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ABSTRACT 

 

V této disertační práci jsem zkoumal metody augmentace dat pro klasifikaci obrazů a to zejména 

pro takové případy, kdy jsou k dispozici jen velmi malé soubory trénovacích dat. Tato práce je 

založena na použití generativních adverziálních sítí (GAN), autoenkodérů a na použití  shlukové 

analýzy latentního prostoru autoenkodérů. Tyto metodiky použité společně zvyšují  přesnost 

klasifikace a dovolují získat uspokojivé výsledky i v případě, že máme k dispozici pouze velmi 

malé trénovací soubory. V počáteční fázi své práce jsem vyvinul nový přístup využívající 

generativní adverziální sítě (GAN) k simulaci pravděpodobnostních distribucí jednotlivých 

klasifikačních kategorií. Tento přístup znamenal významný odklon od konvenčních technik 

rozšiřování datové sady. Integrací GAN do procesu vývoje a použití klasifikátoru jsem efektivně 

využil jejich generativní schopnosti nad rámec pouhého generování dat. Moje komplexní 

experimentování s databází MNIST, zahrnující tréninková data v rozsahu od 1 do 100 vzorků na 

kategorii, potvrdilo účinnost tohoto nového přístupu. Výsledky mnou vyvinutých metod, zejména 

M1 a M3, ukázaly významná zlepšení oproti standardnímu použití GAN diskriminátoru pro 

rozšíření trénovacích dat a prokázaly jejich účinnost v situacích, kdy je k dispozici pouze velmi 

malý soubor trénovacích dat. 

V rámci svého výzkumu jsem navrhl integraci analýzy latentního prostoru variačních 

autoenkodérů (VAE) do procesu trénování a klasifikace. Výsledkem byly metody M2 a M4. 

Integrace analýzy latentního prostoru byla klíčová a umožnila mi výrazně zvýšit kvalitu a  

spolehlivost dat generovaných těmito modely a tím také přesnost navržených klasifikátorů.  

Navržená metodika prošla přísným testováním na datové sadě MNIST.  

V závěrečné části mé disertační práce jsem se zabýval problémem posouzení kvality pro 

augmentaci dat nově vytvořeného obrazu. Navrhl jsem pro tento účel novou metodiku pracující s 

latentním prostorem autoenkodérů. Tento přístup významně zefektivnil proces hodnocení kvality 

generovaného obrazu a eliminoval potřebu ručního přezkoumání. Při testování na souborech dat  

jako MNIST, CIFAR-10 a CIFAR-100 tato metodika prokázala svou účinnost.  

Moje disertační práce poskytuje komplexní a inovativní přístup k rozšiřování dat pro klasifikaci  

obrazu v případě, že je dispozici pouze velmi malý soubor trénovacích dat. Navržené metody 

v tomto případě dosahují vyšší přesnosti klasifikace než jakou lze získat standardními metodami  

rozšiřování datového souboru. Výsledky mého empirického výzkumu potvrzují potenciál těchto 



 

 

pokročilých technik rozšiřování dat při klasifikaci obrazů, zejména ve scénářích reálného světa,  

kde jsou trénovací data často vzácná. 

 

Klíčová slova: Augmentace dat, klasifikace obrazu, hluboké učení, autokodéry, analýza latentního 

prostoru, generativní adversiální sítě (GAN), variační autoenkodér (VAE), shlukování v latentním 

prostoru, konvoluční neuronové sítě (CNN).  

 

  



 

 

ABSTRACT 

 

In this thesis, I investigated data augmentation methods for image classification, especially for 

cases where only very small training data sets are available. This work is based on the use of 

generative adversarial networks (GAN), autoencoders(AEs), and the analysis of the latent space 

of AEs. These methodologies used together increase the classification accuracy and allow us to 

obtain satisfactory results even if we only have very small training sets. I developed a new 

approach using GANs to simulate the probability distributions of individual classification classes. 

This approach marked a significant departure from conventional data set augmentation techniques. 

By integrating GANs into the process of developing and using a classifier, I effectively leveraged 

their generative capabilities beyond just generating data. Extensive experimentation with the 

MNIST database, involving training data ranging from 1 to 100 samples per category, confirmed 

the effectiveness of this new approach. The results of the developed methods, showed significant 

improvements over the standard use of a GAN discriminator to augment the training data and 

proved their effectiveness when only a very small set of training data is available.  

As part of my research, I proposed the integration of VAE latent space analysis into the training 

and classification processes. The results were methods M2 and M4. The integration of latent space 

analysis was key and allowed me to significantly increase the quality and reliability of the data 

generated by these models and thus the accuracy of the proposed classifiers. The proposed 

methodology has undergone rigorous testing on the MNIST dataset.  

Thesis also considers the problem of quality assessment for the data augmentation of a newly 

created image. The proposed methodology working with the latent space of AEs. This approach 

significantly streamline the process of evaluating the quality of the generated image and eliminated 

the need for manual review. Tested on datasets such as MNIST, CIFAR-10, and CIFAR-100, this 

methodology has proven its effectiveness. 

The thesis provides an innovative data augmentation approach for image classification when only 

a very small set of training data is available. In this case, the proposed methods achieve a higher 

classification accuracy than can be obtained by standard data set expansion methods. The results 

of empirical research confirm the potential of these advanced data augmentation techniques in 

image classification, especially in real-world scenarios where training data is often scarce. 
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1 Introduction 

1.1 Motivation 

The field of computer vision, an important component of artificial intelligence, has experienced a 

transformative evolution in recent years. This evolution is primarily attributed to groundbreaking 

advancements in DL technologies. Central to this transformation has been the development of 

CNNs (Goodfellow et al., 2023). CNNs have revolutionized critical computer vision tasks such as 

image classification, object detection (Patterson & Gibson, 2023), and semantic segmentation 

(Janet et al., 2023), marking a seminal moment in the field and redefining the capabilities of 

machines in processing and understanding visual information (Krizhevsky, Sutskever, & Hinton, 

2012). The effectiveness of DL in computer vision is mainly due to the availability of large, 

diverse, and accurately annotated image datasets. However, the process of assembling and 

annotating these extensive datasets presents considerable challenges, particularly in scenarios with 

limited or sparse data. In specialized domains, there is often a scarcity of datasets that are 

sufficiently comprehensive to train models effectively (Goodfellow, Bengio, & Courville, 2023). 

A significant challenge within the realm of computer vision is the scarcity of labeled data. This 

issue slows down the improvement of DL models' performance and their ability to generalize to 

novel, unseen data. To address this limitation, image data augmentation techniques are 

increasingly utilized in such cases. These techniques involve applying various transformations to 

existing labeled data to generate new training examples. This expansion of the training dataset 

enhances the model's ability to generalize across different real-world variations (Zhou et al., 2014). 

 

Traditional data augmentation methods like random cropping, rotation, and flipping  (Voulodimos 

et al., 2022) have been widely used to increase the diversity of training data. However, the advent 

of DL and generative models has led to the emergence of more sophisticated and realistic image 

data augmentation methods. Innovations such as GANs and AEs have shown significant promise 

in synthesizing images that closely resemble real-world samples. These generative models 

facilitate targeted augmentation, enabling the creation of synthetic data that capture specific 

variations or simulate rare instances, thus filling gaps in existing datasets (Radford, Metz, & 

Chintala, 2016). 
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The goal of the thesis is to explore and enhance contemporary image data augmentation methods, 

especially those utilizing generative models. In particular, it focuses on improving the ability of 

DL models in computer vision to perform well on new, unseen data. A crucial part of this research  

is evaluating the quality and effectiveness of the augmented images (Sarkar et al., 2021). Ensuring 

that augmented samples accurately reflect the underlying data distribution is essential for the 

reliability and efficacy of computer vision systems. 

 

The aim of the thesis is to scrutinize the effectiveness of modern image data augmentation methods  

(Janet et al., 2023) and propose innovative techniques to evaluate their impact on model 

performance and generalization. This work seeks to help, particularly in scenarios when only 

limited labeled data is available. 

1.2 Problem Statement and Research Questions 

The field of computer vision has undergone rapid advancement in recent years, driven by the 

development of sophisticated DL models and the increasing availability of large-scale image 

datasets (Carranza et al., 2021; Mahajan & Jha, 2022). However, a key challenge remains: the 

scarcity of high-quality labeled data. The process of acquiring and annotating extensive datasets 

can be time-consuming, expensive, and often impractical, particularly for specialized domains or 

rare events (Liu et al., 2020). To address this issue, researchers have extensively explored data 

augmentation techniques. These techniques involve strategically modifying existing labeled data 

to generate additional, realistic training examples, thereby expanding the dataset and improving 

model performance (Shorten & Khoshgoftaar, 2019). 

 

While traditional augmentation techniques like random cropping, rotation, and flipping have been 

extensively utilized, the advancements in DL and generative models have unveiled new 

opportunities for more sophisticated and realistic image data augmentation. Techniques such as 

GANs and AEs have shown potential in creating synthetic images that closely mimic real-world 

samples. The strategic use of these generative models enables targeted augmentation, producing 

synthetic data that captures specific variations or emulates rare instances (Kingma & Welling, 

2014). 
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The driving force behind this research is to explore and enhance the effectiveness of contemporary 

image data augmentation methods, particularly those that employ generative models. The goal is 

to improve the performance and generalization capabilities of DL models in computer vision. By 

integrating advanced augmentation techniques, this research aims to address the challenge of data 

scarcity and enhance the robustness of computer vision systems in real-world applications 

(Ronneberger, Fischer, & Brox, 2015). 

 

Several critical research questions emerge in pursuit of this goal:  

Integration of Modern Data Augmentation Methods: How can contemporary image data 

augmentation methods, including generative models, be effectively integrated into the training 

pipeline of DL models? This research will explore the use of GANs and AEs to generate synthetic 

images and examine the impact of various augmentation strategies on model performance and 

generalization. 

Evaluation of Augmented Image Quality: How can the quality and effectiveness of augmented 

images, especially those generated by generative models and analyzed through latent space, be 

evaluated, and quantified? This research aims to develop novel methodologies for assessing image 

quality, focusing on metrics that evaluate fidelity, diversity, and relevance.  

Impact on Learned Representations: What is the effect of different image data augmentation 

techniques on the learned representations and feature spaces of DL models? The study will analyze 

how augmentation methods influence the interpretability, disentanglement, and discriminative 

capabilities of learned representations and explore visualization techniques to understand feature 

transformations through augmentation. 

 

Addressing these research questions is expected to significantly contribute to the advancement of 

modern image data augmentation methods and their evaluation using generative models and latent 

space analysis. The outcomes of this research could have far-reaching implications for various 

computer vision tasks, such as object detection, image classification, and semantic segmentation, 

where data scarcity is a common challenge. Enhancing the understanding and effectiveness of 

image data augmentation aims to improve the performance and generalization capabilities of DL 

models in real-world applications (Long, Shelhamer, & Darrell, 2015). 
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The subsequent sections of this paper will present an extensive literature review on image data 

augmentation techniques, covering both traditional and modern approaches. This review will 

critically examine various strategies, discuss their benefits and limitations, and highlight recent 

developments in generative models for data augmentation. Additionally, the paper will detail 

experimental results and analyses to evaluate the effectiveness of different augmentation methods 

in enhancing model performance and generalization.  
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2 Objectives 

The principal objective of this thesis is to conduct a comprehensive and systematic exploration in 

the domain of image data augmentation for image classification. This research is particularly 

focused on contexts where training data is scarce, a scenario increasingly prevalent in the field of 

ML and artificial intelligence(AI). The core of this endeavor lies in the innovative application of 

advanced computational models, specifically Generative Adversarial Networks (GANs), AEs, and 

the sophisticated exploration of latent space analysis. This study is designed to transcend the 

current limits of conventional data augmentation methods. It seeks to overcome two fundamental 

challenges: the limited availability of training data and the essential demand for high-quality data 

to train robust ML models. This is achieved by meticulously analyzing and manipulating the latent 

space, a conceptual realm where the intrinsic properties of data are encoded in a compressed form, 

offering a fertile ground for innovation in data augmentation techniques. A key aspect of this 

research is to bridge the gap between theoretical advances in DL and their practical, real-world 

applications. By leveraging the latent space of AEs and the generative capabilities of GANs, the 

thesis proposes to create a new paradigm in data augmentation that is both efficient and effective 

in scenarios with limited data availability. The goal is to enhance the accuracy, reliability, and 

generalizability of image classification models, thereby contributing significantly to the 

advancement of ML methodologies. Through rigorous experimentation and analysis, this thesis 

will not only validate the effectiveness of these advanced computational models in enhancing data 

augmentation but also contribute to the broader understanding of their capabilities and limitations. 

The research is expected to yield novel insights and methodologies that can be applied to a wide 

range of image classification tasks, particularly those hampered by the availability of limited 

training data. 

2.1 Integrating Autoencoders and Latent Space Analysis 

Another fundamental aim of this thesis is the integration of AEs and latent space analysis into the 

data augmentation process. This objective focuses on exploiting the unique capabilities of AEs, 

especially VAEs, for dimensional reduction and feature extraction, thereby presenting new 

avenues in data augmentation. 
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Methodology and Application: This thesis delves into the utilization of latent space analysis for 

assessing the quality of augmented images. Traditional image quality assessment techniques often 

fall short in capturing the complexities associated with images produced by advanced generative 

models. By implementing latent space analysis, new metrics and methodologies are introduced for 

a more comprehensive assessment of image quality. This method addresses both quantitative and 

qualitative aspects of image quality, ensuring that the augmented data is not only diverse but also 

of high fidelity and relevance to the intended task. 

 

Innovative Strategies for Quality Improvement: This research involves training an autoencoder 

for all input training datasets and decoding them to obtain the latent space representation of the 

autoencoder. This representation allows for a novel method to quality determination, wherein 

images within a certain threshold in the latent space are classified as high-quality and included in 

the training dataset. This methodology underscores the importance of quality in data augmentation, 

focusing on improving not just the quantity but also the quality of training data. 

2.2 Methodological Innovations and Empirical Research 

The thesis is characterized by its methodological innovations, particularly the development of 

novel models, each offering a unique solution to leveraging the capabilities of GANs and AEs. 

These models represent a significant advancement in data augmentation techniques, aimed at 

enhancing classification accuracy in data-limited environments. 

 

Testing and Evaluation: The models developed through this research are rigorously tested and 

evaluated, showcasing notable improvements in classification accuracy. The research provides 

empirical evidence of the effectiveness of these methods, particularly in environments with l imited 

training data. This empirical validation is crucial in demonstrating the practical applicability and 

effectiveness of the proposed methods. 

 

Real-World Application and Adaptability: The findings from these experiments are invaluable, 

offering concrete evidence of the advancements in classification accuracy and establishing a strong 

basis for further exploration and application in more complex, diverse real-world environments. 

The thesis not only reaffirms the potential of advanced data augmentation techniques in image 
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classification but also showcases the adaptability and robustness of these methods across various 

data scenarios. 

2.3 Limitations 

The proposed research considers several the following limitations: 

 

Computational Complexity: The implementation of complex generative models like GANs and 

VAEs poses significant computational challenges. The thesis acknowledges the high 

computational demand focuses on developing feasible strategies that can be realistically adopted 

within the existing computational resources. This is crucial, as it ensures that the proposed 

methodologies are not just theoretically sound but also practically implementable. 

 

Dataset Specificity: A key limitation lies in the specificity of the datasets for instance, such as 

MNIST. While these datasets are standard benchmarks in ML, their characteristics, size, and 

diversity may influence the generalizability of the research findings. The thesis critically examines 

how unique features of these datasets influence applicability of the proposed augmentation 

methods and whether these methods can be adapted to other, more complex datasets. 

 

Generalization to Other Domains: The application of these findings to other domains or tasks 

has its limitations. The transferability of the proposed methods to different domains, each with its 

unique requirements and challenges, is not assured. 

 

The objectives of this thesis are multi-faceted, each contributing significantly to the overarching 

goal of enhancing image classification through advanced data augmentation. By innovatively 

employing GANs, AEs, and latent space analysis, the thesis not only addresses the challenges 

posed by data scarcity but also propels the field of image classification into new realms of 

possibility and efficiency.  
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3 Literature Review 

3.1 Overview of image augmentation techniques 

The augmentation techniques artificially increase the diversity and quantity of training data by 

applying various transformations and distortions to the original images.  

Traditional augmentation techniques include rotation, scaling, flipping, cropping, and translation  

(Girshick, 2015). Rotation involves rotating the image by a certain angle, while scaling alters the 

size of the image. Flipping, both horizontally and vertically, creates mirrored versions of the 

original image. Cropping focuses on selecting a specific region of interest within the image, and 

translation shifts the image within the frame. These techniques have been widely adopted due to 

their simplicity and effectiveness in increasing dataset diversity. 

Intensity-based transformations modify the pixel values of the image, altering its appearance 

without changing the spatial structure. Techniques such as brightness adjustment, contrast 

enhancement, and saturation modification fall under this category  (Szegedy et al., 2015). 

