
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

GENERATION OF SYNTHETIC RETINAL IMAGES
IN HIGH RESOLUTION
GENEROVÁNÍ SYNTETICKÝCH SNÍMKŮ SÍTNICE VE VYSOKÉM ROZLIŠENÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. TOMÁŠ AUBRECHT
AUTOR PRÁCE

SUPERVISOR Prof. Ing., Dipl.-Ing. MARTIN DRAHANSKÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Master's Thesis Specification |||||||||||||||||||||||||
21968

Student: Aubrecht Tomáš, Be.
Programme: Information Technology Field of study: Information Systems
Title: Generation of Synthetic Retinal Images with High Resolution
Category: Computer Graphics
Assignment:

1. Study the literature in the area of processing and recognition of human retinal images,
especially in ophthalmology sources, incl. generation of synthetic retinal images.

2. Propose your own method for generation of synthetic retinal images in high resolution (over
12 Mpix).

3. Implement the proposed method from the previous point. Generate a database of at least
1,000 images without pathological damage.

4. Test the implemented solution from the previous point, compare your results with real retinal
images (e.g. vessels distribution) and summarize the achieved results.

Recommended literature:
• BONALDI , Lorenza, et al. Automatic generation of synthetic retinal fundus images: vascular

network. Procedia Computer Science, 2016, 90: 54-60.
• W O N G , Tien Yin; T ING, Daniel Shu Wei. Generative Adversarial Networks (GANs) for

Retinal Fundus Image Synthesis. In: Computer Vision-ACCV2018 Workshops: 14th Asian
Conference on Computer Vision, Perth, Australia, December 2-6, 2018, Revised Selected
Papers. Springer, 2019. p. 289.

• FIORINI, Samuele, et al. Automatic Generation of Synthetic Retinal Fundus Images. In:
Eurographics Italian Chapter Conference. 2014. p. 41 -44.

Requirements for the semestral defence:
• Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Drahanský Martin, prof. Ing., Dipl.-lng., Ph.D.
Consultant: Biswas Sangeeta, Ph.D., UITS FIT V U T
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: October 31, 2019

Master's Thesis Specification/21968/2019/xaubre02 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
Special equipment, a fundus camera, is needed to capture the retina, which is the most
important part of the human eye. Therefore, the main objective of this work is to design
and implement a system that would be able to generate ret inal images. The proposed
solution uses an image-to-image translation, where the system is provided wi th a black
and white image at the input containing only bloodstream, on the basis of which a color
image of the entire retina is generated. The system consists of two neural networks: a gen
erator, which generates ret inal images, and a discriminator, which classifies these images
as real or synthetic. Tra in ing of this system was performed on 141 images from publ ic ly
available databases. A new database was created w i t h more than 2,800 images of healthy
retinas i n a resolution of 1024x1024. This database could be used as a learning tool for
ophthalmologists or for the development of various applications working wi th retinas.

Abstrakt
K poř ízen í s n í m k ů s í tn ice , k t e r á p ř e d s t a v u j e nejdůleži tě jš í čás t l idského oka, je p o t ř e b a
spec iá ln ího vybaven í , k t e r ý m je fundus kamera. Z tohoto d ů v o d u je c í lem t é t o p ráce
navrhnout a implementovat sys t ém, k t e r ý bude schopný generovat t akové to s n í m k y bez
použ i t í t é t o kamery. N a v r ž e n ý s y s t é m využ ívá m a p o v á n í v s t u p n í h o černobí lého s n í m k u
k revn ího řečiš tě s í tn ice na b a r e v n ý v ý s t u p n í sn ímek celé s í tn ice . S y s t é m se s k l á d á ze dvou
neu ronových sít í : g e n e r á t o r u , k t e r ý generuje s n í m k y s í tn ic , a d i s k r i m i n á t o r u , k t e r ý klasi
fikuje d a n é s n í m k y jako reá lné či synte t ické . Tento s y s t é m b y l n a t r é n o v á n na 141 sn ímcích
z veře jně d o s t u p n ý c h d a t a b á z í . N á s l e d n ě byla v y t v o ř e n a nová d a t a b á z e obsahuj íc í více než
2,800 s n í m k ů z d r a v ý c h s í tn ic v rozlišení 1024x1024. Tato d a t a b á z e m ů ž e bý t p o u ž i t a jako
učebn í p o m ů c k a pro očn í l ékaře nebo m ů ž e poskytovat zák lad pro vývoj různých apl ikací
pracuj íc ích se s í tn icemi .

Keywords
human eye, eye retina, synthetic ret inal images, image processing, image generation, ma
chine learning, neural networks, G A N , high resolution, Py thon , TensorFlow

Klíčová slova
l idské oko, s í tn ice oka, syn te t i cké s n í m k y s í tnice , zp racován í obrazu, generování obrazu,
s t rojové učení , neu ronové sí tě , G A N , vysoké rozlišení, Py thon , TensorFlow

Reference
A U B R E C H T , Tomas. Generation of Synthetic Retinal Images in High Resolution. Brno ,
2020. Master 's thesis. B rno Universi ty of Technology, Facul ty of Information Technology.
Supervisor Prof. Ing., Dipl . - Ing . M a r t i n Drahansky, P h . D .

Rozšířený abstrakt
Dip lomová p r á c e se zabývá gene rován ím syn te t i ckých s n í m k ů s í tn ic ve vysokém rozlišení.
Lidské oko je p á r o v ý o rgán , k t e r ý n á m poskytuje zrak. D í k y n ě m u m ů ž e m e v n í m a t okolní
svět a orientovat se v prostoru. Nejdůleži tě jš í čás t l idského oka tvoř í p r ávě s í tnice , k t e r á
je zá roveň i tou nejcitl ivější čás t í . Z tohoto d ů v o d u mohou r ů z n é nemoci nebo sebemenš í
poškození s í tn ice vést ke z t r á t ě zraku. Je tedy důlež i té , aby si člověk svůj zrak chráni l ,
p ro tože jeho z t r á t a vede k v ý z n a m n é m u zhoršen í kval i ty ž ivota . K poř ízen í s n í m k ů s í tnice
je p o t ř e b a spec iá ln ího vybaven í (fundus kamery), proto nen í j e d n o d u c h é z ískat t akové to
s n í m k y ve vě t š ím p o č t u . Z tohoto d ů v o d u je c í lem t é t o p ráce navrhnout a implementovat
sys t ém, k t e r ý bude schopný generovat nové syn te t ické s n í m k y s í tn ic ve v y so k ém rozlišení,
k t e r é budou ne rozezna t e lné od t ěch reá lných . Da l š ím krokem je p o m o c í tohoto s y s t é m u
vy tvo řen í nové d a t a b á z e s n í m k ů zd ravých s í tn ic , tedy s í tn ic bez pa to log ických ná lezů .

Teore t i cká čás t se zaměřu je na anatomii l idského oka, k t e r á je dů l ež i t ým z á k l a d e m
pro p o c h o p e n í jeho č innos t i . V t é t o čás t i je p o p s á n i z p ů s o b vyše t ř en í očn ího p o z a d í
a ná s l edně jsou uvedena v y b r a n á o n e m o c n ě n í s í tn ice spolu s jejich př íznaky . N a zák ladě
t ě c h t o informací je člověk schopný si vy tvo ř i t p ř e d s t a v u o tom, jak v y p a d á zd ravá s í tn ice .
Z t echn ického hlediska je pozornost věnována z á k l a d n í m t y p ů m s t ro jovému učen í a více
se zaměřu je na neu ronové s í tě , p o m o c í k t e r ý c h b y l rea l izován n a v r ž e n ý s y s t é m pro gen
erování s n í m k ů s í tn ic . Konkré tně j i se zabývá spec iá ln ími typy n e u r o n o v ý c h sí t í , jako jsou
konvoluční a g e n e r a t i v n í neu ronové s í tě . P r a k t i c k á čás t t é t o p r á c e poskytuje de ta i ln í popis
n á v r h u a ná s l edné implementace d a n é h o s y s t é m u . V pos ledn í čás t i je uveden proces učení
tohoto s y s t é m u spolu se z h o d n o c e n í m dosažených výs ledků .

Nav ržené řešení využ ívá pr inc ipu m a p o v á n í v s t u p n í h o s n í m k u na v ý s t u p n í . N a vstupu
s y s t é m u je černobí lý ob rázek obsahuj íc í k revn í řeč iš tě s í tnice , na j ehož zák l adě se vygeneruje
b a r e v n ý sn ímek celé s í tn ice . S a m o t n ý s y s t é m je t v o ř e n gene ra t i vn í k o m p e t i t i v n í sí t í . T a se
sk l ádá ze dvou dílčích n e u r o n o v ý c h sít í , kde jednou z nich je gene rá to r , k t e r ý ze v s t u p n í h o
o b r á z k u generuje s n í m k y s í tn ic , a druhou je d i sk r iminá to r , k t e r ý p rovád í klasifikaci, zdal i
jsou d a n é s n í m k y reá lné či syn te t i cké . D i s k r i m i n á t o r m á na svém vstupu dva sn ímky.
P r v n í m z nich je černobí lý sn ímek k revn ího řečiš tě nějaké s í tn ice a d r u h ý m je sn ímek
odpovída j íc í s í tnice , k t e r ý je ná s l edně posouzen.

A b y by l tento s y s t é m schopen v y t v á ř e t realisticky vypada j í c í s n í m k y s í tn ic , mus í se
to nejprve n a u č i t . S a m o t n é učen í p rob íha lo na sn ímcích z někol ika veřejně d o s t u p n ý c h
d a t a b á z í s í tn ic , k t e r é obsahuj í i p o t ř e b n é s n í m k y krevních řečišť. T y t o d a t a b á z e dohromady
poskyt ly 141 s n í m k ů . G e n e r á t o r a d i s k r i m i n á t o r byly učeni současně , kde cí lem bylo, aby
ge ne rá to r vy tvá ře l s n í m k y v t akové kval i tě , aby d i s k r i m i n á t o r nebyl schopný rozliši t , zdal i se
j e d n á o r eá lné či syn te t i cké sn ímky. Zároveň cí lem d i s k r i m i n á t o r u bylo, aby jeho rozlišovací
schopnost d o s á h l a co nejvyšší ú rovně . P ř i tomto s o u č a s n é m učen í bylo p o t ř e b a d á v a t pozor
na to, aby jedna z t ě c h t o sí t í nedominovala t é d r u h é , neboť s y s t é m jako celek by nás l edně
produkoval výs ledky nízké kvality. Z tohoto d ů v o d u bylo p o t ř e b a na j í t rovnováhu mezi
t ě m i t o s í těmi .

Po n a u č e n í s y s t é m u již nebylo p o t ř e b a d i s k r i m i n á t o r u a dá le se pracovalo pouze s nauče
n ý m g e n e r á t o r e m . P o m o c í tohoto g e n e r á t o r u byla v y t v o ř e n a d a t a b á z e , k t e r á obsahuje víc
než 2,800 s n í m k ů zd ravých s í tn ic , k t e r é jsou v rozlišení 1024x1024 pixelů . Tato d a t a b á z e
m ů ž e bý t ná s l edně p o u ž i t a jako učebn í p o m ů c k a pro oční lékaře nebo m ů ž e poskytovat
zák lad pro vývoj různých ap l ikac í pracuj íc ích se s í tn icemi . M ů ž e se jednat n a p ř í k l a d o ap
likace pohybuj íc í se v oblasti med ic ínských nebo b iome t r i ckých sy s t émů . M n o h é z t ě c h t o
v y t v o ř e n ý c h s n í m k ů jsou ne rozezna t e lné od s n í m k ů sku t ečných s í tn ic , což bylo cí lem t é t o
p ráce .

Generation of Synthetic Retinal Images in High
Resolution

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of prof. Ing., Dipl . - Ing . M a r t i n Drahansky, P h . D . The supplementary
information was provided by Biswas Sangeeta, P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Tomas Aubrecht
June 1, 2020

Acknowledgements
I would like to thank M r . M a r t i n Drahansky for his thorough guidance and his hints, and
Miss Biswas Sangeeta for her help during the thesis work, her valuable advice and her time
spent on consultations.

Contents

1 Introduction 2
1.1 A i m s 3
1.2 Contents 3

2 H u m a n Eye 4
2.1 V i s i o n 4
2.2 A n a t o m y 4
2.3 Re t ina 6
2.4 Eye Examina t ion 8
2.5 Re t ina l Diseases 10

3 Machine Learning 14
3.1 Types of Machine Learning 15
3.2 Ar t i f i c i a l Neura l Network 17
3.3 Deep Learning 24

4 Proposed Solution 28
4.1 Condi t iona l Generative Adversar ia l Network 28
4.2 Synthetic Re t ina l Image Generator 30

5 Implementation 38
5.1 Technologies 38
5.2 D a t a Preprocessing 39
5.3 Condi t iona l Generative Adversar ia l Network 42
5.4 Source Code Structure and Usage 46

6 Training and Testing 50
6.1 D a t a Source 50
6.2 Tra in ing 51

6.3 Evalua t ion 56

7 Conclusion 59

Bibl iography 61

A Contents of the Attached D V D 65

B Generator Architecture 66

1

Chapter 1

Introduction

Eyesight allows us to interpret the surrounding environment using light in its visible spec
t rum. Thanks to this, we can perceive contrast, contours of objects and their distance
from us. It also contributes to the perception of spatial orientation. For this reason, it
is important to protect our eyesight, as its loss leads to a significant deterioration i n the
quali ty of life.

We begin to see when the cornea, together w i th the lens of the eye, focuses light from
our surroundings on the light-sensitive membrane at the back of the eye, which is called
the retina. It contains specialized light-sensitive cells: rods that allow the perception of
contrast, and cones that allow the perception of color. These cells convert the light into
electrical signals that are t ransmit ted to the visual cortex of the bra in by the optic nerve.
Therefore, the retina is the most sensitive and most important part of the human eye, and
diseases or the slightest mechanical damage can lead to loss of vision.

Machine learning is an applicat ion of art if icial intelligence that provides systems wi th
the abi l i ty to automatical ly learn and improve from previous experience without being
expl ici t ly programmed. One of the most popular areas of machine learning today is deep
learning. Th is has been inspired by the human brain, and it generally consists of a large
number of parameters w i th mult iple nonlinear layers. Generative models are an example
of deep learning, more specifically, generative adversarial networks.

A generative adversarial network (G A N) is a type of neural network that is based on two
models: a generator and a discriminator. The generator produces a synthetic image from
random noise, and the discriminator predicts whether the image is real or created by the
generator. The generator is trained to be able to fool the discriminator to such an extent
that it is not possible for the discriminator to distinguish between real and fake images.
Meanwhile, the discriminator constantly adapts to the gradually improving capabilities of
the generator. Therefore, bo th models are trained to surpass the other.

Synthesizing realistic images of the eye fundus is a challenging task. Recent advances
i n technology have brought high computat ional power, leading machine learning to neu
ra l networks wi th deep architectures. Considering advances i n deep learning algorithms,
G A N provides a valuable framework. R a p i d enhancement of G A N s facilitated the synthesis
of realistic-looking images, leading to slightly anatomical ly consistent ret inal images wi th
reasonable visual quali ty [50].

2

1.1 Aims

The a i m of this thesis is to design and implement an algori thm that allows the automatic
generation of high-resolution digi ta l images of the ret ina using the generative adversarial
network. In the next step, this network needs to be trained using real ret inal images from
existing databases. The results obtained from the algori thm w i l l be compared wi th these
real images, and i n case of high accuracy of this algori thm, a database of synthetic retinal
images w i l l be created. Th is database could be used i n practice for the development of
various medical or biometric systems.

1.2 Contents

Chapter 2 focuses on the anatomy of the human eye, which is an important basis for
understanding its physiology and the risks posed by various diseases. Th is chapter also
describes the most common methods of examining the eye and ind iv idua l eye diseases,
along wi th a description of their symptoms and possible treatments. Information about
the human eye was taken from my previous work [8]. Chapter 3 provides an introduct ion
to the machine learning on which the proposed algori thm is based. This introduct ion
includes types of machine learning along w i t h a description of the neural network. Chapter 4
contains the proposed solution of the system for generating synthetic images of the retina.
Its implementat ion is given i n Chapter 5. The actual t ra ining and testing of the proposed
system are described in Chapter 6. The final chapter, Chapter 7, contains a summary of
this thesis, including the final evaluation of achieved results and plans for future work.

3

Chapter 2

Human Eye

H u m a n eyes are paired organs of the visual system, which provide us w i th vision, an abi l i ty
to perceive the surrounding world and to orient ourselves i n space thanks to the light in
its visible spectrum reflected by objects i n the environment. U p to 80 % [23] of informa
t ion from the external environment is perceived by sight. Therefore, the eye is the most
important sensory organ. It has an approximately spherical shape, and it is made up of
three layers, enclosing various anatomical structures. The outermost layer is composed of
the cornea and sclera. The middle layer consists of the choroid, c i l iary body, pigmented
epithelium and iris, and the innermost layer is the retina.

2.1 Vis ion

W h e n looking at an object, light rays reflect from that object and enter the cornea. The
light rays are refracted and concentrated i n one place through the cornea, lens and vitreous
humor. O f these three structures, only the lens can change its opt ical power, thus ensuring
that the rays are concentrated on the point of sharpest vision. The resulting image on the
retina is turned upside down. Photons of light falling on the light-sensitive cells of the retina
are converted into electrical signals that are t ransmit ted to the bra in by the optic nerve.
These signals are interpreted as the resulting image i n the visual cortex of the brain [23].

2.2 Anatomy

The human eye is a very complex system made up of many parts that must work together
perfectly. The most important parts are described below. They are shown i n Figure 2.1.

