VLIV POHYBOVÉ AKTIVITY NA MODELACI OSOVÉHO ORGÁNU U MORBUS SCHEUERMANN

Bakalářská práce

Vedoucí bakalářské práce: Mgr. Tomáš Zemánek
Vypracovala: Jitka Švecová

Olomouc, 2010
Anotace
Bakalářská práce

Název práce: Vliv pohybové aktivity na modelaci osového orgánu u Morbus Scheuermann

Název práce v AJ: The influence of the physical activity on the modeling of the axial body of Morbus Scheuermann

Datum zadání: 2010-01-24
Datum odevzdání: 2010-04-30

Vysoká škola: Ústav fyzioterapie, FZV UP v Olomouci

Autor práce: Švecová Jitka

Vedoucí práce: Mgr. Tomáš Zemánek

Oponent práce: Mgr. Tomáš Zemánek

Abstrakt v ČJ: Práce se zabývá vlivem pohybové aktivity na formování páteře a okolních struktur u Scheuermannovy nemoci. Charakterizuje etiopatogenezi, jednotlivá stádia nemoci, klinický obraz a diagnostiku nemoci. V další části se zaměřuje na vliv pohybové léčby na modelaci a funkci osového orgánu.

Abstrakt v AJ: The deals with the influence of physical activity on the formation of the spine and surrounding structures in Scheuermann's disease. Characterizes the etiopathogenesis, the various stages of illness, the clinical features and diagnosis of disease. The next section focuses on the influence of exercise therapy on modeling and function of the axial body different.

Klíčová slova v ČJ: Scheuermannova choroba, hyperkyfóza, pohybová aktivita, osový orgán

Klíčová slova v AJ: Scheuermann’s disease, hyperkyphosis, physical activity, axial body

Rozsah: 62 stran, 5 stran obr. příloh
Prohlášení:

Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně pod odborným vedením Mgr. Tomáše Zemánka a v referenčním seznamu jsem uvedla všechny literární a odborné zdroje, které jsem použila.

V Olomouci dne 30.4.2010

podpis
Poděkování:
Chtěla bych poděkovat Mgr. Zemánkovi za trpělivost při vedení mé bakalářské práce a cenné rady.
Obsah

Úvod..7

1 Současný stav problematiky Morbus Scheuermann.. 8
 1.1 Etiopatogeneze Morbus Scheuermann.. 8
 1.2 Klinický obraz... 9
 1.3 Stádia choroby .. 10
 1.3.1 Prodromální stádium.. 10
 1.3.2 Floridní stádium... 10
 1.3.3 Reparační stádium... 11
 1.3.4 Klidové stádium.. 11
 1.4 Vyšetření... 11
 1.4.1 Klinické vyšetření.. 12
 1.4.1.1 Anamnéza... 12
 1.4.1.2 Vyšetření aspekci ... 12
 1.4.1.3 Vyšetření palpací.. 13
 1.4.1.4 Vyšetření zkrácených svalů.. 13
 1.4.1.5 Vyšetření oslabených svalů.. 14
 1.4.1.6 Vyšetření posturální stabilizace páteře... 14
 1.4.1.7 Dynamické vyšetření páteře.. 17
 1.4.2 Přístrojová vyšetření .. 18
 1.5 Diferenciální diagnostika.. 20

2 Terapie ... 22
 2.1 Současné názory ve fyzioterapii Morbus Scheuermann..................................... 22
 2.2 Princip terapie ... 23
 2.3 Celkový pohybový režim.. 23
 2.4 Pohybové aktivity v jednotlivých stádiích.. 24
 2.5 Kinezioterapie... 25
 2.6 Používané terapeutické přístupy ... 26
 2.6.1 Metoda reflexní lokomoce dle Vojty... 26
 2.6.2 Posturální terapie ... 29
 2.6.3 Metoda Ludmily Mojžišové... 32
 2.6.4 Metoda McKenzie.. 33
 2.6.5 Brügger koncept... 34
Úvod

Morbus Scheuermann je onemocnění páteře vyskytující zejména v předpubertálním a pubertálním věku. Projevuje se změnami na obratlech a meziobratlových plotěnkách, zejména v oblasti hrudní páteře. Může vést ke vzniku deformit na páteři. Toto chorobou jsou postiženi ve větší míře chlapci než dívky.

O tomto tématu nevyšlo mnoho literatury. Většina autorů (Weiss at al., 2009; Nowak, 2009; Wenger, Frick 1999; Tribus, 2008) se zaměřuje především na korzetoterapii, typy ortéz, operační léčbu zahrnující typy přístupů, způsoby úpravy deformace, i když tyto operační zákroky jsou až poslední možností léčby. V publikacích se však nesetkáváme s pohybovou léčbou a se způsobem jejich působení.

1 Současný stav problematiky Morbus Scheuermann

Morbus Scheuermann (juvenilní kyfóza) je strukturální kyfóza hrudní páteře, která byla prvně popsána dánským rentgenologem Holgerem Scheuermannem v roce 1921 (Kapetanos et al., 2006; Findlay et al., 2009). Scheuermann popsal rentgenologický nález - klinění hrudních obratlůvých těl a nepravidelnosti v růstu plotének postižených obratlů, projevující se sníženou odolností krycích destiček obratlůvých těl vůči tlaku meziobratlové ploténky. Jedná se o onemocnění neznámé etiologie, objevující se v období puberty (Findlay et al., 2009; Káš, 2007).

1.1 Etiopatogeneze Morbus Scheuermann

Onemocnění se objevuje ve věku 12 až 18 let a to s větším podílem chlapců (58%) (Tribus, 2008). Postižení se lokalizuje do oblasti dolní hrudní páteře, méně často postihuje i horní hrudní nebo bederní úsek (Janíček a kol., 2007).

rozložení sil. Zvýšení tělesné hmotnosti a výšky může být ale sekundárním výsledkem jiných poruch (například hormonálních), které mohou hrát důležitější roli v patogenezi (Fotiadis, Kenanidis et al., 2008; Fotiadis, Grigoriadou et al., 2008).

Schmorl předložil teorii, která říká, že ke kyfóze dochází v důsledku traumatické herniace hmoty meziobratlových disků přes obratlové ploténky. Myslel si, že enchondrální osifikace byla inhibována a na těchto místech došlo ke ztrátě výšky obratlového těla a k perforaci do koncových plotének s výsledným zastavením růstu přední části obratlů a tedy vyvolání přední blokace obratlů (Ali et al., 2000).

1.2 Klinický obraz

1.3 Stádia choroby

Morbus Scheuermann má určitý vývoj, který lze rozčlenit do 4 stádií (Dylevský a kol., 1997):

1.3.1 Prodromální stádium

V období před pubertou, zhruba kolem 9 let, v etapě růstové předpubertální akcelerace se objevují první klinické příznaky, kterými jsou občasné bolesti v páteřní oblasti. Na rentgenovém snímku nalézáme mikroskopické změny na dotykových ploškách. V tomto stádiu se Scheuermannova choroba vyskytuje u 25 % populace (Dylevský a kol., 1997).

1.3.2 Floridní stádium

Počátkem puberty začíná akutní fáze choroby, trvající v průměru 2 – 3 roky, od 11. do 14. roku. Kromě bolestí se objevují další příznaky (Dylevský a kol., 1997). Pozorujeme zvýšenou bederní a krční lordózu ve spojení s oslabením m. latissimus dorsi, mm. rhomboideii, m. trapezius (střední a dolní část), m. serratus anterior, mm. gluteii, což vede k vyklenutí břišní stěny. Bederní lordóza je obvykle reverzibilní, ale krční lordóza se může stát rigidní (McIntosh, Sucato, 2007). Zvýšená krční lordóza je spojená s předsunem hlavy. Kyfóza je tuhá a při extenzi páteře stále patrná (Lowe,1990; Ali, et al., 2000). Kromě deformity páteře mají tito pacienti často protrakci ramenního pletence s tendencí ke zkrácení mm. pectorales, poklepovou bolest a zvýšený svalový tonus m. erector trunci v oblasti hrudní kyfózy. Vyšší hrudní zakřivení dosahující 100° deformity bylo spojeno s mírně omezujícími plicními

Tyto změny vznikají výlučně v období poslední růstové akcelerace, v průběhu 3 až 6 měsíců prudkého růstu jedince do výšky, kdy naroste kolem 5 % své celkové výšky. V této době je popsána při extrémní zátěži pateře prudká progresi deformity se vznikem myelopatie, a naopak, po této době již progresi deformity nikdy nevidíme. Pokud má pacient již floridní stádium za sebou, další progresi deformity již nehrozí (Dungl a kol., 2005).

1.3.3 Reperační stádium

1.3.4 Klidové stádium

Ukončením vývoje kostry ve 23. – 24. roce končí stadium reparační a nastává stadium relativního klidu. Organismus je již adaptován (nebo někdy i maladaptován) na změny vyvolané onemocněním (Dylevský a kol., 1997).
rozdíly v symetrii zad ve formě jednostranných paravertebrálních valů (prominencí) v hrudní nebo bederní páteři. Při podezření na deformitu je třeba nemocného odeslat k ortopedickému vyšetření, který při rentgenovém potvrzení nálezu a proměření snímku zařídí další sledování, případně léčení. Základní vyšetření provádí ortoped zaměřený na deformity páteře. Speciální vyšetření je určeno pro složité případy a indikace k operaci a děje se v zařízeních zaměřených na deformity páteře (Vlach, Cienciala, 2002).