Brightness adjustment involves uniformly scaling the pixel values to change the overall brightness 

of the image. Contrast enhancement expands or compresses the range of pixel values to enhance 

the differences between light and dark regions (Patterson & Gibson, 2023). Saturation modification 

adjusts the color intensity in the image (Chollet, 2021). These techniques are commonly employed 

to introduce variability in the image data and improve model robustness  (Charniak, 2023). 

Geometric transformations modify the spatial configuration of the image by warping or distorting 

its shape. These techniques include affine transformations, perspective transformations, and elastic 

deformations (Dosovitskiy et al., 2020). Affine transformations preserve parallel lines and ratios, 

enabling operations such as rotation, scaling, and shearing. Elastic deformations simulate local 

deformations, mimicking real-world scenarios where objects undergo non-linear shape changes. 

Geometric transformations are effective in augmenting data and increasing model performance by 

introducing variations in object poses, perspectives, and spatial configurations. 

The adoption of these image augmentation techniques, either individually or in combination, helps 

address the limitations imposed by limited labeled data. By increasing the diversity and quantity 

of training data, DL models become better equipped to learn robust features, generalize well to 

unseen samples, and exhibit improved performance in various computer vision tasks. Furthermore, 

the effectiveness of image augmentation techniques has been demonstrated in several studies, 
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where they have contributed to significant improvements in model accuracy and generalization  

(Wang et al. 2023 and Liu et al. 2022). 

In conclusion, image augmentation techniques are indispensable in enhancing the performance and 

generalization capabilities of deep learning models (Shorten & van der Burgh, 2021). Traditional 

techniques, intensity-based transformations, and geometric transformations offer diverse ways to 

augment datasets and introduce variations, ultimately improving model robustness and 

performance (Cubuk et al., 2020; Zhang et al., 2017). By incorporating these augmentat ion 

techniques, researchers can mitigate the limitations imposed by limited labeled data, facilitate 

more effective training, and enable the development of more accurate and reliable computer vision 

systems. 

3.2 Types of image distortions and transformations 

Geometric Transformations Geometric transformations are fundamental techniques in augmenting 

image datasets by modifying the spatial configuration of the images. Rotation, scaling, shearing, 

and perspective transformations are widely utilized geometric transformations (He, Girshick, & 

Dollár, 2019). Rotation involves rotating the image by a specified angle, while scaling alters the 

size of the image. Shearing introduces a skew effect by shifting the image along one of its axes. 

Geometric transformations introduce variations in object poses, orientations, and spatial 

configurations, thereby enhancing the diversity of the dataset. Photometric distortions focus on 

altering the pixel values or color characteristics of the images. These distortions aim to replicate 

real-world scenarios where images are subject to changes in lighting conditions, camera settings, 

or atmospheric conditions. Techniques such as brightness adjustment, contrast modification, color 

saturation changes, and noise addition fall under photometric distortions (Tzeng et al., 2017). 

Brightness adjustment uniformly scales the pixel values, while contrast modification expands or 

compresses the range of pixel values to enhance or reduce the differences between light and dark 

regions. Color saturation changes affect the intensity of colors in the image. Noise addition 

introduces random variations in the pixel values, simulating imperfections in the image acquisition 

process. Photometric distortions introduce variations in lighting conditions and color  

characteristics, thereby enhancing the robustness and generalization capabilities of DL models. 

Elastic Deformations Elastic deformations simulate local deformations or shape changes in the 

images, contributing to increased dataset diversity. These deformations introduce non-linear 
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transformations to the images, mimicking real-world scenarios where objects undergo 

deformations due to stretching, bending, or compression. Elastic deformations employ techniques 

such as local translations, local rotations, and local scaling to create spatial variations within the 

images (Zhu, Vondrick, Fowlkes, & Ramanan, 2012). By applying these deformations, the dataset 

encompasses a wider range of object configurations and deformations, enabling the model to learn 

robust representations that are more resilient to shape variations. 

 

The utilization of these image distortions and transformations in data augmentation has been 

extensively studied and proven effective in improving the performance and generalization 

capabilities of DL models. By incorporating geometric transformations, photometric distortions, 

and elastic deformations, the diversity and variability of the training dataset are enhanced, enabling 

models to learn more robust and discriminative features (He, Girshick, & Dollár, 2019, Tzeng et 

al., 2017, Zhu, Vondrick, Fowlkes, & Ramanan, 2012) 
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3.3 Related works on image augmentation with limited data 

The availability of labeled training data is often limited in many real-world scenarios, posing 

challenges to the development of effective computer vision and DL models. To overcome this 

limitation, researchers have explored various image augmentation techniques specifically designed 

for working with limited data. This section focuses on discussing related works on image 

augmentation with limited data, highlighting their contributions and effectiveness in improving 

model performance. 

 

Semi-supervised learning is a popular approach for addressing limited data problems. This 

approach leverages a combination of labeled and unlabeled data to train models. By utilizing both 

labeled and unlabeled data, semi-supervised learning methods can effectively enhance model 

performance. One common strategy in semi-supervised learning is to generate synthetic labeled 

data through augmentation techniques (Alzubaidi et al., 2021). These synthetic samples can be 

obtained by applying various transformations and distortions to the labeled data  (Tzeng et al., 

2017). Transfer learning and pre-training have been extensively explored as effective strategies 

for working with limited data. These approaches involve training models on large-scale datasets 

or pre-training them on related tasks with abundant data. The pre-trained models can then be fine-

tuned on the limited labeled data (Voulodimos et al., 2022), enabling the transfer of knowledge 

and representations learned from the pre-training stage. This transfer learning and pre-training 

paradigm allows models to leverage the knowledge from the large-scale datasets, improving their 

performance with limited labeled data (Goodfellow et al., 2023). 

 

Unsupervised and self-supervised learning techniques have gained significant attention for 

addressing limited data challenges. These methods aim to learn representations from unlabeled 

data in the absence of explicit labels. By utilizing various unsupervised learning techniques, such 

as AEs, generative models, or contrastive learning, models can extract meaningful features from 

the unlabeled data. These learned representations can then be used to augment the limited labeled 

data, improving model performance (Lee & Kim, 2022) 

The utilization of these approaches in image augmentation with limited data has shown promising 

results. By leveraging semi-supervised learning, transfer learning and pre-training, and 

unsupervised/self-supervised learning techniques, researchers have made significant 
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advancements in improving model performance with limited labeled data  (Tzeng et al., 2017, Zhu, 

Vondrick, Fowlkes, & Ramanan, 2012, Lee & Kim, 2022) 

 

In conclusion, related works on image augmentation with limited data have demonstrated the 

effectiveness of various approaches, including semi-supervised learning, transfer learning and pre-

training, and unsupervised/self-supervised learning techniques. These techniques enable the 

utilization of limited labeled data more effectively and improve model performance. By 

incorporating these approaches into the data augmentation pipeline, researchers can overcome the 

challenges of limited data and enhance the generalization capabilities of DL models. 

 

Few-shot learning has emerged as a critical method to train models with a minimal number of 

labeled examples. This is achieved by designing models that can generalize from a few examples 

or by employing meta-learning frameworks where the model is trained to learn new tasks quickly 

using a small number of training samples. Recent studies have demonstrated the potential of few-

shot learning in drastically reducing the dependency on large datasets while still achieving 

considerable accuracy (Garcia & Bruna, 2020; Smith & Torres, 2021). 
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4 Preliminaries of Existing Technologies 

4.1 Convolutional neural networks 

CNNs are a type of feed-forward artificial neural network (ANN) widely used in image recognition 

tasks. CNNs are inspired by the structure and function of the visual cortex of the brain, and they 

can extract features from images similarly to the human visual system (LeCun et al., 1998). CNNs 

have significantly impacted the field of computer vision, enhancing capabilities in image and video 

analysis. Their architecture, inspired by the human visual cortex, enables efficient processing of 

pixel data through multiple layers of neurons. The primary strength of CNNs lies in their ability to 

learn spatial hierarchies of features automatically and adaptively from image data (Goodfellow et 

al., 2023). These features range from simple edges and textures at initial layers to complex patterns 

and object representations in deeper layers. Unlike traditional ML approaches that require manual 

feature extraction (Chollet, 2021), CNNs learn to identify these features autonomously, making 

them highly effective for tasks such as image classification, object detection, and face recognition.  

Furthermore, CNNs have transformed how machines interpret visual information, achieving 

human-like accuracy in various tasks. Their adaptability is evident in their application across 

different domains, including medical imaging, autonomous vehicles, and even in areas like natural 

language processing, where they assist in understanding the context of visual cues  (Guo et al., 

2020). 

This section describes the technical aspects and foundational concepts of CNNs. It will briefly 

describe the network architecture, including convolutional layers, pooling layers, and activation 

functions, explaining how these components work together to process and learn from visual data. 

The discussion will also cover recent advancements and the ongoing evolution of CNNs in the 

broader field of artificial intelligence. Figure 1 shows a CNN setup for analyzing images and 

sorting features for recognition tasks. 
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Figure 1 Convolutional neural network architecture 

 

Source: https://medium.com 

4.1.1 Convolutional Layers 

Convolutional layers are the cornerstone of CNNs, playing a crucial role in the network’s ability 

to extract and interpret features from visual input. These layers use a set of learnable filters or 

kernels, which are applied to the input image through convolutional operation  (Guo et al., 2020). 

This process allows the network to identify various features such as edges, textures, and eventually 

more complex patterns like shapes and objects. In a convolutional layer, the filters move across 

the input image in small steps, known as strides, computing the dot product between the filter and 

the input at each position. This operation generates feature maps that represent the presence and 

intensity of specific features at different locations in the image. For instance, a filter designed to 

detect vertical edges will produce a high response in regions of the image where such edges are 

present. The hierarchical nature of these layers is one of the key reasons for the effectiveness of 

CNNs in processing complex visual information. In the initial layers, convolutional filters typically 

detect simple, low-level features like edges or color gradients (Janet et al., 2023). As the data 

progresses through subsequent layers, the network combines these basic features to form more 

abstract, high-level representations. This hierarchical feature extraction enables CNNs to 

understand the content of images at various levels of abstraction, from simple shapes to detailed 

object classes. The convolutional layers are the key to the success of CNNs, as they allow the 

network to learn local patterns in the input data." (Simonyan and Zisserman, 2014). 
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Convolutional layers also introduce the concept of translational invariance, meaning the network 

can recognize a feature regardless of its position in the visual field. This is particularly important 

in real-world scenarios, where the objects of interest can appear in different locations and 

orientations. The dynamic nature of the learnable filters, which are adjusted during the training 

process, allows the network to adapt to the specific features present in the training data, enhancing 

its ability to recognize and classify various visual patterns (Goodfellow et al., 2023). Figure 2 

illustrates the process of convolution in a CNN, where an input matrix is filtered by a kernel to 

produce a transformed output feature map. 

Figure 2 Convolutional layer calculations 

 

Source: https://opengenus.org 

4.1.2 Pooling Layers 

Pooling layers in CNNs enhance computational efficiency and prevent overfitting by reducing 

feature map size. Max pooling selects the maximum value, while average pooling calculates the 

average from each window in the feature map, thus down sampling and reducing parameters and 

computations. These layers build a spatial feature hierarchy, crucial for object recognition in 

CNNs, and improve translational invariance, aiding in adapting to varying object positions and 

orientations. CNNs are composed of layers of interconnected neurons, each of which performs a 

simple calculation on the input data." (Howard and Zhang, 2017). Pooling layers are essential for 

CNN architecture, optimizing processing and generalization across spatial variations. CNNs are 

also able to learn long-range dependencies in data through the use of pooling layers, which 

downsample the feature maps." (Simonyan and Zisserman, 2014) 
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CNNs are composed of layers of interconnected neurons, each of which performs a simple 

calculation on the input data." (Howard and Zhang, 2017) 

4.1.3 Non-linear Activation Functions 

Non-linear activation functions enable CNN to capture complex patterns and relationships in the 

data. These functions are applied to the output of convolutional and fully connected layers, 

introducing non-linear properties to the network. The primary purpose of non-linear activation 

functions is to allow CNNs to learn non-linear mappings from inputs to outputs. Without these 

functions, CNNs would be limited to linear transformations, significantly restricting their ability 

to model the complexities inherent in real-world visual data. Common non-linear activation 

functions used in CNNs include the Rectified Linear Unit (ReLU) (Patterson & Gibson, 2023) and 

its variants, sigmoid, and hyperbolic tangent (tanh).  

 

ReLU is particularly popular due to its simplicity and effectiveness. It introduces non-linearity by 

outputting the input directly if it is positive and zero otherwise. This simple operation allows the 

network to learn faster and more effectively compared to traditional sigmoid or tanh functions. 

ReLU and its variants help in mitigating the vanishing gradient problem, a common issue in 

training deep neural networks where gradients become too small for effective learning in lower 

layers. 

Figure 3 Formulas for activation functions

 

Source: https://medium.com 



17 

 

Activation functions also contribute to the network's ability to differentiate between various inputs. 

By applying these functions, CNNs can model intricate relationships in the data, making them 

powerful tools for interpreting and analyzing visual information (Zeiler and Fergus, 2014). Figure 

3 displays different activation functions used in neural networks, each with its own formula and 

graph, vital for model's learning. 

4.1.4 Strides and padding in CNN Architecture 

Strides and padding are integral components of the CNN architecture, playing crucial roles in 

determining how the network processes and interprets visual information. Strides refer to the step 

size with which the convolutional filters move across the input image  (Sarkar et al., 2021), while 

padding involves adding extra pixels, usually zeros, around the input image to maintain its size 

after convolution. Strides dictate the spatial resolution of the feature maps produced by the 

convolutional layers. Larger strides result in smaller feature maps by covering more area per 

movement of the filter, which can reduce the computational load but might miss finer details in 

the image (Voulodimos et al., 2022). Conversely, smaller strides generate larger feature maps by 

moving the filters in smaller steps, capturing more detailed information but increasing the 

computational complexity. Padding is used to preserve the spatial dimensions of the input image 

after convolution (Patterson & Gibson, 2023). Without padding, the size of the feature maps would 

reduce significantly after each convolutional layer, potentially leading to loss of information, 

especially at the edges of the image. Padding allows the convolutional filters to fully engage with 

edge features, ensuring comprehensive coverage of the image and preventing information loss.  

The balance between strides and padding is crucial for the effectiveness of CNNs. Larger strides 

can be useful for quicker processing in applications like real-time image analysis but may 

compromise detail. Smaller strides, while preserving detail, increase computational demands. 

Padding, on the other hand, adds to the computational complexity but is essential for maintaining 

information integrity. 

4.1.5 Weight and Parameter Sharing 

Weight and parameter sharing are foundational concepts in the architecture of CNNs, greatly 

enhancing their efficiency and effectiveness. These principles are particularly crucial in reducing 

the computational complexity and the number of learnable parameters in the network, thereby 
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optimizing the learning process. Weight sharing in CNNs refers to the use of the same weights or 

filters across the entire input image. This contrasts with traditional neural networks, where each 

neuron in a layer has a unique set of weights. By applying the same filter across different parts of 

the image, CNNs can detect the same feature irrespective of its position in the image. This 

approach significantly reduces the number of parameters in the network, leading to a more compact 

model that requires less memory and computational resources. 

Parameter sharing extends this concept across different layers of the network. It allows features 

learned in one part of the network to be used in another, creating a more integrated and efficient 

learning process. This shared learning is beneficial in building hierarchical representations of 

features, from simple to complex, as the data progresses through the network. 

The implementation of weight and parameter sharing in CNNs results in several advantages. It 

enhances the network's ability to generalize from the training data, as the same features are 

recognized regardless of their location in the image. This is particularly important in tasks like 

image recognition and object detection, where the position of the objects can vary. Additionally, 

it simplifies the training process, as there are fewer parameters to learn, leading to faster 

convergence and reduced risk of overfitting. 

4.1.6 Receptive Fields in CNNs 

Receptive fields in CNNs are the regions of the input image that are analyzed by a convolutional 

filter (Zeiler and Fergus, 2014). Receptive fields in CNNs play a critical role in how these networks 

perceive and interpret input data. A receptive field refers to the specific region of the input that 

affects the output of a particular neuron. Understanding the concept of receptive fields is essential 

to grasp how CNNs capture and analyze spatial relationships and contextual information within 

visual data. 

4.1.7 Batch normalization 

Batch normalization is a critical technique in CNNs designed to address the challenge of internal 

covariate shift, which occurs during the training of deep networks. Batch normalization is a 

technique for normalizing the activations of each layer in a neural network.  (Ioffe and Szegedy, 

2015). Internal covariate shift refers to the phenomenon where the distribution of each layer's input 

changes as the parameters of preceding layers are updated during training. This shift can 
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complicate the training process, as the network must continuously adjust to new input distributions. 

Batch normalization tackles this issue by normalizing the inputs to each layer, stabilizing the 

learning environment, and facilitating more efficient training. The process involves two main steps 

(Sarkar et al., 2021): normalizing the batch to a standard distribution, typically a Gaussian with 

zero mean and unit variance, and then applying learned scale and shift transformations. This 

normalization allows for higher learning rates and more stable gradient flow, accelerating the 

training process and improving the network's convergence. Batch normalization also provides a 

slight regularizing effect, potentially reducing the need for other regularization techniques like 

dropout. It enhances the network's ability to generalize from the training data, which is especially 

beneficial in tasks involving large and complex datasets. While batch normalization offers 

considerable benefits, it also presents some challenges. Its effectiveness can depend on the batch 

size, with smaller batches potentially leading to less accurate estimates of the mean and variance. 

