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Abstract 

The main goal of the thesis was to improve quantitative estimation of vegetation parame­
ters of spruce stand using spectral simulations of three-dimensional radiative transfer model. 
In the first step, the precise computer 3D model of a spruce tree was created. Since imple­
mentation of such precise representation was computationally too demanding for a larger fo­
rest canopy, the 3D model had to be simplified. The optimal simplification was found using 
available spectral airborne data and through comparison with the original 3D spruce model. 
The optimal simplification yielded an acceptable compromise between computation require­
ments and accuracy of radiative transfer simulations reproducing the forest stand reflectance. 
The optimized simplification was subsequently used in retrievals estimating the vegetation 
parameters from a spectral satellite image. Accuracy of the estimates was validated through 
comparison with field measurements of retrieved parameters. 

Finally, the results obtained after implementation of new optimal 3D spruce model were 
compared with results obtained using a more traditional approach based on geometrically sim­
pler tree crown shapes. 

Abstrakt 

Hlavním cílem práce bylo zlepšení kvant i ta t ivních o d h a d ů vegetačních p a r a m e t r ů smrkových 
poros tů pomocí spektrá lních simulací t ro j rozměrného modelu přenosu záření. P r v n ě bylo 
po t ř eba vytvoř i t přesný 3D model smrku. Implementace přesného 3D modelu smrku pro para­
metrizaci celých lesních poros tů je v současné době výpoče tně nemožné, bylo tedy nu tné tento 
3D model smrku zjednoduši t . P řesný 3D model smrku společně s dos tupnými leteckými daty 
sloužil pro nalezení op t imáln ího zjednodušení . Op t imá ln í model vedl ke kompromisu mezi 
výpoče tn í náročnos t í a přesnost í výsledné odrazivosti z modelu přenosu záření. Následně byl 
opt imáln í model smrku využi t pro odhady vegetačních p a r a m e t r ů ze satel i tních snímků. Přes­
nost o d h a d ů byla ověřena oproti pozemním měřen ím odhadovaných p a r a m e t r ů . N a závěr byly 
porovnány výsledky z o d h a d ů vegetačních p a r a m e t r ů pomocí op t imáln ího 3D modelu smrku 
s výsledky z t rad ičn ího p ř í s tupu pomocí modelů stromu s geometricky j ednoduš ími tvary korun. 
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1 Introduction 

1.1 Thesis structure and synopsis 
Remote sensing (RS) is a multidisciplinary scientific domain for measuring the electromagnetic 
radiance reflected and radiated from Ear th surfaces. One kind of RS imaging spectroscopy 
data is called hyperspectral spectroscopy. It contains tens to hundreds reflectance images 
representing very narrow wavelength intervals within the continuous optical spectral range 
of 400 - 2500 nm. The hyperspectral images are frequently used for mapping of vegetation 
traits such as content of chlorophylls a+b (Cab), leaf area index (LAI ) , etc. 

Methods of quantitative estimation of plant Cab using proximal and RS data can be divi ­
ded in two major groups: i) empirical and ii) physical approaches (Liang 2005). Empir ical 
approaches build on a simple regression relationship established between field measured Cab 
and reflectance data (Curran et al. 2001; Gitelson et al. 2003; M a i n et al. 2011). Phy­
sical approaches use radiative transfer models ( R T M ) , for instance the Discrete Anisotropic 
Radiative Transfer ( D A R T ) model (Gastellu-Etchegorry et al. 2015), to simulate plant-light 
interactions. R T M s provide an explicit link between their outputs, simulated top-of-canopy 
reflectance, and input characteristics, i.e. biochemical and structural properties of the main 
scattering elements - leaves (Jacquemoud et al. 2009). 

The thesis is consisting of several consecutive methodological steps illustrated in Figure 1.1: 
i) creation of representative 3D spruce tree model from terrestrial laser scanning data, ii) three-
level optimization of the 3D tree model, iii) D A R T forward simulations of spruce forest, 
and iv) estimation and validation of Cab and L A I from the Sentinel-2 satellite image. 

The wooden skeleton of a tree is an important part of the 3D spruce model. It contributes 
to reflected radiance of a whole forest stand scene due to a high near infrared reflectance, espe­
cially in cases of low L A I and sparse forest canopy cover. The reconstruction of wooden skeleton 
was realized with an automatic algorithm designed by Sloup (2013), which uses the terrestrial 
Light Detection and Ranging ( L i D A R ) scans of single trees. The L i D A R point cloud are also 
used for vir tual distribution of needle-age classes shoots within a tree crown. 

Correct shoot distribution and assignment of the foliage optical properties within a spruce 
tree crown is not an easy task. The Norway spruce is an evergreen tree, which means that 
its crown contains shoots of several (on average five) ages (Figure 1.2a). Needles of current 
year have significantly different optical properties when compared to older needles (Figure 1.3), 
whereas the differences among older age classes are much less significant. It is important 
to characterize these differences in our model, because they play an important role in estimation 
of quantitative parameters of whole canopy. Unfortunately, the shoot age is not the only aspect 
influencing optical properties of needles. Another important aspect is the amount and canopy 
penetration of incoming photosynthetically active solar irradiance (Figure 1.2b), which stim­
ulates growth of new foliage and consequently the number of current year needles in vertical 
profile of tree crown. The dependences between optical properties and distribution of leaf 
biomass within a tree spruce crown is depicted in Figure 1.3. Therefore, a new algorithm 
had to be designed for correct distribution of needle shoots in spruce crown, which is one 
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of the main outcomes of this thesis. 
It must be acknowledged that the reflectance of forests, captured in remotely sensed data, 

is strongly modulated by its architecture and canopy structure. Different approaches allow 
one to consider the architectural an structural forest features when simulating remote sensing 
optical data in R T M s . The traditional approach in the D A R T model, considered in this study 
as the base model, is to treat forest as a 3D matrix of voxels (cells) shaped geometrically 
in crowns and filled with a homogeneous turbid medium of foliage particles. Each vegetation 
turbid cell contains vir tual particles with predefined optical and structural properties of leaves, 
in our case the shoots of needles, where G(Q) is the function representing the interception of light 
by foliar area unit along direction Q, which is weighted by a coefficient a(Q). The coefficient 
expresses the foliage clumping within and between tree crowns, i.e. at levels of shoots/branches 
and spruce trees, respectively. The density and the geometrical distribution of turbid medium 
particles is determined by the L A I and the leaf angle distribution ( L A D ) and other vegetation 
structural parameters of the D A R T model. However, this approach is not always fully satisfac­
tory, because a(Q) is an empirically derived weight and because L A D is defined as a simplified 
function, which might not be able to properly describe the complex spruce structure. A s the re­
sult, the direct comparison of D A R T top-of-canopy reflectance simulations and R S observation 
shows in some cases significant intensity differences (Figure 3.15a). This discrepancy is the main 
motivation for improvement of spruce forest simulation in the D A R T model. One of the key 
D A R T inputs are tree representations - 3D models, which characterize architecture of each 
forest species. Compared to the base turbid-cell models, the explicit 3D tree models are highly 
computationally demanding, and in case of too large forested scenes with large amount of trees 
unfeasible to simulate. 

Therefore, an optimization of 3D spruce model at three scale levels (shoots, tree crowns, 
and canopy) was conducted. Two new simplified shoot models were designed and their re­
flectance simulated with the D A R T model was cross-compared with reflectance of i) an original 
geometrically complex shoot containing single needles (reference shoot) and ii) a shoot pre­
viously simplified by D A R T developers. D A R T simulations with new shoots, implemented 
in a single-tree mock-up, were compared with the same simulation of exact 3D spruce model, 
converted and original turbid cell tree, as well as real airborne data. Since it was impossible 
to use 3D spruce model in whole forest stand simulations, only the last two comparisons were 
performed at the canopy level. 

The final part of this study is devoted to estimation of the two vegetation parameters, Cab 
and L A I , retrieved from satellite RS image using the D A R T simulations over the optimized 
representation of the spruce canopy. Accuracy of the estimations is compared with those 
achieved using the base turbid cell model. 

1.2 Research goals 
The main goal of this study is to improve accuracy of quantitative vegetation parameters 
for Norway spruce stand estimated through inversion of the D A R T model. This main goal can 
be divided in the following specific aims: 

1. Creation of the geometrically precise 3D model of Norway spruce (Picea abies [L.] Karst.) 
according to point clouds obtained for individual trees at the Bílý Kříž study site with 
the terrestrial laser scanning approach (Section 3.3). 

2. Optimization of computationally too demanding 3D spruce model for operational imple­
mentation in R T M , specifically in the D A R T model. 
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3. Assessment of improvements due to the new 3D spruce model and its derivate, i.e. a con­
verted turbid cell models of spruce trees. This aim can be broken down in three consecu­
tive steps: 

- Creation of an optimized spruce forest stand D A R T scene and simulation of a D A R T 
reflectance look-up-tables ( L U T ) . 

- Retrieval of spruce canopy parameters from a multispectral satellite image through 
an inversion using D A R T L U T . 

- Validation and accuracy assessment of the estimates through comparison with field 
Cab and L A I measurements. 
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Figure 1.1: The workflow diagram of this thesis. The orange boxes indicate the optimal solution 
for each optimization level. 
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(a) Distribution of needle shoots of the last 
three age classes. The orange ellipses represent 
the current shoots, inside the blue ellipses are 
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Figure 1.3: The needle optical properties in young trees (cca 30 years) split in three cate­
gories - exposed, transition, and shaded. In the graphs is reflectance ( H D R F - lower curve) 
and 1-transmittance ( H T R F - upper curve). Here are separated also the different age of the nee­
dles. 
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2 Theoretical background 

A t the beginning, it is needed to define terms used throughout this thesis. The theoretical part 
is separated into three main sections. First , the theory concerning the creation of the 3D spruce 
model, second, the theory connected to radiative transfer modelling, and third, the theory 
behind estimation of vegetation parameters from RS data is described here. Because the topic 
of this thesis is very wide, it combines different fields of mathematics and physics, therefore 
not every single term is defined in details. The precise definitions are used only for the terms 
used directly in this thesis and for instances with multiple definitions. 

2.1 3D spruce model 
Creation of the 3D spruce model is one of the main goals and it is necessary to define theory 
behind algorithms designed in this study. The 3D spruce model based on L i D A R data was cre­
ated, therefore the first part of this section introduces theory of laser scanning (Section 2.1.1). 
The L i D A R data were processed in space and thus different geometrical transformations are de­
fined in Section 2.1.2. The two parts of the 3D spruce model - wooden skeleton and foliage parts 
were reconstructed separately. The creation of the foliage part determines the shoot positions 
and for that computer graphics extended to 3D space (Section 2.1.3) and cluster analysis the­
ory (Section 2.1.5) were used. The theory of cluster analysis requires definitions from statistics 
theory, which is also used in other parts of the thesis and therefore it is introduced more deeply 
in Section 2.1.4. 

2.1.1 Laser scanning 

Portable terrestrial laser scanning systems are increasingly being used for studies of canopy 
structure from the ground. L i D A R systems employ similar principles to radar systems. The laser 
sends out a series of very short pulses of a very narrow beam of coherent light, in a precise 
waveband; the time delay of the reflected pulse can then be used to determine the distance 
between the sensor and the reflecting surface. 

The first sensors recorded only one echo per pulse, but with vegetation may be echoes 
from leaves at different levels, branches, and background. Multiecho sensors may detect seve­
ral returns for one pulse including the first and last returns. In full-waveform mode, instead 
of just sampling the returned pulse at a few points, recent developments have enabled the whole 
of the waveform to be analyzed using a form of Gaussian decomposition to extract the compo­
nent echoes (Figure 2.1). In addition to providing 3D coordinates of scatterers in the canopy, 
analysis of the full-waveform data can provide useful biophysical information on the nature 
of the scattering surface. This section was adapted from Jones & Vaughan (2010) and Morsdorf 
et al . (2006). 
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Figure 2.1: Fu l l waveform laser scanning system provides complete digitization of returned 
signal (adopted from Hanzl et al. 2014) 

2.1.2 Image processing 

The theory of image processing was applied in the algorithm for creation of the 3D spruce model, 
especially for the shoot distribution using the L i D A R data (Section 3.3.3). Since the L i D A R 
data are three-dimensional, it is needed to extend the theory from 2D to 3D space. 

The term image refers to a two-dimensional light-intensity function. Since light is a form 
of energy, f(x,y) must be nonzero and finite. 

Definition 2.1.1. The image is any continuous nonnegative and finite function / with domain 
(0; H — 1) x (0; W — 1), where H is height and W width of the image. Function value f(x, y) 
of function / in the point (x,y) is called intensity (or brightness). 

Definition 2.1.1 gives 

the image consist of light reflected from objects. f(x,y) is characterized by two components. 
One is amount of source light incident on the scene called illumination and denoted as i(x,y). 
Second is amount of light reflected by the objects in the scene called reflectance denoted 
as r(x,y). The functions i(x,y) and r(x,y) combine as a product to form f(x,y): 

0 < f(x,y) < oc (2.1) 

f(x,y) = i(x,y)r(x,y) (2.2) 

where 
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and 

0 < i(x, y) < oc (2.3) 

0<r(x,y)<l (2.4) 

(Gonzalez 2002). 
Equation 2.4 indicates the fact that reflectance is bounded by 0 (total absorption) and 1 

(total reflection). The nature of i(x,y) is determined by the light source, while r(x,y) is deter­
mined by the characteristics of the object in scene. 

The form suitable for computer processing of the image function f(x,y) must be digitized 
both spatial and in amplitude. Digit ization of the spatial coordinates (x, y) is referred as sam­
pling, while amplitude digitization wi l l be called quantization (Gonzalez 2002). 

Definition 2.1.2. The matrix 

/ / (0 ,0 ) / (0 ,1 ) 
/ (1 ,0 ) / (1 ,1 ) 

\f(H-1,0) / ( i f - 1 , 1 ) 

m w - i ) \ 

f(l,W-l) 

f(H-l,W-l)j 

(2.5) 

where W, H e N is the discrete approximation of the image f(x,y). 

the right side of the equation represents digital image, while each element of the array is referred 
as pixel (Gonzalez 2002). 

Definition 2.1.3. The pixels with coordinates: 

(x + l,y),(x- 1,y), (x,y + l),(x,y-l) (2.6) 

are called J^-neighbors of p = (x,y) and wi l l be denoted by N^p). The pixels with coordinates: 

{x + l,y+ 1), (x + l , y - 1), (x-l,y+ 1), (x - 1,y - 1) (2.7) 

are called diagonal neighbors and wi l l be denoted Nd(p). These points, together with the N4(p), 
are called the 8-neighbors of p, denoted N$(p). 

Some of the points in N±(p), Nd(p) or N8(p) can be outside the image if (x,y) is on border 
of the image (Gonzalez 2002). 

For our purpose we need to extend the definition of neighbors for 3D space. This requires 
equivalent definitions of image and pixel. 

Definition 2.1.4. The 3D - image is any continuous nonnegative and finite function fs with 
domain (0;H — 1) x (0; W — 1) x (0;D — 1), where H is height, W width, and D is depth 
of the image. Function value fs(x,y.z) of function / 3 in the point (x,y,z) is called intensity 
(or brightness). 

Definition 2.1.4 gives 

0<f(x,y,z) < o o (2.8) 

Also in case of 3D-image is need to digitized function f3(x,y,z). 
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Definition 2.1.5. The matrix 

F3 = (f3(i,j,k)), (2.9) 

where % e (0; H - 1), j e (0; W - 1), k e (0;D - 1), and W, H, D e N , is the discrete 
approximation of the image fs(x,y,z). 

Definition 2.1.6. Voxel is an element of discrete approximation of three-dimensional image 
representing a volume. It is three-dimensional equivalent of pixel. 

Definition 2.1.7. A voxels with coordinates: 

(x+ l,y,z),(x- l,y,z),(x,y + l,z),(x,y-l,z),(x,y,z + l),(x,y,z- 1). (2.10) 

are called facet-neighbors of v — (x,y,z) and wi l l be denoted by Nf(v). The twelve neighbors 
of v, which have exactly one common edge with v wi th coordinates 

(x + l,y + l,z),(x + l , y - l,z),(x- l,y + l,z),(x- l , y - l,z), 

(x + l,y,z + l),(x + l,y,z-l),(x- 1,y,z + 1), {x - l,y,z- 1), (2.11) 

(x,y + l,z + l),(x,y + l , z - l),(x,y- 1, z + 1), (x, y - l,z-l) 

are called edge-neighbors and wi l l be denoted Ne(v). The last eight neighboring voxels, which 
have exactly one common corner with v wi th coordinates 

(x + l,y + l,z + l),(x + l,y + l,z-l),(x + l , y - l , z + l),(x + l , y - l , z - l ) 

(x-l,y+ l,z+ l ) , ( x - l , y + l , z - 1), (x - l , y - l , z + 1), (x - l , y - l , z - 1) 

are called corner-neighbors and wi l l be denoted Nc(v). The sets of voxels Nf(v), Ne(v). 
and Nc(v) together are called 26-neighbors and wi l l be denoted N2Q{V). 

2.1.3 Linear transformations 

Fundamental of matrix theory are applied for transformation of the L i D A R point clouds (foliage 
and wooden) and 3D objects (wooden skeleton and 3D shoot models). The following trans­
formations were used: translation, rotation, and scaling. Translation and scaling were used 
for adaptation of the scanned trees to the required size (Section 3.3.2). Translation and ro­
tation were applied for the distribution of shoot models. A l l the transformations are defined 
in the 3D space. 

Definition 2.1.8. The transformation of the point A(x, y, z) to the point A*(x*, y*, z*) is called 
the translation if and only if 

X* = X + vx 

y*=y + vy (2.13) 
z* = z + vz 

Equation 2.13 may be expressed in matrix representation by writing: 

X* = T X (2.14) 
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in more detail: 

fx*\ (i 0 0 vx\ /x\ 
y* 0 1 0 Vy y 
z* 0 0 1 Vz 

z 

K1) \ o 0 0 V w 
(2.15) 

the matrix T represents the transformation matrix of translation. The other transformation 
can be also represented by transformation matrices. Here are defined only the transformation 
matrices and the expressions for the other transformations can be derived the same way. 

Definition 2.1.9. The transformation which is given by matrix 

(2.16) 

(sx 
0 0 o \ 

0 Sy 0 0 
0 0 sz 

0 
0 0 V 

is called scaling by factor Sx, Sy, and Sz along the x, y, and z axes. 

Definition 2.1.10. the transformation which is given by matrix 

is called rotation of a point about x axis by an angle a. 

Definition 2.1.11. The transformation which is given by matrix 

(I 0 0 o \ 
0 cosa —sina 0 
0 sina cosa 0 

\ o 0 0 V 

/cos/3 0 
0 1 

sin/3 0 
\ 0 0 

is called rotation of a point about the y by an angle j3. 

-sinß 
0 

cosß 
0 

0 \ 
0 
0 

Definition 2.1.12. The transformation which is given by matrix 

/ cosy 

R , 

0 0 \ 
0 0 
1 0 

\ 0 0 0 1/ 

is called rotation of a point about z axis by an angle 7. 

smy 
0 

—smy 
cosy 

0 
0 

(2.17) 

(2.18) 

(2.19) 

Simple transformations defined in 2.1.9-2.1.12 can be used for construction of more compli­
cated cases. For example, translation, scaling, ad rotation about z axis is given by X * = M X , 
where M = R Z S T is the 4 x 4 matrix. It is important to note that these matrices generally 
do not commute, so the order of application is important. 
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2.1.4 Statistics 

Theory of cluster analysis (Section 2.1.5), support vector machines (Section 2.3.4) is build 
on theory of statistics. The following definitions are adopted from Introduction to Mathematical 
Statistics (Hogg & Craig 1978). 

Definition 2.1.13. The nonempty set f2 of every possible outcomes of a random experiment 
is called the sample space. 

Definition 2.1.14. Let 7(C) be a function defined for each subset C of the space fi, and if 

(a) 7(C) > 0; probabilities are positive, 

(b) CPf \J Ci) = ^ C P ( C j ) , where the sets C^i = 1,2, . . . ,n , are disjoint (that is, where 
M=l ' i=l 

dUCj = 0,iy£j, 

(c) CP(fi) = 1; the probability of all the outcomes combined is 1 (has to happen), 

then 7(C) is called the probability function of the outcome of the random experiment. 

