95 = 0.0526 (the odds always exceed the risk, especially for large risks).
7
 

The advantage in using odds is in its mathematical properties. For an example, 

probabilities are restricted to the 0 to 1 interval. On the contrary, odds can be any nonnegative 

number  

e.g. odds = 1.0 (“fifty-fifty”) corresponds to probability = 0.5; the middle of the set of possible 

values. The logarithm of the odds can therefore be any real number, with 

log(odds) = 0 corresponding to the middle of the set of possible values.
7
 

4.2 Epidemiologic models 

In general, it is essential to understand statistical methods, especially statistical methods in 

connection to medicine, to understand what it is, given the type of data that has been collected. 

However, it is also crucial to understand, that different statistical methods have much in 

common and thus, it helps by understanding one method, to also understand another. The 

following methods apply to many types of exposure and outcome variables.
8
 

4.2.1 Simple and multiple linear regression model 

The method of linear regression is used to estimate the best-fitting straight line to describe the 

relationship between a dependent variable y (for medical data also known as numerical 

outcome) and an independent variable x (for medical data also known as numerical exposure).
8
 

The simple linear regression considers only one independent variable.
33

 It also provides an 

estimate of a correlation coefficient, which measures the closeness (strength) of the linear 

association.
8
 In other words, linear correlation coefficient (e.g. Pearson) usually abbreviated “r”, 

measures the degree to which the association between two variables is linear.
7
 The equation of 

the regression line is: 

 𝑦 =  𝛽0 +  𝛽1𝑥 + 𝑒 , (5)  

where 𝛽0 and 𝛽1 are the parameters or regression coefficients of the linear regression: 𝛽0 is the 

intercept (the value of y when x = 0), and 𝛽1 the slope of the line (the increase in y for every unit 

increase in x). The letter e represents the error and is normally distributed with mean zero and 

standard deviation .
8
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On the contrary, multiple linear regression model considers more than one independent variable. 

It can be carried out with any number of variables, however, it is recommended for the number 

to be kept reasonably small, as with larger numbers the interpretation becomes more complex.
8
 

The general form of the multiple regression model is: 

 𝑦 =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑖𝑥𝑖 + 𝑒 , (6)  

where the quantity, 𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑖𝑥𝑖, is known as linear predictor of the 

outcome y, given particular values of the independent variables 𝑥1 to 𝑥𝑖. The error, e, is 

normally distributed and with mean zero and standard deviation , which is estimated by the 

square root of the residual mean square.
8
 

It can be often found that the relationship between the dependent variable and independent 

variable is non-linear. There are three possible ways of incorporating such independent variable 

in the multiple regression equation. The first possibility is to redefine the variable into distinct 

subgroups and include it as a categorical variable using indicator variables, rather than as a 

numerical variable. The second approach would be to find a suitable transformation for the 

independent variable. And the third option is to find an algebraic description of the 

relationship.
8
  

4.2.2 Logistic regression model 

In statistics, logistic regression model is also known as logit regression or logit model.
33

 It is 

most commonly used to analyze binary dependent variables. The dependent variable is 

categorical.  The binary dependent variable can take only two values 0 and 1 e.g. healthy or 

diseased. It also provides a flexible mean of analyzing the association between a binary 

dependent and a number of independent variables.
8
 It can do so by estimating probabilities 

using a logistic function.
33

     

The general form of the logistic regression model is similar to that for multiple regression: 

 𝑙𝑜𝑔 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑖𝑥𝑖, (7)  

the difference is that a transformation of the dependent variable, namely the log of the odds of 

the dependent variable, is modeled. The 𝛽’s are the regression coefficients associated with the p 

independent variables.
8
 

The transformation of the probability, or risk,  of the dependent variable into the log odds 

is known as the logit function:  

 𝑙𝑜𝑔𝑖𝑡(𝜋) = log (
𝜋

1− 𝜋
), (8)  
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as defined in the above description, probabilities must lie between 0 and 1, odds can take any 

value between 0 and infinity (∞). The log odds are not constrained at all; they can take any 

value between   ̶∞ and ∞.
8
 

The key epidemiologic assumptions of the logistic model are: the log odds of disease are 

linearly related to each of the risk factors, or equivalently, the disease odds are exponentially 

related to each of the risk factors. Or equivalently, the disease risk is related to each of the risk 

factors by the logistic (sigmoidal) curve and that the joint effects of the risk factors are 

multiplicative on disease odds.
8
 

4.2.3 Poisson regression 

It is a method used by epidemiologists to control for confounding and to obtain adjusted 

measures of effects. It is used for the analysis of rates.
8
 This is used to estimate rate ratios 

comparing different independent variable groups.
33

 Like logistic regression models, Poisson 

regression models are fitted on a log scale. The results are then antilogged to give rate ratios and 

confidence intervals. The general form of Poisson regression is similar to the one of logistic 

regression and multiple regression. It relates the log rate to one or more independent variables: 

 log(𝑟𝑎𝑡𝑒) =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑖𝑥𝑖. (9)  

Again, the quantity on the right hand side of the equation is the linear predictor of the log rate, 

given the particular value of the i independent variables 𝑥1 to 𝑥𝑖. The 𝛽’s are the regression 

coefficients associated with the i independent variables.
8
 

Since log(rate) = log(d/T) = log(d) - log(T), the general form of the Poisson regression 

model can also be expressed as
8
:  

 log(𝑑) = log(𝑇) + 𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3+. . . + 𝛽𝑖𝑥𝑖, (10)  

The term log(T) is known as an offset in the regression model. In order to use statistical 

packages to fit Poisson regression models, it is essential to specify the dependent variable as the 

number of events and give the independent variable time T, which is then included in the offset 

term, log(T).
8
 

4.2.4 Bayesian statistics 

Bayesian statistics used to formulate statistical models requires the specification of prior 

distributions for any unknown parameter. A prior distribution probability of an uncertain 

quantity is the probability distribution expressing one’s beliefs about this quantity before some 

evidence is taken into account.
34

 

Bayesian approach to statistical inference is based on the Bayes’ formula for relating 

conditional probabilities.
8
 It describes the probability of an event based on a condition that 
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might be related to the event. It produces the posterior probability distribution, which is the 

conditional distribution of the uncertain quantity given the data. In other terminology, the 

posterior probability is the conditional distribution that is assigned after the relevant evidence 

has been taken into account.
34

 

The following equation represents Bayes’ theorem: 

 𝑝(𝐴 𝑔𝑖𝑣𝑒𝑛 𝐵) =  
𝑝(𝐵 𝑔𝑖𝑣𝑒𝑛 𝐴)× 𝑝(𝐴) 

𝑝(𝐵)
 , (11)  

where, p represents probability and A and B represent events. The 𝑝(𝐴) is the prior probability 

of A  before the event B is observed. The 𝑝(𝐵) is the probability of B with no regard towards A. 

The 𝑝(𝐴 𝑔𝑖𝑣𝑒𝑛 𝐵) is the posterior probability and it is the probability of event A given that B is 

true. The 𝑝(𝐵 𝑔𝑖𝑣𝑒𝑛 𝐴) is the probability of event 𝐵 given that A is true.
34

 

In the Bayesian interpretation, probability measures a degree of belief. Bayes’ theorem 

links the degree of belief in a proposition before and after accounting for evidence.
34

 

4.2.5 Other models 

Among other models used in epidemiology and statistics in general are: time-series analysis and 

spatial models. In terms of spatial models, these are very similar to those used for time-series 

analysis, only extended with the spatial aspect, thus sampling of an area of interest is 

incorporated. It uses topological, geometric and geographic prospects. Spatial models are 

influenced by some of the following: spatial autocorrelation statistics, Geographically Weighted 

Regression (GWR) or Geographically Integrated Systems (GIS).
35

  

The time series analysis comprises methods for analyzing time series data in order to 

extract statistics and other characteristics of the data. Models for time series data can have 

different forms and processes, e.g. autoregressive (AR) models, the integrated (I) models and 

the moving average (MA) models. Combinations of these result in autoregressive moving 

average (ARMA) and autoregressive integrated moving average (ARIMA) models. These 

classes can be also extended to deal with vector-valued data and can be found under the term 

multivariate time-series models and sometimes extend the previously mentioned acronyms with 

“V” for vector. Therefore, will be found as vector auto-regression (VAR) models. It is common 

to include seasonal terms, represented with “S” and the product will be seasonal autoregressive 

integrated moving average (SARIMA) models.
36

 

Compartment models belong to another group of modeling approaches. The compartment 

is a unit or block, where its characteristics are considered constant. Elementary epidemiological 

compartment model consist of three blocks – S, I and R. There, S stands for susceptible group 

of people, I stands for number of infectious and R number of recovered people. An interactions 

between each compartment or group of people are defined by differential equations.
37
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5 ANALYSIS OF RISK FACTORS 

Dengue belongs among the major disease burdens in SEA and it has been hyper endemic for 

decades within the region. The region has the highest dengue incidence and the epidemics 

occurs in cycles every three to five years.
38

 Factors such are: demographic, economic, 

behavioral and social often provide a key pace in control of communicable diseases, although, 

these factors have not been completely understood and their impact has not been sufficiently 

reviewed and confirmed in case of dengue.
9
 

Both climate variables e.g. temperature, humidity, precipitation, wind speed or El Niño 

events and non-climatic trends such as socio-environmental factors e.g. population growth, 

migration, urbanization, housing, family income, international trade and travel and vector 

control
10

, are expected to increase the prevalence of mosquito breeding sites, mosquito survival, 

the speed of mosquito reproduction, the speed of viral incubation, the distribution of dengue 

virus and its vectors, human migration patterns towards urban areas and displacement after 

natural disasters
39

. 

