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Abstract 
Special equipment, a fundus camera, is needed to capture the retina, which is the most 
important part of the human eye. Therefore, the main objective of this work is to design 
and implement a system that would be able to generate ret inal images. The proposed 
solution uses an image-to-image translation, where the system is provided wi th a black 
and white image at the input containing only bloodstream, on the basis of which a color 
image of the entire retina is generated. The system consists of two neural networks: a gen­
erator, which generates ret inal images, and a discriminator, which classifies these images 
as real or synthetic. Tra in ing of this system was performed on 141 images from publ ic ly 
available databases. A new database was created w i t h more than 2,800 images of healthy 
retinas i n a resolution of 1024x1024. This database could be used as a learning tool for 
ophthalmologists or for the development of various applications working wi th retinas. 

Abstrakt 
K poř ízen í s n í m k ů s í tn ice , k t e r á p ř e d s t a v u j e nejdůleži tě jš í čás t l idského oka, je p o t ř e b a 
spec iá ln ího vybaven í , k t e r ý m je fundus kamera. Z tohoto d ů v o d u je c í lem t é t o p ráce 
navrhnout a implementovat sys t ém, k t e r ý bude schopný generovat t akové to s n í m k y bez 
použ i t í t é t o kamery. N a v r ž e n ý s y s t é m využ ívá m a p o v á n í v s t u p n í h o černobí lého s n í m k u 
k revn ího řečiš tě s í tn ice na b a r e v n ý v ý s t u p n í sn ímek celé s í tn ice . S y s t é m se s k l á d á ze dvou 
neu ronových sít í : g e n e r á t o r u , k t e r ý generuje s n í m k y s í tn ic , a d i s k r i m i n á t o r u , k t e r ý klasi­
fikuje d a n é s n í m k y jako reá lné či synte t ické . Tento s y s t é m b y l n a t r é n o v á n na 141 sn ímcích 
z veře jně d o s t u p n ý c h d a t a b á z í . N á s l e d n ě byla v y t v o ř e n a nová d a t a b á z e obsahuj íc í více než 
2,800 s n í m k ů z d r a v ý c h s í tn ic v rozlišení 1024x1024. Tato d a t a b á z e m ů ž e bý t p o u ž i t a jako 
učebn í p o m ů c k a pro očn í l ékaře nebo m ů ž e poskytovat zák lad pro vývoj různých apl ikací 
pracuj íc ích se s í tn icemi . 
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Rozšířený abstrakt 
Dip lomová p r á c e se zabývá gene rován ím syn te t i ckých s n í m k ů s í tn ic ve vysokém rozlišení. 
Lidské oko je p á r o v ý o rgán , k t e r ý n á m poskytuje zrak. D í k y n ě m u m ů ž e m e v n í m a t okolní 
svět a orientovat se v prostoru. Nejdůleži tě jš í čás t l idského oka tvoř í p r ávě s í tnice , k t e r á 
je zá roveň i tou nejcitl ivější čás t í . Z tohoto d ů v o d u mohou r ů z n é nemoci nebo sebemenš í 
poškození s í tn ice vést ke z t r á t ě zraku. Je tedy důlež i té , aby si člověk svůj zrak chráni l , 
p ro tože jeho z t r á t a vede k v ý z n a m n é m u zhoršen í kval i ty ž ivota . K poř ízen í s n í m k ů s í tnice 
je p o t ř e b a spec iá ln ího vybaven í (fundus kamery), proto nen í j e d n o d u c h é z ískat t akové to 
s n í m k y ve vě t š ím p o č t u . Z tohoto d ů v o d u je c í lem t é t o p ráce navrhnout a implementovat 
sys t ém, k t e r ý bude schopný generovat nové syn te t ické s n í m k y s í tn ic ve v y so k ém rozlišení, 
k t e r é budou ne rozezna t e lné od t ěch reá lných . Da l š ím krokem je p o m o c í tohoto s y s t é m u 
vy tvo řen í nové d a t a b á z e s n í m k ů zd ravých s í tn ic , tedy s í tn ic bez pa to log ických ná lezů . 

Teore t i cká čás t se zaměřu je na anatomii l idského oka, k t e r á je dů l ež i t ým z á k l a d e m 
pro p o c h o p e n í jeho č innos t i . V t é t o čás t i je p o p s á n i z p ů s o b vyše t ř en í očn ího p o z a d í 
a ná s l edně jsou uvedena v y b r a n á o n e m o c n ě n í s í tn ice spolu s jejich př íznaky . N a zák ladě 
t ě c h t o informací je člověk schopný si vy tvo ř i t p ř e d s t a v u o tom, jak v y p a d á zd ravá s í tn ice . 
Z t echn ického hlediska je pozornost věnována z á k l a d n í m t y p ů m s t ro jovému učen í a více 
se zaměřu je na neu ronové s í tě , p o m o c í k t e r ý c h b y l rea l izován n a v r ž e n ý s y s t é m pro gen­
erování s n í m k ů s í tn ic . Konkré tně j i se zabývá spec iá ln ími typy n e u r o n o v ý c h sí t í , jako jsou 
konvoluční a g e n e r a t i v n í neu ronové s í tě . P r a k t i c k á čás t t é t o p r á c e poskytuje de ta i ln í popis 
n á v r h u a ná s l edné implementace d a n é h o s y s t é m u . V pos ledn í čás t i je uveden proces učení 
tohoto s y s t é m u spolu se z h o d n o c e n í m dosažených výs ledků . 

Nav ržené řešení využ ívá pr inc ipu m a p o v á n í v s t u p n í h o s n í m k u na v ý s t u p n í . N a vstupu 
s y s t é m u je černobí lý ob rázek obsahuj íc í k revn í řeč iš tě s í tnice , na j ehož zák l adě se vygeneruje 
b a r e v n ý sn ímek celé s í tn ice . S a m o t n ý s y s t é m je t v o ř e n gene ra t i vn í k o m p e t i t i v n í sí t í . T a se 
sk l ádá ze dvou dílčích n e u r o n o v ý c h sít í , kde jednou z nich je gene rá to r , k t e r ý ze v s t u p n í h o 
o b r á z k u generuje s n í m k y s í tn ic , a druhou je d i sk r iminá to r , k t e r ý p rovád í klasifikaci, zdal i 
jsou d a n é s n í m k y reá lné či syn te t i cké . D i s k r i m i n á t o r m á na svém vstupu dva sn ímky. 
P r v n í m z nich je černobí lý sn ímek k revn ího řečiš tě nějaké s í tn ice a d r u h ý m je sn ímek 
odpovída j íc í s í tnice , k t e r ý je ná s l edně posouzen. 

A b y by l tento s y s t é m schopen v y t v á ř e t realisticky vypada j í c í s n í m k y s í tn ic , mus í se 
to nejprve n a u č i t . S a m o t n é učen í p rob íha lo na sn ímcích z někol ika veřejně d o s t u p n ý c h 
d a t a b á z í s í tn ic , k t e r é obsahuj í i p o t ř e b n é s n í m k y krevních řečišť. T y t o d a t a b á z e dohromady 
poskyt ly 141 s n í m k ů . G e n e r á t o r a d i s k r i m i n á t o r byly učeni současně , kde cí lem bylo, aby 
ge ne rá to r vy tvá ře l s n í m k y v t akové kval i tě , aby d i s k r i m i n á t o r nebyl schopný rozliši t , zdal i se 
j e d n á o r eá lné či syn te t i cké sn ímky. Zároveň cí lem d i s k r i m i n á t o r u bylo, aby jeho rozlišovací 
schopnost d o s á h l a co nejvyšší ú rovně . P ř i tomto s o u č a s n é m učen í bylo p o t ř e b a d á v a t pozor 
na to, aby jedna z t ě c h t o sí t í nedominovala t é d r u h é , neboť s y s t é m jako celek by nás l edně 
produkoval výs ledky nízké kvality. Z tohoto d ů v o d u bylo p o t ř e b a na j í t rovnováhu mezi 
t ě m i t o s í těmi . 

Po n a u č e n í s y s t é m u již nebylo p o t ř e b a d i s k r i m i n á t o r u a dá le se pracovalo pouze s nauče ­
n ý m g e n e r á t o r e m . P o m o c í tohoto g e n e r á t o r u byla v y t v o ř e n a d a t a b á z e , k t e r á obsahuje víc 
než 2,800 s n í m k ů zd ravých s í tn ic , k t e r é jsou v rozlišení 1024x1024 pixelů . Tato d a t a b á z e 
m ů ž e bý t ná s l edně p o u ž i t a jako učebn í p o m ů c k a pro oční lékaře nebo m ů ž e poskytovat 
zák lad pro vývoj různých ap l ikac í pracuj íc ích se s í tn icemi . M ů ž e se jednat n a p ř í k l a d o ap­
likace pohybuj íc í se v oblasti med ic ínských nebo b iome t r i ckých sy s t émů . M n o h é z t ě c h t o 
v y t v o ř e n ý c h s n í m k ů jsou ne rozezna t e lné od s n í m k ů sku t ečných s í tn ic , což bylo cí lem t é t o 
p ráce . 
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Chapter 1 

Introduction 

Eyesight allows us to interpret the surrounding environment using light in its visible spec­
t rum. Thanks to this, we can perceive contrast, contours of objects and their distance 
from us. It also contributes to the perception of spatial orientation. For this reason, it 
is important to protect our eyesight, as its loss leads to a significant deterioration i n the 
quali ty of life. 

We begin to see when the cornea, together w i th the lens of the eye, focuses light from 
our surroundings on the light-sensitive membrane at the back of the eye, which is called 
the retina. It contains specialized light-sensitive cells: rods that allow the perception of 
contrast, and cones that allow the perception of color. These cells convert the light into 
electrical signals that are t ransmit ted to the visual cortex of the bra in by the optic nerve. 
Therefore, the retina is the most sensitive and most important part of the human eye, and 
diseases or the slightest mechanical damage can lead to loss of vision. 

Machine learning is an applicat ion of art if icial intelligence that provides systems wi th 
the abi l i ty to automatical ly learn and improve from previous experience without being 
expl ici t ly programmed. One of the most popular areas of machine learning today is deep 
learning. Th is has been inspired by the human brain, and it generally consists of a large 
number of parameters w i th mult iple nonlinear layers. Generative models are an example 
of deep learning, more specifically, generative adversarial networks. 

A generative adversarial network ( G A N ) is a type of neural network that is based on two 
models: a generator and a discriminator. The generator produces a synthetic image from 
random noise, and the discriminator predicts whether the image is real or created by the 
generator. The generator is trained to be able to fool the discriminator to such an extent 
that it is not possible for the discriminator to distinguish between real and fake images. 
Meanwhile, the discriminator constantly adapts to the gradually improving capabilities of 
the generator. Therefore, bo th models are trained to surpass the other. 

Synthesizing realistic images of the eye fundus is a challenging task. Recent advances 
i n technology have brought high computat ional power, leading machine learning to neu­
ra l networks wi th deep architectures. Considering advances i n deep learning algorithms, 
G A N provides a valuable framework. R a p i d enhancement of G A N s facilitated the synthesis 
of realistic-looking images, leading to slightly anatomical ly consistent ret inal images wi th 
reasonable visual quali ty [50]. 
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1.1 Aims 

The a i m of this thesis is to design and implement an algori thm that allows the automatic 
generation of high-resolution digi ta l images of the ret ina using the generative adversarial 
network. In the next step, this network needs to be trained using real ret inal images from 
existing databases. The results obtained from the algori thm w i l l be compared wi th these 
real images, and i n case of high accuracy of this algori thm, a database of synthetic retinal 
images w i l l be created. Th is database could be used i n practice for the development of 
various medical or biometric systems. 

1.2 Contents 

Chapter 2 focuses on the anatomy of the human eye, which is an important basis for 
understanding its physiology and the risks posed by various diseases. Th is chapter also 
describes the most common methods of examining the eye and ind iv idua l eye diseases, 
along wi th a description of their symptoms and possible treatments. Information about 
the human eye was taken from my previous work [8]. Chapter 3 provides an introduct ion 
to the machine learning on which the proposed algori thm is based. This introduct ion 
includes types of machine learning along w i t h a description of the neural network. Chapter 4 
contains the proposed solution of the system for generating synthetic images of the retina. 
Its implementat ion is given i n Chapter 5. The actual t ra ining and testing of the proposed 
system are described in Chapter 6. The final chapter, Chapter 7, contains a summary of 
this thesis, including the final evaluation of achieved results and plans for future work. 
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Chapter 2 

Human Eye 

H u m a n eyes are paired organs of the visual system, which provide us w i th vision, an abi l i ty 
to perceive the surrounding world and to orient ourselves i n space thanks to the light in 
its visible spectrum reflected by objects i n the environment. U p to 80 % [23] of informa­
t ion from the external environment is perceived by sight. Therefore, the eye is the most 
important sensory organ. It has an approximately spherical shape, and it is made up of 
three layers, enclosing various anatomical structures. The outermost layer is composed of 
the cornea and sclera. The middle layer consists of the choroid, c i l iary body, pigmented 
epithelium and iris, and the innermost layer is the retina. 

2.1 Vis ion 

W h e n looking at an object, light rays reflect from that object and enter the cornea. The 
light rays are refracted and concentrated i n one place through the cornea, lens and vitreous 
humor. O f these three structures, only the lens can change its opt ical power, thus ensuring 
that the rays are concentrated on the point of sharpest vision. The resulting image on the 
retina is turned upside down. Photons of light falling on the light-sensitive cells of the retina 
are converted into electrical signals that are t ransmit ted to the bra in by the optic nerve. 
These signals are interpreted as the resulting image i n the visual cortex of the brain [23]. 

2.2 Anatomy 

The human eye is a very complex system made up of many parts that must work together 
perfectly. The most important parts are described below. They are shown i n Figure 2.1. 

• T h e cornea is a transparent dome-shaped layer covering the anterior por t ion of 
the eyeball. The cornea, w i t h regard to its opt ical power, is the most important 
component of the opt ical system of the eye, and is the largest contributor to quali ty 
vision. Its ma in function is to refract light. It is responsible for focusing most of the 
light that enters the eye. The cornea is colorless, completely transparent, and without 
blood vessels, which may prevent it from refracting light properly and may adversely 
affect vision. Since there are no nutrient-supplying b lood vessels i n the cornea, tears 
and the aqueous humor i n the anterior chamber provide the cornea wi th nutrients. It 
represents a mechanical and chemically impermeable barrier between the inner and 
outer environment together w i th the conjunctiva, sclera and tear fi lm. 
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• T h e conjunctiva is the clear, th in membrane that consists of two segments: bulbar 
conjunctiva, which covers the anterior part of the sclera, and palpebral conjunctiva, 
which covers the inner surface of both the upper and lower eyelids. The conjunctiva 
has many smal l b lood vessels that provide nutrients to the eye and lids. Its main 
function is to keep the eye moist and lubricated by producing mucus and tears. It 
also contributes to the protection from dust, debris and microorganisms that can 
cause an infection. 

• T h e sclera, also known as the white of the eye, is the protective, opaque, outer 
layer of the human eye. The whole sclera is white, contrasting wi th the coloured iris. 
It is continuous wi th the cornea offering resistance to internal and external forces 
to protect sensitive eye structures stored inside. The sclera also provides a sturdy 
attachment for the extraocular muscles that control the movement of the eyes. It is 
perforated by many nerves and vessels passing through its posterior part, where the 
hole is formed by the optic nerve. 

• T h e choroid, also known as the choroidea, is another layer surrounding the eyeball 
that lies between the sclera and the retina. It provides oxygen and nourishment to 
the outer layers of the ret ina and maintains the temperature and volume of the eye. 

