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Abstract

This dissertation experimentally explores quantum properties of photonic states.
The presented results compare quantum non-Gaussian properties of single-pho-
ton states produced by optical frequency conversion and radiative recombination
in a quantum dot. The primary concern is resilience against optical loss that is
inevitable in all real applications. Quantum non-Gaussianity is also measured
using multiphoton states composed of multiple heralded single photons gener-
ated by frequency conversion. Another quantum property is genuine n-photon
quantum non-Gaussianity, which is investigated using multiphoton states with
respect to optical loss and added noise.

Furthermore, the thesis presents a method of programmable intensity mod-
ulation as a source of arbitrary classical photon statistics. The method includes
calculation of the respective intensity distribution.

The procedures employed in the thesis include constructing a source of cor-
related photons based on frequency down-conversion. The source was used to
obtain the results pertaining to multiphoton quantum non-Gaussianity. Next, a
counting model of single-photon avalanche diodes is developed, both analytic-
ally and in simulation. These results were used in measuring arbitrary photon
statistics.
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Anotace

Cílem této práce je experimentální výzkum statistických vlastností kvantových
stavů světla z hlediska generace iměření. Práce uvádí výsledky srovnávající kvan-
tově negaussovské vlastnosti jednofotonových stavů produkovaných optickou
frekvenční konverzí a zářivou rekombinací v kvantové tečce. Klíčovou vlastnos-
tí je odolnost vůči ztrátám, jež jsou nevyhnutelnou součástí reálných optických
aplikací. Kvantová negaussovskost je měřena i pro vícefotonové stavy složené
z hlášených jednotlivých fotonů generovaných frekvenční konverzí. Jako další
vlastnost je u těchto stavů zkoumána vícefotonová ryzí negaussovskost s ohle-
dem na ztráty a přidaný šum.

Disertace dále uvádí metodu programovatelné intenzitní modulace jako zdro-
je světla s nastavitelným klasickým rozdělením počtu fotonů. Součástí je i výpo-
čet odpovídajícího intenzitního rozdělení.

Postupy využité v práci zahrnují konstrukci zdroje korelovaných fotonů na
bázi sestupné frekvenční konverze, jenž umožnil dosažení výsledků v oblasti ví-
cefotonové kvantové negaussovskosti. Dále je prezentován model čítací odezvy
jednofotonových lavinových diod, a to v numerické simulaci i analyticky. Tento
výsledek byl uplatněn při měření obecné fotonové statistiky.
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Preface

This thesis is the result of my post-graduate studies at the Department of Optics,
Faculty of Science, Palacký University. Its aim is to present new advances in
witnessing quantum properties of light and generating arbitrary classical photon
statistics. The thesis is based on four publications denoted in References under
A1, A2, A3, andA4. The first three have been peer-reviewed and published, while
the last one is under peer review at the time of writing. Here I aim to explain my
involvement and contribution to the presented work.

The experimental research into quantum non-Gaussianity began during my
master’s studies under the supervision of Miroslav Ježek.1 The subject of the
thesis was building a down-conversion source, which was incidentally used to
measure the data for the publication 2.

The research continued during the first year of my post-graduate studies un-
der Miroslav, when I visited the group of professor Gregor Weihs. In the mu-
tual collaboration of the theoreticians and experimentalists of our department in
Olomouc, professor Weihs’ group in Innsbruck and professor Glenn Solomon
in Gaithersburg, quantum non-Gaussianity of multiple single-photon sources
was evaluated.A1 I was responsible for measuring the continuous-wave down-
conversion data and duringmy stay in Innsbruck, I workedwith Lorenz Butschek
to measure the pulsed down-conversion data. I was also responsible for writing
the appropriate parts, synthesis of the results, editing the manuscript and the
submission process.

The project that followed is not included in this thesis. It was focused on
bipartite entanglement localisation with respect to the temperature of an inco-
herent environment (I. Straka, M. Miková, M. Mičuda, M. Dušek, M. Ježek, R.
Filip, Sci. Rep. 5, 16721, year 2015).

Lukáš Lachman and Radim Filip then developed a hierarchy of quantum
non-Gaussian criteria that we experimentally tested on a new down-conversion
source.A2 My task was to construct the source, perform the measurement and
process the data. I was also responsible for writing the appropriate parts, editing
the manuscript and handling all submissions. The results are considered theoret-
ical and experimental by equal part, with Lukáš and I being the graduate students

http://doi.org/10.1038/srep16721
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chiefly responsible for the respective parts.
The last work on genuine quantum non-Gaussianity utilized the same mul-

tichannel measurement scheme as the previous project.A4 My contribution again
concerned the source, measurement, data processing and writing the experi-
mental part, while editing and submission of the manuscript was the respons-
ibility of Lukáš.

The last presented project started as an idea of Miroslav Ježek that was de-
veloped by Jaromír Mika in his bachelor’s and master’s thesis under my supervi-
sion.3 Afterwards, Miroslav and I continued the work to produce a publication.A3

I was responsible for building the setup, developing the numerical and driving
methods, formulating the detection model and calibrating the detectors, measur-
ing and processing the data, and writing the chief part of the manuscript.

All of the presented work was supervised by Miroslav Ježek, who has been
closely involved in all experimental and technical work, analyses of the data,
discussions and writing. I feel that his invaluable work and close involvement
with my contributions should be acknowledged here as well.

When writing the thesis, I focused on discussing my own results and the
relevant principles; perhaps at the expense of a comprehensive theoretical intro-
duction. There are, however, several textbooks cited for the reader to refer to,
and where appropriate, articles that contain the necessary material. Therefore,
known principles are rather stated and cited than explicitly derived. In Chapter 3
where the theoretical apparatus was derived by my colleagues—some of whom
will doubtlessly be including their work in their own dissertation—I reduced the
theory to a minimal explanation. I would refer any reader interested in the the-
ory of quantum non-Gaussianity to the relevant publications.

At the time of writing I can be contacted via the electronic addresses below.
I welcome any feedback or questions that the reader may have; if only for the
joy of someone reading my thesis.

Olomouc
March 2019

Ivo Straka
ivo.straka@gmail.com
straka@optics.upol.cz





Chapter 1

Introduction

Photons are considered as particles of light, because they represent excitation
quanta of the electromagnetic field. Generating particular quantum states that
contain only one or several photons is needed for quantum computing, crypto-
graphy and metrology. The subject of current experimental research therefore
includes both generation and detection of such states. This thesis presents ad-
vances in recognizing their quantum properties and in manipulating the photon
statistics to match a predefined distribution.

First, methodological details are presented in Chapter 2. Section 2.1 elabor-
ates on the parametric down-conversion technique of generating single photons
and photon pairs. Section 2.2 describes the experimental realization of such a
photonic source. Section 2.3 provides the description of single-photon avalanche
diodes that are used as detectors. Their detailed description is needed particu-
larly for verifying custom-generated photon statistics. Subsections 2.3.2 to 2.3.4
offer original results that address modelling the detectors’ response to photon
statistics. Finally, section 2.4 elaborates on some mathematical procedures that
are used in the main chapters and require further discussion.

In Chapter 3, new methods are proposed that can recognize quantum non-
Gaussian light. These detection methods utilize a measurement on a multiplexed
detector that is able to distinguish the number of photons. Quantum non-Gauss-
ianity (QNG) is a fundamental property of certain states of light that is only
present in quantum physics. The most notable states that possess this property
are the Fock states. These are energy eigenstates that contain a fixed number of
photons. They represent essential resources for quantum optical protocols and
recognizing the properties that are necessary for their existence is an important
tool for the development of photon sources.

Section 3.2 focuses on single photons.A1 AQNG depth is proposed to quantify
the loss resilience of QNG.Multiple single-photon sources aremeasured and com-
pared in a signal-noise space with an emphasis on tolerable optical attenuation.



2 The context of the presented research

Section 3.3 tests a new way of recognizing QNG that is optimized for mul-
tiphoton states.A2 Using a heralded single-photon source based on parametric
down-conversion, a multimode state containing several heralded photons is pre-
pared. The results prove the QNG character of 1–9 heralded photons despite
unfavourable optical loss and systematic noise.

Section 3.4 introduces a more specialized quantum property called genuine
quantum non-Gaussianity that imposes even stricter criteria than QNG.A4 Again,
this property is demonstrated on a multimode state of 1–3 heralded photons.

Chapter 4 practically treats the problem of generating arbitrary photon stat-
istics.A3 Within the semi-classical view of theMandel formula, the results demon-
strate a very accurate generation of photon statistics that was defined by the user.
The proposed generator is capable of preparing highly bunched light and statist-
ics on an exceptionally wide range of photon numbers.

1.1 The context of the presented research

Photon-number states and their properties

Generating a definite number of photons and Fock states of light is essential for
quantum information processing and quantum state engineering. Single-photon
states are often required for photonic quantum computation, where they serve
as information carriers or ancillas.4 However, not only single-mode Fock states
are important. With multiple separate photons, quantum entanglement can be
harnessed in a number of protocols.5 Two or more photons allow distributing the
entanglement amongmultiple parties for the purposes of teleportation6,7 or quan-
tum cryptography.8,9 The distribution may be aided by quantum repeaters that
rely on multiple well-entangled photon pairs to distribute entanglement over dis-
tance.10 The Fock states can be used to create superpositions of several photons
called NOON states.11 These states represent a step towards macroscopic super-
position of multi-particle ensembles; they also enhance phase interferometric
sensitivity.12

Experimental generation of Fock states still faces practical challenges.13–15

They can be roughly summarized as purity and efficiency. The ideal source
would generate the states deterministically and on demand. The main problem is
optical transmission of the whole process, which may cause some photons to be
lost randomly. For some sources, the limitation is mainly in the optical setup,15

for others that collect radiation from a microscopic source, the main challenge is
collection efficiency.16 The purity means an overlap of the generated state with
the corresponding ideal Fock state. To some degree, efficiency has an effect on
purity, because optical loss shifts the photon-number probabilities to lower num-
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bers. This is not a significant problem for those protocols that allow selecting
only cases with a minimum number of detected photons.4 The major issue with
purity is extra noise. Especially single photon applications suffer with increas-
ing multiphoton content; such as discrete-variable quantum cryptography17 or
quantum computing, where it introduces errors.18 Both efficiency and purity af-
fect the experimentally available Fock states in a non-trivial way. The deviation
from an ideal state can be expressed by the reconstructed Wigner function or by
measuring the photon-number statistics.14

The Fock states also possess certain fundamental quantum properties that
can be experimentally observed. These properties include nonclassicality,19,20

Wigner function negativity21 and quantum non-Gaussian characteristics. The
last property (QNG) is the focus of Chapter 3. It was formulated by Filip and
Mišta as an extension of nonclassicality toward Gaussian mixtures.22 Experimen-
tal observations followed for a down-converted single-photon state,1,2 photon-
subtracted squeezed vacuum,23 single photons from a quantum dot,24 and up-con-
verted single photons.25 QNG can be witnessed by estimation of photon-number
probabilities using a Hanbury-Brown-Twiss setup.2,26 Other proposed witnesses
utilize phase-space variables.27–29 This thesis reports on experimental QNG wit-
nessing using a multichannel detector, which better suits multiphoton states.A2,30

Additionally, the same technique is used to recognize genuine n-photon QNG,
which is a generalization excluding Gaussian mixtures of lesser Fock states.A4

Among Fock states, single photons represent a prominent resource for quan-
tum technology. There are various physical systems that can generate single
photons. Two main principles are observed: generation of photon pairs and
single-photon emission. Photon pairs rely on using one particle to herald the
presence of the other. They can arise in nonlinear interaction processes such
as down-conversion31 or four-wave mixing.32 Fast cascaded decays of electron
excitations may also result in emitting a closely correlated photon pairs. These
decays may be akin to four-wavemixing33 or originate from electron-hole recom-
bination34 that may be tailored to achieve entanglement.35 Single-photon emis-
sion is achieved by isolating only one particle that is physically allowed to emit
only one photon at a time. These particles include excitons in semiconductor
quantum dots,36 crystal colour centres,37 trapped ions,38 and single molecules.39

Down-conversion

This thesis employs methods of generating correlated photon pairs using spon-
taneous parametric down-conversion (SPDC). It was first observed in a bulk non-
linear crystal as parametric fluorescence by Harris and colleagues in 1967.40 Pho-
ton pairs produced by SPDC were shown to interfere by Hong, Ou and Mandel
in the key article from 1987.41 Such sources gained prominence in the nineties as
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efficient generators of polarization-entangled photons.42,43 Subsequently, period-
ically poled crystals were used to harness stronger nonlinearity and yield higher
brightness.44,45 Coupled with an interferometric Sagnac scheme, entangled pho-
ton pairs could be produced with superior brightness.46,47 Periodically poled non-
linear waveguides offer significantly higher gain than bulk crystals, but their
down-converted spectra contain side-peaks of other guided modes.48

SPDC can be used for generating spectrally entangled photons.49 The spec-
tra can be made uncorrelated50,51 or even positively correlated.52,53 An import-
ant factor is the pump; the sources are generally operated in either continuous-
wave (cw) or pulsed regime. Pulsed pump enables producing single-mode states,
as their temporal width is typically narrower than detector resolution, but the
down-converted two-mode spectra are broader and photon indistinguishability
needs to be controlled.54 Since all pump power is concentrated into the pulses,
the multiphoton contributions are higher than for the corresponding cw pump
(discussed in section 3.2.6). Broome and colleagues showed that multiplexing the
pump pulses leads to better signal-to-noise ratio that does not reduce the gener-
ation rate so much as decreasing the pump power.55 Mendoza and colleagues
demonstrated that pulsed sources can be actively switched to increase the single-
photon probability.56

Classical photon statistics

For classical light, photon statistics is based on a semi-classical model formu-
lated by Mandel.B1,57 It considers the probability density of photon occurrence
proportional to the intensity of light. Using this principle, one can stochastically
modulate optical intensity to obtain the corresponding photon statistics.58

Classical light, namely coherent states, have been used in quantum science
as well, for instance to simulate quantum walks59 or to calibrate the response
of photon-number-resolving detectors.60–62 Light that exhibits photon bunching
was shown to have several uses. Thermal light of a laser below threshold was
shown to improve the efficiency of second-harmonic light generation;63 super-
bunched light was produced to a similar effect.64 Two-photon absorption can also
be enhanced by bunched light.65 Thermal light was shown to increase interfer-
ometric phase resolution after subtracting one photon66 and enable observation
of sub-wavelength interference fringes.67 It can aid photon-number resolution
when used as a probe.68 Bunched light can be also used for ghost imaging69 – a
protocol enabling the imaging of an object by a non-resolving ‘bucket’ detector
if an imaging detector is applied on a second beam. The correlations between the
two beams can be produced either by quantum entanglement or photon-number
correlations (bunching).70 Superthermal or superbunched light has been investig-
ated for its heavy-tailed statistical properties that manifest as rare high-intensity
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phenomena.71,72

The conventional method to generate pseudo-thermal light is to use a ro-
tating glass disk.73 This approach was used in some of the work already men-
tioned.66–68 It is used for ghost imaging techniques as well.74,75 By using multiple
disks, photon superbunching can be generated.76–78 Other methods of generat-
ing bunched light include interference in multi-mode fibres79 or disordered lat-
tices.80,81

Classical photon statistics is derived from the stochastic nature of light in-
tensity by means of an integral transform.B1 The inverse problem is ill-posed
mainly because of the classicality condition, but there have been a few meth-
ods published on its solution. In 1967, Bédard formulated a series of Laguerre
polynomials that mathematically invert Mandel’s formula.82 However, a finite
expansion of the series suffers from negativity and the overall convergence may
be rather slow. Consequently, approximative methods have been devised to ob-
tain the intensity distribution. Byrne and colleagues published an algorithm
working with a prior basis in intensity distributions83 and later also proposed
expectation-maximization as a solution for discrete compound Poisson cases.84

Earnshaw and Haughey proposed a least-squares fit of cubic splines to match the
photon-number distribution.85

The problem of Mandel’s formula inversion in this thesis is aimed experi-
mentally. Since only discrete intensities are available and known beforehand,
solution proposed in reference 85 could be used. However, such case is essen-
tially a linear-equations-set fit. If a strictly zero residual is required, then a simple
least-squares fit is sufficient (section 4.2). This requirement is chosen because the
source photon-number distribution is not represented by a finite set of measured
counts as in reference 85, but accurately specified by the user.

Single-photon detectors

To recognize photon statistics—either by counting photons or by witnessing non-
classical properties—adequate means of detection are required. Lately, detectors
operating at cryogenic temperatures have become more available.B2 These in-
clude superconducting nanowires that feature better parameters than SPADs,86

but due to the cryogenics they typically require investment that is higher by an
order of magnitude. Transition-edge sensors is another technique that utilizes
the resistance transition curve at the edge of material superconductivity to meas-
ure the number of incident photons. While these sensors possess photon-number
resolution, they suffer from cross-talk and easier saturation.B2,86

Although cryogenic detection represents the current cutting edge in many
regards, this thesis utilizes single-photon avalanche diodes (SPADs)B3 that are
more common and affordable. The characterization and optimization of their
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behaviour is still a subject of ongoing research. Parameters like detection ef-
ficiency87,88 and afterpulsing89,90 require careful calibration. Analytical repres-
entations of afterpulsing are approximate and based on different decay models,
assuming a series of exponentials91 or a modification with hyperbolic sine.92 Re-
cent work even challenged the general assumption that the temporal distribu-
tion of afterpulses only depends on the time of the last detection.93,94 There have
been efforts optimizing the quenching circuit to reduce afterpulsing altogether;
or focusing on performance in cryptography.95,96 Even though SPADs do not pos-
sess photon-number resolution, they can be used for that purpose in multiplexed
schemes: silicon photomultipliers,97,98 temporal multiplexing99–101 or spatial mul-
tiplexing.102

This thesis utilizes photon counting by a single SPAD to reach very high
dynamic ranges that would be otherwise unattainable. The necessary model of
the SPAD response generalizes both current Monte-Carlo103 and analytical ap-
proaches. The currently accepted theoretical counting models (equation (7.13)
in reference B3, reference 104) are approximative and consider a perfect detector
with a dead time. The exact mathematical model of a dead-time-influenced de-
tector was derived by Müller in 1973.105 This thesis introduces an analytical gen-
eralization in section 2.3.3 that includes afterpulsing.



Chapter 2

Methods

2.1 Spontaneous parametric down-conver-
sion (SPDC)

The work on quantum non-Gaussianity presented in Chapter 3 is experimentally
based on heralded sources of single photons. The source that is the subject of
this thesis is based on frequency conversion of light in a nonlinear crystal. This
section briefly summarizes the important physical aspects of SPDC and their
significance for constructing an SPDC source. Full theoretical treatment can be
found in the supplied references.

2.1.1 Main principles
Frequency down-conversion is a phenomenon in nonlinear optics where a light
signal propagating through an optically nonlinear environment becomes coupled
with other modes of light that have lower frequencies.B1,B3 A spontaneous para-
metric process assumes a strong beam (pump) entering the environment, while
the other modes begin in a vacuum state. After the interaction, these modes
become weakly excited and mutually entangled.

In this work, a particular collinear degenerate type-II scheme is used, where
three waves interact in a nonlinear anisotropic crystal. In uniaxial crystals, the
polarization eigenmodes correspond to extraordinary and ordinary polarizations
determined by the direction of the crystal axis; in biaxial crystals, the terms can
be used by convention, as technically all waves are extraordinary.

The pump is set to extraordinary linear polarization and two weak beams
of light are down-converted, commonly referred to as signal and idler. One has
ordinary, the other extraordinary polarization, while their spectra and spatial
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modes are entangled. The signal that is collected is collinear with the propaga-
tion of the pump and is spectrally degenerate; each beam is of half the pump
frequency. The practical meaning of this process is that photons in both beams
are tightly correlated in time, and can be therefore used as a source of photon
pairs – or a source of heralded single photons.

The physical aspects of SPDC in their full breadth are quite complex, so it is
necessary to understand them and eliminate unnecessary considerations when
designing an SPDC source. The main problem is called phase matching, which
is commonly understood as a condition on wave vectors of all planar waves in-
volved in the frequency conversion. It involves the properties of the light as
well as of the crystal. Since the pump is neither monochromatic nor a planar
wave, and since the crystal is anisotropic, the down-converted radiation exhibits
a complex structure.

2.1.2 Interaction of three waves

SPDC is a process akin to difference-frequency generation or parametric ampli-
fication in classical nonlinear optics.B4 However, classical differential equations
for down-converted wave amplitudes require that at least one of the fields has
non-zero amplitude at the beginning. In SPDC, both amplitudes are zero; only
the pump signal enters the nonlinear medium. Therefore a quantum optical treat-
ment of frequency conversion is necessary.

The quantum picture is obtained by writing down a classical energy-density
Hamiltonian of three waves in a quadratic medium using quantum field operat-
ors.B1,106 The approximation of a strong pump beam is used, which safely neg-
lects any depletion of the pump. The nonlinear susceptibility tensor 𝜒(2) gives
rise to an interaction term in the Hamiltonian that covers all possible modes of
light, particularly in terms of wavelength, spatial and polarization modes. This
Hamiltonian is then applied via an evolution of the initial state, which contains
only the pump signal of angular frequency 𝜔0. The evolution gives rise to two
modes of radiation, each comprising of a complex superposition of frequency,
planar-wave and polarization eigenmodes.106 Each mode exhibits Bose-Einstein
statistics of photons due to full expansion of the evolution operator and the cre-
ation operator terms present in the interaction Hamiltonian.