1.4.1 Klinické vyšetření

- Anamnéza - zjišťujeme začátek, etiologii, průběh onemocnění, zevní a především genetické faktory nemoci. Na základě anamnézy můžeme stanovit předběžnou diagnózu onemocnění.
- Výška pacienta.
- Aspekce zad ve vzpřímeném stoji a v předklonu - sledujeme změny provázející nemoci.
- Funkční testy páteře - zaměřeny na omezení hybnosti v sagitální rovině.
- Vyšetření napětí svalů a jejich koaktivace, kloubní laxita.
- Orientační neurologické vyšetření.

1.4.1.1 Anamnéza

Vyšetřuje se celkový stav, předchozí onemocnění, operace, pátrá se po dalších onemocněních, vadách. Údaje o deformitě obsahují záhyt onemocnění, dosavadní léčení, vývoj křivky, subjektivní potíže – bolest, únava, dechové obtíže. (Janíček a kol., 2007).

Zaměřuje se na výskyt Scheuermannovy choroby v rodině, především u mužů, a to několik generací. Zjišťujeme, zda má jedinec určité pohybové zvyklosti nebo se věnuje nějakému výkonostnímu sportu. Také se pátrá po poloze tela při psaní ve škole, jak dlouho udržuje statické polohy (sed, stoj) a zda jsou proloženy pohybem.

1.4.1.2 Vyšetření aspekci

Vyšetření pacienta začíná již při vstupu do ordinace, kdy si všímáme každého pohybu (příchod, posazení, svlečení). Pacienta vyšetřujeme svoleného a pozorujeme
ze všech stran, především zboku a zezadu, kdy nacházíme největší změny. U pacientů se Scheuermannovou chorobou se setkáváme s dobrou muskulaturou. Při provedení vyšetření aspekci zboku postupujeme od hlavy dolů a zaměřujeme se, zda uši, ramena, kyčelní klouby jsou v linii. Pátráme zejména po zvýšené krční lordóze s předsunutím hlavy, zaúhlené hrudní nebo thorakolumbální hyperkyfóze, která může být doprovázena kompenzační hyperlordózou bederní páteře. Kromě deformity páteře sledujeme protrakci ramenního pletence spojené s tendencí ke zkrácení prsních svalů. Zjišťujeme prominenci břišní stěny, zvýšenou anteverzi pánu.

1.4.1.3 Vyšetření palpací

1.4.1.4 Vyšetření zkrácených svalů

V principu jde při vyšetření zkrácených svalových skupin o změření pasivního rozsahu pohybu v kloubu v takové pozici a v takovém směru, abychom postihli pokud možno izolovanou, přesně determinovanou svalovou skupinu (Janda, 2004). U Scheuermannovy choroby se zaměřujeme především na vyšetření m. pectoralis major et minor, m. latissimus dorsi, m. subscapularis, m. biceps brachii, m. sternocleidomastoideus, m. levator scapulae, m. trapezius, m. erector spinae, ischiokrurální svaly (Weiss, 2010; McIntosh, Sucato, 2007; Ali et al., 2000).
1.4.1.5 Vyšetření oslabených svalů

Při testování nejde jen o zjištění svalové síly, ale také o stupeň aktivace a koordinace všech svalů, které se na výsledném pohybu podílejí a přitom nejsou v přímém anatomickém vztahu k prováděnému pohybu (Haladová, Nechvátalová, 2003). Při jejich vyšetření využíváme především funkčních testů. Svaly s tendencí k oslabení u Scheuermannovy nemoci jsou abdominální svaly, m. rhomboidei, m. trapezius (dolní část), m. gluteus medius et maximus. Dále se můžeme setkat s oslabením hlubokého stabilizačního systému, hlubokých krčních flexorů a m. serratus anterior (Nowak, 2009; Weiss, 2010; McIntosh, Sucato, 2007; Ali et al., 2000)

1.4.1.6 Vyšetření posturální stabilizace páteře

V praxi lze nejlépe uplatnit vyšetřování kvality svalové koordinace pomocí funkčních testů – například testy pro sagitální stabilizace trupu (páteře). Posoudí funkci svalu během stabilizace. Hodnocení schopnosti kontroly stabilizace páteře má značnou výpovědní hodnotu a vytváří prostor pro cílenou terapii (Kolář, 2006).

Extenční test

Známky poruchy stabilizace se projevují, když pacient během extenze výrazně aktivuje paravertebrální svalstvo s maximem v oblasti dolní hrudní a horní bederní páteře. Neaktivuje se nebo jen minimálně laterální skupina břišních svalů. Projevem je konvexní vyklenutí laterální skupiny břišních svalů, a to především v jejich dolní porci. Oblast v místě tenké aponeurózy začátku m. transversus abdominis se vtahuje a stává se konkávní. Dolní úhly lopatek rotují zevně. Významným patologickým projevem je nadměrná aktivita ischiokrurálních svalů někdy spojená i s aktivitou
v m. triceps surae. Za normálních podmínek jsou tyto svaly aktivovány jen minimálně a pacient je při extenzi páteře dokáže relaxovat.

Test flexe trupu

Pacient leží na zádech a proveďe malou flexi krční páteře a postupně i trupu. Palpujeme dolní nepravá žebra v medioklavikulární čáře a hodnotíme jejich souhyb. Sledujeme chování hrudníku během flekčního pohybu. Fyziologické provedení testu je takové, že při flexi krční páteře se aktivují břišní svaly a hrudník zůstává v kaudálním postavení. Při flexi trupu se aktivuje laterální skupina břišních svalů.

Projevy insuficience:
1. Při flexi hlavy dochází ke kraniální synkinéze hrudníku a kličních kostí.
2. Za předpokladu nedostatečné stabilizace páteře dochází při flexi trupu k laterálnímu pohybu žeber ke konvexnímu vyklenutí laterální skupiny břišních svalů. Flexe trupu probíhá v nádechovém postavení hrudníku.
3. Vyklenuje se laterální skupina břišních svalů. Často se objeví břišní diastáza.
4. Při flexi se zapojuje m. rectus abdominis a m. externus abdominis. Flexe se neúčastní bránice a laterální skupina břišních svalů.

Brániční test

Projevy insuficience:
1. Pacient nedokáže, resp. pouze malou silou aktivuje svaly proti našemu odporu.

3. Při aktivaci nedojde k laterálnímu rozšíření hrudníku, a tím také nedojde k dostatečnému rozšíření mezižeberních prostor. Za tohoto předpokladu není možná stabilizace dolních segmentů páteře.

Test nitrobřišního tlaku

Test extenze v kyčlích

1.4.1.7 Dynamické vyšetření páteře

Hodnocení pohyblivosti páteře pomocí Thomayerovy, Schoberovy, Stiborovy a Forestierovy vzdálenosti a lateroflexe (Haladová, Nechvátalová, 2003).

- **Schoberova vzdálenost** – Sledujeme pohyb v bederní páteři. Jako příznak omezení hybnosti bederního segmentu se objevuje zkrácení Schoberovy distance pod 2-3 cm. S omezeným rozvíjením tohoto úseku páteře souvisí i bolestivý pohyb.

- **Thomayerova vzdálenost** – Hodnotíme pohyblivost celé páteře do flexe. Zkrácení vzdálenosti považujeme za příznak omezeného rozvinování Th a L páteře, hybnosti kyčelních kloubů. U Scheuermannovy choroby se zvýrazní ostré zaúhlení v blízkosti vrcholu kyfózy, pohyb je často omezen díky zkráceným hamstringům.

- **Stiborova vzdálenost** – Měříme hybnost hrudní a bederní páteře do flexe. Při zkrácení této distance pod 5 cm posuzujeme tento příznak za omezení hybnosti.

- **Příznak Forestiere** – Díky zvýšené kompenzační lordóze je snížena hybnost krční páteře. Pro hrudní hyperkyfózu je test velmi neobjektivní. Hyperkyfóza nedovolí plné napřímení páteře a tím se zvětšuje vzdálenost zátylí a zdi ve východí postavení.

1.4.1.8 Další používané testy

- **Hyperextenční test** – Hodnotíme hybnost Th páteře do extenze. U Scheuermannovy choroby je kyfóza pevná a nemění svou velikost.

- **Adamsův test** – Test v předklonu prokazuje trupové asymetrie. Při pohledu ze strany ukazuje typické náhle zaúhlení hrudní páteře, které se ještě zvýrazní (Obr. 1) (McIntosh, Sucato, 2007; Damborg et al., 2006; Werger, Frick, 1999; Lowe, 1990).

Obr. 1 Adamsův test – hyperkyfóza hrudní páteře (Macintosh, Sucato, 2007)
1.4.2 Přístrojová vyšetření

Mezi přístrojová vyšetření řadíme rentgenové vyšetření, sloužící k měření velikosti zakřivení (tzv. úhel dle Cobba), rotace obratů a určení kostního věku (podle Risserovy zón) (Gross, a kol., 2005; Janíček a kol., 2007; Haladová, Nechvátalová, 2003).

Risserovy zóny – určí růstovou potenci (kostní věk) a prognózu další progrese deformity. Stanoví se na rentgenovém snímku hodnocením postupu osifikace apofýzy hřebene lopaty kosti kyčelní a jejího srůstu s páneví. (Janíček a kol., 2007).

Cobbův úhel (obr. 2) - vyjadřuje velikost kyfotické křivky ve stupních. Měří se z rentgenového snímku, proložením přímky horní krycí plochou proximálního koncového obratle a dolní krycí plochou distálního koncového obratle. Kolmice vztyčené k těmto přímkám se protínají v určitém úhlu, jehož doplňkový úhel vyjadřuje velikost křivky.