The geographic distribution of dengue viruses and their vector emerged in SEA after the 

World War II. It was, especially, due to the increased transport of equipment and movement of 

people which brought the spread of the vector mosquito to new geographic areas. Further, an 

ideal breeding habitat for the mosquito was ensured by inadequate water storage and systems 

and the presence of abandoned equipment and junk. The leaving troops, on the other hand, 

served as susceptible hosts for the virus.
40

 

With all of the previously mentioned, it is still believed that it was the urbanization of the 

region that emerged after World War II, which provided the ideal conditions for virus 

propagation. Especially, the rural-urban migration to the cities which induced the unplanned 

growth of urban centers, followed by incapacity to provide adequate housing, water supply and 

sewerage systems. The urban population again served as susceptible host and resulted in an 

epidemic.
40

 

Current studies define temperature, rainfall and relative humidity as important climatic 

factors in terms of the growth and dispersion of the mosquito vector and potential of dengue 

outbreaks. Other studies determine the population growth, uncontrolled urbanization, and spread 

of mosquito vector and movement of virus via international travel, as the major contributing 

non-climatic factors of recent dengue expansion in endemic areas of SEA region.
10

 

Concurrently, there is a lack of more complex studies that would incorporate sophisticated 

multivariable predictive model with both; climatic and non-climatic data, which may help in 

controlling and preventing DF and the potential impact of these factors on dengue incidence and 

transmission.
10
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5.1 Climatic factors 

Based on diverse sources of evidence the complexity of the relationship between climatic 

variables and dengue incidence is clear. There is a near unanimous scientific consensus that 

global temperatures are increasing, annual global rainfall will increase, although, differing in 

regions, flooding will become more severe and climate variability will increase.
39

 The change in 

global temperature, precipitation and humidity will affect the biology and ecology of vectors 

and the risk of vector-borne diseases.
10

 Thus, changes in climate will alter the spatial and 

temporal dynamics of DENV ecology.
41

 

5.1.1 Temperature 

It is predicted that the endemic range of DF will expand geographically with increasing 

temperatures. This will also allow for increased reproduction and activity and decreased 

incubation time of larvae, resulting in increased offspring productivity. Thus, increase in 

transmission potential and prevalence of DF will take place. Increased temperatures will most 

likely increase DF transmission by extending the season in which transmission occurs. 

Although, dengue incidence is related to temperature, the relationship varies by location. Higher 

temperature supports virus replication, vector proliferation and feeding frequency and thus, 

enhances transmission. However, it is important to note, that the impact of risen temperature is 

not immediate in terms of time. Various studies report differing lag times between increased 

temperature and an obvious increase in dengue transmission. The range was from 4 to 16 weeks, 

depending on the region and area observed.
10

 On the contrary, increased temperatures in already 

warm areas may have negative effects on the range of the virus transmission by decreasing 

vector survival, reproduction and immature habitat. Furthermore, the increasing temperatures 

will change the latitudinal and elevational extent of the disease.
41

 

Temperature will also influence the vector ecology. The ideal range of temperatures for 

Ae.aegypti and its survival, through all development stages, is between 20–30 °C. Evidence 

shows that mortality of an adult mosquito increases with prolonged extreme heat (over 40 °C) 

and cold (below 0 °C). The female mosquito’s reproductive cycle is also governed by ambient 

temperature. The fertilization decreases below 20 °C. The temperature has a direct biophysical 

influence on viral replication and on vector development and survival.
41

 

  



36 

 

5.1.2 Precipitation 

Precipitation provides essential habitat for the aquatic stages of the mosquito life cycle. The 

ideal habitat for the vector usually is; containers common in urban environments. However, in 

general any man-made container becomes the habitat for the mosquito pupae. Monsoon rains 

are associated with increased numbers of eggs and adults. Thus, precipitation has a strong 

influence on vector distributions. Mosquito range has been determined to expand during La 

Niña conditions (generally wetter). Simultaneously, intense rainfall may wash out breeding sites 

and therefore, have a negative effect on vector populations. Still, drier conditions e.g.; El Niño 

conditions, may also indirectly result in expansion of vector’s range, as with droughts 

individuals will increase their water storage.
41

 However, the rainfall and its influence on dengue 

transmission are inconsistent across geographical locations. In many countries of Asia-Pacific 

region, dengue outbreaks with positive association between wet season and dengue incidence 

and precipitation were reported.
10

 

5.1.3 Humidity 

Higher rates of precipitation in a combination with higher temperatures result in increased 

humidity. Higher humidity is associated with increased mosquito feeding activity, survival and 

egg development.
41

 According to some sources it was found that humidity is the most important 

indicator of DF outbreak globally. It suggested higher incidence of DF by 30% in areas with 

higher humidity compared to areas with low humidity.
42

 

It is important to stress the climate-dengue associations in connection to local climate 

variations. Variation in rainfall, humidity and temperature patterns among different areas, 

municipalities or provinces can be a large determinant of the strength and direction of 

associations between climate variables and DF incidence. Even though such fact is well known, 

availability of data often forces the researchers to scale up.
41

 

5.2 Socio-environmental factors 

It is believed that other factors contributing to dengue incidence are the increasing trends in 

population growth, uncontrolled urbanization, spread of mosquito vector and international trade 

and travel.
10

 

5.2.1 Housing 

The transmission of dengue may be influenced by the socio-economic status of people. People 

in developed countries have better living conditions, especially in terms of housing, which is an 

important factor for the dengue incidence. Facilities such as glazed windows, piped water, 

insect screening or air-conditioning effectively reduce contact with the vector mosquitoes and 

decrease their survival rate and reduce the risk of transmission. According to some studies, 

single houses e.g. on plantations, had 3-15 times higher risk of dengue compared to the town 
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houses and slum houses.
10

 Traditional practices e.g. rainwater storage on roofs, expose the 

individuals to higher risk. The placement of the housing may be also determining, as areas close 

to markets and open sewers have 1.8 times higher risk of contracting the disease.
9
 

5.2.2 Urbanization 

Although, there has been an evidence of dengue transmission and outbreaks in rural areas in 

SEA, especially due to increased transport contact and spread of peri-urbanization. Urbanization 

is still strongly associated with DF cases. However, due to rural-urban migration, and thus, 

growth of urban population, dengue activity remains at significant level.
40

 

Urban and suburban environments in tropical and sub-tropical regions are fragile due to 

rapid population movement, which causes unorganized urbanization with increasing housing 

densities and abundance of breeding sites for the mosquitoes.
43

 

5.2.3 Trade and transport 

International trade and transport are suggested to have an impact on geographical distribution of 

vectors and pathogen. Commercial shipping might be linked to spread of A.aegypti between 

regions. Air-travel has increased the dissemination of dengue viruses via rapid transit of 

infected individuals around the world. Thus the movement of the virus has been facilitated  

through, especially, air travel.
10

 

5.2.4 Age, race and sex differences 

DF is in general acknowledged to be a childhood disease and is often stated to be an important 

cause of pediatric hospitalization in SEA. Lately, there has been increasing evidence of the 

disease shifting towards older age groups. Thus, the epidemiological change in dengue infection 

within SEA region has been visible. Several studies showed that, especially in DHF and DSS 

cases, the disease occurred in patients older 15 years.
9
 

Racial predisposition seems to be also one of factors which ought to be taken into account 

when dealing with human susceptibility to dengue infection. The major observation is that black 

individuals have a reduced risk for dengue fever compared to white or Hispanic individuals. 
43

 It 

is believed the reason for this predisposition to be a dengue-resistant genotype in black 

population. Further research for better understanding of dengue pathogenesis in connection to 

racial predisposition is suggested.
9
 

It is essential to understand the male-female differences in infection rates and severity of 

disease for public health control programs. According to some studies the number of male 

compared to female patients was twice as big, sometimes even higher. Other sources show, 

despite higher incidence in males, severe illness to be higher among women. It is still unclear 

what the reason is for the male gender to be more susceptible. According to some, in many 
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Asian and other traditional societies, it is not ordinarily for the women to seek clinical care, 

instead they seek traditional practitioners who do not report to public surveillance systems.
9
 

5.3 Current methods of dengue risk factors analysis 

Diverse statistical analytical methods have been used for determination of the relationship 

between climate variables and dengue, e.g. cross correlations, Poisson, logistic or multivariable 

regression, SARIMA-time series etc. Many of these successfully established climate and dengue 

relationship and predictive models of dengue. Minimum, maximum and mean temperatures, 

relative humidity and rainfall were the most important climate variables for dengue prediction. 