Following theorems give some other properties of a probability function. 

Theorem 2.1.1. For each C c f l , 7(C) = 1 - 7(C*), where Q = C U C* and C n C* = 0. 

Theorem 2.1.2. The probability of the null set is zero; that is, 7(0) = 0. 

Theorem 2.1.3. If Cx and C2 are subset of Q such that Cx C C2, then 7(C±) < 7(C2). 

Theorem 2.1.4. For each C c f l , 0 < 7(C) < 1. 

Theorem 2.1.5. If C\ and C2 are subsets of f2, then 

Definition 2.1.15. Given a random experiment with a sample space Q. A function X, which 
assigns to each element c G Q one and only one real number X(c) = x, is called a random 
variable. The space of X is the set of real numbers A = {x; x = X(c), c G Q}. The probability 
of event A is denoted by 7r(X G A), where 7r is an abbreviation of "the probability that." 

It may be that the set Q has the elements which are themselves real numbers. In such 
an instance we could write X(c) = c so that A = f2. 

Let X be a random variable that is defined on a sample space Q, and let A be the space 
of X. Further, let A be a subset of A. Just as we used terminology "the event C , " with C c O . 
we shall now speak of "the event A." 

W i t h A a subset of A, let C be that subset of £1 such that C = {c;c G f2 and X(c) G A}. 
Thus C has its elements outcomes in Q for which the random variable X has a value that 
is in A. 

Let 7r be an assignment of probability to a set A, which is a subset of the space A asso­
ciated with random variable X. This assignment is determined by the probability function 7 
and the random variable X and is sometimes denoted by 7X(A). That is. 

where C = {c; c G Q and X(c) G A}. Thus random variable X is a function that carries 
the probability from a sample space Q to a space A of real numbers. In this sense, with A C A, 
the probability 7X(A) is often called an induced probability. 

oo 

7(d U C2) = 7(d) + 7(C2) - 7(d n C2) 

7r(X eA) = 7x(A)=7(C) (2.20) 
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The function 7X(A) satisfies the condition (a), (b) and (c) from Definition 2.1.14. That is. 
7X(A) is also a probability function. 

Note: There should be fully recognized that the probability set function 7 is defined for subset C 
of fl, whereas 7X is defined for subset A of A, and in general they are not the same function. 
Nevertheless, they are closely related. Therefore in further text the probability function 7X(A) 
is denoted as 7(A). 

Definition 2.1.16. Given a random experiment with a sample space fl. Consider two random 
variables X1 and X2, which assign to each element c of fl one and only one ordered pair 
of numbers X1(c) = X\, X2(c) = x2. The set of ordered pairs A = {(xi, x2); X\ = X1(c),x2 = 
X2(c), c G £1} is called the space of X1 and X2. 

Let A be the space associated with the two random variables X\ and X2 and let A be a subset 
of A. As in the case of one random variable, we shall speak of the event A. We define 
the probability of the event A, which we denote by 7r[(X1, X2) G A]. Take C = {c; c G fl 
and [X1(c),X2(c)] G A}, where fl is the sample space. We then define 7r[(X1, X2) G A] = 7(C), 
where 7 is the probability function defined for subset C in fl. Here again we could denote 
7r[(Xi,X2) G A] by the probability function 7xltX2(A), but wi th previous note, we simply 
write 

The preceding notions about one and two random variables can be immediately extended 
to n random variable. We make the following definition of the space of n random variables. 

Definition 2.1.17. Given a random experiment with the sample space fl. Let the random 
variable Xi assign to each element c G fl one and only one real number Xi(c) = Xi, i = 1, 2 , n . 
The set of ordered n-tuplets A = {(xi, x2, ...,xn); x\ = Xi(c), x2 = X2(c), ...xn = Xn(c), c G fl} 
is called the space of random variables. 

Further, let A be a subset of A. Then 7r[(X1,X2, ...,Xn) G a] = 7(C), where C = {c;c efl 
and [ X i ( c ) , X 2 ( c ) , . . . , X n ( c ) ] G a }. 

Let X denote a random variable with space A and let A be a subset of A. If we know 
how to compute 7(C), C C fl, then for each A under consideration we can compute 7(A) = 
7r(X G A); that is, we know how the probability is distributed over the various subsets of A. 
In this sense, we speak of the distribution of the random variable X, meaning, of course, 
the distribution of probability. 

Some random variables distributions can be described very simply by what wi l l be called 
the probability density function. The two types of distributions that shall be considered are called, 
respectively, discrete type and the continuous type. For simplicity of presentation, we first con­
sider a distribution of on random variable. 

Let X denote a random variable with I D space A. Where the space A is a set of points such 
that there is at most a finite of points of A in every finite interval. Such a set A wi l l be called 
a set of discrete points. Let f(x) be a function such that f(x) > 0, x G A, and that 

Whenever a probability function 7(A), A C A, can be expressed in terms of such an f(x) by 

7(A) = Vr[(X1,X2)eA]. (2.21) 

(2.22) 
A 

(2.23) 
A 
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then X is called a random variable of the discrete type, and X is said to have a distribution 
of the discrete type. 

Let A be the I D set such that the Riemann integral 

f(x) dx = 1, (2.24) 

where 1) f(x) > 0, x E A, and 2) f(x) has at most a finite number of discontinuities in every 
finite interval that is a subset of A. If .A is the space of the random variable X and if the prob­
ability function 7(A), A e A, can be expressed in terms of such an f(x) by 

?(A) = 7r(X e A) = J f(x) dx, (2.25) 

A 

then X is said to be a random variable of the continuous type and to have a distribution 
of that type. 

It is seen that whether the random variable X is of the discrete type or of the continuous 
type, the probability 7r(X e A) is completely determined by a function f(x). In either case 
f(x) is called the probability density function of the random variable X. 

The notion of the probability density function of one random variable X can be extended 
to the notion of the probability density function of two or more random variables. Under 
certain restrictions on the space A and the function / > 0 on .A, we say that the two random 
variables X and Y are of the discrete type or of the continuous type, and have a distribution 
of that type, according as the probability function CP, A C A, can be expressed as 

?(A) = Tr[(X,Y) e A] = / (* , ! / ) , (2.26) 

or as 
?(A) = 7r[(X,Y) e A] = jj f(x,y)dxdy. (2.27) 

A 

In either case / is called the probability density function of the two random variables X and Y. 
Of necessity, CP (.A) = 1 in each case. 

More generally, we say that the n random variables X\, X2, Xn are of the discrete type 
or of the continuous type, and have a distribution of that type, according as the probability 
function CP(A), A C A, can be expressed as 

CP(A) = •?r[(Xl,X2,...,Xn) e A] = ^2...^2f(Xl,x2,...,xn), (2.28) 

or as 

CP(A) = yr[(X1,X2,...,Xn) e A] = j"... J f(x1,x2,...,xn)dx1dx2---dxn. (2.29) 

A 

Let f(x\,x2) be the probability density function of two random variables Xi and X2. For em­
phasis and clarity, we shall call a probability density function or a distribution function a joint 
probability density function or a joint distribution function when more than one random vari­
able is involved. Thus f(x\,x2) is the joint probability density function of the random variables 
Xi and X2. 
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Let the random variable X have the probability function 7(A), where A is a I D set. Take 
a; to be a real number and consider the set A which is an unbounded set from —oo to x, 
including the point x itself. For all such sets A we have 7(A) = 7r(X e A) = 7r(X < x). 
This probability depends on the point x; that is, this probability is a function of the point x. 
This point function is denoted by the symbol F(x) = 7r(X < x). The function F(x) is called 
the distribution function of the random variable X. Since F(x) = 7r(X < x), then, with f(x) 
the probability density function, we have 

F(x) = Y,f(<")> (2-30) 

for the discrete type of random variable, and 

F(x) = I f(u) cLu, (2.31) 

U)<X 

for the continuous type of random variable. We speak of a distribution function F(x) as being 
of the continuous or discrete type, depending on whether the random variable is of the conti­
nuous or discrete type. 

There are several properties of a distribution function F(x) that can be listed as a conse­
quence of the properties of the probability function. Some of these are the following. In listing 
these properties, we shall not restrict X to be a random variable of the discrete or continuous 
type. 

(a) 0 < F(x) < 1 because 0 < ?r(X < x) < 1. 
(b) F(x) is a nondecreasing function of x. 
(c) l im F(x) = 1 and l im F(x) = 0 because the set {x; x < oo} is the entire I D space 

X—¥oo x—^ — oo 
and set {x; x < —oo} is the null set. 

(d) F(x) is continuous to the right at each point x. 
We shall now point out an important fact about a function of a random variable. Let X 

denote a random variable with space A. Consider the function Y — u(x) of the random variable 
X. Since X is a function defined on a sample space f2, then Y = u(X) is itself a random 
variable which has its own space S = {y; y = u(x),x G A} and its own probability function. 
If y e 23, the event Y = u(X) e y occurs if, and only if, the event X <E A C A occurs, where 
A = {x; u(x) < y}. That is, the distribution function of Y is 

G(y) = ?r(Y <y)= ?r[u(X) < y] = 7(A). (2.32) 

One of the more useful concepts in problems involving distributions of random variables 
is that of mathematical expectations. 

Definition 2.1.18. Let X be a random variable having a probability density function f(x). 
and let u(X) be a function of X such that 

u(x)f(x)dx (2.33) 

exists (in the case of a continuous type of random variable), or such that 

5>(x) / (x) (2.34) 
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exists (in case of a discrete type of random variable). The integral or the sum is called mathe­
matical expectation (or expected values) of u(X) and is denoted by E[u(X)]. That is, 

oo 

E[u{X)}= J u{x)f{x)dx, (2.35) 
—oo 

if X is a continuous type of random variable, or 

E[u{X)] = Y,u{x)f{x), (2-36) 
X 

if X is a discrete type of random variable. 

Certain mathematical expectations, if they exist, have a special names and symbols to rep­
resent them. We shall mention now only those associated with one random variable. 

Definition 2.1.19. Let u(X) = X, where X is a random variable of the discrete type having 
a probability density function f(x). The expression 

E(X) = ^2xf(x). (2.37) 
X 

we call the arithmetic mean of the values of X or, more simply, the mean value of X (or the mean 
value of the distribution). The mean value [/, of a random variable X is defined to be \i = E(X), 
where X is a random variable of the discrete or of the continuous type. 

Another special mathematical expectation is obtained by taking u(X) = (X — /x) 2 . If, ini­
tially, X is a random variable of the discrete type having probability density function f(x), 
then 

E[(X-rf} = J2(x-rfm (2-38) 
X 

and for a random variable of continues type 

oo 

E[(X - /x)2] = / {x - n)2f{x)dx. (2.39) 
— oo 

This mean value of the square of the deviation of X from its mean value /x is called the vari­
ance of X (or the variance of the distribution). The variance of X wi l l be denoted by a2, 
and we define a2, if it exists, by a2 = E[(X — fx)2], whether X is a discrete or a continuous 
type of random variable. 

It is customary to call a (the positive square root of the variance) the standard deviation 
(SD) of X (or the standard deviation of the distribution). 

Let X and Y denote random variables that have joint probability density function f(x,y). 
If u(x, y) is a function of x and y, then E[u(x, y)\ was defined. The means of X and Y, say \xx 

and fiy are obtained by taking u(x, y) to be x and y, respectively; and the variances of X and Y, 
say a 2 and a2, are obtained by setting the function u(x,y) equal to (x — / x z ) 2 and (y — /%)2, 
respectively. Consider the mathematical expectation 

cov(X, Y) = E[(X- nx)(Y - fiy)}. (2.40) 

This number cov(X,Y) is called covariance of X and Y. If each of ax and ay is positive, 
the number 

= E[(X - ,X)(Y - p 4 1 ) 

axay 
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is called the correlation coefficient of X and Y. 
If a joint distribution of two variables has a correlation coefficient (that is, if both of the vari­

ances are positive), then r satisfies — 1 < r < 1. If r = 1, there is a line with equation y = a +bx, 
b > 0, the graph of which contains all of the probability for the distribution of X and Y. In this 
extreme case, we have 7r(Y = a + bX) = 1. If r = — 1, we have the same state of affairs except 
that b < 0. 

2.1.5 Cluster analysis 

The important task in the creation of the 3D spruce model is the shoot distribution. Positions 
of shoots within the crown were determined from the foliage point cloud and for this task 
the cluster analysis theory was applied. There are several techniques how the cluster analysis 
theory can be applied, but in the following section only the one chosen for the study is defined. 

Cluster analysis is a family of analytic procedures whose main purpose is to develop mea­
ningful aggregations, or groups, of entities based on a large number of interdependent variables. 
Specifically, the objective is to classify a sample of entities into a smaller number of usually 
mutually exclusive groups based on the multivariate similarities among entities. The proce­
dure creates groups using one of many different clustering strategies that, in general, maxi­
mizes within-group similarity (i.e. minimize within-group distances in multidimensional space) 
and minimizes between-group similarity (i.e. maximize between-group distances in mult idi­
mensional space) based on the variables. Entities are generally assumed to represent a single 
random sample (N) of an unknown number of populations (in the statistical sense of the word). 
The data set must consist of a single set of two or more continuous, categorical, and/or count 
variables, and there is no distinction between independent and dependent variables. This para­
graphs was adapted from McGar iga l et al. (2000). 

Most of this theory is adopted from Legendre & Legendre (1998), M a c K a y (2003), and M c ­
Garigal et al. (2000) 

Definition 2.1.20. Clustering is an operation of multidimensional analysis which consists 
in partitioning the collection of objects (or descriptors) in the study. A partition is a division 
of a set (collection) into subsets, such that each object or descriptor belongs to one and only 
one subset for that partition (Legendre & Rogers 1972). 

the classification of objects (or descriptors) that results from clustering may include a single 
partition, or several hierarchically nested partitions of the objects (or descriptors), depending 
on the clustering model that has been selected. 

Each object is characterized by a state (its cluster) of the classification and it belongs to only 
one of the clusters. 

Wil l iams et al. (1971) recognize two major categories of methods. In a descriptive clustering. 
misclassifying objects is to be avoided, even at the expense of creating single object cluster. 
In a synoptic clustering, al l objects are forced into one of the main clusters; the objective 
is to construct a general conceptual model which encompasses a reality wider than data under 
study. 

A simple-to-understand method (or model) is single linkage (or nearest neighbor) clustering 
(Sneath 1957). The algorithm for single linkage clustering is sequential, agglomerative, and hier­
archical. Its starting point is any association matrix (similarity or distance) among the objects 
or descriptors to be clustered. 

A n y classification or partition can be fully described by a cophenetic matrix. This matrix 
is used for comparing different classification of the same object. 
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Definition 2.1.21. The cophenetic similarity (or distance) of two objects x x and x 2 is the sim­
ilarity (or distance) level at which objects x x and x 2 become members of the same cluster during 
the course of clustering (Jain & Dubes 1988). 

As depicted by connected subgraphs or a dendrogram. A n y dendrogram can be uniquely 
represented by a matrix in which the similarity (or distance) for a pair of objects is their 
cophenetic similarity (or distance). 

Such a matrix is often called a cophenetic matrix (Sokal & Rohlf 1962, Jain & Dubes 1988). 
The ordering of objects in the cophenetic matrix is irrelevant. 

There are many different clustering techniques. Several properties of clustering techniques 
can be used to group methods into manageable categories (Sneath & Sokal 1973, Everitt 1977, 
Gauch 1982). 

2.1.5.1 Exclusive vs. non-exclusive 

Exclusive (or non-overlapping) techniques place each entity in one, and only one, group; non­
exclusive (or overlapping) techniques place each entity in one or more groups. Most techniques 
are exclusive. 

2.1.5.2 Sequential vs. simultaneous 

Sequential techniques apply a recursive sequence of operations to the set of the entities; si­
multaneous techniques apply a single non-recursive operation to the entities to form clusters. 
Simultaneous procedures have been explored by a few researchers but have not generally been 
adopted. Therefore, most of the techniques are sequential. 

2.1.5.3 Hierarchical vs. non-hierarchical 

Hierarchical techniques group similar entities together into groups and arrange these groups into 
a hierarchy that expresses the relationships among groups; non-hierarchical techniques merely 
assign each entity to group, placing similar entities together to achieve within-cluster homogene­
ity. The non-hierarchical method does not necessarily reveal any interesting structure within 
clusters or definition of relationships among clusters. Both hierarchical and non-hierarchical 
procedures have received widespread attention. 

2.1.5.4 Agglomeration vs. divisive 

Agglomerative techniques begin with each entity in class of its own, then fuse (agglomerate) 
the classes into larger classes; divisive techniques begin with al l entities in a single class and di­
vide this class into progressively smaller classes, stopping when each class contains a single 
member or when the predetermined limit of some "stopping rule" has been reached. 

2.1.5.5 Polythetic vs. monothetic methods 

Polythetic techniques consider all the information for each entity when deriving cluster assign­
ments. Monothetic techniques can only be divisive and are often used in community eco­
logy studies involving samples-by-species data, where sets of samples are divided according 
to the presence or absence of a single species. 

20 



2.1.5.6 K-means 

In this study exclusive, non-hierarchical, polythetic, divisive cluster method called k-means 
is used. Therefore, this method is introduced in this section. This method is widely used 
and there are prepared libraries for example for Matlab, Python, R. Because is no need for high 
accuracy of shoot position, this method is preferred due to the easy implementation and com­
puter efficiency even if there are some disadvantages of this method. The accuracy is not so im­
portant because the variability and extreme cases are common in the nature. 

The centroid of a cluster of objects may be imagined as the type-object of the cluster, 
whether that object actually exists or is only a mathematical construct. The coordinates 
of a cluster are computed by averaging the coordinates of the objects in the group. 

To form clusters, the method minimize an objective function which is, in this case, the square 
error criterion. 

Let Zi,z2,... be a random sequence of points (vectors) in E N , each point being selected 
independently of the preceding ones using a fixed probability measure 7. Thus 7r[zi G A] = 
7(A) and 7r[zn+i G A\zi, z2,..., zn] = 7(A), n — 1, 2 , . . . , for any measurable set A in EN. 

Definition 2 .1 .22. Let x — (xi, x2,..., xk), Xi G E N , i— 1, 2 , . . . , k be a fc-tuple. The expres­
sions 

S i (a;) =T1(x). 

S2(x) =T2(x)S'1(x), 
(2.42) 

Sk(x) = Tk(x)S[(x)S'2(x) • ••S'k_1(x), 

where 

Tt(x) = {S:£eEN,\S- X i \ < \£ — Xj\,j = 1 ,2 , . . . , k}. (2.43) 

are called minimum distance partition S(x) = {Si(x), S2(x),..., Sk(x)} of E N -

the set Si(x) contains the position in EN nearest to Xj, wi th tied points being assigned arbitrarily 
to the set of lower index. 
Note that, if Xi = Xj and i < j then Sj(x) = 0, with this convention concerning tied points. 
Sample k-means xn = (x™,x2,..., xf G E N , % — 1, 2 , . . . , k, wi th associated integer weights 
(wi, w2,... w%), are now defined as follows: x\ — Zi, w\ — 1, % — 1, 2 , . . . , k, and for n = 1 ,2, . . . 
, if z k + n G S f , x™+1 = ( z ? g y y f c ) , < + 1 = < + 1, and x]+1 = x], w]+1 = w] for j + i, where 
Sn = {S™, S2 , . . . , S^} is the minimum distance partition relative to xn. 

The process, which is called "/c-means", appears to give partitions which are reasonably 
efficient in the sense of within-class variance. That is, if / is the probability density func­
tion for the population, S = { S i , S2 , Sk} is a partition of E N , and ui: % = 1,2, 

k 
is the conditional mean of / over the set Sj , then w2(S) = Yl \ z ~ ui\2 tends to be low 

i=izeSi 
for the partitions S generated by method. 