Obr. 2 Měření Cobbova úhlu (Stricker, 2002)
Rentgenový obraz je nezbytnou podmínkou diagnostiky, sledování a léčby. Dovoluje objektivní posouzení dané deformity, její etiologie, prognózy, vývoje v průběhu konzervativní a operační léčby a při hodnocení dosažených výsledků.

Základní rentgenové vyšetření spočívá v anteroposteriorní a boční projekci celé páteře vstoje včetně pánve a části lebky na dlouhý formát 30 x 90 cm. Snímky se proměří (dle Cobba) a určí zakřivení ve stupních. Někdy je třeba pořídit snímek PA vleže s maximální hyperextenzí páteře (Vlach, Cienciala, 2002).

Obr. 3 Boční RTG snímky (Hart, 2009)

Tento snímek také umožňuje posouzení kostních struktur podle Risserova znamení. Zobrazuje hrudní kryfozy přes 40° dle Cobba, snížení bederní lordózy.
a možné kyfotické deformace už na thorakolumbálním přechodu. Bederní obratle jsou nepravidelné s jasnými vadami v předozadních rozích (McIntosh, Sucato, 2007). Typické změny na kostech a discích jsou viditelné na magnetické rezonanci lépe než na rentgenovém záznamu (Anonymous A, 2009). Anteroposteriorní snímek podává informace o přidružené strukturální nebo nestrukturální skoliotické křivce, která se pohybuje obvykle mezi 10 až 20°. Vyšetření probíhá každé 4 - 6 měsíců u rostoucího dítěte, aby se vedla evidence o zakřivení jeho páteře (Stricker, 2002). Klasickým kritériem pro diagnózu je Bradfordovo schéma radiologických změn hrudní páteře:

1. hyperkyfóza hrudní či ThL nad 40° - fyziologie 20 až 40°
2. zúžení a nepravidelnosti krycích ploch obratlů a meziobratlových disků
3. klinovitá deformita obratlů v hyperkyfóze nad 5°(McIntosh, Sucato, 2007; Müller, Müllerová, 2005)

1.5 Diferenciální diagnostika

Diferenciální diagnostikou klasifikujeme Scheuermannovu nemoc a její atypickou formu odlišujeme od kyfóz a změn na páteři jiné etiologie. Rozlišení je poněkud problematické. Fyziologická hrudní kyfóza je skutečně dynamická po celý život a obvykle se zvětšuje.

- Posturální kyfóza – zvětšení hrudní kyfózy na 40 – 60°, zvětšení bederní lordózy, kyfóza je flexibilní, dobře korigovatelná, bez svalových zkrácení. Pacienti s posturální kyfózou mají sklon k astenie a jsou nedostatečně vyvinutí pro ně. Pacientům se Scheuermannovou nemocí. Rentgenologicky jsou bez klinovité deformace a nepravidelných krycích ploch.

- Kongenitální kyfóza – vyvíjí se fúze, zatímco u Scheuermannovy nemoci k ní nedochází, jako pozdní následek se mohou vpředu na tělech vytvořit osteofyty, ale bez kostních přemostění.

- Infekční spondylitida – odlišme klinicky, laboratorně, tomografickým vyšetřením a scintigrafii.

- Ankylozující spondylitida – odlišíme pomocí HLA tkáňové typizace.

- Hrudní hyperkyfóza - u pacientů s různými typy kostní dysplázie.

- Kyfóza - u kostně nezralých pacientů po laminektomii, při ozařování
regionálního nádoru páteře (neuroblastom), u pacientů s eosinofilním granulomem.

- Spondylolystéza L₅ – vzniká těžká bederní lordóza s kompenzační hrudní kyfózou.

2 Terapie

Rozhodnutí o druhu terapie je založeno na závažnosti deformity, věku pacienta, přidružených nemocech (Ali et al., 2000). Je velice málo informací o pohybové rehabilitaci a korzetoterapii v léčbě pacientů s hyperkyfózami.

2.1 Současné názory ve fyzioterapii Morbus Scheuermann

V Německu dle Weisse, Dieckmanna, Germera (2002) je fyzioterapie často užívána jako cvičení pro zlepšení posturálních funkcí a se zaměřením na protažení hamstringů, posílení extenzorového aparátu trupu a zlepšení tak jeho funkce (Weiss et al., 2002).

Ve Velké Británii se většina autorů shoduje na protahování zkrácených svalů (m. pectoralis major, m. erector spinae a m. levator scapulae) vedoucí k protakci ramenního pletence a zvýšení hrudní kyfózy s následnou aktivací oslabeného svalstva spolu se cvičením správného držení těla ve stoji a sedu. Tento typ terapie je považován za důležitou součást zajištění co nejpružnější křivky (Wenger, Frick 1999, Weiss et al., 2009; Hallet, 2002). Při bolesti uplatňují především manuální terapii, Mc Kenzie a Brugger koncept (Weiss et al., 2002).

Neexistují žádné průzkumné studie dokládající zlepšení kyfózy cvičením (Wenger, Frick 1999, Weiss et al., 2009; Hallet, 2002). Pohybová aktivita, i když nezabrání
změnit deformity, může přispět k posílení trupového, břišního svalstva a zmírnit některé bolesti (Anonymous C, 2009). Fyziotherapeut, může také posoudit, zda existuje zvýšená tendence ke vzniku zkrácení flexorů kyčelního kloubu a může pracovat na související bederní lordóze (Wenger, Frick 1999, Weiss et al., 2009).

Tyto názory se omezují převážně na analytický přístup terapie, kde se autoři vždy zaměřují na jednotlivé symptomy nemocí, nikoli na její příčinu. Je opomíjena funkční koordinace hlubokého stabilizačního systému páteře a její „restituce“ v rámci kinezioterapie. Kde důležitou roli zde hraje schopnost páteřních segmentů, zejména ThL přechodu, být dynamicky stabilní (Zemánek, ústní sdělení).

2.2 Princip terapie

Terapie je založena na předpokladu, že poruchy vznikají na podkladě působení patologicky změněných aferentních signalizací a dojde tak ke vzniku reflexorických ochranných mechanismů a tím ke změně fyzioLOGICKÉho průběhu pohybu a držení těla (Šídáková, 2009).

U Scheuermannovy choroby se zaměřujeme, aby páteř byla dostatečně stabilizovaná, flexibilní a protažlivá. Za stabilizovanou považujeme páteř, kde každý obratel je schopen, funkční koaktivaci svalů, postupně vytvořit a dostatečnou dlouhou dobu zajištění opěrnou bází pro výkon svalů, které se na něj upínají. Z hlediska flexibility je pro nás důležitá schopnost páteře realizovat v rámci lokomočních aktivit trojdimenzionální šroubovitý intersegmentální pohyb, který se šíří sekvenčně bez přerušení po celé její délce. Trojdimenzionální pohyb vyústí do napřímování páteře s tendencí k oploštění kyfolordóz (Čápová, 2008),

2.3 Celkový pohybový režim

Kromě cílené kinezioterapie je nutno se zaměřit také na celkovou mobilitu jedince v průběhu dne. Sezení ve strnulé poloze je pro ně typicky nevhodným stereotypem s rizikem lokálního přetížení. Protažení během hodin by mělo být samooběžností. Komplexní pohybový režim stimuluje hormonální produkci, ale také celkovou tělesnou zdatnost, funkci orgánů i organismu jako celku. Pohyb vede k rozvoji svalové i vazivové složky. Ve volném čase, včetně spontánní dětské aktivity a řízeného cvičení, doporučujeme minimalizovat riziko mikrotraumatizace a přetížení páteřního systému (Dylevský a kol., 1997). V akutní fázi dochází k úpravě denního
režimu, doporučuje se pestrá strava s dostatkem mléčných výrobků, někdy se předepisuje vitamin D a Ca$^{2+}$ (Trnavský, Kolařík, 1997).

Dylevský doporučuje omezit skoky a doskoky, nošení brašen a těžkých závaží, dlouhodobé udržování polohy, jako je např. pochodové cvičení bez vložených pohybových aktivit, dlouhé teoretické výklady apod., aby nedocházelo k lokálnímu přetěžování páteře. Zařadíme s příhľédnutím na kontraindikované činnosti hry, při nichž se střídají všechny dovednosti a zatěžuje se organismus v celku. To znamená, že dítě dáme dostatečný prostor pro spontánní aktivitu v dětském kolektivu, ale i mimo něj (Dylevský a kol., 1997).

Ze sportů můžeme střídavě zařazovat ty, které jsou pro příslušnou věkovou skupinu vhodné, s výjimkou tehč, v nichž jsou silové cviky a časté pády. Nedoporučujeme úpolové sporty, gymnastické vzpory a doskoky, ale ani hru brankáře v kopané či odbíjené, a dokonce musíme být opatrní i při košíkove. Plavání je vhodné pro pohyb v vodním prostředí, ale zásadně nedovolujeme delfína a neradi vidíme i styl prsa pro riziko dalšího zkracování mm. pectorales. Zakazujeme jakoukoli jednostrannou zátěž, protože velice rychle dochází k adaptaci pohybového systému na ní a vzniká tak maladaptace (Dylevský a kol., 1997).

Tělesná zátěž v odpovídající kvalitě a kvantitě patří mezi prostředky přímo ovlivňující zdraví pacientů. Spontánní pohybový i rekreační režim stejně jako cílený sportovní pohyb sehrávají významnou roli. Pacient by měl cvičit několikrát denně alespoň deset minut (Dylevský a kol., 1997). Dle Müllera a Müllerové jsou vhodné nové motivační programy jako hippoterapie a tanec. Doporučujeme také cvičení na velkém měch pro napřímení páteře, zapojení břišních svalů a pánevního dna. Pacientům navrhuje cvičení jógy a nordicwalking (Müller, Müllerová, 2005).

