

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ENERGETICKÝ ÚSTAV

ENERGY INSTITUTE

NÁVRH VÝMĚNÍKU TEPLA PRO KONDENZAČNÍ KOTEL

HEAT EXCHANGER DESIGN FOR CONDENSING BOILER

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR

VEDOUCÍ PRÁCE SUPERVISOR **Bc. Patrik Plott**

doc. Ing. Marek Baláš, Ph.D.

BRNO 2024

Zadání diplomové práce

Ústav:	Energetický ústav
Student:	Bc. Patrik Plott
Studijní program:	Energetické a termofluidní inženýrství
Studijní obor:	Energetické inženýrství
Vedoucí práce:	doc. Ing. Marek Baláš, Ph.D.
Akademický rok:	2023/24

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Návrh výměníku tepla pro kondenzační kotel

Stručná charakteristika problematiky úkolu:

Náplní diplomové práce je optimalizace plynového kondenzačního kotle pro domovní vytápění. Optimalizace bude spočívat v návrhu nového sekundárního výměníku pro ohřev TUV.

Cíle diplomové práce:

Popis deskových výměníků. Popis stávajícího deskového výměníku. Návrh variant nových provedení výměníku. Výpočet a CFD model výměníků. Zhodnocení výsledků.

Seznam doporučené literatury:

KUPPAN, Thulukkanam. Heat exchanger design handbook. New York: Marcel Dekker, 2000. Mechanical engineering (Marcel Dekker, Inc.). ISBN 0-8247-9787-6.

HEWITT, Geoffrey Frederick: Heat Exchanger Design Handbook 2008, Begell House, New York, 2008. ISBN: 978-1-56700-259-1

VDI Heat Atlas. Second Edition. Berlin: Springer, 2010. ISBN 3540778764.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2023/24

V Brně, dne

L. S.

doc. Ing. Jiří Pospíšil, Ph.D. ředitel ústavu doc. Ing. Jiří Hlinka, Ph.D. děkan fakulty

ABSTRAKT

Táto diplomová práca sa zaoberá optimalizáciou plynového kondenzačného kotla pre domové vytápanie. Optimalizácia spočívala v návrhu nového sekundárneho doskového výmenníka pre ohrev teplej úžitkovej vody s využitím analytického výpočtu a následnej CFD simulácie prenosu tepla a tlakovej straty. Boli navrhnuté rôzne varianty dizajnov doskových výmenníkov. Následne boli porovnané výsledky analytického výpočtu s výsledkami CFD simulácie a vyhodnotená ich vzájomná zhoda. Po analýze výsledkov jednotlivých variant boli navrhnuté dizajny doskových výmenníkov porovnané so súčasne používaným výmenníkom. Nakoniec sme identifikovali najlepšie možné riešenie, ktoré súčasný výmenník nahradí.

ABSTRACT

This master's thesis is aimed at the optimization of a gas condensing boiler for domestic heating. The optimization consisted in the design of a new secondary plate heat exchanger for domestic hot water heating using analytical calculation and subsequent CFD simulation of heat transfer and pressure loss. Various designs of plate heat exchangers were proposed. Subsequently, the results of the analytical calculation were compared with the results of the CFD simulation and their mutual conformity with each other was evaluated. After analysing the results of each variant, the proposed plate heat exchanger designs were compared with the currently used heat exchanger. Finally, we identified the best possible solution to replace the current exchanger.

KĽÚČOVÉ SLOVÁ

doskový výmenník tepla, CFD simulácia, prenos tepla, tlakové straty

KEYWORDS

plate heat exchanger, CFD simulation, heat transfer, pressure loss

BIBLIOGRAFICKÁ CITÁCIA

PLOTT, Patrik. Návrh výměníku tepla pro kondenzační kotel. Brno, 2024. Dostupné také z: https://www.vut.cz/studenti/zav-prace/detail/157579. Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Energetický ústav. Vedoucí práce Marek Baláš.

ČESTNÉ VYHLÁSENIE

Prehlasujem, že som diplomovú prácu na tému **Návrh výmenníka tepla pre kondenzačný kotol** vypracoval samostatne s použitím odbornej literatúry a prameňov uvedenných v zozname, ktorý tvorí prílohu tejto práce.

V Brne dňa 19.
5. 2024

Patrik Plott

POĎAKOVANIE

Týmto by som chcel poďakovať doc. Ing. Marekovi Balášovi, Ph.D. za jeho trpezlivosť, pomoc a cenné rady, ktoré mi poskytol pri vypracovaní tejto záverečnej práce. Ďalej by som chcel poďakovať svojej rodine a blízkym za ich podporu.

 $\mathbf{11}$

OBSAH

ÚVOD

 $\mathbf{1}$

1	Výn	nenník	y tepla	12				
	1.1	Rozde	lenie typov výmenníkov tepla	12				
		1.1.1	Podľa pracovného pochodu	12				
		1.1.2	Podľa účelu a použitia	12				
		1.1.3	Podľa spôsobu prenosu tepla	13				
		1.1.4	Podľa kombinácie teplonosných médií	13				
		1.1.5	Podľa vzájomného smeru a zmyslu prúdenia teplonosných médií	13				
		1.1.6	Podľa konštrukčného riešenia	14				
	1.2	Záklao	lné požiadavky pri návrhu výmenníka tepla	16				
2	\mathbf{Dos}	kové v	ýmenníky tepla	17				
	2.1	Výhod	ly a nevýhody doskových výmenníkov	18				
	2.2	Vzory	usporiadania tokov a priechodov	19				
	2.3	Záklao	lné konštrukčné prvky doskových výmenníkov	20				
		2.3.1	Dosky	20				
		2.3.2	Tesnenie	24				
		2.3.3	Rám	26				
		2.3.4	Vstupné a výstupné porty	26				
		2.3.5	Stahovacie tyče	26				
	2.4	Spájko	ované doskové výmenníky tepla	27				
	2.5 Ďalšie možné konštrukcie doskových výmenníkov tepla $\ldots\ldots\ldots$							
		2.5.1	Zvárané doskové výmenníky tepla	28				
		2.5.2	Doskové výmenníky tepla s voľným prietokom	29				
		2.5.3	Polozváraný alebo dvojdoskový výmenník tepla	29				
		2.5.4	Dvojstenný doskový výmenník tepla	. 30				
		2.5.5	Výmenníky s grafitovými doskami	. 30				
	2.6	Prevá	dzka doskových výmenníkov tepla	. 31				
		2.6.1	Erózia	. 31				
		2.6.2	Korózia	. 31				
		2.6.3	Zanášanie	. 32				
3	Náv	rh dos	skového výmenníka tepla	35				
	3.1	Súčasný stav						
	3.2	2 Analytický výpočet						
		3.2.1	Zadané parametre doskového výmenníka	. 38				
		3.2.2	Tepelná bilancia výmenníka	. 39				
		3.2.3	Termofyzikálne vlastnosti teplonosných médií	. 40				
		3.2.4	Stredný teplotný logaritmický spád	. 41				
		3.2.5	Návrh geometrie	. 42				
		3.2.6	Výpočet Reynoldsovho čísla	. 43				

		3.2.7	Súčiniteľ prestupu tepla	. 43
		3.2.8	Celkový súčiniteľ prostupu tepla	. 44
		3.2.9	Potrebná teplosmenná plocha	. 44
		3.2.10	Výpočet počtu dosiek a určenie počtu kanálov pre obe kvapaliny	. 44
		3.2.11	Kontrolný výpočet	. 45
		3.2.12	Tlaková strata	. 47
		3.2.13	Zhrnutie výsledkov analytického výpočtu	. 49
4	Výp	očtová	dynamika tekutín	52
	4.1	Základ	lné rovnice CFD	. 53
		4.1.1	Rovnica kontinuity	. 53
		4.1.2	Momentová (pohybová) rovnica	. 53
		4.1.3	Energetická rovnica	. 55
	4.2	Matem	natické modelovanie turbulencie	. 56
		4.2.1	Revnoldsova rovnica a Revnoldsovo časové stredovanie	. 57
		4.2.2	RANS modely turbulencie v Ansys Fluent	. 59
	4.3	Model	ovanie prúdenia v blízkosti stenv	. 61
	4.4	Simulá	ícia prenosu tepla doskového výmenníka tepla	. 63
		4.4.1	Geometria	. 63
		4.4.2	Výpočtová sieť	. 65
		4.4.3	Výpočet CFD modelu	. 71
	4.5	Simulá	icia tlakovej straty doskového výmenníka tepla	. 77
	1.0	4.5.1	Geometria	. 77
		452	Výpočtová sief	. 78
		453	Výpočet CFD modelu	. 82
	4.6	Zhrnu	tie výsledkov CFD simulácie	. 02
	1.0	<i>A</i> 6 1	Modely navrhnutých dosiek a výmenníkov	. 00
		4.6.2	Výslodky	. 00 87
		4.0.2	vysicuky	. 01
5	\mathbf{Zhr}	nutie v	výsledkov	97
	$5.1 \\ 5.2$	Porovi Porovi	nanie výsledkov analytického vypočtu a CFD simulácie	. 97
		výmen	míka	. 101
		5.2.1	Vyhodnotenie najlepšej varianty	. 101
\mathbf{Z}_{I}	Á VEI	R		103
LI	TER	ATÚR	A	107
Z)ZN	AM OI	BRÁZKOV	110
70	<u> </u>			119
20	ј Д1N.			114
Z(DZN.	AM PO	DUZITYCH SYMBOLOV	113
Z	DZN.	AM PO	OUŽITÝCH SKRATIEK	118

ÚVOD

Výmenníky tepla sú široko rozšírené energetické zariadenia sprostredkovávajúce prestup tepla medzi dvomi, poprípade viacerými teplonosnými látkami. Existujú v niekoľkých konštrukčných variáciách, ktoré sa od seba odlišujú podľa kritérií použitia pre dané aplikácie. V súčasnosti sa dostávajú do popredia pre svoje malé rozmery vzhľadom k dosahovaným výkonom doskové výmenníky. Rôznorodosť konštrukcie doskových výmenníkov ich predurčuje na aplikáciu v širokom spektre odvetví. Stretávame sa s nimi ako v priemyselných aplikáciách, tak aj v domácnostiach.

Náplňou diplomovej práce je optimalizácia plynového kondenzačného kotla pre domové vytápanie. Optimalizácia spočíva v návrhu nového sekundárneho doskového výmenníka, ktorý sa používa na prenos tepla medzi teplou vykurovacou vodou v primárnom, tzv. HW (z anglického Heating Water) okruhu a úžitkovou vodou v sekundárnom, tzv. DHW (z anglikého Domestic Hot Water) okruhu.

Prvá časť diplomovej práce sa zameriava na teoretický popis fungovania výmenníkov tepla, súhrn bežne používaných typov a požiadavkou kladených na výmenníky. Pozornosť je ďalej venovaná bližšiemu popisu konštrukcie doskových výmenníkov tepla.

Druhá časť sa skladá z popisu súčasného sekundárneho doskového výmenníka a návrhu variant nových prevedení výmenníka. Ďalšou úlohou je vytvorenie matematického modelu pre numerickú simulácia rôznych dizajnov doskových výmenníkov. Bude sa jednať o výpočet a simuláciu prenosu tepla a tlakových stráť. Pre tvorbu 3D modelov je využitý softvér Solidworks a následne pre numerickú simuláciu doskového výmenníka je použitý program Ansys Fluent. Pre analytický výpočet rôznych variantov prevedenia doskových výmenníkov je využitý program EES (Engineering Equation Solver). Výsledky z CFD nám umožnia vykonať analýzu prúdenia a teplotného priebehu pre obe pracovné média. Takto vytvorený matematický model doskového výmenníka pre CFD simuláciu bude užitočný pri ďalšom vývoji rôznych dizajnov doskových výmenníkov tepl. Tým sa skráti čas na ich budúci vývoj, a taktiež poslúži pri iných simuláciách hydraulických blokov kotla.

V poslednej časti sa bude jednať o porovnanie navrhnutých variant doskových výmenníkov tepla. V tejto časti bude taktiež porovnaná presnosť analytického výpočtu s CFD simuláciou. Rozhodujúce budú najmä dva faktory, a to tlaková strata výmenníka a účinnosť prenosu tepla. Zmena dizajnu bude prevedená zmenou geometrie dosiek, čím dôjde aj k zmene prietočných kanálov. Počet dosiek sa bude voliť podľa požadovaného výkonu. Cieľom bude nájsť optimálnu geometriu doskového výmenníka, tak aby nahradil momentálne používaný sekundárny doskový výmenník tepla v kondenzačných kotloch o danom výkone, ktorých dodávka bude v budúcnosti ukončená.

1 VÝMENNÍKY TEPLA

Výmenníky tepla sú technické zariadenia, ktoré sprostredkovávajú prestup tepelnej energie medzi dvomi, poprípade viacerými látkami o rôznych teplotách. Výmenníky tepla sa používajú v širokej škále aplikácií, medzi ktoré patrí napríklad výroba energie, chemický a potravinársky priemysel, klimatizácie a chladiaca technika, vykurovanie a podobne. [21]

1.1 Rozdelenie typov výmenníkov tepla

Výmenníky je možné rozdeliť na základe rôznych kritérií, podľa [14] [26], ich delíme do týchto skupín nasledovne:

1.1.1 Podľa pracovného pochodu

- rekuperačný obe teplonosné látky sú oddelené nepriepustnou stenou (doska, špirála, zväzok trubiek), čím tak nedochádza k vzájomnému miešaniu pracovných médií a tepelná energia sa prenáša prúdením a vedením,
- regeneračný prenos tepla zabezpečuje matrica, ktorá akumuluje teplo dodané ohrievacím médiom a následne ho predáva ohrievanému médiu,
- kontaktný teplé a studené pracovné médiá majú rozdielnu fázu, a po vzájomnom kontakte a predaní tepelnej energie, sú opäť od seba oddelené, kde teplosmenná plocha je daná povrchom častíc pevnej fázy,
- zmiešavací tento typ výmenníka nemá žiadnu teplosmennú plochu a obe pracovné média prichádzajú do priameho kontaktu, čím tak vytvárajú homogénnu zmes.

Obr. 1: Rozdelenie typov výmenníkov tepla podľa pracovného pochodu [14]

1.1.2 Podľa účelu a použitia

- ohrievače ich základným znakom je, že ohrievané médium v nich zvyšuje svoju teplotu, ale nedochádza k zmene fáze,
- chladiče ochladzované médium v nich znižuje svoju teplotu bez zmeny fázy,
- výparníky ohrievané kvapalné médium sa mení v paru,
- kondenzátory teplejšie médium v plynnom skupenstve sa mení v kvapalinu (kondenzát),

- prehrievače a medziprehrievače slúžia k zvyšovaniu teploty sýtej alebo prehriatej pary,
- sušiarne prísunom tepla sa dosahuje zníženie vlhkosti látky v pevnom skupenstve,
- termické odplyňováky vody parným ohrevom vody až k bodu varu dochádza ku vylučovaniu pohltených plynov,
- výhrevné telesá ústredného kúrenia výhrevné médium ohrieva okolný vzduch.

1.1.3 Podľa spôsobu prenosu tepla

- konvekčné o množstve predanej tepelnej energie rozhoduje najmä prúdiace teplonosné médium, k prestupu tepla dochádza predovšetkým konvekciou (radiačná zložka je zanedbateľná),
- sálavé (radiačné) väčšina tepelnej energie sa predáva žiarením (konvekcia sa zanedbáva),
- kombinované k prenosu tepla dochádza prúdením aj žiarením.

1.1.4 Podľa kombinácie teplonosných médií

- kvapalina-kvapalina (voda-voda),
- kvapalina-plyn (voda-para, voda-spaliny, olej-para),
- plyn-plyn (para-vzduch, spaliny-para, spaliny-vzduch).

1.1.5 Podľa vzájomného smeru a zmyslu prúdenia teplonosných médií

- súprudné smery ôs prúdov ohrievacieho a ohrievaného média sú rovnobežné,
- protiprúdne smery ôs prúdov sú rovnobežné, ale opačne orientované,
- krížové osy prúdov sú mimobežné a v kolmom priemete spolu zvierajú uhol 90°,
- so šikmým vzájomným prúdom osy prúdov spolu zvierajú v kolmom priemete uhol väčší alebo menší než 90°,
- viacnásobné súprudné, protiprúdne a krížové,
- s kombinovaným prúdením.

Obr. 2: Rozdelenie typov výmenníkov tepla podľa vzájomného smeru a zmyslu prúdenia [14]

Protiprúdne usporiadanie umožňuje väčší prenos tepla pri danej vstupnej teplote. Ďalej umožňuje nižšie prenosové rýchlosti a znižuje teplotný rozdiel. U súprudného toku do-

Energetický ústav	Bc. Patrik Plot
FSI VUT v Brně	Návrh výmenníka tepla pre kondenzačný koto

chádza k problému klesajúceho rozdielu teploty na výstupe z výmenníka tepla. Ďalšou nevýhodou súprudného usporiadania je veľký teplotný rozdiel na vstupe, čo môže vytvoriť v niektorých situáciách vysoké tepelné namáhanie teplosmennej plochy. Hlavnou výhodou súprudného usporiadania je rovnomernejší prenos tepla teplosmennou plochou, čo môže byť výhodne v prípadoch, keď sú obe tekutiny (primárna aj sekundárna) pomerne teplé, a kedy súprudný tok poskytuje nižšiu maximálnu teplotu teplosmennej plochy, ktorá tak môže byť z lacnejších materiálov. [24]

Obr. 3: Priebehy teplôt (a - súprudné usporiadanie, b - protiprúdne usporiadanie) [27]

1.1.6Podľa konštrukčného riešenia

• trubkové výmenníky tepla (trubka v trubke, zväzkové, špirálové) - rekuperačný typ výmenníka,

Obr. 4: Zväzkový výmenník tepla [32]

doskové výmenníky tepla (tesnené, spájkované, zvárané, špirálové, lamelové) - rekuperačný typ výmenníka,

Obr. 5: Doskový výmenník - princíp [11]

výmenníky so zväčšeným povrchom (doskové rebrované, prípadne trubkové rebrované) - z dôvodu nízkeho súčiniteľa prestupu tepla na jednej alebo oboch stranách teplosmenných médií je nutné zväčšenie plochy pre prenesenie požadovaného množstva tepla,

Obr. 6: Trubkový rebrovaný výmenník tepla [17]

Obr. 7: Doskový rebrovaný výmenník tepla [17]

• regeneračné výmenníky tepla (s pevnou alebo rotačnou matricou).

Obr. 8: Regeneračný výmenník s rotačnou matricou [22]

V druhej kapitole (Doskové výmenníky tepla) sa budeme ďalej venovať bližšiemu popisu doskových výmenníkov, keďže táto diplomová práca je zameraná práve na návrh nového sekundárneho doskového výmenníka tepla, používaného v plynových kondenzačných kotloch.

1.2 Základné požiadavky pri návrhu výmenníka tepla

Pri návrhu výmenníka tepla sa vychádza zo špecifikácií zadania. Ako prvé sa vyberie konštrukčný typ výmenníka a usporiadanie prietokov. Výber typu danej konštrukcie závisí od použitých teplosmenných látok. Dalej od tlaku, teploty, znečistenia a požiadavkou na čistenie, prípadne od kompatibility tekutín s materiálom výmenníka. Dôležitá je aj korozívnosť kvapalín, tesnosť, dostupná technológia výroby výmenníka tepla a cena. Voľba konkrétneho usporiadania tokov závisí od požadovanej účinnosti a od konštrukčného typu výmenníka. Ďalej od potrubia pred a za výmenníkom tepla, od prípustného tepelného namáhania, prípadne od ďalších kritérií a konštrukčných obmedzení. Dalej sa navrhuje potrebná geometria výmenníka tepla. Hlavná geometria ako typ plášťa, počet prechodov, geometria prepážok, dĺžka výmenníka a telposmenná plocha sa navrhuje u zväzkových výmenníkov. Pre výmenníky doskové, prípadne výmenníky so zväčšeným povrchom alebo výmenníky regeneračné, sa navrhuje geometria povrchu teplosmennej plochy. Kvalitatívne kritéria pre návrh teplosmennej plochy sú požadovaný prenesený tepelný tok a tlakové straty. Dalej prevádzková teplota a tlak, riziko znečistenie a zanášania, korózia, abrázia, tesnosť, kontaminácia tekutín, cena, dostupnosť materiálov a polotovarov, vyrobiteľnosť. Dôležité sú taktiež požiadavky na údržbu (čistenie, prípadne výmena jednotlivých komponent), bezpečnosť a spoľahlivosť, čo zahrňuje minimálne prevádzkové problémy spojené napríklad s vibráciami, zamŕzaním, nestabilitou výkonu a podobne. [32] [21]

2 DOSKOVÉ VÝMENNÍKY TEPLA

Prvý vývoj doskových výmenníkov začal začiatkom 80. rokov 19. storočia, kedy narastalo povedomie verejnosti o rôznych chorobách, ktoré sa šírili v dôsledku surového, neošetreného mlieka. Iniciovalo to tak prvé experimenty pasterizácie mlieka, čo zahrňovalo zahrievanie mlieka na určitú teplotu, udržanie na tejto teplote krátky čas a následne prudké ochladenie. Tento proces vyžadoval vysoko účinné a najmä ľahko čistiteľné zariadenie na prenos tepla. Nasledujúce roky tak nasledovala značná vývojová aktivita v tomto odvetví, čo vyústilo v niekoľko patentov pokrývajúcich rôzne formy doskových výmenníkov. Doskový výmenník sa však komerčne začal využívať až v roku 1923 práve pre pasterizáciu mlieka. Doskové výmenníky sa dostávali do popredia v 70. rokoch 20. storočia. Motiváciou bolo vytvorenie rôznych nových vzorov dosiek pre efektívne ohrievanie/chladenie procesných kvapalín, čím tak boli vyvinuté rôzne nové dizajny prelisovania dosiek a doskových výmenníkov. [38]

V súčasnosti zaznamenávajú doskové výmenníky tepla veľký nárast. Využívajú sa v širokej škále aplikácií ako napríklad v chemickom a ropnom priemysle, ďalej vo farmaceutickom, potravinárskom a energetickom priemysle, a taktiež v chladiarenskej technike, tepelných čerpadlách, kotloch a podobne. Ich veľké spektrum využitia je vďaka ich jedinečným výhodám. [28]

Najväčšie využitie majú pre ohrev kvapalín, pri prevádzkových tlakoch do 3,5 MPa a pri teplotách 150 °C. Niektoré typy sú schopné pracovať aj s vyššími teplotami, prípadne v teplotách kryogénnych. [14]

Konkrétne prevádzkové parametre jednotlivých doskových výmenníkov je nutné si overiť v katalógu výrobcu. Medzi najväčších výrobcov doskových výmenníkov tepla patria Alfa Laval, prípadne spoločnosť Swep, Tranter a iné.

Doskové výmenníky tepla sú zvyčajne vyrobené z tenkých dosiek. Vďaka veľmi malej hrúbke dosiek majú malý tepelný odpor. Dosky sú buď hladké alebo obsahujú nejakú formu zvlnenia. Ďalej môžu byť ploché, prípadne zvlnené. Z dôvodu profilovania je medzidoskový priestor tvorený kanálikmi, ktorými prúdia pracovné média. Jedno médium prúdi jednou skupinou týchto kanálov, druhé inými, bezprostredne priľahlými kanálmi (pozri obr. 5). Na obrázku je ďalej si možné všimnúť, že pracovné látky v doskovom výmenníku prúdia v susedných doskách protiprúdne, čo je bežné usporiadanie. [21] [32]

Obr. 9: Turbulentné prúdenie v kanáloch doskového výmenníka [28]

Doskové výmenníky tepla môžu byť klasifikované ako rozoberateľné (tesniace) alebo nerozoberateľné (zvárané, spájkované), v závislosti od požadovanej tesnosti. Medzi ďalšie používané typy doskových výmenníkov patria výmenníky špirálové, lamelové, prípadne sa využívajú plášťové doskové výmenníky tepla. [32]

Obr. 10: Rozoberateľný doskový výmenník tepla [31]

Ako je možné vidieť na obr. 10, tak rozoberateľný výmenník pozostáva z obdĺžnikových dosiek utesnených po okrajoch, ktoré sú k sebe pritláčané rámom. Rám má zvyčajne pevný a pohyblivý koniec. V ráme sú dosky vedené pomocou hornej a dolnej nosnej tyče, tak aby sa zabezpečilo správne zarovnanie. Z tohto dôvodu má doska v strede horného a spodného okraja vodiacu drážku. Následne sú oba konce rámu stiahnuté skrutkami pre zaistenie tesnosti. [32]

2.1 Výhody a nevýhody doskových výmenníkov

Výhody doskových výmenníkov sú [14] [26]:

- kompaktné riešenie (malé rozmery a nízka hmotnosť),
- intenzívny prestup tepla (vysoká turbulencia),
- pri použití rozoberateľnej konštrukcie výmenníka je možné veľmi presne dimenzovať tepelný výmenník,
- rozoberateľné prevedenie taktiež umožňuje jednoduchšiu prevádzku (kontrola, čistenie, prípadne výmena jednotlivých dosiek, menej potrebného priestoru pre údržbu),
- zvárané a spájkované výmenníky majú veľmi dobrú teplotnú a tlakovú odolnosť,
- vysoká účinnosť (nízke straty tepla do okolia),
- možnosť celonerezového prevedenia,
- odolnosť voči agresívnemu prostrediu,
- jednoduchá detekcia netesnosti,
- nízke zanášanie (vďaka vysokej turbulencii a krátkej doby zotrvania),

 medzera medzi doskami je relatívne malá, a tak sa v doskovom výmenníku nachádza menší objem kvapaliny, čo má za dôsledok zníženie nákladov na často finančne nákladné pracovné látky, ako sú napríklad rôzne chladivá alebo iné technologické média, a zároveň je možné reagovať na rôzne procesné zmeny v krátkom čase, a tým tak jednoduchšie regulovať a riadiť daný systém.

Medzi nevýhody patrí [14] [26]:

- obmedzené parametre médií (teplota, tlak) hlavne u rozoberateľných výmenníkoch,
- požiadavka na zvýšenú čistotu pracovných látok (zamedzenie zanášaniu výmenníka),
- menšia teplotná a tlaková odolnosť rozoberateľných výmenníkov, ktorá je daná odolnosť nosťou tesnenia,
- problém netesnosti pri väčších tlakoch,
- vysoká tlaková strata,
- nevhodné pre pary a plyny,
- obmedzenie kvapalín s vysokou viskozitou alebo vlákninou,
- nevhodné pre kondenzáciu v podtlaku,
- nevhodné pre veľké rozdiely hmotnostných tokov.

2.2 Vzory usporiadania tokov a priechodov

Najjednoduchšie typy usporiadania tokov v doskových výmenníkoch sú tzv. jednopriechodové, kde obe pracovné média prúdia v kanáloch tvorenými doskami, čím tvoria jeden priechod, takže nedochádza k žiadnej zmene smeru prúdov. Existujú dva typy jednopriechodového usporiadania, a to protiprúdne a súprudné. Prúdenie protiprúdne je bežnejšie u doskových výmenníkov, súprudné sa využíva len v špeciálnych prípadoch. Výhodou jednopriechodového usporiadania je, že je možné inštalovať vstupy a výstupy na jednu pevnú dosku, čo tak uľahčuje prípadne rozoberanie a následnú údržbu bez narušenia prívodného potrubia. Toto je najpoužívanejšie jednopriechodové usporiadanie označované ako usporiadanie do písmena U (pozri obr. 11 a). Existuje aj usporiadanie do písmena Z (pozri obr. 11 b), kde je vstup a výstup teplonosnej látky na oboch koncových doskách, čo má za následok zložitejšiu údržbu a montáž, náchylnosť na teplotnú rozťažnosť, ale na druhú stranu je u Z usporiadania rovnomernejšia trajektória prúdu. [28]

Obr. 11: Jednopriechodové usporiadanie [28]

Z dôvodu zvýšenia prenosu tepla, respektíve zvýšenia rýchlosti prúdenia, sa používajú aj viacpriechodové usporiadania. Používajú sa najmä aj v prípadoch rozdielnosti prietokov prúdov. Dvojpriechodové usporiadanie vznikne vložením dosky so zaslepeným otvorom, kde médium prúdi v časti výmenníka opačným smerom (pozri obr. 12). Trojpriechodové usporiadanie vznikne vložením dvoch dosiek so zaslepeným otvorom, atď. [28] [38]

Obr. 12: Viacpriechodové usporiadanie [38]

Pre náš návrh doskového výmenníka bolo zvolené jednopriechodové usporiadanie do písmena U. Toto usporiadanie bolo zvolené na základe nutnosti vstupu a výstupu médií na jednej strane doskového výmenníky z dôvodu, že sa jedná o sekundárny výmenník kondenzačného kotla, kde hydraulický blok s výmenníkom je konštruovaný na tento typ usporiadania. Prípadna zmena celého hydraulického bloku by bola finančne a časovo náročná, a nepriniesla by žiadne významné výhody. Bolo taktiež uprednostnené prúdenie protiprúdne, ktoré je u doskových výmenníkov bežnejšie, a poskytuje dosiahnutie vyššej tepelnej účinnosti v porovnaní so súprudným usporiadaním.

$2.3 \quad Základné konštrukčné prvky doskových výmenníkov$

2.3.1 Dosky

Dosky sa môžu vyrábať v podstate z akéhokoľvek kovu, respektíve zliatiny, ktorá môže byť tvarovaná za studena, a je zvárateľná. Ako príklad je možné uviesť nerezovú oceľ, titán, nikel, hliník, Incoloy, Hasteloy, tantal a monel. Výber materiálu dosky je primárne určený kompatibilitou s pracovným médiom a tepelným zaťažením. Rôzny výrobcovia používajú rôzne materiály na základe ich špecifického dizajnu, použitia a nákladových preferencií. Bežne využívané materiály dosiek sú nerezové ocele AISI 304, AISI 316, zliatina 254 SMO, zliatina niklu C-276 a titán. [38]

Všeobecný a zjednodušený sprievodca výberu materiálu na základe skúseností s materiálovou kompatibilitou dosiek a pracovného média je uvedený v tabuľke 1.