Stated informally, the /c-means procedure consists of simply starting with k groups each 
of which consists of a single random point, and thereafter adding each new point to the group 
whose mean the new point is nearest. After a point is added to a group, the mean of that 
group is adjusted in order to take account of the new point. Thus at each stage the /c-means 
are, in fact, the means of the groups they represent. 
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The major problem encountered by the algorithms is that the solution on which the com­
putation eventually converges depends to some extent on the ini t ial positions of the centroids. 
This problem is known as the "local minimum" problem in algorithms. 
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2.2 Radiative transfer modelling 
In remote sensing the usual requirement is to determine the surface reflectance and to make 
use of this in inferring canopy or surface biophysical characteristics. The use of bidirectional 
reflectance data greatly enhances the capacity to extract canopy biophysical information when 
coupled with appropriate radiative transfer (RT) modelling. The various radiative transfer 
models available vary in the detail in which they treat the anisotropy of the radiation field 
in canopies. In such modelling it is often convenient to treat the radiation field as the sum 
of a number of components. These could include the unscattered irradiance, radiation that 
has been scattered once, and multiply scattered irradiance that has been scattered several 
times. This paragraph was adapted from Jones & Vaughan (2010). 

There are two types of Radiative Transfer Models (RTMs) , at the leaf-level and at the canopy-
level. Leaf-level models simulate optical properties i.e. light reflectance and transmittance 
through a leaf. Among the leaf-level R T M s , the P R O S P E C T model (Jacquemoud & Baret 
1990; Feret et al. 2008) is probably the most widely used. This is due to its simplicity and low 
number of input parameters (leaf chlorophyl a+b (Cab), leaf carotenoid (Car), water (Cw), dry 
matter content (Cm) and N-number (N)). 

Canopy-level R T M effectively scales the leaf optical properties to the level of plant canopies 
(e.g. agricultural fields, forests). There has been a large number of canopy R T M s developed 
and they span from relatively simple ones to complex, computationally demanding 3D models. 
A good overview of currently used canopy R T M s is provided at the website of RAdia t ion transfer 
Model Intercomparison ( R A M I , http://rami-benchmark.jrc.ec.europa.eu). 

Canopy R T M s that attempt to reproduce the complex architecture of trees and forests 
are naturally more suitable to interpret remote sensing (RS) data acquired over forested areas. 
Examples of 3D canopy R T M s are: D A R T (Gastellu-Etchegorry et al. 1996, 2004, and 2015), 
F L I G H T (North 1996), Raytran (Govaerts & Verstraete 1998), and many others, which are well 
summarized at the R A M I website. In this thesis the D A R T model was used. 

2.2.1 P R O S P E C T 

P R O S P E C T simulates leaf reflectance ( H D R F ) and transmittance ( H T R F ) from the visible 
(VIS) to the middle infrared spectrum as a function of the leaf structure parameter and leaf 
biochemical parameters (Jacquemoud and Baret 1990). It is based on so-called "plate model" 
developed by Al len et al. (1969), who represented a leaf as a uniform plate with rough sur­
faces. The leaf reflectance ( H D R F ) and transmittance ( H T R F ) are determined in the plate 
model using geometric optical principles. The fixed parameters include the index of refraction 
and absorption coefficients of the main absorbing constituents (Cab, Car, C m , and Cw) . This 
section is adapted from Jones & Vaughan (2010). 

The simple plate model was then extended to noncompact leaves by regarding them as piles 
of N plates separated by N - l airspaces (Allen et al. 1970). The solution of such a system 
has been extended to N as a real number, this is so-called generalized plate model. 

Mathematically, the total reflectance ( H D R F ) and transmittance ( H T R F ) for N layers 
are given by 

,Q: 

,Q: xRNj90 + y 

tav(a,n) 
tav(?0,n) 

(2.44) 
x 

y x[tav(90, n) - 1] + 1 - tav(a, n) 

23 

http://rami-benchmark.jrc.ec.europa.eu


where n is the refractive index of the leaf plate and a is the maximum incident angle; tav(a, n) 
is the transmittance of a dielectric plane surface, averaged over all directions of incidence 
and over all polarizations. Finally, this model has four parameters: n, N , a and the transmission 
coefficient 9 that is related to the absorption coefficient k through the following equation (Allen 
1969): 

oo 

9-{l-k)e~k -k2 J x~1e-xdx = 0 (2.45) 
k 

the spectral absorption coefficient k(X) can be written in the form 

k(X) = ^2Ki(X)Ci + k0, (2.46) 

where k0 is the intercept, Ki(\) is the spectral specific absorption coefficient relative to the leaf 
component i. A n d Cj is the leaf component i content per unit leaf area. 

In this thesis were used two versions of the P R O S P E C T model 3S and 5. The P R O S P E C T 
3S model was adjusted to recalibrated to Norway spruce needles by Malenovsky et al. (2006) 
and it calculates leaf reflectance ( H D R F ) and transmittance ( H T R F ) in the range from 450 
to 1000 nm as functions of four input parameters: Cab, Cw, C m , and N . The P R O S P E C T 
5 model differs in the reflectance ( H D R F ) range from 400 to 2500 nm and number of input 
parameters: Cab, Car, C m , Cw, N . (Jacquemoud & Baret 1990; Feret et al. 2008). 

2.2.2 D A R T 

The D A R T model simulates the radiative budget and RS data (images of radiometers, L i D A R 
waveforms, snd photon counting) of any Ear th scene (natural/urban, with/without relief) 
for any sun direction, atmosphere and viewing direction in optical and thermal domain ( C E S B I O 
2015, Gastellu-Etchegorry et al. 2015, Figure 2.2). The D A R T model is able to simulate de­
tailed complex scenes with 3D objects and is able to simulate RS images, therefore it was chosen 
for simulating spruce forest scenes for this thesis. Part of this section was adapted from Jones 
& Vaughan (2010). 

The canopy simulated in the D A R T model is divided into a rectangular cell matrix, and the ra­
diation transfer is restricted to propagate in a finite number of directions with some simplified 
assumptions. The scene consists of parallel-piped cells, each of which may contain different 
components of the landscape (e.g.,leaves, grass, water, soil). Their optical properties are repre­
sented by individual scattering phase functions and structural characteristics of elements within 
the cell. Radiative transfer is simulated with the exact kernel and discrete ordinate approaches. 

Mathematically, the radiative transfer equation for steady state monochromatic radiance 
I(r, ft) at a position r along a direction a.? in 3D Cartesian geometry is given by 

d d d 
^ijTz+Vijdy+Cijdx~ 

a 

U V (2.47) 
-a(r, % ) / ( r , % ) + Q(r, % ) + ^ ^ Cuvad(r a 

u=l v=l 
where /x, r], and ( are directional cosines with respect to the z, y, and x axes, the angular 
dependence is approximated by discretizing the angular variable fl into a number of discrete 
directions a ? , a a n d o-d are the extinction coefficient and differential scattering coefficient, 
and Q is the first scattering source term. In equation 2.47, Cuv represents the integration 
weight (note that the last term is an integration kernel). 
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2.3 Estimation of vegetation parameters from remote sensing data 
Some quantitative vegetation parameters, which are propagated in optical spectra, could be es­
timated with several retrieval methods from RS data. Relatively simple and widely used re­
trieval method of vegetation parameters is based on building a statistical relationship between 
a vegetation index and the vegetation parameter of interest. Nevertheless, the major drawback 
of the empirical approach based on vegetation indices is l imited transferability of the statis­
tical relationship to another study area, vegetation type, or different growing period, because 
the vegetation indices are typically tailored to a specific case study. 

The physically based retrieval approaches use inversion of R T M . These methods provide 
more universal and robust solutions when compared to the empirical methods and have been 
previously successfully implemented in estimation of Cab and leaf area index (LAI ) . Commonly 
employed inversion methods include direct iterative optimization, inversions of look-up-tables 
( L U T ) , and machine learning algorithms. 

The direct iterative optimization uses an iterative numerical approach to find values of the 
R T M input variables. It optimizes a cost function, while satisfying a set of prior constraints. 
This approach is computationally and time demanding as the R T M must be run at each 
iteration. Hence, it is not suitable for inversion of complex R T M s or for spectrally and spatially 
large R T datasets. 

More computationally efficient than iterative optimization is the L U T inversion. L U T s 
are databases of reflectance (bidirectional reflectance factor - B R F ) simulated specifically for a set 
of canopy biochemical and biophysical variables. R T M computes all possible combinations of in­
put parameters and results are saved to L U T . Then values of a cost function between simulated 
and measured reflectance ( B R F ) values are calculated. The L U T is aligned ascending or de­
scending according to the cost function, which allows to find a global solution. The cost function 
represents a distance between simulated (BRFLUT) and observed (BRF0BS) reflectance ( B R F ) 
values in a given wavelength A. Classic example of a simple cost function is root mean square 
error ( R M S E ) , which is often used in R S . The relationship between input parameters and sim­
ulated reflectance ( B R F ) is often nonlinear, which is in conflict of basic prerequisite for R M S E 
serving as cost function (Leonenko et al. 2013). Due to this fact Leonenko et al. (2013) 
and Rivera et al. (2013) tested different cost functions. Results of both studies suggest, that 
alternative cost functions provide better and more consistent results for vegetation parameters 
estimation. 

The main problem of the LUT-based inversions is their mathematically ill-posed nature, 
when a given solution might not be the only one, but other sets of input parameters result 
in almost identical spectral outputs (Combal et al., 2002). to alleviate the ill-posed problem, 
some prior knowledge about the site-specific parameters is needed. One way is to limit input 
parameters only to possible values interval (Combal et al. 2002). Another way is using the addi­
tional radiometric information of neighboring pixels (Atzberger 2004; Houborg et al . 2009; 
Laurent et al . 2013). Other possible solutions how to stabilize inversion results are to choose 
optimal L U T size (Weiss et al. 2000). Where only one best solution are not take into account, 
but an average of n is taken as best solutions (Weiss et al. 2000; Darvishzadeh et al. 2012; 
Rivera et al. 2013). Also it is possible to take into account only the key spectral regions, which 
do not correlate with each other (Schlerf & Atzberger 2006; Darvishzadeh et al. 2012). 

Use of modern machine learning methods for retrieval of vegetation parameters is increasing 
lately. Machine learning is a prolific field of research, producing algorithms that are able to cope 
with strong nonlinearity and high dimensionality of the data. They typically use R T M simulated 
L U T s for training to build a non-parametric statistical inversion model (Schlerf & Atzberger 
2006; Verrelst a kol. 2012a). Among the most popular machine learning methods are artificial 
neural networks and support vector machines ( S V M ) . Even more recent methods, such as kernel 
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ridge regression and Gaussian process regression (Verreist et al., 2012b), showed promising 
results in terms of performance of retrieval and computing efficiency. 

This section was adopted from Homolovä et al . (2015b). 

2.3.1 Remote sensing data 

RS brings together a wide range of discipline, including physics, maths, and computing as well 
as the environmental sciences and biology (Jones & Vaughan 2010). In this section terms used 
in this thesis are briefly introduced. Most of the RS theory was adapted from Jones & Vaughan 
(2010) and Liang (2005). 

Electromagnetic radiation is a form of energy, ranging from low-energy radio waves to high-
energy 7-rays. Other forms of energy exist, such as chemical, mechanical, sound,nuclear, etc., 
and although the total amount of energy must stay constant in any process (low of conservation 
of energy), each type can be converted one into another. Different wavelengths may be absorbed 
by a substance depending on the physical or chemical properties of that substance. 

Electromagnetic radiation consists of time-varying electric and magnetic field that travel 
in the form of wave at the speed of light. 

Wavelength A, measured in meters, is called a distance between adjacent wave crests. 
Frequency f, measured in cycles (oscillations) per second or Hertz (Hz), is called a number 

of waves that pass a given point in one second. 
In nature, electromagnetic waves of all frequencies and wavelengths can exist, and it is these 

parameters that distinguish the different type, such as V I S light, X-rays, and radio waves. 
The continuum is referred to as the electromagnetic spectrum. Because the speed of all elec­
tromagnetic wave, c, is constant and independent of wavelength, we can relate the frequency, 
/ and wavelength A by 

A / = c or * = j- (2-48) 

The spectrum is usually divided up into regions (Figure 2.3), as V I S , to which the human eye 
responds, ultra violet, near infrared (NIR from 700 nm to 1 /xm), the mid-infrared ( 1 - 4 //m). 
and the thermal infrared ( 4 - 1 5 /xm). 

When radiation reflected from a surface is measured, it is actually measured a spectral 
radiance L (= the radiant flux density reflected from the surface measured per area per solid 
angle; W m~2 s r - 1 nm-1). 

The solid angle Q is defined as the ratio of the area A of a spherical surface intercepted 
by the cone to the square of the radius (r) 

il = £ N (2.49) 

a solid angle is often represented by the zenith (9) and azimuth (0) angles (Figure 2.4) in polar 
coordinates. If 9 represents the zenith angle (the angle measured from the vertical or from hori­
zontal to a surface), <f> represents the azimuth angle, then a differential element of a solid angle 
is mathematically given by 

,^ dA (r d0)(r sinO dd>) . „ ,„ ,, , ,, . . 
dVt = — = ± J-^—0 = sin 0d0d(i) = d\i # , 2.50 

here \x = cos 8. Note that zenith angle 9 ranges from 0° to 90°. The azimuth angle 0 ranges 
from 0° to 360°, that is, 0 < 0 < 2tt. 
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Figure 2.4: Illustration of zenith and azimuth angle. 

Irradiance (E) is the integration of radiance (L) over the entire solid angle of a hemisphere 
consisting of the zenith angle 9 and the azimuth angle <f>: 

2ir 2 2TT 1 

E - J j'L($,<j>)cos9sin9dBd<j>= J J L(fi,((>)fidfid((> (2.51) 
0 0 0 0 

If radiance is independent of the direction (isotropic), equation 2.51 becomes E — nL. 
Upwelling radiance received by the Earth-viewing sensors depends on the incoming solar 

radiation. To normalize the variation of the incoming solar radiation, the top-of-atmosphere 
radiance I(6v,<pv) at the specific viewing direction {0v,<f>v) is often further converted to into 
reflectance 

R(9h<pi,9v,<pv) = — , (2.52) 
cos 9tho 

28 



where 9i is the solar zenith angle and E0 is the incoming top-of-atmosphere irradiance. 
Reflectance is the ratio of the reflected to the incoming radiation. The reflectance can be de­

fined in a number of ways depending on the i l lumination and viewing angles and whether these 
are directional (restricted to a small solid angle) or hemispherical (integrating over whole hemi­
sphere). The terminology involved in description of reflectance is summarized below (in details 
can be found in Schaepman-Strub et al . 2006). 

Directional reflectances are usually defined by stating first the degree of collimation of the sour­
ce followed by that of the detector. 

Directional-directional (bidirectional) reflectance factor ( B R F ) when both the i l lu­
minating and viewing angles are infinitesimally small. 

Hemispherical-directional reflectance factor ( H D R F ) , when the i l lumination comes 
from the hemisphere and the sensor has an infinitesimally small view angle. For canopies 
this is approximated by the scattering of the diffuse component of sky radiation to a sensor. 
Of course the value depends on the directional distribution of incoming radiation. 

As sensors and illuminators such as the sun generally have finite acceptance angles we should 
strictly replace the term "directional" with "conical" (giving, e.g., a biconical reflectance, see 
Schaepman-Strub et al. 2006), but directional is in common use (Jones k, Vaughan 2010). 

Band width of spectral responses are usually expressed as the full width at half maximum 
(Figure 2.5). The central wavelength of a spectral band responds to the maximum value 
of the response function (Liang 2005). 

FWHM Sampling 
interval 

100 

Wavelength [nm] 

Figure 2.5: Illustration of full width half at maximum and spectral sampling interval (adopted 
from Homolova et al . 2014) 
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2.3.2 Vegetation parameters 

Some vegetation parameters can be retrieved from RS data and those parameters typically 
refer to the current health (fitness) status of examined vegetation canopies. This thesis focuses 
on two vegetation parameters, Cab and L A I , and their definitions are given below. 

Leaf chlorophyll a+b content (Cab) 

Cab is the mass of chlorophyll-a and chlorophyll-b photosynthetic active pigments per unit 
of leaf area. Cab units are fig of chlorophylls per cm2 of leaf area [ngcm~2]. Laboratory 
measured Cab of plant leaves is typically between 10 and 100 \xgcm~2. 

Leaf Area Index (LAI) 

The L A I drives the microclimate of canopy, controls water interception, radiation extinction, 
and gas exchange (Breda 2003), therefore, the L A I is an important input parameter for the eco­
logical and plant physiology models (Nikolov & Zeller 2003). The L A I is a dimensionless variable 
that is defined as a half of the total area of photosynthetic tissue per unit ground surface area 
(Watson 1947). This definition is fully applicable for broadleaf vegetation because both sides 
of broad leaves have the same area. The needles of coniferous trees may have in a cylindrical 
or a hemi-cylindrical shape (Chen & Black 1992), and the definition of the L A I is not ap­
plicable. Thus several authors proposed adjusted definition of the L A I , taking into account 
the irregular shape of leaves or needles. For instance Chen & Black (1992) suggested as a more 
appropriated definition of the L A I for coniferous canopies: half of the total interception area 
per a unit ground surface area. In-situ measured L A I ranges typically between 0 and 10. This 
section was adopted from Homolova (2005). 

2.3.3 Linear programming 

Linear programming is a basic tool for machine learning approaches for estimating of vegetation 
parameters. Therefore basic terms of this theory are introduced in this sections for better 
explanation of support vector machines ( S V M ) theory in Section 2.3.4. The theory was adopted 
from Ferguson (2015). 

A linear programming problem may be defined as the problem of maximizing or minimizing 
a linear function subject to linear constraints. The constraints may be equalities or inequalities. 
Here is a simple example. 

F ind numbers X\ and x2 that maximize the sum x\ + x2 subject to the constraints X\ > 0, 
x2 > 0, and 

xi + 2x2 < 4 

4x i + 2x2 < 12 (2.53) 

-Xi + x2 < 1 

in this problem there are two unknowns, and five constraints. A l l the constraints are inequalities 
and they are al l linear in the sense that each involves an inequality in some linear function 
of the variables. The first two constraints, x\ > 0 and x2 > 0, are special. These are called 
nonnegativity constraints and are often found in linear programming problems. The other 
constraints are then called the main constraints. The function to be maximized (or minimized) 
is called the objective function. Here, the objective function is x\ + x2. 
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Not all linear programming problems are so easily solved. There may be many variables 
and many constraints. Some variables may be constrained to be nonnegative and others uncon­
strained. Some of the main constraints may be equalities and others inequalities. However, two 
classes of problems, called the standard maximum problem and the standard minimum problem, 
play a special role. In these problems, all variables are constrained to be nonnegative, and all 
main constraints are inequalities. 

We given an m-vector, b = (61,.. . , bm)T, an n-vector, c = ( c i , . . . , c „ ) T , and an m x n 
matrix, 

A 

/ a n 
«21 

012 
«22 

din \ 
0-2n 

(2.54) 

of real numbers. 

The Standard M a x i m u m Problem: F i n d an n-vector , x = (x1,..., xn)T, to maximize 

c x = c\X\ H V cnxr, 

subject to the constraints 

(2.55) 

anXi + a\2%2 + • • • + ainxn < b\ 

a2\Xi + a22X2 H h a2nxn < b2 

" m l ^ l ^m2^2 ' ' ' O'mnX-n ! i bm 

(or A x < b) (2.56) 

and 

x\ > 0, x2 > 0 , . . . xn > 0 (or x > 0). (2.57) 

The Standard M i n i m u m Problem: F i n d an m-vector , y = (y1,... ,ym), to minimize 

subject to the constraints 

y b = H h ymbr, 

and 

2/ian + 2/2a2i H h ymami > ci 

2/iai2 + 2/2a22 H V ymam2 > c2 

2 / l a ln + y2&2n + " " " + ym^mn > C„ 

(or y T A > c T) 

(2.58) 

(2.59) 

2/i > 0 , y 2 >0,...ym > 0 ( o r y > 0 ) . (2.60) 

A vector, x for the standard maximum problem or y for the standard minimum problem, 
is said to be feasible if it satisfies the corresponding constraints. 
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The set of feasible vectors is called the constraint set. 
A linear programming problem is said to be feasible if the constraints set is nit empty; 

otherwise it is said to be infeasible. 
A feasible maximum (resp. minimum) problem is said to be unbounded if the objective func­

tion can assume arbitrarily large positive (rep. negative) values at feasible vectors; otherwise, 
it is said to be bounded. Thus there are three possibilities for a linear programming problem. 
It may be bounded feasible, it may be unbounded feasible, and it may be infeasible. 