2.4 Pohybové aktivity v jednotlivých stádiích

Během floridního stádia adekvátní pohybová aktivita je hlavním prostředkem komplexní léčby. Sportovní aktivity zaměřujeme zejména na rovnoměrné zatížení páteře, které zmenší riziko lokálního přetěžování postižených obratlů. Svalová souhra mezi autochtonní muskulaturou, bránici, svaly pánevního dna a břišními svaly jsou předpokladem správné funkce páteře. Pohybovou aktivitu doplňujeme dostatečným přívodem minerálů a vitaminů (Nowak, 2009; Dylevský a kol., 1997; Cinglová, 2002).

Souhrnně platí, že pro pacienta v každém věku znamená zjištění Scheuermannovy choroby potřebu celoživotní pohybové stimulace axiálního systému. V některých případech se klidové terapie nevyhneme, obecně však můžeme říci, že adekvátní tělesná zátěž musí pacienta provázet po celý život (Dylevský a kol., 1997).

2.5 Kinezioterapie

V rámci analytických rehabilitačních metod analyzujeme jednotlivě postižené struktury (svaly oslabené, zkrácené, hypertrofické, svaly s TrP, klouby s menším rozsahem pohyblivosti, zkrácená ligamenta, fascie, bolestivé úpony atd.), které poté cíleně ošetřujeme (uvolňujeme, protahujeme, stimulujeme a snažíme se obnovit jejich funkci). Kinezioterapie je individuální a vždy se odvíjí od kineziologického rozboru a nálezu (Dvořák, 2003).

V terapii se můžeme setkat se speciálními metodikami, které lze cíleně použít i v rámci diagnózy vertebrogenních poruch. V praxi se z hlediska trvání efektu více uplatňují syntetické přístupy kinezioterapie, kam řadíme metodu reflexní lokomoce.
dle Vojty, proprioceptivní nervová facilitace (Kabatova technika), posturální terapie, metoda R. Brunkowové, Brüggerův koncept, Feldenkraisova metoda. Při vzniku bolestí jako sekundárních změn se užívá nejčastěji metoda dle Robina McKenzieho (Šídáková, 2009).

2.6 Používané terapeutické přístupy

2.6.1 Metoda reflexní lokomoce dle Vojty

Vojtova metoda využívá pohybových vzorů, které se více či méně vyskytují ve spontánní motorice. K vybavení využívá proprioceptivních a exteroreceptivních stimulů (zejména periostální tlak z přesně definovaných míst, které nazýváme „spoušťové zóny“ a konkrétně danou polohou těla s opěrnými body). Reflexní lokomoce podle Vojty umožňuje automatické zapojení funkčně utlumených svalů v rámci vrozených globálních vzorů (reflexní otáčení a plazení). Opakované reflexní cvičení napomáhá uvědomit si, jak správně zapojit svaly a jak správně dýchat (Kolář et al., 2009).

Pacient se snaží korigovat držení těla a dýchání vlastní vůli na podkladě verbální a palpační instruktáže fyzioterapeuta. Dochází tak k pravidelnému prohloubenému dýchání, změně tepové frekvence, pozitivní stimulaci nervových center, vegetativního systému (pocení a zčervenání, celkovému zlepšení mentální aktivity a uvolnění svalových kříží) (Haladová 2004; Vojta, Peters, 1995; Šimáková, 2009; Anonymous E, 2010).

Terapeutický reflexní systém lokomoce představuje nabídku zkříženého vzoru a aktivaci dílčích modelů, které jsou obsaženy v lidské motorice. Každá poloha, každá terapie jsou zdrojem aferentace. Aferentace drážděním proptioreceptorů je pro terapii nejvýhodnejší, protože tyto receptory se neadaptují na podněty. Při terapii se uplatňují i další aference (z interoreceptorů, exteroreceptorů), avšak nehrají tak významnou roli, jako proprioceptory. Nejvíce proprioceptorů je obsaženo v autochtonním muskulatuře, kde využíváme spoušťových bodů v trupové zóně (Vojta, Peters, 1995).

V průběhu aktivace vzniká izometrická kontrakce, která se může zesílovat prostřednictvím dráždění a nasazením odporu proti vznikajícímu průběhu pohybu. Terapeut brání provedení odporem, tlakem na spoušťové zóny. Tím ještě více facilituje aktivaci zúčastněných skupin svalů. Aktivita směřuje k napřímení trupu, centraci kořenových kloubů. Je tedy jasné, že aference z oblasti osového orgánu bude
při terapii rozhodující. Časový sled reflexního pohybu závisí na výběru zón, aktuální citlivosti zóny, intenzitě kontrakce, rychlosti rozšíření svalových souher (Vařeka, 2000; Vojta, Peters, 1995; Anonymous E, 2010). Svalová aktivita se rozšíří na celé tělo. Přes opěrné body na končetinách se uskutečňuje přesun těžiště, trup je na končetinách vzpřímen a nesen dopředu. Celý děj probíhá dynamicky se střídáním stojních a kročných fází na horních a dolních končetinách (Kolář et al., 2009).

Terapeutický systém V. Vojty zahrnuje tři modely:
- model, který se aktivuje na břišním nazývá reflexní plazení (viz příloha 1)
- model, aktivovaný z polohy na zádech, nebo –li reflexní otáčení (viz. příloha 1)
- model, aktivovaný z polohy na obou kolenou se nazývá 1. pozice (Vojta, Peters, 1995)

Aktivita při reflexním plazení

V reflexním plazení z ventrální strany proti aktivitě zechních rotátorů a mm. rhomboidei nakládá m. pectoralis major hrudník směrem ke hřbetu a tím dojde k jeho antigravitačnímu vzpřímení. M. serratus anterior vytvoří v opoře puntum fixum a působí na hrudník následovně: Hrudník se rozšíří a dojde tak k intentivnímu nádechu, poté se stane corpus mobile a bude zavěšen a držen na vnitřní hraně lopatky. Páteř se napřimuje a stává se stabilní. Kaudální díly m. serratus anterior těsnou kraniálně a mají tedy lokomoční charakter pro trup. Rotace trupu, která se vyvolá prostřednictvím tohoto svalu, bude synergicky řízena dorzálními rotátory trupu (mm. rhomboidei, pars transversa et pars ascendent m. trapezii). Tím bude páteř napřimována.
Proti funkci mm. rhomboideí působí aktivita m. serratus anterior, m. obliquus abd. ext. a zejména autochtonní muskulatura. U fáze odrazu záhlavní dolní končetiny vidíme, že m. psoas major má tendenci lordotizovat thorakolumbální přechod, ale s kontralaterálním m. serratus posterior inferior a koaktivitou břišní muskulatury tento přechod napřimují (Kováčiková, 1998; Vojta, Peters, 1995).

Aktivita u reflexního otáčení

Použitím hrudní zóny se trup nastaví do středního postavení a dojde k paralelnímu nastavení linie ramenní a pánevní. Se změnou podélné osy těla do extenze se dostává do středního postavení také pánev. Záda se stanou opěrnou bází a těžiště je přesunuto kraniaльнě do oblasti hrudní páteře, záhlaví vytváří opěrný bod. Krční hyperlordóza páteře se tak napřimuje. Napřímení osového orgánu je iniciována aktivací autochtonní muskulatury, která je pod stálým vlivem spinálních automatismů. Inspirace napomáhá k extenznímu držení páteře. Když hrudník a pletence ramenní dosáhnou opěrnou bází, postaví se prostřednictvím m. quadratus lumborum pánev šikmo. To vede k protažení a následně hned ke kontrakci břišní muskulatury (Vojta, Peters, 1995).

Během reflexního otáčení I. koaktivita hlubokých krčních flexorů, autochtonní muskulatury, břišních svalů a bránice dorsálně klopí pánve do střední roviny, tonizuje břišní stěnu a umožňuje kostální dýchání. V 90° abdukci záhlavní horní končetiny aktivita m. serratus anterior vytvoří puntum fixum o spinu scapulae. To vede ke změně směř tahu m. serratus anterior, který má tak tendenci roztahovat žebra. K rozšíření ale nedojde aktivitou m. obliquus abd. ext. záhlavní strany, m. obliquus abd. int. čelistní strany pouze způsobi kraniaльнě naklopení pánve ve frontální rovině na čelistní straně (1. břišní řetězec). 2. břišní řetězec tůhne přes m. obliquus abd. int. záhlavní strany, m. obliquus abd. ext. čelistní strany a m. serratus anterior čelistní strany lopatkový pletenec k pánvi (diferenciace šikmých břišních řetězců). Vyvolá tak rotaci těla k záhlavní straně na bok.

Ze zkušeností a z výhody polohy pro ovlivnění hyperkyfózy se zdá být nejefektivnější II. fáze reflexního otáčení. Opora se přenese na loket a tělo se vzpřímuje nad paži. Opřená spodní žebra vytvářejí puntum fixum pro m. serratus posterior inferior. V thorakolumbálním přechodu žebra vytvářejí svým úponem puntum fixum pro m. iliopsoas svrchní fázické dolní končetiny (1. dorsální šikmý
řetězec – kraniální směr tahu) vedoucí k její flexi. Opřená spodní dolní končetina vytváří puntum fixum pro m. iliopsoas, který má tendenci lordotizovat thorakolumbální přechod a vytváří oporu pro m. serratus posterior inferior svrchní strany (kaudální směr tahu) - (2. dorsální šikmý řetězec). Oba dorsální řetězce, pak napřímuji thorakolumbální přechod (Kováčiková, 1998; Vojta, Peters, 1995).