Although, these variables are predictive at specific lags of time.
11

 

Concurrently, problematic arose to be the data availability, thus, often use of aggregated 

data, over large spatial scales and long time periods was established. The issue with such data 

might be the inability to describe the influences happening over short time periods (daily, 

weekly) and at smaller spatial area (country level). Simultaneously, the data reported for dengue 

cases or incidence may be under or over reported, which might change over time and 

geographical area. Reported dengue cases may be also influenced by case definitions, 

availability of public health systems and subclinical cases documentation. Thus, it is advised to 

consider all the mentioned factors, before identifying the relationship between climate and 

dengue disease and obtaining dengue prediction.
11

 

In endemic settings, dengue transmission is characterized by non-linear dynamics, strong 

seasonality, multi-annual oscillations and non-stationary temporal variations. Seasonal and 

multi-annual cycles in dengue incidence vary over time and space. According to the evidence, 

the inter-annual and seasonal climate variability have a direct influence on the transmission of 

dengue. Further suggesting the importance of climatic variables in dengue transmission.
11

 

Another highlighted importance is the lag time, at monthly scales. The delayed effect (time 

lag) of climatic variables on dengue incidence may be explained by the climatic factors which 

affect the incidence indirectly. Thus, they affect the life-cycle dynamics of both vector and 

virus. The lag between climate data and incidence differs. The lag is expected to be shorter for 

minimum temperature and longer for higher temperatures and high relative humidity. 

Concurrently, the mean temperature is involved in all biological cycles of the mosquito that take 

more time to influence the incidence.
11

 

In general, dengue fever disproportionately affects the poor. In order to be able to protect 

such vulnerable populations, it is essential to understand the effect of climatic and non-climatic 

trends on the relationship between vector, pathogen and host that drive the spread of DF.
39

 

Many studies focusing on the relationship between climatic variables and dengue incidence 

selected for their dependent variables either dengue incidence or mosquito density and for their 

independent, climate variables; temperature (maximum, minimum, mean), amount of 
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precipitation (rainfall) and relative humidity, sometimes even El Niño Southern Oscillation 

(ENSO).
11

 Those studies which also incorporated socio-environmental factors for their 

modeling selected some of the following variables: age, gender, occupation, window screen, 

water tank presence, housing pattern, mosquito control etc.
10

 

Tab. 4 shows some of the published studies on either climatic or socio-environmental, or 

both, factors and their effect or relationship with dengue and its incidence. The table defines 

specific studies, the location of each study and the study time period, further, it states the used 

statistical model and variables used for modeling. 

Tab. 4: Studies identifying relationships and impact of climatic, socio-environmental variables on dengue. 

Study/ Source 
Study area 

(Period) 
Method Risk factors 

Arcari et al.44 
Indonesia 

(1992-2001) 

Multiple regression, 

Pearson correlation 

Temperature, rainfall, 

relative humidity 

Tipayamongkholgul et al.45 
Thailand 

(1996-2005) 
Poisson regression 

Temperature, relative 

humidity, ENSO 

Wu et al.46 
Taiwan 

(1998-2002) 

Logistic regression, 

Spatial analysis 

Temperature, rainfall, 

level of urbanization, % 

of elder population 

Hii et al.47 
Singapore 

(2000-2007) 

Poisson regression, time-

series analysis 

Mean temperature, 

precipitation 

Cummings et al.48 
Thailand 

(1980-2005) 

Linear regression, 

Wavelet analysis 

Rainfall, population data 

(age, birth; death rate, 

household size etc.) 

Wu et al.49 
Taiwan 

(1998-2003) 

Time-series analysis, 

ARIMA 

Temperature, rainfall, 

relative humidity, vector 

density 

Yu et al.50 Taiwan 
Spatiotemporal analysis, 

Bayesian analysis 

Climate variables 

(temperature, rainfall 

etc.) 

Xuan et al.51 
Vietnam 

(2008-2012) 
Poisson regression 

Temperature, rainfall, 

relative humidity 

Pham et al.52 
Malaysia 

(2001-2010) 
Linear regression model 

Mean temperature, 

rainfall 
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6 METHODOLOGY 

In order to obtain a sufficient background and knowledge about the problematic of neglected 

tropical diseases and their presence in Southeast Asia, with particular focus on dengue  

fever, a literature research was conducted. Concurrently, the aim was to carry out detailed 

analysis and to review the most current statistical methods used for modeling of dengue 

incidence and transmission worldwide, with a specific respect to SEA. The focus was directed 

towards interconnection with the major climatic and non-climatic factors affecting predictive 

modeling. 

The research incorporated the use of available electronic databases e.g. PubMed, Scopus, 

Science Direct, Web of Science, Google scholar and WHO library to obtain the necessary 

information. The keywords used within the search were those in conjunction to all covered 

topics e.g. NTDs, WHO, SEA, dengue fever, transmission, incidence, modeling, statistical, 

climate, socio-environmental, factors, variables, projection, vector etc. Different combinations 

and forms of the key words, in order to identify potential articles and references, were applied. 

Where necessary and possible, the search was limited by the acquired subject as for example; 

Life science, Biology, Environmental science, Statistics etc. The search was also limited to 

journal articles, books and reports written in English or Czech language. The availability of full 

articles was also one of the determining factors. References and citations of the articles 

identified were checked, in order to ensure that all relevant articles were included. 

The essential raw data were first processed by appropriate statistical methods. Further, 

these were used within a selected mathematical method, to propose a model for estimation of 

dengue fever incidence in the Philippines. The data were obtained from different available data 

sources. The population dataset was retrieved from the official 2010 Population Census 

published by the Philippine Statistics Authority. Any additional population data were obtained 

from previous 2000 and 2007 Population Census. The raw population data were first distributed 

into 17 groups, where each group represented one of the17 regions present in the Philippines. 

Further, the data were processed by using some of the basal statistical methods e.g.; estimation 

of population growth rate, average year population, interpolation of the data and population 

numbers for the years, where the data were missing, were estimated. The data on dengue cases 

in the Philippines were obtained from the Disease surveillance reports provided by the Republic 

of the Philippines Department of Health, National Epidemiology center, Public Health 

Surveillance and Informatics Division. The data were further processed into dengue incidence 

rate. The remaining data necessary for the model prediction were the climatic risk factors data. 

These data were obtained from the Global Surface Summary of the Day, National Oceanic and 

Atmospheric Administration, the U.S. Department of Commerce. The selected climatic 
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parameters of which sufficient amounts of data were available, were: temperature, precipitation 

and dew point. The data were also further statistically processed by for an example; linear 

interpolation, estimation of mean daily relative humidity etc. All of the basal statistical 

processing is further described, in more detail, within the chapter dedicated to data processing. 

For the estimation of the dengue incidence model a generalized linear model was utilized with 

negative binomial distribution. In order to process the data further, for the model estimation, 

Spearman correlation and non-hierarchical K-means clustering method was used. All statistical 

data processing, calculations, estimations or modeling were carried out in either Microsoft 

Excel 2013 or StatSoft Statistica 12 programs. MathWorks MATLAB R2013a program was 

utilized when generating most of the figures presented, as it provided adequate figure format 

which presented, as visually best readable and clear, and was best able to process large datasets 

which were used.   
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7 MODELING OF DENGUE INCIDENCE IN THE PHILIPPINES 

This chapter describes in relevant detail the selected geographical area of focus; the Philippines. 

It further describes the basal statistical processing of the raw data, referring to the chosen risk 

factors. Those data used further for modeling of dengue incidence within regions present in the 

Philippines. It deals with creation of the prediction model. The creation of the prediction model 

composes of three phases; selection of parameters, model estimation and model evaluation. 