The value of a bounded feasible maximum (resp. minimum) problem is the maximum 
(resp. minimum) value of the objective function as the variables range over the constraint set. 

A feasible vector at which the objective function achieves the value is called optimal. 

Duality 

To every linear program there is a dual linear program with which it is intimately connected. 
We first state this duality for the standard programs. As above, c and x are n-vectors, b and y 
are m-vectors, and A is an m x n matrix. We assume m > 1 and n > 1. 

Definition 2.3.1. The dual of the standard maximum problem 

maximize c T x 

subject to the constraints A x < b and x > 0 

is the standard minimum problem 

(2.61) 

minimize y T b 

subject to the constraints y T A > c T and y > 0 
(2.62) 

If the standard minimum problem 2.62 is transformed into a standard maximum problem 
(by mult iplying A , b, and c by —1), its dual by the definition above is a standard minimum 
problem which, when transformed to a standard maximum problem (again by changing the signs 
of all coefficients) becomes exactly 2.61. Therefore, the dual of the standard minimum problem 
2.62 is the standard maximum problem 2.61. The problems 2.61 and 2.62 are said t i be duals. 

The general standard maximum problem and the dual standard minimum problem may 
be simultaneously exhibited in the display: 

X2 • 
Vi an a>i2 • <h 
V2 a>2i « 2 2 0>2n < b2 

am\ « m 2 — bm 

> C i > c 2 • • > C 

(2.63) 

2.3.4 Support vector machines 

Support Vector Machines (SVMs) and related kernel methods have become increasingly popular 
tools for data mining tasks such as classification, regression, and novelty detection (Bennet 
& Campbel l 2000). 

In this study is used library LIBSVM prepared and actively developing by Chang C . - C . 
& L i n C . - J . Therefore for description of used S V M methods are used document of authors 
of this library (Chang k, L i n 2011). 
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2.3.4.1 C-Support Vector Classification 

Given training vectors Xj G Rn, i = 1 , . . . , / , in two classes, and an indicator vector y E Rl such 
that yi G { 1 , - 1 } , C - S V C (Böser et al. 1992, Cortes and Vapnik 1995) solves the following 
primal optimization problem. 

min - w T w + C £; 
w,b£ 2 ^ 

i = 1 (2.64) 
subject to y i ( w T 0 ( x i ) + ft) > 1 -

& > 0, i = 1 , . . . ,1, 

where 0 ( X J ) maps x , into a higher -dimensional space C > 0 is the regularization parameter. 
Due to the possible high dimensionality of the vector variable w , usually we solve the following 
dual problem. 

min -otTQot — eTot 
a 2 

subject to yTa = 0, ( 2 - 6 5 ) 

0 < a i < C , i = l,...,l, 

where e = (1 , . . , 1 ) T is the vector of al l ones, Q is an / by / positive semidefinite matrix, 
Qij = yiyjK(xi,x.j), and Ä " ( X J , X J ) = 0 ( X J ) t 0 ( X j ) is the kernel function. 

After problem 2.65 is solved, using the primal-dual relationship, the optimal w satisfies 

i 
w = 

i=l 
and the decision function is 

^ 2 / ; a i 0 ( x i ) (2.66) 

sgn(w T 0(x) + 6) = sgn I y ^ K ^ , x) + b . (2.67) 
,i=i 

2.3.4.2 v - Support Vector Classification 

The v - Support Vector Classification (Scholkopf et al. 2000) introduces a new parameter 
v G (0,1). It is proved that v an upper bound on the fraction of training errors and a lower 
bound of the fraction of support vectors. 

Given training vectors Xj e i ? n , % = 1 , . . . , / , in two classes, and a vector y e Rl such that 
yi G { 1 , - 1 } , the primal optimization problem is 

min ^ w T w - up + y Y] & 
= 1 (2.68) 

subject to y i ( w T 0 ( x i ) + 6) > p -

£i>Q,i = l,...,l, p > 0 . 
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the dual problem is 

1 rp 

min —OL Qa 
a 2 

1 • - - (2.69) subject to 0 < on < - , % — 1 , . . . , I, 

eTa > v, yTa = 0, 

where Qij = yiVjK(XJ, x^). Chang & L i n (2001) show that problem 2.69 is feasible if and only 
if 

^ 2 m m ( # W t = + ! , # « , = - 1 ) ^ ^ ^ 

so the usable range of v is smaller than (0,1). 
The decision function is 

sgn V i a i K ^ x) + ft J . (2.71) 
. j=i 

It is shown that eTa > v can be replaced by eTa = v (Crisp & Burges 1999, Chang 
& L i n 2001). In LIBSVM, is solved a scaled version of problem 2.69 because numerically ctj may 
be too small due to the constraint ctj < \ . 

min -aTQa 
a 2 

subject to 0 < äi < 1, z = 1 , . . . , I, (2-72) 

eTct = vl, yTct = 0. 

If a. is optimal for the dual problem 2.69 and p is optimal for the primal problem 2.68, Chang 
& L i n (2001) show that - p is an optimal solution of C - S V M with C = ^ y . Thus, in LIBSVM, 

we output ( - , -) in the model. More precisely, solving 2.72 obtains p = pi. Because ct = la, 
we have — = Hence, in IBSVM, we calculate 

p p ' ' p 

2.3.4.3 Distribution Estimation (One-class S V M ) 

One-class S V M was proposed by Scholkopf et al. (2001) for estimating the support of a high-
dimensional distribution. Given training vectors X j e Rn,i = 1 , . . . , / without any class infor­
mation, the primal problem of one-class S V M is 

Ä lwTw-p + vi^ 
^ , 1 = 1 (2-73) 

subject to w 0 ( X J ) > p — £j, 

&>0,i = l,...,l. 
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the dual problem is 

1 rp 

min —OL Qa. 
a 2 

subject to 0 < ttj < 7^—, % — (2.74) 
(ul) 

eTa = 1, 

where Qij = i(T(xj,Xj) = 0 ( X J ) t 0 ( X J ) . The decision function is 

sgn iJ2aiK(xi,*)-P )• (2-75) 
j=i 

Similar to the case of Z / -SVC, in LIBSVM, we solve a scaled version of 2.74. 

1 rp 

min —a Qa 
a 2 

subject to 0 < oii < 1, i = l , . . . , Z , ( 2 - 7 6 ) 

e T a = ul. 

2.3.4.4 e - Support Vector Regression (e-SVR) 

Consider a set of training points, { ( x 1 ; zi),..., (x/, zi)}, where X j e i ? " is a feature vector 
and Zi e i ? 1 is the target output. Under given parameters C > 0 and e > 0, the standard form 
of support vector regression (Vapnik 1998) is 

1=1 1=1 

subject to W t 0 ( X J ) + b — Zi < e + (2.77) 

- w 0(xi) - ft < e + ^ 

& , £ > o , z = i , . . . , z . 

the dual problem is 

(2.78) 

j z z 
min - ( a - a * ) T Q ( a - a*) + e Y ^ t t i + a*) + Zi(a{ - a*) 
OL,OL* 2, 

1=1 1=1 
subject to e T ( a — a*) = 0, 

0 < cti, ex* < C, % — 1 , . . . , I, 

where = K(xi,x.j) = 0 (x i ) T 0(x , ) . 
After solving problem 2.78, the approximate function is 

z 
^ ( - « i + a * ) X ( x i , x ) + b (2.79) 

35 



2.3.4.5 v - Support Vector Regression (z/-SVR) 

Similar to Z / -SVC, for regression, Scholkopf et al. (2000) use a parameter v e (o, 1) to con­
trol the number of support vectors. The parameter e in e-SVR becomes a parameter here. 
W i t h (C, v) as parameters, z^-SVR solves 

«=1 

subject to ( w T 0 ( x i ) + 6) - ^ < e + (2-80) 

^ - ( w T 0 ( X i ) + &) < e + £ , 

& , £ > 0 , z = l , . . . , Z , e > 0 . 

the dual problem is 

min \[OL — a*)TQ(a — a*) + zT(a. — a.*) 
a,a* 2 

subject to eT(a-a*) = 0,eT(a + a*)<Cv, (2.81) 

C 
0 < a>i,a* < j , i = 1, . . . ,1. 

the approximate function is 

1 
^ ( - a i + a*) JfsT(x i,x) + 6. (2.82) 
j=i 

Similar to Z / -SVC, Chang & L i n (2002) show that the inequality eT(a + a*) < Cv can 
be replaced by an equality. Moreover, j may be too small, thus, there are treated specified 
regularization parameter as j . That is, C = j is what is specified and LIBSVM solves following 
problem. 

min -(a. — a*)TQ(a — a*) + zT(a. — a.*) 
a,a* 2 

subject to e T ( a - a*) = 0, e T ( a + a*) = Civ, (2-83) 

0 < Q ; J , a* < C, % = 1 , . . . , /. 

Chang & L i n (2002) prove that e-SVR with parameters (C , e) has the same solution as Z / -SVR 
with parameters (IC, v). 

2.3.4.6 Performance measures 

After solving optimization problems listed in previous sections, it can be applied decision 
function to predict labels (target values) of testing data. Let x i , . . . , x j be the testing data 
and / ( x i ) , . . . , / ( x j ) be decision values (target values for regression) predicted by LIBSVM. 
If true labels (true target values) of testing data are known and denoted as yi,... ,yj, we eval­
uate the prediction results by the following measures. 
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Classification 

Accuracy 
number of correctly predicted data 

x 100% 
number of total testing data 

Regression 

A common accuracy measures are mean square error (MSE) and root mean square error 

2.3.5 Image classification 

Image classification is a fundamental tool for many RS applications where one is often inte­
rested in reducing the complexity of a remote image to a limited number of near-homogeneous 
classes that may represent, for example, different vegetation or landcover types. The classifi­
cation of pixels into specific classes is most commonly based on recognition of their character­
istics spectral signatures. Such a classification process produces a thematic map that displays 
the spatial distribution of a specific phenomenon such as the type of soil or agricultural crop. 
There are many approaches available for such pattern recognition. A more complete coverage 
of the principles and practice of image classification and pattern recognition in remote sensing 
may be found in any one of the many texts on the subject such as those by Tso and Mather 
(2001), Mather (2004), Jensen (2005), Richards and X i a (2005) and Russ (2006). 

For purpose of this study the supervised maximum-likelihood method was chosen as a ro­
bust classification, and the one most widely used in remote sensing. Supervised classification 
methods start from an init ial identification of certain areas or pixels from the image that 
are known to comprise particular vegetation or other surface types of interest for the particu­
lar study. In this case the spectral characteristics of these training pixels are first measured, 
and, in "conventional" approaches, a mean and variance of the probability of any pixels falling 
into a given training class is calculated. The software then attempts to assign the remaining 
pixels to the most similar (nearest) training class. When using the statistically based classifiers 
as maximum-likelihood it is strictly necessary that the training set contains > n + 1 pixels 
(where n is the number of spectral bands), though substantially larger numbers (of the order 
lOn) are preferable to allow good estimates of the variance and covariance properties of each 
class. 

This section was adopted form Jones & Vaughan (2010). 

( R M S E ) : 

i=l 

(2.84) 

to return the original scale, the square root of the M S E 

(2.85) 
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3 Experimental part 

3.1 Study sites 
The study was conducted in Norway spruce stand at the permanent ecological research site 
Bílý Kříž (Moravian-Silesian Beskids) and additional datasets were acquired from the Černá 
hora study site (Šumava National Park). Detailed description of both research sites is provided 
in the following sections. 

3.1.1 B í l ý Kr íž 

The experimental ecological study site Bílý Kríž was established in 1986 within the frame­
work of the project "Complex Research of Immission Impact on the Forests and Forestry 
of the Beskids". The site is located in the Moravian-Silesian Beskids Mts . (Czech Republic); 
geographical coordinates 49°30' N , 18°32' E (Figure 3.1), altitude 870 m a.s.l. It is operated 
and maintained by the CzechGlobe research institute (Czech Academy of Sciences). The Bílý 
Kríž site is a part of international measuring network F L U X N E T . The site belongs to signifi­
cant infrastructures of European Strategy Forum on Research Infrastructures and it is a part 
of the Integrated Carbon Observation System. 

Norway spruce (Picea abies [L.] Karst.) stand at Bílý Kríž is the main object of this study. 
The stand was established in 1981 and its monitoring started in 1994. The stand is located 
on a south exposed slope of 12.5°. Forest stand Bílý Kríž characteristics are detailed in Table 3.1. 
Description of the Bílý Kríž site was adapted from Markova et al. (2015). 

stand characteristics 

dominant forest species Norway spruce (Picea abies) 
stand age 29 years 
stand density 1580 trees h a - 1 

mean tree height 12 m 
mean L A I 8 m2 m~2 

canopy cover 90 - 95 % 

Table 3.1: Overview of the Bílý Kříž forest stand characteristics in 2006. 

38 



Figure 3.1: Locations of the Bílý Kříž (at Moravian-Silcsian Beskids) and Černá hora (at Šu­
mava National Park) sites. 

3.1.2 Č e r n á hora 

The Černá hora site is located in the Šumava National Park (Czech Republic), near the Če rná 
Hora mountain (48°ó8' X , 13 033' E , mean altitude 1280 m a.s.L, mean slope 7°, and prevailing 
S S E exposition: 157.5°) (Figure 3.1). This site has been originally selected and studied due 
to the extensive bark beetle outbreak. The Norway spruce (Picea abies [L.| Karst .) is the most 
frequent tree specie at this site. The forest trees are older than those of the Bílý Kříž site. 
More information about this stand is provided in Table 3.2. 

stand characteristics 

dominant forest species Norway spruce (Picea abies) 
mean stand age 101 years 
stand stem density 800 trees h a - 1 

mean tree height 19 m 
mean L A I 5.03 m 2 m~2 

canopy cover 80 % 

Table 3.2: Overview of the Č e r n á hora forest stand characteristics in 2009. 
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3.2 Input data 
3.2.1 Distribution of shoots and measurements of tree skeleton structure 

Shoot distribution data available in scientific literature and terrestrial Light Detection and Rang­
ing ( L i D A R ) measurements of spatial distribution of shoots in crown from study sites were used 
to reconstruct skeletons and foliage distribution of spruce trees in this study. 

Spatial distribution of needle shoots depends on crown height and their age (Figure 3.2). 
The studies of Ba r t ák (1992, 1993) described the crown structure of twenty 3-5-years old Norway 
spruce (Picea abies / £ . / Kur si.) trees at the Bílý Kříž site. These studies were the only available 
source providing detailed information on shoot distribution, which was used for our 3D spruce 
reconstruction. 

Figure 3.2: The angular distribution of shoots according to the needle age and the shoot 
vertical position adapted and translated from Bar t ák (1992). The first left column represents 
angle in the whole branch. C means current year needles. 
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To create a 3D spruce model it is additionally required to define the azimuth angle of the shoots. 
Since this parameter was not available from Bartak's studies, it was calculated as the angle 
between a shoot position and a trunk with added random value in range {— | i . s ••,) (see Sec­
tion 3.3.3), where the predefined range values were observed in field. 

The ground L i D A R data were acquired with an O P T E C H Ilris-36D terrestrial laser scan­
ner (Figure 3.3) at the Černá hora site in October 2009. The Ilris-36D L I D A R emits laser 
beams (A = 1500 nm) in various directions and measures the amount of returned laser pulse 
for up to 2500 points per second. The laser scanning data were acquired for individual mature 
spruce trees that were left standing at the edge of a bark beetle outbreak clearing. Trees were 
scanned from multiple directions at several locations and several observations were merged into 
a single common point cloud. Examples of scanned trees are given in Figure 3.4 and 3.8a. 

Figure 3.3: O P T E C H Ilris-36D terrestrial Figure 3.4: Example of terrestrial L i D A R 
laser scanner. scan of a spruce tree. Side projection 

on the left and top projection on the right. 

The raw L i D A R data were preprocessed using PolyWorks IMSurvey software. In order 
to minimize mutual shadowing of branches within crowns, only half of the tree (the one fa­
cing the L I D A R scanner) was extracted from the point cloud. The foliage biomass, reflecting 
only about 10% of the laser intensity signal, was separated from wooden parts, having signal 
reflectance of about 50% intensity, using an intensity threshold between foliage and wood 
reflectance (Figure 3.8a and 3,8d). The threshold value was set up for each tree manually 
by operator. The elaboration of L i D A R data acquirement and processing was adopted from 
Borovička & Pazdera (2009). 

The point cloud of wooden elements was subsequently used to reconstruct 3D tree skeleton 
structure, i.e. trunk and branches (Section 3.3.1), whereas the foliage point cloud was later 
used in the algorithm for biologically correct distribution of shoots of different age categories 
(as described in Section 3.3.3). 
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3.2.2 Field measurements of biochemical and biophysical properties 

The forest stand optical, biochemical and biophysical properties, particularly leaf chlorophyll 
a+b content (Cab) and L A I that were used mainly for validation of retrievals from satellite 
multispectral images in 2016, were collected in September 2006 and in August 2016 (the peak) 
of the vegetation seasons. As such, they are compatible with airborne hyperspectral images 
acquired on the 14th September 2006 (Section 3.2.3) and Sentinel-2 (S2) multispectral sensor 
image acquired on 31th August 2016 (Section 3.2.4). 

Leaf Cab samples collected and analyzed in 2006 were taken from sunlit and shaded branches 
of nine spruce trees distributed along a East-West oriented transect (Figure 3.5). Leaf Cab was 
extracted destructively in laboratory according to standard procedures described in Porra et al. 
(1989) and Wellburn (1994). 

7S5SOOE 756000E 756S0OE 

Figure 3.5: Natural ly collared R G B composite of S2 multispectral image subset depicting lo­
cations of trees measured in 2006 (red) and 2016 (blue). Trees examined in 2006 occupied only 
three S2 pixels of 20 x 20m. 

The samples obtained in 2016 were collected from sunlit and shaded branches of three 
spruce trees at seven plots (Figure 3.5). Shoots of three age categories (current, 1-year old, 
and 2-year old) were taken from each sampled branch. The plots were selected based on forest 
inventory records in the attempt to capture high variability in local biochemical and biophysical 
properties. The samples were processed the same way as samples from 2006. 

The L A I was measured with the Plant Canopy Analyzer LAI-2000 (Li-Cor Biosciences, Inc., 
Lincoln, Nebraska, U S A ) in a regular grid of 6 x 6 points with distance between two points 
of 10 m. The L A I measurements were processed in C2000 software developed by L i - C O R 
Biosciences. The resulting L A I values corresponded to Plant Area Index and were, therefore 
corrected for the inclusion of wooden material. They were also corrected for the effect of needle 
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clumping at the shoot level (Chen 1996). The correction coefficient a was equal to 0.133 and e 
was equal to 1.526. Both values were obtained from experimental destructive analyses of spruce 
shoots originating from the Bílý Kříž site. The correction coefficient ÍŽ, equal to 0.89, was 
derived from experimental measurements with the T R A C instrument (3 Wave Engineering, 
Ottawa, O N , Canada). Detailed description of the L A I measurements and data processing 
for the spruce site is available in Homolová et al. (2007). 

The in-situ L A I data formed 9 validation points with L A I varying between 6.8 and 8.5 m2 m~2 

in 2006. Description of the field measurements was adopted from Homolová et al. (2015b). 
The L A I measured in 2016 was done on two perpendicular transects per each seven plots 

and the mean value from each plot is the L A I value of this plot. The L A I values per plot 
varying between 5 and 9 m2m~2. The processing of these data was the same as in 2006. 

