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Abstract
In a microservices architecture, messages are commonly used for communication between
individual services. There is a general need to listen to messages sent on a message bus and
react to them by triggering job execution. This thesis presents all essential considerations
to be made when solving this problem. It comes up with an execution framework that
enables such workflow by executing tasks in arbitrary container images on OpenShift. The
solution consists of a Flask API that contains the execution logic and a STOMP client
written in Python that receives messages from the message bus and sends them to the API.
Test scenarios are included to showcase the functionality, and the solution is evaluated
by comparing it with a Jenkins setup. Also, an alternative design using Tekton pipelines
is discussed. The second problem this thesis focuses on is the execution of periodically
scheduled tasks and suggests using Kubernetes CronJob objects instead of implementing
anything custom.

Abstrakt
V architektuře orientované na mikroslužby jsou zprávy běžně používaným prostředkem
pro komunikaci mezi jednotlivými službami. Obecně je zde potřeba naslouchat zprávám
odeslaným na sběrnici a reagovat na ně spouštěním úloh. Tato práce prezentuje všechny
podstatné úvahy k vyřešení tohoto problému. Přichází s rámcem pro spouštění úloh, který
vykonává úlohy v libovolných kontejnerech na OpenShiftu. Řešení se skládá z API nap-
saného ve Flasku, které obsahuje spouštěcí logiku, a klienta, který přes STOMP příjmá
zprávy ze sběrnice a poslílá je na API. Součástí jsou i testovací scénáře, které předvádějí
funkčnost celého systému. Řešení je vyhodnocováno porovnáváním s existující aplikací
postavené na nástroji Jenkins. Rovněž je diskutovaný alternativní návrh využívající Tek-
ton. Druhým problémem, kterým se tato práce zabývá, je provádění pravidelně napláno-
vaných úloh. Namísto implementace vlastního řešení navrhuje použití Kubernetes objektů
CronJob.
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Rozšířený abstrakt
Software je v dnešní době úplně všude. Ať už běží v telefonech a počítačích nebo řídí
dopravu, všechen tento software musí být nějakým způsobem vytvořen, dodán zákazníkům
a udržován aktualizacemi a bezpečnostními záplatami. Celý proces tvorby aplikací začíná
sběrem požadavků a specifikací, na základě čehož je navržen, naimplementován, otestován,
zabalen do instalačních balíčků a nahrán na servery po celém světě, díky čemuž si jej mohou
uživatelé jednoduše nainstalovat na svá zařízení.

Přirozeně, velké množství nástrojů a automatizace je využívano pro každý krok tohoto
procesu, aby byla cena programů co nejnižší a aktualizace mohly být dodávány spolehlivě.
Automatizace zároveň pomáhá udržovat nezbytné bezpečnostní standardy a v případě
zjištění zranitelnosti v nějaké populární komponentě umožňuje okamžitě zareagovat a
zaktualizovat celé portfolio aplikací. Taková automatizace, která se stará převážně o část
procesu, kdy jsou aplikace sestavovány a nahrávány na servery, je provozována například
ve firmě Red Hat. Skládá se z množství aplikací, které spolu komunikují pomocí zasílání
zpráv. Tyto zprávy si mezi sebou nevyměňují přímo, ale přes sběrnici.

Cílem této práce je vyvinout řešení, které bude naslouchat na zprávy poslané po sběrnici.
Podle uživatelské konfigurace je bude filtrovat a jako reakci spouštět úlohy na OpenShiftu.
Díky tomu bude možné nahradit existující službu postavenou na nástroji Jenkins, která má
bezpečnostní problémy a je náročná na údržbu. Nicméně ne všechny úlohy jsou spouštěny
současným řešením jako reakce na zprávu na sběrnici. Některé z nich jsou spouštěny na
základě časového plánu. Původním záměrem bylo vyvinout software, který by spuštěl oba
typy úloh. Jenže během studia souvisejících technologií začalo být jasné, že pro provádění
pravidelně naplánovaných úloh stačí využít existujících nástrojů, které jsou součástí Open-
Shiftu. Tato práce tedy doporučuje použití Kubernetes CronJob objektů pro migraci tohoto
typu úloh.

Výsledné řešení se tedy zaměřilo na reaktivní spouštění úloh. Skládá se ze dvou aplikací
– z API napsaného ve Flasku a klienta, který přes STOMP příjmá zprávy ze sběrnice a
poslílá je na API. Důvod pro rozdělení funkcionality na dvě části je ten, že kromě plně
automatizovaného spouštění aplikací je vyžadováno, aby mohli uživatelé manuálně předat
zprávu aplikaci a tím spustit úlohu. Toto se hodí převážně pro ladění nebo v situaci, kdy z
nějakého důvodu nebyla úloha vykonána. API tedy dostane požadavek obsahující zprávu,
na základě logiky definované uživatelem filtruje zprávy, které má ignorovat a které ne. Poté
vygeneruje Kubernetes Job objekt, do kterého vloží data z obdržené zprávy, a nakonec
pošle požadavek na vytvoření tohoto objektu na server s OpenShiftem. Klient při startu
načte ze sdílené konfigurace fronty, ke kterým se má připojit, a pak pouze přeposílá zprávy.

Výsledkem této práce je tedy systém dvou aplikací, které jsou schopny spouštět úlohy
jako reakci na zprávy na sběrnici. Obě aplikace jsou schopny reagovat na chybové stavy
a výpadek jednotlivých mikroslužeb, se kterými komunikují. Důraz byl kladen na dobře
provedené logování, jelikož se jedná o jeden z nejlepších způsobů, jak zjišťovat aktuální
stav aplikace a ladit problémy. Ověření funkčnosti celého systému lze udělat manuálně za
pomocí instrukcí v README.md a přiloženého pomocného programu. Testovací prostředí
využívá lokálně běžícího ActiveMQ brokera a umožnuje otestování obou způsobů přihlášení,
tedy jak přihlášení pomocí uživatelského jména a hesla, tak pomocí certifikátů. Pro zvýšení
kvality a snížení pravděpodobností regresí je řešení pokryto množstvím automatizovaných
jednotkových testů.
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Chapter 1

Introduction

Software is pretty much everywhere – it is running on our smartphones and laptops, but
also in places where it is less visible, such as traffic light controllers. This software must be
manufactured, delivered to customers, and supported with necessary updates and patches.
This manufacturing process starts with a collection of the business requirements or a spec-
ification of what has to be done, based on which the application is designed, implemented,
tested, packaged, and then uploaded to servers across the world so that users can comfort-
ably install it on their computers.

Of course, a lot of tools and automation are used for every step of the process so that the
costs of the resulting software are kept as low as possible and updates to applications can
be delivered reliably. Lately, there has been much more emphasis on the security of these
systems as threats like supply chain attacks are becoming more popular among bad actors.
Automation helps maintain all the necessary security standards. Suppose a vulnerability
is found in some popular software component. In that case, automation can be used to
quickly rebuild the entire portfolio of products leading to a much shorter response time
than what engineers could achieve with manual work.

An example of such automation is Red Hat’s release pipeline, which is used internally
for the packaging and uploading part of the process while enabling the execution of some
security checks. It comprises many applications that communicate by exchanging messages
through a message bus. This thesis aims to build a lightweight task execution framework for
listening to these messages, filtering through them, and as a reaction, executing arbitrary
workloads in OpenShift. This will enable to sunset an existing service, which serves a
similar function but has security problems and high maintenance costs.

However, not all jobs in the existing systems are triggered by incoming messages. Some
of them are launched according to a given schedule. So, to address the need, this thesis will
discuss how existing tools can be leveraged to execute these scheduled jobs.

The most exciting parts of this project are digging deep into the messaging infrastructure
and getting familiar with OpenShift, which has become a widely used platform for workload
execution. Also, working on an application that will be running in production one day is a
big motivation for me.
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Chapter 2

Distributed systems and message
communication

This chapter describes all essential message communication concepts necessary to under-
stand the solution’s context and to design the task execution framework in later chapters.
It starts from a broader perspective discussing the distributed systems and microservice ar-
chitecture, which often leverages messaging for communication between components. Then
it describes the basic messaging patterns and discusses the specifics of Red Hat’s internal
message bus and its limitations, which need to be understood by anyone interacting with
the service. Finally, it focuses on the protocols the message bus uses to communicate with
its clients.

2.1 Distributed systems and microservice architecture
There are two main approaches to executing workloads when solving a problem. The
centralized approach aims to keep all the computation centralized on a single computer,
while the distributed approach utilizes computational resources across multiple separate
computation nodes.

Building distributed systems can lead to better system performance by enabling more
scaling options. It also removes central points of failure, resulting in higher availability.
However, this architecture brings its own problems related to managing multiple computa-
tional nodes.

An example of a centralized system is a traditional monolithic architecture, where the
application is built as one self-contained, independent unit with one codebase handling all
the business requirements. Therefore, the whole application must be rebuilt and deployed
to make any changes.

An example of a distributed system is a microservice architecture. In this architec-
ture, the application is developed as a collection of services. Each service has a single
responsibility and is self-contained. It has its own data persistence and is deployed inde-
pendently of other services, providing a simple application programming interface (API)
for communication.

Because of the independent deployment, services can be updated and patched faster
than the development process of large monolithic applications enables. Smaller services
with a single responsibility have a smaller codebase with fewer dependencies. Therefore,
each application is maintained by more focused teams, leading to better communication
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and less management overhead. When applications are decoupled, adding or removing a
new service is a relatively easy task.