Stimulaci reflexních zón navodíme svalovou rovnováhu aktivací hlubokého stabilizačního systému páteře a správnou funkci celkové muskulatury, která má souvislost se správnou funkci bránice. V rámci jednotlivých poloh dochází k napřímení páteře, vyrování kyfolordóz. Páteř se stává stabilní a zároveň rotabilní (Vojta, Peters, 1995).

2.6.2 Posturální terapie

Terapii provádíme v určitých pozicích, tzv. atitudách, které odpovídají polohám z vývoje lidského vzpřímení. Různými vlivy, jako například zesílením tlaku v místě opěrných bodů, při současné motivaci pacienta k pohybu spouštíme bazální programy. Velký důraz klademe na využití emočních prvků, asociace a prožitků pohybu. Při plném využití dochází následně k velmi kvalitní dechové mechanice a k funkčnímu propojení horního a dolního trupu, což s sebou nese také dobrou stabilizaci páteře. Základní podmínkou úspěchu je však především, že pacient chce zlepšit sám svůj
zdravotní stav. Hlavním aktérem při terapii je pacient sám, i když je veden zkušeným terapeutem. Pomyslným cílem společného snažení pacienta a terapeuta je realizace terapie v domácím prostředí. Teprve potom je terapie dostatečně intenzivní a efektivní (Čáповá, 2008).

Opěrná funkce horní končetiny

Opěrná funkce dolní končetiny

Stabilizace a následná rotace pánve navazuje na zesilující vrchol opěrné funkce horní končetiny při opoře na jednom předloktí. Zvětší se sešikmení pánve ve frontalní, sagitální i transversální rovině. Posléze dojde k zavedení opory na flektované dolní končetině. Následně dojde k vertikalizaci fémuru. Trupové diagonální řetězce se funkčně napoje na flekční i extenční komponentu budoucí opěrné DK.

Výsledkem je tak výrazné posílení stabilizace thorakolumbálního přechodu. Je možné realizovat vrchol opěrné funkce dolní končetiny. Propojením opěrné funkce horní končetiny se funkčně propojují s opěrnou funkcí kontralaterální dolní končetiny a tím může dojít k odlepení funkčně propojeného trupu od podložky. Páteř se napřímuje, je stabilizována a trojdimenzionálně rotabilní (Čáповá, 2008).

Terapeutická poloha 3. měsíce

V této poloze se tělo celou plochou zad dotýká s podložkou. Opora se rozkládá od záhlaví po celé ploše horního a dolního trupu včetně ramen a hýždí. Dolní končetiny jsou trvale drženy proti gravitaci nad podložkou s převahou zevně rotačních

Poloha šikmého sedu

Je to poloha na boku s oporou o jedno předloktí. Poté dochází k výrazné rotaci horního trupu, kdy se pomyslná spojnica ramen rotuje do horizontální pozice a vykonává část spirálního pohybu. Dolní trup a s ním spojnice kyčelních kloubů, zůstává převážně ve vertikální pozici. Tím dochází k vydatnému propojení horního a dolního trupu, páteř se postupně rotuje ve všech třech dimenzích současně a postupně se napřímená. Na straně opory se objevuje supinace s dorzální flexi hlezna a flexi prstců. U vyvažovací, později fázické dolní končetině vidíme dorzální flexi hlezna v neutrálním postavení s uvolněnými prstci (Čápová, 2008).

Terapeutická poloha na boku

Tato poloha začíná na boku, kdy pacient je opřen o hlavici humeru, laterální stranu hrudníku a kyčelní kloub spodní strany. Hlava je v prodloužení trupu. Spodní horní končetina leží na podložce v mírné zevní rotaci, ve flexi mírně nad 90°, semiflexi lokte a pronaci předloktí. Spodní dolní končetina je ve flexi v kyčelním kloubu 45 – 60°, koleno flexe 90°asi 30°, pata je v linii s tuber ossis ischii. Svrchní dolní končetina je v trojflexi a leží na podložce, hlezna jsou v nulovém postavení

Opora přechází z ramene na loket a z kyčelního kloubu na laterální část kolene. Páteř se v thorakolumbálním přechodu napřímená, obratlová těla rotují ke svrchní straně a vzniká malý konvex spodní strany v bederní páteři. Celá páteř se tak stává dynamicky stabilizovanou, napřímenou a rotabilní v celé svoji délce (Čápová, 2008; Vojta, Peters, 1995).

Touto terapií dochází k vyrovnání svalového napětí, optimálnímu zatížení kloubů, zlepšení dechové mechaniky a dojde k protažení a uvolnění celé páteře (Čápová, 2008).
2.6.3 Metoda Ludmily Mojžišové

Je to diagnosticko-léčebná metoda, jejíž podstatou je reflexní ovlivnění nervosvalového aparátu pánevního dna za použití pohybové léčby bederní páteře, křížové kosti, kostrče a svalů, které ovlivňují jejich vzájemnou polohu. Dochází tak k odstranění svalových spazmů, bolesti. Hlavním účinkem této metody u Morbus Scheuermann, je kompenzace již existujících tvarových změn trupu a kompenzace svalové nerovnováhy. Cviky jsou zaměřeny především na posílení svalů břišních a hýžďových, které spolu se svaly pánevního dna zajišťují jejich vzájemnou polohu. Posilování se děje postizometricky a je facilitováno dechem. Důraz je kladen i na část relaxační. Další cviky mají účinek mobilizační a protahovací, dle lokalizace jejích působení. Před samotnou terapií je nutno provést vyšetření pacienta. (Hnízdil a kol., 1996; Šimáková, 2009)

Metoda Ludmily Mojžišové obsahuje také celé cvičební sestavy (viz. příloha 2). V rámci terapie Morbus Scheuermann využíváme především cviky na zapojení do aktivity hýžďových a břišních svalů, cviky na protažení a následné zapojení.
paravertebrálních svalů, ale také ty, které relaxují a mobilizují jednotlivé úseky páteře (Hnízdil a kol., 1996).

2.6.4 Metoda McKenzie

Je to diagnostický a terapeutický systém, který je založen na mechanismu produkce a eliminace bolesti v přímém důsledku na pohyb nebo polohu daného kloubu či celého těla. Terapie je vhodná pro celý muskuloskeletální systém, tzn. páteř krční, hrudní, bederní, ale i periferní klouby (Clare et al., 2005).

V rámci terapie se používá flekční a extenční princip (viz. příloha 3). Druh principu je volen na základě polohy, kdy dojde k mechanické deformaci a následné bolesti. Metoda McKenzie ovlivňuje bolest jako sekundární změnu Scheuermannovy nemoci. Dojde tak k eliminacii bolesti v návaznosti na pohyb nebo polohu daného kloubu. Využívá se pro celý muskuloskeletální systém (páteř i periferní klouby) (Nováková, 2005; Weberová, 2007; McKenzie, 2005).
2.6.5 Brügger koncept

Zakladatelem tohoto konceptu diagnostiky a terapie funkčních poruch pohybového systému je švýcarský neurolog a psychiatr Dr. Alois Brügger (Pavlů, 2000, 2002). Zjistil, že bolest v pohybovém aparátu může být funkčně podmíněna. Cílem Brüggerova konceptu je určit patologicky působící aferentní signalizaci a obnovit ekonomické průběhy pohybů a držení (Šimáková, 2009; Pavlů, 2002).

Pro zaujmutí vzpřímeného držení těla je zapotřebí vzájemnou souhra svalů v rámci svalových smyček. Velká svalová smyčka se skládá z šesti funkčních svalových skupin zapojených v sérii: svaly zajišťující zvedání hrudníku, zevní rotátory ramenního kloubu, fixátory lopatky, funkční skupina břišních svalů, svaly provádějící klopení páne vpřed a funkční třmen nohy. Korekce držení těla probíhá ve dvou krocích: Korekce hrubá neboli verbální a korekce jemná neboli taktilní.

Před každou terapií se provádí polohování v lehu na zádech s aplikací tepelných podnětů za účelem relaxace konkrétních tělových partii jako přípravná opatření (Pavlů, 2002; Šimáková, 2009). Samotná terapie pak probíhá ve smyslu pasivních a aktivních postupů. Mezi pasivní postupy patří aplikace horké role s cílem ovlivnit lymfatický oběh a neurologické kontrakční postupy s především relaxačním účinkem. Aktivní postupy jsou agisticko-excentrické postupy, cvičení s Thera - Bandem, ADL, terapeutická chůže dle Brüggera.

Jedná se tak o postupně fyziologické nastavení pánev, celé páteře a hlavy. U Scheuermannovy nemoci dochází k napřímení a stabilizaci páteře, rozevření hrudníku a zlepšení tak dechové mechaniky (Pavlů, 2002).
Agisticko - excentrické kontrakční postupy

Cvičení s Thera – Bandem

2.6.6 Proprioceptivní neuromuskulární facilitace – PNF

Metoda proprioceptivní nervosvalové facilitace (PNF) neboli Kabatova technika je jednou z nejkomplexnějších kinezioterapeutických facilitačních metod. Podobně jako mnoho dalších facilitačních technik, využívá zejména signalizaci ze struktur pohybového aparátu, tedy ze svalového vřeténka, Golgiho šlachového těliska a kloubních receptorů. Tímto způsobem facilitace dochází k aktivaci maximálního počtu motorických jednotek. Mezi facilitační mechanismy řadíme protažení, maximální odpor, manuální kontakt, povely, trakce a komprese. Nezanedbatelnou součástí facilitace je však i signalizace z kožních receptorů, kterou zvyšujeme přesným manuálním kontaktem mezi terapeutem a pacientem, a signalizace senzorická – sluchová – na podkladě jasných a správně časovaných povelů. Dojde tak k zapojení maximálního počtu motorických jednotek zúčastněných svalů. Pohyby, které tato technika používá, jsou převzaty z přirozených pohybů zdravého člověka a jsou
uspořádány do pohybových vzorců, jejichž charakteristickým rysem je přítomnost spirální a diagonální komponenty (Šimáková, 2009; Pavlů, 2003; Haladová a kol., 2004).