Materiál	Pracovné médium		
	Voda, voda z chladiacej veže, zriedené roztoky chloridov		
Nerezová oceľ	(<200 ppm), roztoky síranu meďnatého, potravinárske vý-		
	robky, farmaceutické média, atď.		
Nikel Žieravé roztoky (50 - 70 %)			
Incolor	Plynný vodík, vodná para s obsahom ortuti a kyseliny		
	$(\leq 70^{\circ}C)$		
Hasteloy	Kyselina sírová a dusičná		
Tit 4	Morská voda, zriedené kyseliny ($\leq 70^{\circ}$ C), roztoky chlori-		
110.011	dov (>200 ppm) a chlorované soľanky		
Zliatina titán paládium	Zriedená kyselina dusičná a sírová (10 $\%$ koncentrácia a		
Znatina titan-paladium	teplota $\leq 70^{\circ}$ C)		

Tabuľka 1: Materiály dosiek pre typické teplonosné látky [38]

Na základe vyššie popísaných odporúčaní bol zvolený materiál pre dosky nášho výmenníka tepla nehrdzavejúca oceľ z dôvodu, že obe pracovné média sú voda. Konkrétne sa jedná o nerezovú oceľ s označením AISI 316, ktorá na rozdiel od AISI 304 obsahuje až 2,5 % molybdénu, čo robí tento materiál odolnejší voči štrbinovej korózii spôsobenej chloridmi, pri zachovaní rovnakých mechanických vlastností ako AISI 304.

Dosky majú obdĺžnikový tvar, ktorý je prelisovaný. Prelisovaný tvar zabezpečuje vyššiu turbulenciu prúdiacich médií, predlžuje trajektóriu prúdenia, a taktiež zvyšujú tuhosť plechu. Základné tvary prelisovania sú v tvare písmena V, tzv. prelisovanie v tvare rybej kosti, kde pri ich návrhu sa určuje uhol kanálikov β (pozri obr. 15). Veľký uhol (60°-65°, kanál typu L) vedie k nízkym tlakovým stratám, ale tiež k nižšiemu koeficientu prestupu tepla. Na druhú stranu, malý uhol (25°-30°, kanál typu H) vedie k vyšším tlakovým stratám, ale k vyššiemu koeficientu prestupu tepla. Existuje ďalej kanál typu M, ktorý je kombináciou dosiek typu H a L (prípadne sa používajú dosky s uhlom kanálikov v rozmedzí 30°-60°, čím sa dosiahnu podobné vlastnosti ako kombináciou dosiek). [14]

Obr. 13: Dosky s prelisovaním do tvaru písmena V s kanálmi typu H,L a M $\left[31\right]$

Tvar kanálikov do písmena V nie je jediným možným dizajnom dosiek výmenníka. Existuje veľký počet rôznych tvarov dosiek po celom svete. Na obrázku 14 je možné vidieť niektoré najbežnejšie tvary prelisovania dosiek výmenníku. Rôzne tvary závisia od konkrétneho výrobcu a účelu použitia doskového výmenníka tepla.

Obr. 14: Dosky s rôznymi tvarmi prelisovania [32]

V tejto diplomovej práci sme si zvolili tvar prelisovania dosky do písmena V.

Medzi ďalšie charakteristické rozmery dosiek patrí vnútorný priemer kanálu (D_p) , ktorým je zabezpečený prívod, prípadne odvod pracovnej látky, a ktorý je dimenzovaný na základe tlakovej straty. Ďalším rozmerom je výška teplosmennej plochy (L_p) . Pri návrhu je nutné urobiť kompromis medzi výškou dosky a celkovým počtom dosiek. Teplosmennú plochu charakterizuje ďalej šírka dosky (L_w) . Ďalšími charakterizujúcimi rozmermi zobrazenými na obrázku 15 sú hrúbka dosky (t) a hĺbka prelisovania (b). Z hľadiska uloženia a pripojenia potrubí výmenníka sú dôležité rozmery osovej vzdialenosti vstupného a výstupného otvoru dosky $(L_h \ a \ L_v)$.

Obr. 15: Základné rozmery dosky výmenníka [14]

Zmenou hĺbky prelisovania môžeme dosiahnuť dva rôzne dizajny doskového výmenníka tepla. Konkrétne sa jedná o symetrický a asymetrický dizajn. Rozdiel spočíva v tom, že u symetrického výmenníka je prietočný prierez pre obe prúdiace média rovnaký, a u asymetrického je prietočný prierez jednej pracovnej látky väčší (respektíve menší) od prietočného prierezu druhého média. Ak túto analógiu prenesieme na sekundárny doskový výmenník kondenzačného kotla používajúci sa na prenos tepelnej energie medzi teplou vodou v primárnom, tzv. HW okruhu, a úžitkovou vodou s nižšou teplotou v sekundárnom, tzv. DHW okruhu, tak platí, že pri asymetrickom dizajne výmenníka je prietočný prierez na HW strane väčší, v porovnaní s prietočným prierezom DHW okruhu.

Obr. 16: Rozdiel medzi symetrickým a asymetrickým doskovým výmenníkom [2]

Medzi výhody asymetrického dizajnu patrí nižšia tlaková strata na strane vyššieho prietočného prierezu (HW okruh) a vyšší výkon pri zachovaní rovnakého počtu dosiek v porovnaní so symetrickým výmenníkom tepla. Nevýhodou u asymetrického dizajnu je, že hrozí väčšie riziko kalcifikácie na strane menšieho prietočného prierezu (DHW okruh). [2]

Obr. 17: Porovnanie asymetrického a symetrického výmenníka pri rovnakom výkone [34]

Asymetrický dizajn výmenníka tepla dosiahneme spôsobom, že každá druhá doska výmenníku je asymetrická (pozri obr. 18). Rozdiel medzi asymetrickou a symetrickou doskou je ten, že každé druhé prelisovanie u asymetrickej dosky má inú hĺbku.

Symetrický dizajn

Asymetrický dizajn

Symmetrical Plate Asymmetrical Plate Symmetrical Plate

Obr. 18: Konštrukcia symetrického a asymetrického výmenníka tepla [12]

V tejto diplomovej práci bolo navrhnutých 6 rozdielnych dizajnov dosiek výmenníka. Jedná sa o dosky s prelisovaním v tvare do písmena V s uhlami kanálikov 25°, 45° a 60°. Každá doska s jednotlivými uhlami bola následne namodelovaná pre symetrický aj asymetrický dizajn.

2.3.2 Tesnenie

Tesnenia sú zvyčajne jednodielne lisované elastoméry a ich špecifické vlastnosti a materiálové charakteristiky sa vyberajú na základe kompatibility s pracovnými médiami. Pri výbere materiálu tesnenia sú ďalej dôležitými požiadavkami, ktoré je potrebné splniť, chemická a teplotná odolnosť spojená s dobrými tesniacimi vlastnosťami. Tesnenie musí byť schopné odolávať aj vysokým tlakom. [26] [38]

Typické materiály používané na výrobu tesnenia sú uvedené v tabuľke 2.

Vo všeobecnosti náklady na materiál tesnenia rastú priamo úmerne so zvyšujúcou sa prahovou hodnotou teploty, tlaku a odolnosti voči korózií. Tesnenie zvyčajne vydrží najmenej jeden rok, pokiaľ sa prevádzkové teploty pohybujú okolo maximálnej dovolenej teploty tesnenia. Ich životnosť sa predlžuje s klesajúcou hodnotou prevádzkovej teploty. [38]

Materiál	Max. prevádz- ková teplota	Aplikácie	Obmedzenia
Prírodný kaučuk 70 °C		kyslíkaté rozpúšťadla, kyseliny, alkohol	
Styren butadien 80 °C		alkálie, kyseliny, okysličené roz- púšťadla a ďalšie kvapaliny	odolnosť voči olejom
Neopren 70 °C		alkohol, alkálie, kyseliny, alifa- tické uhľovodíkové rozpúšťadla	
Nitril 100-400 °C		mlieko, ovocné džúsy, nápoje, lieky, oleje, benzín, rastlinné a ži- vočíšne oleje, alifatické organické rozpúšťadla a aplikácie bioché- mie	odolnosť voči olejovým prísa- dám
Butyl	120-150 °C	alkálie, kyseliny, rastlinné a živo- číšne oleje, aldehydy, ketóny, fe- noly a niektoré estery	odolnosť voči olejom
Etylenpropylen (EPDM)	140 °C	alkálie, okysličené rozpúšťadlá	odolnosť voči olejom
Silikónový kaučuk	140 °C	nízkoteplotné kvapaliny, alkohol, sodík, chlórnan	
Fluórový kaučuk	175 °C	vysokoteplotné kvapaliny, mine- rálne oleje, benzín, organické roz- púšťadlá, rastlinné a živočíšne oleje	
Stlačené azbestové vlákno	200-260 °C	organické rozpúšťadlá a vysoko- teplotné kvapaliny	

Tabuľka	2:	Tesniace	materiály	[14]
				L J

Tesnením je možné zamedziť tzv. krížovej kontaminácii médií, kde každá teplonosná látka je individuálne utesnená. Princíp spočíva v tom, že priestor medzi tesneniami nie je dokonalo tesný voči okoliu výmenníka, a tak pri poruche tesnenia na strane studeného média alebo na strane teplého média nespôsobí vzájomnú kontamináciu, ale únik mimo priestor doskového výmenníka tepla (pozri obr. 19). Tesnením zároveň vymedzujeme smer toku pracovných médií. [26]

Obr. 19: Zamedzenie vzájomnej kontaminácie médií pomocou tesnenia [32]

2.3.3 Rám

Rám je zvyčajne vyrobený z uhlíkovej ocele a lakovaný pre odolnosť voči korózii. Ďalej môžu byť vyrobené z nerezovej ocele pre aplikácie, kde platia prísne požiadavky na čistotu (napríklad vo farmaceutickom a potravinárskom priemysle). Doskový výmenník tvorený rámom sa tak montuje zvyčajne na podlahu, ale pri malých jednotkách je možné vykonávať montáž aj na stenu. [26]

2.3.4 Vstupné a výstupné porty

Vstupné a výstupné porty pre teplonosné média sú umiestnené v jednej, prípadne oboch koncových doskách. V jednopriechodovom usporiadaní sú porty pre obe kvapaliny umiestnené v jednej koncovej doske, čo umožňuje jednotku otvoriť bez narušenia vonkajšieho potrubia. Pri viacpriechodovom usporiadaní musia byť porty umiestnené na oboch hlavách, čo znamená, že jednotku nie je možné otvoriť bez narušenia vonkajšieho potrubia. Aby boli vstupné a výstupné porty odolné voči korózii, sú zvyčajne z rovnakého materiálu ako je materiál dosky - nerezová oceľ (AISI 304, AISI 316, 254 SMO). [26]

2.3.5 Sťahovacie tyče

Spojovacie skrutky sú zvyčajne vyrobené z nízkolegovanej ocele. Väčšie doskové výmenníky je možné stlačiť hydraulickými, pneumatickými alebo elektrickými sťahovacími zariadeniami. Pre keramické alebo grafitové dosky je nutné sťahovacie tyče opatriť prítlačnými pružinami. [26]

2.4 Spájkované doskové výmenníky tepla

Spájkovaný doskový výmenník tepla sa vyvinul z konvenčného (rozoberateľný, spojený sťahovacími skrutkami) výmenníka ako odpoveď na potrebu kompaktného výmenníka tepla pre vysokotlakové a vysokoteplotné aplikácie. Rovnako ako rozoberateľný výmenník je spájkovaný, nerozoberateľný doskový výmenník, vyrobený zo série tenkých kovových prelisovaných dosiek. Rozdiel spočíva v tom, že tento typ výmenníka je bez tesnenia, sťahovacích skrutiek, rámu, prípadne nosných a vodiacich tyčí. Skladá sa tak len z nerezových dosiek a dvoch koncových dosiek. [26]

Obr. 20: Nerozoberateľný doskový výmenník (spájkovaný) [14]

Jednotlivé dosky sú spájkované dohromady vo vákuovej peci (približne 8 hodín), aby vytvorili kompletnú tlakovo odolnú jednotku. Počas tohto procesu sa spájkovací materiál zhromažďuje v kontaktných bodoch medzi doskami v dôsledku kapilárnych síl, čím sa vytvoria kvalitné spájkované spoje. Ako spájkovací materiál sa používa najčastejšie meď. Pri problémoch s kompatibilitou s niektorými procesnými médiami (napr. amoniakom) sa namiesto medi využíva ako spájkovací materiál nikel. Teplonosné média, rovnako ako u rozoberateľného výmenníka, prúdia v dvoch samostatných kanáloch. Tento kompaktný výmenník je možné zakomponovať priamo na potrubie bez nutnosti nejakej špeciálnej konzoly, prípadne základov. [38]

Obr. 21: Proces výroby spájkovaného doskového výmenníka tepla [34]

Pretože sú dosky navzájom spájkované a nie sú tu žiadne rámy ani tesnenia, tak spájkované doskové výmenníky tepla dokážu pracovať vo vyšších tlakoch aj teplotách, v porovnaní s rozoberateľnými doskovými výmenníkmi. Zvládajú tlaky aj do 30 barov a teploty od kryogénnych teplôt až po 400 °C. [38]

Spájkovaná konštrukcia má nevýhodu nerozoberateľnosti, takže nie je možná jednoduchá demontáž a následné rozšírenie výmenníka, prípadne výmena dosky alebo ich jednoduché čistenie demontážou. Dĺžka výmenníka je zvyčajne menšia ako 1 m, čo je limitované kvôli spájkovacej peci. Tieto výmenníky však na druhú stranu sú výhodné práve vďaka ich kompaktným rozmerom. Výhodami spájkovaného doskového výmenníka tepla sú vysoká tesnosť (bez nutnosti dodatočného tesnenia), vysoká tepelná účinnosť, možnosť využitia pre vysokoteplotné a vysokotlakové aplikácie. Využívajú sa najmä vo vykurovaní, v chladiacej technike (klimatizácie, tepelné čerpadlá) a pre rôzne procesné aplikácie. [26] [38]

Spájkované výmenníky tepla sa využívajú taktiež v kondenzačných kotloch menších výkonov ako sekundárny výmenník tepla, kde prebieha prenos tepelnej energie medzi vykurovacou vodou a úžitkovou vodou. Využitie v tejto oblasti je vďaka ich vysokej tepelnej účinnosti, tesnosti a najmä kompaktnosti. V tejto diplomovej práci sa jedná práve o návrh spájkovaného doskového výmenníka, ktorý bude využívaný v kondenzačných kotloch pre domáce vykurovanie.

2.5 Ďalšie možné konštrukcie doskových výmenníkov tepla

2.5.1 Zvárané doskové výmenníky tepla

Dosky sa zvárajú spolu jedna po druhej v alternatívnych drážkach pomocou laserového zvárania. Balík dosiek sa následne vloží medzi koncové dosky rámu a je stlačený prostredníctvom skrutiek. [38]

Obr. 22: Zváraný doskový výmenník tepla $\left[4\right]$

Táto konštrukcia výmenníka je bez dodatočného tesnenia. Zvárané doskové výmenníky tepla, na rozdiel od rozoberateľných, nemôžu byť jednoducho rozobrané pre pridanie dosiek, prípadne pre možnosť mechanického čistenia. U týchto výmenníkov je možné iba chemické čistenie. Použitie do tlakov 5 MPa a do teplôt od -50 do 450 °C. Tento typ výmenníka je vhodný pre vysoko agresívne alebo korozívne kvapaliny. [26]

2.5.2 Doskové výmenníky tepla s voľným prietokom

Medzi ich špeciálne vlastnosti patrí konštantná šírka medzery medzi jednotlivými doskami. To je dosiahnuté vďaka hrubovlnnému profilovaniu dosiek. Pri tejto konštrukcii výmenníka sa znižuje riziko zanášania a predlžuje sa tak životnosť. Tento typ doskového výmenníka sa používa pre veľmi viskózne kvapaliny, prípadne znečistené tekutiny. Výhodou sú tiež nižšie tlakové straty v porovnaní s inými typmi doskových výmenníkov. [26]

Obr. 23: Porovnanie dosiek bežného výmenníka tepla a dosiek výmenníka s voľným prietokom [26]

2.5.3 Polozváraný alebo dvojdoskový výmenník tepla

Polozvárané dosky sú tvorené z dvoch kaziet vzájomne zvarených laserom. Kazety sú oddelené štandardnými tesneniami (pozri obr. 24). Tieto výmenníky sa vyznačujú vynikajúcou tesnosťou a ľahkým čistením. Polozvárané jednotky výmenníkov sa zvyčajne využívajú v chemickom priemysle, pri rafinácii ropy a v chladiarenskom priemysle. Zohľadňujú veľmi odlišné parametre jedného média ako je vysoký tlak, vysoká teplota a agresivita voči tesneniu. [26]

Tento dizajn výmenníka je tak užitočný pri manipulácii s korozívnymi médiami, ktoré prúdia v zváraných dvojdoskových kanáloch. Jediné tesnenie, ktoré je v kontakte s týmto médiom, sú dve kruhové tesnenia medzi párom zvarených dosiek, ktoré sú typicky vyhotovené z vysoko odolných elastomérov. Naopak kanály obsahujúce nekorozívne, neagresívne médium sú utesnené pomocou tradičného tesnenia z bežne používaného elastoméru. [38]

Obr. 24: Polozváraný doskový výmenník tepla [26]

2.5.4 Dvojstenný doskový výmenník tepla

Tento typ výmenníka pozostáva z dvoch dosiek s malou vzduchovou medzerou medzi nimi (pozri obr. 25). Táto medzera slúži pre ochranu proti vzájomnej kontaminácii oboch pracovných látok v prípade netesnosti. V prípade netesnosti dochádza k úniku teplonosnej látky mimo výmenník. Výhodou je tak jednoduchá detekcia netesností. Nevýhodou je, že vzduchová medzera medzi doskami pôsobí ako izolant, čím sa zhoršuje efektívnosť prenosu tepelnej energie medzi teplonosnými látkami, a je tak nutné použiť viacej dosiek oproti konvenčnému prevedeniu doskového výmenníka tepla. [26]

Obr. 25: Dvojstenný doskový výmenník tepla [26]

2.5.5 Výmenníky s grafitovými doskami

Dosky sú vyrobené z kompozitného materiálu pozostávajúceho z grafitu a fluoroplastov. Materiál je stlačený do tvaru vlnitých dosiek, ktoré sú vybavené tenkými, plochými tesneniami odolnými voči korózii. Okrem odolnosti voči korózii ponúkajú tieto výmenníky dobré vlastnosti prenosu tepla v kombinácii s nízkou teplotnou rozťažnosťou. [38]

Tieto výmenníky sa používajú pri manipuláciách s vysoko korozívnymi a agresívnymi látkami (kyselinami). Maximálne parametre, ktoré je možné dosiahnuť sú teplota 200 °C a pretlak 0,7 MPa. [26]

2.6 Prevádzka doskových výmenníkov tepla

Pri prevádzke doskových výmenníkov tepla vznikajú určité základné mechanizmy porúch, s ktorými je nutné sa vyrovnať. Jedná sa najmä o koróziu, eróziu a zanášanie.

2.6.1 Erózia

Erózia je definovaná ako úbytok materiálu v dôsledku dopadu vysokorýchlostného prúdu kvapaliny, suspendovaných kvapiek v prúde plynu, suspendovaných bublín pary v prúde kvapaliny alebo sa môže jednať o suspendované tuhé častice v plynnom, prípadne kvapalnom prúde. Hlavným dôvodom erózie je zvyčajne vysoká rýchlosť prúdenia. Erózia je významnejšia, ak sa jedná o dvojfázové prúdenie. Erózia je vo všeobecnosti závislá na rýchlosti prúdenia, vlastnostiach pracovných médií a vlastnostiach materiálu. U doskových výmenníkoch býva erózia zvyčajne v oblasti vstupných portov (pozri obr. 26). Okrem toho môže však často prebiehať erózia spolu s koróziou a navzájom sa tak ovplyvňujú. Tento jav sa nazýva erózna korózia. Jedná sa o kombináciou elektrochemického rozkladu a mechanického opotrebovania. Na rozdiel od čistej erózie, je možné eróznu koróziu nájsť aj v oblastiach s relatívne nízkymi rýchlosťami, kde je prítomná korózia. Jedným z bežných spôsobov, ako zabrániť erózii, je odstrániť abrazívne pevné látky z teplonosnej látky pomocou filtrácie. [38]

Obr. 26: Erózia v oblasti vstupných portov [38]

2.6.2 Korózia

Korózia je definovaná ako degradácia materiálu v dôsledku reakcie s prostredím. Jedná sa o elektrochemický proces, ktorým sa kov vracia do svojho prirodzeného stavu, to je oxidu železa (hrdza). To má v konečnom dôsledku za následok zlyhanie výmenníka tepla. Korózia vzniká najčastejšie v drážkach pod tesneniami, v kontaktných bodoch a v blízkosti tesniacich zvarov. [38]

Obr. 27: Korózia doskového výmenníka tepla [3]

Najčastejšími príčinami korózie zo strany vody sú nesprávny pH faktor a nedostatočne odplynená voda. Intenzita korózie sa vyjadruje ako úbytok materiálu ($g \cdot m^{-2} \cdot hod^{-1}$) alebo ako rýchlosť úbytku hrúbky steny ($m \cdot hod^{-1}$). Pri doskových výmenníkoch by hodnota rýchlosti korózie nemala presiahnuť 0,05 mm/rok (pre porovnanie pri trubkových výmenníkoch je táto hodnota rovná 0,125 mm/rok). Koróziu je možné potlačiť voľbou vhodného konštrukčného materiálu (u doskových výmenníkoch sa jedná najmä o nerezovú oceľ), úpravou korózneho prostredia, prípadne použitím povlakov, ktoré chránia materiál voči vplyvom prostredia. [14] [26]

V našom prípade bol pre potlačenie korózie zvolený ako materiál dosky nerezová oceľ s označením AISI 316.

2.6.3 Zanášanie

Zanášanie je usadzovanie rôznych materiálov (najmä solí, koróznych produktov a pevných častíc) z teplonosných látok na teplosmenných plochách. Tieto usadeniny vytvoria zvýšený tepelný odpor, a tým sa znižuje intenzita prenosu tepla a klesá tak účinnosť výmenníku tepla. Taktiež môžu vytvoriť korozívne prostredie. Ďalším negatívnym dopadom nánosov je zúženie prietočného prierezu, a tým zvýšenie rýchlosti prúdiaceho média (abrázia), zvýšenie tlakovej straty a nutnosť vyššieho výkonu čerpadla, prípadne ventilátoru. Nánosy majú oproti materiálu výmenníku nižšiu tepelnú vodivosť a dochádza tak k horšiemu prestupu tepla, čím sa znižuje výkon výmenníku. Pri výpočte je zanášanie vyjadrené odporom zanášania (fouling resistance) $R_f [K \cdot m^2 \cdot W^{-1}]$. [14]

Obr. 28: Zanášanie doskového výmenníka tepla [14]

Na obr. 29 je možné vidieť závislosť zanášacieho odporu na čase pre chladenie vody v doskovom výmenníku tepla, v porovnaní s odporom zanášania zväzkového výmenníka pri rovnakých rýchlostiach. Toto meranie sa uskutočňovalo so šírkou medzery medzi doskami 3 mm. Z grafu vyplýva, že odpor zanášania v doskovom výmenníku tepla je oveľa menší ako pri zväzkovom výmenníku tepla, a je ďaleko pod maximálnou dovolenou hodnotou TEMA. [16]

Obr. 29: Závislosť odporu zanášania na čase [16]

Vysoká indukovaná turbulencia medzi doskami minimalizuje hromadenie väčšiny typov znečistenia. So zvyšujúcou sa turbulenciou (s rastúcou rýchlosťou) sa zvyšuje samočistiaci efekt. Ak si však rozsah znečistenia vyžaduje manuálne čistenie, je nutné zvoliť rozoberateľný typ doskového výmenníka tepla. Ďalšou možnosťou čistenia výmenníka bez potreby demontáže je čistenie pomocou cirkulácie chemického roztoku vo výmenníku, vďaka čomu dochádza k rozpúšťaniu a následnému odvádzaniu nečistôt. [31]

Ako prevencia voči vzniku zanášania sa používajú sitá, prípadne metóda vstrekovania chemických prísad do pracovných médií (napríklad minerály z vody sa odstraňujú zmäkčovaním). [38]

Brogormá látha	Faktor zanášania
	$\left[K \cdot m^2 \cdot W^{-1}\right]$
Demineralizovaná alebo destilovaná voda	0,0000017
Mäkká voda	0,000034
Tvrdá voda	0,000086
Upravená voda z chladiacich veží	0,000069
Pobrežná morská voda alebo voda z ústia rieky	0,00086
Morská a oceánska voda	0,000052
Riečna a studňová voda	0,000086
Para	0,0000017
Mazacie oleje	0,0000034-0,0000086
Rastlinné oleje	0,0000017-0,0000052
Organické rozpúšťadlá	0,0000017-0,0000103
Všeobecné procesné tekutiny	0,0000017-0,00000103

Tabuľka 3: Hodnoty odporov zanášania [21]

Pretože zanášanie je nevyhnutným procesom, s ktorým sa u návrhu doskových výmenníkov musí počítať, tak bežným riešením je predimenzovanie výmenníka započítaním odporu zanášania. Odporúčané hodnoty faktorov zanášania pre dané pracovné média sú uvedené v tabuľke 3.

V nami navrhnutom spájkovanom doskovom výmenníku tepla pracujeme s vodou a s rýchlosťami od 0,5 $m \cdot s^{-1}$ do 1,2 $m \cdot s^{-1}$, čím je zabezpečená dostatočne vysoká turbulencia, a tým aj samočistiaci efekt. Z tohto dôvodu nie je faktor zanášania v našom prípade významný, a nie je tak nutné zaistiť mechanické čistenie výmenníku. Na vstupe do sekundárneho výmenníka tepla v kondenzačnom kotle je naviac na strane vykurovacej vratnej vody prítomné sito, ktoré zachytí nečistoty spôsobujúce zanášanie, prípadne eróziu.

Obr. 30: Sito na vstupe do sekundárneho doskového výmenníka tepla kondenzačného kotla [33]

3 NÁVRH DOSKOVÉHO VÝMENNÍKA TEPLA

V tejto diplomovej práci sa jedná o optimalizáciu dizajnu sekundárneho doskového výmenníka používaného v plynových kondenzačných kombinovaných kotloch. Tento typ kotlov slúži ako pre ohrev vykurovacej vody (označovaná ako teplá voda TV, ďalej značené z anglického Hot Water ako HW), tak aj pre ohrev teplej úžitkovej vody (TÚV, ďalej značené z anglického Domestic Hot Water ako DHW). V sekundárnom doskovom výmenníku dochádza k prenosu tepelnej energie medzi vykurovacou vodou a vratnou úžitkovou vodou. Princíp fungovania takéhoto kotla je možné vidieť na obr. 31.

Obr. 31: Schéma kondenzačného kotla [33]

Pri vykurovacom móde je vykurovacia voda ohrievaná v primárnom výmenníku. Pri požiadavke teplej úžitkovej vody je vratná úžitková voda predhriata v primárnom výmenníku za využitia kondenzačného tepla spalín. Následne ešte vstupuje do sekundárneho výmenníka, kde prebieha prenos tepla medzi ohriatou vykurovacou vodou (ohrev prebieha v primárnom výmenníku) a úžitkovou vodou, ktorá sa tak ohrieva na požadovanú teplotu.

Optimalizácia spočíva v návrhu nových dizajnov a v následnom overení analytického výpočtu numerickou simuláciou. Výsledky budú porovnané s nameranými hodnotami súčasne používaného výmenníka. Po zhodnotení výsledkov sa rozhodne o najlepšej možnej variante dizajnu sekundárneho doskového výmenníka. Sledované parametre sú prenos tepla (výkon a účinnosť) a tlaková strata.

Obr. 32: Hydraulický modul so sekundárnym doskovým výmenníkom plynového kondenzačného kotla [33]

3.1 Súčasný stav

Momentálne používaný sekundárny doskový výmenník tepla sa používa pre výkon plynových kondenzačných kotlov 24 kW. Jedná sa o symetrický dizajn s počtom dosiek 12 (celková dĺžka výmenníka $L_c = 29,07 mm$). Pre tento výkon kotla bol vykonaný aj návrh nových dizajnov. Experimentálne získané hodnoty účinnosti (prenosu tepla) pre jednotlivé výkony sú uvedené v tabuľke 5. Hodnoty tlakovej straty, taktiež získané experimentálnym meraním, sú zhrnuté v tabuľke 4 a boli vynesené do grafu v závislosti na objemovom prietoku (pozri obr. 33).

Prietok [l/min]	HW strana [mbar]	DHW strana [mbar]
0	0	0
2	4	5
4	15	17
6	32	36
8	53	63
10	81	96
12	114	135
14	151	181
16	195	235
18	245	
20	301	
22	359	
24	408	

Tabuľka 4: Namerané hodnoty tlakovej straty v závislosti na objemovom prietoku súčasne používaného výmenníka[35]
Tabuľka 5: Namerané hodnoty teplôt súčasne používaného výmenníka pre výkon kondenzačného kotla 24kW[35]

$T_{HW,in}[^{\circ}C]$	$T_{HW,out}[^{\circ}C]$	$\dot{V}_{HW}[l/min]$	$\dot{Q}_{in}[kW]$	$T_{DHW,in}[^{\circ}C]$	$T_{DHW,out}[^{\circ}C]$	$\dot{V}_{DHW}[l/min]$	$\dot{Q}_{out}[kW]$	η [%]
75,5721	54,3183	17,251	$25{,}5432$	10,8331	58,2983	7,6207	$25,\!1997$	98,655

Na obrázku 33 je možné vidieť priebeh tlakovej straty v závislosti na objemovom prietoku momentálne používaného sekundárneho doskového výmenníka tepla v kondenzačnom plynovom kotly. Hodnoty tlakovej straty boli získané z experimentálneho merania. Je vykreslený priebeh pre HW aj DHW stranu doskového výmenníka. Priebeh funkcie má podobný tvar, avšak tlaková strata na DHW strane je s rastúcim objemovým prietokom väčšia, z dôvodu párneho počtu dosiek. Príčinou toho je, že na DHW strane je o jeden prietočný kanál menej oproti HW strane.