3.2.3 A I S A airborne hyperspectral data 

Hyperspectral airborne data used in this study were acquired at the Bílý Kříž (Figure 3.6) 
with the A I S A Eagle imaging system (Specim Inc.) during the peak of vegetation season 
2006. Basic characteristics of the image data are summarized in Table 3.3. The airborne 
images were first radiometrically, geometrically and atmospherically corrected. Radiometric 
corrections were performed with the factory calibration coefficients embedded in the Cal iGeo 
software (the A I S A image post-processing software developed by Specim Inc.) running un­
der the E N V I / I D L programming environment. Required geometric corrections, i.e. image or-
thorectification and georeferencing, were also performed in the Cal iGeo software. Accuracy 
of geometric corrections was evaluated using the set of ground control points measured with 
a geodetic Global Positioning System (GPS) receiver. Declared position accuracy was about 
1.0 m (around 2 - 3 pixels). Atmospheric corrections were performed in the A T C O R - 4 software 
(Richter & Schlápfer 2002). The most crucial input parameters for atmospheric corrections, 
visibili ty (or aerosol optical thickness) and water vapor column, were estimated directly from 
the hyperspectral images using the S P E C T R A module of A T C O R - 4 . Aerosol optical model was 
selected with the estimated visibili ty of 20 km and the water vapor column varying between 
0.93 - 0.96 [fxm]. The quality of atmospheric corrections was evaluated by means of ground 
reflectance measurements of seven artificial and three natural near-Lambertian spectral cali­
bration targets, performed with an A S D FieldSpec P R O spectroradiometer. Mean difference 
in reflectance values was equal to 1.6 % at 550 nm and 1.8 % at 850 nm (Figure 3.6). Description 
of airborne data processing was adopted from Homolová et al. (2015a). 

3.2.4 Sentinel-2 satellite multispectral data 

The space-born data used in this study to estimate quantitative biochemical and biophysical 
vegetation parameters were acquired with the multispectral images on board of the E C Coper­
nicus satellite system called S2. The satellite is a part of the Sentinel mission series operated 
by the European Space Agency (ESA, h t tp : / /www.esa . in t /ESA) . Since the D A R T simulations 
produced a mean reflectance ( B R F ) for the scene of 10 x 10 m in size, multispectral bands of S2 
with the pixel size of 10 and 20 m were more suitable for quantitative retrievals than airborne 
data with the sub-meter spatial resolution. 

The multispectral satellite data at the Bílý Kříž site were acquired simultaneously with 
collection of field biochemical and biophysical properties (31th August 2016). Most important 
image data technical specifications are summarized in Table 3.4 and 3.5. The satellite data 
were atmospherically corrected in the S2 toolbox provided by E S A (Figure 3.7). 
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A I S A airborne data characteristics 

acquisition date 14/09/2006 
acquisition time ( U T C ) 10:35 - 11:03 
number of flight lines 5 
solar zenith angle 46° 
solar azimuth angle 182° 
flight heading 170° 
flight altitude above terrain 360 m 
sensor field of view 39.7° 
swath width 200 m 
spectral range 391.7 - 981.6 mm 
number of bands 65 
spectral sampling 8.6 - 9.5 nm 
spatial resolution 0.4 m 
geographical projection U T M , Zone 34N 

Table 3.3: Characteristics of A I S A Eagle airborne hyperspectral images used in this study. 

S2 satellite data characteristics 

acquisition date 31/08/2016 
acquisition time ( U T C ) 9:50 - 9:52 
solar zenith angle 43° 
solar azimuth angle 160° 
orbit height 786 km 
orbit type sun-synchronous 
inclination 98.5° 
swath width 290 km 
number of bands 13 
geographical projection U T M , Zone 33N 

Table 3.4: Characteristics of the S2 satellite multispectral images used in this study. Swath 
is the strip of ground beneath airborne or satellite sensor from which data are collected. 
The swath width is determined by the length of the scan line of the detector (Jones & Vaughan 
2010). 

Only a spatial and spectral subset of S2 image data, which contains al l seven ground plots 
investigated for the Cab and L A I measurements, was used (see Section 3.2.2). The bands 
with too large spatial resolution (60 m) and with broad spectral bandwidth were excluded 
from the subset. The final collection contained the following selected S2 bands: B2, B3 , B4, 
B5, B6 , B7 , B8a, B l l , and B12 (Table 3.5). 
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Figure 3.6: Georeferenced R G B composite in natural colors for the A I S A Eagle hyperspectral 
image of the Bílý Kříž site acquired in 2006 (spatial resolution of 0.4 m, 65 spectral bands with 
spectral sampling distance of about 9 nm projected in U T M Zone 34X (WGS 84)). The right 
graphs show spectral reflectance ( B R F ) signatures of five randomly selected a) spruce crowns 
and b) aggregated areas of 20 x 20 m (adopted from Homolová et al . 2015a). 
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band ID central wavelength fnm bandwidth fnm spatial resolution [m 

B l 443 20 60 
B2 490 65 10 
B 3 560 35 10 
B4 665 30 10 
B 5 705 15 20 
B6 740 15 20 
B7 783 20 20 
B8 842 115 10 
B8a 865 20 20 
B 9 945 20 60 
BIO 1375 30 60 
B l l 1610 90 20 
B12 2190 180 20 

Table 3.5: The central wavelengths, bandwidths, and spatial resolutions of all S2 multispectral 
bands. 

75550OE 75S000E 756500E 

Figure 3.7: Atmospherically corrected subset of S2 multispectral image for the Bílý Kříž site 
in natural colors. The image spatial resolution is 20 m and was placed in U T M Zone 33X 
( W G S 84). The graph at the right hand side illustrates spectral reflectance ( B R F ) signatures 
of eleven randomly selected pixels. 
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3.3 Reconstruction of virtual Norway spruce 3D tree models 
The first goal of this study was to create realistic digital 3D model of N . spruce tree. There 
are several approaches that can be applied to create a vir tual 3D spruce model, i.e. using 
simple geometrical primitives or complex 3D shapes. For the radiative transfer modelling 
purpose of this study was necessary to construct as much precise geometrical model as feasible 
in order to obtain a benchmark spruce model. Since the input vegetation parameters were only 
for the Bílý Kříž research site (Section 3.2.2), the constructed 3D spruce models were tailored 
to this location and data from the Černá hora site were adapted for it. 

One approach to create a 3D spruce model, where the tree growth is computer simulated 
(i.e. L-systems), is not precise enough, because many input parameters that are not explicitly 
measured are causing unacceptably high uncertainty in final outputs ( Janou tová 2012). More 
precise approach is to use a L i D A R scanning data, which supply explicit information about 
position and density of wood and foliage elements, and combine it wi th a priori information 
about angular shoot distribution. Such approach produces 3D digital models of trees based 
on specifics of the exact location and, therefore more realistic and precise. 

Creation of the 3D spruce spruce models was split into three steps. 

1. A n existing algorithm (Sloup 2013) for spatial reconstruction of trunk and branches from 
terrestrial L i D A R data was applied (Figure 3.8b, 3.8c). 

2. We scaled and transformed the foliage point cloud and wooden skeleton of the spruce 
model to fit the desired dimensions. It was necessary because the L i D A R data were taken 
at the Černá hora site, where trees were older and higher, therefore the point clouds had 
to be scaled the forest dimensions at the Bílý Kříž site. 

3. a new algorithm for the distribution of shoots into the tree crown was developed and ap­
plied (Figure 3.8e). This last step is crucial and the most innovative achievement of this the­
sis. 

3.3.1 Reconstruction of wooden skeletons - trunks and main branches 

In the first step, the algorithm designed by Sloup (2013) was applied to create a detailed wooden 
skeleton (trunks and main branches) from input terrestrial L i D A R data. 

The fully automated algorithm for reconstruction of wooden skeleton is able to process 
wooden point cloud containing spatial gaps from omission of laser returns duet to various 
obstacles (other branches, trunks, and needles). The process goes in three steps: 

1. component identification - spatially-related clusters of the points are identified 

2. component analysis - branch structure is reconstructed in each identified component 

3. component connecting - al l the components are interconnected to form the final branch 
structure (Sloup et al. 2013, Figure 3.9) 

The process of connecting the components together was designed to keep real architecture 
of branches and their connections to the trunk (Figure 3.8c). 
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(a) (b) (c) (d) (4 

Figure 3.8: Creation of a virtual 3D spruce model from a terrestrial L i D A R point cloud, a) ori­
ginal terrestrial L i D A R scan of a spruce tree (Section 3.2.1), b) separated wooden point cloud 
(Section 3.2.1), c) reconstructed wooden skeleton (Section 3.3.1), d) reconstructed wooden 
skeleton with scaled foliage point cloud (Section 3.3.2), and e) the final 3D spruce model 
populated by shoots of two age categories: current year (light green) and older shoots (dark 
green) (Section 3.3.3). 

3.3.2 Translation and scaling of the foliage point cloud 

The second step was needed to translate spatially the foliage point cloud in such a way it matches 
the virtually reconstructed wooden skeleton and subsequently to scale them both to fit the de­
sired dimensions at the Bílý Kříž site. 

The output of the first step, i.e. The reconstructed 3D wooden skeleton, was created in local 
coordinate system with origin in the center of the trunk base. To ensure the same coordinates 
as for wooden skeleton, the foliage point cloud was spatially translated according its coordinates 
system. The transformation was executed in the following seven steps: 

1. finding the point with the maximum z-coordinate of created reconstructed wooden skele­
ton, 

Msk = (xsk; ysk; zsk) 

2. finding the point with the maximum z-eoordinate of wooden point cloud, 
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Figure 3.9: Part of the tree with interconnected (green lines) components (adapted from Sloup 
2013). 

3. finding the point with the maximum z-coordinate of extracted foliage point cloud, 

Mfc = (xfc; yfc; zfc) 

4. calculating a height correction coefficient from the wooden and foliage point clouds (both 
clouds have the same coordinate system), 

C-cor Zfc Zwc 

5. calculating the vector v for translation 

V (Xsfc Xjci Vsk Vfci %sk Zfc Ccor) 

6. formulating translation matrix 

/ l 0 0 x w a - x f c \ 
0 1 0 ywa - yic 

0 0 1 
Z-wa Zfc Ccor I 

\ 0 0 0 1 / 

7. translating the entire foliage point cloud. 
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As already mentioned the terrestrial L i D A R scans were acquired at the Černá hora site, 
whereas estimation of forest quantitative parameters was performed for the Bílý Kříž site, where 
airborne, satellite, and field data were available all together (Sections 3.2.2 and 3.2.3). Since 
spruces at the Černá hora site were older and higher than trees at the Bílý Kříž site (Section 3.1) 
a scale transformation was needed to equalize foliage point clouds with size of reconstructed 
wooden skeletons in order to fit dimensions of trees at the Bílý Kříž site. The scaling factor 
fs was calculated as quotient of required canopy height and z coordinate of wooden skeleton 
(zsk - see step 1.). The transformation matrix can be expressed as: 

(fs 0 0 o \ 
0 fs 0 0 
0 0 fs 0 

\ o 0 0 1/ 

After transforming the foliage point cloud according to the wooden skeleton, the algorithm 
distributing shoots within a crown can be applied based on the transformed foliage point cloud. 

3.3.3 Algorithm for shoot distribution within spruce crown 

The last step in the process of the 3D spruce model creation was distribution of shoots within 
crown. Spatial distribution of needles has significant impact on the light scattering, especially 
in the near infrared (NIR) part of the electromagnetic spectra. Consequently, the distribution 
of shoots of different age categories is crucial part of the whole 3D spruce model reconstruction. 
Shoot distribution must reflect the actual foliage point cloud establishment (Section 3.2.1), 
existing leaf density and geometry expressed in the form of the L A I and leaf angle distribution 
( L A D ) . The algorithm for shoot distribution uses information about shoot positions from foliage 
point cloud (Section 3.2.1), about shoot density from the L A I (user defined variable), and about 
angular distribution from L A D obtained from B a r t á k (1992, Figure 3.2, and Section 3.2.1). 

The L A I is required to be retrievable as a free variable. It has to be parametrized indepen­
dently. In other words, the model is constructed based on user predefined value of the L A I . 

Shoots are defined as separate 3D objects (i.e. planes along the shoot axis, individual 
needles), however for the description of this algorithm it is not important to consider the exact 
shoot representation (Section 3.4.3). 

The shoot distribution procedure had three main steps. In the first step we calculate 
the position of each shoot within a tree crown. In the second step we split shoot positions 
in two groups by their age: current-year shoots and older shoots. Finally, in the third step 
we place shoots to their defined spatio-geometric positions and angular orientations. 

3.3.3.1 Calculation of shoot positions 

As already indicated, the number of shoots depends on the user-defined L A I . The total number 
of shoots within a reconstructed crown is, therefore, computed from a given L A I value as follows: 

9 . T AT . <7 
_ * l-^l Oproj (<i\\ 

'''shoots — Q j \ ° - L ) 
^ shoot 

where nsh00ts is number of all shoots in a whole crown, Ssh00t is total area of the needles 
in one shoot (calculated by Blender, www.blender.org), and Sproj is the circular projection area 
of the crown represented by extracted and scaled foliage point cloud. The diameter of the cir­
cular projection area is calculated as: 

d = min(maxx — minx, maxy — miny), (3.2) 
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where d is a diameter of the circular tree projection, maxx and minx is the maximum and mi­
nimum value of x coordinates of al l points and maxy and miny is the same variables for y co­
ordinates. 

The calculation of shoot positions runs in two steps. First , we separate the foliage point 
cloud into cubes with a given size (side around 0.18 m for trees of 15 m in height). The size 
of cubes directly influences the computational time because more points present in a single 
cube requires more time to calculate all shoot positions. Thus, the size of cubes is expected 
to be specified by the user according to available computational resources and density of pro­
cessed foliage point cloud. 

In the second step we calculate shoot positions within every cube. The positions are cal­
culated by k-means function from the cluster analysis theory (see Section 2.1.5.6). Each cube 
contains set of points x = {xx,x 2 , . . . ,x n}, where n G N is a number of the points in the cur­
rently processed cube. Each point is defined by its position x ; = (x, y, z). The k-mean clustering 
makes a partition in the set of points into the k < n subsets S = {Si, S2,..., Sk}- The k is then 
calculated from the given number of shoots (Equation 3.1): 

^points ' V * / 

^shoots 

where n p o i n t s is number of total points in the whole foliage point cloud. The k-mean function 
provide also coordinates of the clusters centroid, which represents the position, where a shoot 
is placed. The algorithm iterates through all cubes with at least one point defines position 
of each shoot. 

3.3.3.2 Separation of shoots in two age categories 

Next task is to extract shoot positions of two needle age groups: current-year and older needles 
(Figure 3.8e). For this we divide the processed tree into the cubes with a different size. It would 
be possible to use the original cubes, established during the calculation of the shoot positions, 
but since the new cubes do not need to be so small, their larger size helps us to save com­
puter memory and computational time. Nevertheless, creation of both cube meshes requires 
per tree optimization, because each tree varies in size and structure and also it has L i D A R 
scans of different quality in sense of point density, number and size of gaps etc.. Therefore, size 
of cubes for the shoot location calculation is generally smaller (in our case 0.18 m), whereas 
cubes for the shoot separation into the age categories are larger (in this study 0.3 m for 15 m 
high trees). 

Before we start separating the needle shoots into two age categories, we need to find a tree 
envelope, i.e. cubes at the tree crown's periphery, where the current shoots occur prevai­
lingly at the crown periphery. The process of finding the crown envelope consists of four steps 
(illustrated in Figure 3.10): 

1. choosing a cube vc, the algorithm iterates through every cube contained at least one shoot 
position, 

2. finding set of neighbors N2e(vc) of cube vc (see Definition 2.1.7), 

3. creation of the tree envelope - checking if at least one cube of the N2G(VC) does not contain 
a shoot positions, if yes add the vc to set of edge cubes and continue with the next cube, 
otherwise directly continue with the next cube, 

4. filling the envelope of a given crown - reduce convexity of the envelope (for more details 
see explanation below), 
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The crown envelope convexity reduction prevents the new shoots are being placed inside 
the crown as they are naturally growing at the periphery. This may happen when the air gap 
size is larger than cube size. The following steps were implemented to reduce the inappropriate 
crown envelope convexity (illustrated in Figure 3.11): 

4.1. finding cubes from the crown envelope in a current horizontal layer - V c , 

4.2. separating V c into lines by x coordinate, 

4.3. finding cubes with minimum and maximum y coordinate value - vmin, vmax, 

4.4. finding gaps between vmin and vmax, 

4.5. if there are any gaps, fill them with new cubes, 

4.6. creating a new set V c f and adding new cubes together with cubes from V c , 

4.7. repeating steps 4.2. - 4.5. for the y-axis, 

4.8. adding new cubes into V c f , 

4.9. separating V c f in lines by x coordinate, 

4.10. finding cubes with the minimum and the maximum y coordinate value - vmin, vmax, 

4.11. adding cubes vmin and vmax into V c n e w : 

4.12. repeating steps 4.9. - 4.11. for the y-axis, 

4.13. setting of cubes V c n e w as the new set of envelope cubes for the current horizontal layer. 

The algorithm processes tree crown, as being divided in several horizontal layers (ln). 
The height of each layer is based on empirical observations that one whorl takes about 0.8 m 
of crown height. The percentage of the current-year needle category in each layer was assigned 
according to measurements published by B a r t á k (1992) (see Table 3.6). The following steps 
were carried out (illustrated in Figure 3.12): 

1. finding corresponding percentage of current-year shoots in a horizontal layer ln, 

2. finding envelope cubes of the tree crown in ln. 

3. finding shoot positions inside the envelope cubes, 

4. calculating number of found shoot positions, 

5. adding found shoot positions into the set of current-year shoot positions, 

6. subtracting the found shoot positions from the remaining shoot positions, 

7. verifying the percentage of shoot positions in the set of current-year shoot positions: 
testing if the percentage is higher or lower than the corresponding percentage in /„, 

8. deciding to continue or stop the algorithm; if there are not enough current shoot positions, 
algorithm continues to the next step 9. otherwise it continues to the next layer and repeats 
steps 1. - 7., 

9. extending amount of cubes in the envelope of tree crown toward the tree trunk in ln done 
for x, y axis separately (see Figure 3.13), 

10. returning to the step 3. unti l the end. 

53 



current 4.1. crown 
horizontal layer enevelop cubes 

4,2. - 4.3. 
cubes with minimum 
and maximum y values 4.4. gaps 4.5. added cubes 

. 'III 

current 
horizontal layer 

4.6. new set 
of cubes 

n . 1.. " J " 
1 • •1 • • | 
1 •1 • • | 
1 • 1 1 1«: | 
» 1 1 1 I* | 
» 1 1 1 1 • 1 • 1 1 1 1 •I 
1 • 1 1 1 I* | 
. ,•1 • 

1 1 1 1 
4.7. (4.2. - 4.3.) 
cubes with minimum 
and maximum x values 

4.7. (4.4.) 
gaps 

4.9.-4.10. 
cubes with minimum 
and maximum y values 

4.8. 
new set of cubes 

— 

-
_ • 
• • 

~n 

i i i i * • m 

4.11. part of 
crown envelop 

• M l 

E n 
r r r r 

~n 
4.12. (4.9. - 4.10.) 
cubes with minimum 
and maximum x values 

4.8. added cubes 

4.13. final crown envelop 

Figure 3.11: The process of crown envelop convexity reduction. This process describes in a detail the step 4. that forms the process of finding 
crown envelop. The corresponding steps are described above 4.1. - 4.13, 
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Figure 3.12: The process of separating finding crown envelope. The process iterates through every cube one by one, where are some points 
from foliage point cloud. 



order of the whorl 1 2 3 4 5 6 7 8 9 10 

percent 1 0.82 0.61 0.49 0.35 0.29 0.23 0.14 0.07 0.05 

Table 3.6: The percentage of current-year shoots in branch whorls according to Ba r t ák 
(1992, 1993). The top whorl has number one and numbering is increasing towards the ground. 
The current-year shoots are prevailingly located on the periphery of a tree crown. 

Figure 3.13: Extension of a crown edge towards the tree trunk. The extension is conducted 
in two consecutive steps namely in x and y direction. Light green represents cubes contained 
in tree crown envelop and the dark green represents inside of crown. 

3.3.3.3 Shoots transformation to their position 

Once the position of all shoots are determined, shoots are distributed within a tree crown. 
The shoots have to be first rotated and then translated depending on their position in tree 
crown. Transformation matrix for these two-step operation is calculated for each shoot sepa­
rately. For the transformation composition it was more efficient to apply first the rotation 
and then the translation. 