While each service becomes easier to develop, the whole system is more complex. De-
bugging becomes more challenging because a bug could occur in any of the services or
somewhere between them. Also, it might be unclear which team should take responsibility
and the ownership of identification of the problem and implementing the fix. Writing in-
tegration tests is harder because applications are updated independently, and environment
setup takes more work. Anyone designing a microservice architecture should set some basic
guidelines for the choice of languages and frameworks so that the technology stack is more
cohesive and have a standardized approach for logging to follow users’ requests between
services.

2.2 Communication in a microservice architecture
With different architectures come different ways to communicate. As Anil [1] puts it,
“In a monolithic application running on a single process, components invoke one another
using language-level method or function calls.” Unlike microservices, the communication is
usually tightly coupled, even though decoupled programs can be written using dependency
injection. Because function calls are relatively cheap, there is much more communication
between components.

One of the main principles of microservices design is to have loosely coupled services
because the network is not always reliable, and failure of a single application should not
lead to a crash of the entire system. The inter-process communication is expensive, and
the network has some latency, so there is pressure to have as few remote procedure calls
as possible, leading to more information being passed in every call. For all these reasons,
microservices have to integrate asynchronously.

One of the popular options is to use a synchronous HTTP/HTTPS protocol. Not only is
this an excellent protocol for exposing the microservice application to the outside world, but
it is also widely used for communication between services. It is preferred for integration to
work well when the request is created asynchronously. It means that while the application
is waiting for the response it needs to receive to continue, the process is not blocked, and
it can create another request or execute a callback function. Usually, services implement
API that conforms to the representational state transfer (REST) design principles. In this
context, the most important constraint is statelessness, which means every request contains
all the necessary information and no data related to the request is stored on the server.
Also, note that one of the trade-offs of using HTTP/HTTPS communication is that it has
a single receiver.

Another option is to use some asynchronous protocol, such as AMQP, which leverages
asynchronous messages. Unlike the previous approach, the client sends the message with-
out expecting a response, at least not immediately. It does not send the message directly
to other services but rather to the message broker, which acts as an intermediary between
clients, takes care of routing, and can persist messages if the client is temporarily discon-
nected. This means that even though the client sends one message to the message broker,
it can be sent to zero or multiple receivers.

Besides communicating with the message broker, clients can send messages to the mes-
sage bus. While these two terms have similar and overlapping meanings, I think it is good
to explain them entirely, at least how to understand them in the context of this thesis.
According to Hohpe [3], “A message bus is a combination of a canonical data model, a
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common command set, and a messaging infrastructure to allow different systems to com-
municate through a shared set of interfaces.” The main distinction is that referring to the
message bus is often meant as referring to the whole messaging infrastructure. This infras-
tructure is generally decentralized and can consist of several message brokers – middleware
applications that provide the messaging functionality.

2.3 Queues, topics, and virtual topics
There are several different ways message brokers can deliver messages between services.
Let’s explore basic patterns supported by Apache ActiveMQ ”Classic“ 51, the message
server part of Red Hat’s infrastructure with which my solution interacts.

Queues facilitate a direct communication channel between producers and consumers.
Consumer reads messages one by one, and ActiveMQ removes them from the queue on
receiving the acknowledgment messages. If multiple consumers are connected to the queue,
messages are load-balanced to them so that only one gets the message. This pattern is
also called a point-to-point channel. Queues are durable by default, meaning messages are
stored on the message bus even after the client disconnects, waiting in a queue until they
are not processed.

Topics, on the other hand, provide a publish-subscribe communication channel. Multiple
consumers can subscribe to the given topic, and once the publisher sends a message to the
topic, this message is replicated and delivered to each of the consumers. Topics are not
durable, so clients must be online to receive messages.

To get the best of both worlds, there are virtual topics. Producers publish messages on
topics, and each subscriber has a queue called the consumer queue associated with it, which
acts as a subscription to the given topic. ActiveMQ then delivers messages from these topics
to their corresponding consumer queues. This enables a publish-subscribe communication
pattern with durable consumers without setting up durable topics. Support for virtual
topics (or virtual destinations) is one of the reasons why ActiveMQ brokers were chosen for
the message bus architecture. See Figure 2.1 for a better understanding of these concepts.

Note that regular queues are used in the local development environment. This is be-
cause, from the client’s point of view, the consumer queue is just a regular queue that
adheres to certain naming conventions. Therefore, there is no need to bother setting up
virtual topics to test the application.

2.4 Red Hat’s messaging infrastructure and its limitations
The following chapter is adopted from internal documentation [9], [10]. In Red Hat’s
pipeline context, the message bus comprises highly available Apache ActiveMQ “Classic”
5 messaging servers (abbreviated as ActiveMQ in the following text). These ActiveMQ
brokers are grouped into several logical clusters, each consisting of a database and two
ActiveMQ brokers – one that delivers the messages and the second ready for failover.
Applications connecting to the message bus through the provided server-side load balancer
do not need to worry much about the specifics of how those clusters are networked together
and can rely on the message bus to deliver messages to the expected endpoints with some
magic happening under the hood.

1Project website: https://activemq.apache.org/components/classic/
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Figure 2.1: Diagrams visualizing the differences between queue, topic, and virtual topic.
Source: Uhrig [11].

An essential feature of message bus architecture is the guaranteed delivery of messages,
usually accomplished using message persistence. It is a best practice to persist messages
between transactions and during them so that at any moment of the message journey
through the infrastructure, there is at least one database storing the message. Once the
transaction is completed, which is usually signaled by sending an acknowledgment, the
message is removed from the database of the sending application. This way, even if any
number of services suddenly crashes, the message will still exist in the system once those
services come back online. Message persistence also covers the case if the application is
offline when the message should be delivered. However, there are usually timeouts on how
long messages are retained before they are deleted, so the service cannot be offline for too
long if it does not want to miss any messages.

This aspect of the infrastructure design that focuses on not losing any messages has its
consequences. All these disk reads and writes come with performance costs, and while it
can guarantee that messages are delivered, it cannot guarantee that they will be delivered
only once. Consider the case when the broker fails right after the transaction is finished
before it can delete the message from its database. Then, on startup, it loads the message
from the database and tries to redeliver it, so it is delivered twice. Therefore, if the goal
is to execute jobs as a reaction to receiving a message, these jobs have to be idempotent,
meaning the effect of executing the job once is the same as if executed multiple times.
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As mentioned at the beginning of this section, the message bus is considered a highly
available service that runs all the time. Therefore, to save time and engineering effort, it is
common for publishers not to store messages locally, which may lead to missed messages if
the message bus goes offline.

Similarly, it is an important decision when designing a subscriber if it is worth persist-
ing messages until they are fully processed. Subscribers usually prefetch many messages,
so when the application crashes, it loses multiple messages if they are not persisted. Al-
ternatively, the application can use the message bus databases and acknowledge messages
only after processing them.

Another limitation of the message bus is that it cannot guarantee that messages are
delivered in the same order they were sent. Thinking about task execution in the context
of this thesis, it is not a problem, but it is something to remember when dealing with
messaging systems.

2.5 Messaging protocols
When any two applications want to communicate successfully, they have to come up with
a set of rules they will follow. Multiple widely used protocols exist in messaging, so there is
no need to reinvent the wheel. Message brokers and buses generally support more protocols,
so each service connecting to them can use a different communication format. Red Hat’s
internal message bus supports only a subset of protocols that the ActiveMQ broker offers2,
namely OpenWire, Stomp v1.1, AMQP v1.0. These wire protocols define the format of the
data passed over the network.

AMQP, which stands for Advanced Message Queuing Protocol, is a binary protocol
emphasizing reliability and interoperability, as it was initially designed for use in the finance
sector. It has multiple versions; the most popular ones are 0-9-1 and 1.0. The latter was
standardized under International Standards Organization as ISO/IEC 19464:2014. Even
though one might suppose that version 1.0 would be just a minor update, these two are
entirely different protocols3.

OpenWire is a default protocol of ActiveMQ. It implements Java Messaging Service
API and is similar to AMQP, as it is also a binary protocol designed for high-performance
messaging.

Simple (or Streaming) Text Orientated Messaging Protocol (STOMP) is a text protocol
that aims to be easy to implement, at least for the client. As opposed to AMQP, it supports
only a small subset of typical message operations.

While it was initially expected to use AMQP protocol for communication between the
client and the message bus, STOMP turned out to be a better idea, primarily because of
the better library support, as discussed in Section 5.5.1. Therefore, the following section
will describe STOMP communication in more detail.

2The complete list can be found at https://activemq.apache.org/connectivity.
3https://www.rabbitmq.com/specification.html
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2.6 Simple (or Streaming) Text Orientated Messaging Pro-
tocol

This section contains the most important aspects of the STOMP based on the STOMP
specification [8]. It discusses the STOMP version 1.1, because that is the version that
ActiveMQ and Red Hat’s internal message broker support.

The communication is based on an exchange of frames, which are usually encoded as
UTF-8 text and should be sent via some reliable protocol such as TCP. Each frame consists
of a command, optional headers, and an optional body. STOMP does not use the concept
of queues, topics, or virtual topics (in this paragraph, altogether referred to as “queues” for
better readability). Instead, the STOMP server is modeled as a set of destinations. The
client then sends messages to these destinations using a SEND frame. While STOMP treats
the destinations as some opaque string and does not care about their contents, queues have
a strictly defined syntax. Thanks to this, message brokers that provide support for queues
and STOMP (as ActiveMQ does) internally map destination strings to queues according to
their syntax rules. STOMP also keeps the delivery semantics of messages to each server,
which is another example of its simplicity.