Additionally, careful consideration is required when integrating batch normalization into the 

network architecture, particularly in relation to other layers and regularization methods  (Alzubaidi 

et al., 2021). Figure 4 showcases a CNN's detailed architecture, illustrating the layer-by-layer 

processing from input to classification. It highlights how convolution layers extract features, 

pooling layers simplify them, and a fully connected layer makes predictions, identifying vehicle 

brands like Tesla, Honda, and Mercedes.  

Figure 4 CNN detailed architecture 

Source: https://medium.com 
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The continuous research and development in CNN architectures, training techniques, and 

applications suggest a promising future for this technology.   
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4.2 Generative adversarial network (GAN) 

GANs, since their inception in 2014 by Ian Goodfellow and his colleagues, have revolutionized 

the field of DL, offering a novel approach to generative modeling. GANs are a class of ML models 

that are able to learn to generate new data that is similar to the data that they were trained on. They 

are composed of two neural networks: a generator and a discriminator (Goodfellow et al. 2023). 

GANs introduce a unique framework in generative modeling, departing from traditional methods 

that rely on predefined distributions or statistical models. Central to GANs is the adversarial 

process between two neural networks: the generator and the discriminator. This adversarial 

dynamic, where the generator creates synthetic data and the discriminator evaluates its 

authenticity, fosters a competitive yet collaborative environment for model improvement. GANs 

are able to learn a mapping from a latent space to a data space, such that the data generated from 

the latent space is indistinguishable from real data (Goodfellow et al. 2023). In the GAN 

architecture, the generator network aims to produce data indistinguishable from real -world 

samples, while the discriminator strives to differentiate between genuine and synthetic data. This 

adversarial relationship drives both networks to continually improve their functions - the generator 

learning to produce more realistic data and the discriminator becoming better at identifying fakes.  

Since their introduction, GANs have rapidly evolved, expanding their application beyond mere 

image generation to areas like style transfer and conditional generation. This versatility showcases 

their ability to navigate complex data spaces effectively. The adversarial training concept of 

GANs, marked by the minimax game, leads to a convergence where the generator's output is nearly 

indistinguishable from real data. 

 

Architectural advancements in GANs, such as Deep Convolutional GANs (DCGANs) and 

Wasserstein GANs (WGANs), address specific challenges like training stability and scalability. 

DCGANs have been shown to be able to generate realistic images of faces, objects, and scenes  

(Radford et al. 2015). These innovations enhance the practical utility of GANs, expanding their 

application scope. GANs have demonstrated remarkable prowess in tasks like image synthesis, 

style transfer, and controlled generation based on specific attributes, illustrating their wide-ranging 

utility. Despite their success, GANs face challenges such as mode collapse and training stability 

issues. Ethical concerns, particularly related to deepfake content and biases in generated data, also 

pose significant challenges, emphasizing the need for responsible use of this technology. The 
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future of GANs is rich with potential, promising advancements in unsupervised learning and novel 

applications in diverse fields like healthcare and virtual reality. As GANs continue to advance, 

they offer a glimpse into a future where machines can not only analyze but also creatively 

contribute to the vast tapestry of human knowledge and experience. Figure 5 illustrates the GAN 

architecture, where a generative network G creates images from a latent space, which a 

discriminative network D then classifies as real or fake. 

Figure 5 GAN Architecture

Source: https://medium.com 

4.2.1 The Adversarial Framework: Generator vs. Discriminator 

This adversarial framework forms the crux of GANs, facilitating a dynamic process of synthetic 

data generation and evaluation. This section delves into the intricate dynamics of the generator and 

discriminator, their functions, and the symbiotic relationship that underpins the effectiveness of 

GANs. In the GAN architecture, the generator functions as the creative force, tasked with 

producing synthetic data indistinguishable from real-world samples. Starting with random noise, 

it learns to emulate the intricate patterns and structures present in the training data. The generator's 

learning journey is iterative; it continuously refines its output based on feedback from the 

discriminator, striving to create increasingly realistic and diverse samples. Counterbalancing the 

generator is the discriminator, whose role is to differentiate between real and synthetic data. 

Trained on both genuine and generated samples, it sharpens its ability to discern subtle differences 
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that mark data as real or fake. The discriminator’s task resembles that of a discerning critic, 

challenging the generator by exposing the flaws in the synthetic data and driving the generator to 

refine its technique further. The relationship between the generator and discriminator is often 

likened to a minimax game, where both networks are in a constant state of competition and 

adaptation. The generator aims to minimize its “tells” or giveaways, while the discriminator 

maximizes its ability to detect these tells. These competitive dynamics forms a feedback loop, 

propelling both networks toward greater sophistication and capability. 

 

The adversarial interplay is not static but evolves as the networks train and improve. This symbiotic 

relationship fosters the development of both networks, leading to the generation of high-quality 

synthetic data. Despite its innovative approach, the GAN framework faces challenges like mode 

collapse, where the generator produces limited varieties of outputs, and issues with training 

stability. Achieving a balance where neither the generator nor the discriminator becomes dominant 

is crucial for effective GAN training. This balancing act requires meticulous hyperparameter 

tuning, innovative architectural choices, and effective loss function design. Figure 6 shows early 

MNIST images generated by an untrained GAN model, reflecting the initial steps towards learning 

digit representation. 



24 

 

Figure 6 MNIST image output of untrained GAN model

Source: Author’s work 

4.2.2 Training Dynamics: The Minimax Game 

GANs operate under a complex and strategic optimization framework, often likened to a minimax 

game. This adversarial interplay between the generator and discriminator forms the core of GAN 

training dynamics, leading to the generation of synthetic data that  is increasingly difficult to 

distinguish from real-world samples. This section explores the intricacies of the minimax game, 

focusing on its role in the training process and the challenges it presents in terms of stability and 

convergence in GANs. The generator's aim in this game is to minimize the likelihood that its 

generated samples are identified as fake. Its goal is to fool the discriminator into classifying its 

generated samples as real. 

Conversely, the discriminator acts as a judge, tasked with distinguishing between real data and the 

fakes produced by the generator. It learns to identify subtle cues and characteristics that 
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differentiate genuine data from synthetic creations. The discriminator's role is crucial in guiding 

the generator towards producing more realistic data, as it provides direct feedback on the quality 

of the generated samples. The goal of the minimax game in GAN training is to reach a point of 

convergence where the generator produces data so realistic that the discriminator cannot reliably 

distinguish it from actual data. Achieving this equilibrium is challenging and marks the successful 

culmination of the adversarial training process. Training GANs is often fraught with challenges, 

primarily due to the delicate balance required in the minimax game. Additionally, GANs can suffer 

from training instability, where the networks fail to converge, resulting in poor quality generated 

data. Addressing these challenges involves careful tuning of the network’s hyperparameters, 

thoughtful architectural choices, and the design of effective loss functions. Researchers 

continuously explore new strategies to stabilize the training process, such as modifying the 

architecture or incorporating different loss functions. The minimax game is a fundamental aspect 

of GANs that drives innovation in generative modeling. Its ability to create a competitive yet 

collaborative learning environment leads to the generation of high-quality, diverse synthetic data. 

The field of DL advances, the strategies to optimize the minimax game continue to evolve, paving 

the way for more stable, efficient, and effective generative models. This ongoing refinement of the 

adversarial framework underscores the vibrant and transformative nature of GANs in the broader 

landscape of artificial intelligence. Figure 7 displays the MNIST digits as generated by a GAN 

after 20 epochs, showing the model's progress in learning to create recognizable handwritten digits. 
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Figure 7 GAN generated output of MNIST after 20 epochs.

 

Source: Author’s work 

4.2.3 Loss Functions: Adversarial Loss and Beyond 

The success of GANs is largely influenced by the design and implementation of their loss 

functions. At the core is adversarial loss, typically represented as binary cross-entropy[], which 

measures the generator's success in fooling the discriminator. However, the effectiveness of GANs 

extends beyond just adversarial loss, encompassing a range of auxiliary loss functions that address 

specific training challenges like mode collapse and instability. 

Adversarial loss is central to the functioning of GANs, encapsulating the essence of the adversarial 

relationship between the generator and discriminator. Formulated as binary cross-entropy 

BCE(y_true, y_pred) = - (y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred)), 

this loss function quantifies the generator’s ability to deceive the discriminator. For the generator, 
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minimizing this loss indicates improved proficiency in generating realistic samples. To enhance 

training stability and output diversity, GANs often incorporate auxiliary loss functions:  

 

Feature Matching Loss: To combat mode collapse, where the generator produces limited 

varieties of outputs, feature matching loss encourages the generator to produce diverse samples by 

matching the statistical features of real data.  

Gradient Penalty: Commonly used in Wasserstein GANs, gradient penalty adds regularization to 

stabilize training. It penalizes the gradient norm of the discriminator’s output[formula] with respect 

to its input, smoothing the learning curve and aiding convergence. 

Conditional Losses: In scenarios requiring controlled generation, such as synthesizing images 

with specific attributes, for instances conditional loss functions guide the generator toward desired 

outputs, enhancing GANs adaptability for various applications. As illustrated in Figure 8, the GAN-

generated output of MNIST figures demonstrates the model's performance after 200 training 

epochs. 

 

The combined application of adversarial and auxiliary loss functions in GANs forms a 

sophisticated framework. Adversarial loss sets the fundamental adversarial dynamic, while 

auxiliary losses introduce nuanced controls and constraints, harmonizing to produce a stable and 

effective training environment. Innovations in loss function design continue to emerge, reflecting 

the ongoing exploration for optimal configurations that enhance GANs performance. The strategic 

implementation of loss functions significantly impacts GANs effectiveness in practical 

applications. For instance, in image synthesis where diverse and realistic outputs are crucial, finely 

tuned loss functions ensure the generation of high-quality images. In more controlled synthesis 

tasks, like[] conditional loss functions enable GANs to tailor outputs according to specific 

criteria[], broadening their applicability across various domains. 

 

The formulation of loss functions in GANs is not straightforward. Balancing adversarial and 

auxiliary losses, fine-tuning hyperparameters, and managing the trade-offs between stability and 

diversity require innovation in loss function design are imperative to overcome these challenges[]. 

As GAN technology continues to evolve, the exploration of new loss function formulations[] and 

strategies[] will remain a key area of focus, driving forward the capabilities of these powerful 
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generative models in various fields of artificial intelligence. Figure 8 displays the MNIST digits as 

generated by a GAN after 200 epochs, showing the model's progress in learning to create 

recognizable handwritten digits. 

 

Figure 8 GAN generated output of MNIST figures after 200 epochs 

Source: Author’s work 

4.2.4 Applications: Image Synthesis, Style Transfer, and Beyond 

This section explores the extensive and transformative applications of GANs, from their role in art 

and fashion to their impact on image manipulation and beyond. One of the fundamental 

applications of GANs is in the field of image synthesis (Bylinski et al ., 2022). GANs excel at 

generating images that are often indistinguishable from real photographs, impacting areas like 
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computer vision, gaming, and virtual reality (Liu et al., 2022). In these domains, GANs can create 

varied and high-fidelity images, facilitating the production of realistic visual environments (Liu et 

al., 2022). These capabilities are particularly useful in generating training datasets for computer 

vision tasks (Bylinski et al., 2022) or creating synthetic environments for immersive experiences 

(Liu et al., 2022). 

In the domain of art and design, GANs have revolutionized the concept of style transfer (Li et al., 

2021). This application enables the blending of artistic styles from one image to another, leading 

to the creation of visually compelling compositions (Li et al., 2021). GANs adeptly extract and 

transfer stylistic elements, allowing for seamless artistic integration (Li et al., 2021). This has 

significant implications in fields like graphic design, multimedia production, and digital art, 

illustrating GANs' potential in artistic and aesthetic manipulation (Sheng et al., 2022). 

 

The advent of Conditional GANs (cGANs) (Bao et al., 2022) introduced a significant shift, 

allowing for the generation of content based on specific attributes or conditions. This directed 

generation capability of cGANs empowers users to manipulate and specify various aspects of the 

generated output, extending their utility to personalized content creation (Ulyanov et al., 2022), 

image editing (Yang et al., 2022), and the development of specialized datasets for niche 

applications (Bao et al., 2022). In super-resolution tasks, cGANs have shown remarkable 

effectiveness. They are employed to generate sharper and more detailed versions of low-resolution 

images, a feature invaluable in fields such as medical imaging (Bao et al., 2022), surveillance 

(Yang et al., 2022), and media content enhancement (Yang et al., 2022). 

 

One of the more controversial applications of GANs is in the creation of deepfakes - highly realistic 

(Bao et al., 2022) and often deceptive multimedia content (Ulyanov et al., 2022). While this 

technology raises significant ethical concerns (Yang et al., 2022), it underscores the advanced 

capabilities of GANs in synthesizing lifelike and contextually accurate content (Bao et al., 2022). 

This application has sparked discussions about the need for robust digital authentication (Ulyanov 

et al., 2022) and ethical considerations in the development and deployment of AI technologies 

(Yang et al., 2022). 
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4.2.5 Challenges and Limitations: Mode Collapse, Training Stability 

A critical issue in GANs is mode collapse, where the generator becomes limited to producing a 

narrow range of outputs. This restricts the variety and realism of generated samples, undermining 

the GAN's ability to represent the full diversity of the input data distribution (Liu et al., 2021). 

Addressing mode collapse is complex, often involving modifications to loss functions (Li et al., 

2022), introducing regularization techniques (Luo et al., 2021), or adjusting training 

methodologies (Jeon et al., 2020). Despite progress, maintaining a balance between stability and 

diversity in GAN outputs remains an intricate and ongoing challenge (Chen et al., 2023). 

 

The adversarial nature of GANs, conceptualized as a minimax game, inherently brings challenges 

of training stability. Achieving a stable equilibrium in this adversarial setup is delicate, with risks 

of oscillations or divergence during training. Solutions include optimizing hyperparameters, 

modifying network architectures, and employing techniques like gradient clipping and 

Wasserstein loss (Gulrajani et al., 2017). These efforts aim to stabilize the training process, 

ensuring that GANs can effectively learn and generate complex data patterns. 

 

Another concern with GANs is the potential for biases in the generated data, reflecting the biases 

present in the training datasets (Buo et al., 2022). These biases can manifest in various forms, such 

as gender, racial, or socioeconomic biases, and can impact the fairness and inclusivity of the 

generated content (Xu et al., 2022). Tackling biases involves scrutinizing training datasets (Buo et 

al., 2022), incorporating fairness constraints (e.g., demographic parity), and developing bias-aware 

metrics (Xu et al., 2022). This effort is crucial to ensuring GANs produce ethically sound and 

inclusive outputs. As GAN technology evolves, addressing its challenges necessitates a holistic 

approach, encompassing technical, ethical, and societal considerations. 
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4.3 Autoencoders 

AEs, a class of neural networks were first introduced in the 1980s, but they have recently become 

more popular due to advances in DL (Rumelhart et al., 1986). Initially resembling simple, single-

layer networks akin to Principal Component Analysis(PCA) but with nonlinearity, they were 

primarily used for dimensionality reduction. Progress in computational power and training 

techniques like backpropagation enabled the creation of deeper, more complex autoencoder 

architectures. A key advancement was the introduction of stacked AEs, consisting of multiple 

layers, each learning increasingly abstract representations. This led to efficient training 

methodologies and better feature extraction capabilities. The emergence of VAEs in 2013 further 

broadened the utility of AEs. By integrating probabilistic elements, VAEs ventured into generative 

modeling, expanding applications to include image generation and anomaly detection. Today, AEs 

are versatile tools, employed in noise reduction, feature extraction, unsupervised clustering, and 

generative modeling. This evolution underscores their adaptability and relevance in the changing 

landscape of ML (Kingma and Welling, 2013). 

 

Unsupervised learning, a paradigm focusing on pattern discovery in unlabeled data, is crucial in 

modern ML. AEs, as unsupervised learning models, are significant for their efficiency in learning 

data representations. By compressing and reconstructing input data, they capture essential features 

and patterns, often revealing the intrinsic structure of datasets. Their ability to function without 

labeled data makes AEs invaluable in scenarios where labeling is impractical. Or when labeled 

data is scarce. AEs occupy a unique position in ML, bridging dimensionality reduction techniques 

and complex generative models. In feature learning and dimensionality reduction, AEs aid in data 

visualization, noise reduction, and facilitate training of complex models by providing reduced 

feature spaces. Variants like VAEs contribute to synthetic data generation and data diversity 

enhancement. In anomaly detection, they identify outliers by efficiently reconstructing normal 

data, crucial in fraud detection and cybersecurity. The integration of AEs with architectures like 

CNNs has resulted in hybrid models excelling in image processing tasks. The latent space 

interpretability of AEs offers insights into data characteristics and model behavior. Figure 9 

diagram represents the architecture of an autoencoder (AE), which is a type of artificial neural 
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network used for unsupervised learning. An autoencoder consists of three main components: 

Encoder, bottleneck and decoder. 