• T h e cornea is a transparent dome-shaped layer covering the anterior por t ion of
the eyeball. The cornea, w i t h regard to its opt ical power, is the most important
component of the opt ical system of the eye, and is the largest contributor to quali ty
vision. Its ma in function is to refract light. It is responsible for focusing most of the
light that enters the eye. The cornea is colorless, completely transparent, and without
blood vessels, which may prevent it from refracting light properly and may adversely
affect vision. Since there are no nutrient-supplying b lood vessels i n the cornea, tears
and the aqueous humor i n the anterior chamber provide the cornea wi th nutrients. It
represents a mechanical and chemically impermeable barrier between the inner and
outer environment together w i th the conjunctiva, sclera and tear fi lm.

4

• T h e conjunctiva is the clear, th in membrane that consists of two segments: bulbar
conjunctiva, which covers the anterior part of the sclera, and palpebral conjunctiva,
which covers the inner surface of both the upper and lower eyelids. The conjunctiva
has many smal l b lood vessels that provide nutrients to the eye and lids. Its main
function is to keep the eye moist and lubricated by producing mucus and tears. It
also contributes to the protection from dust, debris and microorganisms that can
cause an infection.

• T h e sclera, also known as the white of the eye, is the protective, opaque, outer
layer of the human eye. The whole sclera is white, contrasting wi th the coloured iris.
It is continuous wi th the cornea offering resistance to internal and external forces
to protect sensitive eye structures stored inside. The sclera also provides a sturdy
attachment for the extraocular muscles that control the movement of the eyes. It is
perforated by many nerves and vessels passing through its posterior part, where the
hole is formed by the optic nerve.

• T h e choroid, also known as the choroidea, is another layer surrounding the eyeball
that lies between the sclera and the retina. It provides oxygen and nourishment to
the outer layers of the ret ina and maintains the temperature and volume of the eye.

• T h e anterior chamber of the eyeball is the space inside the eye that is behind
the cornea and i n front of the iris. It is filled w i th a clear, watery fluid known as
the aqueous humor. Th is is where the excess fluid can normal ly flow out. If the
normal outflow of aqueous humour is blocked, the intraocular pressure is increased
and glaucoma usually develops. Th is can lead to progressive damage to the optic
nerve head, and eventually blindness.

• T h e iris is a th in , circular structure located behind the anterior chamber that is
usually strongly pigmented. The color of our eyes is determined by the amount of
pigment i n the iris. It contains a circular opening in the center called a pupi l . The
pr imary function of the iris is to regulate the amount of light entering the eye by
di lat ing or contracting the pupi l . The iris contracts the pup i l when the ambient
i l luminat ion is high and dilates it when the i l luminat ion is low [26].

• T h e lens is composed of transparent, flexible tissue, and is located directly behind the
iris and the pupi l . It is important for the refraction of light and its accommodation.
The accommodation is a process of changing the curvature of the lens, al lowing closer
objects to be brought into better focus by changing the opt ical power of the lens.

• T h e posterior chamber of the eyeball is the second chamber consisting of small
space directly behind the iris and i n front of the lens. L ike the anterior chamber of
the eye, it is also filled w i t h the aqueous humor. Th is fluid normal ly passes into the
posterior chamber from where it flows into the anterior chamber. There, the excess
fluid can flow out of the eye.

• T h e vitreous humor, also known simply as the vitreous, is a clear, colorless fluid
that fills the space behind the lens and i n front of the ret ina i n the eye. It has
a firm gelatinous consistency, and it makes up most of the volume of the eyeball. The
vitreous helps to hold the shape of the eye, and its pressure helps to keep the retina
in place.

5

• T h e optic nerve connects the eye to the visual cortex of the brain. It is the nerve
that transmits visual information i n the form of impulses formed by the retina. These
impulses are dispatched through the optic nerve to the brain, which interprets them
as images. Glaucoma is a disease which results i n damage to the optic nerve and
causes vision loss. It is caused by high intraocular pressure, which compresses the
optic nerve and causes its cells to die. It is referred to as the atrophy of the optic
nerve.

• Ret ina is the most important part of this work, so it is described separately and in
more detai l in the following Section 2.3.

Figure 2.1: Schematic diagram of the human eye [43].

2.3 Retina

The retina is the most important and also the most sensitive part of our eye. It is a th in
layer of tissue that lines the inner surface of the back of the eyeball. The retina processes
light through a layer of light-sensitive cells, responsible for detecting qualities such as color
and light intensity. These specialized cells are called photoreceptors. The retina captures
the light falling on these photoreceptors and converts the light into neural signals that are
t ransmit ted through the optic nerve to the v isual cortex of the brain for visual recognition.

P h o t o r e c e p t o r s

A photoreceptor is a specialized light-sensitive cell found in the ret ina that is responsible
for converting light into signals that can stimulate biological processes. The photoreceptor
absorbs photons that are s t r iking the retina, which triggers a change i n the membrane
potential of the cell. There are two types of photoreceptor cells in the human retina: rods

G

and cones. There are major functional differences between the rods and cones. R o d cells
are much more sensitive than cone cells. A t very low light levels, the visual experience is
based solely on the rod signal, so they are responsible for night vision. However, they do
not mediate color vision, which is the ma in reason why colors are much less apparent in d i m
light, and not at a l l at night. The rods are concentrated at the outer edges of the retina,
and are used i n peripheral vision. Cones require significantly larger number of photons
to produce a signal. They are responsible for the perception of color and for high spatial
acuity used for tasks such as reading. Cones are most concentrated i n the center of the
retina i n an area called the macula, and their density gradually decreases towards the outer
edges of the ret ina [29].

The macula is a yellow oval-shaped area near the center of the retina where the light is
focused by the cornea and lens. The macula is responsible for the central, high-resolution
and color vis ion. Therefore, the macula provides us w i t h the abi l i ty to read and see in
great detail . In the very center of the macular region is the fovea that has a very high
concentration of photoreceptor cells, more specifically, a high density of cones and low
density of rods.

O p t i c D i s c

The optic disc, also called the optic nerve head, is located at the optic papi l la , where the
optic nerve fibres leave the eye. There are no photoreceptors i n this area, so it is sometimes
called the b l ind spot. The optic disc appears as an approximately oval area, and it is the
entry point for the b lood vessels that supply the retina. These structures can be seen in
Figure 2.2.

M a c u l a

Fovea Optic disc

Macula Central
retinal vein

Retinal
arterioles

Central retinal
artery

Retinal venules

Figure 2.2: Re t ina of the human eye [49].

7

2.4 Eye Examination

Ophthalmology is a branch of medicine dealing wi th anatomy and physiology of the eye,
and w i t h the diagnosis, treatment and prevention of diseases of the whole visual system.
This is a very specialized field, especially since the eye is a very complicated apparatus. A n
ophthalmologist is a medical doctor who specializes i n diagnosing and treating eye-related
conditions. In other words, an ophthalmologist is a specialist in ophthalmology. A n eye
examination is a series of tests performed by an ophthalmologist, evaluating vision and
abil i ty to focus on and recognize objects.

O p h t h a l m o s c o p y

Ophthalmoscopy is an examination of the back part of the eye. Th is part of the eye is called
the fundus, and consists of: retina, optic disc, choroid and b lood vessels. Ophthalmoscopy
may also be called funduscopy or ret inal examination. Through ophthalmoscopy, an eye
doctor can find evidence of many kinds of eye problems including, but not l imi ted to,
glaucoma, high blood pressure damage, ret inal detachment, diabetes, eye tumors, and
many other problems. The di la t ion of the pupils, also known as mydriasis, is a simple
and effective way to better observe the structures behind them. Th i s is often done wi th
eye drops before the examination. There are three different types of examinations: direct,
indirect and sl i t- lamp examination.

Direct ophthalmoscopy produces an upright image of approximately 15 x magnification.
The handheld instrument that our pr imary care physician uses to look into our eyes is
called a direct ophthalmoscope. One can be seen in Figure 2.3. It is about the size of
a smal l flashlight, and it consists of a concave mirror and a battery-powered light. The
doctor looks through a single monocular eyepiece into the eye of a patient in a darkened
room. The ophthalmoscope is equipped wi th a rotat ing disc of lenses to permit the eye to be
examined at different depths and magnifications. It provides good, but l imi ted visualizat ion
of the back of the eye. This type of ophthalmoscope is most commonly used during a routine
physical examination.

Indirect ophthalmoscopy provides a wider view of the inside of the eye and produces
an inverted image of 2 to 5 x magnification using an indirect ophthalmoscope (Figure 2.4).
A n indirect ophthalmoscope can be either monocular or binocular. It constitutes a bright
light attached to a headband positioned on the forehead of the eye doctor and magnifying
lenses. The eye doctor holds the eye open while shining a very bright light into the eye using
this indirect ophthalmoscope and views the back of it through the lens held close to the
eye. Some pressure may be applied to the eye using a small , blunt probe. The pup i l must
be fully di lated for a satisfactory result. Th i s examinat ion is usually used for peripheral
viewing of the retina, and to look for a detached retina.

The slit lamp is the most widely used ophthalmic device. It has a place for us to rest our
chin and forehead. This w i l l help keep our head steady. This procedure gives us the same
view of the eye as an indirect examination, but w i t h greater magnification. A microscope
is connected to a lamp, which is a high-intensity light source that can be focused to shine
a th in ray of light into the eye. The doctor directs the light right into the eye of the patient,
thus i l luminat ing the area accurately. D u r i n g the examination, the tissues are i l luminated
either by a th in ray of light, or by reflected light. B y examining the i l luminated eye wi th
the microscope, the ophthalmologist then obtains a magnified image of the observed area,
allowing the detection of very subtle changes and symptoms of eye diseases.

8

Figure 2.3: Direct ophthalmoscope [34]. Figure 2.4: Indirect ophthalmoscope [46].

F u n d u s P h o t o g r a p h y

Fundus photography uses a fundus camera to record images of the condit ion of the interior
surface of the eye, also known as the fundus. Ophthalmologists use these ret inal photographs
for detailed evaluation as well as to document c l in ical observations and possible diagnosis of
eye diseases. The fundus camera (Figure 2.5) is a device that replaces the ophthalmoscope.
It is a specialized low power microscope wi th an attached camera, and it is based on the
principle of monocular indirect ophthalmoscopy. The optics of a fundus camera are similar
to those of an indirect ophthalmoscope i n that the observation and i l luminat ion systems
follow dissimilar paths. Fundus cameras are described by the angle of view, and provide an
upright, magnified view of the back of an eye. A typica l camera captures images between
30° and 50° of the ret inal area wi th a magnification of 2.5 x . Th is relation can be modified
using zoom or auxi l iary lenses. Wide-angle fundus cameras capture images between 45°
and 140°, and provide proportionately less ret inal magnification. For a better inspection,
di la t ing eye drops are applied prior to the examination to enlarge the pupi l , thus increasing
the angle of observation [9].

Figure 2.5: Fundus camera [38].

9

2.5 Retinal Diseases

Ret ina l diseases vary widely, but most of them cause visual symptoms. Re t ina l diseases can
affect any part of the retina, and they are always very serious, often irreversible and can
lead to severe vision loss or blindness. Treatment is available only for some ret inal diseases.
Depending on the retina condit ion, treatment goals may be to stop or slow the disease
and preserve, improve or restore the vision. C o m m o n ret inal diseases and conditions are
described below.

M a c u l a r D e g e n e r a t i o n

Macula r degeneration, also known as age-related macular degeneration (A M D or A R M D) ,
is a macular disease that occurs in patients over age 50, and is the most common cause
of pract ical blindness i n economically developed countries. W i t h the increasing number of
seniors, it becomes a major societal health problem. Several factors influence the origin and
development of this disease. In addi t ion to increasing age, it can also be high blood pressure,
smoking, poor eating habits and the associated obesity and genetic predisposition. Patients
describe its symptoms so that visual acuity gradually decreases, they are complaining about
image distortions, and i n more advanced stages, a blurred or sometimes even black spot
appears in the center of the field of view. Color vision also deteriorates. There is currently
no known cure for macular degeneration, but there are options to reduce the risk and
possibly slow the progression of the wet form. V i s i o n w i l l no longer improve and only the
current quali ty of vision w i l l stabilize [24].

A M D is divided into 2 forms: dry (atrophic, nonexudative) and wet (exudative). U p to
90 % of patients are affected by the dry form, but it causes severe visual damage i n only
12—21 %. Fewer patients suffer from the wet form, but it is far more dangerous than the
dry form because, it progresses very quickly. B o t h forms can be combined during disease.
In the macular area of the patients, changes and loss of ret inal pigment epi thel ium and
drusen are found. Drusen are divided according to their appearance and size into hard and
soft. The i r comparison can be seen i n Figure 2.6 and 2.7. H a r d drusen are smal l bounded
deposits of yellowish color under the retina. O n the contrary, soft drusen have no sharp
boundaries and may even coalesce, they are associated wi th a significantly higher risk of
the formation of the wet form of A M D [28].

Figure 2.6: H a r d drusen [28]. Figure 2.7: Soft drusen [28].

10

D r y A M D starts w i t h the bui ld-up of drusen in the retina. V i s i o n is usually good or
only sl ightly reduced at this stage. Most of these patients w i th m i l d dry A M D can continue
to read and drive, al though it may not be as easy as it was when they were younger. Some
patients, but not a l l , progress to a more advanced stage of dry A M D called geographic
atrophy (Figure 2.8). This can result i n severe loss of central vision and loss of the abi l i ty to
read and drive. Even i n these severe cases, patients almost always retain normal peripheral
vision, enough to see where they are going. Unfortunately, there is no treatment for dry
A M D . However, supplementation of antioxidant vi tamins C , E and minerals zinc, selenium
and essential omega-3 fatty acids may have a beneficial effect on preventing or slowing its
progression. A diet r ich in fish, vegetables and fruits also has a support ing role [28].

Wet A M D occurs when abnormal new blood vessels grow into the ret ina and start
leaking fluid. Macu la r edema is the build-up of this fluid i n the macula. T h i s causes the
retina to swell, and the longer it is swollen, the more the ret inal fibres deteriorate. Because
these b lood vessels are abnormal, they are more fragile than typica l b lood vessels and can
bleed into the retina. This bleeding can cause irreversible damage to the photoreceptors and
rapid vision loss i f left untreated. A characteristic image of a ret ina wi th the macular edema
can be seen in Figure 2.9. It is usually, but not always, preceded by the dry form of A M D .
The wet form progresses faster compared to the dry form, and the loss of vision is more
significant. R a p i d deterioration occurs wi th in a few weeks and pract ical blindness wi th in
a few months. Treatment previously consisted of destruction of the neovascular membrane
by photocoagulation or thermotherapeutic laser. However, treatment results were variable.
The starting point should be a more targeted so-called photodynamic therapy, i n which
the intravenously injected substance is absorbed by the target tissue and then activated by
laser [28].

D i a b e t i c R e t i n o p a t h y

Diabet ic retinopathy is a diabetes complicat ion that affects eyes. Ret inopathy occurs when
high b lood sugar levels lead to the blockage of the t iny b lood vessels that nourish the
retina, cut t ing off its b lood supply. The weakened blood vessels leak fluid into the retina
and some of them break and bleed. This is called ret inal haemorrhage, and can be seen in
Figure 2.10. A s the disease becomes more advanced, new abnormal b lood vessels may grow
and these new blood vessels can bleed, cause cloudy vision, and destroy the retina. Th is

Figure 2.8: Geographic atrophy, which is
a more advanced stage of dry A M D [35].

Figure 2.9: Wet form of A M D wi th the
macular edema [36].

11

condit ion can develop i n anyone who has type 1 or type 2 diabetes. The longer the patient
has diabetes and the less controlled his blood sugar is, the more l ikely he is to develop this
eye complicat ion. Diabet ic retinopathy begins before the patient has any symptoms, but
as the problem gets worse the patient may have: blurred vision, temporary or permanent
blindness or distort ion of vis ion. E a r l y treatment is the key to reduce vision loss. A laser
is used to seal leaking b lood vessels or destroy abnormal b lood vessels [42].

R e t i n a l D e t a c h m e n t

A ret inal detachment is defined by the presence of fluid under the retina. If a hole develops
in the retina, then the suction force is lost and the fluid that normal ly fills the inside of
the eye passes through the hole and enters the space underneath the retina. A s more fluid
passes underneath i t , the retina gradually detaches from the inner wal l of the eye. If the
retina remains detached, it w i l l slowly deteriorate and lose function permanently, but i f
the ret ina can be reattached w i t h surgery quickly enough, it is possible to recover some
function and to avoid permanent vision loss [42].

R e t i n a l V e i n O c c l u s i o n

A ret inal vein occlusion is a blockage of one of the veins draining b lood from the eye.
Re t ina l vein occlusion is d ivided into categories, based on the size of the vein which is
blocked. A branch ret inal vein occlusion is a blockage of one branch only, and affects
only part of the ret ina and a central ret inal vein occlusion is a blockage of the ma in vein
and affects the whole retina. If there is a very severe blockage and the b lood flow stops
altogether, the ret inal cells die due to lack of oxygen. This is called ischaemia, and there
is no treatment that can br ing the cells back to life. The increased pressure i n the small
vessels i n the eye results in fluid leaking into the retina, making it swollen. A swollen
retina does not see as well, and the longer the retina remains swollen, the more the vision

Figure 2.10: Re t ina l haemorrhage [11].

12

deteriorates w i th t ime. Possible treatment options are intravi treal injections to reduce the
swelling, or laser surgery. If the blood supply is not restored, new blood vessels can grow
into the retina. These new vessels are very fragile and can bleed, which can dramatical ly
reduce the vision. In some cases, this bleeding w i l l require surgery to remove the b lood in
order to restore vision [42].