Obr. 33: Priebeh tlakovej straty v závislosti na objemovom prietoku súčasne používaného sekundárneho doskového výmenníka tepla [35]

3.2 Analytický výpočet

Medzi najrozšírenejšie metódy výpočtu výmenníkov patria dve metódy [14]:

- metóda LMTD metóda strednej logaritmickej teploty
- metóda ε -NTU

Metóda LMTD je založená na znalosti vstupných a výstupných teplôt oboch médií. Pokiaľ ale niektorú veličinu nepoznáme, je nutné použiť iteračný postup, kde na začiatku výpočtového procesu zvolíme jednu z chýbajúcich veličín. Potom je výhodné využiť metódu založenú na efektívnosti výmenníka pri prenose určitého množstva tepla (NTU - Number of Transfer Units). Táto metóda je tak vhodná ku kontrolnému výpočtu a pre porovnanie rôznych typov výmenníka. Naopak pri konštrukčnom návrhu výmenníka je výhodnejšia metóda LMTD. [14] Pre náš návrh výmenníka tak bola použitá metóda LMTD, keďže sa jedná o návrh konštrukčný. Všeobecný postup výpočtu metódou LMTD pre doskový výmenník tepla je nasledovný [26]:

- 1. dopočet nezadaných hodnôt (teploty, výkon, prietoky) z tepelnej bilancie,
- 2. termofyzikálne vlastnosti teplonosných médií,
- 3. výpočet LMTD pre protiprúdne usporiadanie,
- 4. odhad Reynoldsovho čísla pre každú stranu za predpokladu, že výmenník obsahuje jednu tepelnú dosku a jeden priechod pre každú stranu výmenníka,
- 5. výpočet súčiniteľa prestupu tepla na oboch stranách,
- 6. dopočet celkového súčiniteľa prostupu tepla,
- 7. výpočet potrebnej teplosmennej plochy,
- 8. dopočet počtu dosiek,
- 9. z počtu tepelných dosiek sa vypočíta počet kanálov pre obe kvapaliny,
- 10. hodnoty počtu kanálov určených v kroku 9 sa porovnajú s príslušnými predpokladanými hodnotami v kroku 4, a ak vypočítané hodnoty nesúhlasia s predpokladanými, tak opakujeme kroky 4 až 9, pričom sa predpokladané hodnoty nahradia hodnotami vypočítanými v kroku 9, až kým sa nedosiahne rovnosti týchto dvoch hodnôt,
- 11. hydraulický výpočet (určenie tlakovej straty výmenníka).

Predpoklady a zjednodušenia analytického výpočtu návrhu doskového výmenníka sú [38]:

- výmenník je v ustálenom stave,
- fyzikálne vlastnosti tekutín sú konštantné behom celého procesu,
- hlavný tok je rozdelený medzi kanálmi rovnomerne,
- rýchlostný profil je plochý,
- na konci je všetko dokonalo premiešané,
- nedochádza k prenosu tepla v smere prúdenia,
- zanedbanie tepelných strát do okolia,
- neuvažuje sa zmena fázy.

Prvým cieľom základného návrhu doskového výmenníka je prevedenie analytického výpočtu. Na základe výsledkov bude vytvorený 3D model navrhnutej geometrie. Posledným krokom potom bude porovnanie analytického výpočtu s CFD simuláciou. Analytický výpočet bol naprogramovaný v softvéri EES.

Pokiaľ nie je uvedené inak, nasledujúce výpočty sú prevádzané podľa zdrojov [7] [15].

3.2.1 Zadané parametre doskového výmenníka

Keďže sa jedná o optimalizáciu plynového kondenzačného kotla pre domové vytápanie v spolupráci s firmou Protherm, tak vstupné údaje do výpočtu boli dodané a volené po konzultácii s touto firmou. Optimalizácia spočíva v návrhu nového sekundárneho výmenníka pre ohrev teplej úžitkovej vody. Zadané hodnoty vstupujúce do výpočtu tak sú:

Návrhový výkon:	$\dot{Q}_b = 24 \ kW$
Počet priechodov:	$N_p = 1$
DHW okruh	
Vstupná teplota:	$t_{DHW,in} = 10 \ ^{\circ}C$
Požadované ohriatie:	$\Delta t_{DHW} = 45 \ ^{\circ}C$
Výstupná teplota:	$t_{DHW,out} = t_{DHW,in} + \Delta t_{DHW} = 55 \ ^{\circ}C$
Dovolená tlaková strata:	$\Delta p_{DHW,limit} = 150 \ mbar$
Faktor zanášania (mäkká voda, pozri tabuľka 3):	$R_{f,DHW} = 0,0000034 \ K \cdot m^2 \cdot W^{-1}$
HW okruh	
Vstupná teplota:	$t_{HW,in} = 76 \ ^{\circ}C$
Objemový prietok:	$\dot{V}_{HW} = 17,3 \ l/min = 0,000288 \ m^3 \cdot s^{-1}$
Dovolená tlaková strata:	$\Delta p_{HW,limit} = 250 \ mbar$
Faktor zanášania (mäkká voda, pozri tabuľka 3):	$R_{f,HW} = 0,0000034 \ K \cdot m^2 \cdot W^{-1}$

3.2.2 Tepelná bilancia výmenníka

Základom tepelného výpočtu výmenníka sú dve rovnice, a to rovnica tepelnej bilancie (1) a rovnica prestupu tepla (2).

Obr. 34: Schéma energetickej bilancie doskového výmenníka

Rovnicu energetickej bilancie výmenníka je možné vyjadriť v nasledujúcom tvare:

$$\dot{Q}_b = \dot{m}_{DHW} \cdot c_{pDHW} \cdot (t_{DHW,out} - t_{DHW,in}) = \dot{m}_{HW} \cdot c_{pHW} \cdot (t_{HW,in} - t_{HW,out}) \quad (1)$$

Rovnica prestupu tepla je vyjadrená ako:

$$\dot{Q}_k = k \cdot A \cdot \Delta t_{ln} \tag{2}$$

Z rovnice (1) sme schopný dopočítať nezadané veličiny. A to hmotnostný prietok na DHW strane:

$$\dot{m}_{DHW} = \frac{\dot{Q}_b}{c_{pDHW} \cdot (t_{DHW,out} - t_{DHW,in})} = \frac{24}{4,179 \cdot (55 - 10)} = 0,1276 \ kg/s \qquad (3)$$

39

Ďalej výstupnú teplotu HW okruhu:

$$t_{HW,out} = t_{HW,in} - \frac{\dot{Q}_b}{\dot{m}_{HW} \cdot c_{pHW}} = 76 - \frac{24}{0,2827 \cdot 4,186} = 55,72 \ ^{\circ}C \tag{4}$$

Pričom pre prepočet medzi objemovými a hmotnostnými tokmi sú použité tieto vzťahy:

$$\dot{V}_{DHW} = \frac{\dot{m}_{DHW}}{\rho_{DHW}} = \frac{0,1276}{995} = 0,0001283 \ m^3/s$$
 (5)

$$\dot{m}_{HW} = \dot{V}_{HW} \cdot \rho_{HW} = 0,0002883 \cdot 980, 5 = 0,2827 \ kg/s \tag{6}$$

Jednotlivé okrajové podmienky energetickej bilancie navrhovaného výmenníka sú pre prehľadnosť zhrnuté v tabuľke6.

Tabuľka 6: Výsledné hodnoty tepelnej bilancie výmenníka

Veličina	Označenie [jednotka]	Hodnota			
DHW strana					
Vstupná teplota	$t_{DHW,in} [^{\circ}C]$	10			
Výstupná teplota	$t_{DHW,out} [^{\circ}C]$	55			
Hmotnostný prietok	$\dot{m}_{DHW} \ [kg/s]$	0,1276			
DHW strana					
Vstupná teplota	$t_{HW,in} [^{\circ}C]$	76			
Výstupná teplota	$t_{HW,out} [^{\circ}C]$	55,72			
Hmotnostný prietok	$\dot{m}_{HW} \; [kg/s]$	0,2827			

3.2.3 Termofyzikálne vlastnosti teplonosných médií

Vlastnosti médií sú vzťahované k stredným hodnotám teplôt a prevádzkovým tlakom. Obe pracovné látky sú voda. Prevádzkové tlaky boli zvolené na základe konzultácie s firmou.

DHW okruh

Prevádzkový tlak: $p_{DHW} = 3 \ bar$ HW okruh

Prevádzkový tlak: $p_{HW} = 10 \ bar$

Výpočet strednej teploty pre DHW a HW stranu:

$$t_{DHW,str} = \frac{t_{DHW,in} + t_{DHW,out}}{2} = \frac{10 + 55}{2} = 32,5 \ ^{\circ}C \tag{7}$$

$$t_{HW,str} = \frac{t_{HW,in} + t_{HW,out}}{2} = \frac{76 + 55,72}{2} = 65,86 \ ^{\circ}C \tag{8}$$

Následne boli jednotlivé termofyzikálne vlastnosti teplonosných médií získané z knižnice systému EES ako funkcia strednej teploty a prevádzkového tlaku. Tieto vlastnosti sú zhrnuté v tabuľke 7.

Termofyzikálne vlastnosti	Označenie [jednotka]	Hodnota				
DHW						
Merná tepelná kapacita	$cp_{DHW} [kJ/kg \cdot K]$	4,179				
Dynamická viskozita	$\eta_{DHW} \ [kg/m \cdot s]$	0,0007567				
Tepelná vodivosť	$\lambda_{DHW} \ [W/m \cdot K]$	0,6182				
Hustota	$ ho_{DHW} \ [kg/m^3]$	995				
Prandtlovo číslo	Pr_{DHW} [1]	5,115				
HW						
Merná tepelná kapacita	$cp_{HW} [kJ/kg \cdot K]$	4,186				
Dynamická viskozita	$\eta_{HW} [kg/m \cdot s]$	0,0004282				
Tepelná vodivosť	$\lambda_{HW} \ [W/m \cdot K]$	0,6568				
Hustota	$ ho_{HW} \ [kg/m^3]$	980, 5				
Prandtlovo číslo	Pr_{HW} [1]	2,729				

Tabuľka 7: Termofyzikálne vlastnosti teplonosných médií

3.2.4 Stredný teplotný logaritmický spád

V našom prípade sa jedná o protiprúdne usporiadanie výmenníka (pozri obr. 35).

Obr. 35: Priebeh teplôt vo výmenníku

Stredný teplotný spád tak bol určený pomocou metódy LMTD nasledovne:

$$\Delta t_{ln} = \frac{(t_{HW,in} - t_{DHW,out}) - (t_{HW,out} - t_{DHW,in})}{ln\left(\frac{t_{HW,in} - t_{DHW,in}}{t_{HW,out} - t_{DHW,in}}\right)} = \frac{(76 - 55) - (55, 72 - 10)}{ln\left(\frac{76 - 55}{55, 72 - 10}\right)} = 31,77 \ ^{\circ}C$$
(9)

41

3.2.5 Návrh geometrie

Keďže sa jedná o náhradu momentálne používaného sekundárneho doskového výmenníka tepla, tak niektoré geometrické rozmery sme meniť nemohli a boli pevne dané. Bolo to z dôvodu, aby sme nespôsobili radikálne zmeny celého hydraulického bloku kondenzačného kotla (pozri obr. 32). Jedná sa o limitujúce rozmery ako výška a šírka výmenníka, podľa ktorých boli volené aj osové vzdialenosti vstupného a výstupného otvoru (L_v a L_h). Ďalším obmedzujúcim rozmerom bol priemer vstupného a výstupného otvoru (z dôvodu pripojiteľnosti). Ostatné rozmery boli buď volené, prípadne dopočítané na základe príslušných vzťahov (pozri rovnice nižšie). Medzi navrhnuté rozmery patrí hrúbka steny t, výška profilu p a uhol profilu β . Pre názornosť sú jednotlivé rozmery schematicky zakótované na obr. 15. Zhrnutie jednotlivých geometrických rozmerov je uvedené v tabuľke 8.

Pre dopočet potrebných geometrických rozmerov boli použité nasledovné vzťahy.

Výška teplosmennej plochy:

$$L_p = L_v - D_p = 0,154 - 0,018 = 0,136 m$$
(10)

Veľkosť plochy jednej dosky:

$$A_{1,p} = L_p \cdot L_w = 0,136 \cdot 0,07 = 0,00952 \ m^2 \tag{11}$$

Výška kanálu:

$$b = p - t = 0,0017 - 0,0003 = 0,0014 m$$
(12)

Prietočný prierez jedného kanálu:

$$A_{ch} = b \cdot L_w = 0,0014 \cdot 0,07 = 0,000098 \ m^2 \tag{13}$$

Ekvivalentný priemer:

$$D_e = \frac{2 \cdot b}{\phi} = \frac{2 \cdot 0,0014}{1,15} = 0,002435 \ m \tag{14}$$

kde ϕ charakterizuje faktor zväčšenia plochy a je vyjadrený ako podiel rozvinutej dĺžky k predpokladanej dĺžke.

$$\phi = \frac{A_1}{A_{1p}} \tag{15}$$

Tento rozmer bol na začiatku výpočtu zvolený na základe odporúčaní z literatúry $\phi = 1, 17$ (bežne sa táto hodnota pohybuje v rozmedzí od 1,1 až do 1,25). Po vymodelovaní geometrie dosky v programe Solidworks boli získané príslušnými meracími nástrojmi softvéru rozmery rozvinutej a predpokladanej dĺžky. Finálna upravená hodnota faktoru zväčšenia plochy tak bola $\phi = 1, 15$.

Z rovnice 15 je následne možné vyjadriť rozvinutú plochu jedného kanálu ako:

$$A_1 = A_{1,p} \cdot \phi = 0,00952 \cdot 1,15 = 0,01095 \ m^2 \tag{16}$$

Geometrický rozmer	Označenie [jednotka]	Hodnota
Priemer vstupného a výstupného otvoru	$D_p \ [m]$	0,018
Vertikálna osová vzdialenosť	$L_v [m]$	0,154
Horizontálna osová vzdialenosť	$L_h \ [m]$	0,04
Výška teplosmennej plochy	$L_p \ [m]$	0,136
Šírka teplosmennej plochy	$L_w [m]$	0,07
Hrúbka steny	t [m]	0,0003
Výška profilu	p[m]	0,0017
Uhol profilu	β [°]	25
Veľkosť plochy jednej dosky	$A_{1,p} \ [m^2]$	0,00952
Výška kanálu	<i>b</i> [<i>m</i>]	0,0014
Prietočný prierez jedného kanálu	$A_{ch} \ [m^2]$	0,000098
Ekvivalentný priemer	$D_e \ [m]$	0,002435
Faktor zväčšenia plochy	ϕ [1]	1, 15
Rozvinutá plocha jedného kanálu	$A_1 \ [m^2]$	0,01095

Tabuľka 8: Geometrické rozmery dosky výmenníka

3.2.6 Výpočet Reynoldsovho čísla

Na začiatku bol výpočet Reynoldsovho čísla prevedený za predpokladu, že výmenník obsahuje jednu dosku. To znamená, že na počiatku výpočtu sme si zvolili počet kanálov pre teplé aj studené médium rovnej jednej:

$$N_{cp,volba} = 1 \tag{17}$$

Pre určenie Reynoldsovho čísla sme si najprv vypočítali hmotnostný prietok kanálom pre HW a DHW stranu nasledovne:

$$G_{ch,HW,navrh} = \frac{\dot{m}_{HW}}{N_{cp,volba} \cdot b \cdot L_w} = \frac{0,2827}{1 \cdot 0,0014 \cdot 0,07} = 2884 \ kg/m^2 \cdot s \tag{18}$$

$$G_{ch,DHW,navrh} = \frac{\dot{m}_{DHW}}{N_{cp,volba} \cdot b \cdot L_w} = \frac{0,1276}{1 \cdot 0,0014 \cdot 0,07} = 1302 \ kg/m^2 \cdot s \tag{19}$$

Nakoniec sme dopočítali Reynoldsovo číslo, ktoré charakterizuje pomer zotrvačných a trecích síl, podľa nasledujúcich vzťahov:

$$Re_{HW,navrh} = \frac{G_{ch,HW,navrh} \cdot D_e}{\eta_{HW}} = \frac{2884, 7 \cdot 0,002435}{0,0004282} = 16402$$
(20)

$$Re_{DHW,navrh} = \frac{G_{ch,DHW,navrh} \cdot D_e}{\eta_{DHW}} = \frac{1302 \cdot 0,002435}{0,0007567} = 4190$$
(21)

3.2.7 Súčiniteľ prestupu tepla

Pre výpočet súčiniteľa prestupu tepla bolo potrebné najskôr vypočítať Nusseltovo číslo, ktoré charakterizuje pomer medzi energiou konvekcie a vedenia:

$$Nu_{HW,navrh} = C_{h,navrh} \cdot \left(Re_{HW,navrh}^{n_{avrh}} \right) \cdot \left(Pr_{HW}^{1/3} \right) = 0,348 \cdot \left(16404^{0,663} \right) \cdot \left(2,729^{1/3} \right) = 303$$
(22)

$$Nu_{DHW,navrh} = C_{h,navrh} \cdot \left(Re_{DHW,navrh}^{n_{navrh}} \right) \cdot \left(Pr_{DHW}^{1/3} \right) = 0,348 \cdot \left(4190^{0,663} \right) \cdot \left(5,115^{1/3} \right) = 151,2$$
(23)

Korelácia Nusseltova čísla bola prevedená podľa Kumara [25]. Konštanty $C_{h,navrh}$ a n_{navrh} sme tak zvolili z tabuľky v závislosti na Reynoldsovom čísle (Re > 10) a na základe uhla prelisovania profilu ($\beta = 25^{\circ}$). Keďže platí pre HW aj DHW stranu, že Reynoldsovo číslo je väčšie ako 10, tak korelačné koeficienty sú pre obe média rovnaké:

$$C_{h,navrh} = 0,348$$
$$n_{navrh} = 0,663$$

Z definície Nusseltova čísla sme boli ďalej schopný dopočítať súčiniteľ prestupu tepla pre HW a DHW stranu nasledovným spôsobom:

$$\alpha_{HW,navrh} = \frac{N u_{HW,navrh} \cdot \lambda_{HW}}{D_e} = \frac{303 \cdot 0,6568}{0,002435} = 81723 \ W/m^2 \cdot K \tag{24}$$

$$\alpha_{DHW,navrh} = \frac{N u_{DHW,navrh} \cdot \lambda_{DHW}}{D_e} = \frac{151, 1 \cdot 0, 6182}{0,002435} = 38379 \ W/m^2 \cdot K$$
(25)

3.2.8 Celkový súčiniteľ prostupu tepla

Na záver sme vypočítali celkový súčiniteľ prostupu tepla pre jednu dosku podľa nasledujúceho vzťahu:

$$k_{navrh} = \frac{1}{\frac{1}{\frac{1}{\alpha_{HW,navrh}} + \frac{t}{\lambda_p} + \frac{1}{\alpha_{DHW,navrh}}}} = \frac{1}{\frac{1}{\frac{1}{81729} + \frac{0,0003}{16,3} + \frac{1}{38361}}} = 17638 \ W/m^2 \cdot K \quad (26)$$

Člen λ_p vyjadruje súčiniteľ tepelnej vodivosti dosky a pre nerezovú oceľ s označením AISI 316 je hodnota $\lambda_p = 16, 3 W/m \cdot K.$ [1]

3.2.9 Potrebná teplosmenná plocha

Potrebnú teplosmennú plochu je možné vyjadriť zo vzťahu pre prenesený výkon nasledovne:

$$A = \frac{\dot{Q}_b}{k_{navrh} \cdot \Delta t_{ln}} = \frac{24000}{17638 \cdot 31,77} = 0,04283 \ m^2 \tag{27}$$

3.2.10 Výpočet počtu dosiek a určenie počtu kanálov pre obe kvapaliny

Po určení potrebnej teplosmennej plochy sme vypočítali efektívny počet dosiek ako:

$$N_{e,navrh} = \frac{A}{A_1} = \frac{0,04283}{0,01095} = 3,91$$
(28)

Celkový počet dosiek sa dopočíta podľa vzťahu:

$$N_{t,navrh} = N_{e,navrh} + 2 = 3,91 + 2 = 5,91$$
⁽²⁹⁾

Celkový počet dosiek je väčší oproti efektívnemu počtu dosiek, pretože uvažujeme, že prvá a posledná doska výmenníku tepla sa nepodieľajú na prenose tepla.

Následne sme vypočítali počet kanálov pre obe kvapaliny:

$$N_{cp,navrh} = \frac{N_{t,navrh} - 1}{2 \cdot N_p} = \frac{5,91 - 1}{2 \cdot 1} = 2,46$$
(30)

3.2.11 Kontrolný výpočet

Hodnota počtu kanálov $N_{cp,navrh}$ určená v predchádzajúcom kroku sa porovná s hodnotou zvoleného počtu kanálov $N_{cp,volba}$, a ak sa vypočítané hodnoty nerovnajú, tak opakujeme predchádzajúce kroky, až kým sa nedosiahne rovnosti týchto dvoch hodnôt. Keďže sme na začiatku predpokladali, že výmenník obsahuje len jednu dosku s jedným kanálom pre teplé a studené médium, tak sme hodnotu $N_{cp,volba}$ postupne zvyšovali. Túto hodnotu sme zvyšovali do doby, kedy sme nedosiahli približne rovnakú hodnotu ako $N_{cp,navrh}$. Iteračný postup sme zastavili na piatej iterácií, kedy hodnoty pre počty kanálov boli nasledovné:

$$N_{cp,volba} = 5$$

 $N_{cp,navrh} = 4,975$

Pre $N_{cp,navrh} = 4,975 \approx 5$ sme získali efektívny počet dosiek $N_{e,navrh} = 8.95 \approx 9$ a počet dosiek $N_{t,navrh} = 10.95 \approx 11$. Pre prenesenie potrebného výkonu, by tak stačilo zvoliť $N_{e,navrh} = 9$, avšak s ohľadom na zanášanie bol zvolený efektívny počet dosiek $N_e = 10$. Pre túto hodnotu počtu dosiek tak bol následne prevedený kontrolný výpočet.

Dopočet celkového počtu dosiek výmenníka:

$$N_t = N_e + 2 = 10 + 2 = 12 \tag{31}$$

Počet kanálov pre jednu stranu výmenníka je možné vypočítať podľa vzťahu:

$$N_{cp,v} = \frac{N_t - 1}{2 \cdot N_p} = \frac{12 - 1}{2 \cdot 1} = 5,5$$
(32)

Na základe vypočítanej hodnoty počtu kanálov $N_{cp,v}$ v predošlom kroku sme zvolili počet kanálov pre HW a DHW stranu nasledovne:

$$N_{cp,HW} = 6 \tag{33}$$

$$N_{cp,DHW} = 5 \tag{34}$$

Dopočet geometrie

V tomto kroku boli vypočítané geometrické rozmery výmenníka závislé od zvoleného počtu dosiek. Jedná sa o zistenie celkovej dĺžky doskového výmenníka tepla:

$$L_c = p \cdot N_t = 0,0017 \cdot 12 = 0,0204 \ m \tag{35}$$

Ďalej sa jedná o výpočet efektívnej teplosmennej plochy:

$$A_e = A_1 \cdot N_e = 0,01095 \cdot 10 = 0,1095 \ m^2 \tag{36}$$

45

Výpočet Reynoldsovho čísla

Rovnako ako pri návrhovom výpočte je potrebné pre zistenie Reynoldsovho čísla najskôr vypočítať hmotnostný prietok kanálmi:

$$G_{ch,HW} = \frac{\dot{m}_{HW}}{N_{cp,HW} \cdot b \cdot L_w} = \frac{0,2827}{6 \cdot 0,0014 \cdot 0,07} = 480,7 \ kg/m^2 \cdot s \tag{37}$$

$$G_{ch,DHW} = \frac{\dot{m}_{DHW}}{N_{cp,DHW} \cdot b \cdot L_w} = \frac{0,1276}{5 \cdot 0,0014 \cdot 0,07} = 260,5 \ kg/m^2 \cdot s \tag{38}$$

Následne bolo vypočítané Reynoldsovo číslo pre HW a DHW stranu:

$$Re_{HW} = \frac{G_{ch,HW} \cdot D_e}{\eta_{HW}} = \frac{480,7 \cdot 0,002435}{0,0004282} = 2734$$
(39)

$$Re_{DHW} = \frac{G_{ch,DHW} \cdot D_e}{\eta_{DHW}} = \frac{260, 5 \cdot 0,002435}{0,0007567} = 838,1$$
(40)

Súčiniteľ prestupu tepla

Podobne ako pri návrhovom výpočte, tak aj pri kontrolnom využijeme koreláciu Nusseltova čísla podľa Kumara [25]. Keďže je Reynoldsovo číslo pre jednotlivé strany výmenníka stále väčšie ako 10, tak konštanty C_h a n sú rovnaké ako v predchádzajúcom prípade:

$$C_{h,navrh} = C_h = 0,348$$
$$n_{navrh} = n = 0,663$$

Nusseltovo číslo potom vypočítame ako:

$$Nu_{HW} = C_h \cdot \left(Re_{HW}^n\right) \cdot \left(Pr_{HW}^{1/3}\right) = 0,348 \cdot \left(2734^{0,663}\right) \cdot \left(2,729^{1/3}\right) = 92,36$$
(41)

$$Nu_{DHW} = C_h \cdot \left(Re_{DHW}^n\right) \cdot \left(Pr_{DHW}^{1/3}\right) = 0,348 \cdot \left(838,1^{0,663}\right) \cdot \left(5,115^{1/3}\right) = 52$$
(42)

Z Nusseltovho čísla ďalej získame súčiniteľ prestupu tepla pre jednotlivé okruhy:

$$\alpha_{HW} = \frac{N u_{HW} \cdot \lambda_{HW}}{D_e} = \frac{92,36 \cdot 0,6568}{0,002435} = 24913 \ W/m^2 \cdot K \tag{43}$$

$$\alpha_{DHW} = \frac{N u_{DHW} \cdot \lambda_{DHW}}{D_e} = \frac{52 \cdot 0,6182}{0,002435} = 13203 \ W/m^2 \cdot K \tag{44}$$

Celkový súčiniteľ prostupu tepla

Následne dopočítame súčiniteľ prostupu tepla pre výmenník bez nánosov (45), a taktiež celkový súčiniteľ prostupu tepla pri uvažovaní zanášania doskového výmenníka (46).

$$k_c = \frac{1}{\frac{1}{\alpha_{HW}} + \frac{t}{\lambda_p} + \frac{1}{\alpha_{DHW}}} = \frac{1}{\frac{1}{24913} + \frac{0,0003}{16,3} + \frac{1}{13203}} = 7447 \ W/m^2 \cdot K \tag{45}$$

$$k_{f} = \frac{1}{\frac{1}{\alpha_{HW}} + \frac{t}{\lambda_{p}} + \frac{1}{\alpha_{DHW}} + R_{f,HW} + R_{f,DHW}}}$$

$$= \frac{1}{\frac{1}{\frac{1}{24913} + \frac{0,0003}{16.3} + \frac{1}{13203} + 0,0000034 + 0,0000034}} = 7088 \ W/m^{2} \cdot K$$
(46)

 k_{f}

Prenesený výkon

Na záver sme vypočítali prenesený výkon výmenníka bez nánosov (47) a pri zohľadnení zanášania (48).

$$\dot{Q}_c = k_c \cdot A_e \cdot \Delta t_{ln} = 7447 \cdot 0,1095 \cdot 31,77 = 25903 \ W = 25,9 \ kW \tag{47}$$

$$\dot{Q}_f = k_f \cdot A_e \cdot \Delta t_{ln} = 7088 \cdot 0,1095 \cdot 31,77 = 24655 \ W = 24,7 \ kW \tag{48}$$

3.2.12 Tlaková strata

Pokiaľ nie je uvedené inak, tak výpočet tlakovej straty bol prevedený podľa [26].

Hydraulický výpočet doskového výmenníka tepla bol taktiež naprogramovaný v softvéri EES. Keďže nás zaujíma priebeh tlakovej straty v závislosti na prietoku, tak pre tento výpočet bola využitá funkcia softvéru EES, tzv. parametrická tabuľka. Ako meniaci sa parameter bol zvolený objemový prietok. Následne bola vypočítaná parametrická tabuľka pre jednotlivé prietoky (pozri tabuľka 10).

$$\dot{V}_{HW} = \dot{V}_{DHW} = \dot{V} = parameter \tag{49}$$

Výpočet tlakovej straty bol pre ukážku prevedený pre objemový prietok $\dot{V} = 2 \ l/min$. Ostatné výsledky pre jednotlivé prietoky sú uvedené v tabuľke 10.

Výpočet tlakovej straty bol vykonaný pri referenčnom tlaku $p_{ref} = 1 \ bar$ a referenčnej teplote $t_{ref} = 20 \ ^{\circ}C$. Tieto referenčné hodnoty boli volené na základe konzultácie s firmou, keďže namerané hodnoty tlakovej straty súčasne používaného výmenníka boli namerané práve pri týchto hodnotách tlaku a teploty. Taktiež aj následná CFD simulácia bola vykonaná za uvažovania týchto referenčných hodnôt.

Fyzikálne vlastnosti teplonosných médií boli získané z knižnice systému EES ako funkcia referenčnej teploty a referenčného tlaku. Pre výpočet tlakovej straty sme potrebovali získať hodnotu hustoty (ρ) a dynamickej viskozity (η):

$$\rho = 998, 2 \ kg/m^3$$
$$\eta = 0,001002 \ kg/m \cdot s$$

Prepočet objemového toku na hmotnostný tok:

$$\dot{m} = \dot{V} \cdot \rho = 0,000033 \cdot 998, 2 = 0,03294 \ kg/s \tag{50}$$

Geometrické rozmery výmenníka potrebné pre výpočet sú uvedené v tabuľke 8.

Tlaková strata pre teplé (HW) a studené (DHW) médium sa potom vypočíta podľa nasledujúcich vzťahov.

Tlaková strata pre vstupný/výstupný otvor

Pre výpočet tlakovej straty vo vstupných otvoroch je potrebné najprv určiť rýchlosť prúdenia vo vstupnom otvore podľa vzťahu:

$$w_p = \frac{4 \cdot \dot{V}}{\pi \cdot D_p^2} = \frac{4 \cdot 0,000033}{\pi \cdot 0,018^2} = 0,1297 \ m/s \tag{51}$$

Na záver sme dopočítali tlakovú stratu vo vstupnom otvore:

$$\Delta p_p = \frac{1, 5 \cdot \rho \cdot N_p \cdot w_p^2}{2} = \frac{1, 5 \cdot 998, 2 \cdot 1 \cdot 0, 1297^2}{2} = 12,59 \ Pa = 0,1259 \ mbar \tag{52}$$

Tlaková strata medzi doskami

Pre výpočet tlakovej straty medzi doskami sme najskôr vypočítali hmotnostný prietok kanálom zvlášť pre HW a DHW stranu:

$$G_{ch,HW} = \frac{\dot{m}}{N_{cp,HW} \cdot b \cdot L_w} = \frac{0,03294}{6 \cdot 0,0014 \cdot 0,07} = 56,02 \ kg/m^2 \cdot s \tag{53}$$

$$G_{ch,DHW} = \frac{\dot{m}}{N_{cp,DHW} \cdot b \cdot L_w} = \frac{0,03294}{5 \cdot 0,0014 \cdot 0,07} = 67,23 \ kg/m^2 \cdot s \tag{54}$$

kde počet kanálov pre teplé $(N_{cp,HW})$ a studené $(N_{cp,DHW})$ médium sme si určili pri návrhovom výpočte výmenníka (pozri kapitola 3.2.11).