The position in which the shoot was supposed to be translated is noted as L — (lx, ly, lz). 
A shoot was first rotated around the y and z axis (Equation 2.18 and 2.19). The elevation 
angle /?, listed in Table 3.7, are dependent on height (IS). The calculation of the azimuth angle 
7 is based on /,„ and ly. It is randomize by an angle ib gaining values within the range (—|, | ) 
(Equation 3.4). 

_ (arct,an(lfz) + i> i f / * > 0 
7 _ [arctan(^) + n + ip iUx < 0 

age 1 2 3 4 ó 6 7 8 

angle [°] 35 35 5 -15 -35 -45 -25 -35 
dj3 deviation [°| - 5 - 1 2 5 - 1 2 -5 - 15 -5 - 30 -10 - 40 -5 - 40 -15 - 20 -15 - 15 
h height [m] 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 > 7 

Table 3.7: Summary of shoot elevation angles (0), their deviations d[3 and height (h) in which 
the shoots of eight age classes occur. The height is expressed as the distance from the tree top 
(h-t — h)i where ht is z coordinate of the tree top and lz is z coordinate of a shoot position. 
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the vector for shoot translation was calculated as v = (L — 0), where 0 is the origin of the co­
ordinate system. The transformation matrix was computed as: 

(I 0 0 / / cosy —siny 0 o\ /cos/3 0 —sin/3 o\ \ 
0 1 0 Vy siny cosy 0 0 0 1 0 0 
0 0 1 vz 

0 0 1 0 sin/3 0 cos/3 0 

\o 0 0 l) V V o 0 0 V \ 0 0 0 V / 
(I 0 0 vx\ /cosy cos/3 —siny —cosy sin/3 0\ 

0 1 0 Vy siny cos/3 cosy —siny sin/3 0 
0 0 1 sin/3 0 cos (3 0 

0 0 1 / V o 0 0 l) 

(3.5) 

/cosy cos/3 —siny —cosy sin/3 vx\ 
_ siny cos/3 cosy —siny sin(3 vy 

sin/3 0 cos/3 vz 

\ 0 0 0 1 / 

Equation 3.5 represents the general matrix for shoot models transformation, which was applied 
to distribute shoots of the two age categories within the reconstructed 3D model of a Norway 
spruce tree. 

3.3.4 M a i n outcome 

New 3D model of a Norway spruce tree reconstructed from terrestrial L i D A R scans is the main 
outcome of this part. The 3D model is composed out of two sets of objects created separately: 
wooden skeleton and foliage - needle shoots. The wooden skeleton was reconstructed using 
L i D A R returns from main wooden tree parts (trunk and branches) with the algorithm designed 
by Sloup (2013). The foliage reconstruction was done with a new algorithm designed in this 
study. The main task of this algorithm is biologically correct distribution of shoots within 
a tree crown, which represents the most innovative outcome. 

The reconstructed 3D spruce model of a single tree contains significantly large number 
of facets, about 22 Mil l ions. For better imagination, the same number of geometrical facets 
was needed to create a large scale 3D representation of Toulouse city center in France. In or­
der to achieve a feasible computational time, it was necessary to optimize the model before 
its operational use for simulating canopy forest scenes in the D A R T model. The optimization 
procedure is described in the following Sections 3.4.3, 3.4.4, and 3.4.5. 
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3.4 Radiative transfer modelling and optimization 
One of the main goals of this thesis was to optimize 3D spruce model that it is applicable 
for radiative transfer (RT) simulations. Radiative transfer of forest scenes composed from 
the 3D spruce models with needle shoots (Figure 3.19a) contain large number of facets, therefore 
R T computation is extremely demanding. For the operational use, it is necessary to optimize 
the scene parametrization. 

This section is separated into five parts. The first part describes all possibilities how to pa­
rametrize trees in the D A R T model (Section 3.4.1). In the second part the spruce model with 
pre-prepared geometric crown shapes (base model) is introduced (Section 3.4.2), which was 
used before the 3D spruce models were created in this study. The last three parts describe 
the optimization that was studied at three structural levels: 

shoot level: Four shoot models were evaluated (Section 3.4.3), 

tree level: Four shoot models were evaluated in whole tree and compared to airborne 
data (Section 3.4.4), 

canopy level: Four shoot models were evaluated in whole forest scene and compared 
to airborne data. The 3D spruce models were transformed to turbid cells (Section 3.4.5). 

3.4.1 D A R T scenes 

In the D A R T model it is possible to parametrize trees in several ways (Figure 3.14). The first 
way uses the pre-prepared geometric crown shapes (base model) (Figure 3.14 on the right). 
Turbid cells contain infinite number of infinite small facets, which are distributed in the cell 
based on L A D , L A I and other D A R T parameters specifying gaps distribution in the tree crown 
vertically and horizontally. The tree crown can be separated into horizontal levels and for 
each level it is possible to set up different properties of turbid cells, gaps distribution and rela­
tive trunk width. It is also possible to define the branches as simple 3D objects. The base tree 
models are used mainly because they reduce computation requirement. However, for coniferous 
trees this parametrization may leads to large discrepancies in forest reflectance ( B R F ) simu­
lations. The difference between D A R T simulated and remote sensing (RS) reflectance ( B R F ) 
is illustrated in Figure 3.15. From the comparison it can be seen that more significant differ­
ences are found for the coniferous spruce stand than for broadleaf beech stand. The possible 
explanation is that the base tree model is not able to describe fine scale scattering properties 
of conifer trees. 

The second way how to parametrize trees in the D A R T model is to import a 3D tree model 
(Figure 3.14 on the left). This approach allows to import object groups and set up different 
properties to each group, e.g. set up different optical properties for different age category 
of shoots. 

The 3D tree model can be treated in two different ways. First radiative transfer is calcu­
lated directly on the 3D model. This approach is very precise, but extremely computationally 
demanding. Simulating a scene with several mature trees is almost impossible. 

The second way how to treat the 3D tree model is to transform the foliage part to turbid 
cells. This approach preserves the structure of the tree and the distribution of the foliage within 
the tree crown. The possibility to set up different optical properties for different object groups 
is also preserved. Al though R T computation is slightly more demanding than for the base model 
with predefined crown shapes, it produces more accurate simulations of canopy reflectance 
( B R F ) . 
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Figure 3.14: There are three ways how to parametrize trees in D A R T : using 3D tree model 
directly, letting 3D tree model to be transformed to turbid cells, and using trees with pre-
prepared geometric crown shapes (base model). 
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(a) Spruce stand. (b) Beech stand. 

Figure 3.15: A comparison of spectral reflectance ( B R F ) between results simulated by with base 
spruce model (grey) and airborne data (aggregated into 20 m pixel size) acquired by the A I S A 
Eagle imaging system (red). 

3.4.2 Base spruce model 

Firs t the base spruce model is introduced. This type of spruce forest parametrization was used 
in earlier studies of Malenovsky et al . (2008, 2013), where retrievals were applied on sunlit 
canopy pixels only, however this parameterization might not be always suitable as demonstrated 
in Figure 3.15a. This parametrization was used at the tree (Section 3.4.4) and the canopy 
(Section 3.4.5) levels to assess the improvement of the new 3D spruce model. 

59 



The base spruce model p á r a m e trization was build from field measurements acquired at the Bílý 
Kříž site in 2006. Parametrization of tree crown shape were done by following parameters: 

• tree height 

• crown height 

• trunk height below crown 

• crown projection, and 

• intermediate height, where is the crown widest from side view. 

Illustration of these parameters are in Figure 3.16 and used values are in Table 3.8. Distribution 
of foliage and gaps were measured in horizontal layers (Figure 3.17) and applied in the D A R T 
model (Figure 3.18 and Table 3.9). 

Figure 3.16: Illustration 
of base spruce model 
parametrization. Adapted 
from D A R T manual 
( C E S B I O 2016). 

d im. parameter mean SD 

1 trunk height below crown fm| 2.91 0.68 
2 trunk height within crown [m| 6.4 0 
3 trunk diameter below crown [m] 0.11 0.025 
4 trunk diameter within crown [m] 0.05 0 

crown type composed ellipsoid 
5 crown height fm| 7.87 2.5 
6 intermediate height [m| 2.62 0.8 
7 first axis 2.38 0.4 
8 second axis 2.38 0.4 

number of crown levels 3 

Table 3.8: Settings for parametrization of base spruce model. 
The dimensions are illustrated in Figure 3.16. 
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Figure 3.17: Distr ibution of the foliage density in tree horizontal layers, where I is the beginning 
of growth of l iving foliage, II is the beginning of full growth, III is the end of full growth, 
I V is the end of growth. 
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of full cells 
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Figure 3.18: Illustration of gaps 
distribution. The zero value 
corresponds to trunk and one 
value corresponds to edge of tree 
crown. Adapted from D A R T 
manual ( C E S B I O 2016). 

crown levels 

parameter exposed transition shaded 

rel. trunk height 0.18 0.36 0.46 
rel. trunk diameter [-] 0 0.375 0.75 

gaps distribution 

rel. horizontal distr. a 0 0.3 0.75 
rel. horizontal distr. b 1 1 1 
proportion of full cells [-] 0.85 0.5 0.3 

Table 3.9: D A R T parametrization of crown levels with gaps 
distribution. Trunk height and diameter in crown level are 
relative to parameters for whole trunk (Table 3.8 and Figu­
re 3.16). Horizontal distribution of leaves/gaps is relative 
to perpendicular distance from trunk to periphery of tree 
crown. Parameters a and b are illustrated in Figure 3.18. 

Since the spruce trees preserve shoots with different age classes, there are differences i n op­
tical properties of shoots of different age. The optical properties in case of base spruce models 
were generated using the recalibrated P R O S P E C T 3 ( P R O S P E C T 3S) leaf radiative transfer 
model (Malenovsky et al . 2006). The optical properties were simulated by three standalone 
P R O S P E C T models adjusted for spruce needles of current season, one- and two-years old 
needles. P R O S P E C T generated optical properties were then combined per vertical crown level 
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according to incident solar radiation reaching crown (i.e., sun exposed, transitional, and shaded 
levels see Figure 1.2) as weighted mean with weights corresponding to the needle-generation 
abundance measured at the site within the destructive experiment of several sample trees 
extracted and taken apart during the growing seasons prior 2000 (Pokorný & Marek 2000). 
The actual weights applied for each crown level are provided in Table 3.10. 

crown level current needles 1 - year old needle 2 - year old needle 

exposed 0.41 0.42 0.17 
transition 0.15 0.18 0.67 
shaded 0.02 0.31 0.67 

Table 3.10: The weights applied to combine optical properties of three spruce needle generations 
within three horizontal crown levels of spruce trees (sum of the weights per functional crown 
level must be equal to 1) (adopted from Homolova et al. 2015a). 

Disadvantage of using base spruce models is that the complex structure of spruce trees 
is not well captured using the parameters above. Especially, L A D and the gaps distribution 
are more complicated and their influence to light scattering is important, therefore the 3D 
spruce model is considered to be more appropriate solution. 

3.4.3 Optimization at shoot level 

Objectives of this part were: 

• to find the optimal D A R T parametrization of the reference 3D needle shoot model (Fig­
ure 3.19a) and to find the best 3D simplified shoot model (Figure 3.19b) 

• to compare these two shoot models with optimal distribution of sun zenith and azimuth 
angles. 

For this tasks the data from Centre d'Etudes Spatiales de la BlOsphere ( C E S B I O ) and R A -
diation transfer Model Intercomparison ( R A M I ) I V exercises were used. The needle shoot 
model (needle, Figure 3.19a) and its first simplification (simple 1, Figure 3.19b) was created 
by Nicolas Lauret from C E S B I O for R A M I I V exercises (Widlowski et al. 2015) and the other 
two simplifications were designed in this thesis. 

In the D A R T model it is possible to transform 3D objects to turbid cells, nevertheless 
the number of facets in a single 3D spruce model with needle shoot model is st i l l too high 
for simulating the whole look-up-tables ( L U T ) in reasonable time. Therefore it was needed 
to use simplification of the needle shoot model. The first simplification significantly decrease 
the number of facets (Table 3.11). The needle shoot model (Figure 3.19a) was taken as reference 
in this optimization level. 

In the optimization of shoot level the ground reflectance ( B R F ) have a big influence on re­
flectance ( B R F ) of whole scene. Therefore two different ground reflectance values 1 and 0 were 
chosen. 

In case of the first simplified model (Figure 3.19b) a problem with nadir view (zenith viewing 
angle is equal to 0) appeared, because the planes do not have any width. Therefore, the two new 
shoot models are created (Figure 3.19c and 3.19d). Both shoot models are based on the first 
simplified model (Figure 3.19b). The second simplified shoot model has small planes added 
perpendicularly to the top and bottom of the original ones. The shorter side d of the added 
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# # 
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c) simple 2 d) simple 3 
optimization setup 

2 ground reflectances (0, 1), 3 viewing angles, 5 cell sizes 
Figure 3.19: Model of a spruce needle shoot (needle) a) and its simplifications b)-d). The first 
simplified model (simple 1) b) is created by adding planes along the shoot axis and the area 
of the needles are the same as the planes. The second simplified model (simple 2) c) is created 
by adding small perpendicular plane on top and bottom of each plane from the first simplified 
model b). The third simplified model (simple 3) d) is created by adding a width dimension 
to the planes from the first simplified model. The width corresponds to the size of the small 
perpendicular planes from the second simplified model c). The optimization setup is shown 
at the bottom of the figure. 

shoot model shoot ID number of facets 

needle shoot model needle 824 
first simplification simple 1 16 
second simplification simple 2 IS 
third simplification simple 3 80 

Table 3.11: Number of facets of the shoot model and its simplifications. 

plane is A from its larger side (Figure 3.20 on the left and Figure 3.19c). In the third simplified 
shoot model the width (the same as a shorter side from simple 2 shoot model) to the original 
planes was added (Figure 3.20 on the right and Figure 3.19d). 

Figure 3.20: Illustration of how the second and the third simplifications of shoot model were 
created. On the left it is illustrated small added plane to the original plane. O n the right 
it is illustrated the added width dimension (d) of the original plane. 
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Here the cell size was optimized and the best simplified shoot model was found. The cell size 
optimization was limited by actual computational resources, therefore, the sequences with com­
bination of different cell size (0.2, 0.5, 0.8, 1, and 2 mm), and two different ground reflectance 
(0 and 1) were executed. 

Since nadir viewing angle is the one where the difference between needle shoot model and its 
simplifications were the largest significant, the other two viewing angles were added into the op­
timization (Table 3.12). the optimization was run for three spectral bands from different re­
gions (Table 3.12 and Figure 3.21), because it was very computationally demanding to simulate 
the whole spectra. 

viewing angles 
zenith angle [° azimuth angle [° 

nadir 0 0 
offnadir 1 22 30 
offnadir 2 80 354 

Table 3.12: Viewing angles and bands used for op­
timization of cell size for needle shoot and for com­
parison of shoot models. 

500 

Figure 3.21: 
size optimization 
and 1460 nm. 

1000 1500 2000 2500 
wavelenghts [nm] 

Bands selected for cell 
of shoots: 675, 830. 

The cell size optimization showed that for smaller cell sizes the reflectance ( B R F ) is higher 
(Figure 3.22). The trend is the same for almost all settings of parameters and shoot models. 

The comparison of shoot simplifications shows that the best performing simplified model 
is the second one (Figure 3.19c). This is not that obvious from the graphs (Figure 3.23). 
but we can see it when a mean value of each simplification and each setting of parameters 
was calculated (Table 3.13). 

model ground re 11. = 0 ground refl. = 1 

simple 1 0.53 0.37 
simple 2 0.35 0.34 
simple 3 0.47 0.42 

Table 3.13: The mean of relative difference between the reference (Figure 3.19a) and each shoot 
simplification (Figure 3.19b - 3.19d) for two different ground reflectance ( B R F ) . The green 
values are the smallest for both ground reflectance. 
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Figure 3.22: Results from cell size optimization for four shoot models, two ground reflectance, 
three angles, and three wavelengths (blue 675 nm, green 830 nm, and red 1460 nm). These 
graphs illustrate that reflectance ( B R F ) decreases with bigger cell size. 

The further assessment was done for the reference needle shoot model (Figure 3.19a) 
and the best performing simplification only (Figure 3.19c). We analyzed detailed dependencies 
on solar viewing geometry and wavelengths. The results are shown in Figure 3.24 for: 

• full i l lumination hemisphere: zenith angle with step 10° and azimuth angle with step 36°; 

• two bands: 675 and 830 nm; 
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Figure 3.23: Relative difference between needle shoot and its simplifications. The difference 
is calculated as absolute value. There are combinations of two ground reflectance ( B R F ) , three 
bands and three viewing angles. The bands are differentiated by colors: blue - 675 nm, green 
- 830 nm, and red - 1460 nm. The viewing angles are differentiated by shades: light - nadir, 
middle - zenith angle 22° and azimuth angle 30°. and dark - zenith angle 80° and azimuth angle 
354°. The black dot is mean value of all the cases for one simplification. 

• three viewing angles: nadir, zenith angle 22° and azimuth 30°, and zenith angle 80° 
and azimuth 354°; 

• reflectance ( B R F ) of whole scene. 

The optimization at the shoot level revealed that the shape of a shoot is very important 
for R T simulation. The difference in reflectance ( B R F ) between reference and simplified shoot 
models increases with increasing solar zenith angle. The results indicate that the magnitude 
of reflectance differences for two investigated wavelengths is smaller for less oblique viewing 
angles. This sensitivity study helped to understand the angular behavior of shoot scattering 
properties. Nevertheless the differences between reference and simplified shoot model strongly 
depends on viewing geometry. 

The next step was a testing the applicability of the shoot simplifications at the tree level 
because reflectance differences are expected to be lower and more homogeneous than those 
at the shoot level. 

Possible improvement of this part is to use a more precise reference shoot model. We already 
acquired detailed 3D scans of spruce needle shoots A T O S Core 3D scanner (http://www.gom.com-
/metrology-systems/atos/atos-core.html) in collaboration with colleagues from Palacký Un i ­
versity Olomouc. The scanned shoots have very high number of facets and the 3D scans have 
to be further processed before using it in the D A R T model. This was not feasible in the time 
frame of this thesis, but we plan to implement it in the near future. 
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reference vs. simplification BRF rel, diff. [-] 
nadir azimuth - 30° | zenith = 22° azimuth = 354° | zenith = 80° 

-0.58 0.4 -0.5 0.6 -1.2 0.65 

Figure 3.24: Comparison between reference needle shoot model (Figure 3.19a) and the best 
simplification (Figure 3.19c) influenced by solar i l lumination. O n the radial coordinate is the sun 
zenith angle and on the angular coordinate is the sun azimuth angle. There is relative difference 
between these two shoot models for three different viewing angles and for two different bands 
in red (675 nm) and N I R region (830 nm). 

3.4.4 Optimization at tree level 

The main objectives of this optimization were: 

• to compare shoot models at the tree level, 

• to compare angular dependency at the tree level with the results at the shoot level, 

• to compare D A R T simulations of 3D spruce model, 3D spruce model transformed to turbid 
cells, base spruce model, and airborne image. 

For the comparison of the shoot models the following setup was used: 

• nadir solar and viewing geometry, 

• ground reflectance equal to 0, 

• spectral range 400 - 1000 nm, and 

• the optical properties generated by P R O S P E C T 3S R T M based on field data measured 
at the Bílý Kříž site in 2006 (Figure 3.34). 
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The compared values in this step were calculated as mean value of nonzero pixels from whole 
scene. 

First we needed to find optimal cell size for this level. The cell size optimization was done 
only for the tree with needle shoot model (Figure 3.25a). The cell sizes was chose in range 
0.1 - 0.5 m with step 0.1 m. The results illustrate that reflectance ( B R F ) decreases with bigger 
cell size (Figure 3.26). 