Figure 9 AEs architecture 

 

Source: https://medium.com  

4.3.1 Architecture and Components: Encoder, Decoder, and Bottleneck Layer 

AEs are characterized by their unique architecture comprising three key components: the encoder, 

the decoder, and the bottleneck layer. The encoder primary function is to transform the input data 

into a compressed representation. This process involves a series of transformations that gradually 

reduce the data's dimensionality. The encoder typically consists of a stack of layers, each 

progressively abstracting the input data into a higher-level representation. In the case of a simple 

autoencoder, these layers are often fully connected neural networks, although more complex 

variants may use convolutional layers, particularly for image data. Each layer in the encoder 

applies a transformation, which is typically a linear operation followed by a non-linear activation 

function. Common activation functions used in encoders include sigmoid, hyperbolic tangent 

(tanh), and Rectified Linear Units (ReLU). The choice of activation function can significantly 

affect the encoder's ability to capture complex patterns in the data. As the input data passes through 

these layers, it is transformed into a lower-dimensional space. This transformation is not a mere 

compression; it is a learning process where the network identifies and retains the most salient 

features of the input. 
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The bottleneck layer, or latent space, is the heart of the autoencoder architecture. Located between 

the encoder and decoder, this layer represents the compressed knowledge that the autoencoder has 

learned about the input data. The dimensionality of this layer is a critical parameter, as it 

determines the level of compression and the amount of information that can be retained during the 

encoding process. In simple terms, the bottleneck layer is where the encoder's output is compressed 

to the lowest dimensionality. It holds the encoded representation (or latent representation) of the 

input data. This representation is what the decoder will use to reconstruct the original input.  

The design of the bottleneck layer is crucial. Too few neurons, and the network may not capture 

enough information to reconstruct the input accurately. While, too many neurons can lead to 

overfitting. The decoder is the final component of the autoencoder architecture. Its role is to 

reconstruct the original input data from the compressed representation provided by the bottleneck 

layer. 

 

The decoder's layers typically use the same types of transformations as the encoder (linear 

operations followed by non-linear activations). However, the process is reversed; each layer in the 

decoder increases the representation's dimensionality, working towards reconstructing the original 

input data. The output of the decoder is a reconstruction of the original input. The quality of this 

reconstruction is dependent on how well the encoder and bottleneck layers have captured the 

essential features of the input data. 

The architecture of AEs, presents a powerful and elegant approach to learning efficient 

representations of data. Understanding the intricacies of each component and their interplay is 

crucial for leveraging the full potential of AEs in various ML tasks. The careful design and tuning 

of each part determine the success of an autoencoder in effectively learning and reconstructing 

data. Denoising AEs learn efficient feature representations that can be used for dimensionality 

reduction and noise reduction (Goodfellow et al., 2023). 

4.3.2 Lost Function: Minimizing Reconstruction Error 

The objective of training AEs is to minimize the reconstruction error. This error quantifies the 

difference between the original input data and its reconstructed version, produced after the data 

has been encoded and then decoded. Reconstruction error is the measure of how well the 
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autoencoder can reproduce the input data after compressing and decompressing it. The goal is to 

minimize this error, ensuring that the reconstructed output retains the essential characteristics of 

the original input. This error is a direct reflection of how effectively the autoencoder has learned 

the underlying data structure. 

The most employed lost function in AEs is the Mean Squared Error (MSE), calculated as the 

average of the squares of the differences between the original and reconstructed values. This loss 

function effectively penalizes large discrepancies between the original and reconstructed data, 

driving the autoencoder to learn a more accurate representation.  

4.3.3 Types of AEs: Variational, Denoising, and Sparse AEs 

AEs, in their versatility, have evolved into various forms, each designed to address specific 

challenges and tasks in the field of ML. Among the most prominent are VAEs, Denoising AEs, 

and Sparse AEs. VAEs are a type of autoencoder that learns a probabilistic distribution over the 

latent representation, which allows them to generate new data that is more realistic than traditional 

AEs (Pham et al., 2014). VAEs stand out due to their integration of probabilistic approaches into 

the autoencoder architecture. Unlike standard AEs, which generate a fixed encoded representation. 

In a VAE, the encoder outputs a mean and a variance for each latent attribute, representing a 

probability distribution from which the latent representation is sampled. The decoder then 

reconstructs the output from this sampled representation. This approach allows VAEs to learn a 

continuous, smooth latent space, facilitating the generation of new data points that are variations 

of the training data. 

 

The training of VAEs involves optimizing not just the reconstruction error but also a regularization 

term. This term, often referred to as the Kullback-Leibler (KL) divergence, ensures the learned 

distribution remains close to a predefined prior distribution, typically a Gaussian. This 

regularization imparts robustness and generalizability to the model. Denoising AEs are designed 

to enhance data robustness by learning to reconstruct clean data from corrupted inputs. They are 

trained by feeding noisy data as input and clean data as the target output. Through this process, the 

network learns to identify and discard the noise, effectively extracting the underlying clean data 

representation. The capability to recover clean data from noisy inputs makes Denoising AEs 

particularly useful in applications like image denoising, data preprocessing, and even in domains 
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like bioinformatics, where data is often corrupted by various forms of noise. By learning the stable 

structures underlying the noisy input, these AEs enhance the reliability and quality of the data 

processing pipeline. 

 

Sparse AEs are characterized by the imposition of sparsity constraints on the latent representation. 

The idea is to encourage the network to represent the input data using a small number of active 

neurons in the bottleneck layer, leading to a sparse representation. This sparsity constraint can be 

achieved through regularization techniques, which penalize the activation of too many neurons.  

The sparse nature of these AEs helps in identifying the most salient features of the data, thus 

enhancing feature selection and data interpretation. Sparse AEs find applications in areas like 

unsupervised feature learning, dimensionality reduction, and even in compressive sensing, where 

the goal is to recover high-dimensional data from limited observations. AEs can be used for a 

variety of tasks, including dimensionality reduction, noise reduction, and feature extraction 

(Bengio et al., 1994).  

4.3.4 Unsupervised Learning: Extracting Latent Features Without Labels 

Unlike supervised learning, where models learn from labeled data, unsupervised learning thrives 

on the exploration of data without predefined labels or classes. AEs, in this context, are 

instrumental in extracting latent features, revealing patterns, anomalies, and intrinsic relationships 

within datasets. AEs, by design, are self-supervised networks that learn to reconstruct their input. 

The learning process revolves around encoding the input into a lower-dimensional latent space and 

then decoding it back to its original form. This encoding-decoding mechanism compels the 

network to capture the most significant features of the data in the latent space. 

 

One of the primary applications of AEs in unsupervised learning is pattern recognition. By learning 

the normal patterns in the data, AEs can identify deviations or anomalies. For instance, in fraud 

detection, an autoencoder trained on normal transaction data can detect fraudulent transactions as 

outliers that deviate significantly from the learned pattern. In image processing, AEs can learn to 

identify common features across a set of images, useful in tasks like image clustering or 

segmentation. Similarly, in text analysis, they can capture semantic patterns in large corpora of 

text, aiding in natural language processing tasks like topic modeling or sentiment analysis.  By 
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extracting meaningful features without the need for labeled datasets, AEs reduce the reliance on 

expensive and time-consuming data labeling processes. Furthermore, the feature extraction 

capability of AEs aids in dimensionality reduction, making data more manageable and 

interpretable. This aspect is particularly beneficial in fields like bioinformatics (Rajeswar et al., 

2019). 

4.3.5 Challenges and Limitations: Overfitting, Training Stability, and Interpretability 

AEs, despite their versatility and utility in various ML tasks, are not devoid of challenges and 

limitations. Key issues such as overfitting, training stability, and interpretability of learned 

representations often hinder their efficacy. Overfitting is a common issue where the autoencoder 

learns the training data too well, including its noise and anomalies, leading to poor generalization 

to new data. This issue is particularly pronounced when the autoencoder has too many parameters 

relative to the size of the training data, allowing it to memorize the input rather than learning to 

generalize from it. 

 

To combat overfitting, several strategies are employed. Regularization techniques such as L1 or 

L2 regularization penalize the complexity of the model, discouraging it from learning overly 

complex or specific patterns. Another effective approach is Dropout, which randomly disables a 

fraction of neurons during training, forcing the network to learn more robust features. Additionally, 

techniques like data augmentation, where the training data is artificially expanded by introducing 

variations, can help the model generalize better. Training stability refers to the model's ability to 

converge to a solution without diverging or getting stuck in local optima. AEs, especially deep or 

complex ones, can suffer from unstable training dynamics, often attributed to factors like 

inappropriate initialization, suboptimal architecture design, or inadequate training regimes.  

Addressing training stability involves careful selection of network architecture and 

hyperparameters. Proper initialization techniques, such as Xavier or Him initialization, can provide 

a good starting point for learning. Additionally, employing adaptive learning rate optimizers like 

Adam or RMSprop can significantly enhance training stability by adjusting the learning rate based 

on the training dynamics. The interpretability of the representations learned by AEs is crucial, 

especially in applications requiring a clear understanding of model decisions, such as in healthcare 

or finance. However, the latent space of AEs, particularly in deep or complex models, can be 
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difficult to interpret, making it challenging to understand what features the model is capturing and 

how they relate to the input data. Efforts to improve interpretability include techniques like 

dimensionality reduction and visualization of the latent space, which can provide insights into the 

data structure and feature relationships. Additionally, models like VAEs, which learn probabilistic 

representations, can offer more interpretable latent spaces by design. Research into explainable AI 

also contributes to this field, developing methods to make ML models, including AEs, more 

transparent and understandable. 

While AEs are a powerful tool in the ML arsenal, addressing their inherent challenges is crucial 

for maximizing their effectiveness. Strategies to mitigate overfitting, enhance training stability, 

and improve interpretability are essential in developing robust and reliable autoencoder models. 

Understanding and tackling these issues not only strengthens the performance of AEs but also 

broadens their applicability across various domains, ensuring their continued relevance in the ever-

evolving field of ML. 

4.3.6 Future Directions: Advancements, Hybrid Architectures, and Industry Impact 

The realm of DL is in a constant state of evolution, and AEs, as a fundamental component, are at 

the forefront of this transformative journey. The future of AEs is marked by continuous 

advancements, the emergence of hybrid architectures, and expanding impacts across various 

industries. AEs have been successfully applied to a variety of medical imaging tasks, such as image 

segmentation, image reconstruction, and classification (Zhang et al., 2016). This section delves 

into the prospective directions for AEs, highlighting emerging trends, potential breakthroughs, and 

their growing influence in diverse domains. The ongoing advancements in autoencoder technology 

are driven by the need to handle increasingly complex and voluminous data. One area of 

development is in enhancing the efficiency and scalability of AEs, enabling them to process large-

scale datasets more effectively. This involves optimizing the computational efficiency of AEs, 

either through architectural improvements or by leveraging advanced hardware accelerators like 

GPUs and TPUs. 

Another significant advancement is the integration of AEs with cutting-edge technologies such as 

reinforcement learning and federated learning. This integration paves the way for more 

sophisticated applications, like personalized recommendation systems and privacy-preserving data 

analysis, where AEs can learn from decentralized data sources without compromising data privacy. 
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Hybrid architectures represent a promising frontier in the evolution of AEs. These architectures 

combine AEs with other neural network paradigms to harness the strengths of multiple approaches. 

For example, integrating AEs with CNNs has led to powerful models for image analysis, capable 

of handling complex tasks like feature extraction and image reconstruction simultaneously. 

 

Another emerging trend is the fusion of AEs with GANs to create more robust and versatile 

generative models. This hybrid approach allows for the generation of high-quality, realistic 

synthetic data, which can be instrumental in training models where real data is scarce or sensitive.  

AEs are finding their way into a myriad of industries, transforming operations, and enabling new 

capabilities. In healthcare, they are being used for tasks such as anomaly detection in medical 

imaging and drug discovery, where they can identify patterns in complex biological data. In 

finance, AEs assist in fraud detection and risk management by uncovering subtle, non-obvious 

patterns in transactional data. The field of autonomous vehicles also benefits from AEs, 

particularly in the processing and interpretation of sensor data. By compressing and reconstructing 

sensory inputs, AEs aid in creating more efficient and accurate perception systems for these 

vehicles. The future of AEs is vibrant and multifaceted, with ongoing advancements, the 

emergence of hybrid architectures, and expanding industry impacts. As the field of DL continues 

to progress, AEs will likely play an important role in driving innovation and enabling new 

applications. Their ability to adapt and integrate with other technologies positions them as a key 

component in the advancing landscape of artificial intelligence, with potential impacts that span 

across a wide array of sectors. This ongoing evolution not only underscores the versatility of AEs 

but also highlights their potential to contribute significantly to various aspects of industry and 

technology. 

 

AEs stand as versatile and powerful tools in the realm of neural networks, offering a unique 

approach to unsupervised learning, data compression, and feature extraction. From their 

foundational architecture to diverse applications, the scientific exploration of AEs provides a 

comprehensive understanding of their capabilities, challenges, and potential contributions to the 

ever-evolving landscape of artificial intelligence.  
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5 Augmenting Datasets 

In the dynamic field of ML, dataset augmentation is a critical practice, akin to enriching the soil 

for robust model growth. It plays an important role in enhancing model robustness and generalizing 

capabilities by diversifying the training data. This section delves into the scientific principles, 

methodologies, and applications of dataset augmentation, underscoring its importance in 

surmounting data scarcity, bolstering model performance, and navigating challenges in diverse 

domains. 

 

Dataset augmentation is grounded in the principle of exposing models to a wider array of input 

variations, thereby enabling them to learn more generalizable patterns. By artificially expanding 

the dataset through various transformation techniques, augmentation creates a more 

comprehensive representation of the possible input space. This expanded dataset helps in reducing 

overfitting. The methodologies of dataset augmentation vary significantly across data types. In 

image data, common techniques include geometric transformations (like rotation, scaling, 

cropping), color space augmentations (like brightness and contrast adjustments), and more 

sophisticated methods such as applying synthetic occlusions or using GANs for generating new 

images. For text data, augmentation strategies involve synonym replacement, random insertion, 

deletion, or swapping of words, and more complex approaches like using language models for 

sentence paraphrasing. In the audio domain, common techniques include altering pitch and speed, 

adding background noise, or varying the audio length. Each of these methods aims to mimic the 

variability present in real-world scenarios, preparing the model for diverse situations and inputs. 

In autonomous vehicles, augmented datasets help in creating robust models that can understand 

and navigate diverse environmental conditions. By generating synthetic data samples, 

augmentation techniques allow for the training of effective models even when actual data is 

limited. 

 

Dataset augmentation stands as a cornerstone in the development of robust and generalizable ML 

models remains an essential tool, enabling models to adapt and perform effectively in the ever -

changing landscape of data and applications. Dataset augmentation can be performed using 

libraries such as scikit-image and imgaug (Chollet & Allaire 2016). Figure 10 illustrates an example 
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of data augmentation where multiple, slightly varied images of a cat are generated from a single 

original photo to enhance a dataset. 

Figure 10 An example of augmented datasets 

Source: https://medium.com 

5.1 Transformative Techniques in Image Data Augmentation 

In the realm of computer vision, image data augmentation is a fundamental practice, pivotal to 

enhancing the performance of ML models. The quality and diversity of training images have a 

direct and profound impact on a model's ability to recognize, classify, and understand visual 

information. Transformative techniques in image data augmentation encompass a broad spectrum 

of operations, each contributing to the enrichment of the dataset and thereby bolstering the model's 

capabilities to function under diverse conditions. The foundational techniques of image data 

augmentation include operations like rotation, scaling, flipping, and translation. Rotation alters the 

orientation of images, enabling models to recognize objects irrespective of their angular 

positioning. Scaling adjusts the size of objects within images, teaching the model to identify 

objects regardless of their scale. Flipping, both horizontal and vertical, introduces a mirror -like 

variation, while translation shifts the position of objects within the frame. These transformations 

are essential in training models to develop invariance to such common variations, a critical aspect 

of real-world visual perception. Beyond these basic transformations, advanced techniques in image 
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augmentation add layers of complexity and realism to the training data. Elastic deformations, for 

instance, simulate the natural distortions objects might undergo, making models resilient to shape 

variations. Perspective transformations adjust the viewpoint from which an object is seen, a crucial 

factor in applications like drone imagery or surveillance systems. Color augmentations alter the 

hues, saturation, and brightness of images, reflecting the varying lighting conditions an object 

might be subjected to in real life. Such color modifications are particularly significant in scenarios 

where color perception is vital, such as in medical imaging or quality control processes in 

manufacturing. 

 

The incorporation of these diverse augmentation techniques results in training datasets that are rich 

in variations and nuances, closely mirroring the complexities of the real world. This diversity is 

instrumental in training models that are not only accurate in ideal conditions but also robust and 

adaptable in diverse, and often challenging, environmental settings. The ability of models to 

discern intricate patterns and adapt to a wide range of scenarios is especially crucial in tasks like 

image classification, object detection, and image segmentation. In image classification, augmented 

datasets help models in accurately categorizing images across varied styles and conditions. In 

object detection and segmentation, these techniques aid in the precise localization and delineation 

of objects, regardless of their orientation, scale, or environmental context. 