Approximately, the polarization eigenmodes of all planar-wave components
are equal to polarization eigenmodes of the crystal in the direction of the pump.
Therefore, down-convertedmodes havemutually orthogonal linear polarizations.
The state can be further approximated by assuming a weak interaction factor
and considering only the first two terms, which is sufficient in the case of conti-
nuous-wave pump. In the basis of Fock states of planar waves parametrized by
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wavevectors k1 and k2 inside the nonlinear medium, the down-converted state
is (leaving out the strong pump)

|SPDC⟩ ≈ |vac.⟩ + ∬
k1,k2

Ψ (k1,k2)𝑎†k1𝑎
†
k2 |vac.⟩ . (2.1)

The complex amplitude Ψ , sometimes called gain, is a function of wavevec-
tors and thus depends on the optical frequency, on the direction of propagation
and on the index of refraction of each wave. This gives rise to so-called phase-
matching conditions that determine the properties of down-converted waves.
The conditions can be simplified to

𝜔0 = 𝜔1 + 𝜔2, (2.2)
k0 = k1 + k2. (2.3)

Equation (2.2) binds the frequencies of the generated waves assuming a mono-
chromatic pump of frequency 𝜔0 and long interaction time. Equation (2.3) as-
sumes a planar wave in an infinite medium and it binds the directions of the
waves with respect to refractive indices and respective frequencies.

These simple conditions are usually used to find basic experimental condi-
tions for a successful down-conversion. For example, one may specify the de-
sired central wavelengths of all three waves in accordance with (2.2), postulate
the direction of all waves and seek the set of refractive indices that would allow
such generation. Alternatively, the indices may be fixed and one obtains the spa-
tial profile of a signal given specific wavelengths. The means of phase matching
include temperature tuning of refractive indices,40 using birefringence by tilting
the medium,107 or collecting light in particular directions.42

The first step to a more detailed analysis is usually the assumption of a finite
thickness 𝐿 of the nonlinear medium, which makes the gain proportional to

Ψ ∝
sin (1

2
Δ𝑘 𝐿)

1
2
Δ𝑘 𝐿

, (2.4)

where Δ𝑘 = (k0 − k1 − k2) ⋅ n𝑎 is a projection of the wavevector mismatch
onto the direction of the optical axis n𝑎 (assuming the other projections are
zero).106 This is usually needed for spectral analyses, such as calculating the emit-
ted bimodal spectrum or optimizing the thickness 𝐿with respect to the spectrum
of the pump.

An approach that calculates the Hamiltonian using Gaussian beams reveals
that SPDC gain may be maximized using focusing, which was first indirectly
shown by Boyd and Kleinman,108 and subsequently generalized by Bennink.109
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2.1.3 Quasi-phase-matching in a periodically poledme-
dium

Periodically poled materials solve the problem of optimally utilizing the nonlin-
earity of a medium. The SPDC gain is proportional to the product of the second-
order susceptibility tensor 𝜒(2) and the interacting waves. As a tensor product,
this quantity varies with the orientation of the medium relative to the config-
uration of the waves and their polarizations. However, due to the first-order
susceptibility tensor 𝜒(1), the phase mismatch Δ𝑘 varies as well, which limits
the gain optimization. Periodically poled materials offer effective elimination of
Δ𝑘; thus giving freedom to optimize the effective nonlinearity. The nonlinear
medium contributes to the amplitude of the down-converted modes (2.1) with a
phase-oscillating term 𝑒𝑖∆𝑘 𝑧, where the coordinate 𝑧 integrates through the me-
dium. This results in the top term in (2.4), which oscillates more rapidly as Δ𝑘
grows. Imagining thewaves entering themediumwith an initial phase difference
of zero, the nonlinear contribution is amplified between 𝑧 = 0 and 𝑧 = 𝜋/Δ𝑘
and then reduced until 𝑧 = 2𝜋/Δ𝑘; and so on. This behavior may be altered
by introducing a phase flip of 𝜋 to the contributing term periodically so that
the amplitude keeps increasing.110 A nonlinear susceptibility inversion that in-
troduces the phase flip can be achieved by applying external voltage on periodic
domains.111 From the relations above follows that the spatial poling period Λ
must satisfy Δ𝑘 − 2𝜋/Λ = 0, which gives rise to an additional phase-matching
term. This method is referred to as quasi-phase-matching and is used for the
SPDC source used in section 3.3 and described in the section 2.2.

2.1.4 Some considerations when designing an SPDC
source

The pump laser represents the primary factor of an SPDC design. Nonlinearity,
dispersion and absorption are spectrally dependent, so the central wavelength
itself and the wavelengths of down-converted waves influence the choice of the
material. The pump spectrum then determines the optimal thickness (or length)
of the crystal.

Suppose that for a central pump frequency 𝜔0, phase-matching is fulfilled
and Δ𝑘 = 0. For other frequencies in the pump spectrum, Δ𝑘 becomes nonzero
and the sinc-dependence (2.4) lowers the efficiency of down-conversion. That
means the pump frequency range, for which SPDC takes place, is limited and
determined by the crystal length 𝐿. If the pump power is spectrally distributed
outside of such range, the effective power taking part in the conversion is lower.
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On the other hand, increasing crystal length also increases SPDC brightness
– for interacting Gaussian beams, the power |Ψ |2 grows linearly with 𝐿.109 The
crystal length that yields themost photon pairs per second is therefore dependent
on the spectral width of the pump. For narrow-band continuous-wave lasers,
long crystals such as >10 mm may be used, whereas for pulsed pumping, shorter
crystals are needed.

Birefringentwalk-off is another factor that is presentmainly in angular phase-
matching. In such cases, the waves usually do not propagate along any principal
crystal axis. As a result, the energy of extraordinarily polarized waves flows
in a different direction than their wavevectors. Particularly, in a collinear type-
II process, the pump is e-polarized, but one of the down-converted modes is o-
polarized. This leads to a convolution of the transversal beam profile and reduces
the subsequent efficiency of single-mode coupling.1 This effect is also propor-
tional to crystal length, but it reduces collection efficiency rather than generation
rate.

2.2 SPDC source of photon pairs
This SPDC source was used in the experiments described in section 3.3 and pub-
lished in references A2 and A4. Moving this source to a mobile breadboard, in-
cluding reassembling and alignment, was the subject of a bachelor’s thesis by M.
Neset.112

2.2.1 Phase-matching and crystal configuration
The source is based on collinear type-II down-conversion in a periodically poled
KTiOPO4 crystal (ppKTP). The crystal is 6 mm thick and comprises of three pol-
ing domains, each approximately 1×1 mm wide. The poling periods are 9.900,
10.000, and 10.075 µm. The middle domain is used, as it offers optimal temperat-
ure tuning for the pump at 405 nm.

The configuration is shown in Figure 2.1. Light propagates along the x-axis
and the pump is vertically polarized (along the y-axis). The phase-matching
calculations were published by Fedrizzi and colleagues for a Sagnac configura-
tion47 and require Sellmeier equations for KTP113 and thermal dispersive coeffi-
cients.114,115

The optimal crystal temperature was observed to be around 30.0 ℃, although
the calculations predict a value 48.7 ℃ based on a vacuum wavelength of the
pump 404.99 nm. This could be caused by a different poling period having been
manufactured. Preliminarymeasurements weremade to determinewhich poling
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Figure 2.1: Down-conversion scheme showing crystallographic axes, polarizations and
wavelengths. Only one poling domain of the crystal is shown.
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optical axis
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Figure 2.3: Gaussian beam widths are plotted for all beams interacting in the crystal.
The pump profile is based on the lenses before the crystal. Signal and idler profiles
represent the optimal modes to be coupled withmaximum efficiency.109 Both dimensions
are in millimetres, but are not drawn to scale; the beam divergences appear much larger
than in reality. The crystal is positioned between 0 and 6 mm marks. Note that signal
(red) and idler (orange) beams slightly differ due to different indices of refraction. The
respective waist diameters of the pump, signal and idler are 43 µm, 39 µm, 38 µm, and
the respective angular spreads outside of the crystal are 12 mrad, 26 mrad, 27 mrad.

Figure 2.4: The dependence of detected pair rate at 810 nm on crystal temperature.
Three poling domains are shown for the same pump wavelength. Estimated optima are
at 7 ℃, 31 ℃, 63 ℃. The shapes of the curves depend on the spectral transmission of the
band-pass filter that was used (see section 2.2.2).
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domain should be used (see Figure 2.4). Although the data were not obtained
using an optimally aligned optical setup, the temperature dependence clearly
distinguishes three different poling periods. Ideally, the dependence should be
approximately squared-sinc-shaped, becauseΔ𝑘 depends approximately linearly
on small changes in temperature and equation (2.4) holds. The main reason why
the curves in Figure 2.4 look different is that the the collected photons are not
monochromatic and their spectra depend on the band-pass filter that is used.
Therefore the resulting pair rate is a product of the biphoton spectrum and the
spectral profile of the band-pass filter.

The next step in phase-matching calculations includes focusing of the inter-
acting beams. As all modes are coupled from/to single-mode step-index fibres,
the beams may be considered approximately Gaussian. The methodology pub-
lished by Bennink109 workswith focal parameters of the beams, which are defined
𝜉 = 𝐿

𝑘𝑤2 with 𝐿 being the crystal length, 𝑘 the wavenumber and 𝑤 the Gaussian
waist radius inside the crystal. The optimal value is 𝜉 = 2.84 for all beams, which
means that the spot size of the pump inside the crystal would be 17.2 µm. In the
presented source, a 100-mm lens focuses the pump into an estimated spot of 43
µm, which reduces the peak spectral brightness to approximately 65 % of the
theoretical maximum. This does not pose a significant restriction, because the
overall gain with respect to pumping laser power is still high. Moreover, stronger
focusing using conventional lenses increases spherical aberration, which reduces
the overlap of the beams. So, the theoretical maximum would not be reachable
in reality. The optimal focusing would require a 30-mm lens, which would also
place the focusing and collimating lens too close to the crystal. For practical
reasons, a weaker focusing was chosen in the presented source. The interacting
beam profiles are shown in Figure 2.3.

The crystal dimensions are 1×4×6 mm and it needs to be maintained at the
phase-matching temperature by a Peltier module. The brass housing for the crys-
tal is shown in Figure 2.2. The top and side gaps between the crystal and the
housing are filled with stripes of a thermally conductive sheet. Both faces of the
crystal are sunken in the housing groove, which prevents dust deposition. That
needs to be prevented because the focused pump power density is quite high in
the crystal; dust particles could be scorched and stuck onto the faces, obstructing
the beams.

The bottom part of the housing contains a cut-out part where thermal sensors
are attached using a thermally conductive glue. One of the sensors is a thermistor
that is used for temperature stabilization in a PID loop. It has a fast response, but
its absolute accuracy is only about 0.5 K. The other sensor is a platinum thermo-
meter that has a considerably slower response, but is calibrated more precisely.

Both parts of the housing are then screwed together and glued on a 30×15-
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mm Peltier module. This system is placed on a tip-tilt and translation stages
that allow precise adjustment of the angle of incidence, transversal positioning,
and beam waist location inside the crystal. The Peltier current is controlled by a
proportional-integral-derivative (PID) stabilization unit TED4015 manufactured
by Thorlabs. The PID loop parameters were set to 𝑃 = 0.250 A/K, 𝐼 = 0.100
As/K, 𝐷 = 0.170 A/Ks, osc. period = 7 s.

2.2.2 Components and setup

The pump is provided by a frequency-stabilized diode laser (Ondax SureLock
LM405) operating at 405 nm. The laser features frequency stabilization using
volume holographic grating with a specified linewidth of 160 MHz and wave-
length stability of 1 pm. The output is a linearly polarized beamwith an elliptical
transversal profile.

The pump is delivered into the SPDC source through a single-mode optical
fibre. This provides excellent repeatability in case the laser needs to be replaced.
In such a case, one would only need to couple the new laser into the fibre and
the SPDC source itself would require no realignment.

The coupling involves some beam shaping to achieve reasonable coupling
efficiency. The setup is shown in Figure 2.5. In theory, beam ellipticity is com-
pensated by a pair of cylindrical lenses. The setup uses only one cylindrical lens
and a subsequent expander consisting of spherical lenses, which gives sufficient
results. The laser might be damaged if any reflected light enters its cavity; for
that purpose, a Faraday isolator (Qioptiq FI-405-55V) is present that attenuates
any reflected light by 27 dB.

To maintain performance stability, the pump laser diode is operated at 70
mA driving current. Pump power is adjusted using a rotational attenuator that
reflects a portion of the pump into a wavemeter (Moglabs Mogwave) that mon-
itors the spectrum with a 12-pm resolution. As the expected linewidth is much
narrower than the response of the wavemeter, the main information obtained
is the central wavelength. The laser exhibits modes that are separated in wave-
length by approximately 30 pm and operate within about 1 ℃of laser diode tem-
perature. This temperature range shifts significantly in the order of hours and so
the temperature needs to be occasionally adjusted between 21–23 ℃ to maintain
single-mode emission.

The wavemeter was calibrated by a mercury lamp. The reported vacuum
wavelength for the spectral line of 404.770 nm116 was 404.752 nm. Assuming a
constant calibration error for any laboratory temperature, atmospheric pressure,
or close wavelengths, the pump vacuum wavelength is estimated to be 404.99
nm. Apart from mode hopping, any observed drift of the central wavelength is
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smaller than the accuracy of the wavemeter.
The schematic of the SPDC source and its basic description are shown in Fig-

ure 2.6. Apart from the pump, a probing signal at 810 nm is used for aligning
the components. Initially, both beams are mixed and aligned using a dichroic
mirror and two irises. The fibre couplers are put in a tilting mount like the mir-
rors, which grants all the necessary degrees of freedom. The pump beam must
be collimated to match the waist size and position in the crystal. Then, the HWP,
lenses and the crystal are put in the optical path. They do not need to be tilted too
much with respect to the beam, because there is very little chance the reflection
would be coupled back into the single-mode fibre. The approximate longitudinal
positions of the lenses and the crystal with respect to each other need to be cal-
culated. In principle, the position of the crystal may be optimized by beamwidth
measurements of the pump, but the position of the collimating lens depends en-
tirely on the generated signal and cannot be precisely aligned beforehand.

The main portion of the pump is cut off by a reflective filter placed immedi-
ately after the crystal so that the pump light is not scattered by the coating of
the collimating lens (Semrock BLP01-635-25, optical density OD6). The tilt of
the filter should not be too great, but enough for the reflected beam to go back
through the crystal and be blocked by the coupler mount.

To assemble the rest of the setup, the probe beam is used. If the lenses are
centred on the optical axis and the crystal is not too tilted, the probe beam should
be very close to the generated signal. As a kick-start measure, multi-mode fibres
may be used on the coupling end to find the down-converted signal more eas-
ily. In this case, it is best to screw on cut-off filters on the couplers to filter out
background light from the laboratory.

After collimation, it is necessary to introduce further spectral filtering. The
residual strong pump could be coupled in the fibres along with the signal, so
another OD6 filter is used. A band-pass filter is also used to ensure spectrally
degenerate operation and proper spectral tuning of the probe (Semrock LL01-
810-12.5, 3 nm bandwidth).

The PBS (Melles Griot) transmits horizontal polarization and reflects vertical.
It is optimized for s-polarization reflectivity, which means the extinction ratios
are 40 dB in the transmitted port and 18 dB in the reflected port. A HWP and an
additional PBS in the reflected port are sometimes used to clean up the polariza-
tion.1 Here a QWP at 45° and a mirror are used to flip the polarization and take
advantage of clean transmission through the PBS in the empty port. This part
is also used as a delay line by mounting the mirror on a motorized linear stage
(Newport MFA-CC). The alternative would be to use two PBSes and a trombone
delay line using two mirrors in one of the ports. The advantage of the employed
solution is that fewer components and less space are needed, and that the back-
reflection is easier to align.
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Figure 2.5: Coupling of the laser (405 nm). A rotational reflective attenuator serves for
adjusting pump power, while the reflected beam is coupled into a wavemeter. An isolator
prevents any reflections from entering the laser. A half-wave plate (HWP) rotates the
polarization to match the isolator and maximize transmission. Ellipticity of the beam
is corrected using a 200-mm cylindrical lens and two spherical lenses that serve as an
expander (50 mm and 125 mm). Before coupling, a HWP rotates the polarization so that
it matches the slow axis of a polarization-maintaining fibre.
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Figure 2.6: The optical setup of the SPDC source. All optical inputs and outputs are
coupled in single-mode polarization-maintaining fibres. All components before the crys-
tal are designed and coated for the pump wavelength 405 nm; all components afterwards
are for 810 nm (the faces of the crystal are dual-band AR-coated). A dichroic mirror al-
lows a probing beam at 810 nm to enter the setup. The linear polarization of the pump
is rotated using a half-wave plate (HWP) onto a vertical polarization. A 100-mm lens
provides focusing into the nonlinear crystal. Afterwards, a cut-off filter removes most of
the pump. The down-converted signal and idler are collimated using a 150-mm lens. A
HWP is used for alignment and to match the frame of reference of the crystal to the po-
larizing beam splitter (PBS). Further cut-off and band-pass filtering is carried out using
additional filters. The PBS separates signal and idler into two arms. One of them goes
through a delay line, where a motorized mirror serves as a back-reflector. A double pass
through a quarter-wave plate (QWP) makes sure that the delayed beam is transmitted
through the PBS into the top arm. HWPs in front of the fibre couplers serves to match
the linear polarizations with slow-axis modes of the fibres.
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Figure 2.7: Measurement setup used for alignment and observing Hong-Ou-Mandel
interference. Both outputs of the source are connected to a balanced fibre beam splitter
(BS). Then, single-photon avalanche diodes (SPADs) detect the rates of incident photons
and their simultaneous detections (coincidences).

2.2.3 Alignment
The initial alignment was performed with multi-mode fibres and aimed to find
the SPDC signal and coincidences (simultaneous detections). The crystal tem-
perature and pump polarization were roughly optimized. Then, polarization-
maintaining (PM) single-mode fibres were put in place and the corresponding
HWPs were rotated into correct positions.117

Final optimization of all factors was done using the weak SPDC signal on
a single-photon level using the following method. First, the constraint of col-
linearity of the coupled modes needs to be applied. This method requires the
measurement setup depicted in Figure 2.7. First, the HWP before the PBS is ro-
tated by 22.5°. This splits each generated signal evenly into both arms. Then, to
align the coupling in a signal or idler arm, the other arm is blocked. The coupled
light is split on a beam splitter and coincidences are detected; they come from the
photon pairs coupled in the same spatial mode by a single coupler. Alignment is
done with respect to coincidences. After both arms are done, the HWP is rotated
back. This method was routinely used to correct for misalignment and proved to
be effective with respect to optimizing count rate, coupling efficiency and inter-
ference visibility. It proved superior even in the case of a angle-phase-matched
BBO source than a similar technique described in reference 1.

The measurement setup in Figure 2.7—with both arms unblocked and signal
and idler separated—is an established measurement technique of the photons’
interference with each other. First presented by Hong, Ou and Mandel,41 this
technique serves as a measure of quality for photon pairs. It ensures that the
generated photons are indistinguishable in all degrees of freedom (except for the
spatial modes that interfere). This is essential for confirming spectral degeneracy
of the photons.

The Hong-Ou-Mandel effect is usually measured with respect to a variable
delay introduced to one of the photons (delay line in Figure 2.6). Non-interfering
photon pairs can cause a coincidence event on the two SPADs. If the photons in-
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terfere perfectly, they bunch into a superposition of two pairs (|11⟩ → [|20⟩ +
|02⟩]/√2), which causes a drop in the coincidence event rate. Plotting the coin-
cidence rate with respect to the time delay is called a Hong-Ou-Mandel (HOM)
dip.1,B3 Its shape is determined by the temporal/spectral properties of the pho-
tons.41 Themeasured data are shown later in Figure 2.8. HOMvisibility is defined
as the ratio of the drop in coincidences and the maximum coincidence rate. Any
alignment should maximize it towards 100 %.

Coming back to alignment, the HOM visibility can be measured immediately
after adjusting both arms, because the BS is already in place. This is practical for
verifying major alignment steps. Using the alignment method, it is first neces-
sary to establish the crystal temperature that maximizes coincidence rate. Then,
the longitudinal position of the crystal and collimating lens are varied so that the
overall coincidence rate is maximized. The coincidence rate is a product of an
overall SPDC gain (photon pair generation rate) and the coupling efficiencies of
both arms. In theory, these variables should have a commonmaximum, although
in practice, a change in a non-ideal alignment may result in an opposing beha-
viour. For a heralded single photon source, the crucial variable is the coupling
efficiency.

2.2.4 Mutual coherence and spectrum

The spectral and temporal properties of the down-converted biphotons are ne-
cessary to understand the modal structure and statistics of the signal. The joint
spectral amplitude 𝜙(𝜔1, 𝜔2)41 is basically a normalized projection of the spatial-
spectral superposition profile Ψ (2.1) onto the measured modes.106

The joint spectrum determines the effective width of a single mode for her-
alded single photons, which manifests in Hong-Ou-Mandel two-photon interfer-
ence. Considering the condition (2.2), we can work with an angular frequency
shift Δ𝜔 in 𝜙(𝜔0/2 + Δ𝜔, 𝜔0/2 − Δ𝜔). The relevant spectrally degenerate case
means that 𝜙(Δ𝜔) is symmetric and peaked at Δ𝜔 = 0. The HOM interference
then depends on a cross-correlation of a Fourier transform of the spectral amp-
litude 𝜙.41 Let the Fourier transform be

𝐺(𝑡) = ∫
∞

−∞
𝜙(Δ𝜔) 𝑒−𝑖∆𝜔𝑡 dΔ𝜔. (2.5)

For real and symmetric 𝜙, 𝐺(𝑡) is also real. Its normalized cross-correlation is

𝑑(𝜏) =
∫∞
−∞ 𝐺(𝑡) 𝐺(𝑡 + 𝜏) d𝑡
∫∞
−∞ 𝐺2(𝑡) d𝑡

. (2.6)
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The number of coincidences in the dip is then 𝑑(𝜏) = 𝐶(1 − 𝑉 ⋅ 𝑑(𝜏)). The
parameters are the coincidence rate 𝐶 with no interference, and visibility 𝑉.