Finally, the results of the model are presented. If not stated otherwise, all tables and figures 

presented in this chapter were created as a result of author’s own calculation, delineation and 

modeling and therefore, there are no sources stated.  

7.1 The Philippines 

The geographical area of the Philippines was chosen for the data processing and the prediction 

model, because dengue has been a growing concern in the Philippines. Another reason for 

deciding on the Philippines was its National Epidemic Sentinel Surveillance system which is 

managed by the National Epidemiology Center of the Department of Health and maintains 

surveillance of notifiable diseases, in this case dengue fever.
53

 

Dengue is both the most significant vector-borne disease and a major health burden in the 

Philippines. In SEA the Philippines is one of the countries where the annual amount of dengue 

infection reaches the highest numbers, according to 
27

 it was within the range 2.75–7.5 million. 

Together with Indonesia, the Philippines account for three-quarters of those living in extreme 

poverty in terms of ASEAN region.
3
 It belongs among four countries which account for more 

than 90 % of the total dengue cases reported within the region.
6
 

The Philippines, officially known as the Republic of the Philippines, has the population 

about 92,337,852 according to 2010 census. The average annual population growth rate was 

1.90 % between the period 2000 and 2010. The population percentage living in urban areas is 

around 58.5 %. A major proportion (37.3 %) of the population lives in only three regions; 

Calabarzon with 11.74 million people, the capital Metro Manila with 11.55 million people and 

Central Luzon with 9.72 million people. The Philippines comprises of 7107 islands, those are 

distributed into 3 island groups which are further subdivided into 17 regions. Fig. 3 (b) shows 

the geographical distribution of each of the 17 regions.
53
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Fig. 3: Philippines (b) 17 administrative regions53 and (a) four climate types54; Type I – two pronounced seasons, dry 

from November to April, wet during rest of the year. Type II – no dry season with a very pronounced rainfall from 

November to April and wet during rest of the year. Type III – seasons are not very pronounced; relatively dry from 

November to April, wet during rest of the year. Type IV – rainfall is more or less evenly distributed through the year. 

The dengue cases within the country vary across the country’s geographical area. It is often 

influenced by the geographical location of specific regions e.g.; northern part with mountain 

ranges which is cooler or southern part with higher temperatures and low lands.
6
 The climate in 

the Philippines is tropical and maritime. It is characterized by high temperatures, humidity and 

rainfall. Based on temperature and rainfall two seasons are distinguished; 1) rainy season from 

June to November and 2) a dry season from December to May. However, the dry season is 

further subdivided into; a) dry cool season from December to February and b) dry hot season 

from March to May. Based on rainfall four climate types are distinguished, these are graphically 

and by description defined in Fig. 3.
54
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7.2 Data processing 

7.2.1 Population dataset 

The major population set was obtained from the official 2010 Population Census published by 

the Philippine Statistics Authority, other additional data on population numbers e.g. population 

predictions and estimated population growth rate were obtained from official 2000 and 2007 

Population Census published also by the Philippine Statistics Authority. The population data 

were first sorted according to the 17 Philippine regions and years for which the data were 

available, those are; 2007 and 2010.  

Then, the population growth rate for the period 2007–2010 was estimated. The formula 

used for this estimation was obtained from the official population growth rate United Nations 

(UN) guideline and is as follows
55

: 

 𝑟 =
100 ln(𝑃2−𝑃1)

𝑡2−𝑡1
 , (12)  

where r is the population growth rate and P1 and P2 are the number of persons at times 𝑡1and 𝑡2. 

Tab. 5 shows the comparison of annual population growth rate (gr) for the time period of years 

2000–2010 published within the 2010 Population Census
56

 and author’s estimated annual 

population growth rate for the time period of years 2007–2010. 

Tab. 5: Annual population growth rate (gr) for the time period 2000-2010 and 2007-2010 expressed in [%] in each 

region. 

Region I II CAR III IV A IV B NCR V VI 

gr (2000–

2010) 

[%]56 

1.23 1.39 1.70 2.14 3.07 1.79 1.78 1.46 1.35 

gr (2007–

2010) [%] 
1.46 1.90 2.08 1.44 2.34 2.34 0.87 1.99 1.26 

Region VII VIII IX X XI XII ARMM Caraga 

gr (2000–

2010) 

[%]56 

1.77 1.28 1.87 2.06 1.97 2.46 1.51 1.49 

gr (2007–

2010) [%] 
2.06 1.55 1.77 2.80 2.36 2.36 -7.91 1.92 

Based on the available population data and the estimated population growth rate the remaining 

population numbers for years 2009, 2011, 2012 and 2013 were estimated. From the obtained 

population estimations the average year population (AYP) was then calculated in order to get 

more corresponding population data for each year and region. Tab. 6 presents the overview of 
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all regions and the average year population estimations for years 2009, 2010, 2011, 2012 and 

2013. 

Tab. 6: Average year population for all regions for the time period 2009-2013. 

Region AYP 2009  AYP  2010 AYP 2011 AYP 2012 AYP 2013 

I 4,639,904 4,708,267 4,777,626 4,847,248 4,917,884 

II 3,134,450 3,194,850 3,256,398 3,318,252 3,381,282 

CAR 1,561,792 1,594,761 1,628,414 1,662,252 1,696,794 

III 9,900,397 10,044,921 10,191,531 10,338,691 10,487,976 

IV A 12,144,797 12,434,146 12,730,268 13,028,232 13,333,170 

IV B 2,636,850 2,699,630 2,763,879 2,828,527 2,894,687 

NCR 11,642,614 11,745,082 11,848,445 11,952,040 12,056,541 

V 5,250,768 5,357,062 5,465,475 5,574,457 5,685,613 

VI 6,956,771 7,044,958 7,134,252 7,223,835 7,314,543 

VII 6,576,214 6,713,925 6,854,475 6,995,790 7,140,018 

VIII 3,995,330 4,057,866 4,121,369 4,185,128 4,249,874 

IX 3,308,069 3,367,480 3,427,944 3,488,688 3,550,509 

X 4,106,489 4,223,874 4,344,544 4,466,122 4,591,103 

XI 4,296,054 4,399,378 4,505,143 4,611,572 4,720,516 

XII 3,958,762 4,054,062 4,151,615 4,249,781 4,350,269 

ARMM 3,642,834 3,370,852 3,120,371 2,873,690 2,646,510 

Caraga 2,355,303 2,401,261 2,448,104 2,495,183 2,543,168 

When studied phenomena is age related, the standardization of population dataset is often 

applied for comparison of countries with different age structure. However, here the 

standardization of data was neglected. As it was verified by the Chi-square test that the 

distribution of population age structure is consistent, thus not showing any significant statistical 

deviations, for all 17 regions. 

7.2.2 Dengue cases dataset 

The data on dengue cases were obtained from the Disease surveillance reports provided by the 

Republic of the Philippines Department of Health, National Epidemiology center, Public Health 

Surveillance and Informatics Division. The data were provided for epidemiological weeks, there 

are 52 weeks in each year. The epidemiological week serves for a comparison of the same 

epidemiological data within different years. Although every few years one week is excluded 

from a given year as it would create 53
rd

 week, which would not allow the comparison, because 

it would then modify the comparison time period, such exclusion was for example in 2008-2009 

or 2014-2015. Available data were for years 2009, 2010, 2011, 2012 and 2013. The dengue 
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cases data except being distributed into weeks, were also distributed according to each region. 

Dengue cases surveillance reports were not available for all weeks within a given year, 

sometimes even several weeks were either not reported or the reports were not available. 

Fig. 4 represents raw dengue cases dataset for all regions for the whole five year period; 

2009-2013 in a relationship to epidemiology weeks. As it is visible where data were not 

available or reported the curves are disrupted. Colors of each curve represent distinct regions. 

Maximum occurrence of dengue cases is visible within each represented year. During 2010 the 

peak reached the highest point at around 2000 cases.  

 

Fig. 4: Raw regional dengue data (2009-2013). 

Long term trend and seasonality 

In order to be able to observe the dengue incidence long term trend and seasonality the data 

were aggregated to representative year for all regions. 

Furthermore, the dengue cases data together with the estimated average annual population 

data were used for the calculation of relative dengue Incidence Density rate, sometimes also 

defined only as Incidence rate. The formula used for calculation has been already introduced in 

the previous chapter concerning essential epidemiologic terms. The results were then interpreted 

as a number of dengue cases per 1 000 000 population. 
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Fig. 5: Dengue cases and dengue incidence representative year for all regions, respectively. 