5.2 Text Data Augmentation: Beyond Words and Sentences 

In the nuanced field of natural language processing (NLP), text data augmentation plays a crucial 

role in enhancing the performance and versatility of models. Unlike image data, where spatial and 

color transformations are key, text data augmentation involves manipulating linguistic elements to 

introduce diversity while maintaining the integrity of the underlying meaning. Traditional methods 

in text data augmentation focus on altering words and sentence structures to generate new textual 

variations. These include synonym replacement, where words are substituted with their synonyms, 

preserving the sentence's overall meaning. Paraphrasing involves rewording sentences while 

keeping the original intent, introducing syntactic diversity. Back translation, another common 

technique, involves translating a sentence into another language and then translating it back to the 

original language, often resulting in subtle semantic changes. 
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While these techniques are relatively straightforward, they come with the challenge of maintaining 

coherence and context. Synonym replacement, for instance, must consider word connotations and 

context to avoid altering the intended meaning. Paraphrasing requires a nuanced understanding of 

syntax to ensure the new sentence structures convey the same message as the original.  Recent 

advancements in text data augmentation leverage sophisticated pre-trained language models like 

BERT (Bidirectional Encoder Representations from Transformers) and GPT (Generative Pre-

trained Transformer). These models, trained on extensive text corpora, have a deep understanding 

of language nuances and can generate contextually relevant text augmentations. For example, 

BERT's deep understanding of contextual relationships within sentences allows it to perform 

targeted word replacements or insertions that are contextually appropriate. GPT, with its 

generative capabilities, can extend or modify sentences in a way that is coherent with the preceding 

text. These advanced models go beyond simple word or sentence alterations; they capture the 

contextual dependencies and subtleties in language, enabling the creation of diverse yet 

contextually coherent text instances. This is particularly crucial in maintaining the quality and 

usability of augmented text data. 

 

Text data augmentation is instrumental in various NLP tasks. In sentiment analysis, augmented 

datasets help models understand and interpret a broader range of expressions and linguistic 

nuances, enhancing their accuracy in identifying sentiments. For text classification, augmentation 

ensures that the models are trained on a wide variety of textual representations, improving their 

ability to categorize text correctly under different contexts. In language modeling, where the goal 

is to predict the next word or sequence of words, augmented datasets provide a richer training 

environment.  

Text data augmentation, with its blend of traditional and advanced techniques, is a cornerstone in 

building effective NLP models. By enriching the training data with diverse linguistic expressions 

and structures, it empowers models to better understand and process language. As NLP continues 

to evolve, the role of text data augmentation in developing sophisticated, context-aware models 

becomes increasingly significant, marking its indispensable place in the advancement of natural 

language understanding and generation. 
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5.3 Audio Data Augmentation: Harmonizing Variations 

The unique characteristics of audio data, such as pitch, tempo, and background noise, significantly 

influence the performance of models designed to interpret and analyze sound (Smith, 2021). The 

cornerstone of audio data augmentation lies in its ability to simulate real-world acoustic variations 

(Wilson, 2023). Key logic techniques include: Pitch shifting (Wilson, 2023), Time stretching 

(Wilson, 2023), Adding background noise (Martinez, 2022), and Volume adjustments (Roberts, 

2021). 

For sound classification tasks, such as identifying different environmental sounds or diagnosing 

mechanical failures through sound analysis, augmentation helps models discern subtle audio cues 

in complex auditory landscapes. Music Analysis: In music analysis, augmentation prepares models 

to analyze and categorize music across genres, instruments, and recording conditions, enhancing 

their applicability in the music industry. Audio data augmentation, with its array of techniques, 

serves as a critical enabler in the field of audio-based ML. By introducing realistic and varied 

acoustic conditions, these techniques prepare models to perform effectively and accurately in real -

world scenarios. The advancement and application of audio data augmentation are integral to 

developing sophisticated, context-aware models capable of navigating the intricate world of sound, 

making it an indispensable tool in the evolution of audio processing and analysis. 

5.4 Future Directions: Towards Dynamic and Adaptive Augmentation 

As the landscape of ML continues to evolve, the future of dataset augmentation is increasingly 

moving towards more dynamic and adaptive approaches. This paradigm shift from static, pre-

defined augmentation strategies to more flexible and responsive methods is poised to significantly 

enhancement of ML models efficiency. In this context, dynamic and adaptive augmentation 

represents an exciting frontier, with the potential to revolutionize how models are trained and how 

they adapt to new and evolving data environments. Traditional dataset augmentation has largely 

been static, involving a predetermined set of transformations applied uniformly across the dataset. 

However, the traditional approach, while beneficial, often fails to account for the nuances and 

specific requirements of individual data instances or changing data distributions. Dynamic 

augmentation is a more tailored approach, where augmentation strategies are adjusted in real-time, 

responding to the model's learning progress and the specific characteristics of each data instance.  
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This dynamic approach allows for a more nuanced and effective training process. For instance, a 

model struggling to recognize a particular feature in an image might receive more augmented 

examples of that feature, facilitating focused learning where it is needed. Adaptive augmentation 

takes this concept further, integrating the augmentation process with the learning model itself. In 

this scenario, the model actively participates in its own training process, determining how and 

when to augment data based on its current performance and learning objectives. This can be 

achieved through reinforcement learning algorithms or other feedback mechanisms where the 

model’s performance on certain tasks informs the augmentation strategy. 

Such an approach ensures that augmentation is not just a pre-processing step but an integral part 

of the learning process, continuously adapting to the model's evolving needs. It allows the model 

to be exposed to a broader and more relevant range of variations, enhancing its resilience and 

ability to generalize to new, unseen data. Dynamic and adaptive augmentation strategies have the 

potential to significantly enhance model resilience. By continuously adjusting to the model's 

learning trajectory and the ever-changing data landscape, these strategies ensure that models are 

not only trained on a diverse dataset but also remain adaptable to new situations. 

This adaptability is particularly crucial in fields like healthcare, autonomous vehicles, or financial 

forecasting, where models must perform accurately in the face of unpredictable and evolving data. 

Adaptive augmentation ensures that models are better equipped to handle real-world variability 

and complexity. The future directions in dataset augmentation, marked by dynamic and adaptive 

approaches, hold significant promise for the field of ML. By moving beyond static augmentation 

strategies to more flexible and responsive methods bring potential for advancements in how 

models are trained and how they adapt to new data environments. This evolution in augmentation 

techniques is not just about enhancing model performance; it is about fostering models that are 

more intelligent, resilient, and adaptable. As ML continues to advance and permeate life and 

industry, the role of adaptive and dynamic dataset augmentation will be pivotal in shaping more 

robust and versatile AI systems.  
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6 Proposed Methodology 

This section describes main contribution of the thesis. It focuses on two main aspects: 

1. Improving classification accuracy by using augmentation of the dataset for the case when 

amount of real dataset is very limited. 

2. Automatize the verification of manual review after dataset augmentation 

 

The first methodology consists of four distinct methods (M1, M2, M3 and M4), each developed to 

enhance classification accuracy in situations with limited training data.  

 

The second methodology is an image quality assessment method through latent space analysis of 

AEs. This novel aspect aims to automate and systematize the traditionally manual review process, 

ensuring dataset integrity and quality. Empirical validation using benchmark datasets like MNIST 

demonstrates the effectiveness of these methodologies in achieving accurate classification results 

and enhancing image quality assessment. 

6.1 Advancing image classification algorithms with GANs in the context of severe 

dataset scarcity 

In ML and computer vision, especially when there's not much data available. Image classification 

is about assigning labels to images, but it often faces problems like overfitting (model is too 

complex) and underfitting (model is too simple) due to limited data. Traditional ways to solve this 

use a lot of resources and include making more data, learning from existing models, and combining 

different methods. Unlike traditional methods that increase dataset size, GANs generate data 

distributions for each class, enhancing classification of unknown elements by comparing them to 

these distributions. This methodology introduces four methods for estimating conditional 

probabilities for category belonging, specifically designed for scenarios with limited data. 

6.1.1 Common setup 

The main idea of proposed methods of using GANs in a classification task is as follows. Suppose 

we classify vectors 𝑥 𝜖 𝑋  into 𝑘 disjoint classes 𝐶1,  𝐶2 , … , 𝐶𝑘. First, we will create a neural 

network with GAN architecture, see Section 4.2. We then train this network 𝑘 times on the data of 
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individual classes 𝐶𝑖. We thus obtain 𝑘 trained networks 𝐺𝐴𝑁𝑖  , 𝑖 = 1, … , 𝑘 that simulate 

probability distributions of individual classes 𝑃𝐶𝑖
(𝑥). We then use the discriminators of the trained 

networks  𝐺𝐴𝑁𝑖 for classification by inserting the classified vectors 𝑥 into the input of the 

discriminator and treating the output of the discriminator as a probability estimate P(𝑥 𝜖 𝐶𝑖 ) . This 

is the basic way to proceed. 

 

There is another way. When classifying the vector 𝑥 , we first approximate individual probability 

distributions  𝑃𝐶𝑖
(𝑥) by generating a certain number of their realizations and then comparing the 

vector 𝑥 with these approximations. In this work, we have proposed four M1, M2, M3 and M4 

methods by which this comparison can be made. Figure 11 illustrates the training process of the 

GAN network for a specific category 𝐶𝑖 . 

Figure 11 Training of the network 𝑪𝒊 

 

Source: Author’s work 
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6.1.2 Method M1 

This method involves the use of GANs to establish neural networks that simulate probability 

distributions for each category, essential for classification. 

 

The method classifies an unknown vector 𝑥 in the following way: 

1) For each distribution 𝑃𝐶𝑖
(𝑥),  𝑖 = 1, … , 𝑘 the method 

a. Generates vectors 𝑥1,   … ,  𝑥𝑚 with the help of pre-trained 𝐺𝐴𝑁𝑖 for category 𝐶𝑖. 

b. Determines distance values 𝑑1 = |𝑥  − 𝑥1|,   … ,  𝑑𝑚 = |𝑥  − 𝑥𝑚| 

c. Sorts the values  𝑑1,   … ,  𝑑𝑚 in ascending order. 

d. Determines the distance of the unknown element 𝑥 from the category 𝐶𝑖 as follows:  

𝑑(𝑥,𝐶𝑖 ) =  
1

𝐿
∑ 𝑑𝑖

𝐿
𝑖=1  , where 𝐿 is an optional method parameter that specifies the 

number of closest generated vectors to include when calculating the distance. 

e. Finally classifies the unknown vector 𝑥 into that category 𝑗 for which the value 

𝑑(𝑥, 𝐶𝑗 ), 𝑗 = 1,   … ,  𝑘 is the smallest. 

2) Step 1)  𝑁 times repeated.  Let us denote 𝑁i  be a number of times 𝑥 was classified as belong 

to category 𝐶i then 𝑁 = 𝑁1 + ⋯ + 𝑁𝑘 . 

3) The probability for each class 𝐶𝑖 ,  𝑖 = 1, … , 𝑘 is then: 

𝑃(𝐶𝑖) =
𝑁𝑖

𝑁
 

 

Figure 12 illustrates M1 method, simplifying its core principles for better understanding. 
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Figure 12 Illustration of the M1 method concept 

 

Source: Author’s work 

 

Pseudocode 1 describes main steps of the M1 model. It details the use of GANs for vector 

generation, distance-based comparisons, iterative classification, and probability-based decision-

making: 
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Pseudocode 1 Method M1 for classification of an unknown element x 

 

Inputs: 

   k: number_of_classes 

   m: vectors_per_category 

   L: parameter_for_average_distance 

   N: classification_iterations 

   x_bar: unknown_vector 

 

Outputs: 

   category_probability: list of probabilities for each class 

 

# Initialization 

category_counts = array of size k, initialized to 0 

 

# Classification Loop (Repeats N times) 

for iteration = 1 to N: 

    for category_index = 1 to k: 

        # Generate vectors for the current category 

        generated_vectors = trained_GAN[category_index].generate(m)  

 

        # Calculate distances to the unknown vector         

        distances = [] 

        for vector in generated_vectors: 

            distances.append(calculate_distance(vector, x_bar))  

 

        # Determine average distance using L smallest distances 

        distances.sort()   

        average_distance = mean(distances[0:L]) 

 

        # Identify the category with the smallest average distance (for this iteration) 

        closest_category_index = argmin(average_distance)   

 

        # Increment the count for the closest category 

        category_counts[closest_category_index] += 1  

 

# Calculate probabilities 

probabilities = [] 

for category_index = 1 to k: 

    probabilities.append(category_counts[category_index] / N) 

 

# Return results 

return probabilities 

 

# End Method M1 

 

6.1.3 Method M2 

This method integrates the latent space of a VAE into the classification framework, enriching the 

analytical depth. The VAE, trained in conjunction with GAN networks, improves the decision-

making process, enabling more nuanced classifications. 
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It uses the distributions 𝑃𝐶1
(𝑥),   … ,  𝑃𝐶𝑘

(𝑥 ) to train the VAE, see Section 4.3.3, so that it is able, 

after inserting a vector 𝑥 from any category 𝐶1,   … , 𝐶𝑘  into its input to reproduce it on its output. 

The autoencoder can thus simulate the probability distribution. 

  

𝑃𝐶 (𝑥),  𝐶 = 𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝑘 ,  𝐶𝑖 ∩ 𝐶𝑗 = ∅ ,  𝑖, 𝑗 = 1, … , 𝑘 

Note: we assume that X belong to one 𝐶𝑖 

 

We denote the latent space of the autoencoder by 𝑍 . The learned autoencoder first transforms the input 

vector 𝑥  to 𝑧 𝜖 𝑍 and then transforms 𝑧 into the output vector 𝑦 ≗ 𝑥  (see Figure 13). 

 

Figure 13 Variational autoencoder that learns 𝑃𝐶𝑖
(𝑥)

Source: Author’s work 

The method uses method M1 above for classification, but operate an the latest space 𝑍 of the VAE. 

It classifies an unknown vector 𝑥 in the following way: 

1) For each distribution 𝑃𝐶𝑖
(𝑥): the algorithm: 

a. Generates vectors 𝑥1,   … ,  𝑥𝑚 with the help of pre-trained 𝐺𝐴𝑁𝑖 for category 𝐶𝑖. 

b. Determines distance values       𝑑1 = |𝑧 − 𝑧1|,   … ,  𝑑𝑚 = |𝑧 − 𝑧𝑚|, where 𝑧  is the 

projection of the classified vector 𝑥 into the latent space  𝑍 . 

c. Sorts distances 𝑑1,   … ,  𝑑𝑚 in ascending order. 

d. Determines the distance of the unknown element  𝑥  from the category 𝐶𝑖  as follows: 

𝑑(𝑥,𝐶𝑖 ) =  
1

𝐿
∑ 𝑑𝑖

𝐿
𝑖=1  , 

where L is an optional method parameter that specifies the number of 

closest generated vectors to include when calculating the distance. 



51 

 

e. Finally classifies the unknown vector 𝑥 into the category 𝑗 for which the value 

𝑑(𝑥, 𝐶𝑗 ),  𝑗 = 1,   … ,  𝑘 is the smallest. 

2) Step 1)  𝑁 times repeated.  Let us denote 𝑁i  be a number of times 𝑥 was classified as belong 

to category by 𝐶i then 𝑁 = 𝑁1 + ⋯ + 𝑁𝑘 . 

3) The probability for each class 𝐶𝑖 ,  𝑖 = 1, … , 𝑘 is then: 

𝑃(𝐶𝑖) =
𝑁𝑖

𝑁
 

 

Figure 14 illustrates M2 method, simplifying its core principles for better understanding. 