The HOM dip was measured using the setup shown in Figure 2.7 and the
data are presented in Figure 2.8. The plot shows the dependence of coincidence
detections relative to the temporal delay between the two photons. The FWHM
is 1.0 ps, which is considered as the effective width of a single down-converted
mode. The sub-unity visibility is mainly attributed to temporal resolution of the
detectors, an imbalance in BS splitting ratio and imperfect polarization overlap.

Since the relation between the joint spectral amplitude and the HOM dip is
known, the spectral profile can be numerically calculated based on HOM data
without any direct spectrography.118 The data show systematic fluctuations in
the overall rate, which results in an asymmetry in the edges of the HOM dip.
The data show reasonable symmetry between ±1 ps delay (light-blue region), so
these points were used as numerical data {𝑑𝑟 = 𝑑(𝜏𝑟)}𝑛−1𝑟=0 , where the number
of samples 𝑛 is odd and 𝜏𝑟 goes symmetrically from -1 to 1 ps with a step of 𝛿𝜏.
The coincidence level 𝐶 at the edges is 45000. Then 𝑑𝑟 = 𝐶 − 𝑑𝑟, which may be
padded by zeroes on each side to control sampling. Using a standard definition
of a discrete Fourier transform

DFT(𝑓)𝑠 =
𝑛−1
∑
𝑟=0

𝑓𝑟𝑒−2𝜋𝑟𝑠/𝑛, (2.7)

the cross-correlation (2.6) is inverted by

�̃�𝑠 = DFT (𝑑𝑟) 𝑒−𝜋𝑖
𝑛−1
𝑛 𝑠𝛿𝜏, (2.8)

𝐺𝑟 = DFT−1 (√||�̃�𝑠||)
1
𝛿𝜏 . (2.9)

More details on discrete Fourier transforms, sampling and mathematical caveats
can be found in section 2.4.1. Finally, the joint spectral amplitude is obtained by

𝜙𝑠 = DFT−1 (𝐺𝑟) . (2.10)

The corresponding values Δ𝜔𝑠 are separated by 2𝜋/(𝑛⋅𝛿𝜏). The amplitude is not
normalized and exhibits periodicity, but it can be rescaled to meet any discrete
analogue of the condition ∫ |𝜙|2 = 1.

The result is shown in Figure 2.9, where signal wavelength is used instead of
angular frequency deviation. Errors and irregularities in the input data result in
numerical artefacts that are most visible on the sides of |𝜙|. The final estimate
of 𝜙 interpolates the absolute values of the central peak and setting everything
else to zero. This estimate is then compared to the measured data by applying
(2.5) and (2.6) to the interpolation; the corresponding red dashed line is shown
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Figure 2.8: The Hong-Ou-Mandel dip. The black curve represents the data and their
statistical error. The drift comes from systematic errors, most likely pump stability. HOM
visibility = 98.9 ± 0.2 % from data; the best fit of the models is 98 %. A perfect sinc-
spectrum dip is shown by the triangular purple dotted curve. Further augmentation by
a band-pass filter is estimated by the green dotted curve. The red dashed curve represents
the numerical model based on the interpolated spectral profile presented in Figure 2.9.
The light-blue region designates the data range thatwas the basis of the numericalmodel.
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Figure 2.9: The joint spectral amplitude numerically calculated from theHOMdata. The
relation (2.2) binds the frequencies of signal and idler; thewavelengths are approximately
(𝜆signal +𝜆idler)/2 ≈ 810 nm. Orange dots are the numerical result and the red line is the
interpolation of the central peak with side-artefacts cleaned up.
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in Figure 2.8. The FWHM of joint spectral intensity |𝜙|2 is 2.0 nm, which means
that the phase-matching is roughly comparable to the FWHM of the band-pass
filter. If the filter was as narrow as 3.1 nm (a typical value claimed by the manu-
facturer), the joint spectral intensity FWHM would be 2.6 nm. This differs signi-
ficantly from the theoretical expectation. Considering Gaussian beams and the
material data, the profile should be approximately the same as for planar waves
– sinc-shaped (2.4). The ideal FWHMwithout any filtering would be 0.9 nm. The
widening could be due to possible irregularities in the poling pattern that could
result in an effectively wide distribution of poling periods. Spherical and other
aberrations of the lens could also contribute a different phase-matching shape
than for ideal Gaussian beams.

2.2.5 Statistical properties

The quantitative measure of an SPDC source is the rate of detected photon pairs.
This depends on the SPDC overall gain and optical loss in the path towards de-
tection. It is somewhat ambiguous to decide where the division between the
source and detection is. The convention used here assumes that even detection
efficiency is a part of the overall loss of the source so that there is no need for
data correction.

As the 𝜒(2) nonlinear process represents an interaction of three waves, any
signal generated from vacuum represents a photon pair – a simultaneous excit-
ation of two modes, even though the superposition of such modal pairs is quite
complex.B1 Coupling and detection is multimode, primarily in terms of time and
spectrum. Even though each generated mode has a different overlap with the
detection modes, all the factors and their complexity can be reduced to two effi-
ciencies 𝜂𝑠, 𝜂𝑖; they represent the effective transmittance of each photon.

The initial statistics of photon pairs in a single mode is Bose-Einstein (follows
a geometric series).B1 However, one mode is about 1 ps wide, as shown in the
previous section. The width of the detectionmode is of the order of nanoseconds,
usually 2 ns. Summing such a high number of independent modes results in
Poisson statistics. The generation rate also allows us to work in the single-pair
approximation (2.1). The probability of 𝑛1, 𝑛2 photons in the respective detection
modes is then

𝑃init
𝑛1,𝑛2 = {

𝛾𝑛

𝑛!
𝑒−𝛾 𝑛1 = 𝑛2 = 𝑛

0 𝑛1 ≠ 𝑛2
. (2.11)

The gain factor 𝛾 represents the projection of |Ψ |2 times the effective number of
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modes. The optical loss introduces the transformation

𝑃𝑛1,𝑛2 =
∞
∑
𝑘=𝑛1

∞
∑
𝑙=𝑛2

( 𝑘𝑛1
)( 𝑙𝑛2

)𝜂𝑛11 𝜂𝑛22 (1 − 𝜂1)𝑘−𝑛1(1 − 𝜂2)𝑙−𝑛2𝑃init
𝑘,𝑙 . (2.12)

The transformation is written in a general form, although in this case, the indices
𝑘, 𝑙 may be joined into one. This model can be simplified and various terms
neglected if the time window is short and 𝛾 ≪ 1, which is commonly true for
continuous-wave SPDC.

The quantitative measures of SPDC that can be obtained from detecting pho-
tons in each arm are the rates. The coincidence rate 𝑅𝑐 is the number of simul-
taneous detections per time unit; a coincidence occurs if detectors in signal and
idler arms both register a photon within a time window 𝜏𝑐. The rate of detections
on individual detectors are 𝑅1, 𝑅2.

If there was no optical loss, there would be only photon pairs present so that
𝑅𝑐 = 𝑅1 = 𝑅2. The effect of the transmittances on the pair generation rate
ℛ = 𝛾/𝜏𝑐 is 𝑅1 = 𝜂1ℛ, 𝑅2 = 𝜂2ℛ, and 𝑅𝑐 = 𝜂1𝜂2ℛ. A common parameter to
characterize efficiency is their geometric mean 𝜂 = √𝜂1𝜂2. So, the data can be
used to establish

𝜂 = 𝑅𝑐
√𝑅1𝑅2

, (2.13)

𝜂1 =
𝑅𝑐
𝑅2
, (2.14)

𝜂2 =
𝑅𝑐
𝑅1
, (2.15)

𝛾 = 𝑅1𝑅2
𝑅𝑐

𝜏𝑐. (2.16)

Using 1 mW of pump power and two SPAD modules Excelitas SPCM CD3543H
with a specified 70% efficiency and 𝜏𝑐 = 1.6 ns, the measured rates are 𝑅𝑐 = 146
kcps, 𝑅1 = 357 kcps, 𝑅2 = 371 kcps (thousands of counts per second). The
efficiencies are 𝜂1 = 39.3%, 𝜂2 = 40.9%, 𝜂 = 40.1%, where number 1 corresponds
to the transmitted arm and number 2 is the delayed arm (Figure 2.6). The gain
factor would be 𝛾 = 1.5 × 10−3.

Considering a single-photon source, these parameters are essential for the
quality of the heralded single-photon state. One of the arms is designated as the
trigger arm and it conditions a single-photon state in the other arm (signal arm)
by detection. The statistics of the conditioned state can be calculated from (2.12)
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by 𝑝𝑛𝑠 = ∑∞
𝑛𝑖=1

𝑃𝑛𝑠,𝑛𝑖 . If 𝛾 ≪ 1, which is usually the case, then

𝑝0 ≈ 1 − 𝑝1 − 𝑝2, (2.17)
𝑝1 ≈ 𝜂𝑠, (2.18)

𝑝2 ≈
1
2𝛾𝜂

2
𝑠 (2 − 𝜂𝑡), (2.19)

𝑝𝑛>2 ∝∼ 𝛾𝑛−1 ≈ 0. (2.20)

Even though 𝑝2 ≪ 𝑝1, the term is not neglected, because it represents the dom-
inant error contribution. The above statistics can be optimized by the means
of experimental parameters, but the optimization depends on the application or
definition by the user. It is generally good to optimize efficiencies, as the gain in
𝑝1 outweighs any gain in error. As 𝛾 = ℛ𝜏𝑐, it is necessary to avoid excessively
wide coincidence windows. The lower limit is the detector jitter (see section
2.3.1), so further narrowing of the window would result in losing some signal
beside the noise. There are some metrics, where the time window can be optim-
ized (see section 3.2.5). Of course, generation rate ℛ can be lowered by reducing
pump power, which is the most convenient way of arbitrarily reducing gain and
the multi-photon contribution. However, if this could be referred to as an in-
crease in quality, it is accompanied by a decline in quantity, as the rate of gener-
ating such heralded states decreases. The suitable trade-off usually depends on
practical limits in the experiment such as available time and background noise.

The most common quantity that is measured is the 𝑔(2)(𝜏) temporal correl-
ation function that is the quantum analogue of intensity cross-correlation from
classical optics.20,B5,B6 Its fundamental significance is that for classical light, the
value 𝑔(2)(0) ≥ 1. Single-photon light in particular should exhibit 𝑔(2)(0) ≪ 1.
In terms of photon-number probabilities, it is

𝑔(2)(0) ≔ ⟨𝑛(𝑛 − 1)⟩
⟨𝑛⟩2 ≈ 2𝑝2

𝑝21
≈ ℛ𝜏𝑐(2 − 𝜂𝑡). (2.21)

The value scales linearly with gain (pump power) and the time window, but does
not depend on optical loss in the signal. Using the presented values, the estimate
is 𝑔(2) = 2.3 × 10−3.

The standard way of directly measuring 𝑔(2)(0) is by Hanbury-Brown-Twiss
measurement.1,119 The scheme is shown in Figure 2.10. Trigger detections with
rate 𝑅𝑡 condition any detections in the signal arm. Conditioned detections on
the two SPADs are effectively two-fold coincidences with the trigger; the rates
are 𝑅𝑠1, 𝑅𝑠2. Undesirable two-photon events manifest by all detectors registering
a signal with rate 𝑅𝑠1,𝑠2,𝑡. Then, an anticorrelation parameter may be calculated
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Figure 2.10: The Hanbury-Brown-Twiss measurement used to establish 𝑔(2)(0). The
heralded signal is split into two channels and the detection electronics evaluates the
rates of all combinations of single/coincidence detections.

that is approximately equal to 𝑔(2)(0),20

𝑔(2)(0) ≈
𝑅𝑠1,𝑠2,𝑡𝑅𝑡
𝑅𝑠1𝑅𝑠2

. (2.22)

This value can be determined by measurements in Chapter 3. The lowest
measured value for the discussed SPDC source comes from data presented in
Figure 3.12 and is 𝑔(2)(0) = (1.8 ± 0.2) × 10−4.

It should be noted that the 𝑔(2)(0) value itself serves primarily for proving
that the single-photon state is nonclassical. It cannot be considered a metric by
itself, as there are many possible ways of quantifying multiphoton content in
single-photon states. One of them—quantum non-Gaussianity—is the subject to
which Chapter 3 is devoted.

2.3 Single-photon avalanche diodes (SPAD)

2.3.1 General description
This section provides a general description of single-photon avalanche diodes
and their known properties.B3

SPADs are semiconductor avalanche diodes operated with a reverse voltage
that is above the breakdown voltage. Upon an absorption of a photon, an electron-
hole pair may be excited in the p-n junction of the diode. The carriers are ac-
celerated by the reverse voltage and kinetically excite more carriers in an ava-
lanche. Because the voltage is above breakdown, the current avalanche needs
to be quenched before it damages the SPAD. An electronic quenching circuit is
designed to bring the voltage to zero upon a successful detection, so that the
current breaks off and the SPAD is reset to its initial state. Then, the reverse
voltage is applied again and the SPAD becomes sensitive to incident light. The
time between the avalanche and the reapplication of the reverse voltage is called
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recovery time; in this work it is denoted by 𝜏𝑅 and its typical value is in the order
of tens of nanoseconds. During recovery time, the detector is unable to register
any new photons.

The work presented in this theses utilizes silicon SPADs, which have optimal
efficiency in the visible spectrum. All detected signals were at 810 nm, where the
typical efficiency of detecting a photon is 50–70 %.

Important aspects of SPADs include their temporal properties. A response
time is the time between the incidence of an optical signal and the emission of an
electronic pulse by the SPAD. The response time itself is not of importance in the
presented experiments; one only needs to keep the SPAD outputs synchronized
relatively to each other.

The relative time uncertainty of the output signal is called jitter, which is com-
monly defined as a FWHM of the detection-to-output time distribution. When
a photon excites carriers in the detector, their location and the dynamics of the
avalanche can vary. This is the primary cause of inherent jitter. Additional
factors may include noise in the amplification circuit and the accuracy of the
detection-processing electronics. The reason is that a detection is recognized
by the location of the leading edge of the SPAD output signal, so any electronic
noise contributes to jitter as well. Typical values for detectors in this work are
in the order of fractions of a nanosecond.

Dark counts represent the ocurrence rate of background detections present
without any incident signal. These are caused by thermal excitation of carriers
and are influenced by the quality of the diode material, temperature and bias
voltage. Values depend on the type of the SPAD and its age, in this work typically
10–500 counts per second.

Another type of false counting arises from carriers trapped in energy levels
close to the conduction band that represent impurities in the material. After
quenching and recovery, these carriers may cause an avalanche by themselves,
resulting in a so-called afterpulse. Afterpulsing is expressed by a probability of
occurrence 𝑝𝑎 and a temporal distribution. Photons arriving during recovery
time also contribute to afterpulsing, because the carriers they excite may cause
an avalanche immediately after the reverse voltage is applied. This adds to 𝑝𝑎
a factor that grows linearly with the incident light intensity. In the literature,
these events are referred to as twilight pulses.

The significance of the above-mentioned parameters and imperfections var-
ies depending on the measurement. Finite detection efficiency effectively trans-
lates into additional optical loss, which may be an issue in quantum information
processing or secure quantum communication.

The effect of recovery time results in detector saturation and affects its lin-
earity, which needs to be corrected in metrological applications, where the real
event rate needs to be determined. In this case, a correction for afterpulsing
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needs to be applied as well. The correction formula (2.24) is derived in the fol-
lowing section.

Timing jitter mainly affects the amount of background noise collected in ex-
periments with closely correlated photons. Since simultaneous detections need
to be recognized, the coincidence time window defining a coincidence event can-
not be much shorter than the jitter. Otherwise, signal would be lost. On the other
hand, the amount of random signal increases with the width of the coincidence
window.

Dark counts present a typical signal-to-noise ratio problem. Usually, they
are subtracted from the number of detections along with the overall background.
In experiments where only correlated photons matter, the contribution of dark
counts is usually negligible.

There are several trade-offs related to the parameters of SPADs. The thick-
ness of the junction defines many operational characteristics, including jitter,
efficiency and afterpulsing.94,120 Increasing the bias voltage may increase detec-
tion efficiency at the cost of dark count rate and afterpulsing. SPADs are also
commonly Peltier-cooled, because lower operating temperature decreases dark
counts. Afterpulsing can be suppressed by lowering the avalanche charge and
slightly extending recovery time beyond mere quenching so that a sufficient
amount of trapped carriers has enough time to decay. However, the trapped
carrier lifetime increases with lower temperatures, so that afterpulsing needs to
be balanced against dark count elimination.

2.3.2 Counting model

The following three sections presents modelling the probability distribution of
the number of detections in a fixed time window; usually referred to as counting
statistics. Two approaches are presented – numerical and analytical. This section
establishes the stochastic process (2.23) and derives a rate correction formula
(2.24). Section 2.3.3 presents an analytical model that is derived from a simplified
stochastic model of recovery time and afterpulsing. Section 2.3.4 describes the
numerical simulation that was used to model the process (2.23) as well as check
the analytical formula. All three sections represent original results.

Let us consider the overall efficiency of the detector as a separate attenuation
process that only scales the apparent incident intensity, but has no other effect.
The basis of the model is therefore a homogeneous Poisson point processB7 that
is modified by considering basic detector imperfections – recovery time and af-
terpulses.B3

Let us work with interarrival time Δ𝑡, which is the time interval between
two successive detections. Each measurement results in a series of detections
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distributed in time. Equivalently, the data can be considered a series of interar-
rival times. Each interval is a particular realization of a stochastic process. An
important assumption is that only a single process is considered, which means
that after each detection, the detector is reset to the same state and individual
interarrival times are independent variables. Although this assumption is suffi-
cient for the experiment in Chapter 4 and is widely used in the community, it
has been only recently found not to be entirely true for all detectors.93,94

The objective of the model is to find the probability density function (PDF)
of interarrival time 𝑝(Δ𝑡). In the case of a perfect detector illuminated with
constant intensity, the detections would exhibit a uniform temporal density 𝜆
and interarrival times would be exponentially distributed. For a homogeneous
process, this distribution holdswith respect to any point in time, so recovery time
𝜏𝑅 can be simply incorporated by a shift: 𝑝rad(Δ𝑡) = 𝜆𝑒−𝜆(∆𝑡−𝜏𝑅) for Δ𝑡 > 𝜏𝑅,
zero otherwise. As no signal can arrive earlier than 𝜏𝑅, let 𝑡 = Δ𝑡 − 𝜏𝑅 and the
PDF component representing radiation is 𝑝rad(𝑡) = 𝜆𝑒−𝜆𝑡. Here, 𝜆 contains the
incident photon flux times the overall detection efficiency, and background (dark
counts) as well.

The next step is to incorporate afterpulsing. An electronic afterpulse occurs
with a fixed probability 𝑎 and arrives at a certain time that is distributed with
PDF 𝑝AP(𝑡). Then there are so-called twilight pulses that always arrive just after
detector recovery (𝑝TwP(𝑡) = 𝛿(𝑡), a Dirac delta distribution) and their probab-
ility is proportional to the incident rate by a factor of 𝛼. In the case when an
electronic afterpulse is going to happen, a detection at time 𝑡 can occur either
due to afterpulsing or a radiation detection before the afterpulse arrives. The
first case is conditioned by no radiation detection occurring before 𝑡 and an af-
terpulse arriving at 𝑡, which results in probability 𝑒−𝜆𝑡𝑝AP(𝑡). The second case
is vice versa. No afterpulse before 𝑡 can be denoted by (1 − 𝑝AP(𝑡)), where the
primitive function 𝑝AP = ∫𝑡

0 𝑝AP. The resulting PDF in an event of an afterpulse
is 𝑝r-AP(𝑡) = 𝑒−𝜆𝑡𝑝AP(𝑡) + (1 − 𝑝AP(𝑡))𝜆𝑒−𝜆𝑡.

Finally, all contributions are summed with the respective probabilities 𝑝(𝑡) =
𝛼𝜆𝑝TwP(𝑡) + 𝑎𝑝r-AP(𝑡) + (1 − 𝑎 − 𝛼𝜆)𝑝rad(𝑡). After all substitutions, the result is

Δ𝑡 = 𝜏𝑅 + 𝑡,
𝑝(𝑡) = 𝛼𝜆𝛿(𝑡) + 𝑎 [𝑒−𝜆𝑡 𝑝AP(𝑡) + (1 − 𝑝AP(𝑡))𝜆𝑒−𝜆𝑡] (2.23)

+ (1 − 𝑎 − 𝛼𝜆)𝜆𝑒−𝜆𝑡.

This model can be used to numerically simulate data for any event rate 𝜆 (see
section 2.3.4). It was used to provide all theoretical predictions of photon-number
distributions that are used in Chapter 4.
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The model also establishes an analytical correction for saturation of the de-
tector due to afterpulsing and dead time. Conventionally, the rate correction for
recovery time is 𝜆det = 𝜆/(1+𝜆𝜏𝑅) and for afterpulses 𝜆det = (1+𝑎+𝛼𝜆)𝜆.121 Mul-
tiplicating both contributions can serve well for small corrections, but does not
treat the interaction between both phenomena. The formula (2.23) accounts for
both recovery time and afterpulsing correctly up to the accuracy of the assumed
mechanisms. These mechanisms can be modified, generalized or simplified at
the discretion of the experimentalist, depending on the required accuracy of the
detection model. This would result in different forms of 𝑝(𝑡). From equation
(2.23), one can compute the mean detection rate 𝜆det = ⟨Δ𝑡⟩−1,

𝜆det = (1𝜆 −
𝑎
𝜆 ∫

∞

0
𝑝AP(𝑡) 𝑒−𝜆𝑡 d𝑡 + 𝜏𝑅 − 𝛼)

−1

. (2.24)

The required parameters 𝜏𝑅, 𝑎, 𝛼 and 𝑝AP(𝑡) can be established by direct meas-
urements.

2.3.3 Analytical counting model
Commonly used counting models for non-paralyzable Geiger-mode detectors
only take into account saturation due to recovery time. Some models simply
subtract the overall recovery time from the time interval,121 others calculate the
respective point process, but assume that the detector is unblocked at the start
of each counting interval.B3,122 The exact formula describing recovery time was
published by Müller.105 This formula is generalized here.