The communication flow is shown in Figure 2.2. It describes a situation when the
client is a subscriber and does not send any messages. The client initiates the connection
by sending a CONNECT frame containing the protocol version it wants to communicate
with (or, alternatively, a list of versions it supports) and its host name. The client can
send login credentials if the server requires them. As a response, the server sends back the
CONNECTED frame. If the server rejects the connection, it should use an ERROR frame
instead to signal this to the client.

Once connected, the client has multiple options for what to do. It can send messages,
receive messages, work with transactions, or disconnect. During the work on this thesis,
I did not find any use case for transactions in my solution; therefore, they will not be
discussed. If the client wants to listen for incoming messages, it sends a SUBSCRIBE
frame to the broker. In its headers, it sends the destination from which it wants to receive
(for example, a string that corresponds to some customer queue on a message broker), id
header, and an acknowledgment header. Within the connection, each subscription has to
be identified by a unique id header so that the server can match UNSUBSCRIBE, ACK,
and NACK frames to it.

Acknowledgment mode controls when the message broker considers the message to be
delivered and deletes it from its queues (or any other mechanism it uses). There are three
acknowledgment modes. auto means that it considers the message to be delivered as soon
as it sends it to the client. In client mode, the client has to send an ACK frame to the
message broker once it receives the message. Otherwise, the message broker can redeliver
the message (depending on how the message broker is configured), and they can pile up
in its queues. Also, this mode treats it as cumulative acknowledgment, so any preceding
message is also considered to be delivered. The last mode is client-individual, which behaves
the same as the client mode, but ACKs are not cumulative, so every message has to be
acknowledged individually. NACK frames can be used explicitly to say the message was
not delivered successfully.

When successfully subscribed, the client receives the messages sent to the given desti-
nation as MESSAGE frames. Once it wants to stop receiving them, it sends an UNSUB-
SCRIBE frame. The client can disconnect anytime by closing the socket it communicates
through with the server. In order to make sure all sent messages were delivered to the
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server, the client can gracefully shut down using the DISCONNECT frame. The client
waits to receive the RECEIPT frame as confirmation, and then it can close the socket.

Figure 2.2: Communication between a message broker and a client that is connected as a
subscriber. The acknowledgment mode is auto, so there are no ACK frames sent.

When the client wants to connect as a publisher to send messages, all it has to do is to
connect to the server with CONNECT frame. Then it sends SEND frame to the server. Its
headers contain the destination to which the message should be sent and the content type
of the body, which then includes the message contents.
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Chapter 3

Linux containers and orchestration

This chapter starts by explaining Linux containers, the motivation behind using them, and
the tooling ecosystem. Then it digs into the concept of container orchestration and how
container orchestration platforms can be used as execution environments.

3.1 Linux containers
Linux containers are technologies that enable the packaging of applications with all their
dependencies, making them independent of the environment they are running on.

The main advantages of this technology include empowering agile development and
making it easy to package the application’s environment together with the application it-
self into a single bundle without worrying about the specifics of the given operating system
it would be running on. Containers are light on resources compared to deployment on
virtual machines. Engineers can use them on local workstations, allowing them to define a
separate environment for individual projects, making dependency management less burden.
It makes onboarding new people into projects faster because they spend less time setting
up their environment. Given that files containing container definitions can be stored in a
version control system (VCS) alongside the code, containers come in handy when adopt-
ing practices such as DevOps. Well-written applications can be scaled effortlessly using
container orchestration, which will be described in more detail in the later sections.

Working with Linux containers is a straightforward process. At first, a container image
is needed. It is a file (or files) containing the application and the environment, such as
libraries, runtimes, and configuration files. Container images are built from Dockerfiles,
text files with a human-readable definition of the image (these can be versioned in VCS). In
most use cases, users build their images on top of the existing ones, so they do not have to
build them entirely from scratch. Sometimes, when building the container image, starting
with a fully-fledged container image such as ubuntu or ubi9 containing all the essential
Linux utilities and package managers like DNF or APT is better. Still, when optimizing for
image sizes, engineers sometimes use more lightweight (sometimes called minimal) images
such as alpine or ubi9-minimal, which are less feature-packed but still allow all the necessary
tooling to be installed while taking fewer resources.

Once the container image is ready, the container engine (such as Docker or Podman)
can be called to unpack the container image. It makes the API call to a Linux kernel,
which starts a new process we refer to as a container. This container process is created
with a clone() system call, as opposed to exec() or fork() utilities like Bash usually use.
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For this reason, the container is just a Linux process with some extra isolation provided
by kernel namespaces. The Linux container sees only the processes and filesystem created
within the same namespace. There are no data structures in the Linux kernel representing
containers other than the data structures representing the processes and the namespaces.

As container technologies became more popular and many new tools emerged, there
has been an effort to standardize all the parts of the workflow. This standardization’s
primary objective has been ensuring that all those tools produce and consume the same
artifacts, that swapping container tooling is possible without any significant issues, and
that the investment into containerization is not vendor dependent. Currently, the widely
used industry standards are set by Open Container Initiative, which contains the Runtime
Specification, the Image Specification, and the Distribution Specification, which unify the
most important parts of the container ecosystem. Therefore, when picking a new tool for
working with containers, it is recommended to ensure it adheres to these specifications (the
majority of mainstream tools do).

3.2 Container orchestration
“Container orchestration automates container provisioning, deployment, networking, scal-
ing, availability, and lifecycle management” (IBM [4]). It can become beneficial when
deploying and managing hundreds or thousands of containers. However, from the perspec-
tive of this thesis, I am primarily interested in using container orchestration platforms as an
execution environment, enabling me to send it a container image and the job that should
be executed, without needing to worry about the system resources, updating the systems
and doing any other maintenance.

3.2.1 Kubernetes overview

Figure 3.1: Kubernetes architecture. The control plane in the text refers to a master node
in the diagram. Source: Kaplarevic [5].
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One of the most popular orchestration platforms is Kubernetes, sometimes abbreviated
K8s. The main component of its architecture is a Kubernetes cluster, which acts as an
abstraction over one or multiple hosts capable of executing Linux containers. It contains a
control plane and one or more nodes. Nodes are the workers executing the workload using
the container runtime such as CRI-O or containerd. The basic idea is that users define
declaratively how their cluster should look — which containers should be running on which
nodes — and controllers running inside the control plane will do their best to match the
actual state of the cluster with the defined one. The control plane also exposes Kubernetes
API, as shown in Figure 3.1, enabling users to communicate with the cluster, and contains
a key-value store called etcd with all the cluster definitions.

3.2.2 Kubernetes resources

The definition of nodes consists of individual Kubernetes resources, which can be defined
in YAML or JSON. Kubernetes works with the smallest deployable units, which it calls
Pods1. Pod is a group of one or more containers that share storage and networking. The
following is a definition of a Pod in a YAML format, which creates one container on the
OpenShift cluster that prints the text “Hello world!”.

---
apiVersion: v1
kind: Pod
metadata:

name: hello-world-pod
spec:

restartPolicy: OnFailure
containers:
- name: hello-world

image: ubi9
command:

- bash
- '-c'
- "echo 'Hello world!'"

In general, Pods are not created directly by the user and instead are created by workload
resources. In the context of task execution, the most interesting are Jobs2 and CronJobs3.
While both of these resources create one or more Pods, the main advantage over defining
Pods directly is that even if such created Pod fails in the middle of the execution, which
sometimes happens because of the failing node, the Job resource starts a new one, making
sure the job is actually finished. It lets the user define the exact behavior, such as how
many times it tries to restart the Pod until it gives up or how many times it has to complete
successfully for the whole Job execution to be successful.

Another advantage is the cleanup of the resources. Pods can be set to be deleted
either immediately after execution or never. If the user wants to keep them around for
some time (e.g., for debugging purposes), they have to set them never to delete and then
schedule a CronJob to clean them periodically. On the other hand, Job definition provides

1Documentation: https://kubernetes.io/docs/concepts/workloads/pods/
2Documentation: https://kubernetes.io/docs/concepts/workloads/controllers/job/
3Documentation: https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
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a ttlSecondsAfterFinished field, which sets the number of seconds of how long should the
Job resources be kept on the cluster after the Job completion.

To demonstrate, the following is a definition of a Job that will be kept on a cluster for
10 minutes after it finishes execution.

---
apiVersion: batch/v1
kind: Job
metadata:

name: hello-world-job
spec:

ttlSecondsAfterFinished: 600
template:

spec:
containers:

- name: hello-world
image: ubi9
env:

- name: USER
value: Jack

command:
- bash
- '-c'
- 'echo "Hello $USER!"'

restartPolicy: OnFailure

You may notice that the definition is very similar to the definition of a Pod. This Job
also demonstrates how the define and use environment variables inside of a container. The
resulting message printed on the specified container’s standard output is “Hello Jack!”. This
will be helpful for injecting message data into the task definition later on. Also, note that
the apiVersion field changed a bit. Different resources are part of different API groups.
For a single resource, multiple versions can exist with different fields and structures, each
accessible at different API versions. In the example above, the v1 version of the batch group
was used.

CronJob is similar to Job, but as the name suggests, it schedules the execution of a Job
regularly according to a schedule written in a Cron format. For completeness, this is how
to define a CronJob executed every Monday at 9 AM that says “Happy Monday!”. The
time is specified as Coordinated Universal Time (abbreviated as UTC), so it is necessary
to adjust it to the local timezone. See Listing 1 for an illustration.