R e t i n i t i s P i g m e n t o s a

Retini t is pigmentosa is a group of rare, genetic disorders that involve a breakdown and loss
of cells in the retina. The rods are more severely affected than cones i n the early stages,
and people have difficulty seeing at night and lose the peripheral vision. The loss of rods
eventually leads to a breakdown and loss of cones. In the late stages, people tend to lose
more of the visual field, developing tunnel vis ion. Ret ini t i s pigmentosa is diagnosed by an
examination of the retina, which typical ly reveals abnormal, dark pigment deposits that
streak the retina. There is currently no cure for this disorder [37].

Figure 2.11: Fundus of a patient w i th retinitis pigmentosa [21].

13

Chapter 3

Machine Learning

To solve a problem on a computer, we need an algori thm. A n algori thm is a sequence of
instructions that should be carried out to transform the input to output. For some tasks,
however, we do not have an algori thm. Therefore, we do not know how to transform the
input to output. W h a t we lack in knowledge, we make up for in data. W i t h advances
i n computer technology, we currently have the abi l i ty to store and process large amounts
of data, as well as to access it from physically distant locations over a computer network.
There are certain patterns i n the data. Such patterns may help us better understand
the data, or we can use those patterns to make predictions. Assuming that the future,
at least the near future, w i l l not be much different from the past when the sample data
was collected, the future predictions can also be expected to be right. App l i ca t ion of
machine learning methods to large databases is called data mining. Its applicat ion areas
are abundant. In finance, banks analyze their past data to bu i ld models to use i n credit
applications, fraud detection, and the stock market. In manufacturing, learning models are
used for opt imizat ion, control, and troubleshooting. In medicine, learning programs are
used for medical diagnosis. In telecommunications, ca l l patterns are analyzed for network
opt imizat ion and maximiz ing the quali ty of service, and i n science, large amounts of data
in physics, astronomy, and biology can only be analyzed fast enough by computers.

Machine learning is not just a database problem; it is also a part of artificial intelligence.
To be intelligent, a system that is i n a changing environment should have the abi l i ty to
learn. The key concept is learning from data since data is what we have. Machine learning,
then, is about making computers modify or adapt their actions, so that these actions get
more accurate, where accuracy is measured by how well the chosen actions reflect the correct
ones. If the system can learn and adapt to such changes, the system designer does not need
to foresee and provide solutions for a l l possible situations. Machine learning also helps us
find solutions to many problems in vision, speech recognition, and robotics. One example
of pattern recognition is face recognition. This is a task we do effortlessly. Every day, we
recognize family members and friends by looking at their faces or from their photographs,
despite differences i n the pose, l ighting, hairstyle, and so forth. B u t we do it unconsciously
and are unable to explain how we do it . Because we are not able to explain our expertise,
we cannot write the computer program. A t the same time, we know that a face image is
not just a random collection of pixels. A face has structure. It is symmetric. There are
the eyes, the nose, the mouth, located in certain places on the face. Each face of a person
is a pattern composed of a part icular combination of these. B y analyzing sample face
images of a person, a learning program captures the pattern specific to that person and
then recognizes by checking for this pattern i n a given image [1].

14

One of the most interesting features of machine learning is that it lies on the bound
ary of several academic disciplines, pr incipal ly computer science, statistics, mathematics,
and engineering. Th is has been a problem as well as an asset since these groups have
t radi t ional ly not talked to each other very much [32]. Machine learning is programming
computers to optimize a performance criterion using example data or past experience. We
have a model defined up to some parameters, and learning is the execution of a computer
program to optimize the parameters of the model using the t raining data or past experi
ence. The model may be predictive to make predictions in the future, or descriptive to gain
knowledge from data, or both. Machine learning uses the theory of statistics i n bui lding
mathematical models, because the core task is making inference from a sample. The role
of computer science is twofold. F i r s t , i n training, we need efficient algorithms to solve the
opt imizat ion problem, as well as to store and process the massive amount of data we gen
erally have. Second, once a model is learned, its representation and algori thmic solution
for inference needs to be efficient as well . Tra in ing does not happen very often, and is not
usually t ime-cri t ical , so it can take longer. However, we often want a decision about a test
point quickly, and there are potential ly lots of test points when an algori thm is in use,
so this needs to have low computat ional cost. In certain applications, the efficiency of the
learning or inference algori thm, namely, its space and time complexity, maybe as important
as its predictive accuracy.

3.1 Types of Machine Learning

Learning can be loosely defined as a process of getting better at some task through prac
tice. This leads to a couple of v i t a l questions: how does the computer know whether it is
getting better or not, and how does it know how to improve? There are several possible
answers to these questions, and they produce different types of machine learning. Machine
learning algorithms are typical ly classified into three broad categories: supervised learning,
unsupervised learning, and reinforcement learning [52].

S u p e r v i s e d L e a r n i n g

The most common type of learning is supervised learning. A t ra ining set of examples
wi th the corresponding targets are provided, and based on this t raining set, the a lgori thm
generalizes to respond correctly to a l l possible inputs. Th is is also called learning from
examples [32]. W h e n the target vectors are categorical, the problems are known as classi
fication or pattern recognition, and when the target vectors are real-valued, the problems
are known as regression.

If we had examples of every possible piece of input data, then we could put them
together into a big look-up table, and there would be no need for machine learning at a l l .
The thing that makes machine learning better is a generalization: the a lgori thm should
produce sensible outputs for inputs that weren't encountered during learning. This also
has the result that the a lgori thm can deal w i t h noise, which are smal l inaccuracies i n the
data. In other words, the goal of supervised learning is to learn mapping from the input to
an output whose correct values are provided by a supervisor.

This work is based purely on supervised learning, so further details are given i n the
following Section 3.2 on artif icial neural networks and Section 3.3 on deep learning.

15

U n s u p e r v i s e d L e a r n i n g

In unsupervised learning, there is no supervisor, no targets are defined so that the t raining
data consist of only a set of input vectors. The goal is to find the regularities in the input
data. There is a structure to the input space such that certain patterns occur more often
than others, and we want to see what generally happens and what does not. In statistics,
this is called density estimation. One method for density estimation is clustering. Therefore,
a variety of clustering algorithms are canonical examples of unsupervised learning. One
specific example of density-based clustering is shown in Figure 3.1 below.

Figure 3.1: Example of density-based clustering that connects areas of high input data
density into clusters.

R e i n f o r c e m e n t L e a r n i n g

This is somewhere between supervised and unsupervised learning. The algori thm gets told
when the answer is wrong, but does not get to ld how to correct i t . It has to explore and
t ry out different possibilities un t i l it works out how to get the answer right. The goal of
reinforcement learning is to learn how to act or behave i n a given si tuation for the given
reward or penalty signals. In this type of learning, a state for current status is defined,
and an environment, usually a criterion function, evaluates the current state to generate
a proper reward or penalty action through a set of policies. Instead of having exact target
values, it learns wi th critics. Therefore, reinforcement learning is sometimes called learning
wi th a cri t ic because of this monitor that scores the answer, but does not suggest any
improvements [52].

A robot navigating i n an environment in search of a goal location is one possible appli
cation area of reinforcement learning. A t any t ime, the robot can move i n one of a number
of directions. After a number of t r i a l runs, it should learn the correct sequence of actions
to reach the goal state from an in i t i a l state, doing this as quickly as possible and without
h i t t ing any of the obstacles.

16

One factor that makes reinforcement learning harder is when the system has unreliable
and par t ia l sensory information. For example, a robot equipped wi th a video camera has
incomplete information, and thus, at any time, is i n a par t ia l ly observable state and should
decide taking into account this uncertainty. For example, it may not know its exact location
in a room, but only that there is a wal l to its left. A task may also require a concurrent
operation of mult iple robots that should interact and cooperate to accomplish a common
goal [1].

3.2 Artif icial Neural Network

A n Ar t i f i c i a l Neura l Network is a computat ional model inspired by networks of biological
neurons. In animals, learning occurs wi th in the brain. W h i l e the brain is an impressively
powerful and complicated system, the basic bui ld ing blocks that it is made up of are fairly
simple and easy to understand. In computat ional terms, the brain deals w i t h noisy and
even inconsistent data, and produces very quick answers that are usually correct even from
very high dimensional data, such as images.

N e u r o n

A neuron is an electrically excitable cell that communicates w i th other cells v i a specialized
connections called synapses. There are hundreds of bill ions of neurons i n a human brain [7].
The input to the neuron is provided by dendrites, a number of ramifying branches, which
continually monitor changes i n the external and internal environment. The output of the
neuron is provided by a long fiber called the axon. The general operation of a neuron is
that transmitter chemicals wi th in the fluid of the bra in raise or lower the electrical potential
inside the body of the neuron. If this membrane potential reaches some threshold, the
neuron spikes (or fires), and a pulse of fixed strength and durat ion is sent down the axon.
The axons divide into connections to many other neurons, connecting to each of these
neurons i n a synapse. Each neuron is typical ly connected to thousands of other neurons [7].
A picture of two neurons can be seen i n Figure 3.2.

Each neuron can be viewed as a separate processor, performing a very simple compu
tat ion, which is deciding whether or not to fire. Th is makes the brain a massively parallel
computer. The basic principle of learning is to modify the strength of synaptic connections
between neurons, and to create new connections.

Changes i n the strength of synaptic connections are proport ional to the correlation in
the firing of the two connecting neurons. So if two neurons consistently fire simultaneously,
then any connection between them w i l l change i n strength, becoming stronger. However, i f
the two neurons never fire simultaneously, the connection between them w i l l die away. The
idea is that i f two neurons bo th respond to something, then they should be connected [32].

17

Figure 3.2: A neuron consisting of a cell body, an axon and mult iple dendrites creating
a connection to another neuron [33].

P e r c e p t r o n

Perceptrons were invented as simple computat ional models of neurons. A perceptron is
a neural network w i t h one art if icial neuron. It takes many inputs and has one output.
Its first half consists of a vector of weights w = [wi .. .wm], one for each input, plus
distinguished weight, 6, called the bias. Weights represent weighted connections between
neurons. These weights are equivalent to the synapses in the brain. Weights and bias are
called the parameters of the perceptron. The basic operation performed by the perceptron
is to mul t ip ly the values of each input Xi by its weight Wi, sum the results up and add the
bias. It can be wri t ten as:

n
z = b + 's^2/xiwi (3.1)

i=l

where x = \x\... xn] is the input vector. The bias is added for cases where a l l of the inputs
are zero. In such a case, it does not matter what the weights are, since zero times anything
equals zero. The only way to control the output of the perceptron is through the bias. It
represents an extra input weight to the perceptron, w i th the value of input always being
fixed.

The second half of the work of the perceptron is to decide whether to produce output
of 1 or output of 0 depending on whether the value z is above some threshold 9. Th i s is
also known as an activation function:

, , (l i f z > 9 . .
a = a(z) = < (3.2)

I 0 otherwise

18

Perceptions are binary classifiers, so 1 indicates that x is a member of the class, and 0 not
a member [13]. A graphical representation of the perceptron is shown i n Figure 3.3.

Inputs Weights

Figure 3.3: A perceptron wi th n inputs. A weighted sum z of the inputs and the bias is
passed through an act ivation function a that gives an output of 1 if the sum is greater than
the defined threshold and an output of 0 otherwise [16].

The activation function a is to be selected on the basis of the nature of the problem. It
mathematical ly defines the properties of perceptrons. It can be any step function or non
linear sigmoid function, depending on the problem. The most common activation functions
are shown in Figure 3.4 below.

S i g m o i d T a n h R e L U L e a k y R e L U

9 { Z) = l + e -
ez — e~z

*V ' ez + ez g(z) = max(0, z)
g(z) = max(ez, z)

with € < 1

i
1 -

l
2J

- 4 0 r

1 •

J

1 • /
1 i

1 •

t i k

i
1 -

l
2J

- 4 0 r

-i oJ

- 1 -

1 (i l 0 i

Figure 3.4: Different types of functions used as activation functions of percep
trons [5] [6] [4] [2].

The perceptron needs to be trained before it can be used. The t ra ining algori thm works
by i terating over the t ra ining data several times, adjusting the weights to increase the
number of correctly identified examples. E a c h pass through the data is called an epoch.
The corresponding input of the perceptron is set, and then Equations 3.1 and 3.2 are used
to calculate the output, which is then compared to the target that is known to be the
correct answer for this input . Loss or distance functions are defined between the current
output vector and the target vector for each input vector, and opt imizat ion is performed
to minimize the loss over a l l t ra ining examples.

19

If the answer of the perceptron is correct, there are no adjustments, but if the answer
is incorrect, the perceptron needs to have its weights changed. Some of the weights w i l l
be too big i f the perceptron produced 1 when it should not have, and too smal l if it d id
not produce 1 when it should. Therefore, the difference between the target t, which is
the anticipated answer, and the output y of the perceptron is computed. If the result is
positive, then the perceptron should have produced 1 and it d id not, so the weights are
made bigger, and vice versa i f it is negative. The rule for updat ing a weight Wi is:

Wi <r- Wi + rj(t - y) • Xi (3.3)

where r\ is a parameter called the learning rate. The value of the learning rate decides how
much the weight should change by, and thus how fast the network learns. If the learning
rate is missed out, the weights change a lot whether there is a wrong answer, which tends
to make the network unstable, so that it never settles down. The cost of having a small
learning rate is that the weights need to see the inputs more often before they change
significantly. However, it w i l l be more stable and resistant to noise and inaccuracies in the
data [32]. A n element of the input could be negative, which would switch the values over,
therefore, the difference in Equa t ion 3.3 is mul t ip l ied by Xj , which makes the value of the
weight negative as well.

Perceptrons are linear models. They t ry to separate out the cases where they should
produce an output of 1 from those where they should not. Th is is done by finding a straight
generalization line i n 2D, a plane in 3D, or a hyperplane i n higher dimensions. This line is
called the decision boundary or discriminant function [32]. A n example of one is given in
Figure 3.5. The cases where there is a straight line are called l inearly separable cases.

c,

Figure 3.5: A decision boundary separating two classes of data.

M u l t i - L a y e r P e r c e p t r o n s

Linear models are easy to understand and use. They can identify straight lines, planes
or hyperplanes, but the majori ty of problems are not linearly separable. Learning i n the
neural network happens in the weights, and thus, adding more neurons between the input
nodes and the outputs w i l l make more complex neural networks, such as the one shown in
Figure 3.6. A d d i n g extra layers of nodes makes a neural network more powerful. A l l these
nodes are interconnected, so the output of one node is connected to the inputs of a l l nodes
in the next layer.

20

Input layer Hidden layer 1 ... Hidden layer k Output layer

Figure 3.6: A neural network consisting of mult iple layers of interconnected neurons [3].

To t ra in this network, the difference between the targets and outputs can be computed,
but it is not possible to find out which weights were wrong and in which layer. N o r is
it possible to determine what the correct activations are for neurons in the middle of the
network. This fact gives the neurons i n the middle of the network their name. They
are called the hidden layer, because it is not possible to examine and correct their values
directly.

Learning process uses two popular algorithms named feed-forward and backpropagation.
The term feed-forward describes how the neural network processes and recalls patterns.
In a feed-forward neural network, neurons are only connected forward. Each layer of the
neural network contains connections to the next layer, but there are no connections back.
In this way, values are fed forward. The term backpropagation describes how this type of
neural network is trained. Backpropagat ion is a form of supervised training. It calculates
the error by comparing the anticipated outputs against the actual outputs for a given
input, and propagates them back to the earlier layers. The weights of the various layers are
adjusted backwards from the output layer to the input layer to reduce the value of error. It
is a form of gradient descent (Figure 3.7). If a function is differentiated, we get the gradient
of that function, which is the direction along which it increases and decreases the most. So
if we differentiate an error function, we get the gradient of the error. Fol lowing the function
in the direction of the negative gradient w i l l minimise the error, and that is the purpose of
learning [40].

There is no theory for choosing the number of hidden nodes or the number of hidden
layers. The only way is to experiment by t ra ining networks wi th different numbers of
hidden nodes, and then choosing the one that gives the best results. The backpropagation
algori thm can be used for a network w i t h as many layers as needed, al though wi th an
increasing number of layers it gets progressively harder to keep track of which weights are
being updated at any given time.

For a network wi th one hidden layer, there are (m + 1) • n + (n + 1) • p weights, where
m , n, o are the number of nodes i n the input, hidden and output layers, respectively. Bias
nodes also have adjustable weights, so they must be taken into account (the extra + l s) .
Th is is a potential ly huge number of adjustable parameters that are needed to be set during
the t ra ining phase. The more t raining data there is, the better the learning, al though the
t ime required for learning increases.

21

Error
ii

Random w W
initial value

Figure 3.7: Gradient descent is an opt imizat ion algori thm for finding the m i n i m u m of
a function. To find the local m i n i m u m of a function, proport ional steps to the negative of
the gradient are taken at the current point [3].

O v e r f i t t i n g a n d U n d e r f i t t i n g

The main purpose of using a neural network is to perform well on new, previously unseen
inputs. Th is abi l i ty of the neural network is called generalization. Therefore, we want the
generalization error, to be as low as possible, where the generalization error is defined as
the expected value of the error on a new input [19].

The neural network has to be sufficiently trained to generalize well . However, there is
at least as much danger i n over-training the network as there is i n under-training it . If the
network is trained for too long, then it w i l l overfit the data, which means that the network
has learned about noise and inaccuracies i n the data as well as the actual function. The
network w i l l be too complicated, and it w i l l not be able to generalize. Th is is shown in
Figure 3.8.