Using the point process approach, one can derive an analytical formula that
also incorporates afterpulsing, although not in the scope considered in the pre-
vious section. The assumption is that after each recovery time of length 𝜏𝑅, an-
other detection may immediately take place with probability 𝑝𝑎. Any model that
would assume more complicated phenomena, such as afterpulse decay time stat-
istics, needs to be simulated by Monte Carlo methods. For silicon SPADs, the
dominant portion of afterpulsing takes place very soon after the end of recovery
time, which justifies the approximation.

Themodel is formulated for a constant incident rate 𝜆 as a probability density
function (PDF) for interarrival time Δ𝑡 = 𝜏𝑅 + 𝑡, where the stochastic part 𝑡 has
a PDF

𝑝inter(𝑡) = 𝑝𝑎𝛿(𝑡) + (1 − 𝑝𝑎)𝜆𝑒−𝜆𝑡, 𝑡 ≥ 0. (2.25)

It is therefore a combination of an afterpulse and a homogeneous Poisson point
process. 𝜆 is an incident event rate that incorporates background counts as well
as overall SPAD efficiency, which are phenomena that add up to a Poisson process
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that subsequently becomes distorted by recovery time and afterpulsing. 𝛿(𝑡) is
the Dirac delta distribution.

Let us work with the temporal PDFs of the 1st, 2nd, …, 𝑛th detection. First,
let us consider the case when the detector is free (not recovering) at time zero.
The probability of no detection up to time 𝑡 is 𝑃free

0 (𝑡) = exp(−𝜆𝑡). The PDF of
the first detection is simply 𝑝free

1 (𝑡1) = 𝜆 exp(−𝜆𝑡1). Then, recovery time follows,
so that the time of the second detection 𝑡2 ≥ 𝑡1 + 𝜏𝑅. The PDF of the second
detection integrates over all possible times 𝑡1 of the first detection:

𝑝free
2 (𝑡2) = ∫

𝑡2−𝜏𝑅

0
𝑝free
1 (𝑡1)𝑝inter(𝑡2 − (𝑡1 + 𝜏𝑅))d𝑡1, 𝑡2 ≥ 𝜏𝑅. (2.26)

By extension, the PDF of each detection is always a convolution of the PDF of
the previous detection and PDF of the interarrival time,

𝑝free
𝑛 (𝑡) = ∫

𝑡−𝜏𝑅

(𝑛−2)𝜏𝑅
𝑝free
𝑛−1(𝑡′)𝑝inter(𝑡 − 𝑡′ − 𝜏𝑅)d𝑡′, (2.27)

𝑝free
𝑛 (𝑡) = 𝜆𝑒−𝜆[𝑡−(𝑛−1)𝜏𝑅] (2.28)

×
𝑛−1
∑
𝑘=0

(𝑛 − 1
𝑘 )𝑝𝑛−1−𝑘𝑎 (1 − 𝑝𝑎)𝑘𝜆𝑘

[𝑡 − (𝑛 − 1)𝜏𝑅]
𝑘

𝑘! ,

where 𝑡 ≥ (𝑛−1)𝜏𝑅. Now, let us consider the probability of 𝑛 detections in a time
window between zero and 𝑇. This means that the 𝑛th detection happens at time
𝑡 < 𝑇 and no more detections happen afterwards. If recovery time goes beyond
the time window, 𝑡 + 𝜏𝑅 > 𝑇, then no further detections can take place. In the
other case, if 𝑡 ≤ 𝑇 − 𝜏𝑅, then the probability of no further detections occurring
is the product of no afterpulsing and no detections afterwards, which is equal to
(1−𝑝𝑎) exp(−𝜆(𝑇−𝜏𝑅−𝑡)). Both cases are possible if 𝑛 ≤ ⌊𝑇/𝜏𝑅⌋−1. If we denote
the maximum amount of recovery times that fit inside the detection window
𝑁 ≔ ⌊𝑇/𝜏𝑅⌋, then the maximum amount of detections is 𝑁 +1. Considering the
time requirements of both cases, the probability of 𝑛 detections is

𝑃free
𝑛≤𝑁(𝑇) = (1 − 𝑝𝑎)∫

𝑇−𝜏𝑅

(𝑛−1)𝜏𝑅
𝑝free
𝑛 (𝑡)𝑒−𝜆(𝑇−𝜏𝑅−𝑡) d𝑡

+∫
𝑇

𝑇−𝜏𝑅
𝑝free
𝑛 (𝑡) d𝑡.

(2.29)

𝑃free
𝑁+1(𝑇) = ∫

𝑇

𝑁𝜏𝑅
𝑝free
𝑁 (𝑡) d𝑡. (2.30)
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Let us now abbreviate𝑀𝑛 ≔ 𝜆(𝑇 − 𝑛𝜏𝑅), which could be interpreted as an ideal
mean number of detections in the time window reduced by 𝑛 recovery times.
Also, let 𝑄𝑘(𝑥) = exp(−𝑥)∑𝑘−1

𝑚=0 𝑥𝑚/𝑚! be the regularized upper incomplete
Gamma function, which in this special case of 𝑘 ∈ ℕ0 represents the probability
of a Poissonian variable with mean 𝑥 to be less than 𝑘 (note that 𝑄0(𝑥) = 0).
Then, the resulting probability is

𝑃free
0 (𝑇) = 𝑒−𝑀0 , (2.31)

𝑃free
1≤𝑛≤𝑁(𝑇) =

𝑛−1
∑
𝑘=0

(𝑛 − 1
𝑘 )𝑝𝑛−1−𝑘𝑎 (1 − 𝑝𝑎)𝑘 (2.32)

× (𝑄𝑘+1(𝑀𝑛) − 𝑄𝑘+1(𝑀𝑛−1) + (1 − 𝑝𝑎)
𝑀𝑘+1

𝑛
(𝑘 + 1)!𝑒

−𝑀𝑛) ,

𝑃free
𝑁+1(𝑇) = 1 −

𝑁
∑
𝑘=0

(𝑁𝑘)𝑝
𝑁−𝑘
𝑎 (1 − 𝑝𝑎)𝑘𝑄𝑁

𝑘+1 (2.33)

where the terms𝑄𝑘(𝑀𝑛) can be viewed in terms of the interpretationsmentioned
above. These equations give a counting model assuming the detector is free at
the beginning. However, if the detector is recovering at 𝑡 = 0 and keeps inactive
for a certain initial time 𝜏𝑖 < 𝜏𝑅, then the initial detection has the PDF

𝑝rec
1 (𝑡1, 𝜏𝑖) = 𝑝𝑎𝛿(𝑡1 − 𝜏𝑖) + (1 − 𝑝𝑎)𝜆𝑒−𝜆(𝑡1−𝜏𝑖). (2.34)

Like before, multiple convolutions result in the 𝑛th detection PDF

𝑝rec
𝑛 (𝑡, 𝜏𝑖) = 𝑎𝑛𝛿 (𝑡 − (𝑛 − 1)𝜏𝑟 − 𝜏𝑖) + 𝑒−𝜆[𝑡−(𝑛−1)𝜏𝑅−𝜏𝑖]

×
𝑛
∑
𝑘=1

(𝑛𝑘)𝑝
𝑛−𝑘
𝑎 (1 − 𝑝𝑎)𝑘𝜆𝑘

[𝑡 − (𝑛 − 1)𝜏𝑅 − 𝜏𝑖]
𝑘−1

(𝑘 − 1)! , (2.35)

where 𝑡 ≥ (𝑛 − 1)𝜏𝑅 + 𝜏𝑖 . By integration analogous to (2.29), the probability of 𝑛
detections in a time window 𝑇 then is

𝑃rec
0 (𝑇, 𝜏𝑖) = (1 − 𝑝𝑎)𝑒−𝜆(𝑇−𝜏𝑖), (2.36)

𝑃rec
1≤𝑛<𝑁(𝑇, 𝜏𝑖) = (1 − 𝑝𝑎)𝑝𝑛𝑎𝑒−𝜆(𝑇−𝑛𝜏𝑅−𝜏𝑖)

+ (1 − 𝑝𝑎)𝑒−𝜆(𝑇−𝑛𝜏𝑅−𝜏𝑖)

×
𝑛
∑
𝑘=1

(𝑛𝑘)𝑝
𝑛−𝑘
𝑎 (1 − 𝑝𝑎)𝑘𝜆𝑘

(𝑇 − 𝑛𝜏𝑅 − 𝜏𝑖)𝑘
𝑘! (2.37)

+
𝑛
∑
𝑘=1

(𝑛𝑘)𝑝
𝑛−𝑘
𝑎 (1 − 𝑝𝑎)𝑘

× [𝑄𝑘(𝜆(𝑇 − 𝑛𝜏𝑅 − 𝜏𝑖)) − 𝑄𝑘(𝜆(𝑇 − (𝑛 − 1)𝜏𝑅 − 𝜏𝑖))] ,
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which is similar to (2.32), except for the first term and the 𝜏𝑖 contribution. The
first term is kept separate intentionally for consistent analytic integration in the
subsequent step.

However, if 𝑛 = 𝑁, then the initial time 𝜏𝑖 determines whether the final
recovery time will be inside or outside the detection window. The border value
is ̃𝜏𝑖 = 𝑇 − 𝑁𝜏𝑅. Therefore we need to split the two cases, while for 𝑛 = 𝑁 + 1
the final recovery time always goes beyond the detection window and no more
detections are possible.

𝑃rec
𝑁 (𝑇, 𝜏𝑖 < ̃𝜏𝑖) = 𝑃rec

1≤𝑛<𝑁(𝑇, 𝜏𝑖)||𝑛=𝑁 , (2.38)

𝑃rec
𝑁 (𝑇, 𝜏𝑖 > ̃𝜏𝑖) = ∫

𝑇

(𝑁−1)𝜏𝑅+𝜏𝑖
𝑝rec
𝑁 (𝑡, 𝜏𝑖) d𝑡, (2.39)

𝑃rec
𝑁+1(𝑇, 𝜏𝑖 < ̃𝜏𝑖) = ∫

𝑇

𝑁𝜏𝑅+𝜏𝑖
𝑝rec
𝑁+1(𝑡, 𝜏𝑖) d𝑡, (2.40)

𝑃rec
𝑁+1(𝑇, 𝜏𝑖 > ̃𝜏𝑖) = 0. (2.41)

Now both cases 𝑃free
𝑛 and 𝑃rec

𝑛 need to be combined. In a measurement run,
measurement intervals are periodically distributed with a fixed length 𝑇, while
detections follow the probabilistic point process (2.25). So, in a long measure-
ment, these two become uncorrelated and one can assume that the distribution
of window beginnings with respect to detection events is completely random.
Therefore, the proportion of ‘free’ windows to ‘rec’ windows is equal to the pro-
portion of time periods when the detector was free and blocked, respectively,
⟨𝑡⟩ ∶ 𝜏𝑅. Additionally, the distribution of 𝜏𝑖 is uniform between zero and 𝜏𝑅. Tak-
ing both of these into account, the overall probability of 𝑛 detections becomes a
mixture

𝑃𝑛(𝑇) =
⟨𝑡⟩

⟨𝑡⟩ + 𝜏𝑅
𝑃free
𝑛 (𝑇) + (1 − ⟨𝑡⟩

⟨𝑡⟩ + 𝜏𝑅
) 1
𝜏𝑅
∫

𝜏𝑅

0
𝑃rec
𝑛 (𝑇, 𝜏𝑖) d𝜏𝑖. (2.42)

This mixture needs to be evaluated separately for the cases of 𝑛 = 0, 𝑛 < 𝑁, 𝑛 =
𝑁, and 𝑛 = 𝑁+1, because the probability distributions differ and the integration
needs to be split to accommodate the piecewise definitions. After integration,
renumbering of the summation indices and using the property 𝑄0(𝑥) = 0, the
probability of 𝑛 detections during a time 𝑇 is
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𝑃0(𝑇) =
1 − 𝑝𝑎

1 − 𝑝𝑎 + 𝜆𝜏𝑅
𝑒−𝑀1 , (2.43)

𝑃0<𝑛<𝑁(𝑇) =
1

1 − 𝑝𝑎 + 𝜆𝜏𝑅

×
𝑛
∑
𝑘=0

(𝑛𝑘)𝑝
𝑛−𝑘
𝑎 (1 − 𝑝𝑎)𝑘[(𝑘 + 1 − 𝑝𝑎)𝒬𝑛+1

𝑘+1

−𝑀𝑛+1𝒬𝑛+1
𝑘 − (2𝑘 + (1 − 𝑘/𝑛) (1 − 𝑝𝑎))𝒬𝑛

𝑘+1

+ (𝑝𝑎𝑘/𝑛 + 2𝑀𝑛)𝒬𝑛
𝑘 + 𝑘𝒬𝑛−1

𝑘+1 − (𝑘/𝑛 +𝑀𝑛−1)𝒬𝑛−1
𝑘 ],

(2.44)

𝑃𝑁(𝑇) =
1

1 − 𝑝𝑎 + 𝜆𝜏𝑅
{−𝑀0

+
𝑁
∑
𝑘=0

(𝑁𝑘)𝑝
𝑁−𝑘
𝑎 (1 − 𝑝𝑎)𝑘[(𝑝𝑎𝑘/𝑁 + 2𝑀𝑁)𝒬𝑁

𝑘

− (2𝑘 + (1 − 𝑘/𝑁) (1 − 𝑝𝑎))𝒬𝑁
𝑘+1 + 𝑘𝒬𝑁−1

𝑘+1

− (𝑘/𝑁 +𝑀𝑁−1)𝒬𝑁−1
𝑘 ]} + 𝑁 + 1,

(2.45)

𝑃𝑁+1(𝑇) =
1

1 − 𝑝𝑎 + 𝜆𝜏𝑅
{𝑀0

+
𝑁+1
∑
𝑘=0

(𝑁 + 1
𝑘 )𝑝𝑁+1−𝑘

𝑎 (1 − 𝑝𝑎)𝑘[𝑘𝒬𝑁
𝑘+1

− ( 𝑘
𝑁 + 1 +𝑀𝑁)𝒬𝑁

𝑘 ]} − 𝑁,

(2.46)

where the terms𝑀 and 𝒬 are

𝑀𝑛 ≔ 𝜆(𝑇 − 𝑛𝜏𝑅), (2.47)

𝒬𝑛
𝑘 ≔ 𝑄𝑘(𝑀𝑛) = {

0 if 𝑘 = 0
𝑒−𝑀𝑛 ∑𝑘−1

𝑖=0 𝑀𝑖
𝑛/𝑖! if 𝑘 ≥ 1

, (2.48)

using parameters 𝜆 (incident rate), 𝑝𝑎 (probability of an afterpulse) and 𝜏𝑅 (re-
covery time). The number of detections where the analytical expression changes
is 𝑁 = ⌊𝑇/𝜏𝑅⌋.
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In the limit of 𝑝𝑎 → 0, or 𝑝𝑎 ≡ 0 if one postulates 00 ≔ 1, the relations are
reduced to the form published by Müller for a dead-time-only process (equations
(32)).105 To capture twilight pulsing, 𝑝𝑎 can be made a function of 𝜆.

The relations (2.43) to (2.46) are an exact model of the point process defined
by (2.25). As the definition is rather simple, the model can be conveniently veri-
fied using a Monte Carlo simulation. If the model was extended, for example by
considering the temporal distribution of afterpulses as in (2.23), analytical solu-
tion would not be possible in such a simple and concise form as above. The most
feasible approach then is Monte Carlo.

2.3.4 Counting simulation

A brief review of the simulation method will be provided. A Monte-Carlo ap-
proach to simulating SPAD detections was used by Stipčević and Gauthier,103

but it presumed negative-exponential afterpulsing. The approach presented here
works with the afterpulsing distribution obtained from data, incorporates twi-
light pulsing and handles photon detections and afterpulsing as independent pro-
cesses.

A procedural programwritten in C was used for all simulations. Multithread-
ing provides a very useful speed-up on CPUs with several cores. Using the lib-
rary pthread.h, one simulation can be run in each thread. For random number
generation, there are several options of various degrees of sophistication avail-
able. A satisfactory solution is provided by the GNU C Library, which provides
a thread-safe BSD pseudo-random number generator (PRNG) random_r.

The main caveat is not to use only one PRNG. In one cycle, there are multiple
points that need a purely random number, but some of them are conditioned on
others. For example, a random number is generated only if the previous random
number was lower than a certain value. This poses a more strict requirement
on the randomness of the PRNG, which needs to be maintained even among
conditioned values. The simulations revealed that the algorithm of random_r does
not satisfy this property. The solution is to use multiple PRNGs, one for each
random number in the cycle.

In the following pseudo-code, a uniform number between zero and one is
returned by random(0,1), the mean incident rate is rate, the constant afterpulse
probability is P_AFTERPULSE, and the twilight pulse probability (proportional to
themean rate) is p_twilight. The temporal distribution of afterpulses is governed
by function APTime(). The width of the detection window is WINDOW.

One cycle of the simulation changes the variable time to the time of the next
detection event. The detection event counter is incremented and if needed, the
count histogram is updated.
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A single cycle is then

time += deadTime
r1 = random(0,1)
// only increment time if there is no twilight pulse
if (r1 > p_twilight)

r1 -= p_twilight
r2 = random(0,1)
// sampling the negative exponential
radiationDetTime = -log(r2)/rate
if (r1 < P_AFTERPULSE)

r3 = random(0,1)
afterpulseDetTime = APTime(r3)
// which came first
if (afterpulseDetTime < radiationDetTime)

time += afterpulseDetTime
else

time += radiationDetTime
end

else // no twilight or afterpulsing, only radiation
time += radiationDetTime

end
end
// now ‘time’ holds the arrival time of the detection to be recorded
// check if the detection happens inside the current time window
while (time > WINDOW)

time -= WINDOW // go to next window
incrementHistogram(detectionEvents) // record detections until now
detectionEvents = 0

end
detectionEvents += 1

The above pseudo-code provides one sample of a detection event. It is written
in a general form to simulate the process established in section 2.3.2, but it can be
simplified or expanded depending on how complex the detection model is. The
random numbers r1 to r3 are intentionally distinguished to emphasize that they
are generated using separate buffers representing separate PRNGs.

The number of runs for modelling the data in section 4 was 109 for each
incident rate, and for the verification of relations (2.43) to (2.46), the number was
1011.
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2.4 Numerical and statistical methods

2.4.1 Fourier transforms
This section elaborates on the mathematical details used in section 2.2.4. Let the
Fourier transform ℱ of function 𝑓 and its inverse be defined as

𝐹(𝜉) = ℱ(𝑓) ≔ ∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝜉𝑥 d𝑥, (2.49)

𝑓(𝑥) = ℱ−1(𝐹) ≔ ∫
∞

−∞
𝐹(𝜉)𝑒2𝜋𝑖𝜉𝑥 d𝜉. (2.50)

The integrals can be approximated using a discrete Fourier transformwith the ad-
vantage of some efficient computing algorithms such as Fast Fourier Transform.
The discrete Fourier transform of an 𝑁-element array 𝑓𝑛 is defined as

𝐹𝑚 = DFT(𝑓) ≔
𝑁−1
∑
𝑛=0

𝑓𝑛𝑒−2𝜋𝑖𝑚𝑛/𝑁 , (2.51)

𝑓𝑛 = DFT−1(𝐹) ≔ 1
𝑁

𝑁−1
∑
𝑚=0

𝐹𝑚𝑒2𝜋𝑖𝑚𝑛/𝑁 , (2.52)

where both arrays 𝑓 and 𝐹 have 𝑁 elements and the indices 𝑚, 𝑛 go from zero
to 𝑁 − 1.

The simplest case is considering the integral (2.49) finite and discrete by
sampling 𝑥 in uniform steps 𝛿𝑥 so that 𝑓𝑛 = 𝑓(𝑥𝑛) = 𝑓(𝑛 ⋅ 𝛿𝑥). Then ∫… d𝑥 →
∑𝑛 …𝛿𝑥. This discrete transformation is then equivalent to applying the DFT
(2.51) with discrete sampling 𝛿𝜉 = (𝑁 ⋅ 𝛿𝑥)−1 of the conjugate variable 𝜉:

𝐹(𝜉𝑚) ≈ DFT(𝑓) ⋅ 𝛿𝑥, 𝜉𝑚 = 𝑚
𝑁 ⋅ 𝛿𝑥 , (2.53)

𝑓(𝑥𝑛) ≈ DFT−1(𝐹) 1𝛿𝑥 , 𝑥𝑛 = 𝑛 ⋅ 𝛿𝑥. (2.54)

Although the expressions above were obtained in an algebraically straight-
forward way, the correct scaling needs further discussion. Due to the periodicity
of complex exponentials, the results of the transformations can be chained. In
other words, 𝐹𝑚 = 𝐹𝑚+𝑘𝑁 , 𝑘 ∈ ℤ is valid for (2.53) and identically for 𝑓 in (2.54).
That means that the sampling ranges 𝑋 = 𝑁 ⋅ 𝛿𝑥, Ξ = 1/𝛿𝑥 are also the repeti-
tion periods of the results. For DFT (2.51), discrete sampling at 𝑥𝑛 of the complex
exponential 𝑒−2𝜋𝑖𝜉𝑥 yields the same numbers as sampling of other exponentials
𝑒−2𝜋𝑖(𝜉±Ξ)𝑥, because Ξ𝑥 = 𝑛 and the added phase is a multiple of 2𝜋.
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From the point of view of DFT being a discrete approximation of the con-
tinuous Fourier transform, the sum approximates the integral well only if the
functions inside are slow enough relative to the sampling. This needs to be valid
for the input function and the Fourier kernel as well. The consideration then
resolves the periodicity and the ambiguous question which frequency 𝜉 should
the value 𝐹𝑚 be assigned to.