• T h e anterior chamber of the eyeball is the space inside the eye that is behind 
the cornea and i n front of the iris. It is filled w i th a clear, watery fluid known as 
the aqueous humor. Th is is where the excess fluid can normal ly flow out. If the 
normal outflow of aqueous humour is blocked, the intraocular pressure is increased 
and glaucoma usually develops. Th is can lead to progressive damage to the optic 
nerve head, and eventually blindness. 

• T h e iris is a th in , circular structure located behind the anterior chamber that is 
usually strongly pigmented. The color of our eyes is determined by the amount of 
pigment i n the iris. It contains a circular opening in the center called a pupi l . The 
pr imary function of the iris is to regulate the amount of light entering the eye by 
di lat ing or contracting the pupi l . The iris contracts the pup i l when the ambient 
i l luminat ion is high and dilates it when the i l luminat ion is low [26]. 

• T h e lens is composed of transparent, flexible tissue, and is located directly behind the 
iris and the pupi l . It is important for the refraction of light and its accommodation. 
The accommodation is a process of changing the curvature of the lens, al lowing closer 
objects to be brought into better focus by changing the opt ical power of the lens. 

• T h e posterior chamber of the eyeball is the second chamber consisting of small 
space directly behind the iris and i n front of the lens. L ike the anterior chamber of 
the eye, it is also filled w i t h the aqueous humor. Th is fluid normal ly passes into the 
posterior chamber from where it flows into the anterior chamber. There, the excess 
fluid can flow out of the eye. 

• T h e vitreous humor, also known simply as the vitreous, is a clear, colorless fluid 
that fills the space behind the lens and i n front of the ret ina i n the eye. It has 
a firm gelatinous consistency, and it makes up most of the volume of the eyeball. The 
vitreous helps to hold the shape of the eye, and its pressure helps to keep the retina 
in place. 
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• T h e optic nerve connects the eye to the visual cortex of the brain. It is the nerve 
that transmits visual information i n the form of impulses formed by the retina. These 
impulses are dispatched through the optic nerve to the brain, which interprets them 
as images. Glaucoma is a disease which results i n damage to the optic nerve and 
causes vision loss. It is caused by high intraocular pressure, which compresses the 
optic nerve and causes its cells to die. It is referred to as the atrophy of the optic 
nerve. 

• Ret ina is the most important part of this work, so it is described separately and in 
more detai l in the following Section 2.3. 

Figure 2.1: Schematic diagram of the human eye [43]. 

2.3 Retina 

The retina is the most important and also the most sensitive part of our eye. It is a th in 
layer of tissue that lines the inner surface of the back of the eyeball. The retina processes 
light through a layer of light-sensitive cells, responsible for detecting qualities such as color 
and light intensity. These specialized cells are called photoreceptors. The retina captures 
the light falling on these photoreceptors and converts the light into neural signals that are 
t ransmit ted through the optic nerve to the v isual cortex of the brain for visual recognition. 

P h o t o r e c e p t o r s 

A photoreceptor is a specialized light-sensitive cell found in the ret ina that is responsible 
for converting light into signals that can stimulate biological processes. The photoreceptor 
absorbs photons that are s t r iking the retina, which triggers a change i n the membrane 
potential of the cell. There are two types of photoreceptor cells in the human retina: rods 
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and cones. There are major functional differences between the rods and cones. R o d cells 
are much more sensitive than cone cells. A t very low light levels, the visual experience is 
based solely on the rod signal, so they are responsible for night vision. However, they do 
not mediate color vision, which is the ma in reason why colors are much less apparent in d i m 
light, and not at a l l at night. The rods are concentrated at the outer edges of the retina, 
and are used i n peripheral vision. Cones require significantly larger number of photons 
to produce a signal. They are responsible for the perception of color and for high spatial 
acuity used for tasks such as reading. Cones are most concentrated i n the center of the 
retina i n an area called the macula, and their density gradually decreases towards the outer 
edges of the ret ina [29]. 

The macula is a yellow oval-shaped area near the center of the retina where the light is 
focused by the cornea and lens. The macula is responsible for the central, high-resolution 
and color vis ion. Therefore, the macula provides us w i t h the abi l i ty to read and see in 
great detail . In the very center of the macular region is the fovea that has a very high 
concentration of photoreceptor cells, more specifically, a high density of cones and low 
density of rods. 

O p t i c D i s c 

The optic disc, also called the optic nerve head, is located at the optic papi l la , where the 
optic nerve fibres leave the eye. There are no photoreceptors i n this area, so it is sometimes 
called the b l ind spot. The optic disc appears as an approximately oval area, and it is the 
entry point for the b lood vessels that supply the retina. These structures can be seen in 
Figure 2.2. 

M a c u l a 

Fovea Optic disc 

Macula Central 
retinal vein 

Retinal 
arterioles 

Central retinal 
artery 

Retinal venules 

Figure 2.2: Re t ina of the human eye [49]. 
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2.4 Eye Examination 

Ophthalmology is a branch of medicine dealing wi th anatomy and physiology of the eye, 
and w i t h the diagnosis, treatment and prevention of diseases of the whole visual system. 
This is a very specialized field, especially since the eye is a very complicated apparatus. A n 
ophthalmologist is a medical doctor who specializes i n diagnosing and treating eye-related 
conditions. In other words, an ophthalmologist is a specialist in ophthalmology. A n eye 
examination is a series of tests performed by an ophthalmologist, evaluating vision and 
abil i ty to focus on and recognize objects. 

O p h t h a l m o s c o p y 

Ophthalmoscopy is an examination of the back part of the eye. Th is part of the eye is called 
the fundus, and consists of: retina, optic disc, choroid and b lood vessels. Ophthalmoscopy 
may also be called funduscopy or ret inal examination. Through ophthalmoscopy, an eye 
doctor can find evidence of many kinds of eye problems including, but not l imi ted to, 
glaucoma, high blood pressure damage, ret inal detachment, diabetes, eye tumors, and 
many other problems. The di la t ion of the pupils, also known as mydriasis, is a simple 
and effective way to better observe the structures behind them. Th i s is often done wi th 
eye drops before the examination. There are three different types of examinations: direct, 
indirect and sl i t- lamp examination. 

Direct ophthalmoscopy produces an upright image of approximately 15 x magnification. 
The handheld instrument that our pr imary care physician uses to look into our eyes is 
called a direct ophthalmoscope. One can be seen in Figure 2.3. It is about the size of 
a smal l flashlight, and it consists of a concave mirror and a battery-powered light. The 
doctor looks through a single monocular eyepiece into the eye of a patient in a darkened 
room. The ophthalmoscope is equipped wi th a rotat ing disc of lenses to permit the eye to be 
examined at different depths and magnifications. It provides good, but l imi ted visualizat ion 
of the back of the eye. This type of ophthalmoscope is most commonly used during a routine 
physical examination. 

Indirect ophthalmoscopy provides a wider view of the inside of the eye and produces 
an inverted image of 2 to 5 x magnification using an indirect ophthalmoscope (Figure 2.4). 
A n indirect ophthalmoscope can be either monocular or binocular. It constitutes a bright 
light attached to a headband positioned on the forehead of the eye doctor and magnifying 
lenses. The eye doctor holds the eye open while shining a very bright light into the eye using 
this indirect ophthalmoscope and views the back of it through the lens held close to the 
eye. Some pressure may be applied to the eye using a small , blunt probe. The pup i l must 
be fully di lated for a satisfactory result. Th i s examinat ion is usually used for peripheral 
viewing of the retina, and to look for a detached retina. 

The slit lamp is the most widely used ophthalmic device. It has a place for us to rest our 
chin and forehead. This w i l l help keep our head steady. This procedure gives us the same 
view of the eye as an indirect examination, but w i t h greater magnification. A microscope 
is connected to a lamp, which is a high-intensity light source that can be focused to shine 
a th in ray of light into the eye. The doctor directs the light right into the eye of the patient, 
thus i l luminat ing the area accurately. D u r i n g the examination, the tissues are i l luminated 
either by a th in ray of light, or by reflected light. B y examining the i l luminated eye wi th 
the microscope, the ophthalmologist then obtains a magnified image of the observed area, 
allowing the detection of very subtle changes and symptoms of eye diseases. 
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Figure 2.3: Direct ophthalmoscope [34]. Figure 2.4: Indirect ophthalmoscope [46]. 

F u n d u s P h o t o g r a p h y 

Fundus photography uses a fundus camera to record images of the condit ion of the interior 
surface of the eye, also known as the fundus. Ophthalmologists use these ret inal photographs 
for detailed evaluation as well as to document c l in ical observations and possible diagnosis of 
eye diseases. The fundus camera (Figure 2.5) is a device that replaces the ophthalmoscope. 
It is a specialized low power microscope wi th an attached camera, and it is based on the 
principle of monocular indirect ophthalmoscopy. The optics of a fundus camera are similar 
to those of an indirect ophthalmoscope i n that the observation and i l luminat ion systems 
follow dissimilar paths. Fundus cameras are described by the angle of view, and provide an 
upright, magnified view of the back of an eye. A typica l camera captures images between 
30° and 50° of the ret inal area wi th a magnification of 2.5 x . Th is relation can be modified 
using zoom or auxi l iary lenses. Wide-angle fundus cameras capture images between 45° 
and 140°, and provide proportionately less ret inal magnification. For a better inspection, 
di la t ing eye drops are applied prior to the examination to enlarge the pupi l , thus increasing 
the angle of observation [9]. 

Figure 2.5: Fundus camera [38]. 
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2.5 Retinal Diseases 

Ret ina l diseases vary widely, but most of them cause visual symptoms. Re t ina l diseases can 
affect any part of the retina, and they are always very serious, often irreversible and can 
lead to severe vision loss or blindness. Treatment is available only for some ret inal diseases. 
Depending on the retina condit ion, treatment goals may be to stop or slow the disease 
and preserve, improve or restore the vision. C o m m o n ret inal diseases and conditions are 
described below. 

M a c u l a r D e g e n e r a t i o n 

Macula r degeneration, also known as age-related macular degeneration ( A M D or A R M D ) , 
is a macular disease that occurs in patients over age 50, and is the most common cause 
of pract ical blindness i n economically developed countries. W i t h the increasing number of 
seniors, it becomes a major societal health problem. Several factors influence the origin and 
development of this disease. In addi t ion to increasing age, it can also be high blood pressure, 
smoking, poor eating habits and the associated obesity and genetic predisposition. Patients 
describe its symptoms so that visual acuity gradually decreases, they are complaining about 
image distortions, and i n more advanced stages, a blurred or sometimes even black spot 
appears in the center of the field of view. Color vision also deteriorates. There is currently 
no known cure for macular degeneration, but there are options to reduce the risk and 
possibly slow the progression of the wet form. V i s i o n w i l l no longer improve and only the 
current quali ty of vision w i l l stabilize [24]. 

A M D is divided into 2 forms: dry (atrophic, nonexudative) and wet (exudative). U p to 
90 % of patients are affected by the dry form, but it causes severe visual damage i n only 
12—21 %. Fewer patients suffer from the wet form, but it is far more dangerous than the 
dry form because, it progresses very quickly. B o t h forms can be combined during disease. 
In the macular area of the patients, changes and loss of ret inal pigment epi thel ium and 
drusen are found. Drusen are divided according to their appearance and size into hard and 
soft. The i r comparison can be seen i n Figure 2.6 and 2.7. H a r d drusen are smal l bounded 
deposits of yellowish color under the retina. O n the contrary, soft drusen have no sharp 
boundaries and may even coalesce, they are associated wi th a significantly higher risk of 
the formation of the wet form of A M D [28]. 

Figure 2.6: H a r d drusen [28]. Figure 2.7: Soft drusen [28]. 
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D r y A M D starts w i t h the bui ld-up of drusen in the retina. V i s i o n is usually good or 
only sl ightly reduced at this stage. Most of these patients w i th m i l d dry A M D can continue 
to read and drive, al though it may not be as easy as it was when they were younger. Some 
patients, but not a l l , progress to a more advanced stage of dry A M D called geographic 
atrophy (Figure 2.8). This can result i n severe loss of central vision and loss of the abi l i ty to 
read and drive. Even i n these severe cases, patients almost always retain normal peripheral 
vision, enough to see where they are going. Unfortunately, there is no treatment for dry 
A M D . However, supplementation of antioxidant vi tamins C , E and minerals zinc, selenium 
and essential omega-3 fatty acids may have a beneficial effect on preventing or slowing its 
progression. A diet r ich in fish, vegetables and fruits also has a support ing role [28]. 

Wet A M D occurs when abnormal new blood vessels grow into the ret ina and start 
leaking fluid. Macu la r edema is the build-up of this fluid i n the macula. T h i s causes the 
retina to swell, and the longer it is swollen, the more the ret inal fibres deteriorate. Because 
these b lood vessels are abnormal, they are more fragile than typica l b lood vessels and can 
bleed into the retina. This bleeding can cause irreversible damage to the photoreceptors and 
rapid vision loss i f left untreated. A characteristic image of a ret ina wi th the macular edema 
can be seen in Figure 2.9. It is usually, but not always, preceded by the dry form of A M D . 
The wet form progresses faster compared to the dry form, and the loss of vision is more 
significant. R a p i d deterioration occurs wi th in a few weeks and pract ical blindness wi th in 
a few months. Treatment previously consisted of destruction of the neovascular membrane 
by photocoagulation or thermotherapeutic laser. However, treatment results were variable. 
The starting point should be a more targeted so-called photodynamic therapy, i n which 
the intravenously injected substance is absorbed by the target tissue and then activated by 
laser [28]. 

D i a b e t i c R e t i n o p a t h y 

Diabet ic retinopathy is a diabetes complicat ion that affects eyes. Ret inopathy occurs when 
high b lood sugar levels lead to the blockage of the t iny b lood vessels that nourish the 
retina, cut t ing off its b lood supply. The weakened blood vessels leak fluid into the retina 
and some of them break and bleed. This is called ret inal haemorrhage, and can be seen in 
Figure 2.10. A s the disease becomes more advanced, new abnormal b lood vessels may grow 
and these new blood vessels can bleed, cause cloudy vision, and destroy the retina. Th is 

Figure 2.8: Geographic atrophy, which is 
a more advanced stage of dry A M D [35]. 

Figure 2.9: Wet form of A M D wi th the 
macular edema [36]. 
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condit ion can develop i n anyone who has type 1 or type 2 diabetes. The longer the patient 
has diabetes and the less controlled his blood sugar is, the more l ikely he is to develop this 
eye complicat ion. Diabet ic retinopathy begins before the patient has any symptoms, but 
as the problem gets worse the patient may have: blurred vision, temporary or permanent 
blindness or distort ion of vis ion. E a r l y treatment is the key to reduce vision loss. A laser 
is used to seal leaking b lood vessels or destroy abnormal b lood vessels [42]. 

R e t i n a l D e t a c h m e n t 

A ret inal detachment is defined by the presence of fluid under the retina. If a hole develops 
in the retina, then the suction force is lost and the fluid that normal ly fills the inside of 
the eye passes through the hole and enters the space underneath the retina. A s more fluid 
passes underneath i t , the retina gradually detaches from the inner wal l of the eye. If the 
retina remains detached, it w i l l slowly deteriorate and lose function permanently, but i f 
the ret ina can be reattached w i t h surgery quickly enough, it is possible to recover some 
function and to avoid permanent vision loss [42]. 