Následne sme dopočítali Reynoldsovo číslo:

$$Re_{HW} = \frac{G_{ch,HW} \cdot D_e}{\eta} = \frac{56,02 \cdot 0,002435}{0,001002} = 136,2$$
(55)

$$Re_{DHW} = \frac{G_{ch,DHW} \cdot D_e}{\eta} = \frac{67, 23 \cdot 0,002435}{0,001002} = 163,4$$
(56)

Nakoniec sme dopočítali danú tlakovú stratu pre HW a DHW stranu výmenníka podľa vzťahu:

$$\Delta p_{ch,HW} = \frac{4 \cdot f_{HW} \cdot L_v \cdot G_{ch,HW}^2}{2 \cdot D_e \cdot \rho} = \frac{4 \cdot 1,217 \cdot 0,154 \cdot 56,02^2}{2 \cdot 0,002435 \cdot 998,2} = 483,9 \ Pa = 4,839 \ mbar$$
(57)

$$\Delta p_{ch,DHW} = \frac{4 \cdot f_{DHW} \cdot L_v \cdot G_{ch,DHW}^2}{2 \cdot D_e \cdot \rho} = \frac{4 \cdot 1,177 \cdot 0,154 \cdot 67,23^2}{2 \cdot 0,002435 \cdot 998,2} = 673,9 \ Pa = 6,739 \ mbar$$
(58)

kde pre výpočet korekčného faktora f_{HW} , respektíve f_{DHW} , platí [25]:

$$f_{HW} = \frac{K_p}{Re_{HW}^m} = \frac{2,99}{136,2^{0,183}} = 1,217$$
(59)

$$f_{DHW} = \frac{K_p}{Re_{DHW}^m} = \frac{2,99}{163,4^{0,183}} = 1,177$$
(60)

Koeficienty K_p a m vychádzajú z korelácie podľa Kumara a podľa [25] sú rovné:

$$K_p = 2,99$$
 (61)

$$m = 0,183$$
 (62)

Celková tlaková strata

Napokon sme vypočítali celkovú tlakovú stratu doskového výmenníka ako súčet tlakovej straty vstupného a výstupného otvoru a tlakovej straty medzi jednotlivými doskami. Pre teplé (HW okruh) a studené (DHW okruh) médium tak platí:

$$\Delta p_{HW} = 2 \cdot \Delta p_p + \Delta p_{ch,HW} = 2 \cdot 0,1259 + 4,839 = 5,09 \ mbar \tag{63}$$

$$\Delta p_{DHW} = 2 \cdot \Delta p_p + \Delta p_{ch,DHW} = 2 \cdot 0, 1259 + 6, 739 = 6,991 \ mbar \tag{64}$$

Výsledky tlakovej straty pre jednotlivé prietoky budú uvedené v nasledujúcej kapitole v tabuľke 10). Na záver sme vykreslili priebeh tlakovej straty v závislosti na objemovom prietoku (pozri obr. 36).

3.2.13 Zhrnutie výsledkov analytického výpočtu

Analytický výpočet doskového výmenníka tepla bol pre názornosť ukázaný pre jeden dizajn dosky, a to pre uhol prelisovania $\beta = 25^{\circ}$. Pre ostatné dizajny doskových výmenníkov ($\beta = 45^{\circ}$ a $\beta = 60^{\circ}$) bol výpočet prevedený rovnakým postupom v programe EES. Jednotlivé výsledky analytického výpočtu prenosu tepla sú zhrnuté v tabuľke 9. Celkové výsledky tlakovej straty sú zase uvedené v tabuľke 10.

β	25°	45°	60°
N_t [1]	12	16	70
$N_{cp,HW}$ [1]	6	8	35
$N_{cp,DHW}$ [1]	5	7	34
$L_c [m]$	0,0204	0,0272	0,119
$A_e \ [m^2]$	0,1095	$0,\!1506$	0,7186
$G_{ch,HW} [kg/m^2 \cdot s]$	480,7	360,6	82,41
$G_{ch,DHW} [kg/m^2 \cdot s]$	260,5	186	38,3
Re_{HW} [1]	2734	2086	485,5
Re_{DHW} [1]	838,1	609,2	127,7
Nu_{HW} [1]	92,36	66,56	11,67
Nu_{DHW} [1]	52	36,28	6,857
$\alpha_{HW} \left[\frac{W}{m^2 \cdot K}\right]$	24913	17643	3039
$\alpha_{DHW} \left[\frac{W}{m^2 \cdot K}\right]$	13203	9053	1681
$k_c \left[\frac{W}{m^2 \cdot K}\right]$	7447	5389	1061
$k_f \left[\frac{W}{m^2 \cdot K}\right]$	7088	5199	1053
$\dot{Q}_c \ [kW]$	25,9	25,79	24,22
$\dot{Q}_f \ [kW]$	24,65	24,88	24,05

Tabuľka 9: Zhrnutie výsledkov analytického výpočtu prenosu tepla pre jednotlivé dizajny

Z výsledkov analytického výpočtu prenosu tepla vidíme pri $\beta=60^\circ$, že dochádza k veľkému nárastu počtu dosiek potrebných pre prenesenie požadovaného výkonu. Keďže súčasne používaný sekundárny doskový výmenník obsahuje len 12 dosiek, tak dizajn s uhlom

prelisovania 60°, by bol pre nás veľmi nevýhodný. Na základe týchto výsledkov sme tak dospeli k záveru vylúčiť túto variantu a nevykonávať CFD simuláciu tohto dizajnu doskového výmenníka tepla, čím tak skrátime vývojový čas.

β	25°		45°		60°	
\dot{V} [l/min]	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$
0	0	0	0	0	0	0
2	5,18	7,12	2,23	2,62	0,34	0,35
4	18,39	25,21	6,05	7,04	1,28	1,29
6	38,58	52,83	11,21	13,61	2,78	2,81
8	65,29	89,31	19,01	23,05	4,85	4,88
10	98,19	134,23	28,66	34,68	7,46	7,51
12	137,05	187,25	40,09	48,44	10,62	10,69
14	181,71	248,13	53,25	64,26	14,33	14,41
16	232	316,66	68,12	82,10	18,58	18,68
18	287,8		84,64		23,38	
20	349,02		102,80		28,71	
22	415,55		122,58		34,59	

Tabuľka 10: Zhrnutie výsledkov analytického výpočtu prenosu tepla pre jednotlivé dizajny

Obr. 36: Priebeh tlakovej straty v závislosti na objemovom prietoku pre jednotlivé dizajny

Z výsledkov je ďalej možné potvrdiť, že veľký uhol prelisovania ($\beta = 60^{\circ}$) vedie k nízkym tlakovým stratám, ale taktiež k nižšiemu koeficientu prestupu tepla. Na druhú stranu malý uhol ($\beta = 25^{\circ}$) spôsobuje vyššie tlakové straty, ale zase vedie k intenzívnejšiemu prestupu tepla. Pre splnenie limitov tlakových strát pre HW a DHW okruh, a zároveň dosiahnutia rozumného počtu dosiek potrebného pre prenesenie požadovaného výkonu, sme zvolili pre porovnanie ešte jeden dizajn s uhlom prelisovania 45°. Tento dizajn nám ponúka o niečo nižší koeficient prestupu tepla oproti dizajnu s uhlom prelisovania 25°, ale zároveň oveľa nižšie hodnoty tlakovej straty (pozri obr. 36).

Tlakové straty pre HW a DHW okruh pri prietokoch, pri ktorých bol prevádzaný návrhový výpočet doskového výmenníka, sú nasledovné:

 $\begin{array}{ll} \beta=25^{\circ} \\ \mbox{HW okruh:} & \Delta p_{HW}=267,65\ mbar \\ \mbox{DHW okruh:} & \Delta p_{DHW}=83,3\ mbar \\ \beta=40^{\circ} \\ \mbox{HW okruh:} & \Delta p_{HW}=78,67\ mbar \\ \mbox{DHW okruh:} & \Delta p_{DHW}=21,49\ mbar \\ \beta=60^{\circ} \\ \mbox{HW okruh:} & \Delta p_{HW}=21,64\ mbar \\ \mbox{DHW okruh:} & \Delta p_{DHW}=4,5\ mbar \end{array}$

V ďalšej kapitole si prevedieme numerickú simuláciu jednotlivých navrhnutých dizajnov doskového výmenníka. Bude sa tak jednať o varianty dosiek s uhlom prelisovania $\beta = 25^{\circ}$ a $\beta = 45^{\circ}$. Tieto výsledky z CFD simulácie budú následne porovnané s analytickým výpočtom a nameranými hodnotami súčasne používaného výmenníka tepla. Naviac bude prevedená simulácia dvoch ďalších variant, a to asymetrický dizajn s uhlom kanálikov $\beta = 25^{\circ}$ a asymetrický dizajn s $\beta = 45^{\circ}$. Popis asymetrického dizajnu dosiek výmenníka je bližšie uvedený v kapitole 2.3.1.

4 VÝPOČTOVÁ DYNAMIKA TEKUTÍN

CFD (z anglického Computational Fluid Dynamics) je metóda, ktorej cieľom je nahradzovať integrály a parciálne derivácie v Navier-Stokesových rovniciach diskretizovanými algebrickými formami, a riešiť vzniknuté sústavy lineárnych rovníc s cieľom nájsť hodnoty vlastností prúdových polí v diskrétnych bodoch. [13]

V súčasnosti je k dispozícií celá rada komerčných programov, ktoré je možné použiť pre riešenie úloh z oblasti prúdenia tekutín. Pre simulácie v tejto diplomovej práci je využitý softvér Ansys Fluent využívajúci numerickú metódu konečných objemov (z anglického Finite Volume Method - FVM) pre riešenie sústavy parciálnych diferenciálnych rovníc. V tejto kapitole bude vystupovať veľké množstvo anglických výrazov, ktoré nebudú prekladané do slovenčiny. Je to najmä z dôvodu, že v praxi v oblasti CFD simulácií sa prekladané výrazy nepoužívajú. Spôsobené to je tým, že všetky komerčne používané softvéry a literatúra sú v anglickom jazyku.

Metóda konečných objemov spočíva v delení oblasti na diskrétne objemy použitím obecnej krivočiarej siete. Ďalším krokom je bilancovanie neznámych veličín v individuálnych konečných objemoch a diskretizácia. Nakoniec nasleduje numerické riešenie diskretizovaných rovníc. V našom prípade program Ansys Fluent definuje diskrétne konečné objemy použitím tzv. non-staggered schémy, kedy všetky premenné sú uchované v stredoch konečných objemov. [8] [23]

Vo všeobecnosti proces numerickej simulácie pozostáva z týchto základných krokov [18]:

- Preprocessing (prípravná fáza numerickej simulácie) tento krok pozostáva vo vykreslení geometrie, jej úpravy a zjednodušenia, a taktiež patrí do tohto kroku príprava výpočtovej siete.
- Processing (fáza definovania a samotné riešenie simulácie) v tomto kroku sú definované všetky okrajové podmienky a nastavené všetky parametre riešenia, vrátane samotného numerického riešenia úlohy.
- Postprocessing (fáza analýzy výsledkov simulácie) súčasťou tohto kroku je vytváranie grafických výstupov (kolorovaných obrázkov), získanie dôležitých a hľadaných parametrov a ďalšie podobné kroky.

V CFD obecne neexistujú spoľahlivé odhady chýb. Kvalitné výsledky sú tak vždy podmienené znalosťami a skúsenosťami užívateľa, prípadne možnosťou zrovnania s nameranými dátami v podobnej úlohe. [20]

Z pohľadu zákazníka CFD modelovania je možné rozlíšiť tri hlavné oblasti využitia [20]:

- vývoj nových výrobkov a zariadení,
- analýza príčin nesprávnej funkcie zariadenia,
- optimalizácia prevádzkových alebo konštrukčných parametrov zariadenia.

V diplomovej práci je riešená simulácia doskového výmenníka, ktorej výsledkom je tlaková strata pri jednotlivých prietokoch a účinnosť výmenníka (výpočet prenosu tepla). Tento CFD model bude možné využívať pri budúcom vývoji rôznych dizajnov doskových výmen-

níkov, čím sa tak skráti čas potrebný na vývoj, prípadne sa využije pri iných simuláciách hydraulického bloku kotla.

4.1 Základné rovnice CFD

Počítačová dynamika tekutín je založená na numerickom riešení sústavy parciálnych diferenciálnych rovníc, vyjadrujúcich zákon zachovania hmotnosti (66) a zákon zachovania hybnosti (68). Pre prúdenie stlačiteľné alebo pre prúdenie s prenosom tepla je riešená aj dodatočná rovnica zachovania energie (70). Ďalšie bilančné rovnice môžu byť použité pokiaľ dochádza k zmiešavaniu, chemickým reakciám, či horeniu. Celá sústava je následne riešená niektorou z numerických metód. [20]

Všetky vlastnosti kvapaliny sú funkciami priestoru a času, takže pre hustotu, tlak, teplotu a vektor rýchlosti by sme mali striktne písať $\rho(x, y, z, t)$, p(x, y, z, t), T(x, y, z, t) a $\vec{v}(x, y, z, t)$. Aby sme sa tak vyhli zbytočne ťažkopádnemu zápisu, nebudeme explicitne uvádzať závislosť od priestorových súradníc a času.

Zložky x, y a z vektoru rýchlosti \vec{v} sú dané nasledovne [13]:

$$u = u(x, y, z, t)$$

$$v = v(x, y, z, t)$$

$$w = w(x, y, z, t)$$
(65)

4.1.1 Rovnica kontinuity

Zákon zachovania hmotnosti je vyjadrený rovnako pre ideálnu aj skutočnú tekutinu. Platí, že súčet časovej (lokálnej) a konvektívnej zmeny prietoku je rovný nule, prípadne zdrojovému členu S_m , ktorý vyjadruje pridanú hmotnosť do spojitej fázy z rozptýlenej druhej fázy (napríklad v dôsledku odparovania kvapôčok kvapaliny) alebo akýkoľvek iný zdroj hmoty definovaný používateľom [8] [23]:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = S_m \tag{66}$$

Pre prúdenie nestlačiteľné ($\rho = konst.$) a pri nulovom zdrojovom člene, je možné vyjadriť rovnicu kontinuity ako [23]:

$$\nabla \cdot (\vec{v}) = 0 \tag{67}$$

kde $\nabla\cdot(\vec{v})$ je divergencia vektoru rýchlosti a udáva objemové množstvo kvapaliny, ktoré vytečie z jednotkového objemu za jednotku času. [13]

4.1.2 Momentová (pohybová) rovnica

Zákon zachovania hybnosti je možné odvodiť z rovnováhy síl pri prúdení skutočnej kvapaliny, kedy zotrvačná sila je rovná súčtu hmotnostnej a plošnej (tlakovej a trecej) sily [8] [23]:

$$\frac{\partial}{\partial t}(\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla p + \nabla \cdot (\overline{\overline{\tau}}) + \rho \vec{a} + \vec{F}$$
(68)

53

Prvý člen na ľavej strane rovnice predstavuje lokálne zrýchlenie tekutiny, druhý člen predstavuje nelineárne (konvektívne) zrýchlenie, ktoré spôsobuje u vyšších Reynoldsových čísiel nestabilitu rovnice a teda náhodnosť. Zotrvačná sila je tak daná zrýchlením (materiálovou deriváciou) kvapaliny. [18]

Prvý člen na pravej strane rovnice vyjadruje gradient tlaku (zrýchlenie tlakovým spádom). Znamienko spojené so statickým tlakom p je záporné, pretože zvyčajná konvekcia znamienka považuje tahové napätie za kladné normálové napätie, takže tlak, ktorý je podľa definície tlakové normálové napätie má znamienko mínus. Tento člen tak charakterizuje tlakovú silu. Druhý člen symbolizuje viskózne (šmykové) napätie, teda silu treciu. Tieto dva členy spolu vyjadrujú celkovú silu pôsobiacu na jednotku objemu kvapaliny v dôsledku povrchových napätí. Plošné sily pôsobia priamo na povrch tekutého prvku, a sú úmerné veľkosti plochy. [13] [36]

Člen $\overline{\tau}$ označuje tenzor napätia a je možné ho vyjadriť vo vektorovo-tenzorovom zápise nasledovne [8]:

$$\overline{\overline{\tau}} = \mu \left(\nabla \vec{v} + \nabla \vec{v}^T \right) - \lambda \nabla \cdot \vec{v} I \tag{69}$$

kde I je jednotkový tenzor, $\nabla \vec{v}$ vyjadruje tenzor gradientov rýchlosti a $\nabla \vec{v}^T$ transponovaný tenzor gradientov rýchlosti. [8]

Pre náš prípad, to znamená Newtonovskú kvapalinu, je viskózne napätie úmerné rýchlosti deformácie. Trojrozmerná forma Newtonovho zákona viskozity pre stlačiteľné prúdenie zahŕňa dve konštanty úmernosti. Prvá (dynamická) viskozita μ , ktorá dáva napätie do vzťahu s lineárnou deformáciou. Druhá (objemová) viskozita λ dáva napätie do vzťahu s objemovou deformáciou. Vzniká tak deväť viskóznych zložiek napätia, z ktorých šesť je nezávislých. [36]

Objemová viskozita λ má v praxi veľmi malý vplyv. Pre plyny je možné uvažovať aproximáciu $\lambda = \frac{2}{3}\mu$. Pre náš prípad nestlačiteľnej kvapaliny (zákon zachovania hmotnosti je vyjadrený rovnicou 67) je člen tenzoru napätia (pozri rovnica 69) charakterizujúci objemovú deformáciu nulový. [30]

Ďalšími silami pôsobiacimi na element tekutiny sú vonkajšie objemové sily (napr. gravitačná alebo odstredivá sila). Pôsobia v tažisku daného elementu a závisia na hmotnosti makroskopickej častice. Pri numerickej simulácii sú definované vektorom zrýchlenia \vec{a} (pozri tretí člen rovnice 68). Napríklad sila pôsobiaca na tekutinu v dôsledku gravitácie, by bola modelovaná nasledovne: $\vec{a} = (0; -g; 0)$. [36]

Posledný člen na pravej strane rovnice 68 obsahuje ďalšie zdrojové členy závislé od modelu numerickej simulácie, prípadne iné zdroje definované používateľom (porézne média, magnetické alebo elektrické sily, atď.). [8]

V našom prípade neuvažujeme gravitáciu, a tým pádom je člen charakterizujúci vonkajšie objemové sily nulový. Taktiež nedefinujeme žiadne iné sily, takže člen \vec{F} v rovnici 68 je rovnako nulový.

4.1.3 Energetická rovnica

Rovnica zákona zachovania energie vychádza z prvého termodynamického zákona, ktorý hovorí, že celková zmena energie častice sa rovná prírastku tepla a miery vykonanej práce častice v dôsledku objemových a povrchových síl. Je možné vyjadriť ju v nasledujúcej forme [23] [36]:

$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot (\rho \vec{v} E) = \nabla \cdot (k_{eff} \nabla T) + \nabla \cdot (\overline{\tau} \cdot \vec{v}) - \nabla \cdot p \vec{v} + S_h$$
(70)

kdeEcharakterizuje celkovú mernú energiu, ktorá je vyjadrená súčtom vnútornej a kinetickej (mechanickej) energie [23]:

$$E = e + \frac{1}{2}\vec{v}\cdot\vec{v} \tag{71}$$

Vnútorná energia je spôsobená v dôsledku náhodného pohybu molekúl. Kinetická energia je spôsobená translačným pohybom tekutého prvku. Keďže pohybujúci sa element tekutiny nesie obe energie (vnútornú aj kinetickú), tak sumou týchto dvoch energií získame celkovú mernú energiu. [13]

Pokiaľ zavedieme pojem entalpie, tak zmena entalpie h je rovná teplu, ktoré sústava vykoná za konštantného tlaku, pokiaľ sa nekonala iná práca než objemová, definovaná vzťahom [23]:

$$e = h - \frac{p}{\rho} \tag{72}$$

potom je možné upraviť rovnicu 71 nasledovne [23]:

$$E = h - \frac{p}{\rho} + \frac{1}{2}\vec{v}\cdot\vec{v} \tag{73}$$

Zmena entalpie je definovaná pre ideálne plyny ako [23]:

$$h = \int_{T_{ref}}^{T} c_p dT \tag{74}$$

a pre nestlačiteľné médium ako [23]:

$$h = \int_{T_{ref}}^{T} c_p dT + \frac{p}{\rho} \tag{75}$$

Hodnota referenčnej teploty T_{ref} použitá pri výpočte entalpie závisí na konkrétnom riešiči. Pri riešiči založenom na tlaku je hodnota $T_{ref} = 298, 15K$. Pri použití riešiča založeného na hustote je hodnota $T_{ref} = 0K$. [8]

Na pravej strane rovnice 70, prvý člen vyjadruje mieru prírastku tepla v častici kvapaliny v dôsledku vedenia tepla cez hranice prvku. Pričom k_{eff} charakterizuje tzv. efektívnu vodivosť ($k + k_t$, kde k_t vyjadruje turbulentnú tepelnú vodivosť, ktorá je definovaná podľa

použitého modelu turbulencie). Druhý a tretí člen vyjadrujú celkovú mieru práce vykonanej na prvku kvapaliny v dôsledku povrchových síl. S_h zahŕňa objemové zdroje tepla, prípadne zahrňuje teplo z chemických reakcií a ďalšie zdroje tepla, ktoré je možné používateľom definovať. [8] [13]

4.2 Matematické modelovanie turbulencie

Prúdenie sa obecne nazýva turbulentné, ak premenné charakterizujúce toto prúdenie vykazujú chaotické fluktuácie ako v priestore, tak aj v čase. Napriek náhodnosti turbulencie detailné štúdie ukazujú, že turbulentné prúdenie pozostáva z priestorových štruktúr, ktoré sa obvykle nazývajú ako turbulentné víry. [23]

Turbulencia má pre inžinierov zásadný význam, pretože väčšina prúdení, s ktorými sa stretávame v praxi je turbulentná. Z tohto dôvodu je potrebné pre dané turbulentné prúdenie definovať model turbulencie. [29]

Modelovanie turbulentného prúdenia je stále v štádiu vývoja, v súvislosti s rastúcim rozvojom v oblasti matematiky a výpočtovej techniky. Vzhľadom k zložitosti turbulencie sa používajú zjednodušené modely. Doposiaľ nebol vytvorený univerzálne platný model turbulencie. Naopak existuje celá rada modelov, ktoré sú vhodné pre určité úlohy. Tieto modely sú založené na empirických poznatkoch. Pri numerických simuláciách turbulentného prúdenia tak existujú tri teoreticky odlišné prístupy, ktoré vyplývajú zo zjednodušenia predchádzajúcich rovníc popisujúcich prúdenie. [18]

V podstate teda existujú tri základné prístupy pri modelovaní prúdenia [37]:

- metóda priamej numerickej simulácie (Direct Numerical Simulation DNS) nemodeluje turbulenciu, a preto rieši Navier-Stokesovu rovnicu s vysokou presnosťou. Táto metóda tak vyžaduje veľmi jemnú sieť, pričom veľkosť buniek rádovo odpovedá veľkosti najmenších vírov. Počet buniek prudko narastá s Reynoldsovým číslom. Veľmi vysoké množstvo elementov siete a časovo závislá simulácia s veľmi malým časovým krokom vedie k technickej nereálnosti inžinierskych výpočtov. DNS sa tak používa len v špeciálnych prípadoch pre výskumné účely. Spravidla sa jedná o fundamentálne úlohy s jednoduchou geometriou a veľmi nízkym Reynoldsovým číslom. Metóda DNS však poskytuje dokonalý obraz fyziky prúdiacej tekutiny.
- Metóda veľkých vírov (Large Eddy Simulation LES) hybnosť, hmota, energia a dalšie veličiny sú prenášané prevažne veľkými vírmi. Táto metóda je tak založená na riešení veľkých vírov, ako priestorovo a časovo závislých útvarov, ktoré je možné zachytiť sieťou. Vďaka riešení veľkých vírov je možné pre LES použiť hrubšiu sieť a väčší časový krok v porovnaní s metódou DNS. Na druhú stranu, oproti metódam RANS, musí byť sieť podstatne jemnejšia a výpočty sú omnoho viac výpočtovo náročné. Veľkou nevýhodou modelu LES je nutnosť veľmi jemnej siete u stien vo všetkých troch smeroch.
- Metóda časového (Reynoldsovho) stredovania (Reynolds Averaged Navier-Stokes -RANS) - jedná sa o štatistické modely turbulencie, ktoré sú založené na metóde časového (Reynoldsovho) stredovania veličín turbulentného prúdenia a na nasledu-

júcej procedúre časového stredovania bilančných rovníc. Je možné modelovať všetky veľkosti turbulentných vírov, a keďže riešia časovo spriemerované hodnoty prúdenia, tak sa výrazne znižujú výpočtové nároky, a zároveň obvykle poskytujú požadovanú úroveň presnosti.

Obr. 37: Metódy modelovania turbulencie [23]

Pre väčšinu inžinierskych úloh turbulentného prúdenia sa najčastejšie používajú štatistické modely turbulencie. Tieto metódy poskytujú najekonomickejší prístup pre výpočet zložitého turbulentného prúdenia v priemyslových aplikáciach, ktoré vzhľadom k rozmerom a veľkostiam Reynoldsovho čísla nie je pomocou metód DNS a LES možné riešiť, kvôli obrovským výpočtovým nárokom. Pre našu simuláciu doskového výmenníka tepla tak používame metódu časového stredovania RANS, ktorej sa budeme bližšie venovať.

4.2.1 Reynoldsova rovnica a Reynoldsovo časové stredovanie

Ako je možné vidieť na obrázku 38, tak okamžité hodnoty veličín popisujúcich turbulentné prúdenie môžeme rozložiť na časť časovo stredovanú a fluktuačnú zložku (pozri rovnica 76). Pre obecnú veličinu je možné písať [37]:

$$\varphi = \bar{\varphi} + \varphi' \tag{76}$$

Pre výpočet časovo stredovanej veličiny z okamžitej veličiny platí nasledovný vzťah [37]:

$$\bar{\varphi} = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} \varphi(t) dt \tag{77}$$

Pri využití časového stredovania na fluktuačnú zložku dospejeme k nasledujúcemu záveru [37]:

$$\overline{\varphi'} = 0 \tag{78}$$

Obr. 38: Fluktuácia a časovo stredovaná časť [29]

Aplikáciou časového stredovania na základné rovnice popisujúce prúdenie sa získajú tzv. Reynoldsove rovnice charakteristické tým, že sú formálne podobné východiskovým rovniciam, ale riešené premenné sú časovo stredované.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = S_m \tag{79}$$

$$\frac{\partial}{\partial t}(\rho \vec{v}) + \nabla \cdot (\rho \vec{v} \vec{v}) = -\nabla \overline{p} + \nabla \cdot (\overline{\overline{\tau}_t}) + \rho \vec{a} + \vec{F}$$
(80)

Vzhľadom k nelineárnosti Navier Stokesových pohybových rovníc sa v nich objavuje naviac člen $\overline{\overline{\tau}_t}$, ktorý odpovedá rozmerovo napätiu, a je definovaný ako [23]:

$$\tau_{t-ij} = -\rho \overline{v'_i v'_j} \tag{81}$$

Týchto členov je deväť pre rôzne indexy a označujú sa ako Reynoldsove (turbulentné) napätia, ktoré exitujú len pri turbulentnom prúdení. Prejavujú sa tak ako viskózne napätia deformačnými účinkami na elementárny objem tekutiny. Pre definovanie turbulentného napätia sa najčastejšie používa metóda Boussinesquovy hypotézy o vírovej (turbulentnej) viskozite. Podľa tejto hypotézy sú Reynoldsove napätia úmerné stredným gradientom rýchlosti. Konštantou úmernosti je turbulentná viskozita μ_t (pozri rovnica 82). [23] [37]

$$-\rho \overline{v'_i v'_j} = \mu_t \frac{\partial \overline{v_i}}{\partial x_j} \tag{82}$$

Turbulentná viskozita je vlastnosť prúdenia a nie kvapaliny. Obecne je funkciou polohy a času. Boussinesquova hypotéza je použitá v modeloch Spalart-Allmaras, k- ε a k- ω . Jej výhodou sú nízke výpočtové nároky pre určenie turbulentnej viskozity. Model Spalart Allmaras rieši len jednu dodatočnú transportnú rovnicu zastupujúcu turbulentnú viskozitu. Modely k- ε a k- ω riešia dve dodatočné transportné rovnice (pre kinetickú energiu turbulencie k a disipáciu kinetickej ε , prípadne špecifickú disipáciu energie ω) a turbulentná viskozita je vypočítaná ako funkcia k a ε alebo ako k a ω . [37]

4.2.2 RANS modely turbulencie v Ansys Fluent

Existujú rozdielne RANS modely, ktoré zjednodušujú problém pridaním rôznych ďalších transportných rovníc. Modely typu k- ε , k- ω a ďalšie zavádzajú naviac turbulentnú viskozitu. Jednotlivé dostupné modely turbulencie sú znázornené na obrázku 39. Podrobnejšie budú popísané predovšetkým modely, ktoré sú použiteľné pre riešenie turbulentného prúdenia v doskovom výmenníku. Avšak pre bližší popis jednotlivých modelov turbulencie je vhodná napríklad literatúra [8], prípadne [9].