As 𝜉 represents the frequency of the Fourier kernel, its samples 𝜉𝑚 mean that
for 𝑚 = 0, 1, 2, … , the period of the kernel is 𝑋,𝑋/2, 𝑋/3, … . Figure 2.11 illus-
trates that for higher frequencies, the DFT actually better represents frequencies
that are lower and of opposite sign. This means that instead of 𝜉 going from 0 to
Ξ, it is more faithful for it to span the interval (−Ξ/2, Ξ/2).

An additional modification is needed if the input data are sampled with a
certain offset 𝑥 so that 𝑥𝑛 = 𝑛⋅𝛿𝑥+𝑥. This creates only an extra phase term that
can be factored out of the transform. Particularly, the HOM data in section 2.2.4
are sampled symmetrically around zero, which results in the extra exponential
in (2.8).

In section 2.2.4, cross-correlation is inverted using a Fourier transform. An
explicit discussion of this step is presented here. A common property of a cross-
correlation 𝑓 ⋆ 𝑔 ≔ ∫𝑓(𝑥′)∗𝑔(𝑥′ + 𝑥) d𝑥′ is

ℱ(𝑓 ⋆ 𝑔) = ℱ(𝑓)∗ ⋅ ℱ(𝑔). (2.55)

That means if 𝑓 is real and

𝑐(𝑥) = ∫
∞

−∞
𝑓(𝑥′)𝑓(𝑥′ + 𝑥) d𝑥′, (2.56)

𝐶(𝜉) = |𝐹(𝜉)|2 . (2.57)

In our case, 𝑓(𝑥) is expected to be a real and even function, so its Fourier
transform 𝐹(𝜉) is also real and even. An inversion of (2.57) is therefore possible.
In real data, the cross-correlation 𝑐(𝑥) is not even. In the case of the HOM dip,
statistical and systematic errors are the cause. As a consequence, 𝐶(𝜉)will not be
purely real or positive. That is why the inversion in step (2.9) requires an absolute
value as a corrective measure. The inversion builds on the assumption that the
input data are reasonably symmetric like an ideal cross-correlation should be.
The result presented in Figure 2.9 assumes that the small structures on the side
are the artefacts of the errors and that the spectral amplitude is real, even though
the numerical result is not. The fact that this result predicts the shape of the
HOM dip in Figure 2.8 rather accurately is evidence that these assumptions did
not distort the inversion process too much.



38 Numerical and statistical methods

re
al

 p
ar

t
ph

as
e

frequency ν = 8/10

frequency ν = ‒2/10

Figure 2.11: Illustration of the phase 𝜙 = 2𝜋𝜈𝑛 (top) and of the real part of exp(2𝜋𝑖𝜈𝑛)
(bottom) for two different frequencies. The difference between the frequencies is the
reverse of the sampling step (one in this case). Blue points are the common samples and
the coloured lines represent continuous interpolation. Light blue squares at the bottom
show the integral contribution of the point samples in the DFT sum. This matches the
continuous integral of the slower blue curve much better than the red. Analogous argu-
ment can be made for the imaginary part and so for the complex exponential. Therefore,
the DFT serves as the best approximation of the continuous Fourier transform for the
frequencies of lowest absolute value.
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2.4.2 Statistical errors
Throughout the thesis, error bars are computed by error propagation from basic
statistical error of the data. The data are usually governed by either Poisson or
binomial distribution. The conventional way of treating these errors is to ap-
proximate these discrete probability distributions by a normal distribution. Its
standard deviation 𝜎 is calculated based on what distribution it is and given as
the uncertainty of the measurement. This approach is valid only when normal-
ity can be assumed. In such cases, both frequentist and Bayesian definitions of
measurement uncertainty converge into the same value that can be calculated
from the stochastic model of the data, which is usually known.

The most common example is obtaining a count value 𝑛 = 𝑛𝑚 as a result of
a Poissonian process with the mean value 𝜇. The standard deviation of the count
variable 𝑛 is √𝜇. As the most likely mean value is 𝜇 = 𝑛𝑚, the uncertainty is
commonly given as 𝑛𝑚 ±√𝑛𝑚. However, this is only valid for 𝑛𝑚 ≫ 1.

Statistical inference offers multiple ways of defining confidence intervals.123

If the real unknown variable is 𝜃, let the probability of obtaining the measured
value 𝑋 be 𝑃(𝑋|𝜃). As more values are obtained, the resulting histogram of
𝑋 approaches 𝑃(𝑋|𝜃). However, the real value 𝜃 is unknown and needs to be
inferred based on measured values 𝑋.

The common frequentist definition is based on the Neyman band construc-
tion.124,B8 In the two-dimensional space of 𝜃 and 𝑋, for each 𝜃 one charts the
interval of confidence probability 𝑃𝑐 based on 𝑃(𝑋|𝜃) that is known. This cre-
ates a ‘confidence band’. If a value 𝑋𝑚 is measured as a realization of 𝑃(𝑋|𝜃),
slicing the confidence region along 𝑋 = 𝑋𝑚 results in a confidence interval. It
has the property of containing the real value 𝜃 with probability 𝑃𝑐. Explicitly, if
a confidence interval is constructed this way for every measurement, it is going
to contain 𝜃 with a probability 𝑃𝑐. This is valid even if 𝜃 keeps changing its value.
The advantage of this approach is that it does not require any additional expecta-
tions about the real value 𝜃, as opposed to Bayesian approaches that need a prior
distribution. The disadvantage is that the property of ‘containing the real value
with probability 𝑃𝑐’ is tied to the method of constructing confidence intervals,
not their size or position. There is also an ambiguity of where to position the 𝑃𝑐
band.

However, the main problem comes with discrete variables. In a Poisson or
binomial process, 𝜃 is continuous and the results 𝑋 are discrete. Therefore one
cannot construct a Neyman band of confidence 𝑃𝑐, because for every 𝜃, there are
only discrete values of 𝑃𝑐 achievable – the cumulative probability distribution is
discrete. Consequently, the definition needs to be adjusted to ‘the confidence
interval contains the real value 𝜃 with a probability at least 𝑃𝑐’. For low discrete
values of 𝜃, where the non-normality of 𝑃(𝑋|𝜃)manifests the most, the construc-
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tion of the Neyman band is subject to great ambiguity. Therefore this approach
is not used in the thesis.

Another frequentist approach is to evaluate likelihood ratios. Likelihood is
by definition ℒ(𝜃, 𝑋) = 𝑃(𝑋|𝜃). If the measured value is 𝑋𝑚 and we estimate
the real value to be 𝜃 = 𝑋𝑚, then the ratio ℒ(𝜃, 𝑋𝑚)/ℒ(𝑋𝑚, 𝑋𝑚) signifies how
much more (less) probable it is to obtain 𝑋𝑚 if 𝜃 was the real value, as opposed
to getting 𝑋𝑚 if 𝑋𝑚 was the real value. The likelihood ratio test is best suited for
discrete testing, such as comparing two hypotheses. The interpretation in such
a case is limiting the probability of getting a false positive given that the reality
is negative. For continuous estimation, it is suitable for constructing Neyman
bands or regions with similar interpretation.

The Bayesian approach quantifies the answer to a different question: how
does a measurement influence our expectation of the real value? The approach
therefore requires an additional assumption about the prior expected distribu-
tion of the real value 𝜃. Assuming a doubly stochastic measurement would
be repeated many times with a given distribution 𝑃(𝜃) and considering only
cases where 𝑋𝑚 is measured, one can obtain a posterior probability distribution
𝑃(𝜃| 𝑋𝑚) from a known likelihood 𝑃(𝑋𝑚|𝜃) using the Bayes’ theorem

𝑃(𝜃| 𝑋𝑚) =
𝑃(𝑋𝑚|𝜃) 𝑃(𝜃)

∫𝑃(𝑋𝑚|𝜃) 𝑃(𝜃) d𝜃
. (2.58)

The terminology arises from the following reasoning. Before the experiment,
one has a prior expectation about 𝜃 in the form of the distribution 𝑃(𝜃). After
the experiment, one obtains a posterior expectation 𝑃(𝜃|𝑋𝑚) that is influenced
by how likely it was to obtain the result 𝑋𝑚 given 𝜃.

The posterior offers variousways of constructing confidence intervals.123 The
border values of the interval [𝜃1, 𝜃2] clearly need to fulfil ∫𝜃2

𝜃1 𝑃(𝜃|𝑋𝑚) d𝜃 = 𝑃𝑐.
The additional condition was elected to be 𝑃(𝜃1|𝑋𝑚) = 𝑃(𝜃2|𝑋𝑚), which for hill-
shaped distributions means that the probability density outside of the confidence
interval will never be higher than inside, selecting only the most probable values.

This consideration is applied to the data in Figures 3.3, 3.6. The error prob-
abilities are proportional to error counts that can be very low. If the number of
counts 𝑁𝑚 was measured, it is assumed to be a realization of a Poisson process
with an unknown mean ⟨𝑁⟩ = 𝜃. This assumption is based on known properties
of the signal (SPDC or attenuated laser).

The prior is considered to be uniform so that the confidence interval contains
no prior expectations about the measured value. So, for a Poisson process

𝑃(𝜃|𝑁𝑚) = lim
𝑈→∞

⎛
⎜⎜
⎝

𝜃𝑁𝑚

𝑁𝑚!
𝑒−𝜃 ⋅ 1

𝑈

∫𝑈
0

𝜃𝑁𝑚

𝑁𝑚!
𝑒−𝜃 ⋅ 1

𝑈
d𝜃

⎞
⎟⎟
⎠
= 𝜃𝑁𝑚

𝑁𝑚!
𝑒−𝜃. (2.59)
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For normally distributed variables, 𝑃𝑐 is usually chosen to cover one standard
deviation. The same values is chosen here, so 𝑃𝑐 ≔ (2𝜋)−1/2 ∫1

−1 𝑒−𝑡
2/2 ≈ 0.68.

In the special case when 𝑁𝑚 = 0, the confidence interval is 𝜃1 = 0 and 𝜃2 =
− ln(1 − 𝑃𝑐). Otherwise, numerical solution is needed for the equations

𝑄(𝑁𝑚 + 1, 𝜃1) − 𝑄(𝑁𝑚 + 1, 𝜃2) = 𝑃𝑐, (2.60)
𝜃2 − 𝜃1 +𝑁𝑚( ln 𝜃1 − ln 𝜃2) = 0, (2.61)

where 𝑄(𝑛, 𝑥) is the regularized upper incomplete Gamma function (or cumulat-
ive Poisson distribution) also used previously in section 2.3.3. In the approxima-
tion of 𝑁𝑚 ≫ 1 and 𝑃𝑐 = 0.68,

𝜃1,2 ∼ 𝑁𝑚 ±√𝑁𝑚 (2.62)

The Bayesian approach offers very convenient results; the posterior probab-
ility distribution is a direct answer to the question: ‘given the result 𝑋𝑚, what
would happen if I repeated the experiment many times?’ However, it is an an-
swer – a different prior would yield a different answer. Sometimes, it is hard to
quantify the prior expectation of the real value, because it may be subjective. In
the case of Poissonian counts, there is usually some expectation about the order
of magnitude. Therefore, it may seem unjustified that the prior is uniform over
all values, including the ones that were considered very unlikely before the ex-
periment. Fortunately, the posterior distribution does not depend very much on
the expectation of highly unlikely scenarios. This means that one does not have
to argue about any borders between likely and unlikely values, and may safely
take a uniform distribution over the whole space.

The reason to include this section in the thesis is to explicitly discuss error es-
timation, which is usually left unmentioned in the field of quantum optics. One
often encounters results that exclusively use the formula (2.62) even in cases
where it is ill-defined. For example, references 125 and 126 present standard
𝑔(2)(0) measurements using the formula (2.22), where the main source of error
is always the highest-order-coincidence rate. Presented symmetric confidence
intervals like 3 ± 1.5 suggest that, most likely, 4 events were detected and a
square root taken. In the second article, confidence intervals span several orders
of magnitude, which is hard to believe for any error bar definition. Even intuit-
ively, it is hard to justify expecting a mean value three orders of magnitude lower
than what was actually measured, as the probability of obtaining the measure-
ment result would be 10−3 at best. In this regard, the error bars in 126 - Figure
2b suggest that this approach was used even for counts averaged over several
measurements so that formally 𝑁𝑚 < 0.01. Admittedly, some of the intervals in
reference A1 are of the same kind with 𝑁𝑚 ∼ 1 (corrected here in Figure 3.3).



Chapter 3

Quantum non-Gaussian light

3.1 Introduction

Experimental control over the number of photons is a key issue in quantum op-
tics and quantum information processing.B9 Namely, photonic Fock statesB10 rep-
resent an essential resource that allows harnessing the quantum properties of
light. There are several quantum characteristics that such states possess that
can be experimentally recognized. Nonclassical states, by definition, go beyond
the description of classical optical theory. Any state that cannot be expressed
as a statistical mixture of coherent states (displaced vacuum states) is nonclas-
sical.127,128 One can go a step further and consider a convex mixture of Gaussian
states (squeezed and displaced vacuum states). A quantum state incompatible
with any such mixture is quantum non-Gaussian.22 Another common quantum
threshold is the negativity of the Wigner function.21 Fock states exhibit all these
properties.

A prominent case is generating a single-photon state |1⟩. Depending on its
qualities, a realistic single-photon source will produce a state exhibiting at least
one quantum property. The necessary and sufficient condition for nonclassical-
ity is represented by an infinite hierarchy of criteria.19,129,130 For single photons,
the most common and established approach is measuring simultaneous detec-
tions after splitting the signal onto two detectors.20 This approximates to the
intensity autocorrelation 𝑔(2)(𝜏).B6 A common proof that single photons are gen-
erated is 𝑔(2)(0) < 1/2, where the value is typically close to zero. However, this
quantity in itself does not represent a measure of quality, so a lower value does
not equal better performance in single-photon applications. To optimize experi-
mental generation, one therefore needs to look for additional quantum features.

Another standard property evaluates the negativity of theWigner function.31

As a quantum harmonic oscillator, the radiation field exhibits certain probability
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Figure 3.1: The classification of quantum state sets used in the discussion, where a ⊂
b ⊂ c ⊂ d. a is the set of states with negative Wigner function. All states in the set
b are guaranteed to be quantum non-Gaussian (QNG). Likewise, all states in the set c
are nonclassical (NC). The set d contains all states in general. Equivalently, all classical
states are contained in the complement c̄ and all Gaussian mixtures are in b̄. The borders
of b and c therefore represent QNG and NC witnesses.
The points and non-solid lines represent various realistic quantum states and their re-
spective paths under attenuation. These quantum states can approach vacuum inside
different sets. An ideal single-photon state (𝑃0 |0⟩⟨0| + 𝑃1 |1⟩⟨1|, red dotted line) is an ex-
tremal case of an infinitely robust QNG state. Other realistic states may exhibit infinite
NC depth or leave nonclassical states altogether (dashed lines). The green dot-dashed
line represents realistic single-photon states with a positive Wigner function, as gener-
ated experimentally.

distributions in canonical variables. The Wigner function represents a global
quasi-distribution that, if negative, goes beyond the classical-mechanical view of
a phase-space distribution. Naturally, such states are nonclassical as well. The
negativity of the Wigner function is a fragile property that will always be lost if
optical loss exceeds 50 %; and added noise only further deteriorates the quality.
In terms of practical variables like noise, loss or efficiency, there is a significant
difference between the border of the Wigner function negativity and the border
of nonclassicality. This leaves certain ambiguity in experimental optimization
where no particular protocol is specified, especially if reconstructing the whole
Wigner function is not possible. In 2011, Filip andMišta proposed a new property
called quantum non-Gaussianity,22 which can be recognized using the same split-
detector setup used for 𝑔(2) measurements.2 Such states are nonclassical, but may
possess positive Wigner function. A schematic illustration of the nonclassical
sets is shown in Figure 3.1. It was suggested by Lasota, Filip and Usenko131 that
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this property can guarantee quantum key distribution over noisy channels. The
following sections report on the works exploring the properties of quantum non-
Gaussianity in relation to physical platform, number of photons, optical loss, and
excess noise.A1,A2,A4

3.2 Single-photon states

This chapter is based on the publication by Straka and colleagues (2014).A1

When evaluating the quality of single-photon states, the employed meas-
ure is determined by a choice of an application or protocol. Here, a protocol-
independent approach is considered, where the main goal is to preserve the
quantum properties of ideal single-photon states. Any optical application in-
evitably includes losses that have significant impact on the results.132–135 There-
fore, it is suitable to quantify maximum tolerable loss in terms of depth. For
example, nonclassicality depth is defined as the maximum attenuation of a non-
classical state, at which the state is still able to preserve the nonclassicality.136,137

To evaluate this definition, one would require a complete homodyne tomography
of the state31 to reconstruct its density matrix in all populated modes.B11 How-
ever, many single-photon states exhibit multi-mode structure, especially heral-
ded single photons are temporally multi-mode due to finite temporal resolution
of the detectors. Furthermore, multi-photon noise is present that extends the di-
mensional requirements of the Hilbert space. Consequently, full reconstruction
is practically unfeasible due to its scope.

For contemporary sources of single-photon states, non-classicality (NC) is
commonly witnessed by 𝑔(2)(0) ≪ 1.20,B6 For such states, nonclassicality depth
is infinite, because 𝑔(2) does not change with attenuation. On the other hand,
the depth of the negativity of the Wigner is always very limited. Even an ideal
single-photon requires overall loss to be below 50 %. As a consequence, many
single photon sources that are characterized using room-temperature photonic
detectors cannot reach evidence of this property.

Quantum non-Gaussianity (QNG) is a quantum property that can be recog-
nized in single photons that exhibit a positiveWigner function. There are several
ways of witnessing this property2,22,27,28,138,139 and it has been positively recog-
nized using a number of physical systems.2,23–25 This work follows the experi-
mental proof by Ježek and colleagues2 by exploring the properties of QNG depth
for various physical platforms. Single photons were produced by frequency con-
version of continuous and pulsed light, and recombination of excitons in a semi-
conductor quantum dot. The split-detector approach allows estimation of a lower
bound on the QNG depth. Since the QNGwitness works as a sufficient condition,
any quantum state beyond the witness may or may not possess QNG. Therefore
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the QNG depth is higher or equal to the value corresponding to the witness bor-
der.

3.2.1 QNG witnessing
In this subsection, a brief overview will be given of the QNG witness approxima-
tion formulated by Lachman and Filip.A1 In the Fock basis, let 𝑃𝑛 denote the prob-
ability of 𝑛 photons. A single-photon state could be considered ideal, if 𝑃𝑛 ≡ 0 for
𝑛 > 1. So, let 𝑃2+ = 1 − 𝑃0 − 𝑃1 quantify the undesirable multi-photon contribu-
tion. If 𝑃2+ = 0, the quantum state would be conclusively QNG. The idea of the
QNG witness is to conservatively estimate 𝑃1 and 𝑃2+ so that they unequivocally
prove QNG by passing extremal values of Gaussian mixtures.2 Such a threshold
can be expressed parametrically,2 but in the limit of a lossy, high-quality single
photon sources 𝑃2+ ≪ 𝑃1 ≲ 0.1 an approximation can be used,26

𝑃2+ < 2
3𝑃

3
1 . (3.1)

A nonclassicality condition in the same approximation is 𝑃2+ < 1
2
𝑃21 , which is

less strict.130 To analytically evaluate the QNG depth, let us model a high-quality
single-photon state by

𝜌 ≈ (1 − 𝑃1 − 𝑃2+) |0⟩⟨0| + 𝑃1 |1⟩⟨1| + 𝑃2+ |2⟩⟨2| , (3.2)

with the approximation 𝑃2+ ≪ 𝑃1. Under these assumptions, the subsequent
transmittance necessary to preserve QNG is bounded by

𝑇 > 3
2
𝑃2+
𝑃31

. (3.3)

This proves to be a good estimate for the QNG depth for realistic single photon
sources, as evident from the presented data. This figure can be also directly
measured using attenuation in the experiment.

3.2.2 Results
In this work, three different systems were used to generate single-photon states.
Of these, two were based on spontaneous parametric down-conversion (SPDC)
in a nonlinear crystal. The third system was an InAs/GaAs single quantum dot.

The first SPDC source (located in Olomouc) was based on a 2-mm-thick BBO
crystal in a type-II collinear configuration that was operated in the continuous-
wave (cw) regime. Here, the pump power was 90 mW while its wavelength was



46 Single-photon states

Figure 3.2: The autocorrelationmeasurement scheme. A single-photon state is heralded
by the trigger photon and subjected to attenuation. 𝑝1 and 𝑝2+ are estimated using the
Hanbury Brown–Twiss setup.2

405 nm. Correlated photons were spectrally filtered to a bandwidth of 2.7 nm.1,2

The second SPDC source (located in Innsbruck) produced entangled photon pairs.
It contained a 15-mm-long type-II ppKTP nonlinear crystal embedded in a Sagnac-
type interferometer loop.140 This source was pumped by a 2-ps pulsed laser light
of 404 nm wavelength and 80 µW power per loop direction. The quantum dot
sample contained low density self-assembled InAs/GaAs quantum dots embed-
ded in a planar microcavity. The excitation light was derived from a tunable
Ti:sapphire laser that could be operated in picosecond-pulsed (82 MHz repeti-
tion rate) or continuous-wave mode.141 Two data sets were generated with this
system, one in resonant two-photon excitation using the pulsed mode and the
other in above-band continuous-wave mode.

The measurement scheme was a triggered autocorrelation shown in Figure
3.2. Variable attenuation was introduced by moving a blade in the beam. Data
acquisition was carried out by a time-to-digital converter which stored arrival
times of every detection event. The trigger detector conditioned the detections in
the signal arm: any detection within a coincidence time window centred around
a trigger detection was considered a coincidence. From these, the probabilities
𝑝0, 𝑝1, 𝑝2+were calculated, which are estimators of𝑃0, 𝑃1, 𝑃2+.2 These parameters
allow constructing the witnesses for NC and QNG states.