Fig. 5 shows two distinct box plots, where the top part of the figure defines the relationship of 

dengue cases and epidemiology week data. Together they show the representative year, 

composed of 52 weeks, generated from all of the data from the whole five year period. The 

missing dengue cases data were estimated by linear interpolation and smoothed out by the 

moving average method with the length of the time window 3 weeks. The representative weekly 

dengue cases for one region were set as a median of cases in corresponding weeks within each 

year. The bottom part of the figure defines the relationship of dengue Incidence rate, interpreted 

as a number of cases per 1 000 000 population, and epidemiology weeks. Together they show 

the dengue incidence representative year for all regions after standardization. The raw dengue 

cases data were standardized to 1 000 000 population, therefore the incidence rate was 

calculated. 

7.2.3 Climatic dataset 

The climatic dataset representing the chosen climatic risk factors were obtained from the Global 

Surface Summary of the Day, National Oceanic and Atmospheric Administration, the U.S. 

Department of Commerce. The database includes daily summary from 54 meteorological 

stations present in the Philippines and distributed among 16 out of the total 17 regions. There 

were no climatic data available for the ARMM therefore, this region is not further considered. 

Simultaneously, no sufficient extent of climatic measurement was available for 1 of 4 

meteorological stations located in region II and 2 of 7 stations from region VIII thus, these 

stations were excluded from further processing.  
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Out of the available climatic risk factors the following were chosen; mean daily temperature, 

minimum daily temperature, and maximum daily temperature, also dew point and daily 

precipitation. The estimation of mean daily relative humidity was carried out based on the dew 

point and mean daily temperature data. Units of each parameter were converted into metric 

system of measurement. Further, the data were checked visually for any abnormal or extreme 

values. Then, missing or incorrect data were estimated by data obtained from linear 

interpolation. Some stations do not provide report in case of 0 precipitation, concurrently, some 

stations may not provide any report, and nevertheless, this fact would not mean there was no 

precipitation. Therefore, all days with no report were considered as days with 0 precipitation. 

One station from region VIII was excluded from the precipitation dataset due to insufficient 

valid data reporting. The differences in altitudes of the meteorological stations were neglected 

as most of the stations are located within such region’s altitude, where majority of population is 

distributed. In case of regions with more than one meteorological station the daily value of a 

given parameter was set as an average of values from all available stations within that region. 

Long term temperature trends and seasonality 

Fig. 6 shows a) the relationship of minimum temperature and epidemiology week, which 

together present the minimum temperature representative year for all regions. The reduced 

minimum temperature variance of the regions is first clearly visible around week 20. The 

highest minimum temperature appears also around week 20 and is about 26 ºC. The lowest 

minimum temperature does not decline below 18 ºC. The extremes, visible as red crosses, are 

present primarily for CAR region, which is geographically located in cooler, northern, mountain 

part of the country. It is necessary to eliminate these extremes for further modeling, as those can 

present a problem since regression models are sensitive to such. Therefore, CAR has been 

excluded from further calculations. Part b) shows the relationship of maximum temperature and 

epidemiology week, which again together present the maximum temperature representative year 

for all regions. It is clearly visible, where the reduced maximum temperature variance of the 

regions occurs, in this case it is around week 20. The highest maximum temperature appears 

around week 20. The lowest maximum temperature does not fall below 25 ºC. Part c) presents 

the relationship of mean temperature and epidemiology week. Together they show the mean 

temperature representative year for all regions. The reduction in mean temperature variance 

among regions is again visible around week 20. It is visible from the Fig. that all three variables; 

minimum, maximum and mean temperature correlate. The statistical significance of correlation 

was confirmed by calculation of Spearman correlation coefficient, where the significance level 

was p<0.05.  
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Fig. 6: Minimum (a), maximum (b) and mean (c) temperature [ºC] representative year for all regions. 

Long term precipitation trend and seasonality 

Fig. 7 shows another statistically processed climatic risk factor. It presents the relationship of 

precipitation and epidemiology week, thus a weekly cumulation of precipitation of all the 

regions. As a result the figure shows cumulative precipitation representative year for all regions. 

The highest value of median cumulative precipitation is visible around week 30. However, the 

reduction in variance within the regions is visible in between weeks 12 and 15. The highest 

amount of precipitation appears around week 30 and continues until about week 40. This trend 

corresponds with the rainy season in most of the regions. 
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Fig. 7: Cumulative precipitation representative year for all regions. 

Long term dew point trend and seasonality 

Dew point is a measure of atmospheric moisture, it is a temperature to which the air must be 

cooled in order to reach saturation. Saturation is referred to as the maximum of water vapor 

possible within the air. The saturation is also defined as the dew point temperature and air 

temperature being equal. Therefore, the higher the dew point is, the more moisture in the air is 

present. It is sometimes referred to as Dew Point Temperature.
57

 

Fig. 8 shows the dew point representative year for all the regions. The dew point is 

presented as temperature in ºC units. The decline in variance among the regions is visible 

starting around week 20 and continuing until about week 43. At the beginning and end of the 

representative year the variance is larger. The highest median of dew point is visible at around 

week 20. 

 

Fig. 8: Dew point representative year for all regions, interpreted as temperature. 
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Long term relative humidity trend and seasonality 

The relative humidity was calculated based on the dew point and mean temperature data. 

Magnus formula was used for the calculation, it is as follows
58

: 

 𝑅𝐻 = 100 [𝑒
(

17,625𝑇𝑑
243,04+𝑇𝑑

)
𝑒

(
17,625𝑇

243,04+𝑇
)

⁄ ] , (13)  

The following Fig. 9 shows the relationship of epidemiology week and relative humidity, which 

is defined in [%]. As a result the relative humidity representative year for all regions is 

presented. Around week 20 the variance in relative humidity for all regions reduces. This has 

been also visible for the previous variables; dew point, minimum, maximum and mean 

temperatures. Concurrently, the variance for the regions is higher at the beginning of the 

representative year and at the end. Similar trend has been again visible in minimum and mean 

temperature and dew point temperature. In general, the seasonality within the trend is low. 

Humidity is quite variable through thou the regions.  

 

Fig. 9: Relative humidity [%] representative year for all regions. 

7.2.4 Time lag 

In general a time lag is an interval of time between occurrence two related phenomena. In 

epidemiology modeling this may influence the explanatory power of a model.
44

 In our case it 

was essential to look for a time lag in terms of the effect of climatic variables on the aedes 

aegypti life cycle and dengue transmission cycle, therefore the effect on the dengue cases or 

further, the dengue incidence rate. In other words, what time period it will take for increased or 

declined values of climate variables to affect the dengue incidence rate. 

The relationship and comparison of; minimum, maximum and mean temperature, dew 

point, relative humidity, cumulative precipitation and dengue incidence rate and epidemiology 

week is shown in Fig. 10. Further, the time lag between each variable is delianeated. It presents 
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the temporal distribution of standardized climate variables at national level and incidence rate. 

All the variables were transformed to mean variables for the Philippines as a whole and then 

normalized by the min–max standardization method to dimensionless units [-]. This was in 

order to be able to compare them and show their relationship in only one figure. 

 

Fig. 10: Temporal distribution of standardized national climate variables and incidence rate. [-] 

In Fig. 10, each variable is represented by a certain color to make the visibility of relationships 

simpler. Five week columns A to E were depicted to highlight different important facts of the 

relationships. 

Week A, which is approximately week 6, shows the beginning of an increasing trend of the 

temperature variables e.g.; minimum and due point temperature, the maximum and mean 

temperature have already began the increasing trend 2 weeks earlier, but continue such trend 

over the 6
th
 week together with the above mentioned temperature variables. At the point where 

other climate variables began their increasing trend the remaining climate variables; cumulative 

precipitation and relative humidity, began a declining trend. At this point of the year the 

incidence rate trend is approximately constant. 

Week B, around week 16, shows the continuing, simultaneous increasing trend in all the 

temperature variables. Concurently, it shows the end of the declining trend in cumulative 

precipitation and relative humidity. At this point of the year the incidence rate begins a slightly 

increasing trend. 
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Week C, approximately week 21, clearly presents the peak of the increasing trend of all climate 

temperature variables and the beginning of their declining trend. Simultaneously, at this point 

relative humidity and cumulative precipitation have been increasing for about 5 weeks. The 

incidence rate begins its steep increasing trend. 

When week D, about week 31, is reached the trends in previous week C are reversed. 

Thus, incidence rate, relative humidity and cumulative precipitation reach peak and begin steep 

declining trend, at the same time, the temperature variables experience increasing trend. 