Obr. 39: Modely turbulentného prúdenia v CFD [19]

Modely k- ε sú dvojrovnicové modely turbulencie, preto umožňujú určenie dĺžkovej aj časovej mierky riešením dvoch samostatných transportných rovníc. Tieto modely sú historicky najpoužívanejšie modely turbulencie pre priemyslové výpočty. Všetky tri modely k- ε (Standard, RNG a Realizable) riešia transportné rovnice typické pre k a ε , a modelujú Reynoldsove napätia pomocou turbulentnej viskozity μ_t podľa Boussinesquovy hypotézy. Hlavný rozdiel medzi nimi je v spôsobe stanovenia turbulentnej viskozity a turbulentných Prandtlových čísiel riadiacich turbulentnú difúziu. Standard k- ε je často používaný v priemyslových aplikáciách pre simuláciu prenosu hybnosti a tepla z dôvodu svojej robustnosti, ekonomickosti výpočtu a dostatočnej presnosti pre široký rozsah typov turbulentného prúdenia. Hlavným predpokladom je, že prúdenie je plno turbulentné a efekt molekulárnej viskozity je zanedbateľný. Preto je model Standard k- ε použiteľný len pri vysokých Reynoldsových číslach. Tento model ma nadmernú difúziu pre veľa situácií ako veľké zakrivenie prúdu, víry, rotáciu, odtrhnutie prúdenia a nižšie Reynoldsove čísla. Preto sa z tohto modelu postupom času vyvinuli ďalšie modifikácie, ktoré využívajú jeho výhod a snažia sa odstrániť jeho nedostatky. V Ansys Fluent sú zahrnuté varianty RNG a Realizable, ktoré sú presnejšie a spoľahlivejšie pre širší rozsah typov prúdenia. Medzi najnovšie z uvedených modelov patrí model Realizable k- ε , ktorý podľa prevedených štúdií poskytuje najlepší výkon oproti ostatným modelom. [37]

Modely k- ω sú taktiež dvojrovnicové modely a podobne ako modely k- ε riešia dve dodatočné diferenciálne rovnice. Rovnica pre špecifickú disipáciu energie ω má oproti rovnici pre ε niekoľko výhod. Najvýznamnejšou z nich je, že rovnicu je možné integrovať bez ďalších podmienok cez viskóznu podvrstvu. Modely k- ω obvykle lepšie predikujú záporný tlakový spád, medznú vrstvu a odtrhnutie prúdenia. Existujú dva najpoužívanejšie modely $k-\omega$, a to Standard a SST (Shear-Stress Transport). Model SST sa od modelu Standard líši hlavne v postupnej zmene modelu Standard k- ω v oblastiach blízko stien na model k- ε pre vysoké Reynoldsove čísla vo vzdialenej oblasti od stien. Je to z dôvodu, že model Standard k- ω je pomerne presný v blízkosti steny, ale so vzdialenosťou od steny jeho presnosť klesá. Má tiež modifikovanú formuláciu turbulentnej viskozity s ohľadom na transportný efekt hlavných turbulentných šmykových napätí. SST model tak efektívne spojil robustnosť a presnosť modelu k- ω v oblastiach blízko steny s modelom k- ε , ktorý lepšie funguje vo voľnom prúdení ďalej od stien. Toho bolo dosiahnuté konvertovaním modelu k- ε do formulácie k- ω . Sú tak použité oba modely zároveň a násobené funkciou, ktorá je rovná jednej blízko steny (čo aktivuje model k- ω) a nule ďaleko od steny (čo aktivuje transformovaný model k- ε). [37]

Pre našu simuláciu prenosu tepla a tlakovej straty doskového výmenníka tepla sme tak použili model SST k- ω , ktorý je presnejší a spoľahlivejší pre viac typov prúdenia oproti modelu Standard k- ω . Transportné rovnice SST modelu majú podobný tvar ako model Standard a sú nasledovné [8]:

$$\frac{\partial}{\partial t}(\rho k) + \nabla \cdot \left(\overline{\vec{v}}\rho k\right) = \nabla \cdot \left[\Gamma_k \nabla k\right] + \tilde{G}_k - Y_k + S_k \tag{83}$$

$$\frac{\partial}{\partial t}(\rho\omega) + \nabla \cdot \left(\overline{\vec{v}}\rho\omega\right) = \nabla \cdot \left[\Gamma_{\omega}\nabla\omega\right] + G_{\omega} - Y_{\omega} + D_{\omega} + S_{\omega} \tag{84}$$

kde člen G_k charakterizuje generáciu kinetickej energie turbulencie k v dôsledku gradientov strednej rýchlosti. G_{ω} reprezentuje generáciu špecifickej energie ω . Člen D_{ω} predstavuje člen krížovej difúzie. Členy Y_k a Y_{ω} predstavujú disipáciu k a ω vplyvom turbulencie. S_k a S_{ω} vyjadrujú užívateľsky definované zdrojové členy. Členy Γ_k a Γ_{ω} predstavujú efektívnu difuzivitu k a ω a sú definované vzťahmi [8]:

$$\Gamma_k = \mu + \frac{\mu_t}{\sigma_k} \tag{85}$$

$$\Gamma_{\omega} = \mu + \frac{\mu_t}{\sigma_{\omega}} \tag{86}$$

 σ_k a σ_ω sú turbulent
né Prandtlove čísla pre k a $\omega.$

Turbulentná viskozita sa u modelu SST k- ω vypočíta ako [8]:

$$\mu_t = \frac{\rho k}{\omega} \frac{1}{\max\left[\frac{1}{\alpha^*}, \frac{SF_2}{a_1\omega}\right]} \tag{87}$$

kde koeficient α^* tlmí turbulentnú viskozitu podľa korekcie pre nízke Reynoldsove čísla. Člen S charakterizuje veľkosť rýchlosti deformácie. Funkcie prepínania medzi modelom k- ω a k- ε predstavujú členy F_1 a F_2 .

V modely je použité veľké množstvo konštánt určených empiricky. Bližšie popísanie a výpočty jednotlivých konštánt a členov sú nad rámec tejto diplomovej práce. Bližšie je táto problematika uvedená v literatúre [8]. Pre náš prípad numerickej simulácie prenosu tepla a tlakovej straty doskového výmenníka, boli nastaviteľné hodnoty konštánt modelu SST k- ω na základe odporúčaní ponechané vo východiskovom nastavení.

4.3 Modelovanie prúdenia v blízkosti steny

Modelovanie prúdenia u steny ovplyvňuje presnosť numerického riešenia v celej oblasti. V blízkosti steny sa riešené veličiny rýchlo menia. Výrazne sa tu uplatňuje prenos hybnosti a skalárnych veličín. Turbulencia je tesne u steny potlačená. Vo vonkajšej časti medznej vrstvy však dochádza k výraznej produkcii turbulentnej kinetickej energie v dôsledku Reynoldsových napätí a gradientu strednej rýchlosti. Početné experimenty ukázali, že oblasť u steny (medzná vrstva) môže byť rozdelená na viac častí. Tesne u steny sa nachádza viskózna (laminárna) podvrstva, kde je prúdenie laminárne a molekulárna viskozita má dominantný vplyv na prenos hybnosti, tepla a hmotnosti. Vonkajšia časť medznej vrstvy sa označuje ako plno turbulentná vrstva, kde dominantnú úlohu hrá turbulencia. Medzi laminárnou podvrstvou a plno turbulentnou vrstvou sa vyskytuje vrstva prechodová, kde sa rovnakou mierou uplatňujú účinky molekulárnej viskozity aj turbulencie. Rozdelenie prúdenia v blízkosti steny na jednotlivé časti a hodnoty y^+ sú znázornené na obrázku 40. [23]

Obr. 40: Rozdelenie prúdenia v blízkosti steny [23]

Člen y^+ charakterizuje bezrozmernú vzdialenosť od steny a vypočíta sa ako [8]:

$$y^{+} = \frac{\rho u_{\tau} y}{\mu} \tag{88}$$

kde u_{τ} znázorňuje treciu rýchlosť. Dynamickú viskozitu tekutiny vyjadruje člen μ . Treciu rýchlosť u_{τ} je možné určiť pomocou šmykového napätia τ_w nasledovne [8]:

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}} \tag{89}$$

Pre modelovanie prúdenia v blízkosti steny sa používajú dva spôsoby. Prvým je použitie semi-empirických vzťahov, ktoré sa nazývajú stenové funkcie (wall functions). Tieto funkcie preklenú viskóznu a prechodovú vrstvu. Druhým spôsobom je podrobné modelovanie prúdenia u steny (near-wall modelling), kde sú modely turbulencie upravené tak, aby bolo možné riešiť oblasť u steny až ku stene, vrátane viskóznej podvrstvy. Tieto spôsoby majú rozdielne požiadavky na jemnosť siete. Podstata oboch prístupov je znázornená na obr. 41. [37]

Obr. 41: Spôsoby modelovania prúdenia v blízkosti steny [23]

Stenové funkcie tak vo svojej podstate prepájajú riešené premenné v bunke v blízkosti steny s korešpondujúcou hodnotou na stene. Tieto funkcie obsahujú logaritmické zákony pre strednú rýchlosť, teplotu, či iné skalárne veličiny a vzťahy pre turbulentné veličiny v blízkosti steny. Vďaka stenovým funkciám nie sú riešené oblasti ovplyvnené molekulárnou viskozitou, a preto je možné u steny použiť relatívne hrubú výpočtovú sieť. Pri prúdení s veľkým Reynoldsovým číslom použitie týchto funkcií podstatne znižuje výpočtové nároky, a pokiaľ sú splnené podmienky ich použitia, tak poskytujú dostatočne presné riešenie pre väčšinu priemyselných aplikácií. Naopak pri nízkych Reynoldsových číslach je použitie stenových funkcií nevhodné, a je treba využiť spôsob podrobného modelovania prúdenia u steny. [37]

Model k- ε funguje správne len v turbulentnom jadre a turbulentnej podvrstve. Softvér Ansys Fluent tak pre tento model ponúka 4 možnosti riešenia oblasti v blízkosti steny: Standard Wall Functions, Scalable Wall Functions, Non-Equilibrium Wall Functions a

Enhanced Wall Treatment. Bližší popis problematiky týchto stenových funkcií, ktorý by bol nad rámec tejto diplomovej práce, je uvedený napríklad v literatúre [8].

Pri našej simulácií prenosu tepla a tlakovej straty doskového výmenníka sme využili spôsob podrobného modelovania prúdenia v blízkosti steny. S ohľadom na odporúčané hodnoty y^+ bol zvolený model SST k- ω .

4.4 Simulácia prenosu tepla doskového výmenníka tepla

4.4.1 Geometria

Na začiatku samotného procesu CFD simulácie je nutné vytvoriť geometrický model výpočtovej oblasti, ktorý zahŕňa predmet modelovania a jeho najbližšie okolie. Veľkosť a tvar by mal umožniť dostatočne presne zachytiť modelovaný dej. V tejto diplomovej práci bol 3D model doskového výmenníka vytvorený v programe Solidworks. Na záver bolo nutné tento model vyexportovať vo formáte STEP, ktorý podporuje systém Ansys Spaceclaim, kde prebiehala následná príprava geometrie pre numerickú simuláciu.

Obr. 42: 3D model doskového výmenníka tepla (uhol prelisovani
a $25^\circ,$ symetrický dizajn)

Úprava geometrie prebieha z dôvodu predprípravy pre následný proces sieťovania. Skutočný 3D model vo väčšine prípadov obsahuje celú radu rôznych dizajnových detailov, úkosov a zaoblení, ktoré nie sú pre výpočet relevantné a zvyšovali by tak počet elementov potrebných pre popis povrchu daného prvku, čím by narastal výpočtový čas a zvyšovali by sa nároky na výpočtovú techniku. Na druhú stranu ovplyvňuje miera zjednodušenia modelu presnosť daného výpočtu. V našom prípade sa jednalo o zjednodušenie tvarov dosky (pozri obr. 43).

Nutné je taktiež daný 3D model vyplniť (vyliať), čím vznikne inverzný 3D objem reprezentujúci oblasť tekutiny. Pre zjednodušenie a ušetrenie výpočtového času bol simulovaný len jeden prietočný kanál pre teplú (HW) stranu a studenú (DHW) stranu. Vznikli nám tak dva kvapalné objemy a jeden objem pevný, reprezentujúci dosku výmenníka medzi dvomi tekutinami (pozri obr. 44).

Obr. 43: Úprava dosky výmenníka pre numerickú simuláciu

Ďalej bolo nutné predĺžiť výstupné potrubie, aby na výstupe z výmenníka nedochádzalo k spätnému prúdeniu, čo by mohlo ovplyvniť výsledok a spôsobiť problém s konvergenciou.

Obr. 44: Geometria pre numerickú simuláciu prenosu tepla doskového výmenníka

Pre nasledovný proces tvorby výpočtovej siete, bol za účelom sietovania medznej vrstvy, prevedený rez oboch kvapalných objemov (pozri obr. 45).

Obr. 45: Roviny rezu kvapalných objemov pri príprave geometrie pre simuláciu prenosu tepla

Medzná vrstva je oblasť v blízkosti pevnej steny, v ktorej je prúdenie dominantne ovplyvnené viskozitou kvapaliny. Preto je potrebné v oblasti blízkosti steny elementy zjemniť, tak aby bolo možné vo výpočte zachytiť vplyv medznej vrstvy. Rez objemov na viac častí nám tak umožní zjemniť sieť v požadovaných miestach.

V časti prípravy geometrie sme ďalej vytvorili pomenovanie pre jednotlivé okrajové podmienky (pozri obr. 46).

Obr. 46: Pomenované okrajové podmienky pre simuláciu prenosu tepla

Nakoniec bolo nutné pre dosiahnutie konformnej siete v miestach, kde sa jednotlivé telesá stretávajú, využiť príkaz zdieľania zhodnej topológie (Share Topology) v Ansys Spaceclaim. To zaistí, že priesečníky telies sú dokonalo zosieťované.

4.4.2 Výpočtová sieť

V nasledujúcej časti sa vytvorená a upravená geometria pokryje sieťou. To znamená, že fyzikálny priestor v ktorom sa počíta prúdenie je diskretizovaný. Výpočtová sieť je kľúčovou súčasťou každého CFD modelu. Jej kvalita (tvarová dokonalosť buniek) a počet kontrolných objemov (presnejšie vhodné rozloženie veľkosti buniek vrátane delenia v medzných vrstvách) je základnou podmienkou pre dosiahnutie kvalitných výsledkov. Z tohto dôvodu je nutné, všade tam kde je to možné, vyhodnocovať závislosť výsledkov výpočtov na delení výpočtovej oblasti a prípadne ju postupne zjemňovať v exponovaných oblastiach. Avšak veľkosť výpočtovej siete (počet kontrolných objemov) obmedzuje rýchlosť výpočtu. Nielenže na jemnejšej sieti trvá dlhšie každá iterácia, ale taktiež sa zvyšuje počet iterácií potrebných k dosiahnutiu konvergencie.

Pre tvorbu siete sa používajú rôzne typy elementov (pozri obr. 47), ktoré sa využívajú podľa zložitosti geometrie a podľa daného typu úlohy.

Obr. 47: Tvary prvkov konečného objemu [5]

V numerických modeloch sa vyskytujú dva základné typy sietí, a to štruktúrovaná a neštruktúrovaná siet. U štruktúrovanej siete platí pravidlo, že hranice prvkov musia susediť s jedinou hranicou susedného elementu. Výhodou tejto siete je nižší počet buniek, čo zrýchľuje výpočtový čas. Štruktúrovaná sieť je vhodná na modelovanie v medznej vrstve. Nevýhodou je nemožnosť dostatočne sieť zahustiť, čo komplikuje vytvorenie siete pri zložitých geometriách. Pre neštruktúrovanú sieť naopak platí, že jedna hranica elementu môže susediť s viacerými hranicami iných elementov. Výhodou je jednoduchšie vytvorenie siete a možnosť dodatočného zahustenia siete, čo je výhodne pri zložitých geometriách. Na druhú stranu, nevýhodou tejto siete, je vysoký počet buniek a riziko vytvorenia nekvalitnej siete, čím môže klesať presnosť výpočtu. Ďalším dôležitým delením typov sietí je podľa rozsahu použitých elementov. Existujú dva typy sietí, kde uniformná sieť obsahuje len elementy rovnakého typu, a sieť hybridná obsahuje elementy rôznych typov. [18]

V našom prípade, kde geometria doskového výmenníka je veľmi komplexná a zložitá, sme zvolili spôsob neštruktúrovanej siete. Taktiež sme využili hybridnú sieť, kde pre zachytenie medznej vrstvy v blízkosti steny bola využitá prizmatická sieť, pričom vo zvyšnom objeme bola použitá sieť polyedrická (pozri obr. 49).

Proces sieťovania bol prevedený v rozhraní Fluent Meshing, ktorý je pre generovanie zložitejších sietí najvhodnejší. Prvým krokom bolo importovanie predpripravenej geometrie. Po tomto kroku nasledovalo nastavenie lokálnych rozmerov. Lokálne dimenzovanie siete sa používa všade tam, kde chceme predpísať iný, pevne definovaný rozmer siete, ako sú všeobecné rozmery povrchovej siete nastavené v ďalšom kroku. V našom prípade sa jednalo o nastavenie lokálnych rozmerov pre plochy vstupov a výstupov tekutiny (cieľová veľkosť siete 0,9 mm). Po vygenerovaní siete sme následne identifikovali miesta, kde je nedostačujúca kvalita siete, a tieto problémové miesta sme upravili pridaním lokálnych rozmerov.

Nasledovalo nastavenie parametrov povrchovej siete, jej následná tvorba, kontrola a úprava pre dosiahnutie požadovanej kvality. Základné nastavené hodnoty pre vytvorenie povrchovej siete sú uvedené v tabuľke 11.

Minimum Size	0,1 mm
Maximum Size	1,5 mm
Growth Rate	1, 2
Size functions	Curvature and Proximity
Curvature Normal Angle	10
Cells Per Gap	1
Scope Proximity To	edges

Tabuľka 11: Základné parametre povrchovej siete pre simuláciu prenosu tepla

Obr. 48: Povrchová sieť pre simuláciu prenosu tepla

Vo Fluent Meshing nasleduje ďalej popísanie geometrie. Pri simulácií prenosu tepla doskového výmenníka pozostáva geometria z oblasti tekutín, a tiež obsahuje pevnú oblasť reprezentujúcu dosku výmenníka. Nasledovala aktualizácia okrajových podmienok, kde pre vstupy bol zvolený typ okrajovej podmienky vstupného hmotnostného prietoku (mass flow inlet). Pre výstupy bola nastavená okrajová podmienka výstupného tlaku (pressure outlet). Ostatné zóny okrajových podmienok boli brané ako stena (wall).

Keďže používame model turbulencie SST k- ω , tak nutným krokom je nastavenie medzných vrstiev v blízkosti stien modelu. Predposledným krokom je teda vytvorenie tzv. Boundary Layers vo Fluent Meshing. Vďaka tomu sme schopný zlepšiť kvalitu siete a presnejšie modelovať chovanie toku blízko steny pri turbulentnom prúdení.

Tabuľka 12: Základné parametre medznej vrstvy (Boundary Layer) pre simuláciu prenosu tepla

Offset Method Type	uniform
Number Of Layers	5
Growth Rate	1, 2
First Height	0, 1

Medzná vrstva bola nastavená s ohľadom na dosiahnutie požadovanej hodnoty y^+ pre daný model turbulencie. Jej základné nastavené parametre sú uvedené v tabuľke 12. Nastavením

medznej vrstve tak vytvoríme prizmatickú vrstvu siete v blízkosti stien (pozri obr. 48, prípadne obr. 49)

Nakoniec sme teda vytvorili polyedrickú (polyhedral) objemovú sieť s maximálnou dĺžkou bunky (Max Cell Length) 1,015 a mierou rastu (Growth rate) 1,2. Vznikli nám tak objemy teplej tekutiny (HW Fluid Domain), studenej tekutiny (DHW Fluid Domain) a pevný objemy dosky (Solid Domain). Výsledná sieť sa skladala z 3891196 buniek.

Obr. 49: Objemová sieť pre simuláciu prenosu tepla

Po prvom skonvergovanom a prevedenom výpočte bolo potrebné skontrolovať kvalitu vytvorenej výpočtovej siete, a to hlavne v oblasti medznej vrstvy. Parameter y^+ popisujúci kvalitu siete v medznej vrstve bol popísaný v kapitole 4.3 (Modelovanie prúdenia v blízkosti steny). Ako už bolo spomenuté, bol použitý pre simuláciu prenosu tepla doskového výmenníka model turbulencie SST k- ω , pre ktorý je vhodné udržovať hodnota $y^+ \approx 1$. Avšak v Ansys Fluent je odporúčaná horná hranica pre y^+ rovná 5. Kontúry wall y^+ sú zobrazené pre HW stranu výmenníka na obrázku 50 a pre DHW stranu na 51.

Obr. 50: Kontúry y^+ - CFD simulácia prenosu tepla (HW okruh)

Obr. 51: Kontúry y^+ - CFD simulácia prenosu tepla (DHW okruh)

Z vykreslených kontúr y^+ je vidieť, že vo väčšine miest dosahujeme požadovanej veľkosti y^+ . Aj keď na niektorých miestach presahujeme odporučenú hornú hranicu y^+ pre daný model turbulencie SST k- ω , tak z obrázku je vidieť, že sa jedná o zanedbateľné množstvo plochy. Na základe tejto analýzy považujeme kvalitu siete s ohľadom na použitú výpočtovú techniku za dostačujúcu.

Pri hodnotení kvality siete v numerických simuláciách je ďalej nutné sledovať niekoľko kvalitatívnych parametrov, ktoré ovplyvňujú presnosť a stabilitu numerického riešenia. Medzi hlavné parametre sledovaných v súvislosti s kvalitou siete patria Aspect Ratio (pomer strán), Skewness (šikmosť) a Orthogonal Quality (ortogonálna kvalita). [6]

Ukazovateľ Aspect Ratio je definovaný ako pomer strán charakterizujúci mieru roztiahnutia bunky. V ideálnom prípade platí, že pomer strán je 1:1. Vo všeobecnosti platí, že v objeme toku (ďalej od stien) by nemal pomer strán presiahnuť hodnotu 5:1. Avšak v medznej vrstve možno vo väčšine prípadov predpokladať hodnotu pomeru strán až 10:1. S ohľadom na stabilitu riešenia prúdenia môže byť oveľa väčšia. Pri prenose tepla, kedy je riešená dodatočná energetická rovnica, by však maximálny pomer strán mal byť nižší ako 35:1. [9]

Skewness je definovaná ako rozdiel medzi reálnym tvarom bunky a tvarom rovnostrannej bunky ekvivalentného objemu. Určuje tak ako blízko je daná bunka k ideálnemu tvaru. Hodnota šikmosti sa pohybuje v rozmedzí od 0 do 1. Platí pritom, že čím nižšia je hodnota šikmosti, tým menej je daný element siete deformovaný. Ideálny element siete by tak mal mať hodnotu šikmosti blízku nule, ktorú je však pri komplexných modeloch zložité dosiahnuť. Ansys uvádza veľmi dobrú kvalitu buniek pri hodnote šikmosti od 0,25 do 0,5. Pri hodnote 0,5 až 0,8 považujeme sieť za dobrú. Pri hodnote šikmosti v rozmedzí od 0,8 do 0,94 je stále kvalita siete považovaná za akceptovateľnú. Naopak pri šikmosti od 0,95 je kvalita siete braná za nedostačujúcu. [6] [8]

Orthogonal quaility udáva do akej miery sú elementy siete v danom prostredí rovnomerne orientované. Najhoršie bunky budú mať ortogonálnu kvalitu bližšiu k 0, pričom najlepšie bunky bližšie k 1. Čím je teda kvalita ortogonality vyššia, tým lepšie sú elementy siete usporiadané tak, aby boli ortogonálne k susedným prvkom alebo hraniciam, čo prispieva k presnejšiemu a stabilnejšiemu numerickému riešeniu. Ansys udáva, že minimálna ortogonálna kvalita pre všetky typy buniek by mala byť väčšia ako 0,01. Priemerná hodnota je však výrazne vyššia a dobrá sieť sa považuje od hodnoty ortogonálnej kvality 0,2. [6] [8]

Tieto kvalitatívne ukazovatele sú aj pre našu simuláciu v rozhraní Ansys Fluent najdôležitejšie. Bolo potrebné siet upraviť tak, aby sme dosiahli požadované hodnoty týchto parametrov. Hodnoty kvalitatívnych parametrov finálnej výpočtovej siete sú uvedené v tabuľke 13.

Ukazovateľ kvality	Minimálna hodnota	Maximálna hodnota	Priemerná hodnota
Aspect Ratio	1,37	80,67	11,86
Skewness	$1,25 \cdot 10^{-5}$	0,77	0,31
Orthogonal quality	0,23	≈ 1	0, 69

Tabuľka 13: Kvalitatívne parametre výpočtovej siete pre simuláciu prenosu tepla

Všetky kvalitatívne parametre sa nachádzajú v odporúčaných hodnotách, ktoré udáva [6]. Pomer strán (Aspect ratio) má maximálnu hodnotu 81, čo sa nachádza nad odporučenými hodnotami. Keďže môže pomer strán dosahovať aj väčšie hodnoty (okolo 100:1), považujeme túto hodnotu po konzultácií so simulačným inžinierom za akceptovateľnú. Naviac, po vykreslení histogramu vo Fluent Meshing, sme zistili, že počet elementov s pomerom strán väčším ako 35:1 je zanedbateľný (pozri obr. 52).

Obr. 52: Histogram (pomer strán) - CFD simulácia prenosu tepla

Pre porovnanie je uvedený aj histogram počtu elementov v závislosti na šikmosti (pozri obr. 53).

Obr. 53: Histogram (šikmosť) - CFD simulácia prenosu tepla

Na záver bolo potrebné všetky vzniknuté kontakty kvapalina-kvapalina (fluid-fluid) prepnúť z okrajovej podmienky stena (wall) na internú (internal) okrajovú podmienku.

4.4.3 Výpočet CFD modelu

Po nahratí siete vytvorenej v predchádzajúcom kroku nasledoval už samotný výpočet CFD modelu v rozhraní Ansys Fluent.

Obr. 54: Diagram algoritmu riešenia Fluentom [23]

Na začiatku procesu je potrebné nastaviť CFD riešič. Pre náš prípad bola zvolená základná metóda riešenia korekcie tlaku (Pressure-Based Solver). Každá iterácia pozostáva z krokov, ktoré sú zobrazené diagramom na obr. 54 a sú popísané nasledovne [23]:

pohybové rovnice pre neznáme zložky rýchlosti sú riešené s použitím hodnôt tlakov tak, aby sa aktualizovalo rýchlostné pole,

- rýchlosti určené v predchádzajúcom bode nemôžu splňovať rovnicu kontinuity, preto sa určujú tzv. tlakové korekcie a následne aj korekcia rýchlostného poľa,
- pomocou nových hodnôt rýchlostí sa riešia rovnice pre turbulentnú energiu a disipáciu,
- rieši sa ďalšia rovnica pre určenie teploty, prípadne ďalších skalárnych veličín,
- aktualizujú sa fyzikálne vlastnosti kvapalín (napr. viskozita),
- kontrola konvergencie.

V nastavení CFD riešiča bolo zvolené, že sa jedná o časovo ustálené (Steady) prúdenie. Ďalej bola možnosť nastavenia gravitačného zrýchlenia, ale pre náš prípad numerickej simulácie prenosu tepla v doskovom výmenníku sme gravitáciu neuvažovali, keďže má zanedbateľný vplyv.

Pri riešení prenosu tepla je potrebné ďalej v Ansys Fluent zvoliť možnosť riešenia dodatočnej rovnice energie. Ďalším krokom bolo nastavenie modelu turbulencie. Pre náš prípad sme zvolili model turbulencie SST k- ω . Jednotlivé konštanty modelu turbulencie boli podľa odporúčaní ponechané vo východiskovom nastavení. Bližšia charakteristika a dôvod voľby daného modelu turbulencie sú uvedené v kapitole 4.2, respektíve 4.3.

Pre definovanie materiálov pre jednotlivé objemy sme z knižnice Ansys Fluent nahrali požadované materiály. Pre objemy tekutiny (HW Fluid Domain a DHW Fluid Domain) bol zvolený materiál voda (water-liquid). Pre pevný objem dosky (Solid Domain) bol definovaný materiál oceľ (steel).

Najdôležitejším krokom je nastavenie okrajových podmienok pre jednotlivé plochy. Zhrnutie nastavených okrajových podmienok je uvedené v tabuľke 14. Pre vstupy (Inlet) boli nastavené okrajové podmienky typu vstupného hmotnostného prietoku (Mass Flow Inlent). Hmotnostný prietok jedným kanálom bol vypočítaný pre studenú a teplú stranu nasledovným spôsobom:

$$\dot{m}_{DHW,1} = \frac{\dot{m}_{DHW}}{N_{cp,DHW}} = \frac{0,1276}{5} = 0,0255 \ kg/s \tag{90}$$

$$\dot{m}_{HW,1} = \frac{\dot{m}_{HW}}{N_{cp,HW}} = \frac{0,2827}{6} = 0,0471 \ kg/s \tag{91}$$

Pre výstupy (Outlet) boli ponechané okrajové podmienky typu výstupného tlaku (Pressure Outlet).

Ostatné okrajové podmienky ako teploty $T_{DHW,inlet}$, $T_{DHW,outlet}$ a hydraulický priemer, pre ktorý platí $D_h = D_p$, boli zvolené na základe analytického výpočtu (pozri kapitola 3.2).

Intenzita turbulencie je definovaná ako pomer strednej kvadratickej hodnoty fluktuácií u' k strednej rýchlosti prúdenia u_{avg} . Intenzita turbulencie 1 % alebo menej sa vo všeobecnosti považuje za nízku, zatiaľ čo hodnoty vyššie ako 10 % sa považujú za vysokú intenzitu turbulencie. V ideálnom prípade je najlepší odhad intenzity turbulencie na vstupnej hranici z externých nameraných údajov (ak sa napríklad simuluje experiment vo veternom tuneli, intenzita turbulencie vo voľnom prúde je zvyčajne k dispozícii z charakteristík tunela). V prípade vnútorného prúdenia závisí intenzita turbulencie na vstupoch od úplnej
histórie prúdu. Pre nerušené a málo rozvinuté prúdenie je možné použiť nízku intenzitu turbulencie. Pre plne rozvinuté prúdenie môže hodnota intenzity turbulencie dosahovať aj niekoľko percent. Intenzitu turbulencie v jadre plne rozvinutého prietoku v potrubí možno odhadnúť podľa nasledujúceho vzorca, odvodeného z empirickej korelácie pre potrubné toky [9]:

$$I \equiv \frac{u'}{u_{avg}} = 0,16 \left(Re_{D_H}\right)^{-1/8} \tag{92}$$

V našom prípade bolo potrebné pre určenie intenzity turbulencie najprv vypočítať Reynoldsove číslo na vstupe HW a DHW okruhu:

$$Re_{DHW,inlet} = \frac{w_{p,DHW} \cdot D_p}{\nu_{DHW}} = \frac{0,504 \cdot 0,018}{0,000001306} = 6948$$
(93)

$$Re_{HW,inlet} = \frac{w_{p,HW} \cdot D_p}{\nu_{HW}} = \frac{1,133 \cdot 0,018}{3,828 \cdot 10^{-7}} = 53274$$
(94)

kde kinematickú viskozitu ν_{DHW} , respektíve ν_{HW} , sme získali z knižnice EES ako funkciu vstupnej teploty ($T_{DHW,inlet}$, respektíve $T_{DHW,outlet}$) a referenčného tlaku (p_{DHW} , respektíve p_{HW}):

$$\nu_{DHW} = 0,00001306 \ m^2/s \tag{95}$$

$$\nu_{HW} = 3,828 \cdot 10^{-7} \ m^2/s \tag{96}$$

Pre rýchlosti na vstupe platia tieto vzťahy:

$$w_{p,DHW} = \frac{4 \cdot \dot{V}_{DHW}}{\pi \cdot D_p^{\ 2}} = \frac{4 \cdot 0,0001283}{\pi \cdot 0,018^2} = 0,504 \ m/s \tag{97}$$

$$w_{p,HW} = \frac{4 \cdot \dot{V}_{HW}}{\pi \cdot D_p^2} = \frac{4 \cdot 0,0002883}{\pi \cdot 0,018^2} = 1,133 \ m/s \tag{98}$$

Intenzita turbulencie na vstupe pre DHW a HW stranu sa potom vypočíta nasledovným spôsobom:

$$I_{DHW} = 0,16 \left(Re_{DHW,inlet} \right)^{-1/8} = 0,16 \left(6948 \right)^{-1/8} = 0,053 = 5,3\%$$
(99)

$$I_{HW} = 0,16 \left(Re_{HW,inlet} \right)^{-1/8} = 0,16 \left(53274 \right)^{-1/8} = 0,041 = 4,1\%$$
(100)

Ostatné okrajové podmienky typu stena (wall) boli po kontrole ponechané vo východiskovom nastavení. Taktiež vnútorné okrajové podmienky (internal) boli ponechané vo východiskovom nastavení typu interior.