In Figure 3.3, the measurement results obtained from all three single-photon
sources are compared. Here, the nonclassicality witness 𝑝2+ < 1

2
𝑝21 is shown
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Figure 3.3: Estimated probabilities of heralded single-photon states on a log-log scale.
Each series represents various attenuations of a particular state. Full diamonds denote
the cw SPDC source: orange – coincidence window 2 ns; red – low pump, coincidence
window 2 ns. Cyan triangles denote the pulsed SPDC source. Square markers denote
the quantum dot: purple squares – above-band excitation, cw pump; blue squares – res-
onant excitation, pulsed pump. The dot-dashed lines represent theoretical prediction
of attenuation from the initial point. The dashed red line is the limit of dark counts
for the red attenuation data. The solid black and blue lines represent NC and QNG
witnesses, respectively. Error bars in this figure have been slightly changed with re-
spect to the presentation in reference A1, where a naïve approach was mistakenly used.
The change is, however, cosmetic and the results remain unchanged. Here, error bars
represent Bayesian 68%-confidence intervals stemming from statistical counting errors.
Horizontal error bars are smaller than plot points.
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as a solid black line while the QNG witness 𝑝2+ < 2
3
𝑝31 as a solid blue line. For

each single-photon source, the results were obtained under systematically varied
attenuation given in units of 10 log10(1−𝑇) dB. Additionally, a theoretical model
of the induced losses is given (dot-dashed lines). These models served to evaluate
the theoretical value of the QNG depth for each source, as given by Eq. (3.3). In
addition, experimental confirmation of the QNG character of the states was done
by subjecting them to a certain maximum attenuation that is the experimentally
proven QNG depth. Since it is challenging to experimentally attenuate the state
until it is placed exactly on the border of Gaussian mixtures, the proven QNG
depth is always lower than the theoretical prediction.

For the pulsed SPDC source (cyan triangles) the estimated QNG depth is
14.5 dB; the experimentally confirmed value is 10.8 dB. The cw SPDC source
measured with 2-ns coincidence window (orange diamonds) yields a theoretical
depth of 19.6 dB and a proven depth of 17.9 dB. Red diamonds also stand for
the cw SPDC, but with reduced pump power to bring down multi-pair contribu-
tions to a level comparable with the quantum dot source. The expected depth is
31.8 dB while the measured value is 18 dB. The most attenuated state also vis-
ibly approaches the dark count limit of the detectors and so, further attenuation
would be meaningless. The state generated by a quantum dot excited above-
band (purple squares) shows only nonclassicality and cannot be well compared
to SPDC states. With resonant pulsed excitation (blue square), the quantum dot
state exhibits QNG character and the theoretical depth is 5.6 dB. Empty blue
squares show additional quantum dot states measured with different collection
efficiencies.

3.2.3 Discussion

A prominent feature of the attenuation paths in Figure 3.3 is that both the the-
oretical models and the directions of the experimental points are parallel to the
NC border. In particular, the results demonstrate that even with 2 orders of
magnitude of attenuation, the data points exhibit no trend of approaching the
NC border. This is due to the identical scaling of the NC witness and respective
probabilities under loss, where the higher contributions of 𝑃𝑛>2 are negligible. In-
cidentally, these lines also represent the scale of identical 𝑔(2)(0) ≈ 2𝑃2/𝑃21 . This
means that all of the presented data remain NC regardless of the attenuation. It
also reveals the new scope of QNG depth, which exhibits significant differences
in recognizability of quantum properties among states that otherwise have the
same 𝑔(2)(0). This demonstrates the important aspect of witnesses. Even though
𝑔(2)(0) conveniently quantifies the multiphoton error—and is thus widely recog-
nized as a standard of quality for single-photon sources—so does QNG depth.
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Therefore, this work offers an alternate approach which evaluates recognizab-
ility of quantum features instead of minimizing a certain witness. For conven-
tional single-photon states, NC is routinely recognizable and arbitrarily resilient
to optical loss. QNG, however, exhibits a finite depth.

Optimization of the QNG depth can be achieved via certain experimental
parameters, depending on the source. These parameters include pump power,
the width of the coincidence window, SPDC efficiency and loss. Optical loss in
the experimental setup decreases QNG depth for all types of sources. Optimiz-
ation of the coupling or collection efficiencies is therefore essential, as well as
high quantum efficiency of the detectors.

Generally, SPDC QNG depth increases with lower pump power and conver-
sion efficiency. For the cw pump, the coincidence window has an optimumwidth
depending on the detector time resolution. For the pulsed pump, the coincid-
ence window is upper bounded by repetition rate and lower bounded by the
photon lifetime and detector time resolution. Moreover, when considering a cw
source and a comparable pulsed source, the cw source intrinsically yields higher
QNG depth. Single-photon-emitting systems such as semiconductor quantum
dots contain no systematic noise, but may suffer from poor coupling efficiency.
Increasing this efficiency promises to improve the QNG depth without the need
to decrease generation rate, as is the case for SPDC.

3.2.4 SPDC gain

First, SPDC parameters will be discussed. Two regimes were used – pulsed and
cw pumping. The statistical model for two-mode SPDC gives the probability of
𝑚 and 𝑛 photons 𝒫(𝑚, 𝑛) = 𝛿𝑚𝑛(1−𝛾)𝛾𝑛,B1 where 𝛿 is the Kronecker delta and
𝛾 is the overall gain. The gain is responsible for the systematically generated
component in the heralded single-photon state, since 𝑝2+ ∝ 𝛾 for 𝛾 ≪ 1. Since
the QNG condition dictates 𝑝2+ < 2

3
𝑝31 and the depth is thus estimated as 𝑇min =

3
2
𝑝2+
𝑝31

, 𝛾 needs to be minimal. However, the temporal width of the measured

state is given by the coincidence window 𝜏. In the cw regime it means that a large
number ofmodes is detected collectively (see section 2.1), resulting in an effective
Poisson statistic, where the effective gain is proportional to 𝜏. It follows that the
coincidence window needs to be optimized, too. Its width is lower-bounded by
the resolution time of the detectors. If the coincidence window is reduced below
that limit, it effectively introduces a loss to the state and decreases the QNG
depth. On the other hand, if the coincidence window is excessively large, the
higher 𝑝2+ contribution decreases the QNG depth as well. Therefore, there is an
optimum coincidence window that maximizes the QNG depth.
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3.2.5 Coincidence window
The dependence of measured probabilities on coincidence window depends on
the temporal characteristic of each detector. The following analysis assumes a
cw pump and identical properties of all detectors. Let us model the jitter of each
detector (see section 2.3) by a zero-mean temporal probability distribution 𝑗(𝑡)
governing the difference between the registered time of detection and the ex-
pected time (assuming a highly localised signal). If we consider that a photon
in the signal arm is heralded by a detection in the trigger arm, then the time
uncertainty is given by a convolution 𝐽(𝑡) = 𝑗 ∗ 𝑗. Then, given a coincidence
window 𝜏, we can express the portion of coincidences that are not lost due to
jitter as 𝜂2(𝜏) = ∫𝜏/2

−𝜏/2 𝐽(𝑡) d𝑡. As a result, 𝑝1 ∝ 𝜂2(𝜏). The main mechanism
behind three-fold coincidences contributing to 𝑝2+ is a photon-pair detection
followed by a random background detection on the remaining detector. As the
background has uniform occurrence density, the probability of a background de-
tection is proportional to the coincidence window. Overall, 𝑝2+ ∝ 𝜏 ⋅ 𝜂2(𝜏). The
experimental dependence of these probabilities is shown in Figure 3.4.

The analysis of theminimum transmittance (3.3), determining theQNGdepth,
yields 𝑇min ∝ 𝜏/𝜂2(𝜏)2. If we assume a symmetric 𝐽(𝑡), we may express the ex-
tremal condition 𝐽(𝜏/2) ⋅ 𝜏 = ∫𝜏/2

0 𝐽(𝑡) d𝑡. If we assume Gaussian jitter with
variance Var(𝑗) = 𝜎2, we obtain the optimum for 𝜏 ≈ 4𝜎.

The data in Figure 3.4 show the cw SPDC for various coincidence windows.
The simple analysis assuming Gaussian jitter predicts the value of 0.89 ns. The
maximum depth is reached for 𝜏 = 0.73 ns, which can be explained by the jitter
not being exactly Gaussian and the detection unit having non-uniform clock ticks
in the order of 0.1 ns.

The coincidence window plays a minor role in the pulsed regime. There, it
has a negligible effect on 𝑝2+, assuming the coincidence window is not shorter
than the lifetime of the photons and not longer than the delay between pulses.
Thus, there is a fixed pump energy contributing in each coincidence window.
Analogously to the CW regime, if the coincidence window is shorter than the
detector resolution time, the effective loss decreases the QNG depth. Therefore,
as long as the coincidence window remains within the aforementioned limits, it
has no effect on the QNG depth.

3.2.6 Comparison of cw and pulsed regimes
Let us consider two cases: a cw and a pulsed single-photon source with an
identical frequency of heralded state generation – a heralding rate. Let both
sources have identical average pump power ̄𝑆, the same overall conversion effi-
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Figure 3.4: Measurement of a cw SPDC single-photon state depending on the coincid-
ence window. Orange points represent the data and the dashed orange line represents
a theoretical expectation. Note two asymptotic behaviours – for very small windows,
𝜂2 ∝ 𝜏 and the state behaves effectively as under attenuation, while for wide windows,
𝜂2 ≈ 1 and only the noise portion increases, 𝑝2+ ∝ 𝜏. The maximum QNG depth is a
tangent point.

ciency, number of modes and effective loss in the setup. In the low-gain approx-
imation 𝑔 ≪ 1, such two sources would have similar heralding rate and 𝑝1, but
different 𝑝2+. Namely, the 𝑝CW

2+ ≈ 𝜇 ̄𝑆𝜏 and 𝑝pul
2+ ≈ 𝜇 ̄𝑆

𝜈
, where 𝜈 is the repetition

rate of the pulsed pump, 𝜏 is the width of the coincidence window, and 𝜇 a com-
mon proportionality constant. Since the QNG depth of the heralded state is given
by 𝑇min =

3
2
𝑝2+
𝑝31

, the ratio of the minimum transmittances 𝑇CW
min /𝑇

pul
min ≈ 𝜏𝜈. The

coincidence window can be minimized to the limit of the detector resolution,
typically ∼10−9 s. The repetition rate of the pump laser is not a very flexible
parameter (∼107 s−1) and cannot be routinely adjusted. That gives a signific-
ant difference in the QNG depth in favor of cw-pumped SPDC sources, assum-
ing similar heralding rates. Furthermore, the cw source often has significantly
more modes than the pulsed, which can effectively lead to an additional factor
of ∼ 1

2
in 𝑇CW

min /𝑇
pul
min. There are ways for pulsed sources to effectively increase
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the repetition rate and decrease the 𝑝2+ contribution.55 However, for repetition
rates approaching detector resolution, the pulsed source would approach the cw
source, but would never yield a larger QNG depth.

3.2.7 Quantum dot

A brief discussion of the quantum dot system follows. This part of the exper-
iments was built and measured by the group in Innsbruck (Tobias Huber, Ana
Predojević, Gregor Weihs) with samples manufactured by the group of Glenn
Solomon.

Quantum dots generate fundamentally different states of light than SPDC.
They rely on formation of an electron-hole pair and subsequent recombination
that results in photon emission. Specifically, the recombination of the biexciton
gives rise to two spectrally distinct photons emitted in a time-ordered cascade.
In the presented measurements, the first photon of the cascade serves as a trig-
ger for the second photon. In the case of a resonant excitation by a picosecond
laser, only the transition between the vacuum state and a single biexciton is pos-
sible. The decay time of the biexciton is two orders of magnitude longer than the
pump pulse. Therefore, the probability to systematically generate a multiphoton
state by a single pulse is very low. This is an extremely valuable asset, which
potentially makes quantum dots much closer to an ideal single-photon source
than SPDC.

In practice, however, there is always some background noise present in the
measurement, that is responsible for the 𝑝2+ contribution. The quantum dot
state in Figure 3.3 (blue square) shows that this noise is stronger than the noise
of an attenuated SPDC single photon (red diamond) operated in the cw regime.
The QNG depth can be improved by increasing the collection efficiency.142,143 As
a result, one can expect an increase in 𝑝1 with 𝑝2+ remaining constant. The three
blue-square points in Figure 3.3 show measured states with various degrees of
efficiency. If the collection efficiency improves by a factor of 9, the quantum dot
would yield states with higher QNG depth than the cw SPDC state. The results
presented by Dousse and colleagues142 indicate that by embedding the quantum
dot in a micropillar cavity, one can reach a factor of 16 improvement. For such
collection efficiency, the QNG depth may exceed 40 dB and surpass the QNG
depth of the SPDC.
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3.3 Multiphoton states
This section is based on the publication by Straka, Lachman, and colleagues
(2018).A2

The QNG criterion discussed in the previous chapter is universal for all quan-
tum states, however it is suitable primarily for recognizing QNG in single-photon
states. In this chapter, a multichannel detection scheme will be used to conveni-
ently recognize QNG in multiphoton states.

So far, single-mode multiphoton states have been produced with the max-
imum of 3 photons in sufficient quality, which was measured in terms of the
Wigner function and its negativity.14,15 Since both cited approaches use optical
frequency conversion, the dominant limits here are technical – imperfect optical
and detection efficiencies leading both to optical loss and excessive noise present
in the quantum state. In contrast to this low number, nonclassical states have
been demonstrated up to 50 photons, also using frequency conversion.144 This
work demonstrates QNG states for up to 9 heralded photons, which represents
an intermediate tolerance of loss and noise in regard to the cases above.

The two-detector scheme of witnessing QNG proves to be less suitable for
higher Fock states due to limited loss tolerance.30 Therefore, QNG criteria were
derived by Lachman and Filip directly for multi-channel detectors.A2,30 This al-
lows experimental testing of how often 𝑛 heralded photons are split into 𝑛 + 1
detection channels. The result is a hierarchy of criteria formulated for detection
probabilities as opposed to estimating photon-number probabilities. The advant-
age of this approach is that no tomographic or reconstruction techniques are
required. Same as before, the additional resilience to loss (QNG depth) of the
measured states can be conveniently calculated.

3.3.1 Multiphoton witnesses

This sectionwill briefly define theQNG criteria derived by Lachman and Filip.A2,30

The idea of multi-channel detection based on binary detectors is widely ap-
plicable in many laboratories.61,99,101 The detector splits incoming light evenly to
multiple separate single-photon binary detectors, as depicted in Figure 3.5. The
detector has 𝑛+1 channels, fromwhich 𝑛 particular channels are selected. Let us
denote the probability of coincident detections on these channels 𝑅𝑛. The prob-
ability of all channels registering photons is 𝑅𝑛+1. Thus, it is possible to directly
witness whether the measured 𝑅𝑛, 𝑅𝑛+1 are incompatible with any mixture of
Gaussian states of light. Such detection technique is not sensitive to phase prop-
erties of light and Monte-Carlo simulations suggest that multimode structures of
light follow similar extrema (see the supplemental material of reference A2).
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Figure 3.5: A general proposal of the experimental QNG witness. Top: multiphoton
light is collected and brought to a balanced multichannel detector, where coincidences
𝑅𝑛, 𝑅𝑛+1 are compared to the QNG threshold. Bottom: the detector consists of 10
silicon single-photon avalanche diodes (SPAD) and a balanced array of polarizing beam
splitters (PBS) and half-wave plates (HWP) to control the splitting ratio. The half-wave
plates can be adjusted to split the light equally to any number of selected channels, so
there is no need to physically add or remove SPADs.
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Extremal values of 𝑅𝑛, 𝑅𝑛+1 for Gaussian mixtures can be found numeric-
ally.A2 For light with small mean number of photons, the thresholds can be ap-
proximated by an analytical formula

(𝑅𝑛)
𝑛+2 > 𝐻4

𝑛(𝑥) [
𝑅𝑛+1

2(𝑛 + 1)3 ]
𝑛
, (3.4)

where𝐻𝑛(𝑥) is the maximum value of a Hermite polynomial among such values
of 𝑥 ∶ 𝐻𝑛+1(𝑥) = 0.

3.3.2 Experimental Results
Experimentally, it is very challenging to generate a multi-photon quantum state
that would be sufficiently close to a Fock state. Previous efforts have succeeded
in generating heralded sub-Poissonian states with a high mean-photon-num-
ber.144–147 However, QNG requires much more than sub-Poissonian light. For
such heralded states, the main issue are systematic high-photon-number contri-
butions coupled with optical loss in the trigger channel. The overall efficiency
required to generate QNG light would have to be very close to 100 % and thus
beyond current technical capabilities. Multi-mode states can overcome these
limitations, and still the same QNG criteria apply – if the measurement gives a
certain detection statistics, the QNG criterion gives identical results regardless
of the number of modes measured. This generalization to multi-mode states can
be checked empirically using Monte Carlo simulations (see the supplemental ma-
terial of reference A2). Multi-mode states were generated that exhibit inherent
systematic noise that is weak enough for the states to posses QNG. Single-mode
states with the same detection statistics would represent the missing link on the
way to Fock states; between nonclassicality and Wigner function negativity.

To achieve this, multiphoton states were produced bymixing 𝑛 single-photon
states together incoherently using timemultiplexing. As an additional advantage,
this approach simulates incoherent mixing of signals from a cluster of 𝑛 identical
single-photon emitters in separate modes. This is a very relevant topic, because
recognizing nonclassical properties of such clusters or simply counting these
emitters is subject to ongoing research, which offers limited accuracy.148–152

The source of single photons (see section 2.2) was based on collinear type-
II spontaneous parametric down-conversion in a periodically poled KTP crystal,
which was pumped by a narrow-band continuous-wave laser diode at 405 nm.
The heralding rate was set to about 650 kHz, which corresponds to the maximum
data flow allowed by the coincidence electronics. It was already shown that such
sources generate very high-quality heralded single-photon states.A1 𝑛 successive
time windows were taken, in which a single photon was heralded, and were
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Figure 3.6: QNG thresholds with experimental data for heralded 1-9 photons. The prob-
abilities 𝑅𝑛 and 𝑅𝑛+1 for generated 𝑛-photon states weremeasured on a balanced (𝑛+1)-
channel detector (blue points for 𝑛 = 1−9). Solid red lines represent the respective QNG
criteria, while dashed orange lines are an approximation (Eq. 3.4). Dotted blue lines
represent the path of the points if the states become further attenuated. Both vertical
and horizontal error bars are shown for all data points; in some cases they are smaller
than point size. They represent Bayesian 68%-confidence intervals. These data are also
presented in Figure 3.7 with focus on QNG depth. QNG depth values are given in Figure
3.8.
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D2

D3

(a) (b)

Figure 3.7: QNG tests for heralded 1-9 photons. (a) Example for 𝑛 = 2. Red line
represents the QNG criterion, while dashed grey line is its approximation (3.4). The blue
point represents the measured state and the dotted blue line is the path of the point if
the state becomes further attenuated. For the sake of visualising attenuation for all data,
let us denote 𝐷𝑛, 𝐷𝑛+1 as the horizontal and vertical log-distances between a measured
point and the QNG threshold. (b) The distances 𝐷𝑛 and 𝐷𝑛+1 are plotted for measured
points as well as for predicted attenuations. Reaching the point of origin at zero means
that QNG is no longer recognizable. Dotted paths represent attenuation with steps of
0.5 dB per dot. Note that these steps are not the same size for all 𝑛. The number of steps
on each path is proportional to QNG depth. For QNG depth values, see Figure 3.8.

joined into a single temporal detection unit. The positions of these respective
time windows were heralded by a detector in one of the SPDC modes. This
is equivalent to collecting light from 𝑛 independent single-photon emitters in 𝑛
modes. Additionally, the detection statistic of this state is the same as for a single-
mode state with equivalent photodistribution. This only requires that all SPADs
work in binary mode. To achieve this, if a SPAD registers detections in multiple
coincidence windows that are part of one detection mode, it is considered as a
single detection only.

A multichannel detector was built by Josef Hloušek; a network of polarizing
beam splitters and half-wave plates to construct a balanced 1-to-(𝑛 + 1) splitter.
The design is equivalent to the one depicted in Figure 3.5, but a tree structure
was used instead of a linear one. In each arm, a silicon single-photon avalanche
diode (SPAD) was placed as a detector. Even though each SPAD has different ef-
ficiency, it is sufficient to adjust the beam splitter network so that the responses
of all detectors are balanced. This way, the measured state is merely subjected
to additional loss, but that does not create any false positives in QNG witness-
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ing.2 The total number of channels was 10; one SPAD was additionally used as a
heralding detector.

Data acquisition employed two time-to-digital converters, each having 8 chan-
nels with the resolution of 81 ps/time bin. Since 11 channels were needed in total,
two modules were used and synchronized with a shared periodic signal at 100
kHz. This frequency was chosen to compensate the measured relative clock drift
105 time bins/second.

The estimated mean numbers of photons were up to 5, if the detector effi-
ciency is taken into account, which was ≈ 50%. However, no correction has
been done in the data, and the results represent direct witnessing of QNG using
a lossy detector. In this regime, witnessing the negativity of theWigner function
would not be possible.

The measured states are very robust against optical loss, withstanding up
to 5-20 dB of attenuation before their QNG character becomes undetectable. In
previous work, it was demonstrated that this QNG depth can be precisely pre-
dicted.A1 In Figure 3.8, QNG depths of various multi-photon states are shown, as
measured using multiple QNG criteria. Here, each multi-photon state is posit-
ively detected with at least one order of the QNG criterion.

3.3.3 Discussion

As per (3.4) and shown in Figure 3.6, the QNG borders are approximately linear
on a log-log scale with a slope of (𝑛 + 2)/𝑛; the approximation being low mean
number of photons. Attenuation paths behave similarly with a slope of (𝑛 +
1)/𝑛, assuming low realistic noise in the sense of fast-decaying photodistribution
of the measured state 𝑃𝑛 ≫ 𝑃𝑛+1 ≫ ∑∞

𝑘=𝑛+2 𝑃𝑘. Because the QNG slope is
always greater, the two dependencies eventually intersect and quantum states
have typically some finite QNG depth. The robustness observed in the data is due
to lowmultiphoton contributions in the single-photon states. When combining 𝑛
of them, the photodistribution becomes almost binomial with a weak systematic
noise, 𝑃≤𝑛 ≫ 𝑃>𝑛, and consequently, 𝑅𝑛 ≫ 𝑅𝑛+1 for experimental rates. This
sharp contrast is necessary for QNG and was the reason for the choice of using
multimode heralded single-photon states. These properties are illustrated on
detection statistics presented in Figure 3.9.