When the user defines these resources and creates them on the Kubernetes cluster, the
control plane adds defaults for the fields the user did not define and adds a status field,
which describes the object’s current state.
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---
apiVersion: batch/v1
kind: CronJob
metadata:

name: happy-monday-cron-job
spec:

schedule: "0 9 * * 1"
jobTemplate:

spec:
template:

spec:
containers:

- name: happy-monday
image: ubi9
command:

- bash
- '-c'
- 'echo "Happy Monday!"'

restartPolicy: OnFailure

Listing 1: An example of a CronJob definition.

3.3 OpenShift
OpenShift is an offering from Red Hat that builds on top of Kubernetes and as it was
already mentioned, it is the target environment in which jobs should be executed. To
explain it a bit better, I will borrow the explanation from Harrington [2], where the author
uses an analogy with Linux operating systems. He compares Kubernetes to a kernel of
distributed systems and says OpenShift is like the distribution, bundling Kubernetes and
other components. OpenShift is then one from many bundles including Kubernetes that
are available and is fine-tuned for specific use cases that the OpenShift project focuses on.
Because it is a product sold to customers, Red Hat provides customer support and extensive
testing.

Therefore, it is possible to use all the Kubernetes resources described above for workload
execution. There might be some nuances or extra features that OpenShift offers, so it is
always good to check its documentation.

3.4 Tekton
While Tekton is not directly used for container orchestration, it is a technology built on
top of Kubernetes, and it was one of the considered tools to be used in a final solution.
Therefore, I will spend this section explaining the basic concepts, so that its trade-offs can
be discussed in Section 5.6.1.

Tekton is an open-source framework for creating CI/CD systems. It defines a set of
Kubernetes Custom Resources that are used for building the pipelines. Tekton also supports
the creation of event-driven pipelines that can be triggered as a response to committing a
change to a Git repository or building a new container image.
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To facilitate the event-driven pipeline execution, multiple Kubernetes objects have to be
created, starting with an EventListener. It is a Kubernetes object provided by Tekton that
listens for events at a specified port on a Kubernetes cluster. It runs in a dedicated Pod. It
contains several triggers containing the filtering logic and the definition of a pipeline that
should be executed if the filtering succeeds.

For every incoming request, which in our case would be a message triggering the task
execution, the EventListener creates an HTTP request, sends it to a running Interceptor
process, and waits for the response. This request contains the filtering logic and the message
data. If multiple triggers are part of the EventListener definition, it creates a request for
each of them. Interceptor is the component that does the payload’s filtering, verification,
and transformation and says if the pipeline should be triggered or not.4. For illustration,
see Figure 3.2.

Figure 3.2: Diagram visualizing a Tekton Trigger and its communication with a ClusterIn-
terceptor. Source: Tekton documentation [7].

Tekton Triggers ships with several Interceptors, most focusing on handling webhooks
from major Git hosting providers. The most interesting one in the context of this thesis
is a CEL Interceptor, which supports filtering and modifying payload using the Common
Expression Language5.

If the Interceptor says that the execution should continue, multiple Tekton objects are
created, including the Pipeline object. This object can reference multiple Task objects
because CI/CD pipelines usually contain multiple steps. In our case, only one Task object
would be defined to execute the task we want to perform as a reaction to the message sent
on a message bus.

4For more context, see Tekton Enhancement Proposal (TEP) 0026 at https://github.com/tektoncd/
community/blob/main/teps/0026-interceptor-plugins.md and the pull request discussions at https://
github.com/tektoncd/community/pull/229#discussion_r504698565.

5More information can be found here: https://github.com/google/cel-spec.
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Chapter 4

Existing Solution

This chapter describes the current setup, explains the job definition format that is being
used, and discusses the problems of using Jenkins for task execution.

4.1 Jenkins setup
The existing solution consists of a Jenkins instance that has the role of yet another appli-
cation listening to a message bus, reacting to messages it subscribed to by executing tasks.
The second role it has is the role of a controller. It periodically schedules task execution
for those jobs that are triggered periodically.

Jenkins is an open-source automation server. It is commonly used for continuous integra-
tion and continuous delivery of products, which consists of building, testing, and deploying
applications in an automated way. It is written in Java, and there is a huge amount of
plugins that extend its capabilities.

The current setup of the Jenkins instance consists of one master controller running on
top of the Java Runtime Environment. While it is possible to execute workloads on this
controller node, it is considered bad practice because its environment has a lot of privileges.
Therefore, it could lead to security issues. Jenkins is designed for distributed environments,
so the master controller connects to Jenkins agents, each running inside a Virtual Machine.
While there is an option to run these agents in containers, given that this is not the native
way, it is hard to set up, its images are large, and there are many restrictions on what
can be done with those containers. Having multiple agents also allows the use of different
environments for different tasks and load-balancing of the workload among the execution
nodes.

4.2 Job definitions format
There are multiple ways of configuring a Jenkins system. The simplest way is to click
through the user interface (UI) to set up everything. Many users write Groovy scripts that
invoke Jenkins API to automate this. While these scripts can do pretty much everything,
it is necessary to know Jenkins internals well. This project uses a third approach of using
Jenkins Configuration as a Code Plugin1. It provides an opinionated way to configure
Jenkins using human-readable YAML files. It is relatively easy to use because it only
requires users to translate the UI setup process they are comfortable with into code.

1The project website can be found at https://www.jenkins.io/projects/jcasc/.

18

https://www.jenkins.io/projects/jcasc/


Another plugin that is being used is Jenkins Job Builder2. It enables users to define jobs
in human-readable formats YAML and JSON and then uses these definitions to configure
a Jenkins instance. Again, it is a bit troubling there is no standard way of doing this.

The following is an example of a job definition (slightly modified to fit the page better)

- job:
name: rcm-errata-posterity
node: rcm-compose
project-style: freestyle
defaults: global
disabled: false
display-name: "UMB QE/SHIPPED_LIVE Advisories"
concurrent: true

properties:
- discard-old-builds
- venv-manager

triggers:
- ci-trigger:

override-topic: "Consumer.msg-bot.VirtualTopic.activity.status"
no-squash: true

parameters:
- ci-message
- snooze

wrappers:
- rcm-build-keytab

builders:
- shell:

!include-raw-escape:
- rcm-errata-posterity/run.sh

publishers:
- email:

recipients: "spmm-release-jenkins-csb@redhat.com"

node definition at the top of the file specifies the machine on which the task should
be executed. The task execution is managed by Jenkins agents, which are client Java
processes running on the node. properties sets properties on Jenkins jobs, such as an
option to automatically delete old job runs. triggers section defines the virtual topic
whose messages trigger the job execution. To make sure that all the necessary secrets (such
as Kerberos keytab file) are present on the worker, wrappers are used. builders define
the actual job that should be executed. In this case, it is a shell script located in one of
the subfolders that will be executed. publishers define what action should be taken once

2More information at https://jenkins-job-builder.readthedocs.io/en/latest/
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the task finishes its execution. Here, it is used to send emails about failures to the specified
email address.

4.3 Jenkins problems
One of the reasons why Jenkins is not sufficient anymore is its high maintenance costs
associated with updating the application. Many plugins are used in the current setup, and
updates usually cause conflicts between these plugins, causing existing task definitions to
break. There are also frequent security issues requiring additional maintenance and up-
grades. Also, it does not execute jobs in OpenShift, so there would have to be some work
done anyways to enable this capability. And while it is technically possible to execute Jenk-
ins agents in containers, it is more difficult to set up, and it limits some of the advantages
that containers usually bring.

Therefore, the following chapters deal with the design of a solution that will supersede
Jenkins in triggered and scheduled job execution and will be easier to configure, maintain,
and be more flexible.
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Chapter 5

Design

This chapter starts with the problem definition, lists the requirements that were collected
during the analysis, and then describes the design that was implemented. It discusses the
trade-offs that were made and the implications of these decisions.

5.1 Problem definition
From the assignment, the main objective of this thesis is to design and implement a
lightweight event-based task framework for executing arbitrary workloads in OpenShift
with the goal of migrating from the existing solution to the new one. To be more specific,
there are two types of jobs that are currently being executed. There are scheduled jobs that
are launched at certain times (for example daily) and triggered jobs, which are executed as
a reaction to some message being sent on a message bus.

When looking at the performance requirements, I examined different job types sepa-
rately. There are currently defined lower tens of scheduled jobs. Most of these jobs are
executed daily. Some are scheduled more often, but always at most once an hour. For
triggered jobs, based on the logs from the message bus, the number of messages that the
current solution listens to is in the magnitude of lower thousands of messages per day. For
one specific day, there were four messages per minute on average.

5.2 Scheduled jobs
For better readability and structure of this text, scheduled jobs will be discussed before
diving into specifics of triggered jobs, even though it would make sense to start with the
requirements of both types and then jump into the proposed solution.

At first, the idea was to make scheduled jobs part of the developed framework. However,
I later realized that Kubernetes CronJobs resources could be used directly to rewrite those
jobs, as described in Section 3.2.2. Therefore, it does not make any sense to reinvent
the wheel or put some layer of abstraction above this. Also, note that even the Tekton
community suggests using this Kubernetes resource rather than coming up with their own
solution. For this reason, the rest of the design does not concern itself with scheduled job
execution.
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5.3 Requirements for triggered jobs
The following is the list of requirements and expectations about the system.

• The framework gets the messages from Red Hat’s internal message bus described in
Section 2.4.

• The solution must be able to subscribe and listen to a given virtual topic on the
message bus.