Olmojavá nadmianka	Undrata	Inductive			
Okrajova podmienka	Hodnota	Једнотка			
DHW_{inlet} (Mass Flow Inlet)					
Hmotnostný prietok (Mass Flow Rate)	$0,\!0255$	$\rm kg/s$			
Intenzita turbulencie (Turbulent Intensity)	$5,\!3$	%			
Hydraulický priemer (Hydraulic Diameter)	$0,\!018$	m			
Celková teplota (Total Temperature)	10	$^{\circ}C$			
DHW_{outlet} (Pressure Outlet)					
Tlak (Gauge Pressure)	0	Pa			
HW_{inlet} (Mass Flow In	let)				
Hmotnostný prietok (Mass Flow Rate)	$0,\!0471$	$\rm kg/s$			
Intenzita turbulencie (Turbulent Intensity)	4,1	%			
Hydraulický priemer (Hydraulic Diameter)	0,018	m			
Celková teplota (Total Temperature)	76	$^{\circ}C$			
DHW_{outlet} (Pressure outlet)					
Tlak (Gauge Pressure)	0	Pa			

Tabuľka 14: Okrajové podmienky (prenos tepla)

Ďalšou časťou výpočtu CFD modelu je nastavenie metód riešenia. Pre riešenie na sebe závislých polí rýchlostí a tlakov bol zvolený sekvenčný algoritmus SIMPLE (Semi-Implicit Method for Pressure-Linked Equations). Jedná sa o viac konzervatívnu metódu, ktorá používa väzbu medzi korekciami rýchlostí a tlaku. Bližší popis tohto algoritmu riešenia, prípadne iných algoritmov dostupných v Ansys Fluent, je uvedený napríklad v literatúre [36].

Gradienty riešených premenných v strede buniek je možné v Ansys Fluent stanoviť prostredníctvom troch metód [9]:

- Green-Gauss Cell Based najmenej výpočtovo náročné, riešenie však môže mať chybnú difúziu,
- Green-Gauss Node Based presnejšie, ale z hľadiska výpočtu náročnejšie, minimalizuje chybu v difúzii a je vhodná pre neštruktúrované siete,
- Least Squares Cell Based zhodné vlastnosti ako metóda Node Based, ale je výpoč-tovo menej náročná.

Pre náš prípad sme tak na základe dostupných informácií v literatúre [9] zvolili prednastavenú metódu Least Squares Cell Based.

Z hľadiska stability výpočtu (dosiahnutia konvergencie) je nutné začať výpočet na 1. ráde diskretizačných schém (First Order Upwind) pre hybnosť (Momentum), turbulentnú kinetickú energiu (Turbulent Kinetic Energy), mieru turbulentnej disipácie (Turbulent Dissipation Rate) a pre energiu (Energy). Tento výpočet je menej presný, ale relatívne rýchlo konverguje. Po dosiahnutí konvergencie v 1. ráde prepíname na diskretizačnú schému s 2. rádom presnosti (Second Order Upwind) pre výpočet vymenovaných konvekčných členov. Popis princípu diskretizačnej schémy "upwind", ktorý by bol nad rámec tejto diplomovej práce, je uvedený napríklad v literatúre [36].

Ako diskretizačné schéma pre výpočet tlaku je možné v Ansys Fluent zvoliť: Standard, PRESTO!, Linear, Second Order alebo Body Force Weighted. Pre väčšinu inžinierskych aplikácií je odporučené použiť metódu Standard. Z tohto dôvodu sme na počiatku simulácie zvolili toto prednastavené diskretizačné schéma. Po dosiahnutí konvergencie sme prepli na diskretizačnú schému s 2. rádom presnosti (Second Order). Pre výber a použitie jednotlivých tlakových interpolačných schém je odporúčaná literatúra [9]. Pre bližší popis týchto metód je vhodná napríklad literatúra [8].

Po nastavení metód riešenia nasleduje krok nastavenia relaxačných faktorov, ktoré je možné definovať pre všetky počítané premenné. Zmenou relaxačného faktoru je možné urýchliť konvergenciu. Ak sú napríklad zmeny reziduálov veľké pri prechode od jednej iterácie k druhej, nastaví sa malý relaxačný faktor, čím sa tlmí vplyv počiatočnej aproximácie riešenia a nelinearity. Na druhú stranu, pokiaľ sa zmeny reziduálov stávajú konštantné, je vhodné relaxačné faktory zväčšiť. Vo väčšine prípadov je však vhodné začínať iteračný proces s prednastavenými hodnotami. [23]

V našom prípade sme tak ponechali východiskové nastavenia počas celého výpočtu. Hodnoty jednotlivých relaxačných faktorov sú uvedené v tabuľke 15.

Relaxačné faktory				
Pressure	0,3			
Density	1			
Body Forces	1			
Momentum	0,7			
Turbulent Kinetic Energy	0,8			
Specific Dissipation Rate	0,8			
Turbulent Viscosity	1			
Energy	1			

Tabuľka 15: Relaxačné faktory

Pri simulácií prúdenia prostredníctvom softvéru Ansys Fluent je dôležité získať konvergentné riešenie. Mierou konvergencie sú reziduály, ktoré predstavujú maximum rozdielu dvoch odpovedajúcich si veličín v rovnakom bode siete v dvoch po sebe nasledujúcich iteráciách. Reziduály sú vyhodnocované pre všetky počítané veličiny v každom kroku iterácie a zobrazované pre vybrané veličiny (pozri obr. 55). Kritérium konvergencie je dané hodnotou reziduálov, ktoré závisia na danej premennej. Preto sa prakticky používajú normované reziduály (relatívna chyba), ktoré udávajú presnosť závislú na platnej cifre. [23]

V Ansys Fluent sú pre všetky premenné prednastavené limity reziduálov na hodnotu 0,001 a pre teplotu na hodnotu 1e-06. V našom prípade sme všetky tieto hodnoty zmenšili, najmä z dôvodu komplikovanej geometrie, na 1e-06.

Obr. 55: Reziduály - CFD simulácia prenosu tepla

Dôležité je okrem reziduálov sledovať počas výpočtu aj chovanie ďalších (fyzikálnych) parametrov. Pre našu simuláciu prenosu tepla v doskovom výmenníku sme sledovali konvergenciu teplôt a hmotnostného toku na výstupe DHW, respektíve HW okruhu (pozri obr. 56). Vykresľovanie týchto veličín behom výpočtu bolo potrebné nastaviť v Ansys Fluent v kolónke "Report Plots".

Obr. 56: Konvergencia sledovaných parametrov - CFD simulácia prenosu tepla

Pre samotným spustením CFD simulácie je nutná inicializácia riešenia. Inicializácia v prvom rade znamená, že každej jednotlivej bunke je priradená hodnota každej riešenej premennej, ktorá slúži ako počiatočný odhad riešenia. Všeobecné parametre uvažované

pri inicializácií sú: tlak, rýchlosť, teplota (pri riešení dodatočnej rovnice energie) a parametre turbulencie. Je dobré si uvedomiť, že počiatočný odhad (inicializácia) ovplyvňuje stabilitu riešenia a rýchlosť konvergencie. Ansys Fluent ponúka dve inicializačné metódy: hybridnú (Hybrid Initialization) a štandardnú (Standard Initialization). Štandardná inicializácia inicializuje celé pole toku jedinou hodnotou. Pri štandardnej inicializácií je možné počiatočné konštantné hodnoty zadať ručne, vypočítať zo zóny (inlet, outlet, atď.) alebo spriemerovať na základe všetkých zón (okrajových podmienok). Štandardná inicializácia je odporúčaná pre pokročilé simulácie (napr. porézne média). Hybridná inicializácia na druhú stranu ponúka o niečo realistickejší prístup zavedením nerovnomerného počiatočného odhadu (inicializuje pole prúdenia s priestorovo premenlivými hodnotami). Pri tejto metóde sa na určenie rýchlostných a tlakových polí rieši Laplaceova rovnica. Všetky ostatné premenné sa automaticky doplnia na základe priemerných hodnôť v doméne alebo vopred určeného interpolačného prístupu. Toto je predvolená inicializačná metóda v systéme Ansys Fluent a funguje dobre pre širokú škálu problémov (obecne je odporúčaná pre jednofázové ustálené prúdenie). [10]

Z tohto dôvodu sme pre našu simuláciu zvolili práve hybridnú inicializáciu. Riešenie sa tak inicializuje po vyriešení Laplaceovej rovnice na 10 iterácií, aby sa nastavili tlakové a rýchlostné polia. Rezíduá riešenia pre daný počet iterácií sa vypíšu do okna konzoly. Vo väčšine prípadov postačuje práve predvolených 10 iterácií, avšak počet iterácií je možné v systéme Ansys Fluent zmeniť. V našom prípade sme nastavili 15 iterácií.

Nakoniec nasleduje spustenie výpočtu, kde pre výpočet s diskretizačnou schémou s 1. rádom presnosti sme nastavili počet iterácií na hodnotu 200. Potom sme prepli na diskretizačnú schému s 2. rádom presnosti, kde sme pre dosiahnutie konvergencie zvolili počet iterácií 400.

Analýza výsledkov simulácie (postprocessing), ktorej súčasťou je vytváranie grafických výstupov, je uvedená kapitole 4.6.2. V tejto kapitole sú naviac zhrnuté výsledky CFD simulácie prenosu tepla pre jednotlivé navrhnuté varianty doskového výmenníka tepla. Pri numerickej simulácií ostatných dizajnov bolo postupované rovnako ako pri simulácií prenosu tepla symetrického doskového výmenníka s uhlom prelisovania $\beta = 25$ °, ktorej postup bol popísaný v tejto kapitole.

4.5 Simulácia tlakovej straty doskového výmenníka tepla

4.5.1 Geometria

Základná východisková geometria je rovnaká ako u simulácie prenosu tepla (pozri obr. 42). Úprava tejto geometrie bola prevedená taktiež v softvéry Ansys Spaceclaim. Bola použitá rovnaká upravená doska ako pri simulácii prenosu tepla (pozri obr. 43).

Rozdiel od predprípravy geometrie pre prenos tepla bol ten, že pre simuláciu tlakovej straty nám stačí jeden prietočný kanál doskového výmenníka. Keďže nesimulujeme prenos tepla, ale len prúdenie, nie je potrebné uvažovať ani pevný objem dosky, čím nám tak vzniká jeden kvapalný objem (pozri obr. 57).

Obr. 57: Geometria s pomenovaním okrajových podmienok pre numerickú simuláciu tlakovej straty doskového výmenníka

Ďalej sme rovnako ako pri príprave geometrie pre CFD výpočet prenosu tepla predĺžili výstupné potrubie, tak aby na výstupe z výmenníka nedochádzalo k spätnému prúdeniu. Taktiež bolo za účelom sietovania medznej vrstvy prevedený rez kvapalným objemom (pozri obr. 58), čo nám umožní zjemniť sieť v blízkosti stien.

Obr. 58: Rovina rezu pri príprave geometrie pre CFD simuláciu tlakovej straty

Nakoniec bolo potrebné pre dosiahnutie konformnej siete v miestach, kde sa jednotlivé telesá stretávajú, využiť rovnako ako pri príprave geometrie pre simuláciu prenosu tepla, príkaz zdieľania zhodnej topológie (Share Topology). To zaistí, že priesečníky telies sú dokonalo zosieťované.

Na záver sme vytvorili pomenovanie pre jednotlivé okrajové podmienky (pozri obr. 57).

4.5.2 Výpočtová sieť

Pri tvorbe výpočtovej siete pre simuláciu tlakovej straty bolo taktiež využité prostredie Fluent Meshing. Rovnako ako pri tvorbe siete pri simulácií prenosu tepla, sme po importovaní predpripravenej geometrie pridali lokálne rozmery na plochy vstupu a výstupu (cieľová veľkosť siete 0,9 mm). Nasledoval proces vytvorenia povrchovej siete. Jej základné nastavené parametre sú uvedené v tabuľke 16. Po vygenerovaní siete sme následne

identifikovali miesta, kde je nedostačujúca kvalita siete, a tieto problémové miesta sme upravili rovnako pridaním lokálneho dimenzovania.

Tabuľka 16: Základné parametre po	vrchovej siete pre	e simuláciu tlakovej	straty
-----------------------------------	--------------------	----------------------	--------

Minimum Size	0,1 mm
Maximum Size	1,5 mm
Growth Rate	1, 2
Size functions	Curvature and Proximity
Curvature Normal Angle	10
Cells Per Gap	3
Scope Proximity To	edges

Obr. 59: Povrchová sieť pre simuláciu tlakovej straty

V nasledujúcom popise geometrie sme pri simulácií tlakovej straty doskového výmenníka nastavili, že geometria pozostáva iba z oblasti tekutín bez dutín. Nasledovala aktualizácia okrajových podmienok, kde pre vstup bol zvolený typ okrajovej podmienky vstupnej rýchlosti (velocity inlet). Pre výstup bola nastavená okrajová podmienka výstupného tlaku (pressure outlet). Ostatné zóny okrajových podmienok boli brané ako stena (wall). Ďalším krokom bola aktualizácia oblastí, kde bolo ponechané východiskové nastavenie, keďže geometria pozostávala iba z oblasti kvapaliny.

Predposledným krokom je nastavenie medzných vrstiev na stenách modelu. Rovnako ako u tvorby siete pre simuláciu prenosu tepla, tak aj tu je potrebné vzhľadom na použitý model turbulencie SST k- ω , zachytiť dostatočne presne prúdenie v blízkosti steny.

Medzná vrstva bola nastavená s ohľadom na dosiahnutie požadovanej hodnoty y^+ pre daný model turbulencie. Jej základné nastavené parametre sú uvedené v tabuľke 17. Nastavením medznej vrstve sme vytvorili prizmatickú vrstvu siete v blízkosti stien (pozri obr. 60).

1:

Tabuľka 17: Základné parametre medznej vrstvy (Boundary Layer) pre simuláciu tlakovej straty

Offset Method Type	uniform
Number Of Layers	5
Growth Rate	1, 2
First Height	0, 1

Na záver sme vytvorili polyedrickú (polyhedral) objemovú sieť s maximálnou dĺžkou bunky (Max Cell Length) 0,871 a mierou rastu (Growth rate) 1,2. Keďže simulujeme len jeden prietočný kanál, je možné s ohľadom na použitú výpočtovú techniku, vytvoriť jemnejšiu sieť v porovnaní s vytvorenou sieťou pri simulácií prenosu tepla, kde je potrebné pokryť sieťou dva kvapalné objemy a naviac aj pevný objem dosky. Takáto jemná sieť by s ohľadom na hardvérové možnosti nebola realizovateľná. Výsledná sieť pre CFD simuláciu tlakovej straty sa tak skladala z 2207495 buniek.

Obr. 60: Objemová sieť pre simuláciu tlakovej straty

Po prvom skonvergovanom a prevedenom výpočte bolo potrebné skontrolovať kvalitu vytvorenej výpočtovej siete, a to hlavne v oblasti medznej vrstvy. Ako už bolo spomenuté, tak pre simuláciu tlakovej doskového výmenníka bol použitý model turbulencie SST k- ω , pre ktorý je vhodné udržovať hodnotu $y^+ \approx 1$. V Ansys Fluent je odporúčaná horná hranica pre SST k- $\omega y^+ = 5$. Kontúry wall y^+ pre prietok $\dot{V} = 18 \ l/min$ sú zobrazené na obrázku 61. Hodnoty y^+ boli vykreslené pre maximálny prietok (hodnota prietoku, pri ktorom je prekročený limit dovolenej tlakovej straty).

Obr. 61: Kontúry y^+ - CFD simulácia tlakovej straty (pri prietoku $\dot{V}=18~l/min)$

Z vykreslených kontúr y^+ je vidieť, že vo väčšine miest dosahujeme požadovanej veľkosti y^+ . Aj keď na niektorých miestach presahujeme hornú hranicu y^+ pre daný model turbulencie SST k- ω , tak z obrázku je vidieť, že sa jedná o zanedbateľnú plochu. Na základe tejto analýzy považujeme kvalitu siete s ohľadom na výpočtový čas a presnosť za dostačujúcu. Simulácia tak následne môže byť prevedená aj pre ďalšie prietoky. Pri simulácií menších prietokov ďalej nie je nutné robiť analýzu kontúr y^+ , keďže rýchlosti prúdenia sú v doskovom výmenníku nižšie. Tým pádom budú aj hodnoty y^+ menšie, čím sa tak budeme bezpečne nachádzať v požadovanom rozmedzí hodnôt y^+ .

Sledované kvalitatívne ukazovatele pre simuláciu tlakovej straty doskového výmenníka tepla v rozhraní Ansys Fluent sú Aspect ratio, Skewness a Orthogonal Quality. Na základe týchto parametrov sme postupne sieť upravovali tak, aby sme dosiahli požadované hodnoty týchto ukazovateľov. Hodnoty kvalitatívnych parametrov finálnej výpočtovej siete sú zhrnuté v tabuľke 18.

Ukazovateľ kvality	Minimálna hodnota	Maximálna hodnota	Priemerná hodnota
Aspect Ratio	1, 39	85,98	12,65
Skewness	$9, 4 \cdot 10^{-5}$	0,71	0,33
Orthogonal quality	0,29	≈ 1	0,67

Tabuľka 18: Kvalitatívne parametre výpočtovej siete pre simuláciu tlakovej straty

Energetický ústav	Bc. Patrik Plott
FSI VUT v Brně	Návrh výmenníka tepla pre kondenzačný kotol

Všetky kvalitatívne parametre sa nachádzajú v odporúčaných hodnotách, ktoré udáva literatúra [6]. Pomer strán (Aspect ratio) má maximálnu hodnotu 86, čo sa nachádza nad odporúčanými hodnotami. Keďže ale môže pomer strán dosahovať aj väčšie hodnoty (okolo 100:1), môžeme túto hodnotu po konzultácií so simulačným inžinierom považovať za akceptovateľnú. Naviac, po vykreslení histogramu vo Fluent Meshing, je možné vidieť, že počet elementov s pomerom strán väčším ako 35:1 je zanedbateľný (pozri obr. 62).

Obr. 62: Histogram (pomer strán) - CFD simulácia tlakovej straty

Pre porovnanie je uvedený aj histogram počtu elementov v závislosti na šikmosti (pozri obr. 63).

Obr. 63: Histogram (šikmosť) - CFD simulácia tlakovej straty

Na záver bolo potrebné všetky vzniknuté kontakty kvapalina-kvapalina (fluid-fluid) prepnúť z okrajovej podmienky stena (wall) na internú (internal) okrajovú podmienku.

4.5.3 Výpočet CFD modelu

Po nahratí výpočtovej siete vytvorenej v predchádzajúcom kroku si v tejto časti popíšeme podobne ako u prenosu tepla nastavenie výpočtu CFD modelu v rozhraní Ansys Fluent.

Na začiatku sme nastavili CFD riešič, kde bolo ponechané rovnako ako pri numerickej simulácií prenosu tepla východiskové nastavenie so základnou metódou riešenia korekcie

tlaku (Pressure-Based Solver). Aj pri simulácií tlakovej straty uvažujeme, že sa jedná o časovo ustálené (Steady) prúdenie, a taktiež neuvažujeme gravitáciu pre jej zanedbateľný vplyv.

Pri CFD simulácií tlakovej straty doskového výmenníka ďalej nasleduje voľba modelu turbulencie. Zvolili sme model turbulencie SST k- ω . Charakteristika a dôvod voľby daného modelu turbulencie je bližšie popísaný v kapitole 4.2, respektíve 4.3.

Pre definovanie materiálu pre objem tekutiny (Fluid Domain) bolo potrebné nahrať z knižnice Ansys Fluent požadovaný materiál. Jednalo sa o materiál vody (v Ansys Fluent označovaný ako water-liquid).

Ďalším krokom je nastavenie okrajových podmienok. Zhrnutie nastavených okrajových podmienok je uvedené v tabuľke 19 pre HW okruh, respektíve v tabuľke 20 pre DHW okruh. Pre vstup (Inlet) bola nastavená okrajová podmienka typu vstupnej rýchlosti (Velocity Inlet). Rýchlosť na vstupe bola meniaci sa parameter, tak aby sme získali závislosť tlakovej straty na prietoku. Pre názornosť si ukážeme stanovenie okrajových podmienok pre HW okruh pre jeden prietok, a to $\dot{V} = 2 \ l/min$. Pre ostatné prietoky sa dopočítali rovnakým spôsobom. Rýchlosť prúdenia na vstupe do výmenníka pri uvažovaní jedného kanálu, sa vypočíta obdobne ako pri určovaní hmotnostného toku jedným kanálom pri simulácií prenosu tepla, a to nasledovne:

$$w_{p,1,HW} = \frac{w_p}{N_{cp,HW}} = \frac{0,131}{6} = 0,0218 \ m/s \tag{101}$$

$$w_{p,1,DHW} = \frac{w_p}{N_{cp,DHW}} = \frac{0,131}{5} = 0,0262 \ m/s \tag{102}$$

Postup výpočtu intenzity turbulencie bol podobný ako v kapitole 4.4.3. Najprv sme si vypočítali Reynoldsove číslo na vstupe do výmenníka nasledovným spôsobom:

$$Re_{inlet} = \frac{w_p \cdot D_p}{\nu} = \frac{0,02183 \cdot 0,018}{0,000001003} = 2350$$
(103)

Intenzitu turbulencie sme nakoniec vypočítali podľa vzťahu:

$$I = 0,16 \left(Re_{inlet} \right)^{-1/8} = 0,16 \left(2350 \right)^{-1/8} = 0,061 = 6,1\%$$
(104)

Pre výstupy (Outlet) boli ponechané okrajové podmienky typu výstupného tlaku (Pressure Outlet). Okrajové podmienky sú zhrnuté v tabuľke 19 pre HW stranu a v tabuľke 20 pre DHW stranu doskového výmenníka.

Okrajové podmienky typu stena (wall) boli po kontrole ponechaná vo východiskovom nastavení. Rovnako vnútorné okrajové podmienky (internal) boli ponechané typu interior.

Okrajová podmienka	Hodnota	Jednotka		
Vstup (Veloc	eity Inlet)			
Rýchlosť (Velocity Magnitude)	0,022; 0,044;; 0,218; 0,24	m/s		
Intenzita turbulencie (Turbulent Intensity)	$6,1; 5,6; \dots; 4,5; 4,5$	%		
Hydraulický priemer (Hydraulic Diameter)	0,018	m		
Výstup (Pressure Outlet)				
Tlak (Gauge Pressure)	0	Pa		

Tabuľka 19: Okrajové podmienky pri simulácií tlakovej straty HW okruhu

Tabuľka 20: Okrajové podmienky pri simulácií tlakovej straty DHW okruhu

Okrajová podmienka	Hodnota	Jednotka		
Vstup (Velocity Inlet)				
Rýchlosť (Velocity Magnitude)	0,026; 0,052;; 0,262; 0,288	m/s		
Intenzita turbulencie (Turbulent Intensity) 6,1; 5,6; ; 4,5; 4		%		
Hydraulický priemer (Hydraulic Diameter)	cký priemer (Hydraulic Diameter) 0,018			
Výstup (Pressure Outlet)				
Tlak (Gauge Pressure)	0	Pa		

Rovnako ako pri CFD simulácií prenosu tepla, sme pre riešenie na sebe závislých polí rýchlostí a tlakov, zvolili sekvenčný algoritmus SIMPLE (Semi-Implicit Method for Pressure-Linked Equations). Pre stanovenie gradientov riešených premenných v strede buniek bola ponechaná prednastavená metódu Least Squares Cell Based.

Podobne ako v kapitole 4.4.3, sme výpočet začali na 1. ráde diskretizačných schém (First Order Upwind) pre hybnosť (Momentum), turbulentnú kinetickú energiu (Turbulent Kinetic Energy) a mieru turbulentnej disipácie (Turbulent Dissipation Rate). Po dosiahnutí konvergencie ďalej zmeníme 1. rád presnosti na diskretizačnú schému s 2. rádom presnosti (Second Order Upwind) pre výpočet vymenovaných konvekčných členov.

Ako diskretizačné schéma pre výpočet tlaku sme v Ansys Fluent ponechali metódu Standard. Po dosiahnutí konvergencie sme prepli na diskretizačnú schému s 2. rádom presnosti (Second Order).

Po nastavení metód riešenia nasleduje krok nastavenia relaxačných faktorov, ktoré sme ponechali vo východiskovom nastavení (pozri tabuľku 15).

Ďalej sme zmenili prednastavené limity reziduálov z hodnoty 0,001 na 1e-06. Počas výpočtu nás zaujímalo aj chovanie a konvergencia tlaku na vstupe a hmotnostného toku na výstupe (pozri obr. 65). Vykresľovanie týchto veličín behom výpočtu sme nastavili v Ansys Fluent v kolónke "Report Plots".

Pred spustením výpočtu sme inicializovali riešenie hybridnou metódou (Hybrid Initialization) s nastavením 12 iterácií.

Obr. 64: Reziduály - CFD simulácia tlakovej straty pri prietoku 2 $1/{\rm min}$

Obr. 65: Konvergencia sledovaných parametrov - CFD simulácia tlakovej straty pri prietoku 2 $1/{\rm min}$

Nakoniec sme spustili CFD simuláciu, kde pre výpočet s diskretizačnou schémou s prvým rádom presnosti, sme nastavili počet iterácií na hodnotu 300. Následne sme prepli diskretizačnú schému 1. rádu presnosti na diskretizačnú schému s 2. rádom presnosti, kde pre dosiahnutie konvergencie sme zvolili počet iterácií 700.

Postup CFD simulácie bol ukázaný pre HW okruh doskového výmenníka tepla s uhlom prelisovania $\beta = 25$ ° a symetrický dizajn. Rovnako bolo postupované aj pri DHW okruhu a u symetrického a asymetrického dizajnu s rôznymi uhlami prelisovania. Analýza výsledkov numerickej simulácie tlakovej straty je tak uvedená kapitole 4.6.2 (Výsledky). V tejto kapitole sú naviac zhrnuté výsledky pre jednotlivé prietoky a ostatné navrhnuté dizajny doskových výmenníkov.

4.6 Zhrnutie výsledkov CFD simulácie

V tejto kapitole si zhrnieme výsledky CFD simulácie pre jednotlivé dizajny. Postup priebehu CFD simulácie (príprava geometrie, sieťovanie a následný výpočet CFD modelu) bol pre názornosť ukázaný pre jeden navrhnutý dizajn, a to konkrétne pre variantu symetric-

kého doskového výmenníka s uhlom prelisovania dosiek 25 °. Rovnako bolo postupované aj pri simulácií ostatných dizajnov.

4.6.1 Modely navrhnutých dosiek a výmenníkov

Modely dosiek jednotlivých variant sú pre názornosť zobrazené na obrázku 66.

Obr. 66: Modely dosiek s uhlom prelisovania $\beta = 25$ °
a $\beta = 45$ °

Na obrázku 67 a 68 je zobrazený rozdiel prietočných kanálov pri asymetrickom dizajne (väčší prietočný prierez na HW strane v porovnaní s DHW stranou doskového výmenníka). Zakótovaný je tiež rozmer rozdielnej hĺbky prelisovania, ktorý bol navrhnutý s ohľadom na maximálnu dovolenú tlakovú stratu pre DHW okruh ($\Delta p_{DHW,limit} = 150 \text{ mbar}$).

Obr. 67: Porovnanie modelu symetrického a asymetrického dizajnu s uhlom prelisovania $\beta=25$ °

Obr. 68: Porovnanie modelu symetrického a asymetrického dizajnu s uhlom prelisovania $\beta = 45$ °

4.6.2 Výsledky

Jednotlivé výsledky CFD simulácií prenosu tepla navrhnutých dizajnov sú zhrnuté v tabuľke 21. Jedná sa teda od varianty s uhlom prelisovania $\beta = 25$ ° a $\beta = 45$ °, pre ktoré boli ešte vytvorené asymetrické dizajny. Pre uhol kanálikov $\beta = 60^{\circ}$ sme numerickú simuláciu neprevádzali z dôvodu, že z výsledkov analytického výpočtu sme zistili, že dochádza k veľkému nárastu počtu dosiek potrebných pre prenesenie požadovaného tepelného výkonu, v porovnaní so súčasne používaným výmenníkom. Tento dizajn sme tak ďalej neuvažovali ako vhodnú náhradu.

Veličina [jednotka]	25° symetric.	45° symetric.	25° asymetric.	45° asymetric.
$T_{HW,inlet} [^{\circ}C]$	76	76	76	76
$T_{HW,outlet} [^{\circ}C]$	56,3	57,38	57,38	58,8
$\dot{V}_{HW} \; [l/min]$	17,3	17,3	17,3	17,3
$T_{DHW,inlet} [^{\circ}C]$	10	10	10	10
$T_{DHW,outlet} \ [^{\circ}C]$	45,45	44,89	50,96	47,05
$\dot{V}_{DHW} \; [l/min]$	7,7	7,7	7,7	7,7
$\dot{Q}_{in} \; [kW]$	23,74	22,44	22,44	20,73
$\dot{Q}_{out} \ [kW]$	19,02	18,72	21,97	19,87
$\eta~[\%]$	80,09	83,4	97,91	95,87
N_t [1]	12	16	12	16
$\Delta p_{HW} \ [mbar]$	302,02	66,49	190,49	53,28
$\Delta p_{DHW} \ [mbar]$	90,74	19,08	137,09	29,17

Tabuľka 21: Výsledky CFD simulácie prenosu tepla pre navrhnuté dizajny doskových výmenníkov

Výsledky numerickej simulácie tlakovej straty v závislosti na prietoku sú pre jednotlivé varianty uvedené v nasledujúcej tabuľke.