R e t i n a l V e i n O c c l u s i o n 

A ret inal vein occlusion is a blockage of one of the veins draining b lood from the eye. 
Re t ina l vein occlusion is d ivided into categories, based on the size of the vein which is 
blocked. A branch ret inal vein occlusion is a blockage of one branch only, and affects 
only part of the ret ina and a central ret inal vein occlusion is a blockage of the ma in vein 
and affects the whole retina. If there is a very severe blockage and the b lood flow stops 
altogether, the ret inal cells die due to lack of oxygen. This is called ischaemia, and there 
is no treatment that can br ing the cells back to life. The increased pressure i n the small 
vessels i n the eye results in fluid leaking into the retina, making it swollen. A swollen 
retina does not see as well, and the longer the retina remains swollen, the more the vision 

Figure 2.10: Re t ina l haemorrhage [11]. 
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deteriorates w i th t ime. Possible treatment options are intravi treal injections to reduce the 
swelling, or laser surgery. If the blood supply is not restored, new blood vessels can grow 
into the retina. These new vessels are very fragile and can bleed, which can dramatical ly 
reduce the vision. In some cases, this bleeding w i l l require surgery to remove the b lood in 
order to restore vision [42]. 

R e t i n i t i s P i g m e n t o s a 

Retini t is pigmentosa is a group of rare, genetic disorders that involve a breakdown and loss 
of cells in the retina. The rods are more severely affected than cones i n the early stages, 
and people have difficulty seeing at night and lose the peripheral vision. The loss of rods 
eventually leads to a breakdown and loss of cones. In the late stages, people tend to lose 
more of the visual field, developing tunnel vis ion. Ret ini t i s pigmentosa is diagnosed by an 
examination of the retina, which typical ly reveals abnormal, dark pigment deposits that 
streak the retina. There is currently no cure for this disorder [37]. 

Figure 2.11: Fundus of a patient w i th retinitis pigmentosa [21]. 
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Chapter 3 

Machine Learning 

To solve a problem on a computer, we need an algori thm. A n algori thm is a sequence of 
instructions that should be carried out to transform the input to output. For some tasks, 
however, we do not have an algori thm. Therefore, we do not know how to transform the 
input to output. W h a t we lack in knowledge, we make up for in data. W i t h advances 
i n computer technology, we currently have the abi l i ty to store and process large amounts 
of data, as well as to access it from physically distant locations over a computer network. 
There are certain patterns i n the data. Such patterns may help us better understand 
the data, or we can use those patterns to make predictions. Assuming that the future, 
at least the near future, w i l l not be much different from the past when the sample data 
was collected, the future predictions can also be expected to be right. App l i ca t ion of 
machine learning methods to large databases is called data mining. Its applicat ion areas 
are abundant. In finance, banks analyze their past data to bu i ld models to use i n credit 
applications, fraud detection, and the stock market. In manufacturing, learning models are 
used for opt imizat ion, control, and troubleshooting. In medicine, learning programs are 
used for medical diagnosis. In telecommunications, ca l l patterns are analyzed for network 
opt imizat ion and maximiz ing the quali ty of service, and i n science, large amounts of data 
in physics, astronomy, and biology can only be analyzed fast enough by computers. 

Machine learning is not just a database problem; it is also a part of artificial intelligence. 
To be intelligent, a system that is i n a changing environment should have the abi l i ty to 
learn. The key concept is learning from data since data is what we have. Machine learning, 
then, is about making computers modify or adapt their actions, so that these actions get 
more accurate, where accuracy is measured by how well the chosen actions reflect the correct 
ones. If the system can learn and adapt to such changes, the system designer does not need 
to foresee and provide solutions for a l l possible situations. Machine learning also helps us 
find solutions to many problems in vision, speech recognition, and robotics. One example 
of pattern recognition is face recognition. This is a task we do effortlessly. Every day, we 
recognize family members and friends by looking at their faces or from their photographs, 
despite differences i n the pose, l ighting, hairstyle, and so forth. B u t we do it unconsciously 
and are unable to explain how we do it . Because we are not able to explain our expertise, 
we cannot write the computer program. A t the same time, we know that a face image is 
not just a random collection of pixels. A face has structure. It is symmetric. There are 
the eyes, the nose, the mouth, located in certain places on the face. Each face of a person 
is a pattern composed of a part icular combination of these. B y analyzing sample face 
images of a person, a learning program captures the pattern specific to that person and 
then recognizes by checking for this pattern i n a given image [1]. 
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One of the most interesting features of machine learning is that it lies on the bound­
ary of several academic disciplines, pr incipal ly computer science, statistics, mathematics, 
and engineering. Th is has been a problem as well as an asset since these groups have 
t radi t ional ly not talked to each other very much [32]. Machine learning is programming 
computers to optimize a performance criterion using example data or past experience. We 
have a model defined up to some parameters, and learning is the execution of a computer 
program to optimize the parameters of the model using the t raining data or past experi­
ence. The model may be predictive to make predictions in the future, or descriptive to gain 
knowledge from data, or both. Machine learning uses the theory of statistics i n bui lding 
mathematical models, because the core task is making inference from a sample. The role 
of computer science is twofold. F i r s t , i n training, we need efficient algorithms to solve the 
opt imizat ion problem, as well as to store and process the massive amount of data we gen­
erally have. Second, once a model is learned, its representation and algori thmic solution 
for inference needs to be efficient as well . Tra in ing does not happen very often, and is not 
usually t ime-cri t ical , so it can take longer. However, we often want a decision about a test 
point quickly, and there are potential ly lots of test points when an algori thm is in use, 
so this needs to have low computat ional cost. In certain applications, the efficiency of the 
learning or inference algori thm, namely, its space and time complexity, maybe as important 
as its predictive accuracy. 

3.1 Types of Machine Learning 

Learning can be loosely defined as a process of getting better at some task through prac­
tice. This leads to a couple of v i t a l questions: how does the computer know whether it is 
getting better or not, and how does it know how to improve? There are several possible 
answers to these questions, and they produce different types of machine learning. Machine 
learning algorithms are typical ly classified into three broad categories: supervised learning, 
unsupervised learning, and reinforcement learning [52]. 

S u p e r v i s e d L e a r n i n g 

The most common type of learning is supervised learning. A t ra ining set of examples 
wi th the corresponding targets are provided, and based on this t raining set, the a lgori thm 
generalizes to respond correctly to a l l possible inputs. Th is is also called learning from 
examples [32]. W h e n the target vectors are categorical, the problems are known as classi­
fication or pattern recognition, and when the target vectors are real-valued, the problems 
are known as regression. 

If we had examples of every possible piece of input data, then we could put them 
together into a big look-up table, and there would be no need for machine learning at a l l . 
The thing that makes machine learning better is a generalization: the a lgori thm should 
produce sensible outputs for inputs that weren't encountered during learning. This also 
has the result that the a lgori thm can deal w i t h noise, which are smal l inaccuracies i n the 
data. In other words, the goal of supervised learning is to learn mapping from the input to 
an output whose correct values are provided by a supervisor. 

This work is based purely on supervised learning, so further details are given i n the 
following Section 3.2 on artif icial neural networks and Section 3.3 on deep learning. 
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U n s u p e r v i s e d L e a r n i n g 

In unsupervised learning, there is no supervisor, no targets are defined so that the t raining 
data consist of only a set of input vectors. The goal is to find the regularities in the input 
data. There is a structure to the input space such that certain patterns occur more often 
than others, and we want to see what generally happens and what does not. In statistics, 
this is called density estimation. One method for density estimation is clustering. Therefore, 
a variety of clustering algorithms are canonical examples of unsupervised learning. One 
specific example of density-based clustering is shown in Figure 3.1 below. 

Figure 3.1: Example of density-based clustering that connects areas of high input data 
density into clusters. 

R e i n f o r c e m e n t L e a r n i n g 

This is somewhere between supervised and unsupervised learning. The algori thm gets told 
when the answer is wrong, but does not get to ld how to correct i t . It has to explore and 
t ry out different possibilities un t i l it works out how to get the answer right. The goal of 
reinforcement learning is to learn how to act or behave i n a given si tuation for the given 
reward or penalty signals. In this type of learning, a state for current status is defined, 
and an environment, usually a criterion function, evaluates the current state to generate 
a proper reward or penalty action through a set of policies. Instead of having exact target 
values, it learns wi th critics. Therefore, reinforcement learning is sometimes called learning 
wi th a cri t ic because of this monitor that scores the answer, but does not suggest any 
improvements [52]. 

A robot navigating i n an environment in search of a goal location is one possible appli­
cation area of reinforcement learning. A t any t ime, the robot can move i n one of a number 
of directions. After a number of t r i a l runs, it should learn the correct sequence of actions 
to reach the goal state from an in i t i a l state, doing this as quickly as possible and without 
h i t t ing any of the obstacles. 
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One factor that makes reinforcement learning harder is when the system has unreliable 
and par t ia l sensory information. For example, a robot equipped wi th a video camera has 
incomplete information, and thus, at any time, is i n a par t ia l ly observable state and should 
decide taking into account this uncertainty. For example, it may not know its exact location 
in a room, but only that there is a wal l to its left. A task may also require a concurrent 
operation of mult iple robots that should interact and cooperate to accomplish a common 
goal [1]. 

3.2 Artif icial Neural Network 

A n Ar t i f i c i a l Neura l Network is a computat ional model inspired by networks of biological 
neurons. In animals, learning occurs wi th in the brain. W h i l e the brain is an impressively 
powerful and complicated system, the basic bui ld ing blocks that it is made up of are fairly 
simple and easy to understand. In computat ional terms, the brain deals w i t h noisy and 
even inconsistent data, and produces very quick answers that are usually correct even from 
very high dimensional data, such as images. 

N e u r o n 

A neuron is an electrically excitable cell that communicates w i th other cells v i a specialized 
connections called synapses. There are hundreds of bill ions of neurons i n a human brain [7]. 
The input to the neuron is provided by dendrites, a number of ramifying branches, which 
continually monitor changes i n the external and internal environment. The output of the 
neuron is provided by a long fiber called the axon. The general operation of a neuron is 
that transmitter chemicals wi th in the fluid of the bra in raise or lower the electrical potential 
inside the body of the neuron. If this membrane potential reaches some threshold, the 
neuron spikes (or fires), and a pulse of fixed strength and durat ion is sent down the axon. 
The axons divide into connections to many other neurons, connecting to each of these 
neurons i n a synapse. Each neuron is typical ly connected to thousands of other neurons [7]. 
A picture of two neurons can be seen i n Figure 3.2. 

Each neuron can be viewed as a separate processor, performing a very simple compu­
tat ion, which is deciding whether or not to fire. Th is makes the brain a massively parallel 
computer. The basic principle of learning is to modify the strength of synaptic connections 
between neurons, and to create new connections. 

Changes i n the strength of synaptic connections are proport ional to the correlation in 
the firing of the two connecting neurons. So if two neurons consistently fire simultaneously, 
then any connection between them w i l l change i n strength, becoming stronger. However, i f 
the two neurons never fire simultaneously, the connection between them w i l l die away. The 
idea is that i f two neurons bo th respond to something, then they should be connected [32]. 
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Figure 3.2: A neuron consisting of a cell body, an axon and mult iple dendrites creating 
a connection to another neuron [33]. 

P e r c e p t r o n 

Perceptrons were invented as simple computat ional models of neurons. A perceptron is 
a neural network w i t h one art if icial neuron. It takes many inputs and has one output. 
Its first half consists of a vector of weights w = [wi .. .wm], one for each input, plus 
distinguished weight, 6, called the bias. Weights represent weighted connections between 
neurons. These weights are equivalent to the synapses in the brain. Weights and bias are 
called the parameters of the perceptron. The basic operation performed by the perceptron 
is to mul t ip ly the values of each input Xi by its weight Wi, sum the results up and add the 
bias. It can be wri t ten as: 

n 
z = b + 's^2/xiwi (3.1) 

i=l 

where x = \x\... xn] is the input vector. The bias is added for cases where a l l of the inputs 
are zero. In such a case, it does not matter what the weights are, since zero times anything 
equals zero. The only way to control the output of the perceptron is through the bias. It 
represents an extra input weight to the perceptron, w i th the value of input always being 
fixed. 

The second half of the work of the perceptron is to decide whether to produce output 
of 1 or output of 0 depending on whether the value z is above some threshold 9. Th i s is 
also known as an activation function: 

, , ( l i f z > 9 . . 
a = a(z) = < (3.2) 

I 0 otherwise 
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Perceptions are binary classifiers, so 1 indicates that x is a member of the class, and 0 not 
a member [13]. A graphical representation of the perceptron is shown i n Figure 3.3. 

Inputs Weights 

Figure 3.3: A perceptron wi th n inputs. A weighted sum z of the inputs and the bias is 
passed through an act ivation function a that gives an output of 1 if the sum is greater than 
the defined threshold and an output of 0 otherwise [16]. 

The activation function a is to be selected on the basis of the nature of the problem. It 
mathematical ly defines the properties of perceptrons. It can be any step function or non­
linear sigmoid function, depending on the problem. The most common activation functions 
are shown in Figure 3.4 below. 
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Figure 3.4: Different types of functions used as activation functions of percep­
trons [5] [6] [4] [2]. 

The perceptron needs to be trained before it can be used. The t ra ining algori thm works 
by i terating over the t ra ining data several times, adjusting the weights to increase the 
number of correctly identified examples. E a c h pass through the data is called an epoch. 
The corresponding input of the perceptron is set, and then Equations 3.1 and 3.2 are used 
to calculate the output, which is then compared to the target that is known to be the 
correct answer for this input . Loss or distance functions are defined between the current 
output vector and the target vector for each input vector, and opt imizat ion is performed 
to minimize the loss over a l l t ra ining examples. 
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If the answer of the perceptron is correct, there are no adjustments, but if the answer 
is incorrect, the perceptron needs to have its weights changed. Some of the weights w i l l 
be too big i f the perceptron produced 1 when it should not have, and too smal l if it d id 
not produce 1 when it should. Therefore, the difference between the target t, which is 
the anticipated answer, and the output y of the perceptron is computed. If the result is 
positive, then the perceptron should have produced 1 and it d id not, so the weights are 
made bigger, and vice versa i f it is negative. The rule for updat ing a weight Wi is: 

Wi <r- Wi + rj(t - y) • Xi (3.3) 

where r\ is a parameter called the learning rate. The value of the learning rate decides how 
much the weight should change by, and thus how fast the network learns. If the learning 
rate is missed out, the weights change a lot whether there is a wrong answer, which tends 
to make the network unstable, so that it never settles down. The cost of having a small 
learning rate is that the weights need to see the inputs more often before they change 
significantly. However, it w i l l be more stable and resistant to noise and inaccuracies in the 
data [32]. A n element of the input could be negative, which would switch the values over, 
therefore, the difference in Equa t ion 3.3 is mul t ip l ied by Xj , which makes the value of the 
weight negative as well. 

Perceptrons are linear models. They t ry to separate out the cases where they should 
produce an output of 1 from those where they should not. Th is is done by finding a straight 
generalization line i n 2D, a plane in 3D, or a hyperplane i n higher dimensions. This line is 
called the decision boundary or discriminant function [32]. A n example of one is given in 
Figure 3.5. The cases where there is a straight line are called l inearly separable cases. 

c, 

Figure 3.5: A decision boundary separating two classes of data. 

M u l t i - L a y e r P e r c e p t r o n s 

Linear models are easy to understand and use. They can identify straight lines, planes 
or hyperplanes, but the majori ty of problems are not linearly separable. Learning i n the 
neural network happens in the weights, and thus, adding more neurons between the input 
nodes and the outputs w i l l make more complex neural networks, such as the one shown in 
Figure 3.6. A d d i n g extra layers of nodes makes a neural network more powerful. A l l these 
nodes are interconnected, so the output of one node is connected to the inputs of a l l nodes 
in the next layer. 
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Figure 3.6: A neural network consisting of mult iple layers of interconnected neurons [3]. 