I 
b) simple 1 c) simple 2 d) simple 3 a) needle 

optimization setup 

1 ground reflectances (0), 1 viewing angles, 5 cell sizes 
Figure 3.25; 3D spruce model with a) needle, b) the simple 1, c) the simple 2 , and d) the simple 
3 shoot model. The optimization setup is shown at the bottom of the figure. 

wavelenghts [nm] wavelenghts [nm| 

Figure 3.26: Cel l size optimization results compared to the mean value of selected pixels from 
airborne image data. The pixels were selected as 3 x 3 average window with the center in the mid­
dle of tree crown. 

The most suitable cell size was chosen based on selected pixels from airborne image. The p i ­
xels were selected as 3 x 3 average window with the center in the middle of tree crown. The sim­
ulations do not fit to the airborne data in V I S spectra well (Figure 3.26 and 3.31), but the N I R 
region of the spectra can be used as reference. The differentiation in VIS region was probably 
caused by optical properties generated by P R O S P E C T 3S R T M (Section 3.4.5). In the N I R 
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region of the spectra is seen that higher value of reflectance ( B R F ) are closer to airborne data. 
Therefore for the further analysis was chosen the smallest cell size. 

Next the simulations with different shoot models were compared using chosen cell size 
of 0.1 m. This comparison shows that simulation with needle shoot model (Figure 3.25a) 
is significantly higher than the ones with simplified shoot models (Figure 3.27). The simulations 
with simple 1 (Figure 3.25b) and simple 2 (Figure 3.25c) shoot model are closer to the needle 
one than simple 3 shoot model (Figure 3.25d). 

wavelenghts [nm] wavelenghts [nm] 

Figure 3.27: The mean reflectance ( B R F ) of nonzero values of whole scene. There were simu­
lated single trees with different shoot models, and the ground reflectance is equal to 0. 

The difference between simulations with simple 1 (Figure 3.25b) and simple 2 (Figure 3.25c) 
shoot model are not so significant in Figure 3.27, therefore relative difference were calculated 
between simulation with needle shoot model (Figure 3.25a) and the both last mentioned sim­
plifications (Figure 3.28). This graph clearly shows that the simulation with the simple 1 shoot 
model (Figure 3.25b) is more similar to the one with needle shoot model. 

The optimization at the shoot level showed strong angular dependency, compared to that 
on tree level. The shoot models were distributed in a crown with variation in angles (Sec­
tion 3.3.3), therefore a certain degree of angular homogenization was expected. For the angular 
assessment only two shoot types were used, the reference needle (Figure 3.25a) and the simple 
1 (Figure 3.25b) shoot model. This comparison was done the same way as at the shoot level 
(Figure 3.29): 

• full i l lumination hemisphere: zenith angle with step 10° and azimuth angle with step 36°; 

• two bands: 675 and 830 nm; 

• three viewing angles: nadir, zenith angle 22° and azimuth 30°, and zenith angle 80° 
and azimuth 354°; 

• reflectance ( B R F ) of whole scene. 

the range of reflectance ( B R F ) values was chosen similar to the case of the shoot level for better 
comparison of this two cases. Therefore this time it is seen more homogeneous differences 
between simulations with needle and simple 1 shoot model. 
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Figure 3.28: Comparison of simulations with 3D spruce model with the needle shoot model 
(Figure 3.25a) and simple 1 (Figure 3.25b) and simple 2 (Figure 3.25c) shoot model. The relative 
difference were calculated. 

This part showed that the expected homogenization was realized at this level. St i l l there 
is a difference between the simulation with needle (Figure 3.25a) and simple 1 (Figure 3.25b) 
shoot model. The multiple scattering between the spruce needles and its angular anisotropy 
(Stenberg 1996, Smolander & Stenberg 2003, Rautiainen et al . 2012, and Mottus et al. 2012) 
needs a complex solution using ray-tracing R T approaches, which was not further elaborated 
in this thesis due to l imited computation resources. 

Comparison of the 3D spruce model without turbid conversion with the base spruce model 
is possible only at this level. Due to l imitation in computer resources it was not possible 
to assess it at the canopy level. In the last part of the assessment at the tree level following 
simulations were compared: 

• 3D spruce model with needle shoot model (Figure 3.30a), 

• 3D spruce model with simple 1 shoot model (Figure 3.30b), 

• base spruce model (Figure 3.30c) 

• 3D spruce model with needle shoot model transformed to turbid cells (Figure (3.30d), 
and 

• 3D spruce model with simple 1 shoot model transformed to turbid cells (Figure (3.30e). 

A l l the simulations were compared to the selected pixels from airborne image data. These 
selected pixels are the same as in the case of cell size selection. Because the comparison should 
be as similar as possible with airborne data, it was needed to set up different parametrization 
for D A R T scenes. The differences are in the ground reflectance and sun angles. The ground 
reflectance was set up according to real measured spectra and the sun angles was set up the same 
as in airborne image (Table 3.3). 
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reference vs. simplification BRF rel. diff. [-] 
nadir azimuth = 30° | zenith = 22° azimuth = 354° | zenith = 80° 

-1 - 0J 0 0,5 -1 -0.5 p 0.5 -1 -0.5 0 0,5 

Figure 3,29: Comparison between tree with reference shoot model (Figure 3.19a) and the 
best simplification (Figure 3.19b) on tree level influenced by solar i l lumination. On the radial 
coordinate is the sun zenith angle and on the angular coordinate is the sun azimuth angle. 
There is relative difference between these two models for three different viewing angles and for 
two different bands in red (675 nm) and N I R region (830 nm). The range for this set of graphs 
were chosen close to the range of graphs on the shoot level (Figure 3.24) for better comparison 
of the results from these two optimizations. 

The comparison shows the improvement of tree parametrization in ease of 3D spruce model 
transformed to turbid cells (see Figure 3.31). The V I S spectral range does not fit well to airborne 
data as was mentioned above in this section due to used P R O S P E C T version for generation 
optical properties. Based on the N I R spectral range the most similar parametrization of spruce 
tree to airborne data was the one with 3D spruce tree with needle shoot transformed to turbid 
cells (Figure 3.30d), The 3D models do not fit well to airborne data. One reason of that 
can be that parametrization of these approach is need smaller cell size, but due to the compu­
tational requirements is not possible to simulate them with smaller cell size. 

This optimization level showed that the best simplified shoot model on this level is the sim­
ple 1 (Figure 3.19b). This shoot model is even the least computationally demanding. The prob­
lem with nadir view from the needle level are less significant here because on the tree level 
are the shoots distributed with variation of angles. This allows to choose more simpler shoot 
model than the one chosen on shoot level. 

Even if trees are modelled as 3D objects, the computation of radiative transfer in D A R T 
is done for discrete cells. The size of those cells controls amount of incident radiation and there­
fore multiple scattering between the 3D objects. For both 3D spruce models without trans­
formation to turbid cells we observed lower reflectance values compared to the airborne data 
and spruce models transformed to turbid cells. This could be attributed to limited multiple scat­
tering due to too coarse cell size (10 cm) chosen for this comparison. We expect that the finer 
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a) needle b) s imp le 1 c) base model 

d) need le e) s imp le 1 f) a i rborne 
comparison setup 
1 ground ref lectances (vegetat ion), 1 v iewing angles 

Figure 3.30: Spruce models compared with selected pixels from airborne image data, 
a) 3D spruce model with needle shoot model, b) 3D spruce model with simple 1 shoot model, 
c) base spruce model, d) 3D spruce model with needle shoot model transformed to turbid cells, 
and e) 3D spruce model with simple 1 shoot model transformed to turbid cells, f) airborne 
image data. Comparison setup is shown at the bottom of the figure. 

cell size could produce results closer to real airborne data, but it was unfeasible to compute it 
in this thesis with the current computer resources. 

3.4.5 Optimization at canopy level 

The previous two optimizations at the shoot and the tree levels were useful to assess the quality 
of the 3D tree model and its simplifications, but for the purpose of estimation of vegetation 
parameters from RS data it is needed to use the D A R T model at the canopy level, i.e., a scene 
with several trees. For the canopy level simulations, however, time and computer requirements 
need to be carefully considered. The aim of this comparison is to decide, if the transformation 
to turbid cells yields similar results to the RS data or if it is necessary to use 3D spruce models 
directly. 

72 



wavelenghts [nm] wavelenghts [nm] 

Figure 3.31: Comparison of selected pixels from airborne image data, their mean and standard 
deviation, with 3D spruce model with needle shoot model (needle), b) 3D spruce model with 
simple 1 shoot model (simple 1), c) base spruce model (base), d) 3D spruce model with needle 
shoot model transformed to turbid cells (needle turbid), and e) 3D spruce model with simple 1 
shoot model transformed to turbid cells (simple 1 turbid). 

A t this level of comparison, it was not possible to simulate entire canopy scene using 
3D spruce models, because it was too computationally demanding, but the canopy foliage 
objects had to be transformed to turbid cells. The comparison at this level was done for five 
D A R T canopy scenes which were compared with airborne data (Figure 3.32e). The five D A R T 
canopy scenes were: 

• 3D spruce model with needle shoot transformed to turbid cells (Figure 3.32a), 

• 3D spruce model with simple 1 shoot transformed to turbid cells (Figure 3.32b), 

• 3D spruce model with simple 2 shoot transformed to turbid cells (Figure 3.32c), 

• 3D spruce model with simple 3 shoot transformed to turbid cells (Figure 3.32d), and 

• base spruce model (Figure 3.32e), 

A l l simulations were conducted for the same basic scene parameters (summarized in Ta­
ble 3.14), which represent the real spruce canopy at the Bílý Kříž site (Table 3.1) and the 
solar acquisition geometry of the airborne images (Table 3.3). Because the simulated D A R T 
canopy scenes are comparable with airborne RS images, the RS reference data for this com­
parison level were extracted from the airborne hyperspectral images acquired at the Bílý Kříž 
site (Section 3.2.3). The reference airborne spectra were extracted as an average and standard 
deviation of all pixels under an area of 100 x 100 m from images acquired in 3 date terms (2006, 
2011, and 2013, Figure 3.35). Like this spatial and temporal variability of forest reflectance 
( B R F ) was captured. 

First we compare the simulated scenes wi th 3D spruce models transformed to turbid cells. 
Only the foliage part of the 3D spruce model was transformed. For the comparison we use air­
borne data from 3 years, previous D A R T scene with base spruce models, the new scenes 
with 3D spruce models with four shoot models (Figure 3.19), and the new scene with the first 
simplified shoot model (Figure 3.19b) and optical properties simulated by P R O S P E C T 5 (Fig­
ure 3.34). A l l the spectra mentioned above are in the Figure 3.35. 

73 



e) base model f) airborne 
c o m p a r i s o n s e t u p 

1 ground reflectances (vegetation), 1 viewing angles 
Figure 3.32: Spruce models used in comparison with airborne image data f). Used spruce 
models are a) 3D spruce model with needle, b) simple 1, c) simple 2. and d) simple 3 shoot 
model all transformed to turbid cells, and e) base spruce model. The comparison setup is shown 
at the bottom. 

The main differences between the base and 3D spruce models are further in definition 
of the optical properties, leaf are index (LAI ) , and L A D . The optical properties in the base 
model were defined for three horizontal crown levels (exposed, transition, and shaded, see Sec­
tion 3.4.2). The optical properties in the 3D models were separated to current-year and older 
shoots (Figure 3.8e). In this case we used the exposed optical properties for the current-
year shoots and the transition optical properties for the older shoots. The optical proper­
ties were simulated by P R O S P E C T 3S R T M and were used in all five D A R T canopy scenes. 
Already at the tree level we noticed differences between simulated and airborne reflectance 
( B R F ) in the V I S spectral region (Figure 3.26 and 3.31), what we have expected. It was 
due to the P R O S P E C T 3S R T M . Therefore, at this level we also simulated the D A R T scene 
with simple 1 shoot model (Figure 3.32b) with the P R O S P E C T 5 R T M simulated optical 
properties. The difference between P R O S P E C T 3S and 5 input optical properties is shown 
in Figure 3.34. 

In case of the canopy scene with the base spruce model (Figure 3.32e), the L A I and L A D pa­
rameters were setup directly in the D A R T model. The L A I was equal to 7 and the L A D was de-
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parameter value 

scene dimension x x y fm| 10 x 10 
cell dimension x x y x z \m] 0.5 x 0.5 x 0.5 
slope [°] 15 
exposition southern 
scene canopy cover [%| 80 
L A I 7 
number of trees 26 
sun zenith angle [°] 46.16 
sun azimuth angle [°] 177.04 

Table 3.14: D A R T parametrization of the whole scene - general parameters. 

(a) (b) 

Figure 3.33: D A R T scenes of spruce site a) with 3D models of trees and b) with 3D models 
of trees transformed to turbid cells. 

fined as spherical distribution. In ease of the canopy scenes with 3D models (Figure 3.32a - d), 
L A I and L A D parameters were calculated directly from 3D models. The calculated L A I was dif­
ferent for each shoot model (Table 3.15) because the calculation takes into account all the facets 
of the shoot objects. This causes that in case of needle shoot (Figure 3.19a) and simple 3 shoot 
(Figure 3.19d) the L A I is more than twice higher that that of simple 1 shoot model. It was com­
plicated to control either tree or canopy L A I for 3D spruce model with two sets of shoot objects 
(current-year and older) and this functionality of the D A R T model should be addressed in fu-
I ure. 

The results show the comparison between airborne reference data and D A R T simulated 
canopy scenes (Figure 3.36). From the first glance the most similar simulations to the reference 
airborne data are those with simple 1 and simple 2 shoot models, but the closer look into V I S 
spectral region revealed differences, which could be attributed to optical properties simulated 
by P R O S P E C T 3S R T M . The canopy spectra with optical properties simulated by P R O S P E C T 
5 R T M resembles better the reference airborne data in the V I S spectral region and fits well 
in the N I R spectral region too. 

75 



wavelenghts [nm] wavelenghts [nm] 

Figure 3.34: Input optical properties for needles, shoots or turbid cells used in D A R T sim­
ulations. The optical properties generated by P R O S P E C T 3S (P3S) for exposed, transi­
tion, and shaded tree crown level are in different shades of green. These optical properties 
are generated with chlorophyll content of 42.55 figcm~2. The optical properties generated 
by P R O S P E C T 5 (P5) for current needles with chlorophyll content of 42.47 figcm~2 and older 
needles with chlorophyll content 57.62 figcm~2 are in shades of blue. 

wavolanghtE [nm] wavelenghts [nm] 

Figure 3.35: Comparison of airborne data and D A R T simulations with different type of tree 
parametrization. There are showed three airborne data from years 2006, 2011, and 2013, their 
mean and standard deviation. D A R T simulations are with base spruce models, with nee­
dle, simple 1, simple 2, and simple 3 shoot model, where optical properties were simulated 
by P R O S P E C T 3S (P3S). Last is simulation with simple 1 shoot model but the optical proper­
ties were simulated with P R O S P E C T 5 (P5). O n the left side are the spectra, and on the right 
side are the spectra only in V I S region of the spectra. 

The absolute and relative difference between mean of airborne data and each D A R T simu­
lation were calculated (Figure 3.37). From these graphs is seen the significant improvement 
in the N I R region of spectra in case of all new scenes with 3D spruce models transformed 
to turbid cells. The behavior in the V I S region is influenced more by the P R O S P E C T model 
version rather than the spruce model. The comparison showed that using 3D model with 
simple 1 or simple 2 shoot model is s t i l l the best choice. 
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shoot model base needle simple 1 simple 2 simple 3 

L A I 7 15.61 6.5 7.12 14.08 

Table 3.15: The L A I values calculated by the D A R T model from 3D models. The simulations 
are labeled as in Figure 3.35. The L A I values are independent on optical properties, therefore 
there is no need to differentiate P R O S P E C T versions. 

P3S - simple 1 
O P3S - simple 2 
O P3S - simple 3 
O P3S - needle 
o 

P5 - simple 1 

0^ ' ' 1 ' 1 ' 1 0 L 

0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
BRF [-] 

mean airborne data 
Figure 3.36: The mean value of airborne mean data and each D A R T simulation plotted against 
each other. The legend of the data are the same as in Figure 3.35. 

600 700 800 
wavelenghts [nm] 

600 700 800 
wavelenghts [nm] 

Figure 3.37: The absolute (on the left) and relative (on the right) difference between mean 
value of the airborne data and each D A R T simulation. The legend of the data are the same 
as in Figure 3.35. 
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R M S E values between mean of airborne data and each D A R T simulation is also calculated 
(Table 3.16 and Figure 3.38). Also this graph shows that the simple 1 and simple 2 shoot model 
give better results than the original base spruce models. 

shoot model simple 1 simple 2 simple 3 needle base simple 1 
used P R O S P E C T version 3S 3S 3S 3S 3S 5 

R M S E 0.0106 0.0100 0.0240 0.0349 0.0828 0.0222 

Table 3.16: The R M S E values between mean of airborne data and each D A R T simulations. 
The legend of the data are the same as in Figure 3.35. 
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Figure 3.38: The R M S E values between mean of airborne data and each D A R T simulations. 
The legend of the data are the same as in Figure 3.35. 

Nevertheless the discrepancies appear in V I S spectral region. They are probably caused 
by optical properties simulated with P R O S P E C T 3S R T M model (Figure 3.34). 

Conclusion of this section is that the improvement in D A R T simulation is significant with used 
3D spruce models even if the foliage part of the spruce model is transformed to turbid cells 
and are much closer to the airborne data. Therefore it could be concluded that there is no need 
to use 3D spruce models directly without transformation to turbid cells. The time and compu­
tation demands are significantly lower. 

Although the simulations with needle shoot model was treated as the references in case 
of the shoot and the tree level, the results at the canopy level show that this case is worse than 
the simulations with shoot simplifications. This behavior could be caused by way in which 
the L A I is calculated when 3D model is transformed to turbid cells. The L A I calculated from 
3D spruce model is shown in Table 3.15. The best shoot model for this level is the simple 1 
or simple 2. If we compare the time and computation demands for simulations used these two 
shoot models there is better to use the model with less facets. It means that the best setup 
is to create D A R T scene with 3D spruce models with simple 1 shoot model (Figure 3.19b) 
and let the D A R T model to transform the foliage part to turbid cells. 

78 



3.4.6 M a i n outcome 

Since the reconstructed 3D spruce model was too complex for direct implementation in the D A R T 
model, the key outcome of this part was the optimized 3D spruce representation. 

The optimization at the shoot level used two new simplified shoot models (labeled as sim­
ple 2 and simple 3) to replace the detailed reference needle shoot model. A high agreement 
with the reference was found for the simple 2 shoot model. However, a strong angular depen­
dency was sti l l observed when simulating single shoots, with the largest differences in the nadir 
viewing angle caused by regular structure of planes in the simplified shoot models. Less angular 
dependencies were expected at the tree level, because of larger angular variability in distribution 
of shoot within the crown. Contrary to the shoot level, the optimal solution at the tree level 
was obtained with the simple 1 shoot model, which yielded slightly better results than the sim­
ple 2 model. Results confirmed the angular homogenization of a single tree crown reflectance 
( B R F ) . 

The goal of the canopy level optimization was to decide, if the 3D spruce models transformed 
to turbid cells are sufficiently representative for accurate estimations of selected vegetation pa­
rameters from RS data. The choice of the optimal tree parametrization was based on com­
parison of reflectance simulations using al l four shoot models (Figure 3.19) with the airborne 
data of a spruce forest. The results revealed that the 3D spruce model transformed to turbid 
cells significantly improved forest canopy reflectance ( B R F ) simulation. This spruce model 
with the simple 1 shoot model produced simulated reflectance, which, compared to the results 
obtained with the base spruce model, fits better with real airborne hyperspectral image data. 
R M S E values calculated between mean of airborne data and D A R T canopy simulations confirm 
that spruce model with simple 1 or simple 2 shoot model with R M S E values 0.0106 and sO.0100 
fit better to real airborne hyperspectral data than the base spruce model with R M S E value 
0.0828 (Table 3.16 and Figure 3.38). 