Generally, if the criterion order is lower than the number of merged single
photons (white area in Figure 3.8), the dominant contributions to 𝑅𝑛, 𝑅𝑛+1 arise
from probabilities of heralded generation of 𝑛, 𝑛+1 photons, respectively. These
results have a very low uncertainty, but mostly fail to pass the QNG criterion;
chiefly due to optical loss.30 If the criterion order is higher than the number of
single photons, these coincidences are always caused by noise with very low de-
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Figure 3.8: Table of QNG depths (in dB). The horizontal axis shows the number of
single-photon states that comprise the measured state. The vertical axis represents the
order of the QNG criterion used to measure the state (𝑛 in equation (3.4)). The diagonal
represents the data being shown in Figures 3.6 and 3.7. Solid-colored tiles represent
points with positively measured QNG despite statistical uncertainties. For points above
the diagonal, the depth estimates are conservative and lower than the actual QNG depth,
because 𝑅𝑛+1 is no longer caused solely by noise. The upper white region represents
combinations of measured states and criteria that did not show QNG. Orange stripes
denote measurements where statistical uncertainty intersects with the QNG criterion
border, making the result inconclusive. Data in the grey region contain no detections at
all.

tection rates. Those cases are mostly inconclusive, unless measured for excess-
ively longer periods of time. In between, there is always an optimal criterion
that recognizes QNG for the widest range of potential optical loss (the diagonal
in Figure 3.8).

This complies well with the initial motivation to test how often 𝑛 photons
cause detections among 𝑛 and 𝑛 + 1 detectors. Practically, if we consider the
measured quantum states as a simulated collective emission from 𝑛 identical
single-photon emitters radiating with the same efficiency, these optima offer a
potential way to count the emitters based only on their emission. This hypothesis
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Figure 3.9: Results of measuring multiphoton states on a 10-channel detector. For each
heralded number of photons, the probabilities of simultaneous detections are plotted.
The measured data are compared to a theoretical model of 𝑛 photons subjected to optical
loss estimated to be 72 %. Thus, the blue data represent the detector response to an ideal
binomial distribution. The solitary orange columns represent extra noise caused by small
multiphoton contributions present in each constituent single-photon state. This noise is
orders of magnitude weaker than the rest of the distribution, which is needed to witness
QNG.
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would heavily depend on the quality of the single-photon emitters, but the data
show that, at least in the presented simulation, QNG depth is capable of accurate
distinction for a high number of emitters. Current methodology for counting
or resolving individual single-photon emitters also uses multichannel detectors,
but has limited accuracy. Results have been published for fluorescent dye mo-
lecules148–150 and for quantum dots.151,152 It is possible that future measurements
will explore this approach further using emission from physical samples.

3.4 Genuine QNG
This section summarizes the results reported by Lachman, Straka, and colleagues
(2018).A4

So far, quantum non-Gaussian states have borne distinction from Gaussian
transformations of vacuum; Gaussian transformationsmeaning displacement (𝐷)
and squeezing (𝑆).B12 Namely, a QNG state 𝜌QNG ≠ ∫𝑃(𝛼, 𝜉) |𝜓⟩⟨𝜓|𝛼,𝜉 , where 𝑃
is a probability distribution and |𝜓⟩ = 𝑆(𝜉)𝐷(𝛼) |0⟩ is a Gaussian state. In sec-
tion 3.3, a hierarchy of criteria served to distinguish this single property. In con-
trast, a newly proposed genuine 𝑛-photon quantum non-Gaussianity – GQNG(𝑛)
– represents a hierarchy of quantum properties that rule out any mixtures of
Gaussian-transformed superpositions of Fock states up to 𝑛 − 1.A4 Namely, the
property of the 𝑛th order states that 𝜌𝑛 ≠ ∫𝑃(𝜓𝑛) |𝜓𝑛⟩⟨𝜓𝑛|, where |𝜓𝑛⟩ =
𝑆(𝜉)𝐷(𝛼)∑𝑛−1

𝑘=0 𝑐𝑘 |𝑘⟩.
An important property of GQNG is that it can be both more strict or more

lenient than negativity of the Wigner function. In other words, negativity is
not sufficient nor necessary for GQNG; and even quantum states with a posit-
ive Wigner function may exhibit this property. In fact, using the detection ap-
proach from section 3.3, sufficient criteria were formulated for GQNG as well by
Lachman and Filip.A4 They can be found numerically, while for low number of
photons the approximation of the 𝑛th order readsA4

𝑅𝑛+1 ≲
(1 + 𝑛)2𝑛(2 + 𝑛)2(1 + 𝑛)!𝑅3𝑛

18𝑛2(𝑛!)3 . (3.5)

The following example illustrates the fine distinction that can be recognized
by the GQNG hierarchy. Let us compare three quantum states. The first is an
ideal Fock state |3⟩ subjected to optical transmission 𝑇 = 0.22. Such state is
GQNG(1,2,3) by definition. The second state, a three-photon state, is a mixture
of three high-quality single-photon states, each exhibiting photon-number prob-
abilities 𝑝1 = 0.22, 𝑝2 = 2.4 × 10−6, 𝑝0 = 1 − 𝑝1 − 𝑝2. Higher contributions
are quickly decaying and can be neglected in this example. This state is modeled
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Figure 3.10: Comparison of a Gaussian mixture and genuine quantum non-Gaussian
states.

after the data in Figure 3.12 and also exhibits GQNG(1,2,3). The third state is a
single-mode Gaussian mixture of |0⟩, |1⟩ and |2⟩, so that the state is not GQNG(3)
by definition. It is defined by taking |𝜙⟩ = 𝑆(𝛽)𝐷(𝛼)|2⟩ with 𝛼 = 0.16747 𝑒𝑖𝜙
and 𝛽 = 0.014044 𝑒𝑖𝜙, randomizing its phase 𝜙 and mixing it with lower Fock
states:

𝜌𝐺 = 0.47425 × |0⟩⟨0| + 0.39519 × |1⟩⟨1| (3.6)

+ 0.13056 × 1
2𝜋 ∫

2𝜋

0
|𝜙⟩⟨𝜙| d𝜙.

Figure 3.10 illustrates the differences and similarities among these states. Fig-
ures in the top row show the photon-number distributions. The dominant con-
tributions are almost identical. It is the logarithmic plot (top-right sub-figure)
that reveals higher contributions, where the difference can be finally seen. Note
that the Fock state (blue) is represented by a perfect binomial distribution, while
the three-photon state (darker brown) has certain quickly decaying noise contri-
butions.
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Their Wigner functions are almost identical as well. This is illustrated in the
bottom sub-figure, which is a radial plot of theWigner function of the attenuated
Fock state and the Gaussian mixture. There is a difference between them in the
order of ∼ 10−4. The three-photon state can be presumed to be multimode and
therefore cannot be represented by a univariate Wigner function.

The main point of this comparison is that the Gaussian mixture 𝜌𝐺 is ex-
tremely close to a GQNG(3) state in the first five elements of the statistics. It is
all the higher contributions that matter, but the difference is very small. This dif-
ference serves to witness genuine quantum non-Gaussianity. GQNG can indeed
classify quantum states that have been created in entirely different ways, even
though their photon statistics and Wigner functions are almost identical. In the
presented work, the witness is formulated in terms of detection statistics instead
of photon statistics, so it can be measured directly and more reliably.

To witness this property, a multi-mode approach based on SPDCwas used, as
described in section 3.3. In addition, the sensitivity of genuine QNG to incoher-
ently added noise was explored, which was supplied by an external laser diode.
The schematic of the measurement is depicted in Figure 3.11.

The results shown in Figure 3.12 exhibit genuine QNG up to order 𝑛 = 3.
This was achieved by reducing SPDC gain (pump power) to a point where multi-
photon contributions are sufficiently low, but the overall rate allows measuring
statistically significant results over the course of a few hours. While 16 hours
of data acquisition were needed for 𝑛 = 3, several months would be needed for
𝑛 = 4. This is because reducing pump power simultaneously decreases the por-
tion of error events and overall generation rate. Such unfavourable scaling of
measurement time represents the experimental limit here. Further improvement
could be reached by using single-photon detectors with lower jitter, which would
decrease the error contribution without affecting generation rate.

The results also provide an insight of how other multiphoton states fare in
criteria that do not correspond to their heralded number of photons. In the data,
only states with the number of photons higher than the order of the criterion
provided statistically significant results. All of these states (numbered points in
Figure 3.12) are located outside the genuine QNG witness region.

The results additionally show the effect of an incoherently added noise. In
a communication line, such noise could be coupled from external sources and
would decrease the recognizability of quantum properties. The noise signal was
provided by an attenuated laser diode coupled by an imbalanced beam splitter
into the experiment. By controlling the intensity, the portion of additional noise
was varied, resulting in a shift along the vertical axis in Figure 3.12. The shift of
the points in the horizontal axis is caused by unwanted back-reflections in the
optical setup resulting in noise leakage into the heralding arm.



64 Genuine QNG

heralded n photons

pump

χ(2)

balanced SPAD
array 1

2

3

⋮

heralding detector
n +1

weak
noise

noise

photon pairs

Figure 3.11: A schematic of the measurement. Temporally correlated photon pairs are
produced by SPDC in a nonlinear crystal. An attenuated laser beam is incoherently
mixed into one of the arms and serves as a source of excess noise. 𝑛 time windows with
heralded single photons are collected andmeasured on a balancedmultichannel detector.
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Figure 3.12: Data measured for various number of heralded photons (blue circles) with
respect to three orders of genuine QNG (orange regions). All points were measured
with identical SPDC parameters, meaning identical single-photon states that constituted
the multiphoton states. Estimated depth of genuine QNG for 1–3 heralded photons are
respectively 36 dB, 6.3 dB and 0.6 dB. Square points represent added Poissonian noise
with mean number of photons 𝑛 = 4 × 10−5, 2 × 10−4, 1 × 10−3.



Chapter 4

Generating arbitrary classical photon
statistics

This chapter is based on the publication by Straka and colleagues (2018).A3

The following work introduces a device based on acousto-optical modula-
tion that can be programmed to perform arbitrary intensity modulation. This
can be used as a source of light with programmable photon statistics and also for
simulation of transmission fluctuations in communication channels.71,153–155 Ad-
ditionally, a new method is proposed to obtain the distribution of optical intens-
ity from an arbitrary photon-number distribution. An experimental demonstra-
tion is given, covering several statistics including Poisson, various super-Poisson,
thermal, log-normal, bimodal, and uniform distributions. The generated stat-
istics are characterized using a time-multiplexed photon-number-resolving de-
tector and compared with theoretical expectations. Among the demonstrated
features are faithful tail behaviour of photon statistics and producing highly
bunched light. The proposed generator is also readily extensible to the pulsed
regime or other techniques of modulation.

4.1 Photon statistics

Photon statistics in a light beam of constant power follows a Poisson point pro-
cess.B1,57 Let us consider a stochastic variable: the number of photons 𝑛 in a time
window of length 𝑇, while 𝒫 is a constant optical power and 𝐸 the energy of
one photon. It follows that the mean number of photons ⟨𝑛⟩ = 𝒫 ⋅ 𝑇/𝐸. Also, 𝑛
follows the Poisson probability distribution 𝑝𝑛 = 𝑒−⟨𝑛⟩ ⋅ ⟨𝑛⟩𝑛/𝑛!. If the optical
power 𝒫 is a stochastic variable as well, typically changing in time, one has to
consider an integrated optical intensity𝑊(𝑡) ≔ ∫𝑡+𝑇

𝑡 𝒫(𝑡)/𝐸 d𝑡, a dimensionless
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quantity that is governed by a certain probability density 𝑃(𝑊). The probability
distribution 𝑝𝑛 of the number of photons then follows a weighted mixture of
Poisson distributions, given by Mandel’s formula57

𝑝𝑛 = ∫
∞

0

𝑊𝑛

𝑛! 𝑒−𝑊𝑃(𝑊) d𝑊. (4.1)

Mandel’s formula covers all possible photon statistics for classical states of
light. Generating such statistics can be useful if one needs to simulate classical
states with no regard to optical phase. Good examples could be found in practical
quantum networks – simulation of optical channels or characterization of single-
photon detectors.

In principle, equation (4.1) enables engineering photon statistics 𝑝𝑛 by mod-
ulating 𝑊 using a corresponding 𝑃(𝑊). This principle is employed by the pro-
posed device based on an acousto-optical modulator (AOM) driven by a harmonic
signal, the amplitude/power of which can be digitally controlled (see Figure 4.1).
An attenuated continuous optical beam passes through, while the first diffraction
order is collected. The system therefore works effectively as a programmable
attenuator with a dynamic range exceeding 30 dB and 128 discrete levels of at-
tenuation. These parameters enable spanning a wide range of𝑊 with sufficient
sampling to generate a wide variety of user-defined photon statistics (see section
4.4).

4.2 Calculating the intensity distribution
If a photon statistics 𝑝𝑛 is given instead of the intensity distribution 𝑃(𝑊), Man-
del’s formula needs to be inverted. There are several different approaches found
in the literature,82,84,85,156 but here full inversion to this ill-posed problem is not
needed. Both spans for 𝑛 and 𝑊 are infinite, but covering infinite ranges is ex-
perimentally impossible both on detection and generation side. Therefore, the
photon statistics to be generated is always specified up to a certain 𝑛max. Because
the number of discrete values of intensity 𝑊𝑖 is 𝑁𝑊 = 128 in the experiment,
Mandel’s formula becomes a linear matrix transformation

𝑁𝑊

∑
𝑖=1

𝐴𝑛𝑖𝑃𝑖 = 𝑝𝑛 (4.2)

with 𝑃𝑖 = 𝑃(𝑊𝑖) being the probability vector and 𝐴𝑛𝑖 = 𝑒−𝑊𝑖𝑊𝑛
𝑖 /𝑛! a known

transformationmatrix. If the right side 𝑝𝑛 is given, the task is to find the solution
vector 𝑃𝑖 .
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Let us discuss the properties and dimensions of the problem. There are two
additional constraints, the non-negativity of probabilities 𝑃𝑖 ≥ 0 and summing
to unity ∑𝑖 𝑃𝑖 = 1. The unity condition can be simply added as an additional
equation, extending 𝐴 and 𝑝. A strict fulfilment of this equation may be main-
tained by applying a large weight factor to both sides so that a relatively small
residuum contributes significantly to the overall error. The existence of a non-
negative solution 𝑃 is not guaranteed, even though the system of equations is
typically underdetermined. In the presented case, the dimensions of the mat-
rix 𝐴, including normalization, are (𝑛max + 2) × 128, where 𝑛max is set between
10 and 15. This formally leads to a highly multi-dimensional sub-space of solu-
tions, where non-negativity may appear like a weak restriction, but it actually
intersects the solution sub-space with one orthant of the whole space (1/2128).
Whether or not there is an intersection is neither likely nor trivial to evaluate
for high dimensions. To illustrate the geometry, one can imagine intersecting
one octant in a three-dimensional space with a plane, a line or a point, which
would depend on their orientation and position and is by no means likely even
for a hyperplane. Solution depends on the choice of 𝑝𝑛 and the character of the
transformation 𝐴. There is, however, an available degree of freedom in scaling
the intensity levels𝑊𝑖 . Experimentally, these are a product of the intensity at the
input and the attenuation levels of the AOM system. Although the attenuation
levels are fixed, the input power is a free parameter, expressed by the maximum
available intensity 𝑊max, which is user-scalable and all other intensity levels de-
rive from it. To summarize, the problem has a form

⎛
⎜
⎜
⎝

𝐴0,1 … 𝐴0,𝑁𝑊
⋮ ⋱ ⋮

𝐴𝑛max,1 … 𝐴𝑛max,𝑁𝑊
1 … 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝
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⋮
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⎞
⎟
⎟
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⎜
⎝
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⋮
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⎟
⎟
⎠

, 𝑃𝑖 ≥ 0 ∀𝑖. (4.3)

The question now is whether finding an approximate solution is sufficient
in the case when the precise solution does not exist or cannot be found. In that
case, one would have to choose a statistical metric that would define the optimal
solution. Later in this work, total-variation distance is used for quantifying the
agreement between model and data, but for the generation itself, a physical argu-
ment is needed in order to define what constitutes ‘the closest photon statistics’.
To avoid this ambiguity, only precise solutions are considered. In practical terms,
this means an upper limit on 𝑛max and classical photon statistics.

In order to solve a linear system, a Python-implemented non-negative least
squares (NNLS) algorithmwas used, as published by Lawson andHanson.B13 This
proved to be an efficient method of finding a precise solution. When defining the
photon statistics, 𝑛max was always kept sufficiently low and 𝑊max chosen such
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Figure 4.1: The scheme of the generator. Light from a superluminescent diode (SLED)
is sent through an acousto-optical modulator (AOM), and the first diffraction order is
coupled into a single-mode fibre and detected on a silicon single-photon avalanche diode
(SPAD). The AOM is fed from a harmonic signal generator through a programmable
attenuator with a parallel 7-bit interface connected to a microcontroller board.

that the solution would be exact within machine precision. Because the matrix
rank is 𝑛max + 2, the solution vector 𝑃𝑖 typically exhibits the same number of
non-zero elements. If the condition of precise solutions is relaxed, 𝑛max can be
extended at the expense of error. However, in that case minimizing the sum of
square differences would have to be justified as a viable metric.

4.3 Experimental implementation

The experimental setup (see Figure 4.1) employed a superluminescent diode due
to its long-term power stability better than 10−4 (QPhotonics QSDM-810-2). It
was centred around 810 nm and coupled to a single-mode fibre. Light was de-
coupled into free space and sent through an AOM (Brimrose TEM-125-10-800).
The first diffraction order was collected into a single-mode fibre and measured.
The AOMwas driven by a 125-MHz harmonic signal generated in a harmonic sig-
nal generator and passed through a digital step attenuator (Mini-Circuits ZX76-
31R75PP+). The attenuator was controlled by an ARM microcontroller (Arduino
Due) through a 7-bit parallel interface.157 There were 128 attenuation levels sep-
arated by 0.25 dB with a switching speed below 0.5 µs. The specified responses
are 300 ns for the attenuator and 150 ns for the AOM. The diffracted optical in-
tensity was approximately linear with respect to the RF signal power.

Detection was performed by a silicon single-photon avalanche diode (SPAD,
Excelitas SPCM CD3543H). The width of the detection window 𝑇 was 10 µs,
which is much larger than the recovery time of the SPAD (23 ns), so that the
SPAD can distinguish the number of photons incident during the detection win-
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dow. Data were collected using an electronic time-to-digital converter with a
timing resolution of 156 ps (UQDevices UQD-Logic-16).

The intensity modulation was a stepwise sequence of intensity levels and
fully controlled by the microcontroller. The sequence was random with a user-
specified statistical distribution implemented by an integrated hardware random
number generator. The modulation period was 1 ms, which is much longer than
the detection window. Together with fast level switching, the optical intensity
in each detection window can be considered constant so that the response of
the detector can be modelled. The overall model of the data is then a statistical
mixture of constant-intensity models with weights specified by 𝑃𝑖 , just like the
intensity itself.

The detection model has to take into account all relevant imperfections of the
detector.B3 Some have no impact on the measurement. Finite detection efficiency
is simply included in the overall attenuation. Background counts are very low
and contribute to an offset in intensity, which is accounted for in calibration.
However, the effects of recovery time and afterpulsing have a measurable effect
on the detection statistics. The model used here is discussed in section 2.3.2.

All of these effects can be measured, simulated for each intensity𝑊𝑖 and the
result compared to measured data. It was found that for constant intensities
(Poisson light), the measured photon statistics differs from the predicted model
by less than 6 ⋅ 10−4 for each 𝑝𝑛. All of the data that use NNLS inversion have
accuracy comparable to this systematic error (for details, see section 4.5).

4.4 Results
Figures 4.2 and 4.3 present various generated photon statistics. Bose-Einstein
statistics was chosen for its physical significance; it is the statistics of a single
mode of light, which is in thermal equilibrium with its environment. The second
important statistics is the log-normal. In this case, the log-normal distribution
applies to optical intensity. Such light can occur in turbulent optical channels
as the result of log-normal fluctuations of transmittance.71,154 Finally, some more
complex forms of light were chosen – bimodal distributions and a uniform dis-
tribution – to demonstrate the variety of statistics that can be realized.