Metoda se používá ke zlepšení koordinace zapojování svalů. Všechny facilitační pohybové vzory můžeme provádět buď v celém jejich rozsahu, tedy z maximálního protažení do maximálního zkrácení daných svalových skupin, nebo se můžeme omezit na provedení jen v určitých úsecích vzoru a cíleně pracovat se svaly, které se v této části pohybu uplatňují nejvíce. Při terapii u Scheuermannovy nemoci dojde protažení prsních svalů, pohybu ramenního pletence do retrakce, napřímení páteře, posteriorní depresi lopatky a aktivaci fixátorů lopatky. U dolních končetin a pánve se zapojí do aktivity břišní svalstvo (Haladová, 2003; Pavlů, 2002).

Vzorce lopatky

Při terapii pouze lopatky nesmí docházet k pohybu trupu, paže je volná, může se nechat vést pohybem lopatky. Využívá se především anteriorní elevace a posteriorní deprese lopatky. Při anteriorní elevaci probíhá abdukce a zevní rotace dolního úhlu, lopatka se pohybuje nahoru a dopředu směrem k pacientovu nosu. Je aktivován m. serratus anterior a m. trapezius (sestupná vlákna). Při posteriorní depresi je dolní úhel lopatky vnitřně rotován a addukován, lopatka se pohybuje dolů a dozadu směrem k dolní hrudní páteři. Aktivují se mm. rhomboidei, m. latissimus dorsi a m. trapezius (vzestupná vlákna).
Vzorce pánve

Při pohybech pánve nesmí docházet k anteverzi či retroverzi – nesmí být patrný pohyb v bederní páteři. 1. diagonály pánve nám umožní aktivovat šikmé břišní svaly (m. obliguus abdominis externus et internus). 2. diagonály aktivují m. quadratus lumborum a m. iliocostalis lumborum (Pavlů, 2003; Bastlová, ústní sdělení).

2.6.7 Senzomotorická stimulace

Tato metoda byla vypracována profesorem Vladimírem Jandou a Marií Vávrovou. Její název má zdůrazňovat vzájemnou provázanost aferentní a eferentní informace při řízení pohybu (Kolář et al., 2009). Jedná se o metodiku propioceptivního cvičení, jejíž podstatou je zvýšení proudu vzruchů periferních struktur pohybového aparátu a aktivace podkorových center. V zásadě tato metoda využívá stimulaci aferentního systému k facilitaci motorických eferentních center a drah (Pavlů, 2003; Haladová a kol., 2004).

Technika obsahuje soustavu balančních cviků prováděných v různých posturálních polohách. V metodě se klade důraz na facilitaci pohybu z chodidla. Využívá se facilitace propioceptorů podílejících se zejména na řízení stoje, rovnováhy a přesnosti pohybu s využitím receptorů především plosky, ale také velmi významně jsou krátké šíjové extenzory. Cílem je tak dosáhnout reflexní, automatické aktivace žádaných svalů, a to tak, aby jejich činnost nevyžadovala kortikální kontrolu. Drážděním proprioceptorů i exteroceptorů stimulujeme CNS a zpětně tak ovlivňuje provedení pohybu. (Kolář et al., 2009, Pavlů, 2002).

K terapii se využívá řady balančních pomůcek:
- kulové a válcové úseče,
- balanční sandály,
- točna,
- minitrampolína,
- posturomed,
- fitter,
- balanční míče (Pavlů, 2003).

Pro všechna cvičení ve stoji se musí pacient nejprve naučit korigovaný stoj. Dojde tak ke zlepšení vnímání kontaktu chodidla s podložkou, zvýší se aktivita svalů chodidla a dojde k uvedomění si těla v prostoru. Postupně se nacvičuje přední a zadní půlrok, výpady a poskoky. Zaměřuje se tak na nácvik správného držení těla pomocí přesunu těžiště (Kolář et al., 2009).

U Scheuermannovy nemoci využíváme labilních plochách, především pro nácvik aktivace svalstva zádového, hýžďového a břišního. Při užití labilních ploch dochází k rychlému střídání a současně aktivaci flexorů a extenzorů trupu (Pavlů, 2003).

2.6.8 Mobilizační techniky

Mobilizaci provádíme opakovanými nenásilnými pohyby ve směru kloubní blokády. Pohyb opakujeme nejméně 8 – 10x. Začínáme ve směru omezení pohybu a místě, kde začínáme cítit odpor při jemném tlaku (Rychlíková, 2002).

2.6.9 Relaxační techniky

Relaxace je nedílnou součástí reedukace pohybu a patří k základním prvkům celého rehabilitačního procesu. Relaxace znamená uvolnění napětí svalu. Provádí se místní relaxace (týkající se jednoho nebo více svalů určité oblasti), ale také dlouhodobá celková relaxace vleže na zádech. Dochází tak k postupnému prohloubení
psychické, ale i svalové relaxace. Za tímto stavem je patrně snížení dráždivosti motoneuronů.

2.6.9.1 Feldenkraisova metoda

Cvičení probíhá na podložce v různých pozicích od lehu až po stoj. Přitom nejde o imitaci přesného pohybu, ale pohybu konaného zvolněně a s příjemným pocitem, s možností dosáhnout pohybu jednodušího, účelnějšího a většího rozsahu (Rywerant, 1983).

Terapie je novým přístupem k porozumění sobě samotnému. Její efektivita spočívá ve schopnosti přimět procesy nervového systému ke změně a zlepšit tak jejich fungování. Vychází z předpokladu, že promyšlené zkvalitňování pohybu je tou nejlepší cestou ke komplexnímu rozvoji celé lidské bytosti. Dochází tak k uvědomění si jednotlivých částí těla, jejich uvolnění a přenášení specifických vjemů do centrální nervové soustavy. U Scheuermannovy choroby dojde prohloubenému sebeuvědomění, k uvolnění napětí, relaxaci a následně jednoduššímu ovlivnění patologie.
3 Vliv pohybu na modelaci osového orgánu

Páteř je osový orgán těla, na který jsou z biomechanického hlediska kladeny protichůdné nároky, a to zajistit dostatečnou stabilitu a současně flexibilitu. Při symetrickém postavení jsou jednotlivé komponenty v rovnováze a páteř se nachází ve vertikále. Jednotlivé regiony jsou zajištěny jak funkcí svalovou, tak ligamentozním aparátem (Jalovcová, 2009).

V průběhu posturální ontogeneze se vyvíjí držení osového orgánu v lordotickokyfotickém zakřivení, nastavuje se postavení páneve a hrudníku (mění se tím i tvar hrudníku). To je umožněno rovnovážnou souhrou mezi extenzory páteře a flexory krku a nitrobršišním tlakem (jde o souhru mezi bránicí, břišními svaly a svaly pánevního dna) (Kolář et al., 2009).

Pro vyváženost svalstva, resp. pro eliminaci nevýhodných sil působících během držení těla a pohybu, je podstatné správné postavení hrudníku. Při rovnovážném zapojení svalstva je hrudník nastaven tak, že je předozadní osa mezi úponem bránice pars sternalis a zadním kostofrenickým úhlem nastavena téměř horizontálně. Hrudník je převodníkem sil mezi ramenním a pánevním pletencem. Zpevnění hrudníku umožňuje funkci horních a dolních končetin. Postavení hrudníku podstatně ovlivňuje posturálně stabilizační funkci svalů. Zvláště významná je souhra mezi m. serratus anterior, břišními svaly, bránicí a prsními svaly (Kolář et al., 2009).

Velmi častou poruchou je inspirační postavení hrudníku s poruchou pohyblivosti v kostovertebrálních skloubeních. Tato dysfunkce je nahrazována pohybem páteře, a to i při dýchání. Při napřímení hrudní páteře se celý hrudník automaticky nastavuje do inspiračního postavení. To bývá spojeno s anteverzí páneve – tzv. syndrom rozevřených nůžek. Jako nejčastější porucha je však předsunutí hrudníku jako důsledek chybného zakřivení páteře v sagitální rovině. Pro fyziologickou stabilizační funkci páteře je podstatný také tvar hrudníku.

ve vztahu k páteři. Je – li jejich postavení příliš ventrální, nemůže být vyvážená funkce mezi extenzory páteře a nitrobrňšním tlakem.

Dále je také významný tvar a postavení lopatek. Jejich zevní rotace svědčí o převaze adduktorů ramene, horní části m. trapezius a m. pectoralis major a oslabení dolních fixátorů lopatek. Stabilizační aktivita lopatky je závislá na postavení hrudníku a souhře s bránicí a bříšními svaly, které vytvářejí pro jeho funkci puntum fixum. Při inspiračním postavení hrudníku není tato stabilizační funkce možná. Převaha adduktorů lopatek oproti m. serratus anterior vede k oploštění hrudní páteře.