A model can be controlled whether it is more l ikely to overfit or underfit by altering
its capacity. Capaci ty is the number of learnable parameters. Machine learning algorithms
w i l l generally perform best when their capacity is appropriate for the true complexity of the
task they need to perform and the amount of t ra ining data they are provided wi th . Models
w i th insufficient capacity are unable to solve complex tasks. Models w i th high capacity
can solve complex tasks, but when their capacity is higher than needed to solve the present
task, they may overfit [19]. The relationship between capacity and generalization error is
shown i n Figure 3.9.

22

Degree 1 Degree 4 Degree 15

Model
True function
Samples

Model
True function

* Samples

Figure 3.8: The graph shows a part of the cosine function that should be approximated. In
addit ion, samples from the true function and its approximations are displayed. The models
can use the polynomia l functions of different degrees. A linear function on the left is not
sufficient to fit the t ra ining samples. Th is is called underfitting. A polynomia l of degree 4
in the center approximates the cosine function almost perfectly, but for higher degrees on
the right, the model w i l l overfit the t raining data, since the solution passes through a l l the
t ra ining samples exactly [45].

There are several methods that prevent a model from overfitting. T h e y are called
regularization, and they are based on constraining the amount of information that the
model is allowed to store. If a network can only afford to memorize a smal l number of
patterns, it w i l l force the network to focus on the most prominent patterns, which have
a better chance of generalizing well . These methods are described below:

• Reducing the size of the network is the simplest way to prevent overfitting. To
reduce the size of the network, the number of its learnable parameters is decreased.
A network wi th more parameters has more memorizat ion capacity, and therefore, can
easily learn a perfect mapping between t ra ining samples and their targets without
any generalization power.

• A d d i n g weight regularization. A model where the dis t r ibut ion of parameter values
has less entropy is less l ikely to overfit than a complex one. Thus a common way to
reduce overfitting is to force its weights to take only smal l values, which makes the
dis tr ibut ion of weight values more regular. Th is is called weight regularization, and
it is done by adding a cost associated w i t h having large weights to the loss function
of the network. There are two types of weight regularization:

1. LI regularization - the added cost is proport ional to the absolute value of the
weight coefficients

2. L2 regularization - the added cost is proport ional to the square of the value of
the weight coefficients

• A d d i n g dropout, which is one of the most effective and most commonly used reg
ularizat ion techniques for neural networks. Dropout , applied to a layer, consists of
randomly dropping out a number of output values of the layer during t raining. The

23

dropout rate is the fraction of the values that are zeroed out. A t test t ime, no units
are dropped out. Instead, the output values of the layer are scaled down by a factor
equal to the dropout rate, to balance for the fact that more units are active than at
t ra ining t ime [14].

Underfitting zone

L

— • Training error
Overfitting zone

Generalization error
Underfitting zone

L
0 Opt ima l Capaci ty

Capaci ty

Figure 3.9: The graph shows the relationship between capacity and generalization error.
A t the left end of the graph, both the t raining error and the generalization error are high.
Th is is the underfitting zone. A s capacity increases, t ra ining error decreases, but the gap
between t ra ining and generalization error also increases. The size of this gap eventually
outweighs the decrease in t ra ining error, and it gets to the overfitting zone, where capacity
is too large, above the op t imal capacity [19].

T r a i n i n g , T e s t i n g a n d V a l i d a t i o n

We should have at least two and preferably three sets of problem examples. The first is the
t ra ining set. It is used to adjust the parameters of the model . In order to decide when to
stop learning, we have to check how well the network is learning during the t raining. We
can not use the t ra ining data for this because we would not be able to detect overfitting.
Therefore, we keep the second dataset back, called the validat ion set. This set is used to
validate the learning so far. Th is is known as cross-validation i n statistics [32]. Whenever
an artificial neural network is trained, it should be tested how well it works, but it is not
sensible to test it using the same data on which it was trained because, it would not tel l
us anything at a l l about how well the network generalises nor anything about whether or
not overfitting had occurred. Therefore, we must keep the th i rd set, called the test set,
which we do not use for t raining. The only problem is that it reduces the amount of data
available for t raining. The exact proport ion of t ra ining to testing to val idat ion data is up
to us, but it is typica l to do something like 60:20:20 [32].

3.3 Deep Learning

Deep learning is a specific subfield of machine learning. It puts an emphasis on learning
successive layers of increasingly meaningful representations. The word deep i n deep learning
is not a reference to any k ind of deeper understanding achieved by this approach, but rather,
it stands for this idea of successive layers of representations. How many layers contribute
to a model of the data is called the depth of the model [14].

24

C o n v o l u t i o n a l N e u r a l N e t w o r k

Convolut ional neural networks, or C N N s , are a specialized k ind of neural network for pro
cessing data that has a known grid-like topology. The core element of convolutional neural
networks is data processing using a mathematical operation called convolution. Convolut ion
of any signal w i th another signal produces a th i rd signal that may reveal more information
about the signal than the original signal itself. For example, by convolving a grayscale im
age as a 2D signal w i th another signal, generally called a filter or kernel, an output signal
can be obtained that contains edges of the original image, which may be useful for several
applications.

The most general form of convolution is an operation on two functions / and g of a real-
valued argument. The convolution operation is typical ly denoted wi th an asterisk [41]:

v(t) = (f*g)(t) (3.4)

In machine learning applications, the input is usually a mult idimensional array of data, and
the kernel is usually a mult idimensional array of parameters that are adapted by the learning
algori thm. We can use the following Equa t ion 3.5 to get the value V of the convolution of
an image / at a posit ion x, y, and a kernel K [41]:

V(x, y) = (I * K)(x, y) = I(x + m,y + n)K{m, n) (3-5)
m n

A n example of such a convolution is shown in Figure 3.10.
The main difference between a fully connected layer, found in a typica l neural network,

and a convolution layer is that fully connected layers learn global patterns involving a l l
pixels, whereas convolution layers learn local patterns, i n the case of images, patterns found
in smal l 2D windows of the input . The patterns C N N s learn are translat ion invariant. For
example, after learning a certain pattern in the middle of a picture, a convolutional neural
network can recognize it anywhere. A fully connected network would have to learn a new
pattern i f the existing one appeared at a new location. Th is makes convolutional networks
data-efficient because they need fewer t ra ining samples to learn representations that have
generalization power.

C N N s can also learn spatial hierarchies of patterns. The first convolution layer w i l l learn
small local patterns such as edges, the second convolution layer w i l l learn larger patterns
made of the patterns of the first layers, and so on. Th is allows convolutional networks to
efficiently learn increasingly complex and abstract visual concepts to represent the visual
world.

25

Tnput

a b c d

c. f 9 h

i i k I

Kernel

w X

y z

Output

aw 4- bx +
+ S*

bw
fy

+ cx cw
9V

+ dx 4-
4- hz

fx fw
w

+ gx +
4- kz

gw
Mi

+ hx +

Figure 3.10: A n example of 2D convolution. The output is restricted to only positions
where the kernel lies entirely wi th in the image [19].

G e n e r a t i v e A d v e r s a r i a l N e t w o r k

Generative adversarial network, or G A N , is an unsupervised deep learning machine, intro
duced by Ian Goodfellow i n 2014 [20]. It enables the generation of fairly realistic synthetic
images by forcing the generated images to be statistically almost indistinguishable from
real ones. Th is type of neural network is based on two models:

1. Generator network that takes as input a random vector and decodes it into a syn
thetic image.

2. Discriminator network that takes as input a real or synthetic image and predicts
whether the image came from a t ra ining set or was created by the generator network.

A G A N chains the generator and the discriminator together:

GAN(x) = Discriminator(Generator(x)) (3-6)

The generator is trained to be able to fool the discriminator to the extent that it is impos
sible for the discriminator to dist inguish between real and fake images. It evolves toward
generating increasingly realistic images as t ra ining goes on. Meanwhile, the discriminator
is constantly adapting to the gradually improving capabilities of the generator. Therefore,
both models are being trained to best the other. Once t ra ining is over, the generator is
capable of turning any point i n its input space into a believable image. Figure 3.11 shows
a diagram of a generative adversarial network.

26

Generator Noise z Generator Noise z Generator

Real Images

Real

Synthetic

Figure 3.11: The generator transforms random vectors (noise) into images and the discrim
inator tries to dist inguish between real and synthetic images [50].

A G A N is a system where the opt imizat ion m i n i m u m is not fixed. Normally , gradient
descent consists of rol l ing down hills i n a static loss landscape. B u t w i th a G A N , every
step taken down the h i l l changes the entire landscape a l i t t le . It is a dynamic system where
the opt imizat ion process is seeking not a min imum, but an equi l ibr ium between the two
models. For this reason, G A N s are notoriously difficult to t ra in . Ge t t ing a G A N to work
requires lots of careful tuning of the model architecture and t ra ining parameters [14].

27

Chapter 4

Proposed Solution

Generating realistic-looking images of the ret ina is not an easy task. The retina contains
many structures that have a certain shape and color, and there are also dependencies
between their locations. For this reason, I chose the image-to-image translation approach,
where the generator is provided wi th a black and white image of the bloodstream, from
which a synthetic image of the ret ina is subsequently generated. In this way, the generator
is prevented from generating an unrealistic bloodstream where, for example, some vessels
are not connected to each other, are too wide or, conversely, there is a m i n i m u m of blood
vessels i n the generated retina. Condi t iona l generative adversarial networks are used to
implement image-to-image translations, on which I based my solution. This type of network
is described below, followed by a description of the proposed system for generating synthetic
images of the retina.

4.1 Conditional Generative Adversarial Network

G A N s are generative models that learn mapping from random noise vector z to output image
y, G: z —>• y. In contrast, condit ional G A N s learn mapping from observed image x and
random noise vector z to y, G: {x, z] —>• y. The generator G is trained to produce outputs
that cannot be distinguished from real images by an adversarially trained discriminator,
which is trained to do as well as possible at detecting fake images of the generator [25].
Th is t ra ining procedure is shown i n Figure 4.1.

G e n e r a t o r

A defining feature of image-to-image translat ion problems is that they map a high resolution
input gr id to a high resolution output gr id . In addit ion, the input and output differ in
surface appearance, but both are renderings of the same underlying structure. Therefore,
structure i n the input is roughly aligned wi th structure i n the output.

The generator uses an encoder-decoder network. In such a network, the input is passed
through a series of layers that progressively downsample, un t i l a bottleneck layer, at which
point the process is reversed. This network requires that a l l information flow pass through
al l the layers, including the bottleneck. For many image translation problems, there is
a great deal of low-level information shared between the input and output, and it would be
desirable to shuttle this information directly across the network [25].

To give the generator a means to circumvent the bottleneck for information like this, skip
connections are added, following the general shape of a U-Net [44]. U-Ne t is a convolutional

28

neural network that was developed for biomedical image segmentation. Its typica l shape,
for which it got its name, is shown in Figure 4.2.

^ fake

Real image

• real

Figure 4.1: Tra in ing a condit ional G A N to map blood vessels to ret inal images. The
discriminator learns to classify between fake and real tuples. The generator learns to fool
the discriminator. Unl ike an uncondit ional G A N , both the generator and discriminator
observe input images of b lood vessels.

input
image

tile

256 256

128 64 64 2

output
segmentation
map

• 512 1024

"= • 1024 •

* - c o n v 3x3, ReLU
copy and crop

f max pool 2x2

4 up-conv 2x2

conv l x l

Figure 4.2: U-net architecture. E a c h blue box corresponds to a multi-channel feature map.
The number of channels is denoted on top of the box. The dimensions are provided at the
lower left edge of each box. W h i t e boxes represent copied feature maps. The arrows denote
different operations, where the grey ones represent skip connections [44].

29

D i s c r i m i n a t o r

It is well known that the L 2 loss and L I produce b lurry results on image generation prob
lems [30]. A l though these losses fail to encourage high-frequency crispness, i n many cases
they nonetheless accurately capture low frequencies. In such cases, L I enforces correctness
at the low frequencies. Therefore, the G A N discriminator is restricted to only model high-
frequency structure, relying on an L I term to force low-frequency correctness. In order to
model high frequencies, it is sufficient to examine the structure in local image patches. In
this way, the discriminator architecture is designed to only penalize structure at the scale
of patches, where it tries to classify i f each N x N patch in an image is real or fake. This
discriminator is run convolutionally across the image, averaging a l l responses to provide
the ul t imate output of the discriminator.

iV can be much smaller than the full size of the image and s t i l l produce high quali ty
results. Th is is advantageous because a smaller network has fewer parameters, runs faster,
and can be applied to arbi t rar i ly large images. Such a discriminator effectively models the
image as a Markov random field, assuming independence between pixels separated by more
than a patch diameter. Therefore, it is called Markov ian discriminator or P a t c h G A N [25].

4.2 Synthetic Retinal Image Generator

Synthetic Re t ina l Image Generator, or S R I G , is the proposed system for generating syn
thetic ret inal images wi th a resolution of 1024x1024 pixels. The same wid th and height
of the input and output was chosen because the retina has a round shape. I also tr ied to
create an extended version of this system that would produce images i n a higher resolution
of 2048x2048 or more, but I encountered a problem where I was running out of memory
during t raining. That is why the final resolution is 1024x1024.

S R I G is a condit ional neural network that generates color images of entire retinas from
black and white images containing only segmented b lood vessels. S R I G , like G A N s , consists
of two parts: a generator and a discriminator, where these two models are trained simulta
neously by an adversarial process. Once the whole system achieves the desired results, the
discriminator is no longer needed and only the generator and its learned weights are used
to generate new images. To distinguish real images from fake (generated) images, values 1
and 0 are used, where 1 represents the real image and 0 fake. The mapping of the input
to the output by the generator is schematically shown i n Figure 4.3. B o t h the generator
and the discriminator use binary cross-entropy loss as their loss function, because there
are only two classes into which images are classified - real and fake. Therefore, binary
cross-entropy is described i n more detail here. Th is section also describes the architecture
of the generator and discriminator, which together form the S R I G system.

x y

Figure 4.3: The generator learned to map the observed black and white image x to the
color output image y, G: x —>• y, i n order to create a new, previously unseen retina.

30

B i n a r y C r o s s - E n t r o p y L o s s

B i n a r y cross-entropy loss, also called sigmoid cross-entropy loss, is a sigmoid activation
function wi th a cross-entropy loss. A n example of a sigmoid function is the logistic function
shown i n Figure 4.4 below.

1 -

1

2 "

0 4' '

Figure 4.4: The logistic function: g(z) = 1 + e - z w i th a characteristic sigmoid curve [5].

Cross-entropy loss, or log loss, measures the performance of a classification model, the
output of which is a probabil i ty value between 0 and 1. Cross-entropy loss increases as the
predicted probabi l i ty deviates from the actual value. Thus, predict ing a probabil i ty of, for
example, 0.01 would result i n a high loss value i f the actual observed value is 1. A perfect
model would have a log loss of 0. A n example of cross-entropy loss is given i n Figure 4.5.
Cross-entropy can be calculated as [47]:

M
-^2y0,c-log(p0,c) (4.1)

c=l
where M is the number of classes of the classification problem, y is a binary indicator,
whether the class c is the correct classification for the observation o, and p is the predicted
probabil i ty that observation o is of class c. B ina ry cross-entropy loss is used when there
are only two classes, i n this case whether the image is real or not. Subst i tut ing M = 2 into
Equa t ion 4.1, binary cross-entropy can then be calculated as:

-(ylog(p) + (l-y)-log(l-p)) (4.2)

10 I — i 1 1 1 1 1 1

8 -

6

0.0 0.2 0.4 0.6 0.8 1.0

predicted probability

Figure 4.5: The graph above shows a range of possible loss values given a true observation.
A s the predicted probabil i ty approaches 1, log loss slowly decreases. However, as the
predicted probabil i ty decreases, the log loss increases rapidly [17].

31

G e n e r a t o r

The architecture of the generator is a modified U-Net . A s already mentioned, the generator
uses an encoder-decoder network. There are skip connections between the encoder and
decoder. Th i s allows us to share information between the input and output, so it better
captures the resulting structure that is based on the input structure. Specifically, skip
connections are added between each layer i and layer n — i, where n is the to ta l number
of layers. E a c h skip connection s imply concatenates a l l channels at layer i w i th those at
layer n — i. Th is architecture can be seen i n Figure 4.6, but for s implic i ty and clarity,
the input and output resolution of the image is only 16x16 pixels. The architecture of the
actual generator, which generates images in the resolution of 1024x1024 pixels, is presented
in Append ix B . More specifically, the encoder is shown i n Figure B . l and the decoder is
shown i n Figure B .2 .

The encoder consists of several blocks, where the to ta l number of these blocks depends
on the required output resolution of the generated images. To achieve the bottleneck layer
(l x l) at the input resolution of 1024 x 1024, it is necessary that the number of blocks in the
encoder is 10. E a c h block downsamples the image to half its size, so /og2(1024) blocks are
needed for this input resolution, which is 10. A d d i t i o n a l blocks may be added to increase the
image resolution, but the network w i l l need to be trained again. Each block in the encoder
consists of a strided convolution, batch normalizat ion, and leaky R e L U as the activation
function of the block. A strided convolution is convolution wi th a stride. The stride defines
the step size of the kernel when traversing the image. A l t h o u g h its default value is usually 1,
a stride of 2 is used for downsampling. Ba tch size represents the number of t ra ining samples
to work through before the internal parameters of the model are updated. For example, i f
the batch size is one, the neural network parameters are updated after each sample, and i f
the batch size is equal to the total number of samples i n a dataset, the parameters are not
updated un t i l the entire epoch is completed. Ba t ch normalizat ion is a type of layer that can
adaptively normalize data even as the mean and variance change over t ime during training.
It works by internally maintaining an exponential moving average of the mean and variance
across the batch of the data seen during t raining. The main effect of batch normalizat ion
is that it helps wi th gradient propagation and thus allows for deeper networks. Instead
of R e L U activation, I used leaky R e L U layer because it is s imilar to R e L U , but it relaxes
sparsity constraints by allowing smal l negative act ivat ion values. Side by side comparison
between R e L U and leaky R e L U is shown i n Figure 3.4 i n the previous chapter. A diagram
of one encoder block is shown i n Figure 4.7.