One approach is to take a specified photon statistics 𝑝𝑛 and perform the
NNLS inversion to obtain an intensity distribution. This inversion-approach is
universal and does not require any prior knowledge or decomposition of 𝑃(𝑊).
The other method (intensity-approach) is simply implementing a given intensity
distribution. In that case, both limited dynamic range and finite sampling need
to be accounted for. The data show that both approaches can lead to accurate
results (see Figures 4.2, 4.3 and Table 4.1). For comparison and more detailed



70 Results

Bose–Einstein
⟨n⟩ = 1a Bose–Einstein

⟨n⟩ = 2b

typical Bose-Einstein g(2)

(⟨n⟩ = 1)

dBose–Einstein
⟨n⟩ = 10c

Bose–Einstein
(int. appr.)
⟨n⟩ = 1

e
Bose–Einstein
(int. appr.)
⟨n⟩ = 2

f

Figure 4.2: Generated Bose-Einstein statistics. Additional information in Table 4.1. Or-
ange bars represent the expected model. Note that the model is not strictly equal to
theoretical 𝑝𝑛, because it includes SPAD recovery time and afterpulses. Squares repres-
ent measured data. The difference between them, 𝛿𝑝 = 𝑝data −𝑝model, is represented by
blue points on a magnified scale. Lighter points and striped bars represent values bey-
ond 𝑛max. a – c: Bose-Einstein statistics. NNLS was used to calculate 𝑃 (𝑊). d: typical
shape of the autocorrelation function 𝑔(2). e, f: Bose-Einstein statistics. Intensity was
modulated with negative exponential distribution.
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Figure 4.3: Miscellaneous generated photon statistics (continuing from Figure 4.2). Ad-
ditional information in Table 4.1. For brevity, a normally distributed variable 𝑋 with
mean 𝑋0 and variance 𝜎2 is denoted as 𝑋 ∼ 𝒩(𝑋0, 𝜎2). a, b: desired statistics are based
on log-normal intensity distributions. NNLS inversion was used to calculate 𝑃(𝑊). c:
same as a, but using log-normal modulation in intensity. d: a uniform distribution 𝑝 =
1/21. NNLS inversion used. e: a mixture of 1/4 Bose-Einstein statistics with ⟨𝑛⟩ = 1 and
3/4 normally convoluted Poisson statistics (𝑊 ∼ 𝒩(6, 0.52)). NNLS inversion used. f: a
mixture of two convoluted Poisson statistics, 𝑊 ∼ 2/3 𝒩(1.5, 0.252) + 1/3 𝒩(7, 0.252).
NNLS inversion used.
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considerations, see section 4.5.
For the measured data, the accuracy of the generated photon statistics needs

to be evaluated. A detection model is employed that arises from the intensity
statistics 𝑃(𝑊) and models the SPAD response to any intensity𝑊. If 𝑃(𝑊) was
obtained by the inversion-approach, which provides exact solutions up to 𝑛max,
accurate photon statistics is expected only up to 𝑛max. Beyond that, high accuracy
of themodel is achieved if the photons statistics has already been covered enough,
that is if∑𝑛max

𝑛=0 𝑝𝑛 → 1.
To show the difference between model and data, individual differences 𝛿𝑝𝑛

are plotted in Figures 4.2 and 4.3. For quantification of the overall difference
between the two probability distributions, a very conservative definition was
chosen: total-variation distance Δ. It is defined as the maximum difference
between probabilities of any possible set of samples {𝑛} ⊆ ℕ0 (for details, see
section 4.5). The distances for most photon statistics, and therefore maximal de-
viations in generated probabilities, are in the order of Δ ∼ 10−3 (see Table 4.1).

The first distribution that was measured was the Bose–Einstein distribution:
𝑝𝑛 = ⟨𝑛⟩𝑛/(⟨𝑛⟩ + 1)𝑛+1. In theory, it can be generated through negative expo-
nential modulation of the optical intensity 𝑃(𝑊) = exp(−𝑊/⟨𝑛⟩)/⟨𝑛⟩. For mean
values 1 and 2 both approaches were successfully employed. For mean value of
10 and𝑊max = 20, the intensity approach fares much worse due to unfavourable
scaling of the intensity range required for optimal modulation (see section 4.5).

Bose-Einstein distribution is also well-known for its photon bunching, as
commonly measured by the intensity autocorrelation function 𝑔(2). Its value
can be calculated from the photon statistics, but also measured using a Hanbury
Brown–Twiss setup. The data for one such measurement are shown in Figure
4.2(d). The coincidence window was 10 ns, although this choice does not in-
fluence the result as long as the window is much shorter than the modulation
period. The 𝑔(2) half-width of 1 ms corresponds to the period of modulation and
the measured values at zero for both generation methods are within 1.98 ± 0.02
for distributions with ⟨𝑛⟩ = 1, 2, which are reasonably well covered by the mod-
ulation range. For the mean number 10, 𝑔(2) drops to 1.6, because too much
probability for 𝑛 beyond 𝑛max is not covered in the NNLS inversion.

The second distribution, the log-normal, is given by 𝑃(𝑊) = exp[−(ln𝑊 −
Ω)2/(2𝜎2)]/(√2𝜋𝜎𝑊), where ln(𝑊) is normally distributed with mean Ω and
variance 𝜎2. The corresponding photon statistics can be numerically calculated
by applying Mandel’s formula (4.1). Here, again, both approaches were used for
the mean value Ω = 1.

To demonstrate that complex distributions can be generated, as long as they
are classical, two concave and one uniform photon statistics were chosen. The
first was given by a combination of Bose–Einstein statistics and normally convo-
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luted Poisson statistics. The second is a combination of two convoluted Poisson
statistics with two distinct peaks. The third one is a uniform distribution with
⟨𝑛⟩ = 10, which is peculiar for its apparent non-classicality. Indeed, if specified
in full range, 𝑝𝑛≤20 = 1/21, 𝑝𝑛>20 = 0, the distribution is non-classical. How-
ever, if uniformity is restricted only to the first 11 elements, the result is a classical
photon statistics that is partially uniform with a falling tail for 𝑛 > 10.

Finally, Figure 4.4 shows a log-normal statistics in a scope up to 500 photons
with total-variation distance Δ = 1.5 ⋅ 10−2. The goal was not to achieve as high
precision for all 𝑝𝑛 as in previous results, but to demonstrate heavy-tailed scaling
of the statistics by comparingmeasured data to the log-normal. Log-normal mod-
ulation was employed in intensity and directly compared the measured photon
statistics to the theoretical distribution. The detector responsewas not accounted
for; instead, the detection window was extended to avoid too much saturation.

statistics quantity 𝑛max 𝑊max Δ [×10−3]
B–E(1) 𝑛 10 15 1.4
B–E(1) 𝑊 – 13 1.9
B–E(2) 𝑛 10 15 1.0
B–E(2) 𝑊 – 20 3.3

B–E(10) 𝑛 10 20 0.6
log-𝒩(1, 0.52) 𝑛 15 20 2.0
log-𝒩(1, 0.52) 𝑊 – 30 1.3
log-𝒩(2, 12) 𝑛 15 30 1.4
log-𝒩(2, 12) 𝑊 – 500 14.7

1
4
B–E(1) + 3

4
𝒩(6, 0.52) 𝑛 15 15 3.1

1
3
𝒩(1.5, 0.252) + 2

3
𝒩(7, 0.252) 𝑛 13 15 2.1

uniform(0, 20) 𝑛 10 20 1.9

Table 4.1: Results for generated photon statistics. Data shown in Figs. 4.2, 4.3 and 4.4.
Quantity denotes the physical quantity specified. For number of photons 𝑛, NNLS inver-
sion was used to obtain 𝑃(𝑊), and for intensity𝑊, distribution 𝑃(𝑊)was given directly.
𝑛max represents the upper limit on the given probability space and𝑊max is the maximum
intensity. Δ is the total-variation distance. Definitions of statistical notations follow. B–
E(⟨𝑛⟩): Bose–Einstein photon statistics or negative exponential intensity distribution,
where ⟨𝑛⟩ = ⟨𝑊⟩. 𝒩(⟨𝑊⟩, 𝜎2): normally distributed intensity with mean ⟨𝑊⟩ and vari-
ance 𝜎2, or the corresponding photon statistics. log-𝒩(⟨ln𝑊⟩, 𝜎2): log-normal distribu-
tion of intensity or the corresponding photon statistics. The moment parameters are the
same as for the normal distribution, except here they pertain to ln(𝑊). uniform(𝑛1,𝑛2):
uniform photon statistics 𝑝𝑛 = 1/(𝑛2 − 𝑛1 + 1) for 𝑛1 ≤ 𝑛 ≤ 𝑛2.
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Figure 4.4: Measured log-normal distribution log-𝒩(2, 12) with pronounced heavy-
tailed behaviour. Black points denote experimental data and the orange curve is the
theoretical expectation. Orange area denotes statistical confidence region of 2𝜎, so ap-
proximately 95 % of all data should be within. For this measurement, the modulation
period was 2 ms. The detection window was extended to 200 µs to avoid detector satur-
ation for high photon numbers. Measurement time was 1000 s.

1

356

autocorrelation data
g(2)

delay (ms)

Figure 4.5: The maximum measured autocorrelation value that is achievable using the
device in its present form; the result of a two-detector coincidence measurement. Blue
curve represents data for a coincidence window of 10 ns, delay values were sampled by
10 µs and the uncertainty is lower than the thickness of the curve. The shape corresponds
to stepwise intensity modulation with 1-ms period. The signal was a random mixture
of two intensities with count rates on each detector approximately 3 Mcps (probability
𝑝 = 6.6 ⋅ 10−4) and 2 kcps (probability 1 − 𝑝). The intensities were chosen such that
dark counts and recovery time of the detector would have the smallest effect on the
superbunching.



Discussion and methods 75

4.5 Discussion and methods

Detector counting model

For SPAD calibration, attenuated light of constant intensity emitted by the SLED
was used. The data were analysed using a time-tagging module. Recovery time
𝜏𝑅 = 23 ns was directly obtained from interarrival histograms. Afterpulsing
probability was obtained for different count rates by subtracting Poisson back-
ground from the histograms.89 The resulting dependence on rate 𝜆 was fitted by
𝑃AP(𝜆) = 𝑎 + 𝛼𝜆 with the result 𝑎 = 0.0235, 𝛼 = 2 ns. These values were then
used in the model given in section 2.3.2. Figure 4.6 presents the comparison of
measured data relative to themodel. The systematic deviations beyond statistical
confidence can be explained by intensity fluctuations during the measurement.
For higher rates, they could also be explained by the actual value of recovery
time being lower than what was measured directly from interarrival histograms.
This could be caused by variable tardiness of electronic pulses put out by the
operating SPAD.158

The model of the SPAD assumes only such processes take place in the de-
tector, that depend on the time of only the most recent count event. Apart from
recovery time, the effect of afterpulses is covered, including their temporal char-
acteristic and their component that grows linearly with count rate.B3 This turns
out to be accurate in the order of 𝛿𝑝 ∼ 10−4. It is important to note that no data
fitting was performed. All parameters were established by an independent meas-
urement beforehand to create a unified detection model. The outcomes of the
model for various statistical distributions were then compared to the respective
raw data.

Scope and extensions

The proposed method works with arbitrary form of intensity modulation. Other
modulators like electro-optical, electro-absorption or micromechanical can be
used. The advantage of the AOM is its stability, repeatability, high dynamic
range and relatively fast response. The estimate is that AOMs can reach at least
40 dB of dynamic range and a modulation speed up to several hundred MHz. The
repeatability and stability are so high that they are indistinguishable from SLED
and coupling stability. Such parameters could not be simultaneously reached
using other modulation techniques.

The response speed itself can be further improved by using electro-optical
modulation or electro-absorption modulation. Particularly, an early version of
the modulation experiment employed an electro-optical integrated Mach-Zehn-
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Figure 4.6: The detector model compared to measured data for a constant intensity.
The differences in photon-number probabilities between data and a numerical simula-
tion of model (2.23) are plotted in orange including statistical errors of the data. Green
points represent simulated data that share the same interarrival time statistics with the
measured data. This averages out any fluctuations and for a homogeneous point process,
both curves should be identical. However, green points are generally closer to zero than
orange points, which suggests the presence of fluctuations either in the signal or in the
behaviour of the detector. The parameters of the model were 𝜏𝑅 = 23 ns, 𝑎 = 0.0235,
𝛼 = 2 ns, and 𝜆 was taken so that the mean number of detections was the same as in the
data. The model is shown to be accurate with deviations in the order of 10−4.
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der amplitude modulator.3 Compared to acousto-optics, this technology offers
very high modulation speeds up to 40 GHz, but typically has only about 20 dB of
range and poor long-term stability due to interferometric phase drift. However,
an active phase lock can be implemented to solve this issue. That would increase
modulation speeds necessary for shorter temporal modes.

In the employed generator, dynamic range is limited by the electronics driv-
ing the AOM, which can be in principle improved upon. Generally, dynamic
range can be augmented using multiple modulators in a sequence. This would
enable considerable scaling, increasing the range of the generated photon statist-
ics (𝑛max) by orders of magnitude.

Pulsed regime

The proposed scheme would work the same for pulsed light. Wide wavelength
spectrum of the pulsed signal does not represent an issue, as the implemented
generator uses a superluminescent diode with 20-nm-wide spectrum. On the
detection side, a pulsed-domain photon-number-resolving detector would be re-
quired.

In this work, the continuous-wave regime was chosen to demonstrate the
accuracy of the proposed generator. This enabled the use of photon-number res-
olution in time using one SPAD detector, which is accurate and available. Such
an approach offers easily scalable detection range up to hundreds of photons
withwell-understood imperfections like afterpulsing, recovery time, detection ef-
ficiency, and dark counts. These either bear no effect or can be directly measured
and taken into account. This detection technique can demonstrate the quality of
generated statistics, but the same quality can be reached in the pulsed regime.

Speed and timing

There are several important timing parameters: the recovery time 𝜏𝑅, the tem-
poral width 𝑇 of the measurement mode, the period of the modulation 𝑇𝑚, and
the overall measurement time 𝑇𝑂. They need to be ascending by orders of mag-
nitude, 𝜏𝑅 ≪ 𝑇 ≪ 𝑇𝑚 ≪ 𝑇𝑂. The recovery time is given by the detector, 𝜏𝑅 = 23
ns. 𝑇 = 10 µs was chosen so that the SPAD can recognize the number of detec-
tions without too much saturation. The period 𝑇𝑚 = 1 ms so that the integral
intensity 𝑊(𝑡) is influenced only by the given modulation statistics 𝑃(𝑊) and
does not get distorted by modulation transitions too much. The overall meas-
urement time 𝑇𝑂 = 100 s to gather enough statistical data. During this time,
the fluctuations in the input power were not greater than during calibration and
are therefore a part of overall systematic error. For pulsed light and fast photon-
number-resolving detectors, the sub-500-ns modulation transition limits the pos-
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sible repetition rate to 2 MHz, provided pulse-to-pulse-independent statistics is
required.

Systematic errors

The systematic errors in the data are caused by systematic errors of the SPAD
model and by systematic errors in photon statistics on the generation side. For
the inversion-approach, generated 𝑝𝑛 are precise, because the intensity levels
𝑊𝑖 could be measured directly. Thus, the systematic error is virtually on the
detection/calibration side. Consequently, the proposed generator could be po-
tentially used for measuring the response of photon-number-resolving detectors
to various photon statistics.

For the approach, where 𝑃(𝑊) is given directly on an infinite scale, finite
dynamic range of the modulation and discrete sampling do not permit a precise
execution, and both sources of systematic error combine. The errors in the re-
spective data conform to this explanation.

Total-variation distance

When measuring the number of photons 𝑛, the set of possible outcomes is ℕ0 =
{0, 1, 2, … }. A photon-number distribution assigns a probability to each indi-
vidual outcome 𝑛 ∈ ℕ0, and by extension to all sets of outcomes {𝑛} ⊆ ℕ0. The
idea is to compare two probability distributions in the broadest possible terms,
which means for every set of outcomes. For a certain worst-case set {𝑛}∆, the dif-
ference between probabilities is maximal and thus defined as the total-variation
distance Δ. If the individual differences are 𝛿𝑝𝑛 = 𝑝𝑛,data − 𝑝𝑛,model, it follows
from additivity of 𝑝𝑛 that the maximum difference can be obtained by summing
all the positive or all negative differences. These positive and negative sums are
equal, because ∑𝑛 𝛿𝑝𝑛 = 0 due to probability normalization. Therefore, the

total variation distance is a simple sum Δ = 1
2
∑𝑛 |𝛿𝑝𝑛|. This quantification

was chosen because it is a standard statistical measure, it has a straightforward
definition and a conservative upper-bound character.

Intensity scaling

For the intensity-approach, there is a degree of freedom in the scale of𝑊 within
a constant dynamic range. There is an optimum 𝑊max that gives the best match
in 𝑝𝑛, and it may vary depending on the definition of statistical distance, but
only slightly. The optimal 𝑊max increases with the mean intensity ⟨𝑊⟩ much
faster than it does for inversion-approach. This is an interesting advantage of
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the inversion-approach as compared to explicitly given modulation, because it
permits photon statistics engineering for intensities where the detector is less
saturated. When using the same𝑊max, the inversion approach gives much better
results for higher mean values.

Photon-number correlations

An important insight is provided by splitting the generated light on a balanced
beam splitter and evaluating the photon-number correlations between both out-
puts.159 Examples of measured correlation coefficients are < 0.001 for Poissonian
light, 0.48 for Bose-Einstein light (0.50 in theory), and 0.45 for log-normal light
(0.46 in theory). Themeasured values depend onmean number of photons, beam-
splitter balance and detection efficiencies. In theory, the correlation parameter
for classical light intensity with mean 𝜇 and variance 𝜎2 is 𝐶 = 1/(1 + 2𝜇/𝜎2),
assuming balanced detection.

Another well-known correlation metric is the autocorrelation function 𝑔(2)
that can be calculated from the photon-number distribution or directly meas-
ured using the same two-way-splitting scheme and evaluating coincidence de-
tections. Using the aforementioned intensity moments, 𝑔(2)(0) = 1 + (𝜎/𝜇)2.
The highest achievable value stems from the dynamic range of the modulation
𝑑 = 𝑊max/𝑊min, and is then 𝑔(2)(0) = (1 + 𝑑)2/4𝑑. It can be generated using
a statistical mixture of the minimum and maximum intensity. The presented
generator was able to reach 𝑔(2)(0) > 350 (see Figure 4.5).

It should be noted that the finite number of modulation samples (𝑇𝑂/𝑇𝑀)
introduces a sampling error in the 𝑔(2)(𝑡) autocorrelation. For delays 𝑡 > 𝑇𝑀 ,
the correlation should be 𝑔(2)(𝑡) = 1. However, due to the limited number of
samples, the measured value fluctuates. For extremely bunched light, the fluctu-
ations can be significant. For example, in Figure 4.5 the line appears to be at 1,
but it is actually below 0.8. Upon zooming in on this region and extending the
plotting range to dozens of milliseconds, one would observe frequent triangular
fluctuations between significantly different values like 0.8 and 2. Their average
value is, however, unity.



Chapter 5

Conclusion

The thesis covers generation of photonic quantum states in two main areas: pro-
ducing a heralded number of photons and generating arbitrary photon statistics.
The results furthermore address detection and characterization of the photonic
states by witnessing quantum non-Gaussianity, verifying generated photon stat-
istics and modelling the counting response of single-photon avalanche diodes.

First, multiple single-photon sources were subjected to QNG analysis. The
results show very different values of QNG depths among states that are all non-
classical. Although the statistical differences between single-photon states gen-
erated by various platforms are known, the results offer new insight into funda-
mental importance of such differences. The QNG depth offers a way to quantify
how resilient these states are in optical applications that involve loss. The resili-
ence is considered in regard to QNG, which is a fundamental quantum property
of all Fock states that needs to be maintained among experimentally generated
states of sufficient quality. This motivation concerns multiphoton states as well.
The results show that multi-mode states generated by SPDC exhibit QNG despite
the systematic noise and optical losses present in both generation and detection.
The detected photon statistics was found to be very similar to statistics of at-
tenuated Fock states; the extra noise however still limited the recognizability of
quantum non-Gaussian properties.

The QNG results were analyzed in terms of experimental parameters. For
SPDC, continuous-wave pump was shown to produce lower multiphoton noise
than pulsed. There is also an optimal heralding time window maximizing QNG
depth that depends on detector characteristics. When compared to a quantum
dot, SPDC can generate muchmore robust states at present, but its noise is funda-
mentally unavoidable. Additionally, reducing the noise simultaneously reduces
the generation rate. Quantum dots are not limited by this trade-off and further
improvement of the technical aspects of quantum dot sources could lead to single-
photon states more robust than those generated by SPDC.
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Heralded multiphoton states were also shown to exhibit genuine n-photon
quantum non-Gaussianity, which is tied to a certain maximum number of pho-
tons enveloped by Gaussian transformations. Although these states might pos-
sess positive Wigner function due to excess optical loss, they exhibit quantum
properties that actually go beyond the negativity of the Wigner function. In fact,
the presented methodology is capable of recognizing very subtle differences that
distinguish vastly dissimilar quantum states like attenuated Fock states |𝑛⟩ and
(𝑛 − 1)-photon Gaussian mixtures.

The thesis furthermore presented a generator of arbitrary classical photon
statistics than can be fully programmed by the user. Various statistics were gen-
erated including Poissonian, super-Poissonian, thermal, and log-normal. Very
high generation accuracy 𝛿𝑝𝑛 < 10−3 was reached, which corresponds to the
accuracy of the detection mechanism employed. An efficient inversion method
was proposed to turn an arbitrary photon statistics into an optical intensity dis-
tribution. The concept of the generator can be extended to any form of intensity
modulation with possible increases in speed and range of generated statistics
by orders of magnitude. The generator can also be straightforwardly used in
a pulsed regime to produce single-mode states with given statistics. Another
use is stochastic loss modulation to simulate realistic transmission channels. As
a purely experimental advance, the proposed method of modulation is capable
of putting out bunched light with much higher intensity than the conventional
rotating glass approach.

In the course of solving these projects, experimental methods were developed
and described in Chapter 2. A source of correlated photon pairs was constructed,
characterized and used for the QNG measurements. The counting response of
silicon single-photon avalanche diodes was theoretically modelled both analyt-
ically and in simulation.

In conclusion, the presented results contribute to methods of generating and
characterizing both non-classical and classical light. QNG and genuine QNG
witnessing can aid with experimental development of single- and multiphoton
sources, where the current state-of-the-art easily satisfies nonclassicality, but
is still significantly limited in terms of the Wigner function negativity. The
arbitrary-photon-statistics methodology currently represents the most accurate
and tunable engineering of photon statistics and can be used to simulate commu-
nication channels, calibrate the response of photon-number-resolving detectors,
or probe physical phenomena sensitive to photon statistics. The SPAD counting
models extend the currently published counting models that are used to predict
the measured number of detections as a function of the incident rate. This could
also advance detector calibration and inferring the properties of the optical signal
based on the measured data.
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