Spojení hrudníku s lopatkou zajišťuje především m. serratus anterior, který se podílí na obdukcí paže. Při vzpažení fixuje a stáčí lopatku dolním úhlem laterálně. Horní část zvedá úhel lopatky, střední část je antagonistou transverzálních snopců m. trapezius a dolní části umožňuje vzpažení. Při porušené stabilizační funkci tohoto svalu se dolní úhel lopatky stáčí mediálně, odstává od páteře svým margo vertebralis a vázne i vzpažení nad horizontálu. Úprava postavení lopatek musí vycházet nejprve z ovlivnění stabilizační funkce hrudníku (Kolář et al., 2009).

Systematická pohybová aktivita se zaměřuje na ovlivnění fyziologického držení těla a zabránění zkracování měkkých tkání v oblasti hrudníku. Zkrácení měkkých tkání přispívá ke zhoršení statiky (Janda, 2001).
4 Navrhovaný kineziologický algoritmus u pacientů s Morbus Scheuermann

1. Anamnéza

Pátráme po úrazech v minulosti, současných onemocněních, rodinném výskytu Scheuermannovy nemoci (především muži), ptáme se na charakter zaměstnání a pracovní prostředí, množství a typ pohybu, záchyt a progrese onemocnění.

2. Vyšetření stoje aspekci

Ve vzpřímeném stoji hodnotíme asymetrii a postavení segmentů. Zaměřujeme se především na vyváženost páteře, a to jak ve frontální, tak sagitální rovině.

Pohled zezadu
- postavení pánve, trofika gluteálního svalstva, skoliózy
- postavení lopatek – především postavení vertebrálního okraje k páteři a polohu kaudálního úhlu lopatky, zda jsou zavazány do svaloviny zad
- postavení ramen – pátráme po hypertonii m. trapezius
- postavení hlavy – zda není v lateroflexi a rotaci
- stoj – šíře baze, zda se udrží na jedné končetině se zavřenýma očima

Pohled z boku
- postavení pánve – zda není v anteverzi
- prominence břišní stěny – hypotonie břišního svalstva
- velikost, přechod, vrchol křivek, protrakce ramen
- předsun hlavy – spojený se zvýšenou lordózou krční páteře a extenzí v cervikokraniálním přechodu

Pohled zepředu
- prominence břišní stěny
- protrakce ramen – napětí a symetrii v oblasti horní částí m. trapezius a m. sternocleidomastoideus
- držení hlavy (Nowak, 2009; Weiss, 2010; McIntosh, Sucato, 2007; Ali et al., 2000)
3. Palpace
- palpačně svalové napětí v oblasti ThL přechodu

Vyšetření zkrácených a oslabených svalů
Zaměřujeme se především na vyšetření zkrácení m. pectoralis major et minor, m. latissimus dorsi, m. subscapularis, m. biceps brachii, m. sternocleidomastoideus, m. levator scapulae, m. trapezius, m. erector spinae, ischiokrurální svaly, m. ilioptoas.

Oslabené následující svaly: abdominální svaly, hluboké krční flexory, m.rhomboidei, m. trapezius (dolní část), m. gluteus medius et maximus. Dále se můžeme setkat s oslabením hlubokého stabilizačního systému, hlubokých krčních flexorů a m. serratus anterior (Paul et al., 2009, Nowak, 2009; McIntosh, Sucato, 2007).

4. Dynamické vyšetření
- chůze – pátráme zda nechybí kontrarotace trupu, souhyb horních končetin, pohyb lopatky po hrudníku, rotace a drop páne. Dále jestli nedochází ke zvětšení bederní lordózy, nebo není omezení extenze v kyčelních kloubech.
- humeroskapulární rytmus – zaměřujeme se na plynulost a fyziologický průběh pohybu. Zda nedochází k protrakci a elevaci ramenního pletence.
- klik o stěnu – zda nedochází ke stáčení dolního okraje lopatky mediálně a následně lopatka neodstává (scapula alata)
- Trendelenburgova zkouška – dává nám informaci o stabilizaci páne pomocí abduktorů kyčelního kloubu stojné končetiny. Zkouška je pozitivní, pokud páne poklesne na straně pokrčené končetiny.
- rozvíjivost páteře - v sagitační a frontální rovině
- Adamsův test – zvětšení kysiozy při flexi trupu
- schopnost posteriorní deprese lopatky – sledujeme zapojení dolní části m. trapezius, mm. rhomboidei, m. latissimus dorsi
- test Th5 pružení – hodnotí se pevnost páteře, klopení pánve vpřed a retropozice ramen (Kolář et al., 2009).
Funkční testy posturální stabilizace páteře
- hodnotíme:
 - jakou měrou se při stabilizaci zapojují hluboké a povrchové svaly a zda jejich aktivita odpovídá potřebné síle či je nadměrná
 - zda se při stabilizaci nadměrně neaktivují svaly, které mechanicky nesouvisí s daným pohybem
 - asymetrii zapojení stabilizačních svalů a posloupnost jejich zapojení

Vyšetření dechového stereotypu
- aspekci - koordinace dýchání, rozvíjivost mezižeberních prostor a participace hrudního koše jako celku
 - nacházíme kostální dýchání – sternum se pohybuje kraniokaudálně, hrudník se jen minimálně rozšiřuje. Mezižeberní prostory se nerozšiřují. Během nádechu se zapojují pomocné svaly. Pokud nezvládá bráníční dýchání, ukazuje to na porušenou souhrnu mezi bráníčí a břišními svaly (Kolář et al., 2009).

6. Hlavní problém
- hlavním problémem je hyperkyfóza hrudní páteře omezujiící dechové funkce

7. Cíl terapie
- zastavení progrese a zlepšení kyfotické křivky
- rozvíjení hrudníku s bráníčním typem dýchání
- mobilita lopatky po hrudním koši
- zvýšení rozsahu extenze v kyčelních kloubech

8. Krátkodobý reabilitační plán
 Stanovujeme jej na základě vyhodnocení kineziologického rozboru, anamnézy a lékařské zprávy.
 - ošetření zkrácených svalových skupin pomocí techniky PIR (především m. pectoralis major, m. iliopsoas, hamstringy)
 - ovlivnění tuhosti a zlepšení dynamiky hrudního koše - protažení a obnova mobility fascií hrudníku, ovlivnění inspirovaného postavení a uvolnění tuhosti hrudníku
- mobilizační techniky do trakce a nácvik napřímení hrdní páteře. Využití polohy 3. měsíce, 2. fáze reflexního otáčení
- podsazení pánve - posílení svalů pánevního dna - dle L. Mojžišové, poloha 3. měsíce,
- obnova joint play v oblasti bederní páteře a ThL přechodu jemnou mobilizací
- instruktáž správného sedu, seznámení se zásadami školy zad (Paul et al., 2009, Nowak, 2009; McIntosh, Sucato, 2007, Havlenová, ústní sdělení)

Dlouhodobý rehabilitační plán

Dlouhodobý rehabilitační plán je sestaven z opatření a zásad, která při správném dodržování mají zabránit progresi onemocnění.

- pravidelné denní cvičení, nácvik cvičební jednotky se zaměřením na protažení páteře a správný stereotyp dýchání, pacient by měl dbát na správný stereotyp chůze, správný stoj, sed
- doporučuje se sportovní aktivity – plavání (znak, kraul), tanec, nordic walking, cvičení na velkých měchách
- vyvarovat se ořesům, skokům, zvedání těžkých břemen, jednostranné zatížení, eliminace dlouhodobých statických poloh
- nedoporučí se úpolové sporty, gymnastika, a sporty s rizikem mikrotraumatizace páteře
- kontrola u lékaře po 3 měsících (Paul et al., 2009, Nowak, 2009; McIntosh, Sucato, 2007)
5 Diskuze

Autoři se minimálně zaměřují na pohybovou léčbu, ale spíše se zmiňují o korzetoterapii, druzích korzetů, které můžeme u Scheuermannovy nemoci využít. Podle většiny autorů je pohybová léčba užívána jako aktivita pro zlepšení posturálních funkcí se zaměřením na protažení hamstringů a posílení extenzorového aparátu trupu a zlepšení tak jeho funkcí.

Podle Pizzutillo (in Weiss et al., 2010) u kostně nezralých pacientů je nutné použítí spinálních ortéz ve spojení s posílením břišního svalstva a nácviku “správného“ držení těla ve stoji a sedu. Došli k závěru, že se kyfotická křivka zlepšila až o 15° (Weiss et al., 2010). Weiss et al. zastávají názor, že nevhodnějším typem pohybové léčby je metoda Schrott, kdy dochází k protažení m. pectoralis, zapojení svalů dolních končetin do aktivity, pasivní a aktivní redrese kyfózy (Weiss et al., 2010).

Většina popisovaných terapií je založena na analytickém přístupu, kde se zabývají ovlivněním zkrácených svalových skupin, následné posílení insufficientsního
svalstva, napřímení páteře a ovlivnění tak hyperkyfózy a zvětšené bederní a krční lordózy. Jako nejefektivnější se jeví naopak systematická pohybová léčba.

Před zahájením pohybové terapie je vhodné použití mobilizačních a relaxačních technik. Pacienti si uvědomují jednotlivé segmenty svého těla, snížuje se napětí a následná léčba je účinnější. Německí autoři nejčastěji popisují metodu Schrotta, kde dochází k protažení a šroubovitému pohybu páteře, která se tak stává rotabilní ve všech svých částech (Weiss et al., 2002).