The number of blocks i n the decoder depends on the number of blocks in the encoder,
because the encoder and decoder must form a symmetric pattern i n order to use the skip
connections and generate the same output resolution as the input resolution. Each block in
the decoder consists of a transposed convolution, batch normalizat ion and leaky R e L U as
the activation function of the block. A transposed convolution, also called deconvolution,
represents a transformation going in the opposite direction of a normal convolution, i.e.,
from something that has the shape of the output of some convolution to something that
has the shape of its input, while maintaining a connectivity pattern that is compatible w i th
said convolution. To minimize the risk of overfitting, dropouts were added to ensure that
weights are regularized. In this way, each block upsamples the image to twice its size. The
last block of the decoder uses tank instead of leaky R e L U as the activation function to get
the resulting p ixe l values. The decoder structure can be seen i n Figure 4.8.

32

Inputlmage: InputLayer
input: [(?, 16.16, 3)]

Inputlmage: InputLayer
output: [(?. 16. 16. 3)]

EncoderBlockl: Sequential
input: (?. 16.16. 3)

EncoderBlockl: Sequential
output: (?. 8. 8,512)

EncoderBlockl: Sequential

z

input: (?, 8, 8, 512)

output: (?, 4, 4,512)

EncoderBlock3: Sequential
input: (?, 4, 4, 512)

EncoderBlock3: Sequential
output: (?, 2, 2, 512)

EncoderBlock4: Sequential
input: (?, 2, 2, 512)

EncoderBlock4: Sequential
output: (7,1,1,512)

DecodeiBlockl: Sequential
input: (?, 1, 1, 512)

DecodeiBlockl: Sequential
output: (?, 2, 2.512)

SldpCoimectionl: Concatenate
input: [(?. 2. 2.512). (?. 2. 2. 512)]

SldpCoimectionl: Concatenate
output: (?. 2. 2. 1024)

DecoderBlock2: Sequential
input: (?, 2, 2,1024)

DecoderBlock2: Sequential
output: ('"',4,4,512)

SkipConnection2: Coneatenate
input: [(?. 4. 4.512). (?,4, 4. 512)]

SkipConnection2: Coneatenate
output: (?. 4. 4. 1024)

DecoderBlock3: Sequential
input: (?. 4. 4, 1024)

DecoderBlock3: Sequential
output: (?, 8, 8,512)

Skip C onnectiorfl: C one atenate
input: [(?. 8. 8. 512). (?. 8. 8. 512)]

Skip C onnectiorfl: C one atenate
output: (?. 8. 8. 1024)

A

DecoderBlock4: Sequential
input: (?. 8. 8. 1024)

DecoderBlock4: Sequential
output: (?. 16. 16, 3)

Figure 4.6: Generator architecture wi th input and output resolution of 16x16 pixels.

33

Input: IiiputLayer
input: [(?, 16, 16, 3)]

Input: IiiputLayer
output: [('?. 16, 16, 3)]

StridedC oiivolution: C onv2D
input: (?, 16,16, 3)

StridedC oiivolution: C onv2D
output: (?, 8, 8. 32)

B atchNomialkation: B atchNormalization
input: (?, S, 8, 32)

output: (?, 8, 8, 32)

LeakyReLU: LeakyReLU
input: (?, 8, 8, 32)

LeakyReLU: LeakyReLU
output: (?, 8, S, 32)

Figure 4.7: Encoder block of the generator, consisting of a convolution layer, batch nor
malizat ion and leaky R e L U . The data shape is (batch size, height, wid th , channels), where
different channels represent specific colors of the R G B input . After convolution, channels
no longer represent colors, but rather stand for filters that encode specific aspects of the
input data. The input shape is (?, 16, 16, 3) and the output shape is (?, 8, 8, 32).

Input: IiiputLayer
input: [(?, 8. S. 32)]

Input: IiiputLayer
output: [(?. 8, 8, 32)]

D ec oiivolution: C onv2DTran*p o s e
input: (?, 8, 8, 32)

D ec oiivolution: C onv2DTran*p o s e
output: (?, 16, 16, 3)

B atchNormalization: B atchNomialization
input: (?, 16,16, 3)

output: (?, 16, 16, 3)

Dropout: Dropout
input: (?, 16, 16, 3)

Dropout: Dropout
output: (?, 16, 16, 3)

A

LeakyReLU: LeakyReLU
input: (?, 16,16, 3)

LeakyReLU: LeakyReLU
output: (?, 16, 16, 3)

Figure 4.8: Decoder block of the generator, consisting of a transposed convolution layer,
batch normalizat ion, dropout and leaky R e L U . The input shape is (?, 8, 8, 32) and the
output shape is (?, 16, 16, 3).

34

Loss of the generator quantifies how well the generator was able to tr ick the discrimina
tor. If the generator is performing well, the discriminator w i l l classify fake images (or 0) as
real (or 1). Therefore, the discriminator decision on the generated images is compared to
a set of ones using binary cross-entropy. The previously mentioned L I loss is added, where
L I loss is the mean absolute error between the generated image and the target image. This
allows the generated image to become structural ly similar to the target image. The mean
absolute error can be calculated as:

MAE E n I ,

i=i \9i ~ U
n

(4.3)

where gi is the generated value, U is the target value and n is the number of samples. The
tota l loss of the generator thus consists of cross-entropy loss and L I loss:

total loss = cross-entropy loss + (L I loss • A) (4.4)

where the value of A is 100 [25]. Its purpose is to regulate the impact of L I loss. A graphical
representation of the to ta l loss calculation of the generator is given i n Figure 4.9 below.

Input Image

Gene ra to r J

D •• rinatorj

Target Image

L I loss

A r ray of o n e s
C3inary C r o s s j

1 En t ropy J L a m b d a

Figure 4.9: The process of calculat ing the to ta l loss of the generator.

D i s c r i m i n a t o r

The architecture of the discriminator is a P a t c h G A N . It is sufficient to examine the structure
of an input image i n local patches. For this reason the output of the discriminator is a set
of patches and not a single response, resulting i n higher overall performance. E a c h patch
of the output classifies a given port ion of the input image, whether it is real or fake. The
input image is therefore downsampled to 32x32 patches, from which the to ta l result is

35

obtained by averaging a l l patches. The discriminator contains 5 downsampling blocks,
because to reduce the input resolution of 1024x1024 to 32x32 , the discriminator needs
log2(-^r) blocks, which is 5. E a c h block consists of a strided convolution that performs the
downsampling, followed by batch normalizat ion and leaky R e L U as the activation function,
except for the last block, where there is a linear act ivat ion function to get the desired output.
The architecture of the whole discriminator is shown i n Figure 4.10 below. A diagram of
one block of the discriminator is shown i n Figure 4.11.

Inputlmage: InputLayer
input: [(?, 1024,1024, 3)]

Inputlmage: InputLayer
output: [(?, 1024,1024, 3)]

Targetlmage: InputLayer
input: [('?, 1024. 1024. 3)]

Targetlmage: InputLayer
output: [(?, 1024, 1024, 3)]

Concatenate: Concatenate
input: [(?, 1024, 1024, 3), (?. 1024, 1024, 3)]

Concatenate: Concatenate
output: (?, 1024, 1024, 6)

A

I) owns amplingBlo ckl: S equential
input: ('?. 1024, 1024, 6)

I) owns amplingBlo ckl: S equential
output: (?. 512. 512.64)

1

I) owns amplingBlo ck2: S equential
input: (7,512,512,64)

I) owns amplingBlo ck2: S equential
output: ('?, 256. 256. 128)

1
I) owns amplingBlo ck3: S equential

input: (?, 256. 256. 128)
I) owns amplingBlo ck3: S equential

output: ('?. 128. 128. 256)

1

I) owns amplingBlo ck4: S equential
input: (?. 128. 128. 256)

I) owns amplingBlo ck4: S equential
output: (?. 64. 64. 512)

l

I) owns amplingBlo clo: S equential
input: (?, 64, 64,512)

I) owns amplingBlo clo: S equential
output:

\ r

I) owns amplingBlo ck6: S equential
input: (?, 32, 32, 1024)

I) owns amplingBlo ck6: S equential
output: ('?, 32, 32, 1)

Figure 4.10: Discr iminator architecture that classifies images wi th an input resolution of
1024x1024 pixels. It has two images (input, target) on the input, which it concatenates
and then progressively downsamples to the output form of 32x32 patches, from which the
final prediction is made.

36

Input: IhputLayer
input: [(?, 16, 16, 6)]

Input: IhputLayer
output: [(?. 16. 16. 6)]

1

StridedC(involution: Conv2D
input: (?, 16,16, 6)

StridedC(involution: Conv2D
output: (?, 8. 8. 64)

BatchNomialization BatchNomialization
input: ('?, 8, 8, 64)
output: (?, 8, 8, 64)

LeakyReLU: LeakyReLU
input: (?, 8, 8, 64)

LeakyReLU: LeakyReLU
output: (?, 8, S, 64)

Figure 4.11: One block of the discriminator, consisting of a convolution layer, batch nor
malizat ion and leaky R e L U . The number of channels on the input represents the channels
of the concatenated input and target image.

Loss of the discriminator quantifies how well the discriminator is able to dist inguish
real images from the fake ones. Predict ions of the discriminator on real (target) images are
compared to an array of ones, and predictions on fake (generated) images to an array of
zeros. The discriminator loss function therefore takes 2 inputs: predictions on generated
and target images. The total discriminator loss is:

total loss = g_loss + t_loss (4-5)

where g_loss is a binary cross-entropy loss of the generated image and an array of zeros and
t_loss is a binary cross-entropy loss of the target image and an array of ones. A graphical
representation of the calculat ion of the to ta l loss of the discriminator is given i n Figure 4.12.

- Input Image Target Image

r ^
Generator

L J

i
^Discriminatory Discriminatory

Figure 4.12: The process of calculat ing the to ta l loss of the discriminator.

37

Chapter 5

Implementation

This chapter w i l l introduce what technologies are used to implement the proposed system
from the previous chapter, followed by a description of the actual implementat ion of each
part.

5.1 Technologies

The proposed program for generating ret inal images is implemented i n P y t h o n programming
language using TensorFlow library. I chose P y t h o n for several reasons, mainly because it is
freely available for academic and commercial purposes, it is mult i-platform, and is becoming
very popular for both general computing and scientific computing. TensorFlow was chosen
because it provides a high-level A P I that makes it easier to bu i ld and t ra in machine learning
models without sacrificing speed or performance. W i t h TensorFlow, I could s imply focus
on the overall logic of the applicat ion, instead of dealing wi th the details of implementing
the algorithms.

P y t h o n

P y t h o n is a scripting language that is strongly typed, but it performs a l l the declaration
and creation of variables for us. A n y set of commands or functions i n a single source file is
known as a module. P y t h o n has a fairly smal l set of commands and is designed to be fairly
small and simple to use. W r i t i n g extension packages for P y t h o n is also simple. It does
not require any special programming commands. A n y P y t h o n module can be imported as
a package, as can packages wri t ten i n C (a low-level programming language), which can
significantly increase performance.

P y t h o n is not a functional programming language, but it does incorporate some of its
concepts alongside other programming paradigms, such as higher order functions. Higher
order functions either accept a function as an argument or return a function for further
processing. P y t h o n has implemented some commonly used higher order functions from
functional programming languages that make processing iterable objects like lists and iter
ators much easier. One of them is the map() function, which allows us to apply a function
to every element in an iterable object. Another frequently used function is the filter() func
t ion, which tests each element i n an iterable object w i th a function that returns either True
or False while keeping only those that evaluate to True.

38

T e n s o r F l o w

TensorFlow is a free and open-source software l ibrary for numerical computat ion and ma
chine learning using data flow graphs. These structures describe how data moves through
a graph or a series of processing nodes. Nodes in the graph represent mathematical op
erations, and each connection or edge between nodes is a mult idimensional data array, or
tensor. Nodes and tensors i n TensorFlow are P y t h o n objects, and TensorFlow applications
are themselves P y t h o n applications.

The actual ma th operations, however, are not performed in Py thon . It uses P y t h o n
to provide a convenient front-end A P I for bui lding applications w i th the framework, but
the libraries of transformations that are available through TensorFlow are wri t ten as high-
performance C+-1- binaries. The flexible architecture allows us to deploy computat ion to
one or more C P U s or G P U s i n a desktop, server, or mobile device w i t h a single A P I [51].

T e n s o r B o a r d

TensorBoard is a visualizat ion software that comes wi th any standard TensorFlow instal
lat ion. In machine learning, to improve something, we often need to be able to measure it.
TensorBoard is a tool for providing the measurements and visualizations needed during the
machine learning workflow. This allows us to visualize the model, track metrics, such as loss
and accuracy as they change over time, and much more. TensorBoard uses an interactive,
web-based dashboard to display this data.

N v i d i a C U D A a n d c u d N N

C U D A is a parallel computing platform and programming model developed by N v i d i a for
general computing on graphical processing units (G P U s) . In GPU-accelera ted applications,
the sequential part of the workload runs on the C P U , while the computat ional ly intensive
port ion of the appl icat ion runs on thousands of G P U cores i n parallel .

The N v i d i a C U D A Deep Neura l Network l ibrary (c u D N N) is a GPU-accelera ted l ibrary
of primitives for deep neural networks. c u D N N provides highly-tuned implementations for
standard routines, such as convolution, normalizat ion, and activation layers. It accelerates
widely-used deep learning frameworks, including TensorFlow. This allows TensorFlow to
run up to 50% faster on the latest N v i d i a G P U s and scale well across mult iple G P U s [39].

5.2 Data Preprocessing

Machine learning algorithms tend to learn much more efficiently i f preprocessing of inputs
and targets is performed before the network is trained. In order to s imply read and process
data, the DataLoader class is implemented. It provides a set of static methods for working
w i t h images and creating datasets.

Images that are used as input to a neural network must meet certain requirements
because the neural network has a fixed architecture. F i r s t , it is resized to match the
input resolution of 1024x1024 pixels. Then, because the neural network uses tank as
the act ivat ion function (Figure 3.4) for the output, the pixel values of the input images
need to be between -1 and 1. Th is also helps to stop the weights from getting too large
unnecessarily. Scaling one interval to another is called normalizat ion. The default value
range for the pixels is <0,255> when the image is loaded. To scale these values down to

39

< - l , l > , a simple calculation is performed:

normalize(x) (5.1) - 1
127,5

where x is the input value of the pixel .

T r a i n i n g D a t a P r e p a r a t i o n

To t ra in the proposed neural network, it is necessary to provide an input image together
wi th the corresponding target image so that the network can learn the mapping between
them. It is, therefore, necessary to provide two directories to prepare the input data.
One contains images of b lood vessels, and the other contains corresponding images of the
retinas. Each pair must have the same file name, but may differ in image format. Supported
image formats for t ra ining data preparation are J P E G , P N G , G I F and T I F . B o t h specified
directories are searched to find a l l supported images they contain. The Path class from the
standard l ibrary pathlib is used to work wi th paths, which ensures the correct path format
on different platforms. F r o m these images, the corresponding pairs (input, target) are then
created. In the next step, the ind iv idua l images of each pair are loaded using the Image
class from the PIL l ibrary and are further processed.

Because the architecture of the neural network has a fixed format of input data, it is
necessary that the input images also have a fixed format, which requires the dimensions
(width and height) of the input images to be the same. For this reason, images are resized
to meet these requirements. To prevent information from being lost due to cropping, the
image is resized by extending its smaller dimension. The original image is placed i n the
middle, and the newly created space is filled w i th black pixels. A n example of such an
image is shown in Figure 5.1.

Figure 5.1: The process of resizing an image to the same wid th and height.

The pairs of images prepared in this way are placed side by side and saved i n one file
in J P E G format. Figure 5.2 shows an image that is ready to be used as an input image
of the neural network for t raining. The ma in reason why data is prepared and stored in
this way is that dur ing t ra ining itself, TensorFlow functions are used to load such images.
These functions are better opt imized and, therefore, perform better, but do not support as
many image formats as the functions in the PIL l ibrary.

40

Figure 5.2: A n image prepared for t raining.

C r e a t i n g a D a t a s e t

A dataset represents a potential ly large set of elements. To create one, the TensorFlow
class Dataset is used, which can apply dataset transformations to preprocess the data. To
load the prepared input images, the specified directory is first checked and searched, from
which a list of files to be loaded is created. This list is passed to the Dataset to init ial ize
it. The map function mentioned in Section 5.1 is then used on this dataset to load and
preprocess the ind iv idua l files.

To prevent the neural network from learning the order of the ind iv idua l images when
using the same t ra ining set, the data must be well-shuffled before each t raining. Once a l l
the images have been loaded and preprocessed, the entire dataset is randomly shuffled using
the bui l t - in function shuffle(). Th is function also allows the shuffle order to differ for each
epoch. The consecutive elements in the dataset are then combined into batches of variable
size. The batch size is a parameter that controls the number of t raining samples to work
through before the internal parameters of the model are updated.