 

Pseudocode 2 describes main steps of the M1 model. It details the use of GANs for vector 

generation, distance-based comparisons, iterative classification, and probability-based decision-

making: 

Pseudocode 2 Method M2  for classification of an unknown element x 

 

Inputs: 

   k: number_of_classes 

   m: vectors_per_category 

   L: parameter_for_average_distance 

   Z: latent_space  

   x_bar: unknown_vector 

   VAE: trained_variational_autoencoder 

 

Outputs: 

   category_probability: list of probabilities for each class 

 

# Project x_bar into latent space 

z_bar = VAE.encode(x_bar)  

 

# Classification in Latent Space (Utilizing Method M1) 

 

# Initialize 

category_counts = array of size k, initialized to 0 

 

# Classification Loop (Repeats N times, defined in Method M1)  

for iteration = 1 to N: 
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    for category_index = 1 to k: 

        # Generate vectors for the current category 

        generated_vectors = trained_GAN[category_index].generate(m)  

 

        # Project vectors into latent space  

        latent_vectors = [] 

        for vector in generated_vectors: 

            latent_vectors.append(VAE.encode(vector)) 

 

        # Calculate distances in latent space         

        distances = [] 

        for z_j in latent_vectors: 

            distances.append(calculate_distance(z_bar, z_j))  

 

        # Determine average distance using L smallest distances 

        distances.sort()   

        average_distance = mean(distances[0:L]) 

 

        # Find the closest category in latent space  

        closest_category_index = argmin(average_distance)   

 

        # Increment the count for the closest category 

        category_counts[closest_category_index] += 1  

 

# Calculate probabilities (same as in Method M1) 

probabilities = [] 

for category_index = 1 to k: 

    probabilities.append(category_counts[category_index] / N) 

 

# Return results 

return probabilities 

 

End Method M2 
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Figure 14 Illustration of the M2 method concept 

 

Source: Author’s work 

6.1.4 Method M3 

This method improves classification and contributes to a deeper understanding of underlying data 

structures. The method estimates the probabilities 𝑃(𝑥 𝜖 ε(𝑥) |  𝑥 𝜖 𝐶𝑖 ),  𝑖 = 1, … , 𝑘, which 

indicates whether 𝑥 belong to the ε neighborhood of 𝑥. The neighborhood ε(𝑥) is defined as: 

 

𝑥 𝜖 ε(𝑥)  <=>  |𝑥 − 𝑥|  <  𝜀. 
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where ε(𝑥) is ε - neighborhood of 𝑥, ε > 0, x 𝜖 X 

 

Suppose we generate for each ith class 𝑚  vectors by using distributions 𝑃𝐶1
(𝑥),   … ,  𝑃𝐶𝑘

(𝑥 ),  𝑥 𝜖 𝑋. 

Let the 𝑛𝑖 vectors from category 𝐶𝑖  , 𝑖 = 1,   … ,  𝑘   fall into ε(𝑥). It is possible to then estimate the 

probabilities 𝑃(𝑥 𝜖 ε(𝑥) | 𝑥 𝜖 𝐶𝑖  ),  𝑖 = 1, … , 𝑘 as follows: 

𝑃(𝑥 𝜖 ε(𝑥) | 𝑥 𝜖 𝐶𝑖  ) =
𝑛𝑖

𝑚
,  𝑛 = ∑ 𝑛𝑖

𝑘

𝑖=1

 

 

Applying Bayes's formula to the last expression, we can get: 

 

𝑃(𝑥 𝜖 𝐶𝑖  | 𝑥 𝜖 ε(𝑥)) =
 𝑃(𝑥 𝜖 ε(𝑥) |  𝑥 𝜖 𝐶𝑖 ) 𝑃(𝑥 𝜖 𝐶𝑖 )

𝑃(𝑥 𝜖 ε(𝑥))
 

 

Since we generated the same number of elements from each class, 𝑃(𝑥 𝜖 𝐶𝑖 ) =
1

𝑘
  as 𝑛 vectors fall 

into the ε - neighborhood of 𝑥 we can set 𝑃(𝑥 𝜖 ε(𝑥))  =  
𝑛

𝑚⋅𝑘
 . The additional problem arises of 

how to choose the size of ε(𝑥) so that an appropriate number of generated vectors falls into it. For 

example, we want that probability 𝑃(𝑥 𝜖 ε(𝑥)) equals 𝜇,  𝜇 > 0, 𝜇 <=1.  

It is possible to set the following algorithm: 

1) For each class, generate 𝑚 vectors 𝑥𝑖  , 𝑖 = 1, … , 𝑚. 

2) We determine the distances between generated vectors 𝑥𝑖 from classified unknown 𝑥, 𝑑𝑖 =

|𝑥 − 𝑥𝑖 |, and sort them in ascending order. 

3) Define the neighborhood as  ε = |𝑥 − 𝑥𝑛| , where 𝑛 =  𝜇 ⋅ 𝑚 ⋅ 𝑘 

In M3 ε plays a role of classification tolerance. 

Figure 15 illustrates M3 method, simplifying its core principles for better understanding. The 

pseudocode for the M1 (Pseudocode 1) and M3 methods share a similar structure, with the primary 

difference being the specific calculation performed. 
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Figure 15 Illustration of the M3 method concept  

 

Source: Author’s work 

6.1.5 Method M4 

This method extends latent space analysis within the VAE framework, combining the strengths of 

GAN networks and VAEs to significantly enhance classification accuracy, especially in limited 

data scenarios. 
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The method is combination of M2 and M3. All calculations will be done in the latent space of the 

VAE. 

 

Figure 16 illustrates M4 method, simplifying its core principles for better understanding. The 

pseudocode for the M2 (Pseudocode 2) and M4 methods share a similar structure, with the primary 

difference being the specific calculation performed. 

Figure 16 Illustration of the M4 method concept

 

Source: Author’s work  
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6.2 Automatize validation of augmented dataset quality 

By exploring the latent space, the proposed methodology allows for a deeper understanding of 

intricate patterns and nuances that conventional methods often overlook. The core of the approach 

lies in leveraging the latent space of AEs as a tool for assessing image quality. This enables the 

identification of patterns, variations, and outliers that indicate the quality of an image, providing 

an objective and systematic measure of image quality. The approach marks a departure from the 

passive use of AEs, transforming their latent space into an active participant in the image quality 

determination process. 

 

This section is devoted to optimizing quality assessment during manual augmentation of the 

dataset. Since the quality assurance of data augmentation is performed manually, the whole process 

is rather expensive and time consuming. As validating of the dataset before analysis needs a high 

quality domain experiment, the whole process is dependent on the experiment. Thus the thesis 

propose an efficient approach that will help to automatically validate the augmented data and to 

“filter out” bad data.  

 

The idea is reflected in the provided Pseudocode 3. The description below summaries main 

process and provides references to the pseudocode (Pseudocode 3). 

 

1. Initial Classification Attempt (1.1): Begins with selecting a small set of training datasets 

for initial classification using DL. If results are inadequate, the process progresses to the 

next phase. 

 

2. Image Augmentation and GANs (1.2): If initial attempts are insufficient, the focus shifts 

to image augmentation and GANs to enrich the datasets, aiming to improve classification 

accuracy. 

 

3. Quality Determination through Autoencoder's Latent Space (1.3):  If earlier steps are 

unsuccessful, the methodology advances to its innovative core—evaluating image quality 

using the latent space of an autoencoder. 
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4. Autoencoder Training (1.3.1): Involves training the autoencoder on all datasets to encode 

images and reveal the latent space. 

 

5. Representation of A Class in Latent Space (1.3.2): Images of the class are represented 

in the latent space, setting the stage for detailed analysis. 

 

6. Sphere Hypothesis and Radius Computation (1.3.3): For the class, A sphere is created 

in latent space to filter out a set percentage of data points, defining a threshold for image 

quality. 

 

7. Image Synthesis and Latent Space Imaging (1.3.4): New images are synthesized and 

assessed based on their position in the latent space relative to the sphere. 

 

8. Sphere-Qualified Image Curation (1.3.5): Images within the sphere's criteria are curated 

for training, while those outsides are excluded. 

 

9. Iterative Process Across Classes (1.3.6): The process is repeated for each class, ensuring 

a thorough evaluation of image quality across the dataset. 

 

Pseudocode 3 provides a concrete implementation of the detailed image classification methodology 

outlined earlier. This code translates the conceptual steps into executable instructions, 

demonstrating how the methodology can be applied in practice. 
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Pseudocode 3 Provides a concrete implementation of the Section 6.2 methodology 

 

# Initial Classification Attempt (1.1) 

dataset = select_small_training_set() 

model = train_DL_classifier(dataset)  

results = evaluate(model) 

 

if results.accuracy < satisfactory_threshold: 

    proceed_to_augmentation = True  

else: 

    proceed_to_augmentation = False 

 

# Image Augmentation and GANs (1.2) 

if proceed_to_augmentation: 

    augmented_dataset = apply_augmentation_techniques(dataset) 

    if GANs_applicable:  # If GANs are a suitable fit for the problem 

        augmented_dataset = augmented_dataset + generate_images_with_GANs(dataset)  

 

    model = train_DL_classifier(augmented_dataset) 

    results = evaluate(model) 

 

    if results.accuracy < satisfactory_threshold: 

        proceed_to_latent_space = True  

    else: 

        proceed_to_latent_space = False 

 

# Quality Determination through Autoencoder's Latent Space (1.3) 

if proceed_to_latent_space: 

    # Autoencoder Training (1.3.1) 

    autoencoder = train_autoencoder(dataset)  

 

    # Representation of A Class in Latent Space (1.3.2) 

    for image in dataset: 

        latent_representation = autoencoder.encode(image)  

 

    # Sphere Hypothesis and Radius Computation (1.3.3) 

    sphere_center, sphere_radius = calculate_sphere(latent_representation, 

quality_percentage) 

 

    # Image Synthesis and Latent Space Imaging (1.3.4) 

    while model.accuracy < satisfactory_threshold:   

        new_images = synthesize_images()  # Placeholder, method unspecified 

        for image in new_images: 

            latent_representation = autoencoder.encode(image) 

            if within_sphere(latent_representation, sphere_center, sphere_radius): 

                dataset = dataset + image   

 

    # Sphere-Qualified Image Curation (1.3.5) 

    model = train_DL_classifier(dataset) 

    evaluate(model)  # Final evaluation 

 

 

 

Figure 17 provides a conceptual illustration of Methodology 2, simplifying its core principles for 

better understanding. 
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Figure 17 Conceptual illustration of the second methodology 

 

 Source: Author’s work  
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7 Data 

This research utilizes two fundamental datasets in computer vision: the MNIST handwritten digits 

database and the CIFAR datasets (CIFAR-10 and CIFAR-100 - 

https://www.cs.toronto.edu/~kriz/cifar.html ). These datasets were selected for their varying levels 

of complexity and diversity, offering a comprehensive testing ground for evaluating the data 

augmentation methods developed in this study. 

 

Figure 18 Sample image from the MNIST dataset

 

Source: Author’s work 

 

7.1 MNIST Database 

The MNIST database (http://yann.lecun.com/exdb/mnist/), a cornerstone in image processing 

research, consists of handwritten digits from 0 to 9, amounting to ten distinct classes. The dataset 

includes simple, grayscale images of size 28x28 pixels. A typical image from MNIST (Figure 18) 

https://www.cs.toronto.edu/~kriz/cifar.html
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showcases a single digit centered in the frame, offering a straightforward yet effective platform 

for initial algorithm testing.  

 

7.2 CIFAR Datasets 

The CIFAR datasets (https://www.cs.toronto.edu/~kriz/cifar.html) present a more intricate 

challenge. CIFAR-10 contains 60,000 color images in 10 classes, with 6,000 images per class. 

Each 32x32 pixel image in CIFAR-10 (Figure 19) features objects like animals and vehicles, 

portraying a more diverse and realistic scenario for image classification. 

Figure 19 CIFAR-10 dataset sample

Source: Author’s work 

CIFAR-100, similar in format to CIFAR-10, includes 100 classes with 600 images each. A sample 

image from CIFAR-100 (Figure 20) typically contains more detailed and varied objects, reflecting 

the complexity of natural scenes and the challenges in classifying them. 
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Figure 20 CIFAR-100 dataset sample

Source: Author’s work 

To prepare the datasets for experiments, both MNIST and CIFAR were shuffled to ensure a 

randomized distribution. A subset of images was then selected for training, varying in size from 1 

to 100 samples per category. This method allowed for an examination of the augmentation methods 

under different conditions of data availability. 
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A consistent set of 100 testing data samples per category was used for both datasets. This 

standardized testing protocol ensures that the performance of the proposed augmentation methods 

can be fairly compared across the different datasets and image classes. 

The inclusion of sample images (Figure 19 and Figure 20) in the thesis provides an intuitive 

understanding of the dataset’s characteristics. These samples represent the type of images that the 

augmentation methods are applied to, highlighting the challenges and requirements of each dataset. 

The MNIST dataset allows for initial method validation in a simpler environment, while the 

CIFAR datasets provide a more rigorous and realistic testing environment. The combination of 

these datasets in the research is crucial to assess the effectiveness, versatility, and scalability of the 

proposed data augmentation techniques. 
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8 Results of Experiments 

8.1 Experiment results with the proposed methodology ( Section 6.1) 

This section offers an in-depth and systematic analysis of the experimental results derived from 

the application of GANs and AEs, with a particular emphasis on VAEs, in the challenging context 

of limited training data for image classification tasks. The primary aim of these experiments was 

to critically evaluate the performance and effectiveness of four innovative classification methods, 

designated as M1, M2, M3, and M4, see Section 6.1.2 - 6.1.5. The experiments were not only 

structured to assess the efficacy of novel classification methods but also to probe their flexibility 

and resilience across a variety of data conditions. A significant focus of this research was to explore 

the potential of these methods to overcome the challenges faced. Traditional DL models often 

show limitations when confronted with insufficient training data – a scenario increasingly common 

in various real-world applications. By addressing this gap, the experiments aimed to make an 

important contribution to the field of ML, especially in contexts where acquiring extensive datasets 

is not feasible. 

 

The four classification methods, namely M1, M2, M3, and M4, see Section 6, were designed to 

encapsulate and utilize the strengths of GANs and VAEs. M1 and M2 focuses on exploiting the 

generative and reconstructive aspects of GANs and VAEs to enhance the quality and diversity of 

the training data. M3 and M4, concentrate on refining the classification accuracy through advanced 

manipulation of the latent space and feature extraction capabilities of VAEs. 

The research tailors these methods specifically to operate efficiently under conditions of data 

scarcity represent a significant contribution. These methods offer promising avenues for tackling 

one of the most pressing challenges – the reliance on large quantities of data for training effective 

ML models. The design of the experiments was comprehensive, encompassing a range of scenarios 

from extremely limited to moderately sufficient training data. This allowed for a thorough 

evaluation of methods performance across different levels of data availability. 

 

The choice of using the MNIST dataset for these experiments served as an appropriate benchmark, 

given its widespread use and recognition in the field of image classification. The dataset's 
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simplicity and clarity allowed for a focused analysis of the methods' performance, minimizing 

external variables that could influence the outcomes. 

8.1.1 Overview of Models Used in the Experiments 

This research's experimental strategy involved a comprehensive exploration of a wide range of DL 

neural network models. This section details the specific models that were central to obtaining the 

results presented in Table 1, as well as provides an overview of the additional models that were 

part of the extensive testing regime. VAEs played a central role in the experiments, especially in 

analyzing and manipulating the latent space of data. Two specific VAE models were used: 

 

VAE Encoder Model (NM1): Built with a cutting-edge CNN architecture, this model efficiently 

encoded input images into a compact latent space. It started with an input layer for 28x28 pixel 

images, followed by convolutional layers for feature extraction and dimensionality reduction. The 

encoder was key to compressing data into the latent space, essential for effective data management 

and classification.  
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NM1: Model 1 VAE encoder model 

Layer(type) Output Shape Param# Connected to 

encoder_input 

(InputLayer) 

[(None,28,28,1)] 0 [] 

conv2d (Conv2D) (None,14,14,512) 5120 ['encoder_input[0][0]'] 

conv2d_1 (Conv2D) (None,7,7,1024) 4719616 ['conv2d[0][0]'] 

Flatten (Flatten) (None,50176) 0 ['conv2d_1[0][0]'] 

Dense (Dense) (None,400) 20070800 ['flatten[0][0]'] 

z_mean (Dense) (None,100) 40100 ['dense[0][0]'] 

z_log_var (Dense) (None,100) 40100 ['dense[0][0]'] 

Z (Lambda) (None,100) 0 ['z_mean[0][0]','z_log_var[0][0]'] 

 

VAE Decoder Model (NM2): Working in tandem with the encoder, the decoder model 

reconstructed images from their latent representations. This process was vital for assessing how 

well the latent space preserved the input data's key features. It included a dense layer to expand 

the latent vector, followed by Convolutional Transpose layers to gradually restore the image to its 

original size. The decoder's ability to accurately reconstruct images was a measure of the VAE's 

effectiveness in representing complex data distributions. 

 

NM2: Model 2 VAE decoder model 

Layer (type) Output Shape Param # 

z_sampling (InputLayer) [(None,100)] 0 

dense_1 (Dense) (None,50176) 5067776 

Reshape (Reshape) (None,7,7,1024) 0 

conv2d_transpose (Conv2DTranspose) (None,14,14,1024) 9438208 

conv2d_transpose_1 

(Conv2DTranspose)l 

(None,28,28,512) 4719104 
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GANs as a Core Component: 

GANs formed a cornerstone of the experimental setup, mainly facilitating the generation of 

synthetic data instances that closely mimic the real data distribution. The GAN framework 

comprised two models: 

 

Discriminator Model of the GAN (NM3): Designed as a fully connected neural network, the 

discriminator model played a critical role in differentiating between real and generated images. 

The model consisted of multiple dense layers with increasing neuron counts, aiming to classify 

images effectively as either authentic or fabricated by the generator. The final output layer 

employed sigmoid activation, a standard practice in binary classification tasks within GAN 

architectures. 