However, by week E, around week 37, all the variables experience gradual declining trend 

with a few week exception in relative humidity and cumulative precipitation. The highlited 

week, e.g. A and C concurently represent time lags, of length about 10 weeks, meaning the time 

period it takes before the effect of changed variable trend affects the incidence rate trend. To 

show a specific example; it took about 10 weeks, from week A to week B, of increasing climatic 

temperature trend, for the incidence rate trend to begin an increase as well. Thus, there is a 

visible effect of change in temperature variables on the incidence rate trend, however it takes 

about 10 weeks for the effect to be visible. The same but reverse situation is visible between 

weeks C and D, the time lag was again about 10 weeks, where after 10 weeks of declining 

climatic temperature variables’ trend the incidence rate also began its declining trend. 

 

Fig. 11: a) hypothetical method of time lag measurement, b) summary of time lags for each variable and all regions. 

Fig. 11 a) shows the method used for determining the lag time for individual regions. It shows 

in general, how it was visually measured. The blue part determines any variable and red part 

represents incidence rate. The units of any variable and the incidence rate were standardized by 

the min-max method in order to be comparable. It determines the distance in weeks between 

two hypothetic tangents which were depicted upon the upward slope. Lag at half of maximum 

(LHM) stands for the measurement of the time lag in half of the normalized height. In this case 

the LHM is approximately 10 weeks.  

Fig. 11 b) shows the actual measurement of the time lags within regions. Based on the method 

in a) the time lags were summarized for each variable and all regions. It shows the time window 



54 

 

at which the variables are needed to be observed. Each box plot shows the variance of regions in 

weeks. For maximum temperature the median value is set at about 13.5 weeks. Minimum 

temperature median of lag time is about 12.5 weeks. Mean temperature is close to 11.5 weeks of 

lag time. The dew point median of lag time is about 10.5 weeks. Humidity time lag median is 

down to 3.5 weeks and precipitation is at about 1 week. The variance among regions within 

each variable differs. Reduction in variance of lag time for all regions is visible in precipitation 

and humidity, although, maximum, mean and dew point temperature are very close to the two as 

well. Only minimum temperature shows larger variance. As it was also visible in Fig. 10, here it 

is apparent that when both; precipitation and temperature have an increasing trend, as a result 

the incidence rate increases as well. On the other hand, when trends of these two variables 

differ, e.g. when temperature increases and simultaneously, precipitation declines, the incidence 

trend remains more or less constant and vice versa.  

7.3 Selection of independent variables 

Selection of proper input variable is crucial for feasible model estimation. The variable should 

be able to explain the dengue incidence. Concurrently, the independent variables need to be 

independent towards each other, because the dependency could decline influence of an 

important variable. This section deals with analysis and selection of proper climate variables for 

further model construction. Because the data do not correspond with the normal Gaussian 

distribution nonparametric Spearman correlation was performed for the climate variables and 

dengue cases as a measure of dependency. 

Tab. 7 shows the Spearman correlation coefficients for all variables and provides basis for 

selection of the model input variables. In red, statistically significant numbers are represented. 

The extent of the numbers represents of how they relate, in other expression, how much they 

correlate with each other.  

Tab. 7: Spearman correlation coefficient for all climate variables and number of dengue cases. 

 Cases 
Max. 

Temp. 

Min. 

Temp. 

Mean. 

Temp. 
Dew point Humidity 

Cum. 

Prec. 

Cases 1,00 0,52 0,30 0,49 0,28 -0,06 0,30 

Max. Temp. 0,52 1,00 0,30 0,81 0,32 -0,29 0,24 

Min. Temp. 0,30 0,30 1,00 0,72 0,79 0,19 0,34 

Mean. Temp. 0,49 0,81 0,72 1,00 0,67 -0,15 0,30 

Dew point 0,28 0,32 0,79 0,67 1,00 0,47 0,51 

Humidity -0,06 -0,29 0,19 -0,15 0,47 1,00 0,62 

Cum. Prec. 0,30 0,24 0,34 0,30 0,51 0,62 1,00 
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In this case, mean temperature was selected as an adequate input variable. Even though 

maximum temperature correlated with number of cases slightly more, there is a possibility of 

maximum temperature variable to also contain extremes, which the regression model is 

sensitive to. As a second input variable the cumulative precipitation was selected. When 

compared to the dew point and humidity, it correlates with the dengue cases the most and 

concurrently, it correlates with both mentioned variables thus, is adequate to be used. 

7.3.1 Adjustment of selected variables 

Therefore, as the most adequate parameters for creation of the model two time series variables 

were selected; mean temperature and cumulative precipitation. According to crude delineation, 

there is a visible time lag between increasing mean temperature, cumulative precipitation and an 

increase in dengue incidence, the time lag is about 9-16 and 1-2 weeks respectively. Optimum 

time window and time lag were in case of both predictors further estimated by a 

crosscorrelation. Crosscorrelation can be considered as a measure of similarity of two series as a 

function of the lag of one relative to the other 
59

. Based on the results obtained from the 

crosscorrelation two climatic indexes were created: TA9w a PRC2w. 

Temperature index TA9w 

The best outcome in case of mean temperature was obtained for both time window and time lag 

at 9 weeks. In case of precipitation, the most adequate outcome was time window of 2 and time 

lag of 1 week. First, moving average of mean temperatures was done within 9 week length time 

window. Value of TA9w corresponding to incidence week k is then given as value of moving 

average temperature data at week k-9. This can be also interpreted as average temperature or 

temperature trend within week k-13 to k-5.  

Precipitation index PRC2w 

PRC2w for incidence week k was calculated as cumulative precipitation within week k-3 to k-1. 

For the climatic indicator PRC2w moving average was further also done with a time window 3 

weeks, in order to obtain a smoothed trend time series and to reduce random errors, which could 

originate during delineation or reporting. 

Even though the generalized linear models do not have a prerequisite of normal 

distribution for independent variables, the models are very sensitive to extreme values. Fig. 12 

(a) shows, an asymmetry of the data with a right skewed tail and extreme values are visible. 

Because of this, a further transformation of the indicator was carried out, in order to obtain 

better symmetry and eliminate the extreme values. 
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The transformation was done based on the following equation: 

 𝑃𝑅𝐶2𝑤
𝑡 = ln(𝑃𝑅𝐶2𝑤

𝑛 + 1) , (14)  

where, PRC2w
n  is the initial indicator and PRC2w

t  is the result indicator transformed by natural 

logarithm. A constant 1 was added in order to avoid negative values for weeks with zero 

reported precipitation.  

 

Fig. 12: Histogram of a) initial and b) transformed PRC2w. 

Fig. 12 shows the transformation process between the (a) initial data of two week period 

cumulative precipitation and the (b) newly obtained transformed two week cumulative 

precipitation. It is clearly visible that the data are not normally distributed and there is huge 

asymmetry; the data are right skewed. The right histogram shows the result of transformation by 

equation (14). The data are centralized and influence of extremes was eliminated. 

7.4 Model estimation 

Dengue incidence is a variable, which represents counts in a time series and typically, it 

corresponds with the Poisson probability distribution. Thus, using Poisson regression seems to 

be an appropriate method. However, one of Poisson’s prerequisites is that mean equals variance. 

As is shown in (Tab. 8 and Fig. 13), this prerequisite was not met, because for dengue data 

variance is much higher than mean. Therefore, over-dispersion of data, when conditional 

variance exceeds conditional mean
60

, was visible and thus, it was not possible or statistically 

adequate to use the Poisson model. 

One of possible solutions is a use of another mathematical model, which incorporates a 

parameter for explanation of the variance 
60

, such as the Negative Binomial model. Negative 

Binomial regression belongs among generalized linear models, thus, does not expect normal 

distribution of independent variable and under specific condition approximates Poisson 

distribution. With over-dispersed data, it is expected that with Negative Binomial regression the 

confidence intervals will become narrower, than when compared to the Poisson’s confidence 

intervals.
60
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Tab. 8: Descriptive statistics for new dengue cases 

 
N Mean Min. Max. 

Lower 

quartile 

Upper  

quartile 
Variance St. Dev. 

New cases 

descriptive 

statistics 

2,273 133,5 0,0 2,023 19,0 133,0 49,773,9 223,1 

Tab. 8 shows descriptive statistics for new dengue cases. It includes number of observations 

(N), mean, minimum, maximum, lower quartile, upper quartile, variance and standard deviation. 

As described above, it is visible from the resulting numbers that variance is significantly much 

greater than mean and thus, the Poisson prerequisite is not met. 

Fig. 13 shows the distribution of regional dengue cases histogram. It is clear that the data 

distribution is Poisson like. However, it is graphically visible that the over-dispersion of data is 

present, as there are some outlying extreme number of cases. Even if the log of values was 

taken, it would help only to slightly improve the asymmetry, however, the variance would 

remain. 