To t ra in this network, the difference between the targets and outputs can be computed, 
but it is not possible to find out which weights were wrong and in which layer. N o r is 
it possible to determine what the correct activations are for neurons in the middle of the 
network. This fact gives the neurons i n the middle of the network their name. They 
are called the hidden layer, because it is not possible to examine and correct their values 
directly. 

Learning process uses two popular algorithms named feed-forward and backpropagation. 
The term feed-forward describes how the neural network processes and recalls patterns. 
In a feed-forward neural network, neurons are only connected forward. Each layer of the 
neural network contains connections to the next layer, but there are no connections back. 
In this way, values are fed forward. The term backpropagation describes how this type of 
neural network is trained. Backpropagat ion is a form of supervised training. It calculates 
the error by comparing the anticipated outputs against the actual outputs for a given 
input, and propagates them back to the earlier layers. The weights of the various layers are 
adjusted backwards from the output layer to the input layer to reduce the value of error. It 
is a form of gradient descent (Figure 3.7). If a function is differentiated, we get the gradient 
of that function, which is the direction along which it increases and decreases the most. So 
if we differentiate an error function, we get the gradient of the error. Fol lowing the function 
in the direction of the negative gradient w i l l minimise the error, and that is the purpose of 
learning [40]. 

There is no theory for choosing the number of hidden nodes or the number of hidden 
layers. The only way is to experiment by t ra ining networks wi th different numbers of 
hidden nodes, and then choosing the one that gives the best results. The backpropagation 
algori thm can be used for a network w i t h as many layers as needed, al though wi th an 
increasing number of layers it gets progressively harder to keep track of which weights are 
being updated at any given time. 

For a network wi th one hidden layer, there are (m + 1) • n + (n + 1) • p weights, where 
m , n, o are the number of nodes i n the input, hidden and output layers, respectively. Bias 
nodes also have adjustable weights, so they must be taken into account (the extra + l s ) . 
Th is is a potential ly huge number of adjustable parameters that are needed to be set during 
the t ra ining phase. The more t raining data there is, the better the learning, al though the 
t ime required for learning increases. 
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Figure 3.7: Gradient descent is an opt imizat ion algori thm for finding the m i n i m u m of 
a function. To find the local m i n i m u m of a function, proport ional steps to the negative of 
the gradient are taken at the current point [3]. 

O v e r f i t t i n g a n d U n d e r f i t t i n g 

The main purpose of using a neural network is to perform well on new, previously unseen 
inputs. Th is abi l i ty of the neural network is called generalization. Therefore, we want the 
generalization error, to be as low as possible, where the generalization error is defined as 
the expected value of the error on a new input [19]. 

The neural network has to be sufficiently trained to generalize well . However, there is 
at least as much danger i n over-training the network as there is i n under-training it . If the 
network is trained for too long, then it w i l l overfit the data, which means that the network 
has learned about noise and inaccuracies i n the data as well as the actual function. The 
network w i l l be too complicated, and it w i l l not be able to generalize. Th is is shown in 
Figure 3.8. 

A model can be controlled whether it is more l ikely to overfit or underfit by altering 
its capacity. Capaci ty is the number of learnable parameters. Machine learning algorithms 
w i l l generally perform best when their capacity is appropriate for the true complexity of the 
task they need to perform and the amount of t ra ining data they are provided wi th . Models 
w i th insufficient capacity are unable to solve complex tasks. Models w i th high capacity 
can solve complex tasks, but when their capacity is higher than needed to solve the present 
task, they may overfit [19]. The relationship between capacity and generalization error is 
shown i n Figure 3.9. 
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Figure 3.8: The graph shows a part of the cosine function that should be approximated. In 
addit ion, samples from the true function and its approximations are displayed. The models 
can use the polynomia l functions of different degrees. A linear function on the left is not 
sufficient to fit the t ra ining samples. Th is is called underfitting. A polynomia l of degree 4 
in the center approximates the cosine function almost perfectly, but for higher degrees on 
the right, the model w i l l overfit the t raining data, since the solution passes through a l l the 
t ra ining samples exactly [45]. 

There are several methods that prevent a model from overfitting. T h e y are called 
regularization, and they are based on constraining the amount of information that the 
model is allowed to store. If a network can only afford to memorize a smal l number of 
patterns, it w i l l force the network to focus on the most prominent patterns, which have 
a better chance of generalizing well . These methods are described below: 

• Reducing the size of the network is the simplest way to prevent overfitting. To 
reduce the size of the network, the number of its learnable parameters is decreased. 
A network wi th more parameters has more memorizat ion capacity, and therefore, can 
easily learn a perfect mapping between t ra ining samples and their targets without 
any generalization power. 

• A d d i n g weight regularization. A model where the dis t r ibut ion of parameter values 
has less entropy is less l ikely to overfit than a complex one. Thus a common way to 
reduce overfitting is to force its weights to take only smal l values, which makes the 
dis tr ibut ion of weight values more regular. Th is is called weight regularization, and 
it is done by adding a cost associated w i t h having large weights to the loss function 
of the network. There are two types of weight regularization: 

1. LI regularization - the added cost is proport ional to the absolute value of the 
weight coefficients 

2. L2 regularization - the added cost is proport ional to the square of the value of 
the weight coefficients 

• A d d i n g dropout, which is one of the most effective and most commonly used reg­
ularizat ion techniques for neural networks. Dropout , applied to a layer, consists of 
randomly dropping out a number of output values of the layer during t raining. The 
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dropout rate is the fraction of the values that are zeroed out. A t test t ime, no units 
are dropped out. Instead, the output values of the layer are scaled down by a factor 
equal to the dropout rate, to balance for the fact that more units are active than at 
t ra ining t ime [14]. 
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L 

— • Training error 
Overfitting zone 
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Figure 3.9: The graph shows the relationship between capacity and generalization error. 
A t the left end of the graph, both the t raining error and the generalization error are high. 
Th is is the underfitting zone. A s capacity increases, t ra ining error decreases, but the gap 
between t ra ining and generalization error also increases. The size of this gap eventually 
outweighs the decrease in t ra ining error, and it gets to the overfitting zone, where capacity 
is too large, above the op t imal capacity [19]. 

T r a i n i n g , T e s t i n g a n d V a l i d a t i o n 

We should have at least two and preferably three sets of problem examples. The first is the 
t ra ining set. It is used to adjust the parameters of the model . In order to decide when to 
stop learning, we have to check how well the network is learning during the t raining. We 
can not use the t ra ining data for this because we would not be able to detect overfitting. 
Therefore, we keep the second dataset back, called the validat ion set. This set is used to 
validate the learning so far. Th is is known as cross-validation i n statistics [32]. Whenever 
an artificial neural network is trained, it should be tested how well it works, but it is not 
sensible to test it using the same data on which it was trained because, it would not tel l 
us anything at a l l about how well the network generalises nor anything about whether or 
not overfitting had occurred. Therefore, we must keep the th i rd set, called the test set, 
which we do not use for t raining. The only problem is that it reduces the amount of data 
available for t raining. The exact proport ion of t ra ining to testing to val idat ion data is up 
to us, but it is typica l to do something like 60:20:20 [32]. 

3.3 Deep Learning 

Deep learning is a specific subfield of machine learning. It puts an emphasis on learning 
successive layers of increasingly meaningful representations. The word deep i n deep learning 
is not a reference to any k ind of deeper understanding achieved by this approach, but rather, 
it stands for this idea of successive layers of representations. How many layers contribute 
to a model of the data is called the depth of the model [14]. 
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C o n v o l u t i o n a l N e u r a l N e t w o r k 

Convolut ional neural networks, or C N N s , are a specialized k ind of neural network for pro­
cessing data that has a known grid-like topology. The core element of convolutional neural 
networks is data processing using a mathematical operation called convolution. Convolut ion 
of any signal w i th another signal produces a th i rd signal that may reveal more information 
about the signal than the original signal itself. For example, by convolving a grayscale im­
age as a 2D signal w i th another signal, generally called a filter or kernel, an output signal 
can be obtained that contains edges of the original image, which may be useful for several 
applications. 

The most general form of convolution is an operation on two functions / and g of a real-
valued argument. The convolution operation is typical ly denoted wi th an asterisk [41]: 

v(t) = (f*g)(t) (3.4) 

In machine learning applications, the input is usually a mult idimensional array of data, and 
the kernel is usually a mult idimensional array of parameters that are adapted by the learning 
algori thm. We can use the following Equa t ion 3.5 to get the value V of the convolution of 
an image / at a posit ion x, y, and a kernel K [41]: 

V(x, y) = (I * K)(x, y) = I(x + m,y + n)K{m, n) (3-5) 
m n 

A n example of such a convolution is shown in Figure 3.10. 
The main difference between a fully connected layer, found in a typica l neural network, 

and a convolution layer is that fully connected layers learn global patterns involving a l l 
pixels, whereas convolution layers learn local patterns, i n the case of images, patterns found 
in smal l 2D windows of the input . The patterns C N N s learn are translat ion invariant. For 
example, after learning a certain pattern in the middle of a picture, a convolutional neural 
network can recognize it anywhere. A fully connected network would have to learn a new 
pattern i f the existing one appeared at a new location. Th is makes convolutional networks 
data-efficient because they need fewer t ra ining samples to learn representations that have 
generalization power. 

C N N s can also learn spatial hierarchies of patterns. The first convolution layer w i l l learn 
small local patterns such as edges, the second convolution layer w i l l learn larger patterns 
made of the patterns of the first layers, and so on. Th is allows convolutional networks to 
efficiently learn increasingly complex and abstract visual concepts to represent the visual 
world. 
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Figure 3.10: A n example of 2D convolution. The output is restricted to only positions 
where the kernel lies entirely wi th in the image [19]. 

G e n e r a t i v e A d v e r s a r i a l N e t w o r k 

Generative adversarial network, or G A N , is an unsupervised deep learning machine, intro­
duced by Ian Goodfellow i n 2014 [20]. It enables the generation of fairly realistic synthetic 
images by forcing the generated images to be statistically almost indistinguishable from 
real ones. Th is type of neural network is based on two models: 

1. Generator network that takes as input a random vector and decodes it into a syn­
thetic image. 

2. Discriminator network that takes as input a real or synthetic image and predicts 
whether the image came from a t ra ining set or was created by the generator network. 

A G A N chains the generator and the discriminator together: 

GAN(x) = Discriminator(Generator(x)) (3-6) 

The generator is trained to be able to fool the discriminator to the extent that it is impos­
sible for the discriminator to dist inguish between real and fake images. It evolves toward 
generating increasingly realistic images as t ra ining goes on. Meanwhile, the discriminator 
is constantly adapting to the gradually improving capabilities of the generator. Therefore, 
both models are being trained to best the other. Once t ra ining is over, the generator is 
capable of turning any point i n its input space into a believable image. Figure 3.11 shows 
a diagram of a generative adversarial network. 
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Figure 3.11: The generator transforms random vectors (noise) into images and the discrim­
inator tries to dist inguish between real and synthetic images [50]. 

A G A N is a system where the opt imizat ion m i n i m u m is not fixed. Normally , gradient 
descent consists of rol l ing down hills i n a static loss landscape. B u t w i th a G A N , every 
step taken down the h i l l changes the entire landscape a l i t t le . It is a dynamic system where 
the opt imizat ion process is seeking not a min imum, but an equi l ibr ium between the two 
models. For this reason, G A N s are notoriously difficult to t ra in . Ge t t ing a G A N to work 
requires lots of careful tuning of the model architecture and t ra ining parameters [14]. 
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Chapter 4 

Proposed Solution 

Generating realistic-looking images of the ret ina is not an easy task. The retina contains 
many structures that have a certain shape and color, and there are also dependencies 
between their locations. For this reason, I chose the image-to-image translation approach, 
where the generator is provided wi th a black and white image of the bloodstream, from 
which a synthetic image of the ret ina is subsequently generated. In this way, the generator 
is prevented from generating an unrealistic bloodstream where, for example, some vessels 
are not connected to each other, are too wide or, conversely, there is a m i n i m u m of blood 
vessels i n the generated retina. Condi t iona l generative adversarial networks are used to 
implement image-to-image translations, on which I based my solution. This type of network 
is described below, followed by a description of the proposed system for generating synthetic 
images of the retina. 

4.1 Conditional Generative Adversarial Network 

G A N s are generative models that learn mapping from random noise vector z to output image 
y, G: z —>• y. In contrast, condit ional G A N s learn mapping from observed image x and 
random noise vector z to y, G: {x, z] —>• y. The generator G is trained to produce outputs 
that cannot be distinguished from real images by an adversarially trained discriminator, 
which is trained to do as well as possible at detecting fake images of the generator [25]. 
Th is t ra ining procedure is shown i n Figure 4.1. 

G e n e r a t o r 

A defining feature of image-to-image translat ion problems is that they map a high resolution 
input gr id to a high resolution output gr id . In addit ion, the input and output differ in 
surface appearance, but both are renderings of the same underlying structure. Therefore, 
structure i n the input is roughly aligned wi th structure i n the output. 

The generator uses an encoder-decoder network. In such a network, the input is passed 
through a series of layers that progressively downsample, un t i l a bottleneck layer, at which 
point the process is reversed. This network requires that a l l information flow pass through 
al l the layers, including the bottleneck. For many image translation problems, there is 
a great deal of low-level information shared between the input and output, and it would be 
desirable to shuttle this information directly across the network [25]. 

To give the generator a means to circumvent the bottleneck for information like this, skip 
connections are added, following the general shape of a U-Net [44]. U-Ne t is a convolutional 
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neural network that was developed for biomedical image segmentation. Its typica l shape, 
for which it got its name, is shown in Figure 4.2. 

^ fake 

Real image 

• real 

Figure 4.1: Tra in ing a condit ional G A N to map blood vessels to ret inal images. The 
discriminator learns to classify between fake and real tuples. The generator learns to fool 
the discriminator. Unl ike an uncondit ional G A N , both the generator and discriminator 
observe input images of b lood vessels. 
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Figure 4.2: U-net architecture. E a c h blue box corresponds to a multi-channel feature map. 
The number of channels is denoted on top of the box. The dimensions are provided at the 
lower left edge of each box. W h i t e boxes represent copied feature maps. The arrows denote 
different operations, where the grey ones represent skip connections [44]. 
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D i s c r i m i n a t o r 

It is well known that the L 2 loss and L I produce b lurry results on image generation prob­
lems [30]. A l though these losses fail to encourage high-frequency crispness, i n many cases 
they nonetheless accurately capture low frequencies. In such cases, L I enforces correctness 
at the low frequencies. Therefore, the G A N discriminator is restricted to only model high-
frequency structure, relying on an L I term to force low-frequency correctness. In order to 
model high frequencies, it is sufficient to examine the structure in local image patches. In 
this way, the discriminator architecture is designed to only penalize structure at the scale 
of patches, where it tries to classify i f each N x N patch in an image is real or fake. This 
discriminator is run convolutionally across the image, averaging a l l responses to provide 
the ul t imate output of the discriminator. 

iV can be much smaller than the full size of the image and s t i l l produce high quali ty 
results. Th is is advantageous because a smaller network has fewer parameters, runs faster, 
and can be applied to arbi t rar i ly large images. Such a discriminator effectively models the 
image as a Markov random field, assuming independence between pixels separated by more 
than a patch diameter. Therefore, it is called Markov ian discriminator or P a t c h G A N [25]. 