To enhance the overall performance, the cache() function is used. It caches the elements
in the dataset. The first t ime the dataset is iterated over, its elements are cached either in
the specified file or i n memory. Subsequent iterations then use the cached data.

D a t a A u g m e n t a t i o n

D a t a augmentation is the process of generating more t ra ining data from existing t raining
samples by augmenting the samples v ia a number of random transformations that yield
believable-looking images. The goal is that at t ra ining time, the model w i l l never see the
exact same image twice. This helps to expose the model to more aspects of the data and
generalize better.

To augment the t ra ining data, the images were zoomed i n and some of them were flipped
horizontally and/or vertically. To zoom inside an image, the image is enlarged and then
randomly cropped to its original size. The flipping is relevant because ret inal images are

41

not horizontally or vert ically symmetr ical . A n example of augmenting an image is shown
in Figure 5.3.

The augmented images are s t i l l heavily intercorrelated because they come from a small
number of original images. D a t a augmentation cannot produce new information; it can
only modify existing information.

Figure 5.3: Image augmentation. The image on the left is the original image. The image on
the right was created by randomly cropping and flipping (both horizontally and vertically)
the original image.

5.3 Conditional Generative Adversarial Network

To implement the proposed condit ional generative adversarial network from Chapter 4,
several classes were created, namely, Model, Generator, Discriminator and ConGAN. Thei r
purpose and detailed description is given i n the following sections. The corresponding class
diagram is shown i n Figure 5.4.

M o d e l

Because the generator and the discriminator are models that have certain things in common,
the abstract Model class was created, which forms the common basis of these models. Th is
class provides a basic interface for working wi th these models by implementing an object-
oriented mechanism - class inheritance. It allows access to ind iv idua l properties of the
model, such as its loss function, optimizer, t ra ining variables or the model itself. The
Model class has two abstract methods that must be implemented by its sub-classes. These
are methods for creating the model and calculating the losses.

It also provides an implemented method for updat ing model weights that is common to
both the generator and the discriminator. This method takes the calculated gradients as an
input argument and applies them to its trainable variables using the optimizer. Trainable
variables represent model weights that are not fixed. A n optimizer is a class i n TensorFlow
that ensures applying the gradients to the variables.

42

Model « a b s t r a c t »

+model
+loss_function
+optimizer
+tra i na b I e_va riab les

+biild modelO « a b s t r a c t »
+cslculate_loss() « a b s t r a c t »
+create_d ownsa m p I i n g_b I ock()
+create_ u psa m p I i ri g_b lock ()
+update_weights()

Generator

Hoad_weights()
•-generate ()

Discriminator

ConGAN

+train() (y—J

+train_step()

Figure 5.4: Class diagram of the proposed condit ional generative adversarial network.

B o t h the generator and the discriminator use the Adam optimizer from TensorFlow.
A d a m opt imizat ion is a stochastic gradient descent method that is based on adaptive esti
mat ion of first-order and second-order moments. Th is method is computat ional ly efficient,
has l i t t le memory requirement, and is well-suited for problems that are large i n terms of
parameters [27]. The input parameter of A d a m is the learning rate.

Since both the generator and the discriminator are made up of s imilar blocks, the
Model class provides two static methods for creating them. One method is used to create
a downsampling block, and the other method is used to create an upsampling block.

A downsampling block consists of a convolution layer, batch normalizat ion and leaky
R e L U . The Conv2D class is used for the realization of the convolution layer. Its main input
parameter is the number of filters used for convolution. Another parameter is the size of
these filters, and the stride, which is set to 2 for downsampling. The BatchNormalization
and LeakyReLU classes are used to implement batch normalizat ion and leaky R e L U .

A n upsampling block consists of a transposed convolution layer, batch normalizat ion,
dropout and leaky R e L U . The Conv2DTranspose class is used to realize the transposed
convolution. Its parameters are the same as i n the case of the convolution layer. The stride
is also set to 2, but now it is for upsampling. The dropout layer is implemented using
the Dropout class. This layer randomly sets input units to 0 w i th the specified frequency
at each step during t ra ining t ime. This frequency is an input argument whose values are
between 0 and 1. Ba tch normalizat ion and leaky R e L U are implemented i n the same way
as i n the downsampling block. A l l of the above-mentioned classes are implemented wi th in
TensorFlow. The ind iv idua l parameters and their values are described in more detail in
Section 6.2 i n the following chapter.

43

G e n e r a t o r

The Generator class is inherited from the Model class. It represents the generative part
of the system. A s mentioned i n the previous section, the generator must implement both
abstract methods of the Model class.

The first one is a method for calculating the loss of the generator. Th is method has
three input arguments. The first one is the prediction of the discriminator on the generated
image, the second is the generated image itself, and the last argument is the target image. To
calculate the binary cross-entropy loss, the BinaryCrossentropy() function from TensorFlow
is used. The discriminator prediction is passed to this function, together w i th an array
of ones created from this prediction using the ones_like() function from TensorFlow. To
calculate L I loss, which is the mean absolute error, the TensorFlow functions reduce_mean()
and abs() are used, to which the difference between the pixel values of the target image and
the generated image is passed. The value thus obtained is mul t ip l ied by the lambda. For
the to ta l loss of the generator, these two calculated values are then summed.

The second abstract method that needs to be implemented is the method for creating
the model itself. The prepared methods for downsampling and upsampling are used to
create ind iv idua l encoder and decoder blocks. These blocks are stored in two arrays. The
array w i t h encoder blocks is iterated over to create the encoder part. In each iteration,
the output of one block is connected to the input of another block, and, at the same time,
these blocks are stored in an auxi l iary array, which represents the skip connections. After
creating the encoder part, this auxi l iary array is reversed. In the next step, it is iterated
over this array and the array wi th decoder blocks. In each iteration, a skip connection
between the encoder and decoder is created using the TensorFlow Concatenate layer. Th is
creates the final structure of the generator.

For the purpose of generating synthetic ret inal images, the Generator class provides two
other methods. One method to generate an image and the other to ini t ial ize the generator.
The first method has three input arguments, the first of which is the input black and white
image wi th segmented blood vessels. The second argument specifies the name of the output
file, in which the generated image w i l l be saved. To plot and save images, the Pyplot l ibrary
is used, which, however, requires that the pixel values of the image lie i n the interval <0,1>.
A n d because the values of the generated image lie i n the interval < - l , l > , it is necessary to
normalize them. To do so, the following equation can be used:

x + 1
normalize(x) = — - — (5-2)

The last opt ional argument, whose default value is False, is a flag indicat ing whether the
generated image should be displayed on the screen or not.

To generate an image that is not just random noise, the generator needs to be ini t ia l ized.
To init ial ize the generator, the second of the mentioned methods is used. It initializes the
generator weights from a checkpoint located i n the directory passed as the input parameter
of the method. The Checkpoint class from TensorFlow is used to work wi th checkpoints.

D i s c r i m i n a t o r

The Discriminator class is the second class that is inherited from the Model class. The
discriminator is only used in the t ra ining phase, so it provides implementations of only the
abstract methods of the parent class that are sufficient to achieve the desired result.

44

The first is again the method for calculat ing the to ta l loss of the discriminator, which
has two input parameters: prediction of the discriminator on the real (target) image and
prediction on the fake (generated) image. The to ta l loss of the discriminator is the sum of
the binary cross-entropy loss of the real images and an array of ones (using ones_like()),
and the binary cross-entropy loss of the generated images and an array of zeros (using
zeros_like()). The BinaryCrossentropy() function is used again to calculate these losses.

The second abstract method that the Discriminator class implements is the method for
creating the model . Since the discriminator has two images on the input , it is necessary to
concatenate these inputs first. The Concatenate layer is used for this. Th is layer is followed
by a series of downsampling blocks, which were created using the prepared method i n the
same way as for the generator. In this way, the final structure of the discriminator proposed
in the previous chapter is achieved.

C o n G A N

This section describes how the generator and discriminator are interconnected using the
ConGAN class. Its purpose is that these two models are trained simultaneously by an
adversarial process. The generator learns how to create realistic-looking images, while the
discriminator learns how to dist inguish real images from generated ones. W h e n this class
is ini t ia l ized, a log directory and instances of the Checkpoint and Summary Writer classes
are created. The log directory is a directory in which the data created during the t raining
w i l l be stored.

The Checkpoint class is used to save and restore models, which can be helpful i n case of
interruption of a long running t ra ining task. A checkpoint saves a graph of dependencies
between P y t h o n objects, such as layers and optimizers, w i th named edges, and this graph
is used to match variables when restoring a checkpoint. A checkpoint is also used by the
generator, where, before generating synthetic images, the generator is ini t ia l ized w i t h values
from that checkpoint. The generator and discriminator, together w i th their optimizers, are
passed as input parameters of the checkpoint so that they can be monitored and stored.

The Summary Writer class is used to record the losses of ind iv idua l models, which can
then be examined. It is an interface representing a stateful summary writer object. The
output of this class can be easily viewed i n the TensorBoard visualizat ion tool to monitor
the progress of the training.

The core of C o n G A N is the method for t ra ining these models. Its input parameters
are the to ta l number of epochs, the t ra ining dataset, the testing dataset, the output period
and the checkpoint period. A t the beginning of each epoch, one image is generated and
saved. The testing dataset is used to generate this image. This allows us to see what the
generated images look like i n each epoch. The generator method, already described in this
section, is used for the image generation itself. How often ind iv idua l images are generated
is regulated by the input argument of this method - the output period.

The generation is followed by the t raining process itself. It iterates over the t ra ining
dataset, and a t ra ining step is taken for each batch. One t ra ining step consists of the
following parts:

1. For each example input, an output is generated.

2. The discriminator receives the input image and the generated image, from which it
makes a prediction about the generated image. It then receives the input image and
the target image, from which it makes a prediction about the target image.

45

3. Based on these predictions, the losses of the generator and discriminator are then
calculated using the implemented methods of these models.

4. Gradients are calculated from these losses. The GradientTape class is used for this
purpose. It records operations for automatic differentiation. The gradients of loss
are calculated wi th respect to both the generator and the discriminator variables
(trainable and non-trainable).

5. These gradients are applied to the optimizer, using the implemented method for
updat ing weights, which ensures that the gradients are applied to the variables.

6. Lastly, these losses are logged using Summary Writer.

After completing the t ra ining step, a checkpoint is saved. The checkpoint period can also
be regulated by the input parameter of the t ra ining method - the checkpoint period.

Dur ing the training, information about the status of the t ra ining is printed to the
console, such as the epoch number, how many t ra ining steps are completed, and how long
the epoch lasted. After the t ra ining is completed, the last checkpoint is saved, and summary
statistics for the given t ra ining process are printed, containing the to ta l t ra ining t ime and
the average t ime per epoch.

5.4 Source Code Structure and Usage

The source code is d ivided into several files. Thei r hierarchy is given below:

• pretrained/

o chasedbl/
o combined/
o drive/
o hrf/
o stare/

• s r i g /

o i n i t .py
o congan.py
o data_loader.py
o discriminator.py
o generator.py
o model.py

• requirements.txt

• srig.py

46

The pretrained directory contains subdirectories w i th checkpoints where the weights of
pretrained models are stored. These checkpoints are used to ini t ial ize the ret inal image gen
erator. The s r i g directory contains the source code for each of the implemented classes de
scribed i n the previous sections. The i n i t .py file is used to mark the s r i g directory as
the P y t h o n package directory from which the classes are imported. The requirements .txt
file contains a list of libraries that were used during the implementation. These libraries
are required to run the program. The last file, srig.py, represents the entry point of the
program where the input arguments are processed. Based on these arguments, further ex
ecution of the program takes place. The ind iv idua l arguments are described later i n this
section.

I n s t a l l a t i o n

The implemented program requires, i n addi t ion to the libraries used, P y t h o n 3 installed
along wi th P I P and tkinter. P I P is the package manager for P y t h o n packages, and tkinter
is the standard graphical user interface (GUI) for P y t h o n . The P I P is used to instal l a l l
the required libraries so that the user does not have to instal l them one by one. A list of
these libraries is given i n the requirements.txt file.

To instal l them, one of the following commands can be used:

• pip i n s t a l l -r requirements.txt

• python3 -m pip i n s t a l l - r requirements.txt

This w i l l automatical ly instal l a l l the libraries listed i n that file. The program is then ready
for use.

P r o g r a m A r g u m e n t s

The program can do three different things: prepare t ra ining data, t r a in the model, or
generate ret inal images. These operations are mutual ly exclusive, and only one of them
can be performed while the program is running. Therefore, the program has a required
argument in which one of the three options is selected, and then further arguments to the
corresponding option can be specified. A l l supported arguments are listed below.

M u t u a l l y exclusive arguments

—prepare Prepare input data for training.

— t r a i n T ra in the model.

—generate Generate ret inal images.

D a t a preparation arguments

—bv_dir BV_DIR Specify a directory w i t h images of b lood vessels.

—ret ina_dir RET_DIR Specify a directory w i t h ret inal images.

47

Training arguments

~ t r a i n _ d i r TRAIN_DIR

~ t e s t _ d i r TEST_DIR

—log_dir LOG_DIR

—checkpoint_period C_PERIOD

—output_period 0_PERIOD

—epochs EPOCHS

—batch size BATCH SIZE

Specify a directory wi th t ra ining images.

Specify a directory wi th testing images. The default
value is the t ra ining directory.

Specify the log directory. The default value is ./logs.

Specify the per iod of checkpoint storing. The default
value is 1. Negative values disable the checkpoints.

Specify the period of output image generation. The
default value is 1. Negative values disable the gener
ation.

Specify the number of epochs. The default value is 1.

Specify the batch size. The default value is 1.

Generation arguments

—input INPUT

—checkpoint_dir CHCKP_DIR

—display_output

Specify the input file or directory.

Specify the checkpoint directory.

Display generated output.

C o m m o n arguments

- h , —help

—output_dir 0UT_DIR

Display the help.

Specify the output directory. The default value is
./output.

E x a m p l e s

To illustrate, below are examples of how to run this program.

• python srig.py —prepare — b v _ d i r blood_vessels/ — r e t i n a _ d i r retinas/
—output_dir training_data/

This processes images from the blood_vessels and retinas directories, prepares
them for t ra ining and saves the resulting images i n the training_data directory.

• python srig.py — t r a i n — t r a i n _ d i r training_data/ —epochs 100

This trains the model for 100 epochs using images i n the training_data directory. O n
each epoch, it generates an output image to show its progress, and saves a checkpoint
w i th the current weights. A l l generated data are stored in the default directory, logs.

18

• python srig.py — t r a i n — t r a i n _ d i r training_data/ — t e s t _ d i r
testing_data/ — l o g _ d i r summary/ —epochs 100 —output_period 10
—checkpoint_period 20

This trains the model for 100 epochs using images i n the training_data directory.
It generates an output image every 10 epochs and saves a checkpoint every 20 epochs.
It uses images from the testing_data directory to generate output images. A l l
generated data are stored in the summary directory.

• python srig.py —generate — i n p u t examples/image.jpg —display_output

This generates an image of the ret ina using image. jpg as input, saves it i n the default
directory, output, and displays the generated image on the screen.

• python srig.py —generate — i n p u t examples/ —checkpoint_dir
output/checkpoints/ —output_dir generated_retinas/

This generates as many ret inal images as there are images i n the examples directory.
Images are generated using the model w i t h weights ini t ia l ized from a checkpoint
from the output/checkpoints directory. The generated images are saved in the
generated_retinas directory.

49

Chapter 6

Training and Testing

This chapter focuses on the actual t ra ining of the model, which was proposed i n Chapter 4
and subsequently implemented i n Chapter 5. It contains a description of what data was
used to t ra in this model, a description of the t raining process itself, along wi th problems
that occurred during the t ra ining and how I solved them. Fina l ly , an evaluation of the
obtained results is given.

6.1 Data Source

A n important basis for t ra ining and subsequent testing of the a lgori thm for automatic
generation of synthetic ret inal images is to have a sufficiently large number of ret inal images.
These images should form a representative set of retinas. F r o m publ ic ly available databases
of retinas such as A D C I S [15], C H A S E D B 1 [31], D R I V E [12], F I R E [22], H R F [10] and
S T A R E [18]. O n l y those databases that already contain professionally annotated blood
vessels were used.

Those used databases include the C H A S E D B 1 database, which consists of 84 color
digi ta l images wi th a resolution of 999x960 pixels. 28 of these images are ret inal images
and 56 images of b lood vessels. Each retina has two corresponding images of segmented
blood vessels that differ i n the number of visible b lood vessels. Therefore, it is possible to
create 56 pairs, where an example of one such retina is given i n Figure 6.1 below.

Figure 6.1: Example of a ret ina from the C H A S E D B l database. The two images wi th
segmented b lood vessels differ sl ightly in the number of visible blood vessels.

50

Another database used is the D R I V E database, which contains 100 images wi th a res
olut ion of 565x584 pixels. This database already divides these images into a t ra ining and
testing set, where each contains 20 different retinas. For each retina, there is one image of
the retina itself and one image w i t h a background mask. O n l y the t raining set contains the
required segmented b lood vessels. Therefore, only 20 pairs of images can be created from
this database.

The H R F database is also divided into ret inal images, corresponding background masks
and segmented b lood vessels. A tota l of 45 different images of retinas wi th a resolution
of 3504x2336 pixels are available i n this database, which is the highest resolution of a l l
databases.

The last database used is the S T A R E database. It contains a to ta l of 397 different
images of retinas, but only 20 are hand-labeled images by an expert, so only 20 pairs were
created. The resolution of ind iv idua l images is 700x605. Other databases were not used
because they do not contain segmented blood vessels.