NM3: Model 3 Discriminator model of the GAN 

Layer (type) 

Output 

Shape Param # 

Input layer 

(InputLayer) 

[(None, 

784)]  0 

Dense_1 (Dense) 

(None, 

512) 401920 

Dense_2 (Dense) 

(None, 

256) 131328 

Dense_3 (Dense) 

(None, 

128) 32896 

Output_4(Dense) (None, 1) 129 

 

 

Generator Model of the GAN (NM4): The generator model creating synthetic images that were 

indistinguishable from real images by the discriminator. Equipped with a series of dense and 

BatchNormalization layers, this model systematically upscaled a latent input into a complete 

image. The generator's performance was key to the overall effectiveness of the GAN, as it directly 

influenced the discriminator's training process and the quality of the generated data. 
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NM4: Model 4 Generator model of the GAN 

Layer (type) Output Shape Param # 

Input layer (InputLayer) (None, 100) 0 

Dense_1 (Dense) (None, 256) 25,856 

BatchNormalization_1 

(BatchNormalization) (None, 256) 1,024 

Dense_2 (Dense) (None, 512) 131,584 

BatchNormalization_2 

(BatchNormalization) (None, 512) 2,048 

Dense_3 (Dense) (None, 1024) 525,312 

BatchNormalization_3 

(BatchNormalization) (None, 1024) 4,096 

Output_4 (Dense) (None, 784) 803,600 

Reshape (Reshape) (None, 28, 28, 1) 0 

 

This experimental method explored a diverse array of DL neural network models to assess and 

validate the proposed classification methods: M1, M2, M3, and M4. This exploration was vital to 

ensure the robustness and adaptability of the proposed methods across various architectures and 

scenarios. While we investigated multiple models, the results detailed in Table 1 were specifically 

obtained using the following neural network configurations. 
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8.1.2 Experimental Setup 

The experimental framework involves the deployment of ten distinct GAN models, Section 4.2, 

𝐺𝐴𝑁𝑖, each trained on different digit classes from the MNIST database. The architecture of the 

GANs included a generator equipped with a 100-dimensional latent input layer and three dense 

layers the discriminator comprised an input layer for 28x28 pixel images, followed by multiple 

dense layers. The VAE models, Section 4.3, used in the experiments were composed of an encoder 

and a decoder, each tailored with specific configurations for efficient data transformation and 

reconstruction. 

 

This setup was designed to provide a comprehensive evaluation of the models’ performance in 

diverse conditions, simulating real-world scenarios where data might be scarce or costly to acquire. 

The dataset size, ranged from 1 to 100 instances per category. 

 

The models were trained over 30,000 epochs, a duration chosen to optimize model performance 

due to the limited size of the training data. This extensive training was vital to ensure that each 

model had enough time to learn from the data, regardless of the dataset size. 

 

The protocol also included specific optimizations for each model to handle limited data sizes 

effectively, typically requiring 2-3 hours to complete. This efficiency was crucial, given the 

constraints of computational resources and the need to simulate real-world conditions accurately. 

Performance of the proposed method was evaluated against the baseline accuracy of the GAN 

discriminator. The primary metric for assessment was classification accuracy, defined as the ability 

of the models to correctly identify and classify new instances from the testing dataset. This metric 

was chosen for its relevance in real-world applications, where the accurate classification of new 

data is paramount. 

8.1.3 Experiment Results 

The primary objective was to assess the effectiveness of the proposed methods, see Section 6.1, 

applied to MNIST dataset in utilizing GANs and AEs, particularly VAEs, for image classification 

tasks. Results are in Table 1. 
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The decision to center on VAE and GAN models was based on their standout performance and 

relevance to challenges in data-limited environments. These models showcased not only high 

classification accuracy but also offered valuable insights into DL's capability to manage sparse 

data efficiently. 

 

Each experiment employed different quantities of training instances (1 to 100 per category) to 

replicate varying levels of data scarcity. The GAN models were individually trained for each digit 

category, resulting in ten distinct models (𝐺𝐴𝑁𝑖). These GANs featured a 100-dimensional latent 

input layer for the generator and a 28x28 pixel input layer for the discriminator, optimized for 

performance using binary cross-entropy loss and an Adam optimizer over 30,000 epochs. 

 

The GANs' training was tailored to manage limited data sizes efficiently, typically completing in 

2-3 hours. This was vital given computational resource constraints. The generators in each GAN 

were then used to simulate the probability distributions of each digit category, a key step in the 

classification process, see Section 6. 

 

The classification methods (M1, M2, M3, M4) were evaluated by leveraging the trained GANs to 

generate category-specific probability estimates for classifying unknown data instances. This 

compares these methods against the baseline discriminator results of the GAN models. 

 

The GAN discriminators' accuracy varied (38.2% to 89.3%) based on the training instances, crucial 

for assessing the proposed methods' effectiveness in different training data scenarios. M1 and M3 

showed better performance with smaller datasets, suited for extreme data-limited situations. 

However, their performance relative to the discriminator decreased as the training data volume 

increased, highlighting the need for further method refinement for scalability. 
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Table 1 Results of four proposed methods (M1, M2, M3 and M4), see Section 6.1.2. -6.1.5. 

Method Number of 

Train Data 

Number of 

Test Data 

Discriminator 

Result Accuracy 

(%) 

Proposed Method 

Result Accuracy (%) 

Ratio 

(%) 

M1 1 100 38.2 41.3 108.12 
 

2 100 42.1 43.6 103.56 
 

5 100 56.9 57.4 100.88 
 

10 100 61.2 61.8 100.98 
 

100 100 89.3 66.4 74.36 

M2 1 100 38.2 44.6 116.75 
 

2 100 42.1 47.1 111.88 
 

5 100 56.9 63.2 111.07 
 

10 100 61.2 67.4 110.13 
 

100 100 89.3 71.3 79.84 

M3 1 100 38.2 41.9 109.69 
 

2 100 42.1 43.8 104.04 
 

5 100 56.9 58.3 102.46 
 

10 100 61.2 61.3 100.16 
 

100 100 89.3 66.7 74.69 

M4 1 100 38.2 44.2 115.71 
 

2 100 42.1 47.3 112.35 
 

5 100 56.9 62.9 110.54 
 

10 100 61.2 67.2 109.80 
 

100 100 89.3 71.9 80.52 
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M2 and M4 incorporated a VAE trained on the MNIST dataset. The VAE's encoder and decoder 

networks, consisting of multiple layers, were instrumental in mapping input data to a latent space 

and reconstructing it. M2 and M4, like M1 and M3, performed better with smaller datasets. 

Notably, M4 showed significant improvement over M2, indicating the benefits of advanced 

autoencoder integration in classification tasks. 

 

The experimental results offer profound insights into the strengths and challenges of the proposed 

classification methods. While effective in limited data contexts, scaling them for larger datasets 

remains a challenge. The performance variation across methods and dataset sizes highlights the 

complexity of developing robust, adaptable classification algorithms. 

 

M1 and M3 excelled in smaller datasets, proving highly effective in situations with severe data 

constraints. However, as the volume of training data increased, their relative efficacy compared to 

the GAN discriminator diminished. This trend suggests that these methods require further 

development to maintain their effectiveness in larger dataset scenarios. 

 

M2 and M4, utilizing VAEs, consistently showed enhanced performance across various dataset 

sizes, especially in contexts with limited data. Notably, M4 outperformed M2, indicating the 

advantages of integrating more sophisticated autoencoder techniques in classification challenges.  

 

This analysis of the experimental results offers an in-depth understanding of the strengths and 

potential areas for improvement in the proposed classification methods. It emphasizes the 

complexity of designing algorithms that are effective across varying data scenarios. The results 

demonstrate the methods' effectiveness, adaptability, and potential applicability in DL 

applications. 

8.1.4 Comparison with the State-of-The-Arts (FSL)  

The thesis explores classification tasks using GANs with limited training data. The proposed 

methods, M1 through M4, demonstrated the effectiveness of GANs in producing distributions for 

category classification, particularly when training data is scarce. When tested with the MNIST 

database and varying amounts of training data, my method achieved an improvement in 
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classification accuracy, with the highest increase observed with one training instance per category 

reaching 41.3% to 66.4% depending on the method used. 

 

Comparatively to the few-shot learning results in Zhao et al. (2023), the few-shot class-incremental 

learning (FSCIL) study focused on a novel distillation structure for class-incremental learning with 

few shots. Their dual-branch network with attention-based aggregation successfully mitigated 

catastrophic forgetting while accommodating novel class knowledge. Their experiments, 

conducted on more complex datasets like mini-ImageNet, CIFAR100, and CUB200, reported 

substantial improvements. For example, they achieved over a 3% increase in accuracy compared 

to the second-best model on mini-ImageNet. 

 

Specifically comparing results where both studies dealt with limited data, the thesis methods M1 

and M3 saw improvements over the GAN discriminator results by 8.12% and 9.69%, respectively, 

for single instance training per category. In contrast, the FSCIL method surpassed the second-best 

result on mini-ImageNet by over 3%, a notable margin considering the complexity of the dataset. 

 

In summary, the thesis introduces direct methods that leverage the generative power of GANs to 

enhance classification with minimal data, while the FSCIL method presents a comprehensive 

framework for incremental learning that balances the retention of previous knowledge with the 

integration of new concepts. The FSCIL results are particularly impressive, showcasing a 

sophisticated system that outperforms existing benchmarks on challenging datasets. 

8.2 Experiment results with automatic validation of augmented dataset quality. 

The research employed two VAE models, Model 1 (Encoder) and Model 2 (Decoder), for the latent 

space analysis of images. Encoder was designed to efficiently encode images into a lower-

dimensional latent space. Its architecture comprised a sequence of convolutional layers, 

culminating in dense layers that form the latent space representation. The decoder was tasked with 

reconstructing images from the latent space, utilizing deconvolutional layers to progressively 

upscale the latent representation back to the original image dimensions. 
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8.2.1 Experimental Setup 

The experiment used the MNIST, CIFAR-10, and CIFAR-100 datasets, each featuring a 

deliberately limited number of images in each class to simulate sparse data environments. The 

experimental design involved a VAE with two key components: i) an encoder model for 

compressing images into a latent space. and ii) a decoder model for reconstructing images from 

this space. This method aimed to overcome the limitations of traditional image review and 

enhancement methods. 

 

The training protocol focused on efficient learning from limited data, tuning parameters like 

learning rate and batch size across multiple epochs. The evaluation of model performance 

encompassed not only classification accuracy but also metrics such as reconstruction error and 

perceptual similarity (SSIM, PSNR), providing a comprehensive assessment of the quality of 

images reconstructed from the latent space. This methodology was particularly tested on smaller 

subsets of the datasets, aligning with the objective to enhance image classification accuracy in 

scenarios with limited data availability. 

8.2.2 Experiment Results 

The results, as summarized in Table 2, indicated a consistent improvement in classification 

accuracy across all three datasets when the proposed methodology was applied. For the MNIST 

dataset, accuracy improvements were observed in classes with 5, 10, and 20 images, with the most 

notable increase being from 27.1% to 30.9% in the 20-image category. However, an unexpected 

decrease in accuracy was noted for the 100-image category. 

In the CIFAR-10 dataset, improvements in accuracy were evident across all classes, with the most 

significant improvement seen in the 100-image category, where accuracy rose from 34.3% to 

40.9%. The CIFAR-100 dataset also showed enhanced accuracy, especially notable in the 10-

image category where accuracy increased from 16.4% to 29.5%. 

These results underscored the effectiveness of the proposed methodology, particularly in scenarios 

with limited training data. The observed anomaly in the MNIST 100-image category indicated a 

need for further investigation into the model's performance with larger data sets. The overall 

findings suggested that the methodology holds promise for enhancing image classification 
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accuracy in data-constrained situations, warranting further exploration and potential refinement 

for broader applicability. 

The experiment was designed to evaluate the efficacy of using VAEs for image quality assessment 

in limited dataset scenarios. AEs offer a promising avenue for analyzing image quality without 

labor-intensive manual reviews. The experiment utilized datasets such as MNIST, CIFAR-10, and 

CIFAR-100 with varying numbers of images per category. 

 

The proposed methodology demonstrates its potential in enhancing image classification accuracy 

in scenarios with limited training data. The reliability of the methodology across diverse datasets 

indicates its versatility and effectiveness. The observed trends suggest that while the methodology 

excels in scenarios with very limited data, its application to larger datasets may require further 

refinement. 

 

Future research directions include exploring the dynamics of the methodology in larger datasets 

and investigating its applicability to other complex datasets. The potential for improving 

classification accuracy in data-scarce scenarios makes this methodology a promising tool in the 

field of image classification and quality assessment. Figure 21 is a scatter plot representing the 

latent space of the VAE, used to assess the quality of augmented images for a classification task. 

It visualizes data points corresponding to images, with a red sphere delineating the threshold 

between high-quality 'qualified' images and lower-quality 'unqualified' ones based on their latent 

features. 
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Figure 21 Latent space of VAE with the sphere 

 

Source: Author’s work 
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Table 2 Experiment results with Analyzing autoencoder latent space. 

Dataset 

Number of 

images per 

category 

Data 

augmentati

on 

Number of 

qualified 

images 

Accuracy 

before using the 

proposed 

method 

Accuracy after 

using the proposed 

method 

MNIST 5 500 425 20.6% 25.8 % 

MNIST 10 1000 895 25.8% 30.2 % 

MNIST 20 2000 1578 27.1% 30.9 % 

MNIST 100 5000 3685 25.4% 24.8 % 

CIFAR-10 5 500 458 18.9% 21.6 % 

CIFAR-10 10 1000 901 23.4% 24.2 % 

CIFAR-10 20 2000 1570 28.2% 31.2 % 

CIFAR-10 100 5000 4001 34.3% 40.9% 

CIFAR-100 5 2500 1978 14.6% 18.2 % 

CIFAR-100 10 5000 3951 16.4% 29.5 % 

CIFAR-100 20 10000 8012 18.2% 21.8 % 

CIFAR-100 100 50000 38417 24.5% 27.6 % 
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9 Proposed algorithmic framework for data augmentation in 

scenarios of data scarcity 

This thesis, grounded in meticulous research and extensive experimental results, introduces a 

comprehensive algorithmic framework for data augmentation. This framework is not merely a 

theoretical proposition; rather, it is a strategic response, formulated based on concrete findings and 

proven methodologies derived from this research. It embodies a blend of both conventional and 

advanced techniques, evolving systematically from fundamental methods to more complex and 

nuanced approaches. This progression is designed to incorporate the strengths of GANs, AEs, and 

latent space analysis, each chosen for their proven efficacy in enhancing data quality and model 

performance in scenarios marked by limited data availability. 

Drawing on the insights and empirical evidence gathered during the research, this algorithmic 

framework is proposed as a targeted solution for practitioners and researchers grappling with data 

scarcity in image classification tasks. The framework unfolds in a series of strategic steps, each 

reflecting a key finding or methodology validated through the thesis’s research: 

 

Algorithmic steps for augmentation 

 

• Initial dataset evaluation: 

Assess the size, diversity, and real-world representation of the existing dataset. Identify gaps and 

potential areas where augmentation can enhance dataset quality and model performance. 

 

• Application of classic augmentation techniques: 

Implement basic techniques like rotation, flipping, scaling, and cropping. These methods introduce 

essential variability, aiding foundational feature learning. 

 

• Incorporating proprietary methods (M1, M2, M3, M4), Section 6: 

Implement the thesis's proprietary methods, as outlined in the research. Evaluate the model’s 

performance post-application. If satisfactory, maintain these methods; if not, proceed to more 

advanced steps. 
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• Advanced augmentation with GANs and AEs: 

If basic augmentation proves inadequate, employ GANs for generating new, diverse images and 

AEs, particularly VAEs, for creating variations within the latent space. 

This step aims to enrich the dataset with realistic synthetic images, addressing the diversity and 

representativeness gap. 

 

• Latent space quality determination: 

Train an autoencoder on the dataset and encode all images to obtain their latent space 

representation. Hypothesize a sphere in the latent space to filter out low-quality images, including 

only high-quality images in the dataset.  Synthesize additional images as needed using image 

augmentation or GANs. 

Repeat the process for each class, ensuring a comprehensive quality improvement across the 

dataset. 

 

• Iterative assessment and refinement: 

Continuously evaluate the model's performance after each augmentation step. Adjust the 

augmentation strategy based on the outcomes, aligning it with the evolving requirements of the 

model. 

 

• Final comprehensive evaluation and deployment: 

Conduct an extensive evaluation of the model post-augmentation using a variety of metrics. Ensure 

the model not only achieves high accuracy but also demonstrates robustness and generalizability.  

 

• Upon meeting these criteria, deploy the model for real-world applications. 

This algorithmic framework provides a structured and strategic approach to augmenting image 

classification models in the context of limited data availability. It begins with less resource-

intensive methods, gradually incorporating more complex and advanced techniques based on the 

model's performance and dataset requirements. The framework is adaptive, ensuring that the 

augmentation process is effective and efficient, and uniquely addresses the specific challenges 

posed by each dataset and application scenario. The inclusion of latent space image qualification 

as an additional step further underscores the commitment to ensuring the relevance and quality of 
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the augmented data, making this framework a comprehensive solution to data scarcity in image 

classification tasks. 
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10 Discussion 

10.1 Experiment discussion with the proposed methodology with GAN and 

autoencoder 

The research presents an innovative approach to addressing classification tasks in scenarios 

characterized by few training data. The study's core methodology revolves around using GANs 

not for expanding training datasets but for simulating conditional distributions of individual classes 

during the decision-making phase. This approach marks a significant departure from traditional 

methods that primarily focus on increasing the size of training datasets. 