 

Fig. 13: Distribution of regional dengue cases. 

Negative Binomial regression can use as a linkage function natural logarithm (ln), exponential 

function or identity function. With respect to data nature, ln function is the most appropriate. 

The formula for the dengue cases model corresponds and is derived from the one of Poisson 

regression, already presented in equation (10). 

  



58 

 

For the natural logarithm linkage function, relationship between Incidence rate (𝐼𝑅) and dengue 

cases (𝑌𝑐) can be defined as follows: 

 𝑙𝑛(𝐼𝑅) =  𝑙𝑛 (
𝑌𝑐

𝑃𝑚𝑒𝑎𝑛
) = ln(𝑌𝑐) − ln(𝑃𝑚𝑒𝑎𝑛) , (15)  

where the incidence rate is equal to dengue cases divided by mean year population (𝑃𝑚𝑒𝑎𝑛). 

With respect to logarithm rules, logarithm of fraction is equal to difference of logarithms of 

each variable. Therefore, the equation of the final model is defined as: 

 𝑙𝑛(𝑌𝑐) = 𝛽0 + 𝛽1𝑇 + 𝛽2𝑙𝑛(𝑃𝑅𝐶2𝑤 + 1) + 𝑙𝑛(𝑃𝑚𝑒𝑎𝑛). (16)  

Where, the left side of the equation is expressed as linkage function natural logarithm 𝑙𝑛 and 

output dependent cases variable = point estimate 𝑌𝑐. The right side of the equation is expressed 

as fitted coefficients (𝛽0, 𝛽1, 𝛽2), independent variable mean temperature 𝑇, natural logarithm of 

cumulative precipitation independent variable 𝑙𝑛(𝑃𝑅𝐶2𝑤 + 1), natural logarithm of mean 

population independent variable 𝑙𝑛(𝑃𝑚𝑒𝑎𝑛). 

The point estimate of dengue cases for a certain moment of time can be derived from 

equation (16) using inverse function to the natural logarithm: 

 𝑌𝑐 = 𝑒(𝛽0+𝛽1𝑇+𝛽2𝑙𝑛(𝑃𝑅𝐶2𝑤+1)+𝑙𝑛(𝑃𝑚𝑒𝑎𝑛)), (17)  

where, 𝑌𝑐  is the output variable of dengue cases and 𝑒𝑥 is the inverse function to the natural 

logarithm and 𝑥 = 𝛽0 + 𝛽1𝑇 + 𝛽2𝑙𝑛(𝑃𝑅𝐶2𝑤 + 1) + 𝑙𝑛(𝑃𝑚𝑒𝑎𝑛) is linear predictor. 

7.5 Model evaluation 

The parameter of variance was experimentally set to 1.2 for the model. In order to obtain 

adequate model statistics described in Tab. 9 and  

Tab. 10, different values of variance parameter were experimentally used. However, the most 

adequate result for the variance parameter was 1.2.  When higher values of variance were used, 

the total model residual deviance was lower, however then, the Chi
2
 statistics did not result 

adequately, for example; value/degrees of freedom were then equal to about 0.5 which is 

statistically incorrect. This can be either a result of under-dispersion, over-dispersion of data or 

the fact that another significant, explaining variable was not included into the model or a 

possible existence of a relation between the used variables, which the model is not able to 

explain. 

Basic goodness of fit statistics is shown in Tab. 9 for the whole model. If the expected 

value of Chi
2
 distribution is equal to its degree of freedom, the residual deviance should 

approximate Pearson Chi
2
 distribution of (n-p) degrees of freedom, where p is count of 𝛽 
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coefficients within the model. Therefore, in a well fitted model the residual deviance should be 

approximately equal to its degrees of freedom. Then, the mean deviance should be close to one. 

Statistical significance level of each independent variable is shown in Tab. 10. It is clear 

that both selected variables are able to explain (p=0.00), to some extent, observed dengue cases. 

Tab. 11 shows the estimated values of 𝛽 coefficients used in the model. 

Tab. 9: Goodness-of-fit statistics test for Negative Binomial regression model with linkage function ln. 

 
Degrees of freedom Statistics value 

Value/Degrees of 

freedom 

Deviance 2270 2304.737177 1.015303 

Pearson Chi2 2270 2347.408046 1.034100 

 

Tab. 10: Goodness-of-fit statistics test for Negative Binomial regression for each variable with linkage function ln. 

 
Wald Statistics p 

𝜷𝟎 1381.517 0.00 

ln(𝑷𝑹𝑪𝟐𝒘) 171.736 0.00 

ln(Popul) 706.1224 0.00 

Mean_T 213.343 0.00 

 

Tab. 11: Model estimated 𝛽 coefficients. 

 𝜷𝟎 𝜷𝟏 𝜷𝟐 

Estimated coefficient -20.1261 0.2972 0.3266 
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8 RESULTS 

8.1 Regional coupling between dengue incidence and climate 

variables 

In order to show a possible relation between the explaining ability of climate variables towards 

dengue incidence and the diverse climate types in the Philippines, a stratification of the regions 

into groups, according to the measure of their mutual relations, was executed. 

The Spearman correlation coefficient was calculated for dengue incidence rate (IR) and 

adjusted mean temperature (TA9w) and cumulative precipitation (PRC2w). This was to show the 

degree of correlation between these variables within all 15 remaining regions. Then, the  

non-hierarchical K-means clustering method was used to group regions with similar relationship 

between dependent and independet variables. Number of clusters k was given in accordance to 

the number of climatic types (k=4). Therefore, it was possible to explain correlation or no 

correlation with diverse climatic types. This was applied to three cases; one, for degree of 

correlation between TA9w and incidence rate; two, for degree of correlation between PRC2w and 

incidence rate and three, for both variables TA9w and PRC2w and incidence rate. 

Fig. 14 shows groups with similar relationship between the dengue incidence rate and a) 

TA9w, b) PRC2w and c) both independent variables; TA9w and PRC2w. Region CAR and AMMR 

were not considered for the calculations and so are depicted in grey color. The reason for their 

exclusion was explained in previous text.  

 

Fig. 14: Philippines' regions grouped by degree of correlation between; a) dengue incidence rate and TA9w, b) dengue 

incidence rate and PRC2w, c) dengue incidence rate and both TA9w and PRC2w . 
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Group I, depicted in green color shows regions with very low correlation. Group II depicts 

regions with low but higher correlation than in Group I. Group III shows regions with slightly 

higher correlation and Group IV regions with high correlation. The minimum correlation was 

0.01 (typically Group I) and the highest correlation was equal 0.6 (typically Group IV).  

The coherence of Group I-IV with climatic types; in a), b) and c) for very low correlation 

(Group I) corresponds with climate type II, where there is no dry season and continuous rainfall 

over the year. Therefore, it is obvious that there are other influences which should be taken into 

account, when predicting incidence for this geographical area. 

In all cases; a), b) and c) low correlation (Group II) corresponds to the climatic type IV, 

where there is no dry season through thou the year and the rainfall is quite evenly distributed. 

Even that the correlation is statistically significant, there are other influences which need to be 

taken into account when analyzing the relationship with dengue incidence. 

For a) the correlations were for both; higher (Group III) and high (Group IV) very similar. 

They both partially correspond to climate type I and III. Where it is dry for part of the year 

(November to April) and wet for the rest of the year. This means that these two variables are 

statistically more significant in this type of climate within the given geographical area. And 

thus, are able to define the incidence better. 

For b) and c) both higher (Group III) and high (Group IV) correlations evenly correspond 

to climatic type I and III. This represents the importance of analysis of both variables; TA9w and 

PRC2w in these geographical areas, in all cases a), b) and c). 

In general, where there was small seasonal component the correlations among the two 

variables and incidence rate were quite low. Compared to areas, where more seasonal 

divergence is present, the correlations are higher and thus statistically more significant. 

Therefore, it is visible that the seasonal component increases and decreases the predictive 

capacity of the climate indicators. Thus, for any future predictions it is rather to analyze the 

variables and incidence rate for each region separately, to be able to adjust the model for 

different seasonal diversities and other possible influencing factors. 