V jiných státech doporučují především Vojtovu reflexní lokomoci, která aktivuje oslabené a ve svém běžném stereotypu nepoužívané svalové skupiny. V rámci jednotlivých poloh a stimulačních bodů dochází k napřímení páteře, vyrovnání kyfolordóz, páteř se stává stabilní a zároveň rotabilní. Cíleně aktivuje autochtonní muskulaturu, která má přímý vliv na postavení obratlů. Dále také zapojuje svaly, které jsou velmi obtížné přístupné volní kontrole (např. m. serratus anterior, m. transversus abdominis) a jsou klíčové pro posturální funkci. Aktivuje správný dechový stereotyp, zapojení bránice do dechové a posturální funkce (Kolář et al., 2009; Vojta, Peters, 1995). Opakované reflexní cvičení napomáhá si uvědomit správné zapojení svalů a dechu. Proto na Vojtovu reflexní lokomoci navazujeme cvičením s volnou účastí pacienta (Kolář et al., 2009).

Další metodou je Klappovo lezení, kde dochází k rozložení páteře mezi 4 body opory se současnou lokomocí s přímým vlivem na rotabilitu a protažení páteře, kde se využívá především zkrášlené lezení (Kolář et al., 2009).

Často využívané jsou také techniky jako senzomotorická stimulace, kde bylo prokázáno, že kvalitní proprioceps kombinovaná s balančním cvičením zrychluje nástup svalové kontrakce, což je první podmínka rychlé reakce při neočekávaném vyvedení těla z rovnováhy. V regulaci správného držení těla mají důležité postavení receptory plosky nohy a šíjových svalů. Změna v rozložení tlaků pozitivně ovlivňuje proprioceptivní signalizaci (Kolář et al., 2009).

Bradford et al. (in Werger, Frick, 1999) doporučují léčbu pomocí Milwaukee ortézy, kdy zdokumentovali 40% poklesu křivky střední hrudní kyfózy a 35% průměrných bederní lordózy (Werger, frick, 1999).

U korzetoterapie se názory českých autorů v léčbě liší. Vlach doporučuje léčbu korzetem, zatímco Rychliková považuje použití korzetu v akutním stádiu za zcela nevhodné. Dochází tím spíše ke zhoršení funkčního stavu páteře a prohloubení svalových dysbalancí (Vlach, Ciencala, 2002; Rychliková, 2002).

Podle studie Müllera a Müllerové, jako nejefektivnější terapie se ukázala forma kombinace antigravitačního sádrového korzetu na 3 měsíce s následným doléčením Milwaukee ortézou a pohybovou léčbou (Müller, Müllerová, 2005).

V literatuře se autoři vůbec nezmínějí o působení cyklistiky na osový orgán. Při jízdě na kole má vliv také výška řídítka a způsob sedu na kole. Někteří rehabilitační lékaři u Scheuermannovy nemoci nezakazují jakoukoli pohybovou aktivitu, pouze doporučují omezení skoků a doskoků, například během hry košikové při střelbě na koš.
Co se týče cyklistiky, nenachází žádné nežádoucí účinky, pokud je pacient instruovaný o správném sedu a nedochází k přetěžování. Jízda na kole by měla být spíše jen krátkodobá a neměla by se provozovat vrcholově (Havlenová, ústní sdělení).

Závěr

Pro pacienta v každém věku znamená zjištění Scheuermannovy choroby potřebu celoživotní pohybové stimulace axiálního systému. Při velké progresi deformity a bolestech se však klidové terapii nevyhneme. Obecně však můžeme říci, že adekvátní tělesná zátěž by měla pacienta provázet po cely život.

Následky u Scheuermannovy choroby nejsou tak vážné jako u kyfóz jiné etiologie, ale i tak bychom neměli tuto nemoc přehlížet. Včasnou detekci a zahájením léčby zabránime progresi deformace, ovlivníme velikost křivky a snížíme se nebo zamezíme vzniku bolestí. Dle literatury se jako nejefektivnější terapie ukázala forma kombinace antigravitačního sádrového korzetu na 3 měsíce s následným doléčením Milwaukee ortézou a pohybovou léčbou (Müller, Müllerová, 2005). Operační léčba je volena jen výjimečně.

Dokonce i sami pacienti mohou pozitivně ovlivnit průběh nemoci a tím i její následky pomocí některých aktivit. Předpokladem úspěšné léčby je pochopení důležitosti pravidelného denního cvičení. Pacienti by měli být instruováni, které aktivity jsou pro ně vhodné – plavání, jóga, pilates, nordic walking, cvičení na velkém míči, a kterými by se měli spíše vyvarovat – silové činnosti, dlouhodobé stání, sezení ve strouživé pozici. Dále by se měli věnovat sportům, které nevytváří přetížení osového aparátu a jednostrannému zatížení, kdy je páteř zatížena v celku.

Morbus Scheuermann máme možnost ovlivnit pomocí terapeutických metod aplikovaných fyzioterapeutem, ale také řadou cviků, které může pacient provádět sám v domácím prostředí za předpokladu dodržení získaných pokynů. Většina autorů se zaměřuje pouze na analytické metody terapie a opomíjí syntetické metody. Pohyby přispívá k dlouhodobému efektu léčby a zlepšuje i psychickou stránku pacienta. Nejefektivnější jsou koncepty jako Vojtova reflexní lokomoce, posturální terapie dle J. Čápové, PNF, které vedou k napřímení a dynamické stabilizaci páteře. Díky tomu dochází ke stabilizaci hrudníku a lopatky. Zlepší se tak dechové funkce, zvýší se rozsah ramenního kloubu do horizontály a vznikne lepší postavení pánve pro extenzní kloubech.

Práce mi pomohla ucelit si jednotlivé terapeutické metody a hlubší nahlédnout do jejich principů a účinků.
Referenční seznam

47. NOVÁKOVÁ, E. Metoda McKenzie a její použití u pacientu s vertebrogenním syndromem bederním, převážně se symptomy iritačními. Rehabilitace a fyzikální lékařství, 2000, č. 3, s. 123-129.

64. VAŘEKA, I. Vojtova reflexní lokomote a vývojová kineziologie. Rehabilitácia, 2000, č. 4, 196-200.

70. WEBEROVÁ, I. Optimalizácia využitia metódiky podľa Robina McKenzieho v liečbe drieckovej chrtice. Rehabilitácia, 2007, roč. 44, č. 1,s. 43-53.

Seznam příloh
Příloha 1: Výchozí pozice reflexního plazení
Výchozí pozice reflexního otáčení
Příloha 2: Cvičení Ludmily Mojžíšové
Příloha 3: Pozice pro flekční princip terapie McKenzie
Pozice pro extenční princip terapie McKenzie
Příloha 4: Cvičení s Thera - Bandem

Seznam obrázků
Obrázek 1: Adamsův test – hyperkyfóza hrudní páteře
Obrázek 2: Měření Cobbova úhlu
Obrázek 3: Boční RTG snímky
Přílohy

Příloha 1:

Výchozí pozice reflexního plazení (Vojta, Peters, 1995)

![Diagram reflexního plazení](image1)

Výchozí pozice reflexního otáčení (Vojta, Peters, 1995)

![Diagram reflexního otáčení](image2)
Příloha 2:
Cvičení Ludmily Mojžišové

Základní poloha cviku (Zelená, 2010)

Provádíme cviky v kleku, kdy pacient klečí opřen o kolena a o dlaně tak, aby paže s trupem a stehna s trupem svíraly pravý úhel. Dlaně jsou pod rameny, prsty směřují dopředu, kolena jsou pod kyčlemi. Hlava visí skloněna. Při nádechu se pacient vyhrbí, stáhne břicho a hýžď, několik sekund vydrží. Následuje výdech, kdy pacient povolí napětí a trup poklesne mezi ramena a kyčle (nejde do extenze), hlava visí dolů. Dojde k mobilizaci hrudní a bederní páteře, protažení zádových svalů, posílení svalů břišních a hýžďových (Hnízdil a kol., 1996).

Jiná varianta (Zelená, 2010).

Při nádechu v pravém úhlu k trupu zvedá paži a rotuje hrudní páteř, oči sledují prsty ruky. Rameno horní končetiny, o kterou se opírá, zůstane nad dlaní a kyčle nad koleny. Během výdechu se paže vrátí zpět. Třetím typem cviku v kleku se liší v základní pozice, kdy kolena jsou u sebe. Při nádechu pacient mírně zvedne špičky nohou nad zem (asi 5 cm) vytáčí bérce vpravo a hlavu tamtéž. U výdechu se vrací do původní polohy. Cvičíme střídavě vpravo i vlevo. Tyto tři cviky se cvičí nejdríve na předloktí, potom s dlaněmi na podložce vysoké asi 20 cm. Čím větší flexe v ramenním pletenci, tím nižší úsek páteře se cvičí (Hnízdil a kol., 1996).
Příloha 3:
Pozice pro flekční princip terapie McKenzie (O'Connor, 2010)

Pozice pro extenční princip terapie McKenzie (O'Connor, 2010)
Příloha 4:
Cvičení s Thera - Bandem

Retrakce pletence pažního Brždění pohybu (Pavlů, 2004)

Ze stejné východzi polohy jako u předchozího cviku můžete provádět další cvičení na zlepšení protažitelnosti trupu ve vertikální ose, posílení extenzorů trupu a svalů provádějící napřímení. První fází je napřímení proti odporu Thera – Bandu. V druhé fází pomalu povolujte tah Thera – Bandu a nechte jím pohybovat trup do flexe. Plynule v celém průběhu brzděte pohyb trupu a současně uvolňujte horní končetiny (Pavlů, 2004).
Napřímení proti odporu Druhá fáze cviku (Pavlů, 2004)