Tabuľka 22: Výsledky CFD simulácie tlakovej straty v závislosti na prietoku pre navrhnuté dizajny doskových výmenníkov

Dizajn	25° sy	metric.	45° sy	metric.	$25^{\circ} asy$	ymetric.	45° asy	ymetric.
\dot{V} [l/min]	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$	$\Delta p_{HW} \ [mbar]$	$\Delta p_{DHW} \ [mbar]$
0	0	0	0	0	0	0	0	0
2	5,44	7,81	1,99	2,51	4,29	11,16	1,31	3,37
4	19,38	27,38	5,37	6,68	13,52	39,12	3,88	9,24
6	41,46	58,65	9,62	12,14	27,76	84,64	7,67	18,74
8	71,35	97,28	16,31	20,44	45,94	150,43	13,05	31,42
10	110,12	152,72	24,08	30,89	69,36	233,1	19,39	47,38
12	150,76	213,63	33,68	42,72	97,56	340,06	26,78	65,53
14	203,58	288,54	44,83	56,99	129,59	440,65	36,03	87,15
16	263,01	371,61	57,2	73,43	165,38	578,37	46,02	112,26
18	328,36		70,83		203,28		57,24	
20	401,37		86,94		249,96		69,7	
22	480,89		103,73		298,77		83,46	

Obr. 69: Výsledky CFD simulácie tlakovej straty v závislosti na prietoku pre navrhnuté dizajny doskových výmenníkov

Cieľom CFD simulácie je okrem porovnania presnosti s analytickým výpočtom, taktiež zobrazenie a zistenie charakteru prúdenia. V rámci analýzy výsledkov sme tak vytvorili obrázky, ktoré charakter prúdenia, rozloženie teplôt a tepelných tokov zobrazujú. Tieto obrázky boli vytvorené v programe Ansys Fluent v sekcii postprocessingu.

Pri CFD simulácii tlakovej straty v závislosti na prietoku sme vykreslili prúdnice pre zistenie charakteru prúdenia a rozloženia rýchlosti v kanály doskového výmenníka. Pre názornosť sme vykreslili prúdnice pri prietokoch 2 l/min, 10 l/min a pri objemovom prietoku 17,3 l/min pre HW okruh, čo je prietok pri návrhovom výkone $\dot{Q} = 24 \ kW$ (pozri obr. 70 a obr. 71).

Obr. 70: Prúdnice rýchlosti pre variantu $\beta = 25$ ° - HW strana

Obr. 71: Prúdnice rýchlosti pre variantu $\beta = 45$ ° - HW strana

Pre DHW okruh sa jednalo rovnako o prietoky 2 l/min, 10 l/min a prietok, pri ktorom bola prevedená simulácia prenosu tepla, a to 7,7 l/min (pozri obr. 72 a obr. 73).

Obr. 72: Prúdnice rýchlosti pre variantu $\beta=25$ ° - DHW strana

Obr. 73: Prúdnice rýchlosti pre variantu $\beta = 45$ ° - DHW strana

Z charakteru prúdenie je možné vidieť, že najväčšie rýchlosti sú v oblasti vstupov a výstupov, kde dochádza k prerozdeľovaniu, respektíve spojeniu, jednotlivých kanálikov. V tejto oblasti je priestor pre určitú dizajnovú optimalizáciu za účelom zníženia tlakovej straty. Ďalej sme pre bližšie zobrazenie charakteru prúdenia vykreslili kontúry rýchlosti v rovine rezu zx (pozri obr. 74). Z tohto obrázku je možné vidieť rýchlostný profil v kanáloch medzi doskami pre jednotlivé dizajnové varianty.

Obr. 74: Kontúry rýchlosti v rovine rezu z
x pre symetrický dizajn s uhlom prelisovania $\beta=25~^\circ$

Pre ukážku princípu prenosu tepla v doskovom výmenníku sme vykreslili pre jednu dizajnovú variantu prúdnice teplôt (pozri obr. 75) a kontúry rozloženia teplôt v rovine rezu zy (pozri obr. 76). Z týchto obrázkov je vidieť postupné ochladenie, respektíve ohriatie, oboch médií.

Obr. 75: Prúdnice teplôt pre symetrický dizajn s uhlom prelisovani
a $\beta=25$ °

Obr. 76: Kontúry teplôt v rovine rezu zy pre symetrický dizajn s uhlom prelisovania $\beta=25~^\circ$

V rámci prenosu tepla nás ďalej zaujímalo rozloženie teplôt na doske výmenníka (pozri obr. 77), prípadne celkový tepelný tok doskou (pozri obr. 78). Z obrázku 77 je možné vidieť tepelné zaťaženie dosky, kde v oblasti vstupu na HW strane dosahujeme maximálne tepelné zaťaženie. Teplota sa postupne znižuje z dôvodu ochladzovania dosky studeným médiom. Charakter (tvar) rozloženia teploty (respektíve tepelných tokov) má u jednotlivých dizajnových variant dosiek podobný priebeh. Z obrázku 78 ďalej vidíme, že k najintenzívnejšiemu prenosu tepla dochádza v oblasti prelisovania dosiek.

Obr. 77: Rozloženie teplôt na doske výmenníka

Obr. 78: Kontúry celkové povrchového tepelného toku

5 ZHRNUTIE VÝSLEDKOV

Na záver si zhrnieme jednotlivé výsledky dosiahnuté v tejto diplomovej práci. Porovnáme si výsledky analytického výpočtu s výsledkami získanými z CFD simulácie, a vyhodnotíme si presnosť analytického výpočtu v porovnaní s numerickou simuláciou. Tieto výsledky si následne porovnáme s nameranými hodnotami momentálne používaného sekundárneho doskového výmenníka tepla a vyberieme najlepšiu variantu, ktorá by súčasný výmenník mohla v budúcnosti nahradiť.

5.1 Porovnanie výsledkov analytického vypočtu a CFD simulácie

Veličina [jednotka]	25° analytic.	25° CFD	45° analytic.	45° CFD
$T_{HW,inlet} \ [^{\circ}C]$	76	76	76	76
$T_{HW,outlet} [^{\circ}C]$	54,12	56,3	54,21	57,76
$\dot{V}_{HW} \; [l/min]$	17,3	$17,\!3$	17,3	$17,\!3$
$T_{DHW,inlet} \ [^{\circ}C]$	10	10	10	10
$T_{DHW,outlet} [^{\circ}C]$	$58,\!57$	$45,\!45$	$58,\!36$	44,37
$\dot{V}_{DHW} \; [l/min]$	7,7	7,7	7,7	7,7
$\dot{Q}_{in} \; [kW]$	26,37	23,74	26,26	21,98
$\dot{Q}_{out} \; [kW]$	26,05	19,02	$25,\!94$	18,44
η [%]	98,8	80,09	98,78	83,87
N_t [1]	12	12	16	16
$\Delta p_{HW} \ [mbar]$	$267,\!65$	302,02	$78,\!67$	66,49
$\Delta p_{DHW} \ [mbar]$	83,3	90,74	21,49	19,08
error $T_{HW,outlet}$ [%]	3,87		5,52	
error $T_{DHW,outlet}$ [%]	22,4		23,08	
error η [%]	18,94		15,57	7
error Δp_{HW} [%]	12,84		15,48	8
error Δp_{DHW} [%]	8,93		11,21	1

Tabuľka 23: Porovnanie výsledkov analytického výpočtu a CFD simulácie prenosu tepla symetrických dizajnov dosiek s uhlom prelisovania $\beta=25^\circ$ a $\beta=45^\circ$

Z tabuľky 23 je možné určiť, že najväčšia percentuálna odchýlka výsledkov je pri výstupnej teplote DHW okruhu ($T_{DHW,outlet}$). Naopak najmenšia je pri výstupnej teplote na HW strane ($T_{HW,outlet}$).

Rozdielnosť výsledkov analytického výpočtu a CFD simulácie môže byť spôsobená na strane analytického výpočtu z dôvodu, že uvažujeme pri výpočte určité predpoklady a zjednodušenia (pozri kapitola 3.2). Ďalej v analytickom výpočte prenosu tepla využívame koreláciu Nusseltova čísla podľa Kumara (pozri kapitola 3.2.7) a pri výpočte tlakovej straty zase koreláciu korekčného faktoru pre určenie tlakovej straty medzi doskami (pozri

kapitola 3.2.12). Korelačné konštanty platia pre určitý interval Reynoldsovho čísla a daný uhol prelisovania dosky. Pri korelácií podľa Kumara je interval Reynoldsovho čísla, pre ktorý daná korelačná konštanta platí, veľmi široký, čo do výpočtu vnáša určitú mieru chyby a výsledky analytického výpočtu sú tak v praxi vo väčšine prípadov brané len ako orientačné. Je nutné si ďalej tieto výsledky overiť experimentálnym meraním konkrétneho dizajnu doskového výmenníka tepla. Naviac existujú rôzne iné korelácie Nusseltova čísla a korekčného faktoru získané experimentálnymi metódami. Do budúcnosti by bolo vhodné porovnať jednotlivé korelácie a určiť, ktorá korelácia sa najviac zhoduje s výsledkami CFD simulácie pre daný dizajn doskového výmenníka a reálnymi výsledkami z experimentálneho merania. V našom prípade sme s ohľadom na dostupnosť jednotlivých konštánt a jednoduchosť výpočtu zvolili koreláciu podľa Kumara.

Na strane CFD simulácie môže byť rozdielnosť výsledkov v porovnaní s analytickým výpočtom spôsobená zjednodušením geometrie modelu. Pre zníženie výpočtovej náročnosti sme odstránili dizajnové detaily ako napríklad úkosy a zaoblenia. Ďalej sme uvažovali len jeden prietočný kanál pre teplú a studenú stranu. Pri CFD simulácií prenosu tepla sme pri tvorbe siete pevného objemu dosky nezabezpečili minimálne tri sietové elementy v reze dosky, čo je na základe skúseností z praxe odporučené. Avšak pri vytvorení takto hustej siete by nebolo možné previesť numerickú simulácia, keďže sme obmedzený určitým výpočtovým výkonom počítača. Do budúcnosti by išiel CFD model vylepšiť o pridanie odporu zanášania, avšak vyžadovalo by si to určité experimentálne merania pre zistenie charakteru tvorby zanášania v danom doskovom výmenníku.

Tabuľka 24: Porovnanie výsledkov analytického výpočtu a CFD simulácie tlakovej straty symetrického dizajnu dosky s uhlom prelisovania $\beta=25^\circ$

$\dot{V} [l/min]$	$\Delta p_{HW,analytic} \ [mbar]$	$\Delta p_{HW,CFD} \ [mbar]$	error HW [%]	$\Delta p_{DHW,analytic} \ [mbar]$	$\Delta p_{DHW,CFD} \ [mbar]$	error DHW [%]
0	0	0	0	0	0	0
2	5,18	5,44	4,78	7,12	7,81	8,84
4	18,39	19,38	5,11	25,21	27,38	7,93
6	38,58	41,46	6,95	52,83	58,65	9,92
8	65,29	71,35	8,49	89,31	97,28	8,19
10	98,19	110,12	10,83	134,23	152,72	12,11
12	137,05	150,76	9,09	187,25	213,63	12,35
14	181,71	203,58	10,74	248,13	288,54	14
16	232	263,01	11,79	316,66	371,61	14,79
18	287,8	328,36	12,35			
20	349,02	401,37	13,04			
22	415,55	480,89	13,59			

Obr. 79: Porovnanie výsledkov tlakovej straty analytického výpočtu s CFD simuláciou symetrického dizajnu výmenníka s uhlom prelisovania $\beta=25$ °

Z porovnania výsledkov tlakovej straty analytického výpočtu a CFD simulácie sme zistili, že pri uhle prelisovania $\beta = 25$ ° sú hodnoty tlakovej straty získané CFD simuláciou nadhodnotené oproti výsledkom z analytického výpočtu (pozri tabuľka 24 a obr. 79). Pri uhle prelisovania $\beta = 45$ ° sú naopak výsledky CFD simulácie menšie, v porovnaní s hodnotami tlakovej straty analytického výpočtu (pozri tabuľka 25 a obr. 80). Tento nepomer môže byť spôsobený tým, že korelačné konštanty pre uhol prelisovania $\beta = 45$ ° boli definované pre užší rozsah Reynoldsových čísiel v porovnaní s $\beta = 25$ °. Tým pádom sme mohli presnejšie určiť korelačné konštanty. Naviac korelačné konštanty pre $\beta = 25$ ° boli definované pre uhol 30° a menej, zatiaľ čo pre $\beta = 45$ ° boli definované len pre uhol prelisovania presne 45°.

\dot{V} [l/min]	$\Delta p_{HW,analytic} \ [mbar]$	$\Delta p_{HW,CFD} \ [mbar]$	error HW [%]	$\Delta p_{DHW,analytic} \ [mbar]$	$\Delta p_{DHW,CFD} \ [mbar]$	error DHW [%]
0	0	0	0	0	0	0
2	2,23	1,99	12,06	2,62	2,51	4,38
4	6,05	5,37	12,66	7,04	6,68	5,39
6	11,21	9,62	16,53	13,61	12,14	12,11
8	19,01	16,31	16,55	23,05	20,44	12,77
10	28,66	24,08	19,02	34,68	30,89	12,27
12	40,09	33,68	19,03	48,44	42,72	13,39
14	53,25	44,83	18,78	64,26	56,99	12,76
16	68,12	57,2	19,09	82,1	73,43	11,81
18	84,64	70,83	19,5			
20	102,8	86,94	18,24			
22	122,58	103,73	18,17			

Tabuľka 25: Porovnanie výsledkov analytického výpočtu a CFD simulácie tlakovej straty symetrického dizajnu dosky s uhlom prelisovania $\beta = 45^{\circ}$

Obr. 80: Porovnanie výsledkov tlakovej straty analytického výpočtu s CFD simuláciou symetrického dizajnu výmenníka s uhlom prelisovania $\beta=45$ °

Na obrázku 81 je ďalej vykreslená odchýlka výsledkov analytického výpočtu a numerickej simulácie tlakovej straty v závislosti na prietoku. Zo závislosti je možné určiť, že s rastúcim prietokom rastie aj odchýlka, kde postupne dochádza k ustáleniu. Niektoré hodnoty odchýlok sa od daného priebehu funkcie vychyľujú, čo môže byť spôsobené zaokrúhľovaním hodnôt (na dve desatinné miesta) prietoku pri definovaní okrajových podmienok pri výpočte CFD modelu. Najväčšia odchýlka medzi analytickým výpočtom a CFD simuláciou je pri dizajne s uhlom prelisovania $\beta = 45$ °, konkrétne na HW strane. Maximálna hodnota odchýlky je 19,5 % pri prietoku 18 l/min. Naopak najmenšej odchýlky je dosiahnuté pri dizajne $\beta = 25$ ° na strane HW okruhu. Odchýlky na HW okruhoch sú menšie v porovnaní s DHW okruhmi z dôvodu, že na HW strane je väčší počet kanálov, čo znamená menšie rýchlosti (nižšia turbulencia). S rastúcou rýchlosťou sa zvyšuje turbulencia prúdenia, čo spôsobuje aj nárast odhchýlky.

Obr. 81: Odchýlka analytického výpočtu a CFD simulácie tlakovej straty

Pri porovnaní analytického výpočtu a CFD simulácie je rozdielnosť výsledkov aj napriek vyššie popísaných zjednodušení relatívne malá, a pre náš prípad určenia najvhodnejšej dizajnovej varianty doskového výmenníka akceptovateľná.

5.2 Porovnanie výsledkov CFD s nameranými hodnotami súčasne používaného výmenníka

Na základe výsledkov z CFD simulácie sme zistili, že potrebujeme väčší počet dosiek ako sme určili pomocou analytického výpočtu. Numerickú simuláciu sme tak previedli ešte raz s väčším počtom dosiek pre zaistenie výstupnej teploty DHW okruhu $55^{\circ}C$. V nasledujúcej kapitole sú tieto výsledky prenosu tepla zhrnuté v tabuľke 26 a výsledky simulácie tlakovej straty v závislosti na prietoku sú zobrazené na obrázku 69. Na základe porovnania s momentálne používaným výmenníkom tepla bude zvolená najvhodnejšia dizajnová varianta, ktorá ho môže v budúcnosti nahradiť, keďže dodávka týchto výmenníkov bude od daného výrobcu v budúcnosti ukončená. Výsledky CFD modelu tejto varianty by mali byť následne experimentálne overené a porovnané s výsledkami experimentálneho merania súčasného sekundárneho doskového výmenníka tepla.

5.2.1 Vyhodnotenie najlepšej varianty

Veličina [jednotka]	Súčasný	25° symetric.	45° symetric.	25° asymetric.	45° asymetric.
$T_{HW,inlet} [^{\circ}C]$	75,57	76	76	76	76
$T_{HW,outlet} [^{\circ}C]$	54,32	54,96	55,6	55,44	55,56
$\dot{V}_{HW} \ [l/min]$	17,25	17,3	17,3	17,3	17,3
$T_{DHW,inlet}$ [°C]	10,83	10	10	10	10
$T_{DHW,outlet} [^{\circ}C]$	58,3	55,2	55,4	55,28	55,04
$\dot{V}_{DHW} [l/min]$	7,62	7,7	7,7	7,7	7,7
$\dot{Q}_{in} \; [kW]$	25,54	25,36	24,59	24,78	24,63
$\dot{Q}_{out} \ [kW]$	25,2	24,25	24,35	24,29	24,16
η [%]	98,66	$95,\!62$	99,05	98,02	98,08
N_t [1]	12	18	24	14	22
$L_c \ [mm]$	29,63	33,3	43,5	26,5	40,1
$\Delta p_{HW} \ [mbar]$	226,4	144,1	30,95	143,53	29,35
$\Delta p_{DHW} \ [mbar]$	57,65	40,03	8,64	98,03	15,37

Tabuľka 26: Výsledky CFD simulácie prenosu tepla

Na základe výsledkov dosiahnutych v tejto kapitole považujeme za najlepšiu možnú náhradu súčasného výmenníka asymetrický dizajn s uhlom prelisovania 25°. V porovnaní s ostatnými navrhnutými variantami je možné pre prenesenie požadovaného výkonu použiť najmenší počet dosiek. V porovnaní so súčasným sekundárnym výmenníkom je nárast počtu dosiek minimálny a pre nás akceptovateľný. Naviac v porovnaní so súčasným výmenníkom dosahujeme menších tlakových strát na strane HW okruhu. Na DHW strane je tlaková strata väčšia oproti súčasnému výmenníku, ale pri prevádzkovom prietoku sa stále nachádzame pod maximálnou dovolenou tlakovou stratou DHW okruhu. Účinnosť

asymetrického dizajnu s uhlom prelisovani
a $\beta=25$ ° je o niečo málo nižšia v porovnaní so súčasným výmenníkom, ale táto odchýlka je malá a pre
 nás prijateľná.

Obr. 82: Výsledky CFD simulácie tlakovej straty v závislosti na prietoku

Tento dizajn tak bude na základe výsledkov dosiahnutých v tejto diplomovej práci ďalej vyrobený, a budú zmerané hodnoty účinnosti a tlakovej straty experimentálne. Tieto výsledky sa následne porovnajú s CFD modelom pre určenie presnosti numerickej simulácie, a taktiež sa porovnajú s experimentálne nameranými hodnotami súčasného výmenníka.

ZÁVER

Hlavnou náplňou tejto diplomovej práce bola optimalizácia plynového kondenzačného kotla pre domové vytápanie, pričom optimalizácia spočívala v návrhu nového sekundárneho výmenníka pre ohrev teplej úžitkovej vody.

Na úvod sme sa v prvej kapitole všeobecným rozdelením podľa určitých kritérií zoznámili s rôznymi typmi používaných výmenníkov tepla. Taktiež sme si definovali základné požiadavky, ktoré je potrebné zohľadniť pri návrhu výmenníka.

V druhej kapitole sme sa bližšie zamerali na popis doskových výmenníkov tepla. Uviedli sme si ich výhody, nevýhody, definovali si rôzne vzory usporiadania tokov a priechodov, a popísali základné konštrukčné prvky. Pre prehľad sme si popísali možné konštrukčné prevedenia doskových výmenníkov tepla. Bližšie sme sa ale venovali charakteristike spáj-kovaných doskových výmenníkov. Práve tento typ doskového výmenníka sa používa ako tzv. sekundárny výmenník v kondenzačnom kotle, ktorého úlohou je zaistiť prenos tepla medzi vykurovacou vodou v primárnom okruhu a úžitkovou vodou v sekundárnom okruhu. V poslednej časti druhej kapitoly bola popísaná prevádzka doskových výmenníkov tepla a problémy s ňou spojené ako je erózia, korózia a najmä zanášanie.

Tretia kapitola bola zameraná už na samotný návrh doskového výmenníka tepla. Na začiatku sme si popísali súčasne používaný sekundárny doskový výmenník tepla, ktorého dodávka bude ale v budúcnosti ukončená. Z tohto dôvodu sa firma rozhodla o optimalizáciu dizajnu a možnosti vlastného vývoja. Experimentálne namerané hodnoty účinnosti súčasného výmenníka sú uvedené v tabuľke 5, respektíve hodnoty tlakovej straty v závislosti na prietoku v tabuľke 4. Nasledoval analytický výpočet, kde na začiatku sme si definovali zadané parametre. Vstupné hodnoty do výpočtu boli dané firmou, keďže sa jedná o náhradu momentálne používaného výmenníka. Nasledovalo dopočítanie neznámych veličín z tepelnej bilancie výmenníka, určenie termofyzikálnych vlastností médií a výpočet stredného teplotného logaritmického spádu. Potom prebiehal samotný návrh geometrie. Tu sme taktiež boli limitovaný určitými geometrickými rozmermi z dôvodu, aby sme zásadným spôsobom nezmenili koncepciu hydraulického bloku kotla, čo by bolo ekonomicky nevýhodné. Po vypočítaní celkového súčiniteľa prostupu tepla sme zistili potrebnú teplosmennú plochu pre prenesenie žiadaného výkonu a určili sme tak potrebný počet dosiek a kanálov. Pri voľbe počtu dosiek sme zvolili predimenzovanie o jednu dosku s ohľadom na zanášanie. Nasledoval kontrolný a hydraulický výpočet, ktorý spočíval v zistení tlakovej straty v závislosti na prietoku. Analytický výpočet bol prevedený pre rôzne dizajny, ktorých rozdiel spočíval v uhle prelisovania. Boli uvažované tri varianty s uhlom prelisovania 25°, 45° a 60°. Výsledky analytického výpočtu prenosu tepla sú zhrnuté v tabuľke 9 a výsledky tlakovej straty zase v tabuľke 10. Na základe výsledkov sme zistili, že veľký uhol prelisovania vedie k nízkym tlakovým stratám, ale taktiež k nižšiemu koeficientu prestupu tepla. Na druhú stranu, menší uhol prelisovania spôsobuje vyššie tlakové straty, ale zase vedie k intenzívnejšiemu prestupu tepla. Z výsledkov analytického výpočtu prenosu tepla sme ďalej zistili, že pri uhle prelisovania $\beta = 60^{\circ}$ dochádza k veľkému nárastu počtu dosiek potrebných pre prenesenie požadovaného výkonu. Keďže súčasne používaný sekundárny doskový výmenník obsahuje len 12 dosiek, tak dizajn s týmto uhlom prelisovania je pre nás nevýhodný, na základe čoho sme túto variantu vylúčili a nevykonávali sme následnú CFD simuláciu. Na základe analytického výpočtu tak boli ďalej vymodelované 3D modely jednotlivých variant. Naviac bol vymodelovaný ešte asymetrický dizajn pre uhol prelisovania $\beta = 25^{\circ}$ a $\beta = 45^{\circ}$, ktorý spočíval v rôznej hĺbke prelisovania jednotlivých prelisov. Celkovo tak boli navrhnuté štyri dizajnové varianty, s ktorými sme ďalej pracovali.

V štvrtej kapitole sme sa venovali CFD simulácií jednotlivých variant doskových výmenníkov. Na úvod tejto kapitoly sme si charakterizovali základné vlastnosti a princípy výpočtovej dynamiky tekutín. Uviedli sme si základné rovnice, popísali si problém matematického modelovania turbulencie a modelovanie prúdenia v blízkosti steny. Nasledovala samotná simulácia prenosu tepla a tlakovej straty navrhnutých dizajnov doskových výmenníkov tepla. Tá spočívala v príprave geometrie pre simuláciu, tvorbe výpočtovej siete a následnom výpočte CFD modelu. Výsledky CFD simulácie prenosu tepla pre jednotlivé varianty sú uvedené v tabuľke 21. Výsledky tlakovej straty sú zase uvedené v tabuľke 22. V tejto kapitole sú ďalej zobrazené kontúry a prúdnice charakterizujúce prúdenie, rozloženie teplôt a tepelných tokov.

V piatej kapitole je uvedené porovnanie výsledkov analytického výpočtu a CFD simulácie, a vyhodnotená ich vzájomná odchýlka. Porovnanie výsledkov prenosu tepla je zhrnuté v tabuľke 23 a v tabuľke 24, respektíve 25, sú zhrnuté výsledky tlakovej straty týchto dvoch spôsobov výpočtu. Na základe výsledkov z CFD simulácie sme zistili, že potrebujeme väčší počet dosiek ako sme určili pomocou analytického výpočtu. Numerickú simuláciu sme tak previedli ešte raz s väčším počtom dosiek pre zaistenie výstupnej teploty DHW okruhu 55°C. Výsledky tejto CFD simulácie sme porovnali s nameranými hodnotami súčasne používaného výmenníka a vyhodnotili si najlepšiu možnú variantu náhrady (pozri tabuľka 26 a obr. 82). Ako najlepšiu variantu sme na základe výsledkov simulácie prenosu tepla a tlakovej straty zvolili asymetrický dizajn s uhlom prelisovania $\beta = 25$ °. Tento dizajn má oproti súčasnému výmenníku o dve dosky viac, konkrétne 14. Celková dĺžka výmenníka je ale oproti súčasnému menšia o približne 3 mm. Čo sa týka tlakovej straty, tak na HW strane dosahuje nami navrhnutý dizajn menšiu tlakovú stratu, ale na DHW strane zase väčšiu. Stále sa však nachádzame pod limitom maximálnej dovolenej tlakovej straty na strane DHW okruhu.

Do budúcnosti by mal byť tento dizajn výmenníka vyrobený a mali by byť zmerané hodnoty účinnosti a tlakovej straty. Na základe týchto experimentálnych dát a vyhodnotenia odchýlky v porovnaní s výsledkami CFD simulácie, by sme nami vytvorený CFD model v prípade nutnosti upravili a spresnili. Model by sa dal vylepšiť napríklad pridaním zanášania. Nakoniec by sa tieto hodnoty porovnali s už nameranými hodnotami súčasného výmenníka a finálne by sa tak porovnali tieto dva dizajny v reálnych podmienkach.

LITERATÚRA

- [1] ASM Material Data Sheet. Dostupné z: https://asm.matweb.com/search/ SpecificMaterial.asp?bassnum=mq316a.
- [2] AsyMatrix Innovative plate design. Dostupné z: https://www.swep.net/ technology/innovative-plate-design/.
- [3] Our Case Studies: Plate Heat Exchanger Repair. Dostupné z: https://www. premiersepservices.com/case-studies/.
- [4] Welded Plate Heat Exchanger HFM Plate Heat Exchanger. Dostupné z: https://www.hofmann-heatexchanger.com/plate-heat-exchangers/ welded-plate-heat-exchanger.
- [5] Y+ and Grid Types. Dostupné z: https://www.mr-cfd.com/y-and-grid-types/.
- [6] Ansys Meshing User's Guide. ANSYS, Inc. 2600 Ansys Drive Canonsburg, PA 15317: [b.n.], 2010.
- [7] VDI Heat Atlas. Second Edition. Berlin: Springer, [2010]. ISBN 3540778764.
- [8] Ansys Fluent Theory Guide. ANSYS, Inc. 2600 Ansys Drive Canonsburg, PA 15317: [b.n.], 2021.
- [9] Ansys Fluent User's Guide. ANSYS, Inc. 2600 Ansys Drive Canonsburg, PA 15317: [b.n.], 2021.
- [10] How to Initialize the Solution in Ansys Fluent Lesson 5. 2023. Dostupné z: https://youtu.be/5mhXX8SPOT4?si=4YYCjpH-_i8Diebn.
- [11] ADEGBOLA, O. A., OJO, E. K. a ABORISADE, O. D. A Review on Optimal Temperature Control of Milk Pasteurization Using Extremum Seeking Based Proportional Integral Derivative Controller. *FUOYE Journal of Engineering and Technology.* 2022-03-31, sv. 7, č. 1. DOI: 10.46792/fuoyejet.v7i1.754. ISSN 2579-0625. Dostupné z: https://journal.engineering.fuoye.edu.ng/index.php/ engineer/article/view/754.
- [12] ALLYMEHR, E., SKAUGEN, G., WILL, T., PARDIÑAS Ángel Álvarez, EIKEVIK, T. M. et al. Numerical Study of Hydrocarbon Charge Reduction Methods in HVAC Heat Exchangers. *Energies.* 2021, sv. 14, č. 15. DOI: 10.3390/en14154480. ISSN 1996-1073. Dostupné z: https://www.mdpi.com/1996-1073/14/15/4480.
- [13] ANDERSON, J. D. Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill Education, 1995. ISBN 0070016852.
- [14] BALÁŠ, M. Kotle a výměníky tepla. Vydání čtvrté. Brno: Akademické nakladatelství CERM, s.r.o., 2022. ISBN 978-80-214-6093-5.