4.2 Synthetic Retinal Image Generator 

Synthetic Re t ina l Image Generator, or S R I G , is the proposed system for generating syn­
thetic ret inal images wi th a resolution of 1024x1024 pixels. The same wid th and height 
of the input and output was chosen because the retina has a round shape. I also tr ied to 
create an extended version of this system that would produce images i n a higher resolution 
of 2048x2048 or more, but I encountered a problem where I was running out of memory 
during t raining. That is why the final resolution is 1024x1024. 

S R I G is a condit ional neural network that generates color images of entire retinas from 
black and white images containing only segmented b lood vessels. S R I G , like G A N s , consists 
of two parts: a generator and a discriminator, where these two models are trained simulta­
neously by an adversarial process. Once the whole system achieves the desired results, the 
discriminator is no longer needed and only the generator and its learned weights are used 
to generate new images. To distinguish real images from fake (generated) images, values 1 
and 0 are used, where 1 represents the real image and 0 fake. The mapping of the input 
to the output by the generator is schematically shown i n Figure 4.3. B o t h the generator 
and the discriminator use binary cross-entropy loss as their loss function, because there 
are only two classes into which images are classified - real and fake. Therefore, binary 
cross-entropy is described i n more detail here. Th is section also describes the architecture 
of the generator and discriminator, which together form the S R I G system. 

x y 

Figure 4.3: The generator learned to map the observed black and white image x to the 
color output image y, G: x —>• y, i n order to create a new, previously unseen retina. 
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B i n a r y C r o s s - E n t r o p y L o s s 

B i n a r y cross-entropy loss, also called sigmoid cross-entropy loss, is a sigmoid activation 
function wi th a cross-entropy loss. A n example of a sigmoid function is the logistic function 
shown i n Figure 4.4 below. 
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1 
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Figure 4.4: The logistic function: g(z) = 1 + e - z w i th a characteristic sigmoid curve [5]. 

Cross-entropy loss, or log loss, measures the performance of a classification model, the 
output of which is a probabil i ty value between 0 and 1. Cross-entropy loss increases as the 
predicted probabi l i ty deviates from the actual value. Thus, predict ing a probabil i ty of, for 
example, 0.01 would result i n a high loss value i f the actual observed value is 1. A perfect 
model would have a log loss of 0. A n example of cross-entropy loss is given i n Figure 4.5. 
Cross-entropy can be calculated as [47]: 

M 
-^2y0,c-log(p0,c) (4.1) 

c=l 
where M is the number of classes of the classification problem, y is a binary indicator, 
whether the class c is the correct classification for the observation o, and p is the predicted 
probabil i ty that observation o is of class c. B ina ry cross-entropy loss is used when there 
are only two classes, i n this case whether the image is real or not. Subst i tut ing M = 2 into 
Equa t ion 4.1, binary cross-entropy can then be calculated as: 

-(ylog(p) + (l-y)-log(l-p)) (4.2) 
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Figure 4.5: The graph above shows a range of possible loss values given a true observation. 
A s the predicted probabil i ty approaches 1, log loss slowly decreases. However, as the 
predicted probabil i ty decreases, the log loss increases rapidly [17]. 
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G e n e r a t o r 

The architecture of the generator is a modified U-Net . A s already mentioned, the generator 
uses an encoder-decoder network. There are skip connections between the encoder and 
decoder. Th i s allows us to share information between the input and output, so it better 
captures the resulting structure that is based on the input structure. Specifically, skip 
connections are added between each layer i and layer n — i, where n is the to ta l number 
of layers. E a c h skip connection s imply concatenates a l l channels at layer i w i th those at 
layer n — i. Th is architecture can be seen i n Figure 4.6, but for s implic i ty and clarity, 
the input and output resolution of the image is only 16x16 pixels. The architecture of the 
actual generator, which generates images in the resolution of 1024x1024 pixels, is presented 
in Append ix B . More specifically, the encoder is shown i n Figure B . l and the decoder is 
shown i n Figure B .2 . 

The encoder consists of several blocks, where the to ta l number of these blocks depends 
on the required output resolution of the generated images. To achieve the bottleneck layer 
( l x l ) at the input resolution of 1024 x 1024, it is necessary that the number of blocks in the 
encoder is 10. E a c h block downsamples the image to half its size, so /og2(1024) blocks are 
needed for this input resolution, which is 10. A d d i t i o n a l blocks may be added to increase the 
image resolution, but the network w i l l need to be trained again. Each block in the encoder 
consists of a strided convolution, batch normalizat ion, and leaky R e L U as the activation 
function of the block. A strided convolution is convolution wi th a stride. The stride defines 
the step size of the kernel when traversing the image. A l t h o u g h its default value is usually 1, 
a stride of 2 is used for downsampling. Ba tch size represents the number of t ra ining samples 
to work through before the internal parameters of the model are updated. For example, i f 
the batch size is one, the neural network parameters are updated after each sample, and i f 
the batch size is equal to the total number of samples i n a dataset, the parameters are not 
updated un t i l the entire epoch is completed. Ba t ch normalizat ion is a type of layer that can 
adaptively normalize data even as the mean and variance change over t ime during training. 
It works by internally maintaining an exponential moving average of the mean and variance 
across the batch of the data seen during t raining. The main effect of batch normalizat ion 
is that it helps wi th gradient propagation and thus allows for deeper networks. Instead 
of R e L U activation, I used leaky R e L U layer because it is s imilar to R e L U , but it relaxes 
sparsity constraints by allowing smal l negative act ivat ion values. Side by side comparison 
between R e L U and leaky R e L U is shown i n Figure 3.4 i n the previous chapter. A diagram 
of one encoder block is shown i n Figure 4.7. 

The number of blocks i n the decoder depends on the number of blocks in the encoder, 
because the encoder and decoder must form a symmetric pattern i n order to use the skip 
connections and generate the same output resolution as the input resolution. Each block in 
the decoder consists of a transposed convolution, batch normalizat ion and leaky R e L U as 
the activation function of the block. A transposed convolution, also called deconvolution, 
represents a transformation going in the opposite direction of a normal convolution, i.e., 
from something that has the shape of the output of some convolution to something that 
has the shape of its input, while maintaining a connectivity pattern that is compatible w i th 
said convolution. To minimize the risk of overfitting, dropouts were added to ensure that 
weights are regularized. In this way, each block upsamples the image to twice its size. The 
last block of the decoder uses tank instead of leaky R e L U as the activation function to get 
the resulting p ixe l values. The decoder structure can be seen i n Figure 4.8. 
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input: (?. 4. 4, 1024) 

DecoderBlock3: Sequential 
output: (?, 8, 8,512) 

Skip C onnectiorfl: C one atenate 
input: [(?. 8. 8. 512). (?. 8. 8. 512)] 

Skip C onnectiorfl: C one atenate 
output: (?. 8. 8. 1024) 

A 

DecoderBlock4: Sequential 
input: (?. 8. 8. 1024) 

DecoderBlock4: Sequential 
output: (?. 16. 16, 3) 

Figure 4.6: Generator architecture wi th input and output resolution of 16x16 pixels. 
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Input: IiiputLayer 
input: [(?, 16, 16, 3)] 

Input: IiiputLayer 
output: [('?. 16, 16, 3)] 

StridedC oiivolution: C onv2D 
input: (?, 16,16, 3) 

StridedC oiivolution: C onv2D 
output: (?, 8, 8. 32) 

B atchNomialkation: B atchNormalization 
input: (?, S, 8, 32) 

output: (?, 8, 8, 32) 

LeakyReLU: LeakyReLU 
input: (?, 8, 8, 32) 

LeakyReLU: LeakyReLU 
output: (?, 8, S, 32) 

Figure 4.7: Encoder block of the generator, consisting of a convolution layer, batch nor­
malizat ion and leaky R e L U . The data shape is (batch size, height, wid th , channels), where 
different channels represent specific colors of the R G B input . After convolution, channels 
no longer represent colors, but rather stand for filters that encode specific aspects of the 
input data. The input shape is (?, 16, 16, 3) and the output shape is (?, 8, 8, 32). 

Input: IiiputLayer 
input: [(?, 8. S. 32)] 

Input: IiiputLayer 
output: [(?. 8, 8, 32)] 

D ec oiivolution: C onv2DTran*p o s e 
input: (?, 8, 8, 32) 

D ec oiivolution: C onv2DTran*p o s e 
output: (?, 16, 16, 3) 

B atchNormalization: B atchNomialization 
input: (?, 16,16, 3) 

output: (?, 16, 16, 3) 

Dropout: Dropout 
input: (?, 16, 16, 3) 

Dropout: Dropout 
output: (?, 16, 16, 3) 

A 

LeakyReLU: LeakyReLU 
input: (?, 16,16, 3) 

LeakyReLU: LeakyReLU 
output: (?, 16, 16, 3) 

Figure 4.8: Decoder block of the generator, consisting of a transposed convolution layer, 
batch normalizat ion, dropout and leaky R e L U . The input shape is (?, 8, 8, 32) and the 
output shape is (?, 16, 16, 3). 

34 



Loss of the generator quantifies how well the generator was able to tr ick the discrimina­
tor. If the generator is performing well, the discriminator w i l l classify fake images (or 0) as 
real (or 1). Therefore, the discriminator decision on the generated images is compared to 
a set of ones using binary cross-entropy. The previously mentioned L I loss is added, where 
L I loss is the mean absolute error between the generated image and the target image. This 
allows the generated image to become structural ly similar to the target image. The mean 
absolute error can be calculated as: 

MAE E n I , 

i=i \9i ~ U 
n 

(4.3) 

where gi is the generated value, U is the target value and n is the number of samples. The 
tota l loss of the generator thus consists of cross-entropy loss and L I loss: 

total loss = cross-entropy loss + ( L I loss • A) (4.4) 

where the value of A is 100 [25]. Its purpose is to regulate the impact of L I loss. A graphical 
representation of the to ta l loss calculation of the generator is given i n Figure 4.9 below. 

Input Image 

Gene ra to r J 

D •• rinatorj 

Target Image 

L I loss 

A r ray of o n e s 
C3inary C r o s s j 

1 En t ropy J L a m b d a 

Figure 4.9: The process of calculat ing the to ta l loss of the generator. 

D i s c r i m i n a t o r 

The architecture of the discriminator is a P a t c h G A N . It is sufficient to examine the structure 
of an input image i n local patches. For this reason the output of the discriminator is a set 
of patches and not a single response, resulting i n higher overall performance. E a c h patch 
of the output classifies a given port ion of the input image, whether it is real or fake. The 
input image is therefore downsampled to 32x32 patches, from which the to ta l result is 
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obtained by averaging a l l patches. The discriminator contains 5 downsampling blocks, 
because to reduce the input resolution of 1024x1024 to 32x32 , the discriminator needs 
log2(-^r) blocks, which is 5. E a c h block consists of a strided convolution that performs the 
downsampling, followed by batch normalizat ion and leaky R e L U as the activation function, 
except for the last block, where there is a linear act ivat ion function to get the desired output. 
The architecture of the whole discriminator is shown i n Figure 4.10 below. A diagram of 
one block of the discriminator is shown i n Figure 4.11. 

Inputlmage: InputLayer 
input: [(?, 1024,1024, 3)] 

Inputlmage: InputLayer 
output: [(?, 1024,1024, 3)] 

Targetlmage: InputLayer 
input: [('?, 1024. 1024. 3)] 

Targetlmage: InputLayer 
output: [(?, 1024, 1024, 3)] 

Concatenate: Concatenate 
input: [(?, 1024, 1024, 3), (?. 1024, 1024, 3)] 

Concatenate: Concatenate 
output: (?, 1024, 1024, 6) 

A 

I) owns amplingBlo ckl: S equential 
input: ('?. 1024, 1024, 6) 

I) owns amplingBlo ckl: S equential 
output: (?. 512. 512.64) 

1 

I) owns amplingBlo ck2: S equential 
input: (7,512,512,64) 

I) owns amplingBlo ck2: S equential 
output: ('?, 256. 256. 128) 

1 
I) owns amplingBlo ck3: S equential 

input: (?, 256. 256. 128) 
I) owns amplingBlo ck3: S equential 

output: ('?. 128. 128. 256) 

1 

I) owns amplingBlo ck4: S equential 
input: (?. 128. 128. 256) 

I) owns amplingBlo ck4: S equential 
output: (?. 64. 64. 512) 

l 

I) owns amplingBlo clo: S equential 
input: (?, 64, 64,512) 

I) owns amplingBlo clo: S equential 
output: 

\ r 

I) owns amplingBlo ck6: S equential 
input: (?, 32, 32, 1024) 

I) owns amplingBlo ck6: S equential 
output: ('?, 32, 32, 1) 

Figure 4.10: Discr iminator architecture that classifies images wi th an input resolution of 
1024x1024 pixels. It has two images (input, target) on the input, which it concatenates 
and then progressively downsamples to the output form of 32x32 patches, from which the 
final prediction is made. 
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Input: IhputLayer 
input: [(?, 16, 16, 6)] 

Input: IhputLayer 
output: [(?. 16. 16. 6)] 

1 

StridedC(involution: Conv2D 
input: (?, 16,16, 6) 

StridedC(involution: Conv2D 
output: (?, 8. 8. 64) 

BatchNomialization BatchNomialization 
input: ('?, 8, 8, 64) 
output: (?, 8, 8, 64) 

LeakyReLU: LeakyReLU 
input: (?, 8, 8, 64) 

LeakyReLU: LeakyReLU 
output: (?, 8, S, 64) 

Figure 4.11: One block of the discriminator, consisting of a convolution layer, batch nor­
malizat ion and leaky R e L U . The number of channels on the input represents the channels 
of the concatenated input and target image. 

Loss of the discriminator quantifies how well the discriminator is able to dist inguish 
real images from the fake ones. Predict ions of the discriminator on real (target) images are 
compared to an array of ones, and predictions on fake (generated) images to an array of 
zeros. The discriminator loss function therefore takes 2 inputs: predictions on generated 
and target images. The total discriminator loss is: 

total loss = g_loss + t_loss (4-5) 

where g_loss is a binary cross-entropy loss of the generated image and an array of zeros and 
t_loss is a binary cross-entropy loss of the target image and an array of ones. A graphical 
representation of the calculat ion of the to ta l loss of the discriminator is given i n Figure 4.12. 

- Input Image Target Image 

r ^ 
Generator 

L J 

i 
^Discriminatory Discriminatory 

Figure 4.12: The process of calculat ing the to ta l loss of the discriminator. 
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Chapter 5 

Implementation 

This chapter w i l l introduce what technologies are used to implement the proposed system 
from the previous chapter, followed by a description of the actual implementat ion of each 
part. 

5.1 Technologies 

The proposed program for generating ret inal images is implemented i n P y t h o n programming 
language using TensorFlow library. I chose P y t h o n for several reasons, mainly because it is 
freely available for academic and commercial purposes, it is mult i-platform, and is becoming 
very popular for both general computing and scientific computing. TensorFlow was chosen 
because it provides a high-level A P I that makes it easier to bu i ld and t ra in machine learning 
models without sacrificing speed or performance. W i t h TensorFlow, I could s imply focus 
on the overall logic of the applicat ion, instead of dealing wi th the details of implementing 
the algorithms. 

P y t h o n 

P y t h o n is a scripting language that is strongly typed, but it performs a l l the declaration 
and creation of variables for us. A n y set of commands or functions i n a single source file is 
known as a module. P y t h o n has a fairly smal l set of commands and is designed to be fairly 
small and simple to use. W r i t i n g extension packages for P y t h o n is also simple. It does 
not require any special programming commands. A n y P y t h o n module can be imported as 
a package, as can packages wri t ten i n C (a low-level programming language), which can 
significantly increase performance. 