• While most messages come from the message bus, users should be able to send mes-
sages into the solution to execute them manually. An example of such a workflow is
engineers debugging their job definitions. They should be able to copy the message
from the message bus logs and give it directly to the solution without needing to send
a message through the message bus.

• Jobs should be defined in a format that can be tracked in a version control system.
It is expected that job definitions will be code reviewed.

• For each job definition, users must specify a virtual topic. The messages sent to this
virtual topic then trigger the job execution.

• Users can filter messages based on their contents, so the given job is launched only if
the message contents meet user-defined criteria.

• The solution should execute its workloads in OpenShift, ideally being open for other
execution environments to be added in the future.

• Defining a job should be user-friendly, and it should not take much time for the user
to learn how to do it.

• There must be some mechanism for the injection of message data into the user-defined
job.

Also, there are requirements that are important from the maintenance point of view,
reliability, and testing.

• There should be extensive logging in place focused on making it easy to debug the
application and to track messages traveling across the systems.

• There should be a reasonable amount of automated unit and functional tests.

• The solution should handle typical error cases that can happen, such as re-connection
to the message bus if it is not available for a while.

5.4 The design overview
There are multiple ways the resulting application could be designed, and this section de-
scribes the approach I chose.

The resulting running solution consists of at least two processes. An API that receives
messages and based on user-supplied configuration executes jobs on OpenShift. Further-
more, the client, which connects to the message bus via some messaging protocol, listens to
messages and sends them to the API. Thanks to splitting the solution like this, engineers
can create messages on the API manually, as required. See Figure 5.1 for illustration.
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Figure 5.1: The design overview. The message bus and OpenShift are part of the existing
infrastructure. The filled line marks an HTTP request, and the dashed line marks a response
to this request.

5.5 The client
The client starts its execution by loading consumer queues, to which it should subscribe,
from the user’s definition configuration file. Because the API design allows it, this config-
uration file will be shared for both parts of the resulting solution. See Section 6.1 for more
detail about the format of this file. Then, it subscribes to all the loaded queues using one
of the messaging protocols that the message bus supports. From the point of view of the
production version, it has to have access to these queues on the internal message bus. This
authorization will be enabled by generating a certificate the client uses to authenticate.
For local development, the client should support login with a username and password. On
every message, the client validates that the message requires all the necessary fields and
then sends it to the API.

The way it is currently implemented is that it waits for the response to arrive. Given
that it is intended for the API and client to behave as one application, API processes the
request quickly, and the performance requirements are relatively low, this is not a problem.
However, if any of these statements stopped being true, it would be necessary to make sure
that request-sending logic uses asynchronous requests. Alternatively, the client deployment
could be horizontally scaled.

Lastly, Python was chosen as a technology in which the client was implemented because
it is a high-level programming language perfectly suitable for writing smaller utilities.

5.5.1 Connecting to the message bus

As was mentioned in Section 2.4, the internal message bus supports communication via
STOMP v1.1, AMQP v1.0, and OpenWire. In the local development environment, an
instance of ActiveMQ is being launched. When downloading ActiveMQ and running it with
out-of-the-box configuration, ports at which each of these protocols communicate can be
found in a configuration file located at apache-activemq-{version}/conf/activemq.xml.

Choosing the appropriate protocol turned out to be more about picking the right library
rather than about the features of the protocol itself. Regarding AMQP, two very actively
supported libraries in the Python ecosystem provide a reasonable level of abstraction over
protocol communication — Pika and Kombu. Both libraries are often used with RabbitMQ,
a popular message broker. Kombu is internally used in Celery, a widely used distributed
task queue. However, both of these libraries support only AMQP version 0-9-1, which is “a

23



completely different protocol”1 than AMQP 1.0, and while there have been discussions2 to
bring AMQP 1.0 to Kombu for years, I do not think it will be implemented anytime soon.

ActiveMQ’s website recommends using stomp.py3 as a Python client library, which was
eventually used. It supports STOMP protocol versions 1.0, 1.1, and 1.2, therefore being
compatible with ActiveMQ. It is actively supported and easy to use. Its GitHub repository
and the corresponding PyPI package also bundle a command line client, which can be used
for testing purposes.

The recommended way to connect to the internal message bus is via a server-side load
balancer it provides and then to subscribe to virtual topics via consumer queues. Any other
way complicates the setup, and the client risks not getting all the messages. Therefore,
there is not much setup that would be necessary to do regarding the locally used ActiveMQ
instance.

5.5.2 The message format

While producers can send messages in different formats, it is necessary to set some common
input message format expectations that the client has including what fields are required for
a message to have to be correctly processed. To demonstrate, see the following message that
was taken from the logs. Note that some fields were deleted for demonstration purposes
and some obfuscated so that I am not unintentionally leaking any sensitive data.

{
"headers": {

"JMSXUserID": "some-user",
"amq6100_destination": "queue://Consumer.some.consumer.queue.>",
"content-length": "300",
"content-type": "text/plain; charset=UTF-8",
"correlation-id": "323f2423-72ef-4496-8821-a4f34f269005",
"message-id": "SomeMessageId",
"subscription": "/queue/SomeVirtualTopic",
"timestamp": "1679564400799",
"when": "2023-03-23 09:39:57 UTC",
"who": "user@redhat.com"

},
"msg": {

"data": "some-data",
"when": "2023-03-23 09:39:57 UTC",
"who": "user@redhat.com"

},
"timestamp": 1679564400.0

}

headers contain metadata about the message and msg contains the message payload.
Other top-level keys are present, such as timestamp. From headers, the most important
ones are amq6100_destination and correlation-id. amq6100_destination specifies the
consumer queue on which the message was received. The prefix marks AMQ-6100 Jira

1https://www.rabbitmq.com/specification.html
2https://github.com/celery/kombu/issues/548
3https://github.com/jasonrbriggs/stomp.py
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ticket4 that suggests that the destination should contain the consumer queue and not the
virtual topic. For virtual topics, there are other fields. Note that the STOMP library does
not care about the specifics, as it does not know anything about concepts such as topics,
but it has to be given the string in a consumer queue format to subscribe to it successfully.

correlation-id is the identifier of the message. While other identifiers are present,
this one is used for referring to the message in logs.

5.5.3 The message loss

Reacting to failures of the message bus and lost messages is another design consideration.
As mentioned in 2.4, the message bus is considered a highly available service that backs
its messages inside a database. Message loss is often caused by producers and consumers,
who are not as critical as the message bus and do not implement advanced strategies for
mitigating this problem.

A situation that can lead to message loss is the client’s failure. It does not matter
if it fails because of some internal error or because it will be shut down intentionally,
but in both cases, some messages might be present on the system. It is common for
subscribers to implement message caching. The reasons are to increase performance and
lower requirements for network resources so that the subscriber does not communicate with
the message bus as often. Therefore, there can be more than one message buffered on the
client at any moment.

One of the possible strategies for mitigating message loss problems for the client is
being smart about acknowledgments. The client can subscribe to the message bus in client-
individual acknowledgment mode. Once it receives the message, it sends the message to the
API and waits for the response. Only after getting a response that the job was successfully
launched it sends an ACK frame to the message broker. The alternative is to have its own
database, which would persist the message until the corresponding task is executed. In the
resulting implementation, the client-individual acknowledgment tactic is used.

5.5.4 Another considerations

The client has to be able to deal with the disconnection of both the API and the message
bus, even though it is unlikely for the latter one to be unavailable. When this happens,
connecting to these services should not require human interaction once they are back online.

The way this was eventually implemented is that in case the client cannot send the
message, it waits for a given time interval and then tries again. Similarly, when the message
bus disconnects, it waits for some time and then tries to connect again and subscribe to
all the virtual topics it should listen to. In both cases, it prints a log message that there
was some communication problem. Therefore, when using log monitoring tools, these log
messages can be filtered, and alerts can be set.

5.6 The API
The API is part of the solution that receives a message, does some filtering, and, based on
the result, triggers or not triggers a job execution. It expects messages to be in the same
format as the client receives them.

4https://issues.apache.org/jira/browse/AMQ-6100
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When designing the API, the two most promising technologies that were considered were
either leveraging Tekton or writing the application using Flask. In the end, I implemented
a custom API using Flask. The following section describes the trade-offs between them in
more detail because this will help understand all the design considerations.

5.6.1 Tekton vs. a custom application

If Tekton was used for the API part, users would have to write a lot of boilerplate code to
define a simple job and to pass parameters into it because it would have to be written as a
pipeline with one job5. Of course, they have to learn the format for writing jobs even in the
custom solution. Therefore, the configuration file format was designed to mirror as much
as possible OpenShift Job definition format so that it is as intuitive as possible, making it
easy to migrate the definitions in both directions.

With Tekton, Common Expression Language (CEL) would have to be used for filtering
which jobs to execute. Alternatively, a new Interceptor could be implemented to support
any other language, but it does not seem like a good idea because in that case, it would
probably be better to learn CEL. Implementing an API from scratch enables one to choose
other approaches to filtering, such as letting engineers define a Python function returning
a Boolean value acting as a filter. Therefore, users do not have to learn a new language
because most of them have at least some experience with Python. However, it does not
mean that this would not have any downsides. Empowering users to use a Turing complete
language means they can write filters that could crash the whole application or execute
malicious code, taking control over the machine. This is one of the reasons to use more
restrictive languages such as CEL. How these problems are tackled is discussed in Chapter
6.4.