 

The research evaluates four proposed methods (M1, M2, M3, M4) using a varying number of 

training data instances from the MNIST database. Each method incorporates GANs in a unique 

way to estimate conditional probabilities for classification. The performance of these methods is 

compared against the baseline discriminator accuracy of the GAN models. The novel aspect of this 

research lies in its use of GANs to simulate data distributions, a methodology that potentially offers 

more accurate classification results, especially with extremely limited training data. 

 

Performance with Limited Training Data: The experimental results suggest that the proposed 

methods generally perform better than the discriminator of the GANs when the training data is 

very limited (1-10 instances per category). This finding is pivotal as it demonstrates the efficacy 

of the proposed method in scenarios where traditional methods are less effective. 

Performance with Increased Training Data: As the amount of training data increases, the 

performance of the proposed methods tends to degrade in comparison to the GAN discriminator. 

This trend is notable, indicating that while the methods are effective for small datasets, their utility 

diminishes with larger datasets. This suggests a need for further optimization or a different 

approach for handling more extensive datasets. 

Method Variations: The modifications of the original methods (M3 and M4) show an 

improvement over their respective base methods (M1 and M2). This improvement underscores the 

potential benefits of iterating and refining the proposed techniques. 

Model Complexity and Overfitting: There's a trade-off between model complexity and 

generalization performance. Increasing the complexity could lead to better performance on the 
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training set but might also increase the risk of overfitting and reduce performance on new, unseen 

data. 

Enhanced Architectures and Parameters: Exploring more complex architectures of GAN and 

VAE networks and experimenting with different parameters could potentially increase 

classification accuracy. 

Noise Reduction Techniques: Implementing noise removal techniques in the GAN-generated 

training data could improve the quality of the generated data, thereby enhancing the overall 

classification accuracy. 

Data Augmentation Techniques: Exploring a broader range of data augmentation techniques, 

such as scaling, flipping, or adding noise, could improve the robustness of the classification models 

to different types of data variations. 

Clustering in Latent Space: The proposal to combine clustering with the autoencoder's latent 

space is promising but requires careful selection of algorithms, hyperparameters, and metrics to 

balance performance and complexity. 

 

In conclusion, this research introduces a novel approach to classification tasks with limited training 

data, demonstrating potential in specific scenarios. However, it also faces challenges such as 

computational complexity, data quality issues, and limitations in handling data variations. The 

future work proposed by the authors, including exploring more complex architectures, 

implementing noise reduction, and augmenting data, is crucial for enhancing the methodology's 

effectiveness and applicability. The research presents a significant step forward in classifica tion 

tasks with limited data, opening avenues for further exploration and refinement in this area. 

10.2 Experiment discussion with automatic validation. 

The study's core objective was to enhance image classification accuracy in scenarios constrained 

by limited training datasets, employing a novel methodology that combined DL algorithms, image 

augmentation, GANs, and the innovative use of AEs' latent space for quality assessment. The 

methodology's primary innovation lies in its approach to improving classification accuracy 

through autoencoder-based latent space analysis. This strategy marked a significant departure from 

traditional methods reliant on extensive manual review or automated augmentation techniques. 
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The latent space analysis provided an objective, systematic, and automated method for determining 

image quality, which proved effective in identifying high-quality images for training DL models. 

 

The empirical results showcased the methodology's potential, particularly in datasets with few 

images per category. This finding is crucial, as it addresses a common challenge in DL where 

smaller datasets often lead to suboptimal model performance. The methodology's effectiveness in 

improving classification accuracy was most pronounced in the CIFAR-10 and CIFAR-100 

datasets, demonstrating its adaptability to diverse and complex image datasets. An unexpected 

outcome was observed in the MNIST dataset, particularly when 100 images per category were 

used. This anomaly, where a slight decrease in classification accuracy was noted, raises questions 

about the methodology's scalability and applicability to larger datasets. It suggests that while the 

approach is potent in scenarios with limited data, its effectiveness might vary with a larger pool of 

training images, indicating the need for further investigation and refinement. 

 

The study's results in the CIFAR-100 dataset, known for its complexity and diversity, were 

particularly encouraging. The methodology demonstrated substantial improvements in 

classification accuracy, even with a small number of training images. This outcome underlines the 

methodology's robustness and potential applicability in various image-related tasks across 

different contexts. 

However, the performance in complex datasets also highlights the inherent limitations of the 

approach. The assumption that the autoencoder accurately captures the true distribution of images 

within the dataset may not always hold, especially in scenarios involving complex datasets or 

outliers. Additionally, the predetermined threshold used for quality determination might not 

universally apply to all datasets, necessitating tailored adjustments. The research opens several 

avenues for future exploration. One critical area is the in-depth analysis of the methodology's 

performance in larger datasets and its scalability. Understanding how the approach fares with an 

increasing number of training images and in different dataset complexities is essential to unlock 

its full potential. 

 

Further research could also focus on refining the latent space analysis technique, exploring 

different thresholding strategies, and investigating the integration of additional metrics for a more 
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nuanced evaluation of image quality. The study's promising results in CIFAR datasets point 

towards the potential expansion of the methodology to other complex image datasets, which could 

yield valuable insights and advancements in the field of image classification and quality 

assessment. 

11 Conclusion 

11.1 GAN and Autoencoder-Based Classification 

The study incorporated innovative use of GANs, focusing on simulating data distributions for 

image classification in data-limited scenarios. Future research directions suggest exploring more 

complex GAN and VAE architectures, optimizing training parameters, and implementing noise 

reduction in GAN-generated data to enhance classification accuracy. 

 

A key challenge observed was the reduced effectiveness of the proposed methods to with rotated 

data, highlighting a limitation in handling data variations. This underscores the importance of 

robust data augmentation techniques to improve model resilience against various data 

transformations. 

 

The research also emphasizes the critical balance between model complexity and generalization 

performance. While more complex models may show improved training data performance, there's 

an increased risk of overfitting, which can hamper performance on new, unseen data. This 

necessitates a careful approach, possibly involving cross-validation, to ensure model robustness. 

 

While effective in limited data contexts, scaling these methods for larger datasets presents 

challenges. The variation in performance across different methods and dataset sizes emphasizes 

the complexity involved in designing adaptable and resilient classification algorithms. This work 

contributes significantly to advancing image classification methodologies in the realm of limited 

training data, opening new avenues for ML applications in real-world scenarios. 
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11.2 Autoencoder Latent Space Analysis for Image Quality 

The second study in Section 6.2 centered on enhancing image classification accuracy by using AEs 

for latent space analysis, a novel approach for assessing image quality. This methodology, focused 

on transcending  traditional manual reviews and automated augmentation strategies, 

encoded images to derive their latent representations. A sphere was synthesized within this latent 

space to establish quality thresholds, effectively segregating high-quality from low-quality images. 

 

This approach marked a significant advancement in utilizing latent space analysis, providing an 

automated, objective, and efficient method for assessing image quality, especially in limited 

dataset scenarios. The methods showcased their effectiveness in environments with extremely 

limited data, outperforming the baseline accuracy of the GAN discriminator. This was particularly 

noteworthy in scenarios where conventional techniques faltered due to data scarcity. 

 

However, a notable challenge was the decline in performance as the training data volume 

increased, indicating a need for further research and refinement to make these methods scalable to 

larger datasets. The comparative performance analysis revealed that the iterative refinement and 

integration of advanced techniques, such as VAEs, could further enhance classification accuracy. 

 

The study also highlighted computational complexities in simulating data distributions, a 

consideration especially crucial in resource-constrained settings. Another significant concern was 

the presence of noise in GAN-generated data, impacting the accuracy and reliability of 

classification results and underscoring the need for effective noise reduction techniques. 

 

The methodology proved to be particularly effective in datasets with few images per category, as 

demonstrated by significant improvements in classification accuracy in the CIFAR datasets. 

However, the slight decrease in performance observed in the MNIST dataset with larger image 

counts per category indicates potential limitations in the methodology’s scalability to larger 

datasets. 

 

The substantial improvements in handling the CIFAR-100 dataset, known for its complexity and 

diversity, underscored the robustness of the methodology in managing complex image datasets. 
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These studies contribute significantly to DL research, offering new strategies for image 

classification and quality assessment in data-limited scenarios. They highlight the potential of 

GANs and AEs in novel applications and underscore the necessity for further exploration, 

refinement, and optimization in this field. 

 

In conclusion, these studies represent significant advancements in enhancing DL algorithms' 

performance in data-limited environments. Their innovative approaches, promising results, and 

potential for broader applicability mark them as noteworthy contributions to the field, paving the 

way for future developments in image classification and quality assessment. 
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12 Future work 

12.1 Exploration on Larger and More Complex Datasets 

This exploration into the application of GANs and AEs on extensive datasets is not just a matter 

of scaling up existing models; it is a fundamental step towards realizing their full capabilities and 

addressing the challenges they encounter in real-world scenarios. 

The necessity of this exploration stems from several critical factors. First and foremost is the aspect 

of scalability. While these methodologies have proven effective in smaller, controlled datasets, 

there is a significant gap in my understanding of how they perform when scaled to larger datasets. 

Larger datasets are not just quantitatively bigger; they bring qualitative complexities, including 

increased diversity in data types, image qualities, and resolutions. This variety reflects  the real-

world conditions much more closely than smaller datasets, thereby providing a more accurate test 

bed for these technologies. The performance of GANs and AEs on such datasets will offer insights 

into their robustness, adaptability, and scalability, which are crucial for practical applications.  

 

Another vital aspect of exploring larger datasets is the inherent computational challenges it 

presents. Larger datasets demand more from computational resources, not just in terms of 

processing power but also in terms of efficient data handling and storage. This necessitates 

advancements in computational frameworks and pushes the boundaries of what is currently 

possible in high-performance computing within the realm of ML. Addressing these computational 

challenges is not just a technical necessity but also an opportunity to drive innovation in the field. 

 

Diversity in data is another critical factor that makes the exploration of larger datasets imperative. 

Larger datasets often encompass a wider array of data types, encompassing various image qualities 

and resolutions. This diversity is essential for rigorously testing the generalization capabilities of 

GANs and AEs. It ensures that these methodologies are versatile and unbiased, capable of handling 

different types of data effectively. This is particularly important in avoiding biases that might arise 

from training on homogenous datasets, which can lead to models that perform well in controlled 

conditions but fail in real-world scenarios. 

Moreover, as the size and complexity of datasets increase, potential limitations and areas for 

improvement in current methodologies become more apparent. This is a critical step in the process 
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of technological evolution. Identifying and understanding these limitations is essential for iterative 

improvements, enhancing the performance, accuracy, and reliability of these models. It’s not just 

about making existing models work with more data; it's about refining and evolving these models 

to address the challenges that arise with scale and complexity. 

 

Furthermore, the exploration of larger datasets is crucial in developing more robust models. In the 

context of ML, robustness refers to the ability of models to generalize well from the training data 

to unseen data. This is particularly important in preventing issues like overfitting, where models 

perform exceptionally well on training data but poorly on new, unseen data. Larger datasets, with 

their inherent variability and complexity, provide a more rigorous testing ground for these models, 

ensuring that they are reliable and trustworthy, especially in critical applications where the cost of 

failure is high. 

12.2 Combining Autoencoder-VAE Learning with Clustering 

Integrating autoencoder-VAE (Variational Autoencoder) learning with clustering techniques 

marks a significant and promising advancement in the field of ML, particularly in the context of 

enhancing the interpretability and accuracy of classification models. This approach, which merges 

the powerful feature extraction capabilities of AEs with the nuanced grouping potential of 

clustering, opens new avenues for research and application. The synthesis of these two 

methodologies leverages the latent space generated by AEs, offering a fertile ground for innovative 

exploration and application in various domains, ranging from medical imaging to facial 

recognition. 

 

The essence of this integration lies in its ability to bring a nuanced understanding of data. AEs, 

particularly VAEs, are adept at distilling complex, high-dimensional data into a more manageable, 

latent representation. By coupling this with clustering techniques, researchers can unearth subtle 

patterns and relationships within the data that might otherwise remain obscured. This dual 

approach not only enhances the classification accuracy but also aids in the interpretability of the 

models, providing deeper insights into the underlying structures of the data sets. 

One of the primary challenges in this integration is the selection and optimization of the 

appropriate clustering algorithms. The choice of algorithm significantly influences the 
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effectiveness of the combined model. Future research must focus on experimenting with a variety 

of clustering techniques, evaluating their compatibility and efficiency with different types of 

datasets. This experimentation is not a trivial task; it requires a meticulous understanding of the 

strengths and limitations of each clustering algorithm and its interaction with the autoencoder -

generated latent space. 

 

Another critical aspect of this integration is hyperparameter tuning. The performance of both the 

autoencoder models and the clustering algorithms hinges on the optimal configuration of 

hyperparameters. Identifying the right combination of these parameters is a task that demands 

thorough experimentation and analysis. Future research should place a strong emphasis on 

developing methods and strategies for hyperparameter optimization, ensuring that the models 

achieve the highest possible accuracy and reliability. 

 

However, integrating clustering with autoencoder-VAE learning is not without its complexities. 

This added layer of sophistication can potentially escalate computational demands and affect the 

efficiency of the models. Striking a balance between the complexity of the models and their 

computational efficiency is crucial. Future work in this area should focus on optimizing the models 

to maintain a balance between sophistication and practicality, ensuring that they are not only 

accurate but also computationally feasible. 

 

In addition to these technical considerations, the aspect of visualizing and interpreting the clusters 

formed in the latent space is equally important. Effective visualization techniques are essential for 

making sense of these clusters, providing tangible insights into the data. Future studies should 

invest in developing and employing advanced visualization tools that can elucidate the intricacies 

of the clustered latent space, thereby augmenting the interpretability of the models. 

Evaluating the effectiveness of clustering in this context is another vital area of focus. Rigorous 

evaluation methods are required to assess the impact of clustering on the classification accuracy 

of the models. This involves a comparative analysis of models with and without the clustering 

integration, providing empirical evidence of the benefits and drawbacks of this approach. 

Furthermore, the application of this combined methodology across various domains can offer 

valuable insights into its versatility and effectiveness. Each domain, be it medical imaging, satellite 
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imagery, or facial recognition, presents unique challenges and requirements. Exploring how the 

integration of autoencoder-VAE learning with clustering techniques fares in these diverse settings 

will not only demonstrate its applicability but also help in tailoring the models to suit specific 

domain requirements. 

12.3 Enhanced Computational Resources for More Accurate Results 

The availability of higher computational resources opens the door to training larger, more complex 

models. These advanced models are pivotal in effectively capturing the subtleties and variances in 

large and diverse datasets. With increased computational power, researchers can delve deeper into 

the data, uncovering nuances that simpler models might miss. This capability is not just beneficial; 

it’s essential in developing models that can accurately mirror and interpret the complexities of real-

world data. 

 

Additionally, more computational power allows for increased training epochs. This is critical as 

longer training durations often lead to more refined and accurate models. Extended training lets 

models converge to more optimal solutions, improving their ability to classify images accurately. 

It’s a process that ensures models are not just trained but are well-honed to perform their tasks 

with higher precision. 

 

Another significant advantage of enhanced computational resources is the ability to explore 

extensive hyperparameter spaces. Hyperparameters play a crucial role in determining the 

performance and behavior of ML models. With more computational power, researchers can 

experiment with a broader range of these parameters, leading to a deeper understanding of the 

models and optimizing their performance. Handling larger datasets is another area where increased 

computational capabilities are indispensable. In real-world applications and for ensuring the 

generalizability of models, large datasets are often a requirement. Enhanced computational 

resources make processing and training on these extensive datasets feasible, overcoming a major 

hurdle in applying ML models in practical scenarios. 

The advancement in computational resources also provides an opportunity to develop and test 

more efficient algorithms. These algorithms can potentially speed up both training and inference 
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times without compromising performance, thereby enhancing the practicality of ML models in 

real-world applications. 

 

Furthermore, enhanced computational resources facilitate the application of these methodologies 

across different domains. This flexibility allows researchers to adapt and test models for various 

types of data and scenarios, demonstrating their versatility and effectiveness across diverse fields. 

In conclusion, the advancement of image classification in the context of limited training data 

hinges significantly on enhanced computational resources. This advancement is not just about 

improving existing models but is about enabling a more profound and comprehensive exploration 

of ML techniques. By bolstering computational capabilities, researchers can train more complex 

models, extend training durations, explore broader hyperparameter spaces, handle larger datasets, 

develop more efficient algorithms, and apply these methodologies across various domains. These 

developments promise to push the current state-of-the-art in image classification further, opening 

new avenues for practical applications and deepening the understanding of ML models. By 

focusing on these areas, we move closer to realizing the full potential of these methodologies, 

significantly contributing to the advancement of image classification and quality assessment in 

scenarios limited by data availability. 
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