P y t h o n is not a functional programming language, but it does incorporate some of its 
concepts alongside other programming paradigms, such as higher order functions. Higher 
order functions either accept a function as an argument or return a function for further 
processing. P y t h o n has implemented some commonly used higher order functions from 
functional programming languages that make processing iterable objects like lists and iter­
ators much easier. One of them is the map() function, which allows us to apply a function 
to every element in an iterable object. Another frequently used function is the filter() func­
t ion, which tests each element i n an iterable object w i th a function that returns either True 
or False while keeping only those that evaluate to True. 
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T e n s o r F l o w 

TensorFlow is a free and open-source software l ibrary for numerical computat ion and ma­
chine learning using data flow graphs. These structures describe how data moves through 
a graph or a series of processing nodes. Nodes in the graph represent mathematical op­
erations, and each connection or edge between nodes is a mult idimensional data array, or 
tensor. Nodes and tensors i n TensorFlow are P y t h o n objects, and TensorFlow applications 
are themselves P y t h o n applications. 

The actual ma th operations, however, are not performed in Py thon . It uses P y t h o n 
to provide a convenient front-end A P I for bui lding applications w i th the framework, but 
the libraries of transformations that are available through TensorFlow are wri t ten as high-
performance C+-1- binaries. The flexible architecture allows us to deploy computat ion to 
one or more C P U s or G P U s i n a desktop, server, or mobile device w i t h a single A P I [51]. 

T e n s o r B o a r d 

TensorBoard is a visualizat ion software that comes wi th any standard TensorFlow instal­
lat ion. In machine learning, to improve something, we often need to be able to measure it. 
TensorBoard is a tool for providing the measurements and visualizations needed during the 
machine learning workflow. This allows us to visualize the model, track metrics, such as loss 
and accuracy as they change over time, and much more. TensorBoard uses an interactive, 
web-based dashboard to display this data. 

N v i d i a C U D A a n d c u d N N 

C U D A is a parallel computing platform and programming model developed by N v i d i a for 
general computing on graphical processing units ( G P U s ) . In GPU-accelera ted applications, 
the sequential part of the workload runs on the C P U , while the computat ional ly intensive 
port ion of the appl icat ion runs on thousands of G P U cores i n parallel . 

The N v i d i a C U D A Deep Neura l Network l ibrary ( c u D N N ) is a GPU-accelera ted l ibrary 
of primitives for deep neural networks. c u D N N provides highly-tuned implementations for 
standard routines, such as convolution, normalizat ion, and activation layers. It accelerates 
widely-used deep learning frameworks, including TensorFlow. This allows TensorFlow to 
run up to 50% faster on the latest N v i d i a G P U s and scale well across mult iple G P U s [39]. 

5.2 Data Preprocessing 

Machine learning algorithms tend to learn much more efficiently i f preprocessing of inputs 
and targets is performed before the network is trained. In order to s imply read and process 
data, the DataLoader class is implemented. It provides a set of static methods for working 
w i t h images and creating datasets. 

Images that are used as input to a neural network must meet certain requirements 
because the neural network has a fixed architecture. F i r s t , it is resized to match the 
input resolution of 1024x1024 pixels. Then, because the neural network uses tank as 
the act ivat ion function (Figure 3.4) for the output, the pixel values of the input images 
need to be between -1 and 1. Th is also helps to stop the weights from getting too large 
unnecessarily. Scaling one interval to another is called normalizat ion. The default value 
range for the pixels is <0,255> when the image is loaded. To scale these values down to 
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< - l , l > , a simple calculation is performed: 

normalize(x) (5.1) - 1 
127,5 

where x is the input value of the pixel . 

T r a i n i n g D a t a P r e p a r a t i o n 

To t ra in the proposed neural network, it is necessary to provide an input image together 
wi th the corresponding target image so that the network can learn the mapping between 
them. It is, therefore, necessary to provide two directories to prepare the input data. 
One contains images of b lood vessels, and the other contains corresponding images of the 
retinas. Each pair must have the same file name, but may differ in image format. Supported 
image formats for t ra ining data preparation are J P E G , P N G , G I F and T I F . B o t h specified 
directories are searched to find a l l supported images they contain. The Path class from the 
standard l ibrary pathlib is used to work wi th paths, which ensures the correct path format 
on different platforms. F r o m these images, the corresponding pairs (input, target) are then 
created. In the next step, the ind iv idua l images of each pair are loaded using the Image 
class from the PIL l ibrary and are further processed. 

Because the architecture of the neural network has a fixed format of input data, it is 
necessary that the input images also have a fixed format, which requires the dimensions 
(width and height) of the input images to be the same. For this reason, images are resized 
to meet these requirements. To prevent information from being lost due to cropping, the 
image is resized by extending its smaller dimension. The original image is placed i n the 
middle, and the newly created space is filled w i th black pixels. A n example of such an 
image is shown in Figure 5.1. 

Figure 5.1: The process of resizing an image to the same wid th and height. 

The pairs of images prepared in this way are placed side by side and saved i n one file 
in J P E G format. Figure 5.2 shows an image that is ready to be used as an input image 
of the neural network for t raining. The ma in reason why data is prepared and stored in 
this way is that dur ing t ra ining itself, TensorFlow functions are used to load such images. 
These functions are better opt imized and, therefore, perform better, but do not support as 
many image formats as the functions in the PIL l ibrary. 
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Figure 5.2: A n image prepared for t raining. 

C r e a t i n g a D a t a s e t 

A dataset represents a potential ly large set of elements. To create one, the TensorFlow 
class Dataset is used, which can apply dataset transformations to preprocess the data. To 
load the prepared input images, the specified directory is first checked and searched, from 
which a list of files to be loaded is created. This list is passed to the Dataset to init ial ize 
it. The map function mentioned in Section 5.1 is then used on this dataset to load and 
preprocess the ind iv idua l files. 

To prevent the neural network from learning the order of the ind iv idua l images when 
using the same t ra ining set, the data must be well-shuffled before each t raining. Once a l l 
the images have been loaded and preprocessed, the entire dataset is randomly shuffled using 
the bui l t - in function shuffle(). Th is function also allows the shuffle order to differ for each 
epoch. The consecutive elements in the dataset are then combined into batches of variable 
size. The batch size is a parameter that controls the number of t raining samples to work 
through before the internal parameters of the model are updated. 

To enhance the overall performance, the cache() function is used. It caches the elements 
in the dataset. The first t ime the dataset is iterated over, its elements are cached either in 
the specified file or i n memory. Subsequent iterations then use the cached data. 

D a t a A u g m e n t a t i o n 

D a t a augmentation is the process of generating more t ra ining data from existing t raining 
samples by augmenting the samples v ia a number of random transformations that yield 
believable-looking images. The goal is that at t ra ining time, the model w i l l never see the 
exact same image twice. This helps to expose the model to more aspects of the data and 
generalize better. 

To augment the t ra ining data, the images were zoomed i n and some of them were flipped 
horizontally and/or vertically. To zoom inside an image, the image is enlarged and then 
randomly cropped to its original size. The flipping is relevant because ret inal images are 
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not horizontally or vert ically symmetr ical . A n example of augmenting an image is shown 
in Figure 5.3. 

The augmented images are s t i l l heavily intercorrelated because they come from a small 
number of original images. D a t a augmentation cannot produce new information; it can 
only modify existing information. 

Figure 5.3: Image augmentation. The image on the left is the original image. The image on 
the right was created by randomly cropping and flipping (both horizontally and vertically) 
the original image. 

5.3 Conditional Generative Adversarial Network 

To implement the proposed condit ional generative adversarial network from Chapter 4, 
several classes were created, namely, Model, Generator, Discriminator and ConGAN. Thei r 
purpose and detailed description is given i n the following sections. The corresponding class 
diagram is shown i n Figure 5.4. 

M o d e l 

Because the generator and the discriminator are models that have certain things in common, 
the abstract Model class was created, which forms the common basis of these models. Th is 
class provides a basic interface for working wi th these models by implementing an object-
oriented mechanism - class inheritance. It allows access to ind iv idua l properties of the 
model, such as its loss function, optimizer, t ra ining variables or the model itself. The 
Model class has two abstract methods that must be implemented by its sub-classes. These 
are methods for creating the model and calculating the losses. 

It also provides an implemented method for updat ing model weights that is common to 
both the generator and the discriminator. This method takes the calculated gradients as an 
input argument and applies them to its trainable variables using the optimizer. Trainable 
variables represent model weights that are not fixed. A n optimizer is a class i n TensorFlow 
that ensures applying the gradients to the variables. 
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Model « a b s t r a c t » 

+model 
+loss_function 
+optimizer 
+tra i na b I e_va riab les 

+biild modelO « a b s t r a c t » 
+cslculate_loss() « a b s t r a c t » 
+create_d ownsa m p I i n g_b I ock() 
+create_ u psa m p I i ri g_b lock () 
+update_weights() 

Generator 

Hoad_weights() 
•-generate () 

Discriminator 

ConGAN 

+train() (y—J 

+train_step() 

Figure 5.4: Class diagram of the proposed condit ional generative adversarial network. 

B o t h the generator and the discriminator use the Adam optimizer from TensorFlow. 
A d a m opt imizat ion is a stochastic gradient descent method that is based on adaptive esti­
mat ion of first-order and second-order moments. Th is method is computat ional ly efficient, 
has l i t t le memory requirement, and is well-suited for problems that are large i n terms of 
parameters [27]. The input parameter of A d a m is the learning rate. 

Since both the generator and the discriminator are made up of s imilar blocks, the 
Model class provides two static methods for creating them. One method is used to create 
a downsampling block, and the other method is used to create an upsampling block. 

A downsampling block consists of a convolution layer, batch normalizat ion and leaky 
R e L U . The Conv2D class is used for the realization of the convolution layer. Its main input 
parameter is the number of filters used for convolution. Another parameter is the size of 
these filters, and the stride, which is set to 2 for downsampling. The BatchNormalization 
and LeakyReLU classes are used to implement batch normalizat ion and leaky R e L U . 

A n upsampling block consists of a transposed convolution layer, batch normalizat ion, 
dropout and leaky R e L U . The Conv2DTranspose class is used to realize the transposed 
convolution. Its parameters are the same as i n the case of the convolution layer. The stride 
is also set to 2, but now it is for upsampling. The dropout layer is implemented using 
the Dropout class. This layer randomly sets input units to 0 w i th the specified frequency 
at each step during t ra ining t ime. This frequency is an input argument whose values are 
between 0 and 1. Ba tch normalizat ion and leaky R e L U are implemented i n the same way 
as i n the downsampling block. A l l of the above-mentioned classes are implemented wi th in 
TensorFlow. The ind iv idua l parameters and their values are described in more detail in 
Section 6.2 i n the following chapter. 
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G e n e r a t o r 

The Generator class is inherited from the Model class. It represents the generative part 
of the system. A s mentioned i n the previous section, the generator must implement both 
abstract methods of the Model class. 

The first one is a method for calculating the loss of the generator. Th is method has 
three input arguments. The first one is the prediction of the discriminator on the generated 
image, the second is the generated image itself, and the last argument is the target image. To 
calculate the binary cross-entropy loss, the BinaryCrossentropy() function from TensorFlow 
is used. The discriminator prediction is passed to this function, together w i th an array 
of ones created from this prediction using the ones_like() function from TensorFlow. To 
calculate L I loss, which is the mean absolute error, the TensorFlow functions reduce_mean() 
and abs() are used, to which the difference between the pixel values of the target image and 
the generated image is passed. The value thus obtained is mul t ip l ied by the lambda. For 
the to ta l loss of the generator, these two calculated values are then summed. 

The second abstract method that needs to be implemented is the method for creating 
the model itself. The prepared methods for downsampling and upsampling are used to 
create ind iv idua l encoder and decoder blocks. These blocks are stored in two arrays. The 
array w i t h encoder blocks is iterated over to create the encoder part. In each iteration, 
the output of one block is connected to the input of another block, and, at the same time, 
these blocks are stored in an auxi l iary array, which represents the skip connections. After 
creating the encoder part, this auxi l iary array is reversed. In the next step, it is iterated 
over this array and the array wi th decoder blocks. In each iteration, a skip connection 
between the encoder and decoder is created using the TensorFlow Concatenate layer. Th is 
creates the final structure of the generator. 

For the purpose of generating synthetic ret inal images, the Generator class provides two 
other methods. One method to generate an image and the other to ini t ial ize the generator. 
The first method has three input arguments, the first of which is the input black and white 
image wi th segmented blood vessels. The second argument specifies the name of the output 
file, in which the generated image w i l l be saved. To plot and save images, the Pyplot l ibrary 
is used, which, however, requires that the pixel values of the image lie i n the interval <0,1>. 
A n d because the values of the generated image lie i n the interval < - l , l > , it is necessary to 
normalize them. To do so, the following equation can be used: 

x + 1 
normalize(x) = — - — (5-2) 

The last opt ional argument, whose default value is False, is a flag indicat ing whether the 
generated image should be displayed on the screen or not. 

To generate an image that is not just random noise, the generator needs to be ini t ia l ized. 
To init ial ize the generator, the second of the mentioned methods is used. It initializes the 
generator weights from a checkpoint located i n the directory passed as the input parameter 
of the method. The Checkpoint class from TensorFlow is used to work wi th checkpoints. 

D i s c r i m i n a t o r 

The Discriminator class is the second class that is inherited from the Model class. The 
discriminator is only used in the t ra ining phase, so it provides implementations of only the 
abstract methods of the parent class that are sufficient to achieve the desired result. 
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The first is again the method for calculat ing the to ta l loss of the discriminator, which 
has two input parameters: prediction of the discriminator on the real (target) image and 
prediction on the fake (generated) image. The to ta l loss of the discriminator is the sum of 
the binary cross-entropy loss of the real images and an array of ones (using ones_like()), 
and the binary cross-entropy loss of the generated images and an array of zeros (using 
zeros_like()). The BinaryCrossentropy() function is used again to calculate these losses. 

The second abstract method that the Discriminator class implements is the method for 
creating the model . Since the discriminator has two images on the input , it is necessary to 
concatenate these inputs first. The Concatenate layer is used for this. Th is layer is followed 
by a series of downsampling blocks, which were created using the prepared method i n the 
same way as for the generator. In this way, the final structure of the discriminator proposed 
in the previous chapter is achieved. 

C o n G A N 

This section describes how the generator and discriminator are interconnected using the 
ConGAN class. Its purpose is that these two models are trained simultaneously by an 
adversarial process. The generator learns how to create realistic-looking images, while the 
discriminator learns how to dist inguish real images from generated ones. W h e n this class 
is ini t ia l ized, a log directory and instances of the Checkpoint and Summary Writer classes 
are created. The log directory is a directory in which the data created during the t raining 
w i l l be stored. 

The Checkpoint class is used to save and restore models, which can be helpful i n case of 
interruption of a long running t ra ining task. A checkpoint saves a graph of dependencies 
between P y t h o n objects, such as layers and optimizers, w i th named edges, and this graph 
is used to match variables when restoring a checkpoint. A checkpoint is also used by the 
generator, where, before generating synthetic images, the generator is ini t ia l ized w i t h values 
from that checkpoint. The generator and discriminator, together w i th their optimizers, are 
passed as input parameters of the checkpoint so that they can be monitored and stored. 

The Summary Writer class is used to record the losses of ind iv idua l models, which can 
then be examined. It is an interface representing a stateful summary writer object. The 
output of this class can be easily viewed i n the TensorBoard visualizat ion tool to monitor 
the progress of the training. 