A to ta l of 141 pairs of images (retinas and their segmented b lood vessels) are available.
Since the input resolution of the system is 1024x1024 and the images from the D R I V E and
S T A R E databases have a much lower resolution, these images were enlarged using an online
t o o l 1 that uses a neural network wi th an algori thm adjusted for images, thus making the
enlarging process i n high quality. Details on ind iv idua l sets of images are given in Table 6.1
below.

Database Resolution Pairs
C H A S E D B 1 999x960 56

D R I V E 1130x1168 20
H R F 3504x2336 45

S T A R E 1400x1210 20

E 141

Table 6.1: Used databases that are publ ic ly available.

6.2 Training

In order for the generator to generate ret inal images, it must first be trained. The training
loop begins wi th the generator receiving a black and white image of blood vessels. This
image is used to create an image of the retina. The discriminator then classifies real images
(drawn from the t raining set) and fake images (produced by the generator). The loss is
calculated for each of these models in order to calculate the gradients used to update the
generator and discriminator weights. This is the basic concept of how the combined model
is trained.

M o n i t o r i n g

The implemented t ra ining loop saves the logs of each epoch, so they can be easily viewed in
the TensorBoard tool to monitor the progress of the t raining. For this purpose, a separate
TensorBoard process can be started using the following command:

tensorboard — l o g d i r [log_dir]
x h t t p s : //bigjpg.com/

51

where log_dir is a directory containing the t ra ining logs. The default directory wi th this
data is logs/summary i n the current working directory.

The loss during t ra ining typical ly reduces fairly quickly during the first few training
iterations, and then the reduction slows down because the learning algori thm performs
small changes to find the exact local min imum. This is shown i n Figure 6.2. The value of
ln(2), which is approximately 0.69, is a good reference point for these losses, as it indicates
a perplexity of 2 - that the discriminator is, on average, equally uncertain about the two
options. For the discriminator loss, a value below 0.69 means the discriminator is doing
better than random on the combined set of real and generated images. For the generator
loss, a value below 0.69 means the generator is doing better than random at fooling the
discriminator.

0
1

^ -—~---4 :

epochs

Ci 20 40 60 80 100 120 140 160 100

Figure 6.2: Loss of the discriminator during the 200 epochs. The horizontal axis shows
epochs, vertical axis losses. The values are smoothed for better clarity.

The generator and discriminator are trained simultaneously. It is important that the
generator and discriminator do not overpower each other. W h e n t ra ining a G A N , it is
therefore necessary to monitor the loss of ind iv idua l models. If either the loss of the
generator or the loss of discriminator gets very low, it indicates that this model is dominat ing
the other, and the combined model is not being successfully trained. This si tuation is shown
in Figure 6.3. In order to solve this, the learning rate of the model that dominates must be
reduced or, conversely, the learning rate of the model that is dominated must be increased.

0 20 40 50 30 100 120 140 160 180 200

Figure 6.3: Loss of the discriminator that dominates the generator. T h e horizontal axis
shows epochs, vert ical axis loss. The values are smoothed for better clarity.

52

T r a i n i n g D u r a t i o n

The t raining of the combined model requires that the a lgori thm runs over the entire t raining
set many times, w i th the weights changing as the model makes errors i n each iteration. The
problem is how to decide when to stop learning. It is not desirable to stop t ra ining unt i l
the local m i n i m u m has been found, but t ra ining too long leads to overfitting of the model.
There are many ways to solve this problem, but the most obvious ones are not sufficient.
One of these solutions is to set some predefined number of iterations and t ra in un t i l that
is reached, but this poses a risk that the model w i l l be overfitted by then, or not learned
enough. Another solution is to stop only when some predefined m i n i m u m loss is reached,
but that might mean the a lgori thm never terminates, or that it overfits.

This is where the testing set comes i n useful. The model is trained for a predetermined
period of t ime, and then the testing set is used to estimate how well the model can generalize.
The t ra ining is carried on for a few more iterations, and the whole process is repeated.
A s t ra ining progresses, the generated images w i l l look increasingly real. The first image
generated by an untrained generator contains mostly noise (Figure 6.4), but thanks to the
architecture of the generator, where generation depends on the input image of blood vessels,
a slight structure of blood vessels can already be seen i n the generated image. After just
one epoch, the generated image resembles a real retina, where this ret ina begins to acquire
its shape and color. Such an image is shown i n Figure 6.5.

Figure 6.4: A n image that was created by an untrained generator from an input image of
blood vessels.

Therefore, I approached such a t ra ining solution, where at the beginning of each epoch,
an image from the testing set is generated. These images can be used to monitor the
generalization capabil i ty of the model at its current stage of learning. Based on the quali ty
of these images, a decision when to stop t ra ining the model is made. Another indicator of
when to stop t ra ining is monitor ing the loss of both the generator and the discriminator.
The t ra ining can be terminated once the error stops decreasing. A t some stage the error on
the testing set w i l l start increasing again, because the model has stopped learning about
the function that generated the data, and started to learn about the noise that is in the
data itself. A t this stage the t ra ining is stopped.

53

Figure 6.5: A n image that was created by a generator from an input image of b lood vessels.
The generator was trained for only one epoch.

M o d e l P a r a m e t e r s

B u i l d i n g machine learning models requires a selection of various parameters of these models,
such as the dropout rate i n a layer or the learning rate. These decisions impact the metrics
of the model . Therefore, an important step i n the machine learning workflow is to identify
the best parameters for a given problem.

The final parameters of the model were obtained by experimenting wi th different values
of these parameters and their combinations, where the values that produced the best results
were selected. Details on each parameter are given below. The number of epochs varied for
each database and their exact values are given i n Section 6.3.

• Weights are the first parameter that was set. The weights are ini t ia l ized to small
random numbers, bo th positive and negative. R a n d o m values i n this range were used
so that the learning starts from different places for each run. These values are also
about the same size, as it is desirable for a l l of the weights to reach their final values
at about the same time. To ini t ial ize the weights i n this way, a normal (or Gaussian)
dis tr ibut ion was used. A normal dis t r ibut ion is a type of continuous probabil i ty
dis tr ibut ion for a real-valued random variable. The general form of its probabil i ty
density function is [48]:

m = ^ = e ~ ^ (6.1)

where the parameter \x is the mean of the dis t r ibut ion, and a is its standard deviation.
In this case, the mean is set to 0 and the standard deviat ion is set to 0.025. Resul t ing
dis tr ibut ion can be seen i n Figure 6.6.

• Learning rate is a parameter that indicates how much these weights w i l l change each
iteration. It was necessary to choose it so that both models are trained at a similar
rate. Thanks to this, there w i l l be no si tuation where one of the models dominates the
other. If one model dominates the other, the model as a whole gives poor results. For
the generator the learning rate 0.00025 was chosen, and for the discriminator 0.0003
was chosen.

54

• Dropout layers are located only i n the decoder part of the generator. Dur ing training,
they randomly drop out a number of output values of the layer, which helps prevent
overfitting. The exact number is given by the dropout rate, which is a fraction of the
values that are dropped out. The dropout rate of these layers was set to the value of
0.5 (half of a l l values were dropped), but only i n the first three upsampling layers.

• Batch size is the number of t ra ining examples ut i l ized i n one iteration. W i t h small
values the model converges quickly at the cost of noise i n the t ra ining process. The
smaller the batch the less accurate the estimate of the gradient w i l l be. It also requires
less memory, since the model is trained using fewer samples at once. O n the other
hand, w i t h large values it converges slowly, but wi th more accurate estimates of the
gradient. Based on the available data and computat ional power, I was only able to
use a value of 2 as the batch size.

• N u m b e r of filters differs for ind iv idua l convolution or deconvolution layers. Con-
volut ional neural networks do not learn a single filter. They learn mult iple features
in parallel for a given input . Th is gives the model many different ways of extracting
features from an input . In this case, I started wi th 32 filters for the first layer and
gradually doubled this number up to 512 filters. The last deconvolution layer uses 3
filters in the case of the generator, which correspond to the ind iv idua l color channels
of the output image. In the case of the discriminator, the last convolution layer uses
only one filter, thanks to which the required 3 2 x 3 2 x 1 patches are obtained.

• Fi l ter size represents the size of each filter. In the generated images, I came across
checkerboard artifacts caused by unequal coverage of the pixel space i n the generator,
as shown i n Figure 6.7. To solve this problem, a filter size that is divisible by the
stride size was used. The selected value is therefore 4 x 4 pixels. Th is value is used
wherever convolution and transposed convolution layers are used, i.e., in the generator
and discriminator.

-0.09 -0.06 -0.03 0.00 0.03 0.06 0.09
x

Figure 6.6: Probabi l i ty density function of a normal dis t r ibut ion wi th the mean value of 0
and the standard deviat ion of 0.025.

55

Figure 6.7: Checkerboard artifacts caused by mismatching strides and filter sizes.

F i n a l T r a i n i n g o f t he M o d e l

The generator model contains a to ta l of 13,184 fixed parameters that do not change during
training, and over 67,000,000 trainable parameters, the values of which need to be adjusted
by learning. The discriminator model has less than 700,000 parameters in total .

The learning itself was performed on ind iv idua l databases and then one learning was
performed on images from a l l databases together. Some images are of poor overall quali ty
or contain retinas w i t h various diseases or other damage, so these images were excluded
from tra ining sets so that the generator learns to generate only high quali ty images of
healthy retinas. Testing sets were created from the excluded images, which were used to
monitor how well the generator generalizes. A different number of epochs was used for
each database, as each database contains a different number of images. More detailed
information about ind iv idua l trainings is given i n Table 6.2, which contains information
about the number of images in each set, the to ta l number of epochs and how long the given
t ra ining lasted. In this way, several files containing learned weights for ind iv idua l databases
and their combinations were created and used to generate new retinal images.

Database Training Testing Epochs T i m e
Images Images (minutes)

C H A S E D B 1 42 14 24 29
D R I V E 16 4 18 12

H R F 32 13 37 42
S T A R E 12 8 21 11

A l l combined 102 39 41 139

Table 6.2: Tra in ing on ind iv idua l databases.

6.3 Evaluation

Using the implemented and trained generator, several databases of synthetic ret inal images
were created, one for each database on which the generator was trained. This generator
was able to generate new images of retinas in a resolution of 1024 x 1024 pixels. The original

56

databases together provided 141 input images wi th segmented blood vessels. To increase
the number of input images from which ret inal images were generated, the original images
were flipped horizontally, vertically, and both horizontally and vertically. In this way, three
new images were created from each input image that produce a slightly different output.
Thus, 564 input images were available for the generation process. A tota l of 2,820 retinal
images were created from five different sets of learned weights. These newly created retinas
were subsequently evaluated.

The person evaluating the generated data does not need to have the expertise of an
ophthalmologist to be able to assess whether a given retina is real or not. It is only
sufficient if he is an informed layman familiar w i th the subject. Thanks to this, I was able
to perform this evaluation myself without the need for the assistance of an ophthalmologist.

The generalization capabilities of the model are at a high level for ind iv idua l databases,
where Figure 6.8 shows an example of a newly generated image, as well as the original
image and the corresponding blood vessels for comparison. Some of the generated images
are indistinguishable from the real ones, which was the goal of this thesis.

Figure 6.8: Example of a generated image. The image on the left is the input, the image
in the middle is the original, real image, and the image on the right is the synthetic image.

Despite the fact that the newly generated images are s imilar to the original ones, as they
have the same bloodstream, it can be said that they are new retinas. The new images have
different colors, the optic disc and fovea are different, and they also differ in smal l structures
on the retina. Thus, this generator allows to generate an image of a healthy retina from the
blood vessels of a damaged retina, as shown i n Figure 6.9, or from an overexposed image to
an image wi th a normal exposure that is less bright. A n example of an overexposed image
is shown in Figure 6.10.

However, i f the images from different databases are combined wi th each other, such
quali ty is no longer achieved. For example, the C H A S E D B l database consists of retinal
images that are centered on the optic disc. A s a result, its posi t ion and shape were over-
fitted, which was reflected i n images from other databases. A n example of such a case is
shown i n Figure 6.11. The generator trained on combination of a l l databases had the best
generalization capabil i ty because they contained a large number of different images. These
images were taken from different angles and captured differently sized parts of the retina.
O n the contrary, the D R I V E and S T A R E databases achieved the worst results, as they
were trained on a smal l number of images. For a higher quali ty of images from different
databases of b lood vessels, it would be necessary to have a larger number of input images
on which the model would be trained.

57

Figure 6.9: Example of a generated image. The image on the left is an image of a damaged
retina and the image on the right is the image generated from the bloodstream of the retina
on the left.

Figure 6.10: O n the right is an example of an image generated from the bloodstream of the
retina on the left, which is overexposed.

Figure 6.11: Example of an image generated by the generator trained on the C H A S E D B l
database. The optic disc is overfitted to the center of the retina. The input blood vessels
for this image are from the D R I V E database.

58

Chapter 7

Conclusion

H u m a n eyes provide us w i th vision, and the most important part of the human eye is the
retina. The retina is also the most sensitive part of the human eye, and therefore diseases of
the ret ina can lead to vis ion loss. For this reason, it is important to protect our eyesight, as
its loss means a significant deterioration in our quali ty of life. Special equipment, a fundus
camera, is needed to capture the retina, so it is not an easy task to obtain these images in
large quantities. Therefore, the main objective of this work was to design and implement
a system that would be able to generate new synthetic images of retinas that would extend
existing databases. These images could then be used as a learning tool for ophthalmologists
to practice their knowledge or for the development of medical or biometric systems.

This thesis provides a theoretical basis for the anatomy of the human eye and some
selected ret inal diseases. F r o m a technical point of view, it focuses on various methods of
machine learning and on the basic principles of neural networks. Specifically, it focuses on
deep learning, which includes specific types of neural networks, namely, convolutional and
generative adversarial networks, based on which a method of generating synthetic retinal
images was proposed. The thesis provides a detailed description and implementat ion of
this solution and eventually describes the process of t ra ining the proposed system. After
the system was trained, a database of synthetic ret inal images was created, the quali ty of
which was subsequently assessed.

The proposed solution uses an image-to-image translation, where the system is provided
wi th a black and white image at the input containing only bloodstream, on the basis of
which a color image of the entire ret ina is generated. The system consists of two neural
networks, one of which is a generator that generates ret inal images from an input image
of b lood vessels, and the other is a discriminator that has two images at the input - the
same image of b lood vessels and a corresponding ret inal image that is classified as real
or synthetic. In order for this system to be able to generate realistic-looking images of
retinas, it had to be trained first. The t ra ining was performed on several publ ic ly available
databases, which together provided 141 input images. The generator and discriminator
were trained simultaneously, where the a im was for the generator to produce images of
such a quali ty that the discriminator would not be able to dist inguish them from real ones,
and at the same t ime that the discriminator had its classification capabil i ty at the highest
possible level. Care had to be taken to ensure that one model d id not dominate the other,
as the system as a whole would produce poor results. It was therefore necessary to find an
equi l ibr ium between these models.

After the system has been trained, there is no need for the discriminator and only the
trained generator is used. W i t h this generator, a database of over 2,800 synthetic images

59

in a resolution of 1024x1024 pixels was created from the available data. M a n y of the
images generated i n this way were indistinguishable from real images of the retina, which
was the a im of this work. Despite the fact that these generated images are based on the
bloodstream of real retinas, they can be considered as images of new retinas, as, except for
the given b lood vessels, they differ i n everything else, such as color, optic disk and fovea. In
addit ion, the generator was trained on a set of healthy retinas, so it is possible, for example,
to generate a healthy retina from the bloodstream that belongs to a ret ina w i t h a disease.

Future work should focus on t raining this network on a larger number of ret inal images
from different databases. This network can be extended to generate images i n much higher
resolution, but it would be necessary to provide sufficient computing power and also to
provide input images that are i n at least as high a resolution as the desired output res
olut ion of the generator. Another possible continuation of this work would be to design
and implement a system that would generate black and white images of segmented retinal
blood vessels from random noise. The output of that system would then be connected to
the input of the generator from this thesis. In this way, it would be possible to generate
completely new retinas that would not depend on the input data, as the input data would
be random noise.

60

Bibliography

[1] A L P A Y D I N , E . and B A C H , F . Introduction to Machine Learning. 2nd ed. Cambridge,
London: M I T Press, 2014. I S B N 978-0-262-02818-9.

[2] A M I D I , A . and A M I D I , S. Leaky ReLU function. 2018. [Online; visited 14.03.2020].
Available at:
h t tp s : / / s t a n f o r d . e d u / ~ s h e r v i n e / t e a c h i n g / c s -229 / i l l u s t r a t i o n s / l e a k y - r e l u . p n g .

[3] A M I D I , A . and A M I D I , S. Neural network architecture. 2018. [Online; visited
14.03.2020]. Available at: h t t p s :
/ / s t an fo rd . edu /~she rv ine / t each ing /c s -229 / i l l u s t r a t i ons /neu ra l -ne twork -en .png .

[4] A M I D I , A . and A M I D I , S. ReLU function. 2018. [Online; visited 14.03.2020]. Available
at: h t tps : / / s t a n f o r d . e d u / ~ s h e r v i n e / t e a c h i n g / c s - 229 / i l l u s t r a t i o n s / r e l u . p n g .

[5] A M I D I , A . and A M I D I , S. Sigmoid function. 2018. [Online; visited 14.03.2020]. Available
at: h t tps : / / s t a n f o r d . e d u / ~ s h e r v i n e / t e a c h i n g / c s -229 / i l l u s t r a t i o n s / s i g m o i d . p n g .