8.2 Observed and predicted dengue cases 

Finally, the comparison of the initial recorded dengue cases data and the modelled predicted 

dengue cases is shown in the following figures. It is visible how the modeled trend of the 

dengue cases corresponds with the recorded trend and how it develops. For the presentation of 

the model results four distinct regions were chosen. Each region represents one correlation 

group for dengue incidence and both climatic variables, presented in Fig. 14. The regions also 

represent several climatic types, present in the Philippines, in order to be able to compare the 

degree of correlation and seasonal element within the results as well.  
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Region IVa 

Fig. 15 shows the comparison of recorded dengue cases and predicted dengue cases obtained 

from the predictive model for Region IVa. The region represents group with the highest degree 

of correlation between dengue incidence and TA9w and PRC2w. In terms of climatic type it 

corresponds with I, III and partially with IV. It is visible that the predicted number of cases 

trend correspond well with the recorded number of cases trend. Concurrently, as there is the 

highest correlation the independent variables within the model are best able to explain the 

dengue cases within a given time point. Colored rectangles within the figure depict those weeks, 

where there were no reported dengue cases data. Spots, where independent variables were not 

fully able to explain the variability in dengue cases, are visible at the point, where the predicted 

values do not follow the recorded values. Large dispersion between predicted and recorded 

dengue cases are visible at that point.  

 

Fig. 15: Comparison of recorder and predicted dengue cases for Region IVa. 

Region VI 

Fig. 16 shows the comparison of recorded and predicted dengue cases for Region VI. This 

region represents correlation group III, also with higher degree of correlation. This region 

belongs to  

I and III climatic type with clearly defined dry and wet season. It is likely, that with more 

diverse seasons in a given area, the independent variables are able to explain the dengue cases 

better, than when there is one or two similar seasons. This will be also visible in the following 

regions. Simultaneously, there are some time points, where the variables were still not fully able 

to explain variability in dengue. An explanation could be, that another factor, which was not 

included in the model, was influencing the dengue at that point of time. It can be also 

interpreted, that the vector thrives rather in areas, where there are both dry and wet seasons, 

when compared to those areas, where there is rather wet climate through thou the year. 
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Fig. 16: Comparison of recorded and predicted dengue cases for Region VI. 

Region XIII 

Fig. 17 shows the comparison of recorded and predicted cases for Region XIII. This region 

represents correlation group I, with the lowest degree of correlation among the variables. The 

region stands for an equal distribution of climate type II and IV. These are wet seasons for the 

overall year. This would support the presumption defined in Fig. 16 interpretation, that the more 

monotonous season within a given area, especially in case of wet season, the lower ability of the 

variables to explain dengue cases. The predicted trend does correspond with reported trend very 

little in this case. Another explanation could be that within this geographical area, there is 

another stronger factor or factors, which would explain the dengue cases better either, than the 

two selected climate variables or, when incorporated into the model with them.  

 

Fig. 17: Comparison of recorded and predicted dengue cases for Region XIII. 
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Region V 

Fig. 18 shows the comparison of both recorded and predicted dengue cases in Region V. The 

region falls into group II in terms of the degree of correlation between incidence rate and the 

two independent variables. This degree of correlation is rather low, even though statistically 

significant. It represents season type II and III and IV. Seasons II and IV are more or less 

representing wet season for the whole year, but partially the central part of the region 

incorporates season III with both dry and wet season. The predicted cases trend corresponds 

with the recorded cases trend more accurately than in case of the previous region. However, the 

predicted cases baseline quite significantly exceed the registered cases. Even though, it seems as 

if the variables were completely independent towards the dengue cases. Still, when the baseline 

of the recorded cases would shift higher, some parts of the predicted cases correspond to those 

recorded. Insufficient reporting within the region could also have an impact on the overall 

recorded cases baseline. 

 

Fig. 18: Comparison of recorded and predicted dengue cases for Region V. 
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9 DISCUSSION 

Both TA9w and PRC2w partially do explain the dengue incidence within the 15 regions in the 

Philippines. Although, the relationship of both climatic variables and dengue incidence is 

explained, based on the statistics of the model, significantly. Concurrently, there is quite 

significant randomness in how a given variable explains incidence in a given time point. Still, 

their ability to fully explain any variability between the dependent and independent variables is 

not always visible. This ability varies also from region to region. However, in overall results for 

the Philippines as a whole, the ability is rather low. The correlation among the variables is not 

very high, even though, statistically it was interpreted as significant within the model. 

There can be several explanations of why within the model, the variables were not fully 

able to explain the dengue incidence and the variability among the variables. For one, the lower 

correlation coefficient between the variables could be seen as a partial explanation. Two, it is 

possible that the utilization of only two, independent variables was not sufficient. And thus, 

only these two variables were not able to explain or reason the variability of the modeled cases. 

Three, it is rather possible, that one of model prerequisites was not met. As the model was based 

on counts, where the independence of the events, in this case dengue incidence, is necessary. It 

is likely that there is a dependency among the dengue incidence events. Also, an exponential 

element could occur, thus, causing a so called chain reaction, then, one event would influence 

the following and therefore, it would confirm event dependency. Four, another likely 

explanation is that there exist other variable or variables, which do influence the incidence 

significantly and therefore, should have been incorporated within the model. An example of 

such variables is; any of the socio-environmental or economic factors e.g.; number of water 

containers within a household or migration. This suggests fifth explanation that the model does 

not take into account the vector-host relationship e.g.; the vector life cycle and the dengue 

transmission cycle. Sixth explanation could be the inability of the model to reflect the diverse 

climatic types within regions, especially within regions, where more climatic types are present. 

Seventh, it is possible that when the initial raw data were being adjusted in terms of the model 

prerequisites e.g.; data interpolation, estimation of representative years for each variable etc.

the data could lose some of their explanation ability. Finally, it is possible that the selected 

model is not adequate, as the incidence and the variables are rather not multiplicative and have a 

different kind of dependency. 

Further, the inadequate, initial availability of reported data for either population dataset, 

climatic dataset or dengue cases dataset was of an influence towards the final model as well. 

Some of the missing data were substituted by interpolation or averaging, but still, it might be 

assumed that having the initial raw data would have been more adequate for the model.  
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10 CONCLUSION 

Dengue is a rapidly expanding disease both globally, regionally and locally. Both in terms of 

Southeast Asia region and the Philippines it has a crucial impact on public health and represents 

a major vector-borne disease. Therefore, it is essential to focus on studying the complex 

interactions of diverse risk factors which affect dengue incidence and transmission. Among the 

most commonly known factors belong; temperature, humidity, precipitation, travel and 

transport, migration, housing condition, human behavior or urbanization. These factors 

influence dengue incidence through direct or indirect impact on both; the aedes aegypti 

mosquito life cycle and the disease transmission cycle. 

The results achieved from the model within this work have shown that TA9w and PRC2w 

do have an impact on dengue incidence. However, the relationship between increasing and 

decreasing mean temperature, cumulative precipitation and dengue incidence has shown to be 

very complex and dynamic. The results show the independent climatic variables are able to 

explain the dengue incidence only to some extent. Where the two variables used in the model 

were not able to explain the relationship, it was assumed that other unspecified factors do 

influence the incidence. It was also realized that for any further modeling, it would be rather 

effective to model the relationship of any variables for regions separately, rather than for 

Philippines as a whole. This is due to factors such as; the significant geographical and climatic 

diversities among the regions, different level and quality of data reporting within each region 

etc. The quality and level of data reporting within the country were diverse, as some regions do 

report reliably and others not to such an extent. Also possibly the country’s authorities should 

focus on unification of the reporting systems. Many dengue cases do not get reported, because 

reporting works only within hospitals and health centers. Without quality data the epidemiologic 

modeling of the disease does not reflect the real status and therefore, any possible predictions 

will not be reliable. Within the model used in this work, some of the errors which arose during 

the analysis could have been influenced by low quality data. Because of none or inadequate 

reporting two of the overall 17 regions had to be excluded through thou the modeling process, 

as those would influence the results negatively. The results also suggest that inclusion of 

another factor would likely improve the relationship and increase the explaining power of the 

model. This is also supported by the fact that only a little amount of studies could be found 

focusing on impact of other e.g.; socio-environmental, factors on dengue transmission and 

incidence. 

Therefore, for any further research and modeling of relationship between dengue incidence 

and possible risk factors, it is essential to focus on more complex connection and utilize 

different sets of risk factors, in order to receive a model which would be able to fully explain the 
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relationship and impacts of the factors on incidence and also provide reliable predictions. These 

could be further used for disease control and elimination programs. Mathematical models are an 

effective instrument for disease control, specifically, dengue control. Therefore, results obtained 

from such models will provide an important base for future creation of surveillance, control and 

elimination programs, which are essential for disease elimination and possibly eradication. To 

be able to provide such modeling, the raw data need to be of high quality and therefore, 

reporting systems at global, regional and local level must unify and improve their reliability. 

The quality of data is essential for dengue cases but also for any data in connection to risk 

factors e.g.; meteorological reporting, population census etc.  
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