Tekton is quite a complex tool, requiring a solid understanding of OpenShift. A lot of
people use it just to write their pipeline without worrying much about what is happening
under the hood. However, given that it would be used for a non-typical use case, problems
might arise, and troubleshooting could require more profound knowledge. Naturally, even
the custom implementation has some inherent complexity, but it is arguably easier to read
Python code.

Lastly, implementing custom API grants more control over the service behavior, tai-
loring it to current needs and can enable extending it with support for other execution
environments in the future.

The advantage of using Tekton is that it provides a graphical user interface (GUI). This
is a nice-to-have feature rather than a requirement, as the whole application is designed to
be used from the terminal. Given that the resulting jobs are executed in OpenShift, they
can be inspected from the OpenShfit web console, so part of the workflow would have GUI
support even with the Flask design.

Also, in the enterprise context, there might be some instances of Tekton already provi-
sioned by other teams, so it could lead to less maintenance work than deploying one’s own
instance.

Weighting all these trade-offs, I decided to move forward with implementing a cus-
tom API. Note that no matter what approach I would pick, the client would have to be
implemented because Tekton does not have any plugin that would connect it directly to

5Maybe, a Custom Resource could be defined to ease the burden, but I did not get that far in prototyping
it.
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the message bus. Implementing such a plugin would be more challenging than writing a
separate utility.

5.6.2 The interface

The interface is designed as REST API that works with JSON as a data transfer format
for both getting the requests and sending responses. This is because the goal is to use a
format that is a good middle ground for both machine and human communication. The
alternatives considered were HTML and plaintext, but these are not suitable for machine
communication. Together with the JSON payload, an error code is returned to mark the
success or failure of the request, where codes in the range of 400 to 499 signal problems
with the client data and codes in the range of 500 to 599 signal problems with the server.

If the job was successfully launched, the response indicates which job was triggered and
is returned together with response code 200. Note that in both following examples, the
description line is wrapped and formatted to fit the page, even though, according to the
specification, this is not a valid JSON.

{
"description": "Message triggered execution of the following jobs:

['hello-job'].",
"name": "OK"

}

In case any error occurs, name field will contain the exception. In the case of the
following exception, error code 400 is returned.

{
"description": "Message headers have to contain 'correlation-id' key.

Message: {'headers': {}, 'msg': {'say_hello': 'true'}}",
"name": "Validation Error"

}

API has one endpoint to create a request, one to check the health status of the ap-
plication, and the root one that returns the URL to the repository, which contains more
information about the service.

5.6.3 Flask

Flask is a widely popular micro framework for developing web applications written, and it is
excellent for writing REST APIs. It is written in Python. Because it is a micro framework,
it contains only the core functionality, and support for things like object-relational mapping
or authentication is provided via extensions. It is also WSGI compliant. WSGI stands for
Web Server Gateway Interface, and it is a Python standard that specifies an interface
between web servers and Python web applications and application servers. This means
that instead of being forced into using a specific web server, users writing their applications
in Flask can pick from a plethora of WSGI-compliant web servers, choosing the one that
matches their needs.

One of the features I wanted to implement was to be able to reload the job definitions in
a running application. Unfortunately, this is not possible because all the user configuration,
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including job definitions, is loaded on startup into the config attribute of the Flask object.
And, according to the Flask’s documentation [6], “All application setup must be completed
before you start serving your application and handling requests. This is because WSGI
servers divide work between multiple workers or can be distributed across multiple machines.
If the configuration changed in one worker, there is no way for Flask to ensure consistency
between other workers.”

On the upside, Flask has a feature of running the app in debug mode, which makes it
reload every time it notices there are some changes in the code base. This feature is used
when launching the application by make run, which executes the flask command with
debug option like this: flask –debug run.

5.6.4 Task execution

To execute the task, a Kubernetes Job object is generated from the user job definition
and then sent to the OpenShift API. The main reason behind generating it is to let users
pass message payload to the job itself. Another reason is to be able to define some shared
characteristics for all jobs, such as cleanup time, enabling users to focus on defining the
tasks themselves. Otherwise, users could create a Job for each task they want to execute,
and no generation would be needed.

The other considered approach was to use OpenShift templates that would be created
on application startup and uploaded to the cluster. Then every time a job was triggered, a
new Job would be created out of those templates, passing the message payload into them.
However, I did not see much value in creating those templates compared to creating a new
resource every time because the template would have to be also generated, so it would
needlessly overcomplicate it. Furthermore, it would limit the library choices because not
all libraries support all the OpenShift command line client features.

5.6.5 Connecting to OpenShift cluster

Three ways of connecting to the OpenShift cluster are via the command line client, REST
API, and client library. For this application, I used openshift-restclient-python library,
because it can be called directly from Python code, and no additional software needs to be
installed, so the task framework is independent of the environment.

Other libraries are available, such as openshift-client-python (both are under openshift
namespace on GitHub). Still, the downside of this library is that it requires OpenShift
command line tools to be installed in the environment in which it is running. The upside
is that because it uses the OpenShift command line tool under the hood, it has more
capabilities than the library I chose, which supports only basic operations on OpenShift
resources. However, basic operations are enough for my use case, so I decided to go with a
smaller runtime environment size.

When connecting to the OpenShift cluster, the user has to log in first and choose the
project. Project is a Kubernetes namespace with some extra annotations and provides a
way to split resources in a single cluster. Each user may have different access rights and
permissions for different projects. It also enables setting limits on resource consumption on
a project basis.
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5.6.6 Authentication

Authentication of the API will not happen in the application itself. While some of the
Flask extensions are available, it would mean adding a database to the design but mostly,
enterprises usually require their applications to have Single Sign On (SSO) capabilities,
which could not be simply implemented on this layer. Therefore, authentication of the
API will be handled during deployment, either using Kerberos on the web server or OAuth
proxy when deployed to OpenShift.
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Chapter 6

Implementation

The following chapter discusses the most interesting and important aspects of the imple-
mentation.

6.1 Configuration files
There are two configuration files that both parts of the solution consume. The first is a
file containing job definitions, which the user supplies. The second is common/config.py,
which mainly sets the basic configuration from a deployment point of view and specifies at
which file path the job definition file will be expected.

For the job definition file, the YAML format is used. It was chosen mainly for its
readability and popularity. The other considered format was JSON, and while both are
human-readable formats, JSON focuses more on being easy to parse and generate, making
it slightly harder to write and read than YAML. Version 1.2 of YAML specification was
released to make YAML a superset of JSON, which means conversion between the two is
possible. For conversion from JSON to YAML, this is true under the condition that JSON
files do not have duplicate keys1.

In the context of the Python ecosystem, this leads to two popular ways of defining,
validating, and parsing a YAML file and its schema. The first one is to convert the YAML
file to JSON and use a library such as jsonschema to validate it against the defined schema,
which can also be written in YAML and then in code converted to JSON. This is great for
migrating between formats and for the flexibility it enables.

The second approach is to use a YAML library. In the final solution, StrictYAML
is used. There are some other popular Python YAML libraries; however, not all of them
support validation. The main advantage over using jsonschema is the error message format.
When converting YAML to JSON, the information about line numbering is lost. This can
make searching for a typo in larger files harder because the only way to locate a mistake
is by using the order of keys. Also, duplicate keys are not checked because they are valid
according to the JSON specification.

Another aspect of library choice is arbitrary code execution. One of the considered li-
braries, PyYAML, converts YAML documents directly to a Python object. Therefore, when
using its load function, it is necessary to make sure that the document is coming from a
trusted source because the attacker could construct a Python object in a way that a mali-

1More on the topic of converting between the two can be found at http://yaml.org/spec/1.2-old/
spec.html#id2759572.
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cious function would be executed.2 That is why this library also implements a load_safe
function that supports constructing only simple Python objects, such as integers or lists.
This approach is similar to the StrictYAML, which limits the objects used to represent the
YAML document by default. More on arbitrary code execution can be found in Section
6.4.

An important feature or downside of the StrictYAML library, depending on the point
of view, is that it parses only a restricted subset of YAML. One of the reasons behind
this decision was to avoid some problematic YAML constructs that can lead to unexpected
behavior. Fortunately, in the case of this project, none of these unsupported features is
missed.

The job configuration file is validated against the schema when the YAML file is loaded
and internally converted into JSON. This schema is written using StrictYAML and can be
found in common/schema_job_definitions.py.

An example of a job configuration file can be found at tests/job-definitions.yaml.
Here, only the excerpt necessary to describe the format of the file is shown.

environments:
openshift:

name: openshift-prod
namespace: khiscahaw

jobs:
- name: countdown

environment: openshift-prod
triggers:

- topic: "/topic/countdown"
filter: message["execute"] == "true"

image: ubi9
env:

- name: MESSAGE
value: "Liftoff!"

- name: INITIAL_VALUE
eval: message['initial-value']

bash: |
echo 'Starting countdown'
i="${INITIAL_VALUE}"
while [ $i -ne 0 ]
do

echo "$i"
i=$(( $i - 1 ))

done
echo "${MESSAGE}"

At the beginning of the file, execution environments are defined. The only currently
supported environment type is openshift, which can specify only one environment with
one namespace. It could be defined more straightforwardly, but this is meant to be open for
the addition of other execution environments. Each environment has some name by which
it is referred from the job definition. In this case, it is called openshift-prod. Note that

2More on this in its documentation: https://pyyaml.org/wiki/PyYAMLDocumentation
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the application expects .kube/config file to be present on the system, through which it is
possible to connect to the OpenShift cluster, so no authentication details are required here.