[6] A M I D I , A . and A M I D I , S. Tanh function. 2018. [Online; visited 14.03.2020]. Available
at: h t tps : / / s t a n f o r d . e d u / ~ s h e r v i n e / t e a c h i n g / c s -229 / i l l u s t r a t i o n s / t a n h . p n g .

[7] A R B I B , M . A . The Handbook of Brain Theory and Neural Networks. 2nd ed.
Cambridge, London: M I T Press, 2003. I S B N 0-262-01197-2.

[8] A U B R E C H T , T . Detekce onemocnění ve snímku sítnice oka. Brno , 2017. 40 p.
Bachelor's thesis. Vysoké učen í technické v B r n ě . Faku l ta in formačních technologi í .
Vedoucí p r á c e Ing. L u k á š Semerád .

[9] B E N E Š , P . Přístroje pro optometrii a oftalmologii. 1st ed. Brno: N á r o d n í centrum
oše t řova te l s tv í a ne léka ř ských zd ravo tn ických obo rů , 2015. I S B N 978-80-7013-577-8.

[10] B U D A I , A . , B O C K , R . et a l . High-Resolution Fundus Image Database. 2013. [Online;
visited 10.03.2020]. Available at:
h t tp s : / /www5.cs . fau.de/research/data/fundus-images/ .

[11] C A L H O U N , J . S. Retinal Hemorrhage. 2013. [Online; visited 20.11.2019]. Available at:
h t tps : / / imageba i ik .as rs .o rg / f i l e /10070 / re t ina l -hemorrhage .

[12] C H A L L E N G E , G . DRIVE: Digital Retinal Images for Vessel Extraction. 2012. [Online;
visited 10.03.2020]. Available at: h t t p s : / / d r ive .g rand-cha l l enge .o rg / .

[13] C H A R N I A K , E . Introduction to Deep Learning. 1st ed. Cambridge, London: M I T
Press, 2018. I S B N 978-0-262-03951-2.

61

http://stanford.edu/~shervine/teaching/
http://stanford.edu/~shervine/teaching/
http://ord.edu/~shervine/teaching/
http://ord.edu/~shervine/teaching/
http://ord.edu/~shervine/teaching/
http://cs.fau.de/research/data/fundus-
https://imagebaiik.asrs.org/file/10070/retinal-hemorrhage
https://drive.grand-challenge.org/

[14] C H O L L E T , F . Deep learning with Python. 1st ed. Shelter Island, N Y : Manning , 2018.
I S B N 978-1-61729-443-3.

[15] D E C E N C I Č R E , E . TeleOphta: Machine learning and image processing methods for
teleophthalmology. 2013. [Online; visited 10.03.2020]. Available at:
http: //www. adc i s .net/ en/Download- Third- Party/E- Ophtha.html.

[16] D E S H P A N D E , M . Perceptron scheme. 2017. [Online; visited 20.02.2020]. Available at:
https:
//pythonmachinelearning.pro/wp-content/uploads/2017/09/Single-Perceptron.png.

[17] F O R T U N E R , B . Cross-Entropy. 2017. [Online; visited 22.3.2020]. Available at:
https: //ml-cheat sheet. readthedocs.io/en/latest/_images/cross_entropy.png.

[18] G O L D B A U M , M . STARE: Structured Analysis of the Retina. 2004. [Online; visited
10.03.2020]. Available at: http://cecas.clemson.edu/~ahoover/stare/.

[19] G O O D F E L L O W , L , B E N G I O , Y . and C O U R V I L L E , A . Deep Learning. 1st ed.

Cambridge, M A : M I T Press, 2016. I S B N 978-0-262-03561-3.

[20] G O O D F E L L O W , I. J . , P O U G E T A B A D I E , J . , M I R Z A , M . , X U , B . , W A R D E F A R L E Y , D .

et a l . Generative Adversarial Networks. 2014. [Online; visited 18.03.2020]. Available at:
https: //arxiv.org/abs/1701.00160.

[21] H A M E L , C . Fundus of patient with retinitis pigmentosa. 2006. [Online; visited
20.11.2019]. Available at:
https: / / en.wikipedia.org/wiki/Retinitis_pigmentosa#/media/File:
Fundus_of _patient_with_retinitis_pigmentosa, _mid_stage.jpg.

[22] H E R N A N D E Z M A T A S , C , Z A B U L I S , X . et a l . FIRE: Fundus Image Registration

Dataset. 2017. [Online; visited 10.03.2020]. Available at:
http://www. ics.f o r t h .gr/cvrl/fire/.

[23] H R V O L O V Á , B . Biofyzika. 1st ed. Ostrava: Vysoká škola b á ň s k á - Technická
univerzi ta Ostrava, 2013. I S B N 978-80-248-3105-3.

[24] H Y C L , J . and T R Y B U Č K O V Á , L . Atlas oftalmologie. 2nd ed. P raha : Tr i ton , 2008.
I S B N 978-80-7387-160-4.

[25] I S O L A , P. , Z H U , J . - Y . , Z H O U , T . and E F R O S , A . A . Image-to-image Translation with

Conditional Adversarial Networks. 2016. [Online; visited 21.03.2020]. Available at:
https: //arxiv.org/abs/1611.07004.

[26] J A I N , A . K . et a l . Introduction to Biometrics. 1st ed. Spring Street, New York :
Springer, 2011. I S B N 978-0-387-77325-4.

[27] K I N G M A , D . P . and B A , J . Adam: A Method for Stochastic Optimization. 2014.
[Online; visited 01.04.2020]. Available at: https://arxiv.org/abs/1412.6980.

[28] K O L Á Ř , P . et a l . Věkem podmíněná makulární degenerace. 1st ed. P raha : Grada ,
2008. I S B N 978-80-247-2605-2.

[29] K V A P I L Í K O V Á , K . Anatomie a embryológie oka. 1st ed. Brno : Institut pro další
vzdě láván í p r a c o v n í k ů ve zd ravo tn i c tv í , 2000. I S B N 80-7013-313-9.

62

http://cecas.clemson.edu/~ahoover/stare/
http://en.wikipedia.org/
http://www
http://orth.gr/cvrl/fire/
https://arxiv.org/abs/1412.6980

[30] L A R S E N , A . B . L . , S 0 N D E R B Y , S. K . , L A R O C H E L L E , H . and W I N T H E R , O .

Autoencoding beyond pixels using a learned similarity metric. 2015. [Online; visited
21.03.2020]. Available at: ht tps: / /arxiv.org/abs/1512.09300.

[31] L O N D O N , K . U . Retinal Image Analysis. 2016. [Online; visited 10.03.2020]. Available
at: h t tps : / / b logs .k ings ton . ac .uk / r e t i na l / chasedb l / .

[32] M A R S L A N D , S. Machine Learning, An Algorithmic Perspective. 1st ed. B o c a Ra ton ,
F L : C R C Press, 2009. I S B N 978-1-4200-6718-7.

[33] M A Z I N A N I , S. R . Development of novel organic optoelectronic technologies for
biomedical applications. Saint-Etienne, France, 2017. 93 p. Dissertat ion. l 'Ecole des
Mines de Saint-Etienne.

[34] M E D I S A V E . C O . U K . Direct ophthalmoscope. 2017. [Online; visited 11.11.2019]. Available
at: h t tps : //www.medisave.co.uk/heine-mini3000-2-5v-ophthalmoscope.html.

[35] M F . C Z . Geografická atrofie. 2016. [Online; visited 20.11.2019]. Available at:
h t tp s : //img.mf .cz/060/617/b. jpg.

[36] M F . C Z . Vlhká forma s edémem. 2016. [Online; visited 20.11.2019]. Available at:
h t tp s : //img.mf .cz/062/617/c. jpg.

[37] N E I . Retinitis Pigmentosa [online]. 2014. Upda ted Ju ly 10, 2019 [cit. 20. November
2019]. Available at: h t tps : / /www.nei .n ih .gov/ learn-about-eye-heal th /eye-
c o n d i t i o n s - a n d - d i s e a s e s / r e t i n i t i s - p i g m e n t o s a .

[38] N l D E K I N T L . C O M . Fundus camera. 2015. [Online; visited 11.11.2019]. Available at:
h t t p :
/ /www.nidek- in t l .com/product /ophthaloptom/diagnost ic /d ia_re t ina /afc-330.html .

[39] N V I D I A . GPU-Accelerated TensorFlow [online]. 2018 [cit. 16. February 2020]. Available
at: h t tp s :
/ /www.nvidia .com/en-sg/da ta-center /gpu-accelera ted-appl ica t ions / tensorf low.

[40] P A T H A K , Y . Artificial Neural Network for Drug Design, Delivery and Disposition. 1st
ed. Cambridge, U S : Academic Press, 2015. I S B N 9780128017449.

[41] P A T T A N A Y A K , S. Pro deep learning with TensorFlow : a mathematical approach to
advanced artificial intelligence in Python. 1st ed. N e w York: Mann ing , 2017. I S B N
978-1-4842-3095-4.

[42] P A S T A , J . Základy očního lékařství 1st ed. Praha : Univerz i ta Kar lova ,
N a k l a d a t e l s t v í K a r o l i n u m , 2017. I S B N 978-80-246-2460-0.

[43] R H C A S T I L H O S . Schematic diagram of the human eye. 2007. [Online; visited 11.11.2019].
Available at: h t t p s : / /en.wikipedia .org/wiki /Human_eye#/media/Fi le :
Schématic_diagram_of_the_human_eye_en.svg.

[44] R O N N E B E R G E R , O . , F I S C H E R , P . and B R O X , T . U-Net: Convolutional Networks for

Biomedical Image Segmentation. 2015. [Online; visited 21.03.2020]. Available at:
h t tp s : //arxiv.org/abs/1505.04597.

63

https://arxiv.org/abs/1512.09300
http://kingston.ac.uk/retinal/
http://www.medisave.co.uk/heine-mini3000-2-5v-ophthalmoscope.html
https://www.nei.nih.gov/learn-about-eye-health/eye-
http://INTL.COM
http://www.nidek-intl.com/product/ophthaloptom/diagnostic/dia_retina/afc-330.html
http://www.nvidia.com/en-sg/data-center/gpu-accelerated-applications/tensorflow
http://en.wikipedia.org/

[45] S P H I N X G A L L E R Y . Underfitting vs. Overfitting. 2019. [Online; visited 16.3.2020].
Available at: h t t p s : / / s c i k i t - l e a x n . o r g / s t a b l e / _ i m a g e s /
sphx_gl r_plo t_under f i t t ing_overf i t t ing_001.png.

[46] W E L C H A L L Y N . C O M . Indirect ophthalmoscope. 2017. [Online; visited 11.11.2019].
Available at:
h t tp s : / /www.welchallyn.com/en/products/categories/physical-exam/eye-exam/
ophtha lmoscopes- -b inocular - indi rec t /b inocular_ indi rec t_ophtha lmoscope .h tml .

[47] W l K l P E D l A . Cross entropy [online]. 2020 [cit. 22. March 2020]. Available at:
h t tp s : / / en .wikipedia .org/wiki /Cross_entropy.

[48] W I K I P E D I A . Normal distribution [online]. 2020 [cit. 12. Apr i l 2020]. Available at:
h t tp s : / / en .wik iped ia .o rg /wik i /Normal_d i s t r ibu t ion .

[49] W O N G , G . Retina of the human eye. 2016. [Online; visited 11.11.2019]. Available at:
h t tp s : //d3b3by4navwslf .cloudfront.net/177901919.jpg.

[50] W O N G , T . Y . and T I N G , D . S. W . Generative Adversar ia l Networks (G A N s) for
Re t ina l Fundus Image Synthesis. In: C A R N E I R O , G . and (E D S .) , S. Y . , ed. Computer
Vision-ACCV 2018 Workshops: lJ^th Asian Conference on Computer Vision. Per th ,
Aus t ra l ia : Springer, 2019, p. 289-302. I S B N 978-3-030-21073-1.

[51] Y E G U L A L P , S. What is TensorFlow? The machine learning library explained [online].
2019 [cit. 14. February 2020]. Available at: h t tps : / /www. infowor ld .com/ar t i c le /
3278008/wha t - i s - t ensor f low- the -mach ine- lea rn ing- l ib ra ry -exp la ined .h tml .

[52] Z H A N G , Y . - Q . and R A J A P A K S E , J . C . Machine Learning and Biometrics. 1st ed.
Hoboken, N . J . : Wiley , 2008. I S B N 978-0-470-11662-3.

64

https://scikit-leaxn.org/stable/_images/
http://WelchAllyn.COM
http://www.welchallyn.com/en/products/categories/physical-exam/eye-exam/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://cloudfront.net/177901919.jpg
https://www.infoworld.com/article/

Appendix A

Contents of the Attached D V D

The directory structure on the attached D V D is shown and described below.

• databases

o real - contains ind iv idua l databases of real ret inal images

o synthetic - contains ind iv idua l databases of synthetic ret inal images

• datasets - prepared t ra ining data

• implementation

o source files - source code of the program

o documentation - documentation of the source code

• text

o latex - source files for P D F generation

o pdf - Master 's thesis in P D F format

65

Appendix B

Generator Architecture

Inputlmage: InputLayer
output

[(?. 1024.1024. 3)]

[(?, 1024.1024. 3)]

EncoderBlockl: Sequential
output

(?. 1024. 1024. 3)

{?, 512,512,32)

EncoderBlockl: Sequential
input: (?, 512, 512,32)

EncoderBlockl: Sequential
output: (?. 256, 256, 64)

z
EncoderElock3: Sequential

input: (?, 256, 256, 64)
EncoderElock3: Sequential

output: (?, 12S. 128, 12S)

Eucodei'Block-1: Sequential
input:

Eucodei'Block-1: Sequential
output: (?. 64. 64. 256)

7

Z
EncoderBlock5: Sequential

input: (?, 64. 64. 256)
EncoderBlock5: Sequential

output: (?. 32.32.512)

EncoderBlockS: Sequential
input: (?. 32. 32. 512)

EncoderBlockS: Sequential
output: (?. 16. 16. 512)

z
EncoderBlock7: Sequential

input: (?, 16.16.512)
EncoderBlock7: Sequential

output: (•"', S, S, 512)

EncoderBlockS: Sequential
input: (?, S, S, 512)

EncoderBlockS: Sequential
output: (?, 4, 4, 512)

EucoderBlock-): Sequential
input: (?,4,4,512)

EucoderBlock-): Sequential
output: (?.2.2.512)

EncoderBlocklO: Sequential
input:

EncoderBlocklO: Sequential
output: (?. 1. 1. 512)

Figure B . l : Archi tecture of the encoder part of the S R I G generator. Outputs of the encoder
are connected to the decoder inputs in Figure B .2 .

66

DecoderBlockl: Sequential
input: ('?. 1. 1. 512)

DecoderBlockl: Sequential
output: ('?. 2. 2. 512)

concatenate: Concatenate
input: [(?. 2. 2.512). (7.2.2.512)]

concatenate: Concatenate
output: (7. 2. 2.1024)

input: (?. 1.1.1024)
DecoderBlock2: Sequential

input: (?. 1.1.1024)
DecoderBlock2: Sequential

output: (7,4,4,512)

concatenate 1: Concatenate
input: [(?, 4, 4, 512), (>, 4, 4,512)]

concatenate 1: Concatenate
output: (?, 4, 4, 1024)

DecoderBlock3: Sequential
input: (?, 4, 4, 1024)

DecoderBlock3: Sequential
output: (7, 8, 8,512)

concatenate 2: Concatenate
input: [(7. 8. 8.512), (?, 8, 8,512)]

concatenate 2: Concatenate
output: (7. 8. 8. 1024)

DecoderBlock4: Sequential
input: (7, 8, 8,1024)

DecoderBlock4: Sequential
output: (?, 16. 16. 512)

concatenate 3: Concatenate
input: [(?. 16. 16. 512). (?, 16.16. 512)]

concatenate 3: Concatenate
output: (7, 16, 16,1024)

DecoderBlock5: Sequential
input: (7.16.16,1024)

DecoderBlock5: Sequential
output: (7. 32. 32. 512)

concatenate 4: Concatenate
input; [(?, 32. 32. 512). (7. 32. 32. 512)]

concatenate 4: Concatenate
output: (7. 32. 32. 1024)

DecoderBlockö: Sequential
input: (7. 32. 32. 1024)

DecoderBlockö: Sequential
output: (7. 64. 64. 256)

concatenate 5: Concatenate
input: [(7. 64. 64. 256). (7. 64. 64. 256)]

concatenate 5: Concatenate
output: (7. 64. 64, 512)

DecoclerBlock?: Sequential
input: (?, 64, 64,512)

DecoclerBlock?: Sequential
output: (7,128, 128, 128)

concatenate 6: Concatenate
input: [(?. 128.128. 12S). (7. 128. 128.128)]

concatenate 6: Concatenate
output: (7.128. 128. 256)

DecoderBlockS: Sequential
input: (7. 128.128. 256)

DecoderBlockS: Sequential
output: (?. 256. 256. 64)

concatenate 7: Concatenate
input: [(?, 256, 256. 64). (7. 256, 256, 64)]

concatenate 7: Concatenate
output: (7. 256. 256. 128)

DecoderBlockl: Sequential
input: (?, 256, 256. 128)

DecoderBlockl: Sequential
output: (7,512,512,32)

concatenate 8: Concatenate
input: [(?, 512, 512, 32), (?, 512, 512, 32)]

concatenate 8: Concatenate
output: (7.512.512.64)

DecoderBlocklQ: Sequential
input: (7.512.512. 64)

DecoderBlocklQ: Sequential
output: (?. 1024. 1024. 3)

Figure B .2 : Archi tecture of the decoder part of the S R I G generator. Inputs of the decoder
are connected to the encoder outputs from Figure B . l .

67