The core of C o n G A N is the method for t ra ining these models. Its input parameters 
are the to ta l number of epochs, the t ra ining dataset, the testing dataset, the output period 
and the checkpoint period. A t the beginning of each epoch, one image is generated and 
saved. The testing dataset is used to generate this image. This allows us to see what the 
generated images look like i n each epoch. The generator method, already described in this 
section, is used for the image generation itself. How often ind iv idua l images are generated 
is regulated by the input argument of this method - the output period. 

The generation is followed by the t raining process itself. It iterates over the t ra ining 
dataset, and a t ra ining step is taken for each batch. One t ra ining step consists of the 
following parts: 

1. For each example input, an output is generated. 

2. The discriminator receives the input image and the generated image, from which it 
makes a prediction about the generated image. It then receives the input image and 
the target image, from which it makes a prediction about the target image. 
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3. Based on these predictions, the losses of the generator and discriminator are then 
calculated using the implemented methods of these models. 

4. Gradients are calculated from these losses. The GradientTape class is used for this 
purpose. It records operations for automatic differentiation. The gradients of loss 
are calculated wi th respect to both the generator and the discriminator variables 
(trainable and non-trainable). 

5. These gradients are applied to the optimizer, using the implemented method for 
updat ing weights, which ensures that the gradients are applied to the variables. 

6. Lastly, these losses are logged using Summary Writer. 

After completing the t ra ining step, a checkpoint is saved. The checkpoint period can also 
be regulated by the input parameter of the t ra ining method - the checkpoint period. 

Dur ing the training, information about the status of the t ra ining is printed to the 
console, such as the epoch number, how many t ra ining steps are completed, and how long 
the epoch lasted. After the t ra ining is completed, the last checkpoint is saved, and summary 
statistics for the given t ra ining process are printed, containing the to ta l t ra ining t ime and 
the average t ime per epoch. 

5.4 Source Code Structure and Usage 

The source code is d ivided into several files. Thei r hierarchy is given below: 

• pretrained/ 

o chasedbl/ 
o combined/ 
o drive/ 
o hrf/ 
o stare/ 

• s r i g / 

o i n i t .py 
o congan.py 
o data_loader.py 
o discriminator.py 
o generator.py 
o model.py 

• requirements.txt 

• srig.py 
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The pretrained directory contains subdirectories w i th checkpoints where the weights of 
pretrained models are stored. These checkpoints are used to ini t ial ize the ret inal image gen­
erator. The s r i g directory contains the source code for each of the implemented classes de­
scribed i n the previous sections. The i n i t .py file is used to mark the s r i g directory as 
the P y t h o n package directory from which the classes are imported. The requirements .txt 
file contains a list of libraries that were used during the implementation. These libraries 
are required to run the program. The last file, srig.py, represents the entry point of the 
program where the input arguments are processed. Based on these arguments, further ex­
ecution of the program takes place. The ind iv idua l arguments are described later i n this 
section. 

I n s t a l l a t i o n 

The implemented program requires, i n addi t ion to the libraries used, P y t h o n 3 installed 
along wi th P I P and tkinter. P I P is the package manager for P y t h o n packages, and tkinter 
is the standard graphical user interface (GUI) for P y t h o n . The P I P is used to instal l a l l 
the required libraries so that the user does not have to instal l them one by one. A list of 
these libraries is given i n the requirements.txt file. 

To instal l them, one of the following commands can be used: 

• pip i n s t a l l -r requirements.txt 

• python3 -m pip i n s t a l l - r requirements.txt 

This w i l l automatical ly instal l a l l the libraries listed i n that file. The program is then ready 
for use. 

P r o g r a m A r g u m e n t s 

The program can do three different things: prepare t ra ining data, t r a in the model, or 
generate ret inal images. These operations are mutual ly exclusive, and only one of them 
can be performed while the program is running. Therefore, the program has a required 
argument in which one of the three options is selected, and then further arguments to the 
corresponding option can be specified. A l l supported arguments are listed below. 

M u t u a l l y exclusive arguments 

—prepare Prepare input data for training. 

— t r a i n T ra in the model. 

—generate Generate ret inal images. 

D a t a preparation arguments 

—bv_dir BV_DIR Specify a directory w i t h images of b lood vessels. 

—ret ina_dir RET_DIR Specify a directory w i t h ret inal images. 
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Training arguments 

~ t r a i n _ d i r TRAIN_DIR 

~ t e s t _ d i r TEST_DIR 

—log_dir LOG_DIR 

—checkpoint_period C_PERIOD 

—output_period 0_PERIOD 

—epochs EPOCHS 

—batch size BATCH SIZE 

Specify a directory wi th t ra ining images. 

Specify a directory wi th testing images. The default 
value is the t ra ining directory. 

Specify the log directory. The default value is ./logs. 

Specify the per iod of checkpoint storing. The default 
value is 1. Negative values disable the checkpoints. 

Specify the period of output image generation. The 
default value is 1. Negative values disable the gener­
ation. 

Specify the number of epochs. The default value is 1. 

Specify the batch size. The default value is 1. 

Generation arguments 

—input INPUT 

—checkpoint_dir CHCKP_DIR 

—display_output 

Specify the input file or directory. 

Specify the checkpoint directory. 

Display generated output. 

C o m m o n arguments 

- h , —help 

—output_dir 0UT_DIR 

Display the help. 

Specify the output directory. The default value is 
./output. 

E x a m p l e s 

To illustrate, below are examples of how to run this program. 

• python srig.py —prepare — b v _ d i r blood_vessels/ — r e t i n a _ d i r retinas/ 
—output_dir training_data/ 

This processes images from the blood_vessels and retinas directories, prepares 
them for t ra ining and saves the resulting images i n the training_data directory. 

• python srig.py — t r a i n — t r a i n _ d i r training_data/ —epochs 100 

This trains the model for 100 epochs using images i n the training_data directory. O n 
each epoch, it generates an output image to show its progress, and saves a checkpoint 
w i th the current weights. A l l generated data are stored in the default directory, logs. 
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• python srig.py — t r a i n — t r a i n _ d i r training_data/ — t e s t _ d i r 
testing_data/ — l o g _ d i r summary/ —epochs 100 —output_period 10 
—checkpoint_period 20 

This trains the model for 100 epochs using images i n the training_data directory. 
It generates an output image every 10 epochs and saves a checkpoint every 20 epochs. 
It uses images from the testing_data directory to generate output images. A l l 
generated data are stored in the summary directory. 

• python srig.py —generate — i n p u t examples/image.jpg —display_output 

This generates an image of the ret ina using image. jpg as input, saves it i n the default 
directory, output, and displays the generated image on the screen. 

• python srig.py —generate — i n p u t examples/ —checkpoint_dir 
output/checkpoints/ —output_dir generated_retinas/ 

This generates as many ret inal images as there are images i n the examples directory. 
Images are generated using the model w i t h weights ini t ia l ized from a checkpoint 
from the output/checkpoints directory. The generated images are saved in the 
generated_retinas directory. 
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Chapter 6 

Training and Testing 

This chapter focuses on the actual t ra ining of the model, which was proposed i n Chapter 4 
and subsequently implemented i n Chapter 5. It contains a description of what data was 
used to t ra in this model, a description of the t raining process itself, along wi th problems 
that occurred during the t ra ining and how I solved them. Fina l ly , an evaluation of the 
obtained results is given. 

6.1 Data Source 

A n important basis for t ra ining and subsequent testing of the a lgori thm for automatic 
generation of synthetic ret inal images is to have a sufficiently large number of ret inal images. 
These images should form a representative set of retinas. F r o m publ ic ly available databases 
of retinas such as A D C I S [15], C H A S E D B 1 [31], D R I V E [12], F I R E [22], H R F [10] and 
S T A R E [18]. O n l y those databases that already contain professionally annotated blood 
vessels were used. 

Those used databases include the C H A S E D B 1 database, which consists of 84 color 
digi ta l images wi th a resolution of 999x960 pixels. 28 of these images are ret inal images 
and 56 images of b lood vessels. Each retina has two corresponding images of segmented 
blood vessels that differ i n the number of visible b lood vessels. Therefore, it is possible to 
create 56 pairs, where an example of one such retina is given i n Figure 6.1 below. 

Figure 6.1: Example of a ret ina from the C H A S E D B l database. The two images wi th 
segmented b lood vessels differ sl ightly in the number of visible blood vessels. 
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Another database used is the D R I V E database, which contains 100 images wi th a res­
olut ion of 565x584 pixels. This database already divides these images into a t ra ining and 
testing set, where each contains 20 different retinas. For each retina, there is one image of 
the retina itself and one image w i t h a background mask. O n l y the t raining set contains the 
required segmented b lood vessels. Therefore, only 20 pairs of images can be created from 
this database. 

The H R F database is also divided into ret inal images, corresponding background masks 
and segmented b lood vessels. A tota l of 45 different images of retinas wi th a resolution 
of 3504x2336 pixels are available i n this database, which is the highest resolution of a l l 
databases. 

The last database used is the S T A R E database. It contains a to ta l of 397 different 
images of retinas, but only 20 are hand-labeled images by an expert, so only 20 pairs were 
created. The resolution of ind iv idua l images is 700x605. Other databases were not used 
because they do not contain segmented blood vessels. 

A to ta l of 141 pairs of images (retinas and their segmented b lood vessels) are available. 
Since the input resolution of the system is 1024x1024 and the images from the D R I V E and 
S T A R E databases have a much lower resolution, these images were enlarged using an online 
t o o l 1 that uses a neural network wi th an algori thm adjusted for images, thus making the 
enlarging process i n high quality. Details on ind iv idua l sets of images are given in Table 6.1 
below. 

Database Resolution Pairs 
C H A S E D B 1 999x960 56 

D R I V E 1130x1168 20 
H R F 3504x2336 45 

S T A R E 1400x1210 20 

E 141 

Table 6.1: Used databases that are publ ic ly available. 

6.2 Training 

In order for the generator to generate ret inal images, it must first be trained. The training 
loop begins wi th the generator receiving a black and white image of blood vessels. This 
image is used to create an image of the retina. The discriminator then classifies real images 
(drawn from the t raining set) and fake images (produced by the generator). The loss is 
calculated for each of these models in order to calculate the gradients used to update the 
generator and discriminator weights. This is the basic concept of how the combined model 
is trained. 

M o n i t o r i n g 

The implemented t ra ining loop saves the logs of each epoch, so they can be easily viewed in 
the TensorBoard tool to monitor the progress of the t raining. For this purpose, a separate 
TensorBoard process can be started using the following command: 

tensorboard — l o g d i r [log_dir] 
x h t t p s : //bigjpg.com/ 

51 



where log_dir is a directory containing the t ra ining logs. The default directory wi th this 
data is logs/summary i n the current working directory. 

The loss during t ra ining typical ly reduces fairly quickly during the first few training 
iterations, and then the reduction slows down because the learning algori thm performs 
small changes to find the exact local min imum. This is shown i n Figure 6.2. The value of 
ln(2), which is approximately 0.69, is a good reference point for these losses, as it indicates 
a perplexity of 2 - that the discriminator is, on average, equally uncertain about the two 
options. For the discriminator loss, a value below 0.69 means the discriminator is doing 
better than random on the combined set of real and generated images. For the generator 
loss, a value below 0.69 means the generator is doing better than random at fooling the 
discriminator. 
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Figure 6.2: Loss of the discriminator during the 200 epochs. The horizontal axis shows 
epochs, vertical axis losses. The values are smoothed for better clarity. 

The generator and discriminator are trained simultaneously. It is important that the 
generator and discriminator do not overpower each other. W h e n t ra ining a G A N , it is 
therefore necessary to monitor the loss of ind iv idua l models. If either the loss of the 
generator or the loss of discriminator gets very low, it indicates that this model is dominat ing 
the other, and the combined model is not being successfully trained. This si tuation is shown 
in Figure 6.3. In order to solve this, the learning rate of the model that dominates must be 
reduced or, conversely, the learning rate of the model that is dominated must be increased. 

0 20 40 50 30 100 120 140 160 180 200 

Figure 6.3: Loss of the discriminator that dominates the generator. T h e horizontal axis 
shows epochs, vert ical axis loss. The values are smoothed for better clarity. 
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T r a i n i n g D u r a t i o n 

The t raining of the combined model requires that the a lgori thm runs over the entire t raining 
set many times, w i th the weights changing as the model makes errors i n each iteration. The 
problem is how to decide when to stop learning. It is not desirable to stop t ra ining unt i l 
the local m i n i m u m has been found, but t ra ining too long leads to overfitting of the model. 
There are many ways to solve this problem, but the most obvious ones are not sufficient. 
One of these solutions is to set some predefined number of iterations and t ra in un t i l that 
is reached, but this poses a risk that the model w i l l be overfitted by then, or not learned 
enough. Another solution is to stop only when some predefined m i n i m u m loss is reached, 
but that might mean the a lgori thm never terminates, or that it overfits. 

This is where the testing set comes i n useful. The model is trained for a predetermined 
period of t ime, and then the testing set is used to estimate how well the model can generalize. 
The t ra ining is carried on for a few more iterations, and the whole process is repeated. 
A s t ra ining progresses, the generated images w i l l look increasingly real. The first image 
generated by an untrained generator contains mostly noise (Figure 6.4), but thanks to the 
architecture of the generator, where generation depends on the input image of blood vessels, 
a slight structure of blood vessels can already be seen i n the generated image. After just 
one epoch, the generated image resembles a real retina, where this ret ina begins to acquire 
its shape and color. Such an image is shown i n Figure 6.5. 

Figure 6.4: A n image that was created by an untrained generator from an input image of 
blood vessels. 

Therefore, I approached such a t ra ining solution, where at the beginning of each epoch, 
an image from the testing set is generated. These images can be used to monitor the 
generalization capabil i ty of the model at its current stage of learning. Based on the quali ty 
of these images, a decision when to stop t ra ining the model is made. Another indicator of 
when to stop t ra ining is monitor ing the loss of both the generator and the discriminator. 
The t ra ining can be terminated once the error stops decreasing. A t some stage the error on 
the testing set w i l l start increasing again, because the model has stopped learning about 
the function that generated the data, and started to learn about the noise that is in the 
data itself. A t this stage the t ra ining is stopped. 
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Figure 6.5: A n image that was created by a generator from an input image of b lood vessels. 
The generator was trained for only one epoch. 

M o d e l P a r a m e t e r s 

B u i l d i n g machine learning models requires a selection of various parameters of these models, 
such as the dropout rate i n a layer or the learning rate. These decisions impact the metrics 
of the model . Therefore, an important step i n the machine learning workflow is to identify 
the best parameters for a given problem. 

The final parameters of the model were obtained by experimenting wi th different values 
of these parameters and their combinations, where the values that produced the best results 
were selected. Details on each parameter are given below. The number of epochs varied for 
each database and their exact values are given i n Section 6.3. 

• Weights are the first parameter that was set. The weights are ini t ia l ized to small 
random numbers, bo th positive and negative. R a n d o m values i n this range were used 
so that the learning starts from different places for each run. These values are also 
about the same size, as it is desirable for a l l of the weights to reach their final values 
at about the same time. To ini t ial ize the weights i n this way, a normal (or Gaussian) 
dis tr ibut ion was used. A normal dis t r ibut ion is a type of continuous probabil i ty 
dis tr ibut ion for a real-valued random variable. The general form of its probabil i ty 
density function is [48]: 

m = ^ = e ~ ^ (6.1) 

where the parameter \x is the mean of the dis t r ibut ion, and a is its standard deviation. 
In this case, the mean is set to 0 and the standard deviat ion is set to 0.025. Resul t ing 
dis tr ibut ion can be seen i n Figure 6.6. 