The following section consists of an array of job definitions. Each job has a name, which
determines how it will be referred to in logs and response messages from the API. Then,
there is a triggers section. There are two types of triggers – topic, which is mandatory,
and filter. topic determines messages to which topics trigger the job execution. It is
also used by the client so that it knows to which topic to subscribe. filter enables the
user to write Python expressions that are evaluated to some Boolean values. If it evaluates
to False, then the message is not executed. Users can use a message object to inject a
message payload.

Because this job uses an OpenShift environment, it defines an image, in which it will
be executed. In order to inject variables into the runtime environment, env section is used.
name denotes the environment variable name, and to pass a string, value is used. This
mimics the way it is done in OpenShift definitions. In order to inject some message data,
eval key can be used. Again, message object contains the message payload.

Lastly, the job definition contains a bash key. The script that the user defines here is
then executed on the OpenShift cluster using bash -c <script> command.

6.2 Generation of Job resources
A new Job resource is generated and sent to the OpenShift API every time a job is trig-
gered. The generation of the resource happens in _generate_k8_job_resource method on
OpenShiftJob object. At first, it loads the basic Job template as a string from a file located
at api/jobs/openshift_job_template.yaml, it does some basic substitutions and then
converts it to a Python dictionary. Then, metadata, script, and environment variables are
injected. The library call that creates the resource on the OpenShift cluster accepts the
Job object as a dictionary, so no further transformation is needed.

The resulting resource is shown in Listing 2. It is sent to the API in JSON, but here it is
shown in YAML, which is the format OpenShift web console prefers to show the resources.
The most interesting things to notice here are value injection and labeling. Both the Job
object and Pod object, which will be created from the template definition, are labeled
with correlation-id and job. Thanks to this, anyone viewing executed tasks in the
OpenShift web console can simply filter jobs related to a given message or a job definition.
The reason behind labeling it with job is that each Job object must have a unique name,
which is defined under metadata field. Therefore, a random suffix is appended to the job
name. This leads to job names not being suitable for filtering, and therefore job is added
to labels.

Comparing the generated Job resource with the original job definition, the resource sub-
stituted value: ’7’ for eval: message[’initial-value’], effectively injecting mes-
sage data into the Job definition. The data is extracted from the message using eval
function, which is discussed in more depth in Section 6.4.
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---
apiVersion: batch/v1
kind: Job
metadata:

name: countdown-wstb
labels:

correlation-id: cf56f921-e7b9-4246-a064-71ed5a99bb3b
job: countdown

spec:
ttlSecondsAfterFinished: 600
backoffLimit: 3
template:

metadata:
name: countdown-wstb
labels:

correlation-id: cf56f921-e7b9-4246-a064-71ed5a99bb3b
job: countdown

spec:
containers:
- image: ubi9

name: countdown-wstb
command:
- bash
- "-c"
- |

echo 'Starting countdown'
i="${INITIAL_VALUE}"
while [ $i -ne 0 ]
do

echo "$i"
i=$(( $i - 1 ))

done
echo "${MESSAGE}"

env:
- name: MESSAGE

value: Liftoff!
- name: INITIAL_VALUE

value: '7'
restartPolicy: OnFailure

Listing 2: An example of generated Kubernetes resource that is then created on the Open-
Shift cluster.
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6.3 Logging
In a microservice architecture, extensive logging has to be in place so that the debugging
of the system can be effective. For services communicating with messages, it is essential
for each logging print to reference the corresponding message. Only then it is possible to
filter through logs effectively. In the case of Red Hat’s message bus, the identifier used is a
correlation-id header, which is unique for every message.

Another best practice that should be followed is logging messages at the processing
boundaries. Logs should contain information about when the service receives a message,
sends it, or some significant execution step is finished. This way, messages can be tracked
as they travel through the infrastructure. Furthermore, any errors should be logged as
well. The error data can then be aggregated, and alerts can be set up to notify when the
application does not function properly.

My solution implements these best practices. Apart from the basic logging, both client
and API log the message on receive, and then they validate the message headers. Once
they make sure that those headers contain a correlation-id, they create an instance
of MessageLoggingAdapter. This adapter is a subclass of logging.LoggerAdapter and
its constructor expects a correlation-id as an argument. The most important part of
the adapter is its process method, which can be seen in the code snippet below. Ev-
ery time message is logged through this adapter, the process method is called, inject-
ing correlation-id into the message. Therefore, the format of the logging messages is
unified, and as long as the programmer is using the adapter, they do not have to think
about message identifiers when logging. Note that at first, the message has to be vali-
dated that it contains the correlation-id, and only after that can it be logged with the
MessageLoggingAdapter.

class MessageLoggingAdapter(logging.LoggerAdapter):
"""
Any application log related to a message has to contain its
correlation-id.
"""

def process(self, msg, kwargs):
return (

f"('correlation-id': {self.extra['correlation-id']}) {msg}",
kwargs

)

The process method keeps the formatting that is set up on the application startup of
both client and API and only changes the message part. The logging format and level are
specified in variables defined in the common/config.py file. Also note that when working
with Flask, the logger has to be accessed through the Flask object, as shown in the code
snippet below.

app = Flask(__name__)
app.logger.setLevel(config.LOG_LEVEL)
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6.4 Arbitrary code execution
One of the key considerations is how to enable users to specify filters for jobs they define.
Among the most user-friendly approaches is to have filters defined as Python expressions or
functions returning Boolean values. To do that, Python offers exec and eval functions for
code execution. exec function executes the statements and returns None, and therefore, the
results of the execution are only seen as side effects. In contrast, eval returns the result of
the executed expression. Because we are interested in the results of the expressions, eval
is used. However, there are some problems to be aware of, namely:

• exec/eval introduces a vector of attack for code injection.

• Poorly written code can cause a segmentation fault of the whole application.

• It is slower than writing if-else statements because it leads to the recompilation of
relatively small pieces of code during the execution of the program.

While there is some deny-listing one can do to limit what functions can be executed
inside the eval calls, there is always some workaround3. Considering the use case of my
framework, users can not only write filters but also define scripts that are launched if the
message passes the filters. These scripts are executed with similar or even more permissions
than the deployed task execution framework, so if they wanted to cause some damage
intentionally, they could encode the evil logic into scripts in job definitions. Therefore, the
primary protection is to have all job definitions code reviewed.

Also, if the user is not intentionally trying, a segmentation fault does not happen easily
in Python. Users may write code that results in throwing an exception, but this exception
is caught in the code that calls eval.

So, the main disadvantages are that the code executed by eval will recompile every
time4, worse testability of the written code, and it may make the application harder to
debug.

People criticizing the use of eval say that it is usually a sign of poor design and there
is usually a better way to do it, but it seems reasonable in this case. The only alternative
is using a different language for filtering, such as using CEL, but this would mean losing
one of the advantages of this design.

6.5 Flask and error handling
The simplest way to work with a Flask application is to create flask.Flask, which acts
as its central object. Once created, it is used for registering view functions, URL rules,
template configuration, and much more.5 However, in order to make the application more
extensible in the future, blueprints are used. A Blueprint object works similarly to Flask
object, and it is used for extending an application. It is great for splitting large applications
into components or registering blueprints on URL prefixes.

In the final application, blueprint api_v1.py is created and then registered on Flask
application object using construct

3This blog post describes the dangers in more depth: https://nedbatchelder.com/blog/201206/
eval_really_is_dangerous.html.

4But if there were any performance problems, this code can be compiled beforehand and then reused,
see https://lucumr.pocoo.org/2011/2/1/exec-in-python/.

5Documentation is at https://flask.palletsprojects.com/en/2.2.x/api/#flask.Flask.
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app = Flask(__name__)
app.register_blueprint(api_v1.py)

Anytime during the execution of the Flask application, an exception may be raised. To
override the default behavior, an error handler can be registered6. An error handler is a
function that returns a response when a certain error is raised. It is passed an instance of
the error that is being handled. The following is a code snippet from api/api_v1.py that
shows how is the error handling done in a final solution. Notice that ResponseBaseError
is passed into the handler. It is a class that other custom errors should extend so that there
is only one error handler for all of them.

@api_v1.errorhandler(ResponseBaseError)
def return_errors_as_json(e):

response = {
"name": e.name,
"description": e.description,

}
return response, e.code

This error handler is registered on api_v1 blueprint. While handlers registered on the
take precedence over those registered globally, not all requests reach the blueprints. For
example, 404 routing errors happen before the blueprint can be determined. Therefore,
there is an additional error handler defined in wsgi.py that takes care of such errors.

Another cool thing about Flask framework is that it offers a testing client. The following
snippet show how it is initiated and then it is used in tests as a fixture. The app here is a
flask.Flask object.

@pytest.fixture
def client(app):

return app.test_client()

The client instance can then be used to directly create requests in unit tests like this

resp = client.get("/status")

6.6 stomp.py library
Working with stomp.py library is relatively straightforward. At first, a connection object
is created. Because message bus supports Stomp v1.1, stomp.Connection11 is used. As
an argument, the constructor takes a list of URL endpoints. When connecting, the list is
traversed until a connection can be made.

Then, a connection listener is registered on the connection object. A connection listener
is a subclass of ConnectionListnener class that implements many helpful methods such
as on_connected(), on_message() or on_error(). Multiple connection listeners can be
registered, each with a different purpose, such as logging or statistics collection. The client
uses only one connection listener that takes care of everything, including logging, sending
messages to the API, and reconnecting.