- [15] BALÁŠ, M. Deskové výměníky. Podklady k přednáškám. 2023. Dostupné
 z: https://moodle.vut.cz/pluginfile.php/795484/mod_resource/content/0/LVT_05_deskov%C3%A9.pdf.
- [16] BANI, A. a PESCHEL, J. Fouling in Plate Heat Exchangers: Some Practical Experience. In: *Heat Exchangers - Basics Design Applications*. InTech, 2012-03-09. DOI: 10.5772/34026. ISBN 978-953-51-0278-6. Dostupné z: http: //www.intechopen.com/books/heat-exchangers-basics-design-applications/ fouling-in-plate-heat-exchangers-some-practical-experience.
- [17] BERGMAN, T. L. a INCROPERA, F. P. Fundamentals of heat and mass transfer. 7th ed. Hoboken, NJ: Wiley, c2011. ISBN 978-0470-50197-9.
- [18] BLEJCHAŘ, T. Turbulence modelového proudění CFX: učební text. Vyd. 1. Ostrava: Vysoká škola báňská - Technická univerzita Ostrava, 2012. ISBN 978-80-248-2606-6.
- [19] CLEMENT, C. Computational Fluid Dynamics (CFD) Investigation of Hydrodynamic Loading on Subsea Gratings. 2015. DOI: 10.13140/RG.2.1.4367.6407.
- [20] HÁJEK, J. Aplikace výpočtové dynamiky tekutin v oblasti procesního průmyslu: Applications of computational fluid dynamics in the area of process industry : zkrácená verze habilitační práce. Brno: VUTIUM, 2008. ISBN 978-80-214-3598-8.
- [21] KAKAÇ, S. a LIU, H. Heat exchangers: selection, rating, and thermal design. 2nd ed. Boca Raton: CRC Press, 2002. ISBN 0849309026.
- [22] KILKOVSKÝ, B. a JEGLA, Z. Preliminary Design and Analysis of Regenerative Heat Exchanger. CHEMICAL ENGINEERING TRANSACTIONS. 2016, sv. 2016, č. 52, s. 655–660. DOI: 10.3303/CET1652110.
- [23] KOZUBKOVÁ, M., BLEJCHAŘ, T. a BOJKO, M. Modelování přenosu tepla, hmoty a hybnosti: učební text. Vyd. 1. Ostrava: VŠB - Technická univerzita Ostrava, 2011. ISBN 978-80-248-2491-8.
- [24] KUBÍN, M. Vliv průběhu teplot tekutin na tepelný výkon výměníku tepla. Topenářství instalace. 2022, sv. 2022, č. 2. Dostupné z: https://www.topin.cz/clanky/ vliv-prubehu-teplot-tekutin-na-tepelny-vykon-vymeniku-tepla-detail-12834.
- [25] KUMAR, H. THE PLATE HEAT EXCHANGER: CONSTRUCTION AND DE-SIGN. The Institution of Chemical Engineers Symposium Series. 1984, sv. 2, č. 86, s. 1275-1288. DOI: https://doi.org/10.1016/B978-0-85295-175-0.50054-0. ISSN 03070492. Dostupné z: https://www.sciencedirect.com/science/article/pii/ B9780852951750500540.
- [26] KUPPAN, T. Heat exchanger design handbook. Second edition. Boca Raton: CRC Press, [2013]. ISBN 9781439842126.
- [27] LENHARD, R., KADUCHOVÁ, K., ĎURČANSKÝ, P. a HEJČÍK, J. Výmenníky tepla. EQUILIBRIA, 2020. ISBN 978-80-8143-261-3.

- [28] MOTA, F. A., CARVALHO, E. a RAVAGNANI, M. A. Modeling and Design of Plate Heat Exchanger. In: *Heat Transfer Studies and Applications*. In-Tech, 2015-07-29. DOI: 10.5772/60885. ISBN 978-953-51-2146-6. Dostupné z: http://www.intechopen.com/books/heat-transfer-studies-and-applications/ modeling-and-design-of-plate-heat-exchanger.
- [29] SAYMA, A. Computational Fluid Dynamics. Ventus Publishing ApS, 2009. ISBN 978-87-7681-430-4. Dostupné z: https://kosalmath.files.wordpress.com/2010/08/ computational-fluid-dynamics.pdf.
- [30] SCHLICHTING, H. Boundary-Layer Theory. 7th ed. New York: McGraw-Hill, 1979. ISBN 0-07-055334-3.
- [31] SCHLÜNDER, E. U. *Heat exchanger design handbook*. Washington: Hemisphere Pub. Corp., c1983-. ISBN 0891161252.
- [32] SHAH, R. K. a SEKULIĆ, D. P. Fundamentals of heat exchanger design. Hoboken: John Wiley & Sons, Inc., 2003. ISBN 0-471-32171-0.
- [33] VAILLANT, G. Firemní zdroj: Product training. 2020.
- [34] VAILLANT, G. Firemní zdroj: Plate to plate heat exchanger: Basic training. 2021.
- [35] VAILLANT, G. Firemní zdroj: Plate to plate heat exchanger: measurements. 2022.
- [36] VERSTEEG, H. K. a MALALASEKERA, W. An introduction to computational fluid dynamics: the finite volume method. 2nd ed. Harlow: Pearson Prentice Hall, 2007. ISBN 978-0-13-127498-3.
- [37] VLČEK, P. a JIROUT, T. Modelování Turbulentního Proudění. Dostupné z: https: //docplayer.cz/31806007-Modelovani-turbulentniho-proudeni.html.
- [38] WANG, L., SUNDÉN, B. a MANGLIK, R. M. Plate heat exchangers: design, applications and performance. Southampton: WIT Press, 2007. ISBN 978-1-85312-737-3.

ZOZNAM OBRÁZKOV

1	Rozdelenie typov výmenníkov tepla podľa pracovného pochodu $\ \ . \ . \ .$	12
2	Rozdelenie typov výmenníkov tepla podľa vzájomného smeru a zmyslu prúdenia	13
3	Priebehy teplôt	14
4	Zväzkový výmenník tepla	14
5	Doskový výmenník - princíp	15
6	Trubkový rebrovaný výmenník tepla	15
7	Doskový rebrovaný výmenník tepla	15
8	Regeneračný výmenník s rotačnou matricou	16
9	Turbulentné prúdenie v kanáloch doskového výmenníka	17
10	Rozoberateľný doskový výmenník	18
11	Jednopriechodové usporiadanie	19
12	Viacpriechodové usporiadanie	20
13	Dosky s prelisovaním do tvaru písmena V s kanálmi typu H,L a M	21
14	Dosky s rôznymi tvarmi prelisovania	22
15	Základné rozmery dosky výmenníka	22
16	Rozdiel medzi symetrickým a asymetrickým doskovým výmenníkom	23
17	Porovnanie asymetrického a symetrického výmenníka pri rovnakom výkone	23
18	Konštrukcia symetrického a asymetrického výmenníka tepla	24
19	Zamedzenie vzájomnej kontaminácie médií pomocou tesnenia	26
20	Nerozoberateľný doskový výmenník (spájkovaný)	27
21	Proces výroby spájkovaného doskového výmenníka tepla	27
22	Zváraný doskový výmenník tepla	28
23	Porovnanie dosiek bežného výmenníka tepla a dosiek výmenníka s voľným prietokom	29
24	Polozváraný doskový výmenník tepla	30
25	Dvojstenný doskový výmenník tepla	30
26	Erózia v oblasti vstupných portov	31
27	Korózia doskového výmenníka tepla	32
28	Zanášanie doskového výmenníka tepla	33
29	Závislosť odporu zanášania na čase	33
30	Sito na vstupe do sekundárneho doskového výmenníka tepla kondenzač- ného kotla	34
----	--	----
31	Schéma kondenzačného kotla	35
32	Hydraulický modul so sekundárnym doskovým výmenníkom plynového kondenzačného kotla	36
33	Priebeh tlakovej straty v závislosti na objemovom prietoku súčasne použí- vaného sekundárneho doskového výmenníka tepla	37
34	Schéma energetickej bilancie doskového výmenníka	39
35	Priebeh teplôt vo výmenníku	41
36	Priebeh tlakovej straty v závislosti na objemovom prietoku pre jednotlivé dizajny	50
37	Metódy modelovania turbulencie	57
38	Fluktuácia a časovo stredovaná časť	58
39	Modely turbulentného prúdenia v CFD	59
40	Rozdelenie prúdenia v blízkosti steny	61
41	Spôsoby modelovania prúdenia v blízkosti steny	62
42	3D model doskového výmenníka tepla (uhol prelisovania 25°, symetrický dizajn)	63
43	Úprava dosky výmenníka pre numerickú simuláciu	64
44	Geometria pre numerickú simuláciu prenosu tepla doskového výmenníka $% \left({{{\rm{c}}} \right)$.	64
45	Roviny rezu kvapalných objemov pri príprave geometrie pre simuláciu pre- nosu tepla	64
46	Pomenované okrajové podmienky pre simuláciu prenosu tepla	65
47	Tvary prvkov konečného objemu	65
48	Povrchová sieť	67
49	Objemová sieť pre simuláciu prenosu tepla	68
50	Kontúry y^+ - CFD simulácia prenosu tepla (HW okruh) $\hfill \ldots \ldots \ldots$	68
51	Kontúry y^+ - CFD simulácia prenosu tepla (DHW okruh) $\hfill \hfill \h$	69
52	Histogram (pomer strán) - CFD simulácia prenosu tepla	70
53	Histogram (šikmosť) - CFD simulácia prenosu tepla	71
54	Diagram algoritmu riešenia Fluentom	71
55	Reziduály - CFD simulácia prenosu tepla	76
56	Konvergencia sledovaných parametrov - CFD simulácia prenosu tepla $\ . \ .$	76

57	Geometria s pomenovaním okrajových podmienok pre numerickú simuláciu tlakovej straty doskového výmenníka	78
58	Rovina rezu pri príprave geometrie pre CFD simuláciu tlakovej straty $\ . \ .$	78
59	Povrchová sieť pre simuláciu tlakovej straty	79
60	Objemová sieť pre simuláciu tlakovej straty	80
61	Kontúry y^+ - CFD simulácia tlakovej straty (pri prietoku $\dot{V}=18~l/min)~$.	81
62	Histogram (pomer strán) - CFD simulácia tlakovej straty	82
63	Histogram (šikmosť) - CFD simulácia tlakovej straty	82
64	Reziduály - CFD simulácia tlakovej straty pri prietoku 2 l/min $.$	85
65	Konvergencia sledovaných parametrov - CFD simulácia tlakovej straty pri prietoku 2 l/min	85
66	Modely dosiek s uhlom prelisovania $\beta = 25$ ° a $\beta = 45$ °	86
67	Porovnanie modelu symetrického a asymetrického dizajnu s uhlom prelisovania $\beta = 25$ °	87
68	Porovnanie modelu symetrického a asymetrického dizajnu s uhlom prelisovania $\beta = 45$ °	87
69	Výsledky CFD simulácie tlakovej straty v závislosti na prietoku pre navr- hnuté dizajny doskových výmenníkov	89
70	Prúdnice rýchlosti pre variantu $\beta=25$ ° - HW strana	90
71	Prúdnice rýchlosti pre variant u $\beta = 45$ ° - HW strana	91
72	Prúdnice rýchlosti pre variantu $\beta = 25$ ° - DHW strana	92
73	Prúdnice rýchlosti pre variant u $\beta = 45$ ° - DHW strana	93
74	Kontúry rýchlosti v rovine rezu zx pre symetrický dizajn s uhlom prelisovania $\beta = 25^{\circ} \dots \dots$	94
75	Prúdnice teplôt pre symetrický dizajn s uhlom prelisovani a $\beta=25$ ° $.$. $.$	94
76	Kontúry teplôt v rovine rezu zy pre symetrický dizajn s uhlom prelisovania $\beta = 25^{\circ} \dots \dots$	95
77	Rozloženie teplôt na doske výmenníka	96
78	Kontúry celkové povrchového tepelného toku	96
79	Porovnanie výsledkov tlakovej straty analytického výpočtu s CFD simuláciou symetrického dizajnu výmenníka s uhlom prelisovania $\beta=25$ °	99
80	Porovnanie výsledkov tlakovej straty analytického výpočtu s CFD simuláciou symetrického dizajnu výmenníka s uhlom prelisovania $\beta=45$ ° 1	100
81	Odchýlka analytického výpočtu a CFD simulácie tlakovej straty	100
82	Výsledky CFD simulácie tlakovej straty v závislosti na prietoku	102

ZOZNAM TABULIEK

1	Materiály dosiek pre typické teplonosné látky	21
2	Tesniace materiály	25
3	Hodnoty odporov zanášania	34
4	Namerané hodnoty tlakovej straty v závislosti na objemovom prietoku sú- časne používaného výmenníka	36
5	Namerané hodnoty teplôt súčasne používaného výmenníka pre výkon kondenzačného kotla 24 kW	37
6	Výsledné hodnoty tepelnej bilancie výmenníka	40
7	Termofyzikálne vlastnosti teplonosných médií	41
8	Geometrické rozmery dosky výmenníka	43
9	Zhrnutie výsledkov analytického výpočtu prenosu tepla pre jednotlivé dizajny	49
10	Zhrnutie výsledkov analytického výpočtu tlakovej straty pre jednotlivé di- zajny	50
11	Základné parametre povrchovej siete pre simuláciu prenosu tepla	66
12	Základné parametre medznej vrstvy (Boundary Layer) pre simuláciu pre- nosu tepla	67
13	Kvalitatívne parametre výpočtovej siete pre simuláciu prenosu tepla \ldots .	70
14	Okrajové podmienky (prenos tepla)	74
15	Relaxačné faktory	75
16	Základné parametre povrchovej siete pre simuláciu tlakovej straty	79
17	Základné parametre medznej vrstvy (Boundary Layer) pre simuláciu tla- kovej straty	80
18	Kvalitatívne parametre výpočtovej siete pre simuláciu tlakovej straty $\ .\ .\ .$	81
19	Okrajové podmienky pri simulácií tlakovej straty HW okruhu	84
20	Okrajové podmienky pri simulácií tlakovej straty DHW okruhu	84
21	Výsledky CFD simulácie prenosu tepla pre navrhnuté dizajny doskových výmenníkov	88
22	Výsledky CFD simulácie tlakovej straty v závislosti na prietoku pre navr- hnuté dizajny doskových výmenníkov	88
23	Porovnanie výsledkov analytického výpočtu a CFD simulácie prenosu tepla symetrických dizajnov dosiek s uhlom prelisovania $\beta = 25^{\circ}$ a $\beta = 45^{\circ}$	97
24	Porovnanie výsledkov analytického výpočtu a CFD simulácie tlakovej straty symetrického dizajnu dosky s uhlom prelisovania $\beta = 25^{\circ} \ldots \ldots \ldots$	98

Energet	tický ústav	Bc. Patrik Plott
FSI VU	VT v Brně	Návrh výmenníka tepla pre kondenzačný kotol
25	Porovnanie výs	ledkov analytického výpočtu a CFD simulácie tlakovej straty

20	i oroviname vysiednov anarytického vypočíta či z smithatele tranovoj seratoj	
	symetrického dizajnu dosky s uhlom prelisovani a $\beta=45^\circ$	99
26	Výsledky CFD simulácie prenosu tepla	101

ZOZNAM POUŽITÝCH SYMBOLOV

$\mathbf{Skratka}$	Jednotka	Popis
A	m^2	Potrebná teplosmenná plocha
\vec{a}	$\frac{m}{s^2}$	Vektor zrýchlenia
A_1	m^2	Rozvinutá plocha jedného kanálu
$A_{1,p}$	m^2	Veľkosť plochy jednej dosky
A_{ch}	m^2	Prietočný prierez jedného kanálu
A_e	m^2	Efektívna teplosmenná plocha
α^*	—	Koeficient tlmiaci turbulentnú viskozitu
α_{DHW}	$\frac{W}{m^2 \cdot K}$	Súčiniteľ prestupu tepla pre DHW okruh
$\alpha_{DHW,navrh}$	$\frac{W}{m^2 \cdot K}$	Súčiniteľ prestupu tepla pre DHW okruh pri uvažovaní
		jednej dosky
$lpha_{HW}$	$\frac{W}{m^2 \cdot K}$	Súčiniteľ prestupu tepla pre HW okruh
$\alpha_{HW,navrh}$	$\frac{W}{m^2 \cdot K}$	Súčiniteľ prestupu tepla pre HW okruh pri uvažovaní
		jednej dosky
b	m	Výška kanálu
β	0	Uhol prelisovania
C_h	_	Konštanta pre koreláciu Nusseltova čísla
$C_{h,navrh}$	_	Konštanta pre koreláciu Nusseltova čísla pri uvažovaní
		jednej dosky
cp	$\frac{J}{kg \cdot K}$	Merná tepelná kapacita
cp_{DHW}	$\frac{J}{kq \cdot K}$	Merná tepelná kapacita na strane DHW okruhu
cp_{HW}	$\frac{J}{ka \cdot K}$	Merná tepelná kapacita na strane HW okruhu
D_e	m	Ekvivalentný priemer
D_h	m	Hydraulický priemer
D_p	m	Vnútorný priemer vstupného a výstupného kanálu
$\Delta p_{ch,DHW}$	mbar	Tlaková strata medzi doskami na DHW strane
$\Delta p_{ch,HW}$	mbar	Tlaková strata medzi doskami na HW strane
Δp_{DHW}	mbar	Celková tlaková strata DHW okruhu
$\Delta p_{DHW,analytic}$	mbar	Tlaková strata DHW okruhu získaná analytickým
		výpočtom
$\Delta p_{DHW,CFD}$	mbar	Tlaková strata DHW okruhu získaná CFD simuláciou
$\Delta p_{DHW,limit}$	mbar	Dovolená tlaková strata na strane DHW okruhu
Δp_{HW}	mbar	Celková tlaková strata HW okruhu
$\Delta p_{HW,analytic}$	mbar	Tlaková strata HW okruhu získaná analytickým
		výpočtom
$\Delta p_{HW,CFD}$	mbar	Tlaková strata HW okruhu získaná CFD simuláciou
$\Delta p_{HW,limit}$	mbar	Dovolená tlaková strata na strane HW okruhu
Δp_p	mbar	Tlaková strata vo vstupnom otvore
Δt_{DHW}	$^{\circ}C$	Požadované ohriatie teplej úžitkovej vody
Δt_{ln}	$^{\circ}C$	Stredný teplotný logaritmický spád
E	$\frac{J}{kg}$	Celková merná energia

Energetický ústav	V	Bc. Patrik Plott
FSI VUT v Brně		Návrh výmenníka tepla pre kondenzačný kotol
e	$\frac{J}{L}$	Vnútorná energia
n	$\overset{\kappa g}{\sim}$	Účinnosť
<i>י</i> ן m	kg	Demomioleá vichorita
17	$\frac{\overline{m \cdot s}}{ka}$	
η_{DHW}	$\frac{m \cdot s}{m \cdot s}$	Dynamicka viskozita na strane DHW okruhu
η_{HW}	$\frac{\kappa g}{m \cdot s}$	Dynamická viskozita na strane HW okruhu
$ec{F}$	—	Zdrojové členy závislé od modelu CFD simulácie,
		prípadne definované používateľom
F_1	_	Funkcia pre prepínanie medzi modelom k- ω a k- ε
F_2	_	Funkcia pre prepínanie medzi modelom k- ω a k- ε
$f_D H W$	_	Korekčný faktor pre DHW okruh
$f_H W$	_	Korekčný faktor pre HW okruh
ϕ	_	Faktor zväčšenia plochy
arphi	_	Obecná veličina
$ar{arphi}$	_	Časovo stredovaná zložka obecnej veličiny
ω'	_	Fluktuačná zložka obecnej veličiny
$\frac{1}{10'}$	_	Časovo stredovaná fluktuačná zložka obecnej veličiny
Ŷ	\underline{m}	Gravitačné zrýchlenie
$\frac{g}{C}$	$\stackrel{s^2}{kg}$	Hmotnostný priotok DHW konálmi
$G_{ch,DHW}$	$\overline{\frac{m^2 \cdot s}{kq}}$	Innothostny prietok DIIW kanalini
$G_{ch,DHW,navrh}$	$\overline{m^2 \cdot s}$	Hinothostny prietok DHW kanalom pri uvazovani jednej
	1	dosky
$G_{ch,HW}$	$\frac{\kappa g}{m^2 \cdot s}$	Hmotnostný prietok HW kanálmi
$G_{ch,HW,navrh}$	$\frac{kg}{m^2 \cdot s}$	Hmotnostný prietok HW kanálom pri uvažovaní jednej
		dosky
G_k	_	Kinetická energia turbulencie v dôsledku gradientov
		strednej rýchlosti
G_{ω}	_	Časť špecifickej disipácie energie
Γ_{μ}	_	Efektívna difuzivita k
Γ_{κ}		Efective difuzivite ()
L_{ω}	J	Entertaine
	\overline{kg}	Entalpla
1	—	Jednotkový tenzor
Ι	%	Intenzita turbulencie
I_{DHW}	%	Intenzita turbulencie pre DHW okruh
I_{HW}	%	Intenzita turbulencie pre HW okruh
k	_	Kinetická energia turbulencie
k_c	$\frac{W}{m^2 K}$	Celkový súčiniteľ prostupu tepla pre výmenník bez
-	m_{-} · M	nánosov
karr		Efektívna vodivosť
kejj	$\frac{m^2 \cdot K}{W}$	Calkový súčiniteľ prostupu tepla pri uvažovaní zanášania
k .	$W^{2 \cdot K}$	Colleour sučiniteľ prostupu tepla pri uvažovani zanašalila
κ_{navrh}	$\overline{m^2 \cdot K}$	Cerkovy suchniter prostupu tepia pre jednu dosku
κ_p	 147	Konstanta pre korelaciu korekcneho faktoru
κ_t	$\frac{W}{m^2 \cdot K}$	Turbulentná tepelná vodivosť
L_c	m	Celková dlžka výmenníka
L_h	m	Horizontálna osová vzdialenosť otvorov
L_p	m	Výška teplosmennej plochy

L_{v}	m	Vertikálna osová vzdialenosť otvorov
L_w	m	Šírka dosky
$\frac{-w}{\lambda}$	<u>kg</u>	Druhá viskozita
λ_{DHW}	$\frac{m^2 \cdot s}{W}$	Tepelná vodivosť na strane DHW okruhu
λ_{DHW}	$\frac{m \cdot K}{W}$	Tepelná vodivosť na strane HW okruhu
λ	$\frac{m \cdot K}{W}$	Súčiniteľ tepelnej vodivosti dosky
λ_p	$\overline{rac{m\cdot K}{kg}}$	Hmotnostný priotok
111 m	\overline{s}	Končtanta pro koroláciu korokěného faktoru
	$\frac{-}{kq}$	Konstanta pre korelaciu korekcheno laktoru
m_{DHW} .	$\frac{s}{s}$	Hinothostny prietok na strane DHW okrunu
$m_{DHW,1}$.	$\frac{s}{s}$	Hmotnostny prietok jednym kanalom DHW okrunu
m_{HW} .	$\frac{kg}{ka}$	Hmotnostny prietok na strane HW okruhu
$m_{HW,1}$	$\frac{kg}{s}$	Hmotnostný prietok jedným kanálom HW okruhu
μ	$\frac{\kappa g}{m^2 \cdot s}$	Prvá (dynamická) viskozita
μ_t	$\frac{\kappa g}{m^2 \cdot s}$	Turbulentná viskozita
n	_	Konštanta pre koreláciu Nusseltova čísla
$N_{cp,DHW}$	—	Počet kanálov pre DHW okruh
$N_{cp,HW}$	—	Počet kanálov pre HW okruh
$N_{cp,navrh}$	_	Počet kanálov pre obe kvapaliny
$N_{cp,v}$	—	Vypočítaný počet kanálov pre jednu stranu výmenníka
$N_{cp,volba}$	—	Zvolený počet kanálov pre HW a DHW okruh na začiatku
		výpočtu
N_e	_	Efektívny počet dosiek
$N_{e,navrh}$	_	Návrhový efektívny počet dosiek
n_{navrh}	_	Konštanta pre koreláciu Nusseltova čísla pri uvažovaní
		jednej dosky
N_{n}	_	Počet priechodov
N_t	_	Celkový počet dosiek
Nt navrh	_	Návrhový celkový počet dosiek
	$\underline{m^2}$	Kinematická viskozita na strane DHW okruhu
N_{HDHW}	<i>s</i>	Nusseltovo číslo na strane DHW okruhu
$N u_{DHW}$	_	Nusseltovo číslo pri uvažovaní jednej dosky na DHW
1, ^a DHW,navrh		strang
1/	m^2	Kinomatická viskozita na strana HW okryby
$ u_{HW} $	s	Nucceltava čísla na strana HW almuhu
$N u_{HW}$	_	Nusseltovo čislo na strane rivo okrunu
$Nu_{HW,navrh}$	_	Nusseltovo číslo pri uvazovani jednej dosky na HW strane
ω	— D	Specificka disipacia energie
p	Pa	Tlak
p	m	Výška profilu
\overline{p}	Pa	Casovo stredovaná zložka tlaku
p_{DHW}	bar	Prevádzkový tlak na strane DHW okruhu
p_{HW}	bar	Prevádzkový tlak na strane HW okruhu
p_{ref}	bar	Referenčný tlak
Pr_{DHW}	—	Prandtlovo číslo na strane DHW okruhu
Pr_{HW}	_	Prandtlovo číslo na strane HW okruhu

\dot{Q}	kW	Výkon
$\dot{\dot{Q}}_b$	kW	Návrhový výkon
\dot{Q}_c	kW	Výkon výmenníka bez nánosov
$\dot{\dot{Q}}_{f}$	kW	Výkon výmenníka pri zohľadnení zanášania
$\dot{\dot{Q}}_{in}$	kW	Vstupný výkon na strane HW okruhu
\dot{Q}_{out}	kW	Výstupný výkon na strane DHW okruhu
R_f	$\frac{K \cdot m^2}{W}$	Faktor zanášania
$R_{f DHW}$	$\frac{K \cdot m^2}{W}$	Faktor zanášania na strane DHW okruhu
$R_{f HW}$	$\frac{K \cdot m^2}{W}$	Faktor zanášania na strane HW okruhu
Re_{DHW}		Reynoldsovo číslo pre DHW stranu
$Re_{DHW inlet}$	_	Reynoldsovo číslo na vstupe DHW okruhu
$Re_{DHW,navrh}$	_	Reynoldsovo číslo pre DHW stranu pri uvažovaní jednej
2 11 11 ,1000 110		dosky
Re_{HW}	_	Reynoldsovo číslo pre HW stranu
$Re_{HW.inlet}$	_	Reynoldsovo číslo na vstupe HW okruhu
$Re_{HW,navrh}$	_	Reynoldsovo číslo pre HW stranu pri uvažovaní jednej
		dosky
Re_{inlet}	_	Reynoldsovo číslo na vstupe výmenníka
ρ	$\frac{kg}{m^3}$	Hustota
ρ_{DHW}	$\frac{\frac{m}{kg}}{\frac{m^3}{m^3}}$	Hustota na strane DHW okruhu
ρ_{HW}	$\frac{kg}{m^3}$	Hustota na strane HW okruhu
S		Člen charakterizujúci veľkosť rýchlosti deformácie
S_h	_	Objemové zdroje tepla
S_k	_	Užívateľsky definovaný zdrojový člen
S_m	_	Zdrojové členy
S_{ω}	_	Užívateľsky definovaný zdrojový člen
σ_k	_	Turbulentné Prandtlove číslo pre kinetickú energiu
		turbulencie
σ_{ω}	_	Turbulentné Prandtlove číslo pre špecifickú disipáciu
		energie
t	m	Hrúbka dosky
t	s	Čas
T	K	Teplota
$t_{DHW,in}$	$^{\circ}C$	Vstupná teplota na strane DHW okruhu
$t_{DHW,out}$	$^{\circ}C$	Výstupná teplota na strane DHW okruhu
$t_{DHW,str}$	$^{\circ}C$	Stredná teplota na strane DHW okruhu
$t_{HW,in}$	$^{\circ}C$	Vstupná teplota na strane HW okruhu
$t_{HW,out}$	$^{\circ}C$	Výstupná teplota na strane HW okruhu
$t_{HW,str}$	$^{\circ}C$	Stredná teplota na strane HW okruhu
t_{ref}	$^{\circ}C$	Referenčná teplota
T_{ref}	K	Referenčná teplota
$\overline{\overline{\tau}}$	Pa	Tenzor napätia
$\overline{\overline{ au}}_t$	Pa	Reynoldsove (turbulentné) napätie
$ au_w$	Pa	Šmykové napätie

u	$\frac{m}{s}$	Zložka x vektoru rýchlosti
u_{avq}	$\frac{m}{s}$	Stredná rýchlosť prúdenia
u_t	$\frac{m}{s}$	Trecia rýchlosť
u'	$\frac{m}{n}$	Stredná kvadratická hodnota fluktuácií
\dot{V}	$\frac{\tilde{l}}{min}$	Objemový prietok
v	$\frac{m}{s}$	Zložka y vektoru rýchlosti
\dot{V}_{DHW}	$\frac{l}{min}$	Objemový prietok na DHW strane
\dot{V}_{HW}	$\frac{l}{min}$	Objemový prietok na HW strane
ec v	$\frac{m}{s}$	Vektor rýchlosti
$\vec{\overline{v}}$	$\frac{m}{s}$	Časovo stredovaný vektor rýchlosti
w	$\frac{m}{s}$	Zložka z vektoru rýchlosti
w_p	$\frac{m}{s}$	Rýchlosť prúdenia vo vstupnom otvore
$w_{p,1,DHW}$	$\frac{m}{s}$	Rýchlosť prúdenia na vstupe výmenníka pri uvažovaní
	0	jedného kanálu
$w_{p,DHW}$	$\frac{m}{s}$	Rýchlosť prúdenia na vstupe DHW okruhu
$w_{p,HW}$	$\frac{m}{s}$	Rýchlosť prúdenia na vstupe HW okruhu
y	\overline{m}	Vzdialenosť stredu prvej bunky od steny
Y_k	_	Disipácia kinetickej energie vplyvom turbulencie
Y_{ω}	_	Disipácia špecifickej energie vplyvom turbulencie
y^+	_	Bezrozmerná vzdialenosť od steny

ZOZNAM POUŽITÝCH SKRATIEK

$\mathbf{Skratka}$	Význam
CFD	Computational fluid dynamics (výpočtová dynamika tekutín)
DHW	Domestic hot water (teplá úžitková voda)
DNS	Direct numerical simulation (priama numerická simulácia)
EES	Softvér engineering equation solver
$\varepsilon ext{-NTU}$	Metóda výpočtu založená na efektívnosti výmenníka
FVM	Finite volume method (metóda konečných objemov)
HE	Heat exchanger (výmenník tepla)
HW	Hot water (teplá voda)
LES	Large eddy simulation (simulácia veľkých vírov)
LMTD	Metóda výpočtu strednej logaritmickej teploty
ppm	Parts pre million (milióntina)
RANS	Reynolds averaged Naviers-Stokes (metóda Reynoldsovho stredovania)
RNG	Renormalization group method (renormalizačná metóda)
RSM	Reynolds stress model
SIMPLE	Semi-implicit method for pressure-linked equations
SRS	Scale resolving simulation
SST	Shear-stress transport