• Learning rate is a parameter that indicates how much these weights w i l l change each 
iteration. It was necessary to choose it so that both models are trained at a similar 
rate. Thanks to this, there w i l l be no si tuation where one of the models dominates the 
other. If one model dominates the other, the model as a whole gives poor results. For 
the generator the learning rate 0.00025 was chosen, and for the discriminator 0.0003 
was chosen. 
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• Dropout layers are located only i n the decoder part of the generator. Dur ing training, 
they randomly drop out a number of output values of the layer, which helps prevent 
overfitting. The exact number is given by the dropout rate, which is a fraction of the 
values that are dropped out. The dropout rate of these layers was set to the value of 
0.5 (half of a l l values were dropped), but only i n the first three upsampling layers. 

• Batch size is the number of t ra ining examples ut i l ized i n one iteration. W i t h small 
values the model converges quickly at the cost of noise i n the t ra ining process. The 
smaller the batch the less accurate the estimate of the gradient w i l l be. It also requires 
less memory, since the model is trained using fewer samples at once. O n the other 
hand, w i t h large values it converges slowly, but wi th more accurate estimates of the 
gradient. Based on the available data and computat ional power, I was only able to 
use a value of 2 as the batch size. 

• N u m b e r of filters differs for ind iv idua l convolution or deconvolution layers. Con-
volut ional neural networks do not learn a single filter. They learn mult iple features 
in parallel for a given input . Th is gives the model many different ways of extracting 
features from an input . In this case, I started wi th 32 filters for the first layer and 
gradually doubled this number up to 512 filters. The last deconvolution layer uses 3 
filters in the case of the generator, which correspond to the ind iv idua l color channels 
of the output image. In the case of the discriminator, the last convolution layer uses 
only one filter, thanks to which the required 3 2 x 3 2 x 1 patches are obtained. 

• Fi l ter size represents the size of each filter. In the generated images, I came across 
checkerboard artifacts caused by unequal coverage of the pixel space i n the generator, 
as shown i n Figure 6.7. To solve this problem, a filter size that is divisible by the 
stride size was used. The selected value is therefore 4 x 4 pixels. Th is value is used 
wherever convolution and transposed convolution layers are used, i.e., in the generator 
and discriminator. 

-0.09 -0.06 -0.03 0.00 0.03 0.06 0.09 
x 

Figure 6.6: Probabi l i ty density function of a normal dis t r ibut ion wi th the mean value of 0 
and the standard deviat ion of 0.025. 

55 



Figure 6.7: Checkerboard artifacts caused by mismatching strides and filter sizes. 

F i n a l T r a i n i n g o f t he M o d e l 

The generator model contains a to ta l of 13,184 fixed parameters that do not change during 
training, and over 67,000,000 trainable parameters, the values of which need to be adjusted 
by learning. The discriminator model has less than 700,000 parameters in total . 

The learning itself was performed on ind iv idua l databases and then one learning was 
performed on images from a l l databases together. Some images are of poor overall quali ty 
or contain retinas w i t h various diseases or other damage, so these images were excluded 
from tra ining sets so that the generator learns to generate only high quali ty images of 
healthy retinas. Testing sets were created from the excluded images, which were used to 
monitor how well the generator generalizes. A different number of epochs was used for 
each database, as each database contains a different number of images. More detailed 
information about ind iv idua l trainings is given i n Table 6.2, which contains information 
about the number of images in each set, the to ta l number of epochs and how long the given 
t ra ining lasted. In this way, several files containing learned weights for ind iv idua l databases 
and their combinations were created and used to generate new retinal images. 

Database Training Testing Epochs T i m e 
Images Images (minutes) 

C H A S E D B 1 42 14 24 29 
D R I V E 16 4 18 12 

H R F 32 13 37 42 
S T A R E 12 8 21 11 

A l l combined 102 39 41 139 

Table 6.2: Tra in ing on ind iv idua l databases. 

6.3 Evaluation 

Using the implemented and trained generator, several databases of synthetic ret inal images 
were created, one for each database on which the generator was trained. This generator 
was able to generate new images of retinas in a resolution of 1024 x 1024 pixels. The original 

56 



databases together provided 141 input images wi th segmented blood vessels. To increase 
the number of input images from which ret inal images were generated, the original images 
were flipped horizontally, vertically, and both horizontally and vertically. In this way, three 
new images were created from each input image that produce a slightly different output. 
Thus, 564 input images were available for the generation process. A tota l of 2,820 retinal 
images were created from five different sets of learned weights. These newly created retinas 
were subsequently evaluated. 

The person evaluating the generated data does not need to have the expertise of an 
ophthalmologist to be able to assess whether a given retina is real or not. It is only 
sufficient if he is an informed layman familiar w i th the subject. Thanks to this, I was able 
to perform this evaluation myself without the need for the assistance of an ophthalmologist. 

The generalization capabilities of the model are at a high level for ind iv idua l databases, 
where Figure 6.8 shows an example of a newly generated image, as well as the original 
image and the corresponding blood vessels for comparison. Some of the generated images 
are indistinguishable from the real ones, which was the goal of this thesis. 

Figure 6.8: Example of a generated image. The image on the left is the input, the image 
in the middle is the original, real image, and the image on the right is the synthetic image. 

Despite the fact that the newly generated images are s imilar to the original ones, as they 
have the same bloodstream, it can be said that they are new retinas. The new images have 
different colors, the optic disc and fovea are different, and they also differ in smal l structures 
on the retina. Thus, this generator allows to generate an image of a healthy retina from the 
blood vessels of a damaged retina, as shown i n Figure 6.9, or from an overexposed image to 
an image wi th a normal exposure that is less bright. A n example of an overexposed image 
is shown in Figure 6.10. 

However, i f the images from different databases are combined wi th each other, such 
quali ty is no longer achieved. For example, the C H A S E D B l database consists of retinal 
images that are centered on the optic disc. A s a result, its posi t ion and shape were over-
fitted, which was reflected i n images from other databases. A n example of such a case is 
shown i n Figure 6.11. The generator trained on combination of a l l databases had the best 
generalization capabil i ty because they contained a large number of different images. These 
images were taken from different angles and captured differently sized parts of the retina. 
O n the contrary, the D R I V E and S T A R E databases achieved the worst results, as they 
were trained on a smal l number of images. For a higher quali ty of images from different 
databases of b lood vessels, it would be necessary to have a larger number of input images 
on which the model would be trained. 

57 



Figure 6.9: Example of a generated image. The image on the left is an image of a damaged 
retina and the image on the right is the image generated from the bloodstream of the retina 
on the left. 

Figure 6.10: O n the right is an example of an image generated from the bloodstream of the 
retina on the left, which is overexposed. 

Figure 6.11: Example of an image generated by the generator trained on the C H A S E D B l 
database. The optic disc is overfitted to the center of the retina. The input blood vessels 
for this image are from the D R I V E database. 
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Chapter 7 

Conclusion 

H u m a n eyes provide us w i th vision, and the most important part of the human eye is the 
retina. The retina is also the most sensitive part of the human eye, and therefore diseases of 
the ret ina can lead to vis ion loss. For this reason, it is important to protect our eyesight, as 
its loss means a significant deterioration in our quali ty of life. Special equipment, a fundus 
camera, is needed to capture the retina, so it is not an easy task to obtain these images in 
large quantities. Therefore, the main objective of this work was to design and implement 
a system that would be able to generate new synthetic images of retinas that would extend 
existing databases. These images could then be used as a learning tool for ophthalmologists 
to practice their knowledge or for the development of medical or biometric systems. 

This thesis provides a theoretical basis for the anatomy of the human eye and some 
selected ret inal diseases. F r o m a technical point of view, it focuses on various methods of 
machine learning and on the basic principles of neural networks. Specifically, it focuses on 
deep learning, which includes specific types of neural networks, namely, convolutional and 
generative adversarial networks, based on which a method of generating synthetic retinal 
images was proposed. The thesis provides a detailed description and implementat ion of 
this solution and eventually describes the process of t ra ining the proposed system. After 
the system was trained, a database of synthetic ret inal images was created, the quali ty of 
which was subsequently assessed. 

The proposed solution uses an image-to-image translation, where the system is provided 
wi th a black and white image at the input containing only bloodstream, on the basis of 
which a color image of the entire ret ina is generated. The system consists of two neural 
networks, one of which is a generator that generates ret inal images from an input image 
of b lood vessels, and the other is a discriminator that has two images at the input - the 
same image of b lood vessels and a corresponding ret inal image that is classified as real 
or synthetic. In order for this system to be able to generate realistic-looking images of 
retinas, it had to be trained first. The t ra ining was performed on several publ ic ly available 
databases, which together provided 141 input images. The generator and discriminator 
were trained simultaneously, where the a im was for the generator to produce images of 
such a quali ty that the discriminator would not be able to dist inguish them from real ones, 
and at the same t ime that the discriminator had its classification capabil i ty at the highest 
possible level. Care had to be taken to ensure that one model d id not dominate the other, 
as the system as a whole would produce poor results. It was therefore necessary to find an 
equi l ibr ium between these models. 

After the system has been trained, there is no need for the discriminator and only the 
trained generator is used. W i t h this generator, a database of over 2,800 synthetic images 
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in a resolution of 1024x1024 pixels was created from the available data. M a n y of the 
images generated i n this way were indistinguishable from real images of the retina, which 
was the a im of this work. Despite the fact that these generated images are based on the 
bloodstream of real retinas, they can be considered as images of new retinas, as, except for 
the given b lood vessels, they differ i n everything else, such as color, optic disk and fovea. In 
addit ion, the generator was trained on a set of healthy retinas, so it is possible, for example, 
to generate a healthy retina from the bloodstream that belongs to a ret ina w i t h a disease. 

Future work should focus on t raining this network on a larger number of ret inal images 
from different databases. This network can be extended to generate images i n much higher 
resolution, but it would be necessary to provide sufficient computing power and also to 
provide input images that are i n at least as high a resolution as the desired output res­
olut ion of the generator. Another possible continuation of this work would be to design 
and implement a system that would generate black and white images of segmented retinal 
blood vessels from random noise. The output of that system would then be connected to 
the input of the generator from this thesis. In this way, it would be possible to generate 
completely new retinas that would not depend on the input data, as the input data would 
be random noise. 
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Appendix A 

Contents of the Attached D V D 

The directory structure on the attached D V D is shown and described below. 

• databases 

o real - contains ind iv idua l databases of real ret inal images 

o synthetic - contains ind iv idua l databases of synthetic ret inal images 

• datasets - prepared t ra ining data 

• implementation 

o source files - source code of the program 

o documentation - documentation of the source code 

• text 

o latex - source files for P D F generation 

o pdf - Master 's thesis in P D F format 
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Appendix B 

Generator Architecture 

Inputlmage: InputLayer 
output 

[(?. 1024.1024. 3)] 

[(?, 1024.1024. 3)] 

EncoderBlockl: Sequential 
output 

(?. 1024. 1024. 3) 

{?, 512,512,32) 

EncoderBlockl: Sequential 
input: (?, 512, 512,32) 

EncoderBlockl: Sequential 
output: (?. 256, 256, 64) 

z 
EncoderElock3: Sequential 

input: (?, 256, 256, 64) 
EncoderElock3: Sequential 

output: (?, 12S. 128, 12S) 

Eucodei'Block-1: Sequential 
input: 

Eucodei'Block-1: Sequential 
output: (?. 64. 64. 256) 

7 

Z 
EncoderBlock5: Sequential 

input: (?, 64. 64. 256) 
EncoderBlock5: Sequential 

output: (?. 32.32.512) 

EncoderBlockS: Sequential 
input: (?. 32. 32. 512) 

EncoderBlockS: Sequential 
output: (?. 16. 16. 512) 

z 
EncoderBlock7: Sequential 

input: (?, 16.16.512) 
EncoderBlock7: Sequential 

output: (•"', S, S, 512) 

EncoderBlockS: Sequential 
input: (?, S, S, 512) 

EncoderBlockS: Sequential 
output: (?, 4, 4, 512) 

EucoderBlock-): Sequential 
input: (?,4,4,512) 

EucoderBlock-): Sequential 
output: (?.2.2.512) 

EncoderBlocklO: Sequential 
input: 

EncoderBlocklO: Sequential 
output: (?. 1. 1. 512) 

Figure B . l : Archi tecture of the encoder part of the S R I G generator. Outputs of the encoder 
are connected to the decoder inputs in Figure B .2 . 
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DecoderBlockl: Sequential 
input: ('?. 1. 1. 512) 

DecoderBlockl: Sequential 
output: ('?. 2. 2. 512) 

concatenate: Concatenate 
input: [(?. 2. 2.512). (7.2.2.512)] 

concatenate: Concatenate 
output: (7. 2. 2.1024) 

input: (?. 1.1.1024) 
DecoderBlock2: Sequential 

input: (?. 1.1.1024) 
DecoderBlock2: Sequential 

output: (7,4,4,512) 

concatenate 1: Concatenate 
input: [(?, 4, 4, 512), (>, 4, 4,512)] 

concatenate 1: Concatenate 
output: (?, 4, 4, 1024) 

DecoderBlock3: Sequential 
input: (?, 4, 4, 1024) 

DecoderBlock3: Sequential 
output: (7, 8, 8,512) 

concatenate 2: Concatenate 
input: [(7. 8. 8.512), (?, 8, 8,512)] 

concatenate 2: Concatenate 
output: (7. 8. 8. 1024) 

DecoderBlock4: Sequential 
input: (7, 8, 8,1024) 

DecoderBlock4: Sequential 
output: (?, 16. 16. 512) 

concatenate 3: Concatenate 
input: [(?. 16. 16. 512). (?, 16.16. 512)] 

concatenate 3: Concatenate 
output: (7, 16, 16,1024) 

DecoderBlock5: Sequential 
input: (7.16.16,1024) 

DecoderBlock5: Sequential 
output: (7. 32. 32. 512) 

concatenate 4: Concatenate 
input; [(?, 32. 32. 512). (7. 32. 32. 512)] 

concatenate 4: Concatenate 
output: (7. 32. 32. 1024) 

DecoderBlockö: Sequential 
input: (7. 32. 32. 1024) 

DecoderBlockö: Sequential 
output: (7. 64. 64. 256) 

concatenate 5: Concatenate 
input: [(7. 64. 64. 256). (7. 64. 64. 256)] 

concatenate 5: Concatenate 
output: (7. 64. 64, 512) 

DecoclerBlock?: Sequential 
input: (?, 64, 64,512) 

DecoclerBlock?: Sequential 
output: (7,128, 128, 128) 

concatenate 6: Concatenate 
input: [(?. 128.128. 12S). (7. 128. 128.128)] 

concatenate 6: Concatenate 
output: (7.128. 128. 256) 

DecoderBlockS: Sequential 
input: (7. 128.128. 256) 

DecoderBlockS: Sequential 
output: (?. 256. 256. 64) 

concatenate 7: Concatenate 
input: [(?, 256, 256. 64). (7. 256, 256, 64)] 

concatenate 7: Concatenate 
output: (7. 256. 256. 128) 

DecoderBlockl: Sequential 
input: (?, 256, 256. 128) 

DecoderBlockl: Sequential 
output: (7,512,512,32) 

concatenate 8: Concatenate 
input: [(?, 512, 512, 32), (?, 512, 512, 32)] 

concatenate 8: Concatenate 
output: (7.512.512.64) 

DecoderBlocklQ: Sequential 
input: (7.512.512. 64) 

DecoderBlocklQ: Sequential 
output: (?. 1024. 1024. 3) 

Figure B .2 : Archi tecture of the decoder part of the S R I G generator. Inputs of the decoder 
are connected to the encoder outputs from Figure B . l . 
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