6Flask documentation about error handling: https://flask.palletsprojects.com/en/2.2.x/
errorhandling/.
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Once registered, the client connects and subscribes to the queues it loaded from the job
definitions file and waits for incoming messages using Event().wait() statement, which
blocks the current thread.
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Chapter 7

Testing and Evaluation

This chapter describes the approach to testing and the technologies that were used. It
provides some numbers on the system’s performance and discusses scaling options. Lastly,
it compares the solution against the current setup.

7.1 Unit testing and continuous integration
Unit testing aims to split the code base into individual units and ensure these units work
independently. Each unit test is executed in an isolated environment, so integration with
other components does not affect its result. Apart from code validation, it also has a
documenting function that strictly defines the contract for a given piece of code.

For this project, pytest is used as a unit-testing framework. Tests are located in tests
directory, which is split into subdirectories that group tests for each top-level module. It
also contains the job_definitions.yaml file with a sample of job definitions used within
the tests. The test suite focuses primarily on testing the application logic, any external
dependencies, such as OpenShift, are mocked. This means unit tests can be executed
without worrying about the environment setup. For mocking, MagicMock object is used
extensively by invoking its constructor directly or using a @mock.patch decorator. This
class is part of unittest testing framework, which is imported as a dependency. From every
unit test run launched by make test, a code coverage report is generated using pytest-cov
module, which configuration can be found in .coveragerc file.

A continuous integration pipeline is triggered on every commit in order to minimize
the number of regressions introduced into the code, speed up the process of merging new
changes, and follow the best practices of modern software development. It is defined in a
.gitlab-ci.yml file and uses GitLab CI/CD tool. The pipeline consists of one stage with
two jobs. Both of them use a ubi9-minimal container image with all Python dependencies
installed as an execution environment. The first job executes the unit tests described above
using make unit-test command. The second job is doing static analysis of the code. It
uses flake8 linting tool to catch programming and stylistic errors. The second utility it
launches is black. It is used for code formatting to increase consistency and readability and
to reduce diffs when committing changes into the version control system.

End-to-end testing has to be done manually. sender.py utility is provided, which sends
two messages to the ActiveMQ message broker upon launching. These messages should
trigger task execution, and as a result, two Jobs should be executed on an OpenShift
cluster. Further manual testing was carried out to ensure that both client and API can
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handle the failure of components they communicate with, such as the OpenShift cluster,
message bus, or any of the two mentioned parts of the application. All the testing was
carried out with applications running on Red Hat Enterprise Linux 8.7 that were connecting
to Openshift with Kubernetes 1.24.11 and Kustomize 4.5.4. Messages were delivered by
ActiveMQ version 5.18.1.

Performance was also tested manually by examining the logs. However, the solution
has not yet been deployed so the numbers may vary for the production deployment. The
solution was tested by launching the development environment, which means an instance
of ActiveMQ, client, and API was running locally on my laptop. The Flask API was
running on a debug WSGI server that is part of the package and was making requests to
the OpenShift cluster, which was running somewhere in the cloud. sender.py utility was
configured to launch 10 countdown jobs from tests/job_definitions.yaml. The test
was performed three times. On average, it took 0.198 seconds to execute the whole logic
of launching a Job and acknowledging it by the client. This meets the requirements by a
sizeable margin. However, analyzing logs for one of these runs in more depth, the execution
spends 93% of time in a openshift_job._create_kubernetes_job function.

This might be caused by a long round trip time caused by the distance between my
machine and the data center hosting the OpenShift cluster. Therefore, it is recommended
to deploy the solution on the same OpenShift cluster that will execute the tasks or at
least in the same data center. Also, the library creating the resource could be analyzed
for speed, but from my quick tests, performing a health check with curl command takes
longer than creating the resource, so I think it might be pretty efficient with the number of
requests it needs (curl starts by performing a TLS handshake). To increase the system’s
performance, the client could make requests asynchronously. The same could be said about
the API, but Flask is a synchronous web framework, so there are some limitations when
it comes to asynchronous programming1. Within a single request, multiple asynchronous
coroutines can be launched. Nevertheless, when there are many requests, the worker still
executes them one by one, which does not bring any benefit in this case. Therefore, the
API should be scaled horizontally.

7.2 Comparison with similar tools
There is no industry standard around the task execution that the solution created as part
of this thesis could be directly compared to. Close to it is the Jenkins setup described in
Chapter 4. While it provides many features out of the box, it must still be heavily cus-
tomized to provide the needed functionality. This is done using plugins that enable support
for configuring the whole system and job definitions in code, which I would expect to be
part of the standard Jenkins installation. It also needs a plugin that handles communica-
tion with the message bus. In the end, it might be argued that from the point of view of
customization, the final solution of this thesis is not much different from the Jenkins setup.
Both solutions use some off-the-shelf software as an execution environment. The current
solution uses Jenkins agents to execute jobs in virtual machines, while the new one uses
OpenShift, which launches the jobs as containers. This thesis comes up with a client that
connects to the message bus, building on top of the stomp.py library. Again, this is quite
similar to customizing a plugin, which Red Hat must maintain.

1Flask documentation on async is at https://flask.palletsprojects.com/en/2.2.x/async-await/
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However, the solution presented in this thesis is still more customized. The client relies
on the message bus to store unprocessed messages, eliminating the problems of missing
messages caused by the failing client. It is open for extension of other execution environ-
ments (e.g., Ansible). It is more flexible to adapt to future needs while not introducing any
extra complexity caused by bending one-size-fits-all solutions. While these general tools
offer a wide range of features that might support a particular use case, such a workflow
may not be aligned with the central vision of product teams and, therefore, might be more
challenging to set up (see Section 5.6.1 for more discussion of how Tekton fits into this).

Similarly to much off-the-shelf software, Jenkins aims to support various use cases and
therefore has many features that might not be strictly necessary to meet the requirements
but can be helpful. In the case of the existing solution, these nice-to-have features include
a graphical user interface or alert email integration. OpenShift also provides a graphical
user interface, but a large part of the workflow is accessible only via terminal and API calls.
Buying a general solution is usually cheaper than implementing all the functionality if no
or only a little customization is needed. However, hidden costs might be associated with it,
which may come in the form of recurring subscription renewals, upgrades, and mentioned
customizations. Sometimes, companies start with off-the-shelf software to quickly bring
the product to the market. Once the product succeeds and its bottlenecks show up, the
custom-tailored solution is built to address the performance needs, either by picking better
technologies or making the architecture more scalable.

Another aspect worth mentioning is that both Jenkins and Kubernetes are open-source
projects. Therefore, anyone can download and use their source code for free according
to the permissible use specified in their licenses. However, enterprises often do not use
these projects directly but pay for subscriptions or use them as a service. This can grant
them customer support or the ability to focus on the added value of their products without
worrying about the underlying infrastructure. And even though it is not a primary concern
here, because engineers’ time is often more expensive than the subscription price, it might
be better for companies like Red Hat to invest in the offerings they actively develop and
sell rather than into their own competition.

Also note that for scheduled jobs, this thesis suggests using Kubernetes CronJobs as an
off-the-shelf solution because there is no added value in implementing anything custom.
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Chapter 8

Conclusion

The goal of this thesis was to develop a task execution framework that would listen to
messages sent on a message bus and react to them by executing jobs on OpenShift. As
a result, two applications were created that facilitate this workflow – a client application
communicating via Streaming Text Oriented Messaging Protocol with the message bus and
a Flask application creating Kubernetes resources on the OpenShift cluster as a response
to these messages.

At first, this thesis discussed the basic concepts of distributed computing, workload
isolation with containers, and container orchestration platforms Kubernetes and OpenShift.
It also mentioned Tekton as one of the possible technologies for implementing part of the
functionality and weighed its trade-offs. It described basic concepts for understanding the
intricate details of messaging, its ecosystem, and protocols.

The created solution aims to replace an existing one currently running on Red Hat’s
release pipeline. As explained in a chapter describing the Jenkins setup in more depth, its
features include triggered and scheduled job execution. While the functionality of scheduling
tasks was initially in the scope of the designed solution, I quickly realized that it would be
better to leverage Kubernetes CronJob resources for this workflow.

Therefore, the core of this work focused on triggering task execution based on messages
coming from the message bus. I collected the requirements for the system, designed the
solution, and implemented it. The final solution meets the requirements, including handling
error cases such as client failure or temporary disconnection of one of their components.
Also, extensive logging is in place to make any problems easier to debug. In order to
increase the quality of the software and reduce the number of regressions, the codebase was
covered by unit tests. Scenarios for manual end-to-end testing were created to showcase the
resulting functionality and test its performance. The resulting design was then compared
to the alternative approaches and weighted the advantages and disadvantages of custom-
tailored solutions.

Deployment of the solution was out of the scope of this thesis and, therefore, will be the
natural next step. The Flask application will need a production-grade WSGI (Web Server
Gateway Interface) server because the one that is part of the Flask package is insufficient.
While the current setup can handle the required workflow just fine, HTTP requests could
be made asynchronously to prepare for possible future performance needs.
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Appendix A

CD Contents

• umb-tasks/* - source code of the applications developed as part of this thesis

– api/- source code of API application
– client/ - source code of client application
– common/ - modules shared by both applications
– tests/ - unit tests for both applications and shared modules
– .gilab-ci.yml - definition of a CI pipeline
– Makefile - file with helper scripts
– README.md - file with information about development setup, configuration,

etc.
– client.py - launcher script of client application
– sender.py - utility script used for testing the solution
– wsgi.py - launcher script of API application
– other files not mentioned here are described in README.md

• thesis/ - source code and other resources for generating this thesis

• xticha09-thesis.pdf - final version of this thesis
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