The outcome of this part is not definite. As the D A R T model is being constantly updated 
and its computational efficiency improved, a more efficient 3D spruce model can be defined 
in a near future. It is expected that the computation efficiency of the D A R T model wi l l 
soon allow to simulate canopy scenes created form geometrical objects without the turbid cell 
transformation necessity. 
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3.5 Estimation of quantitative vegetation parameters 
The main goal of this study was to test if the optimized 3D spruce model improves the estima­
tion of vegetation parameters (i.e. Leaf chlorophyll a+b content (Cab) and L A I ) from satellite 
observations. In order to assess the improvement, the vegetation parameters were estimated 
by two look-up tables (LUTs) , which were generated by two parameterizations of spruce canopy 
in the D A R T model (base versus 3D spruce model). The first parameterization of the spruce 
canopy was based on the base spruce model (described in Section 3.4.2), the second param­
eterization was based on the optimized 3D spruce model (described in Sections 3.4.3, 3.4.4, 
and 3.4.5). 

This section is composed of three parts: 

• Creation of the two types of L U T s (Section 3.5.1). 

• the retrieval of vegetation parameters from Sentinel-2 (S2) images by applying support 
vector machines ( S V M ) to both L U T s and necessary optimization of the S V M input 
parameters (Section 3.5.2). 

• Last, validation of estimated parameters with the field data acquired at the Bílý Kříž 
site (Section 3.5.3). The last step helped to evaluate the impact of 3D spruce model 
and its D A R T parameterization, which was newly developed in this thesis. 

3.5.1 L U T creation 

The L U T s were created within the framework of two international projects (RedEdge - R E D -
E D G E - C G - C E S B I O - A T B D - 0 3 - 0 0 0 2 and H Y P O S - A O / l - 8 3 4 5 / 1 5 / N L / L v H projects, European 
Space Agency), therefore they differed based on project specifications such as in spruce model 
parameterization, L U T structure, version of the D A R T model used for its creation etc. The L U T 
with the base spruce model was tailored to airborne and field data from the Bílý Kříž site in 2006 
(see Sections 3.2.2 and 3.2.3). The L U T with the 3D spruce model transformed to turbid cells 
was tailored to satellite and field data at the same study site, but in 2016 (see Sections 3.2.2 
and 3.2.4). For L U T s creation the newest version of the D A R T model available at the time 
when they were simulated was used. Some improvements of the D A R T model were specifically 
made for the purpose of these projects. Most of improvements are made in sense of computation 
efficiency. 

3.5.1.1 Base spruce model 

These L U T simulations were made with the D A R T model version 5.5.1 v494 (released in 2014). 
Parameterization of the spruce canopy in the D A R T model using the base spruce model is al­
ready described in earlier Sections 3.4.2 and 3.4.5. In the following paragraphs only the variable 
parameters of the D A R T scene wi l l be described and they are summarized in Table 3.17. Canopy 
cover varied between 50 and 95 % in step of 15 %. Canopy cover below 50 % were not consi­
dered, because the reflectance ( B R F ) of such a forest stand is formed prevailingly by the forest 
understory, which is not included in our D A R T scenes. 

The L A I range (3 - 10) was selected based on real measurements (Table 3.1) and available 
literature (Leuschner et al. 2006; Pokorný and Stojnič 2013, see Table 3.17). Typical ly spruce 
stands are characterized by higher L A I values. Similarly to canopy cover, we did not include 
simulations of LAI < 3 as they would be too much affected by the understory plants and wooden 
elements (adapted from Jan et al. 2016). 

Four scene topography categories (flat, south, north, and east oriented slopes) were consid­
ered in order to compensate for different i l lumination conditions in mountain regions. 
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parameters base model 3D model 

canopy cover (CC) 50, 65, 80, 95 % 
L A I 3 - 1 0 with step 1 
topography (topo) flat, south, north, and east slope 
leaf optical properties (lop) 900 464* 
combinations (topo • C C • L A I • lop) (topo • C C • (comb(LAI and lop))) 
number of simulations 115 200 7 424 

Table 3.17: Structure of D A R T simulated spectral database. (*) leaf optical properties in case 
simulations with 3D spruce models are generated together with the LAI values. That means, 
for each case of generated leaf optical property was randomly chosen the LAI value from range 3 
-10. Instead of the case of simulations with base spruce models they were generated set of leaf 
optical properties and this set were assigned to each LAI level. 

Leaf optical properties that were used as inputs into the D A R T model were simulated using 
P R O S P E C T 3S, which was specifically adjusted for the Norway spruce needles by Malenovsky 
et al. (2006) (Section 3.4.2). In case of the base spruce model D A R T is able to separate the tree 
crown in horizontal layers, therefore the leaf optical properties were defined for each crown level 
as described in Section 3.4.2. The adjusted P R O S P E C T 3S simulates optical properties only 
in the spectral range between 450 and 1000 nm. Therefore, al l D A R T simulations were also 
restricted to the maximum wavelength of 1000 nm. The spectral sampling was 1 nm. 

Meaningful combinations of P R O S P E C T input parameters were randomly derived using 
the Mat lab function mvnrnd, which generates multivariate normal random values. This func­
tion takes into account covariance computed among the measured P R O S P E C T input parame­
ters. The function generated an init ial pool of 50 000 input combinations that were restricted 
by realistic min - max ranges defined according to available literature (Stuckens et al. 2011, 
Feret et al. 2008, 2011, and Ciganda et al. 2009) or by available experimental measurements 
(Figure 3.39). 
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Figure 3.39: Distr ibution of in-situ measured leaf biochemical properties Cab - chlorophyll 
content, C w - water content, C m - dry matter content for spruce needles. 

Since one of the estimated parameters is Cab, it was essential to ensure that the sampling 
space of possible chlorophyll values was spaced equally. Therefore, the ini t ial pool of input 
combinations was divided into equally spaced groups of Cab values (e.g. Cab varied between 
10 and 100 [igcwT2, we obtained nine groups representing nine intervals of 10 figcm~2 each). 
From each group ten P R O S P E C T input combinations were then randomly selected resulting 
in 900 combinations scenes. Distributions of all input parameters derived by P R O S P E C T 
are shown in Figure 3.40. 
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Figure 3.40: Distr ibution of leaf biochemical and structural properties Cab - chlorophyll content, 
C w - water content, C m - dry matter content, N - structure that were used to simulate leaf 
optical properties in P R O S P E C T model in case of base spruce models. 

3.5.1.2 3D spruce model 

These L U T simulations were made with the D A R T model version 5.6.3 v858 (released in 2016), 
The setup this L U T structure is almost similar to the previous one with base spruce model, 
the major difference is in simulation of input optical properties and distribution of the L A I 
(Table 3.17). The optical properties were simulated using the P R O S P E C T 5 R T M (Jacquemoud 
k Baret 1990; Feret et al . 2008). The P R O S P E C T 5 model calculates leaf reflectance ( H D R F ) 
and transmittance ( H T R F ) in the range from 400 to 2500 nm. The use of P R O S P E C T 5 
was justified by the E S A project requirements to simulate full spectral range (400 - 2300 nm) 
and to include leaf carotenoids (Car) as a variable. 

Needles of spruce trees were divided into two categories, current-year needles growing 
at crown periphery (20 %) and older needles growing inside the crown (80 %) (Section 3.3.3). 
The older needles generally have higher Cab, carotenoid (Car) and dry matter (Cm) content 
(Homolova et al . 2013) and this was reflected in the distribution of P R O S P E C T 5 input 
parameters (Figure 3.41). 

0 20 40 60 80 0 6 10 15 20 0 0.01 0.02 0.03 0 0.01 0.02 1 1.5 2 2.5 3 
Cab [i>g cm"2] Car [fig c m 2 ] Cw [g cm"2] Cm [g c m 2 ] N [-] 

Figure 3.41: Distribution of leaf biochemical and structural properties Cab - chlorophyll content, 
Car - carotenoid content C w - water content. C m - dry matter content, N - structure that were 
used to simulate leaf optical properties in P R O S P E C T 5 model in case of 3D spruce models 
transformed to turbid cells. 

Other difference is in the distribution of the L A I . In the case of simulations with the base 
spruce model generated set of leaf optical properties were assigned to each L A I level. But in case 
of simulations with the 3D spruce model the L A I values were randomly chosen from the range 
3 - 1 0 and assigned to each generated leaf optical properties. That enabled a smaller size 
of the L U T . 
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3.5.1.3 Common computer requirements and L U T post-processing 

Computation of forest scene is very computationally demanding, therefore both cases were simu­
lated at MetaCentrum, Czech national grid infrastructure for distributed computing (www.meta- 
centrum.cz). Both L U T s were generated in different years, different D A R T model versions were 
used to simulate the L U T s . Due to the continual development of the D A R T model, the com­
putation requirements in 2016 for the L U T s based on the 3D model significantly decreased. 
Computer requirements of MetaCentrum to simulate both L U T s are summarized in Table 3.18. 

requirements base model 3D model 

used D A R T version 5.5.1 v494 5.6.3 v858 
year of D A R T version releasing 2014 2016 
number of sequences per canopy cover and topography 24 20 
number of simulations per sequence 300 23 
number of simulations run in one time 8 2 
R A M needed for one parallel computation 32 G B 25 G B 
disk capacity required to store results of one sequence 100 G B 1 G B 
computation time per sequence 10 - 48 h 6 - 14 h 

Table 3.18: Opt imal computational requirements for D A R T simulations at MetaCentrum 
for two L U T s : with the base spruce model and with the 3D spruce model transformed to turbid 
cells. The differences are due to the improved version of the D A R T model released in 2016. 

The simulated spectral signatures by the D A R T model had the original spectral resolution 
of 1 nm. This spectral resolution was not suitable for further analysis and therefore the spectral 
databases were resampled according to S2 images, using Gaussian convolution (Huck & Berth-
elot 2015). The spectral resampling allows us to retrieve from real S2 images. Description 
of computational requirements was adopted from Homolova et al. (2015b). 

3.5.2 Estimation of Cab and L A I 

The Cab and L A I retrievals were implemented using S V M (Chang & L i n 2011), as these algo­
rithms represent a good compromise between computation cost, efficiency and accuracy. S V M 
are kernel-based computer learning algorithms used widely for solving N-class classifications 
or regression problems (Smola & Scholkopf 2004, Section 2.3.4). 

Since we used the radial basis function kernel, the most significant parameters were: i) the cost 
value of a kernel (parameter C) and ii) the parameter 7 defining the kernel function. It was ne­
cessary to find the most optimal values of C and 7 to ensure the best possible performance 
of S V M when applied on real datasets. The optimization procedure used 5-fold cross-validation 
and it was applied on a selected subset of L U T , i.e. training dataset. The highest computed co­
efficient of determination ( r 2 ) and the lowest mean square error (MSE) pointed out the optimum 
solutions of both parameters simultaneously. A n envelope of optimum solutions was identified 
as the 25% of C, 7 combinations yielding the highest r 2 (Figure 3.42). 

Since C > 15 caused overtraining of the S V M , it was decided to fix the optimal value of C 
equal to 10. The optimum values of 7 parameter were less stable and varied. It was inefficient 
to determine the single most optimal value of 7, therefore 7 varied within a restricted range 
of optimal values, which was between -5 and 5 with steps of 1. 

The S V M was trained with 1000 samples and applied on S2 image data for both cases 
of L U T . The estimated values of the Cab and L A I were filtered by 3 x 3 median filter medf i l t 2 
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Figure 3.42: Results of the S V M kernel optimization for retrieval of Cab - leaf chlorophyll 
content, L A I and leaf area index using the S2 band. The upper graphs show results for M S E , 
the middle graphs for the coefficient of determination ( r 2 ) and the lower graphs for time of pro­
cessing. 

in Mat lab. For better visualization the results of the estimated Cab and L A I were displayed 
in discrete ranges (according to expected real values see Figure 3.39). Therefore the pixels 
with extreme values were not classified. Finally, the results were restricted to forested areas 
only. The forested pixels were identified using supervised maximum likelihood classification 
method. F ina l maps of estimated Cab and L A I from both L U T s are shown in Figures 3.43 
and 3.44. 

The results from L U T with 3D spruce model are more consistent and closer to the real 
values. The validation according to field data are described in next Section 3.5.3. 

3.5.3 Validation against the field data 

Validation of the Cab and the L A I retrievals from S2 images were done with the field data that 
were measured almost synchronously with S2 acquisition in summer 2016 (see Section 3.2.2). 
The field sampling plots are better distributed within the study area than in 2006 (see F ig ­
ure 3.5). The ten years difference between forest height captured by the two L U T s is not such 
a complication for the Cab and L A I estimation, because the S2 image subset contains spruce 
forests of different heights. The difference in variability of the field data measured in 2006 

84 



base spruce model 3D spruce model 

Spruce site 

Leaf Cab [ug/cm~2] 
• no data 
• 0 to 4.9 
• 5.0 to 9.9 
• 10.0 to 14.9 
• 15.0 to 19.9 

I 20.0 to 24.9 
• 25.0 to 29.9 
• 30.0 to 34.9 
~~l 35.0 to 39.9 

40.0 to 44.9 
• 45.0 to 49.9 
• I 50.0 to 54.9 
• > 55 

N 

U T M Zone 33N (WGS 84) 

100 O 1 0 0 2 0 0 3 0 0 4 0 0 m 

755500.000 756500.000 

•KS5S 

755500.000 756000.000 755500.000 756500.000 

Figure 3.43: Estimated Cab content. The map on the left was calculated from L U T with base spruce models, the map on the right was 
calculated from L U T with 3D spruce models transformed to turbid cells. 



Figure 3.44: Estimated L A I . The map on the left was calculated from L U T with base spruce models, the map on the right was calculated 
from L U T with 3D spruce models transformed to turbid cells. 



and 2016 is not significant for the purpose of this study (cf. Figures 3.39, 3.40, and 3.41). 
For validation of estimated Cab from S2 images with the pixel size of 20 x 20 m, mean Cab 

value was computed from three sample trees representative for each plot (2 x 2 S2 pixels). Mean 
Cab exhibited low variability among the plots, the mean value hanged between around Cab = 
30 - 40 figcm~2. The L A I values were computed per plot and varied in range 5 - 9 m2m~2. 
For purpose of the Cab and L A I validation there are only seven values available. The number 
is very low, since gathering of this type of data is very time consuming. The validation was re­
alized as a scatter plot between the measured and estimated values (Figure 3.45). Furthermore. 
R M S E values were computed for all combinations of parameters and used spruce models. 
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Figure 3.45: Validation of the estimated Cab and L A I values from S2 images of seven localities 
at the Bílý Kříž site. In graphs are two sets of data depends on 3D spruce models used 
for generation of the L U T . First are used 3D spruce models transformed to turbid cells (blue) 
and second are used the base spruce models (green). There are also calculated R M S E value 
for both cases and both parameters. 

From the R M S E values can be seen that the retrievals with the 3D spruce model are closer 
to the field data than the case with the base spruce model. In case of the Cab estima­
tion the R M S E decreased from 27.9 fxgcm~2 to 15.7 fxgcm~2, in case of L A I it decreased 
from 3.5 m2 m~2 to 2.8 m2 m~2 because of implementing the 3D spruce model. Regarding 
the spatial patterns, the Cab map derived from the 3D spruce model exhibits realistic pattern, 
whereas the maps derived from the base spruce model has high number of negative values. 
The L A I map derived from the 3D spruce model also exhibits more realistic pattern than 
the map derived from the base spruce model, where values seems to be distributed randomly. 
Despite this, the estimated L A I derived from the 3D spruce model does not capture the vari­
ability as observed in the field data. The possible explanation is that the variability of L A I 
in the L U T with the 3D spruce model is not sufficient and the S V M method is not able to cope 
with that fact. 
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3.5.4 M a i n outcome 

The last aim of this study was to assess the improvement achieved in the remote sensing 
estimation of the two vegetation parameters, Cab and L A I , after operational implementation 
of the newly designed 3D spruce model. The validation against field data of both canopy 
traits estimated using the base and the 3D spruce models was performed. Results showed 
that the accuracy of both parameters retrieved from a Sentinel-2 multispectral image was 
improved when the precise 3D spruce model transformed into the turbid cell representation 
was implemented instead of the traditional D A R T turbid tree model. The improvement was 
clearly observed in a higher consistency of spatial patterns in both Cab and L A I maps. 

Nevertheless, the direct comparison with the field data suggests that there is st i l l a room 
for further improvements. For example, the application of the Sentinel-2 image topographic 
correction, which was not available during this study, would decrease the angular anisotropy 
of a spruce canopy H D R F . This correction removes canopy reflectance differences especially 
on steeper slopes of different expositions (northern vs. southern slopes), which would reduce 
mathematical illpostness of the retrievals and consequently increase their accuracies. Other 
potential improvement could be a meaningful restriction of the D A R T simulated L U T based 
on a prior knowledge, such as known topography, canopy covers and/or a reasonable l imitation 
of ranges of free (searched) variables (Cab and L A I ) . This approach would, however, require 
production of more specialized D A R T L U T s applicable to specific forest types. The retrieval 
would require pre-classification and segmentation of the satellite image into the corresponding 
forest type classes. It should be mentioned, that misclassified forest types coupled during 
the retrieval process with an inappropriate L U T could potentially result in even higher errors 
then current approach. 
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4 Synthesis and outlook 

This chapter summarizes main scientific achievements, conclusions and outlines potentials 
for future use of the newly designed 3D spruce model in forest radiative transfer modelling. 

4.1 M a i n conclusions and impact 
The detailed computer 3D model of Norway spruce tree, based on reconstruction of terrestrial 
L i D A R point clouds, was successfully created. A new algorithm was developed for biologically 
correct distribution of the needle shoots within the reconstructed tree crowns. Optimization 
of the 3D spruce model was conducted and tested at three structural levels, at the scale of shoot, 
tree crown, and canopy. Achieved results showed that use of the optimized 3D spruce model 
with a simplified shoot model (labeled as simple 1) and transformed into turbid cell mock-
up yielded significantly better results when compared to outputs obtained with the traditional 
simpler spruce model. Besides higher accuracy estimates of canopy chlorophyll content and leaf 
area index retrieved from spectral remote sensing data through D A R T L U T inversion, this work 
contributed to new improvements of the D A R T model itself. Triggered by needs of this study, 
D A R T developers improved functions translating geometrical objects in turbid cell representa­
tions, introduced better model file management and optimized the D A R T code in general. 

4.2 Potential improvements 
One possible improvement of the 3D spruce model is creation of more realistic reference needle 
shoot model. The one used in this study was relatively simple, because it was designed for older 
versions of the D A R T model with limited capabilities of 3D objects handling. Moreover, it does 
not resemble the real natural distribution of individual needles along the central wooden twig. 
The architecture of each shoot varies depending on illuminations conditions, age and stress 
impacts. Precise 3D representation of shoot can be obtained from laboratory laser scanning. 
Although several shoot types were recreated this way, it was unfeasible to use them all within 
the framework of this thesis. The scanned shoots contain gaps, irregularities, and extremely high 
number of facets, which would require time demanding preprocessing. However, with a constant 
improvement of the D A R T model computational resources, we can expected its ability to process 
trees with more complex shoot models soon. 

Similarly, it might be in future feasible to simulate larger forest scenes entirely reconstructed 
from airborne laser scanning data with the site-specific tree spatial and height distributions. 
Radiative transfer simulations of such scenes could facilitate retrievals of vegetation biochemical 
parameters from RS data fully customized to the study site conditions. 

Additionally, a possible future extension of the algorithms creating the 3D models of trees 
is its adaptation to other coniferous or even further to broadleaf tree species. 
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4.3 Possible application of the 3D spruce model 
In general, the 3D spruce model designed in this study can be used to understand better light 
interactions within a single tree crowns or whole canopies. 

From RS perspective, one of the key issues in coniferous forest canopies is the upscaling 
of optical properties from needles, to shoots and to canopies. From operational point of view, 
it is easier to measure optical properties of needles rather than shoots. However, since shoots 
are the main scattering elements in the coniferous forest canopies, there is a strong demand 
to know shoot optical properties and phase functions with a high accuracy (Stenberg 1996, 
Smolander & Stenberg 2003, Rautiainen et al. 2012, and Mottus et al. 2012). Traditional 
forest reflectance models, based on the radiative transfer equations, handle shoot level clumping 
by correcting the radiation attenuation coefficient with a clumping index, which simulates 
a reduction in the interception of radiation by the canopy at fixed L A I (Smolander & Stenberg 
2003). Implementation of the precise 3D spruce model could help to disentangle and understand 
better light interaction related to the foliage clumping. 

Finally, the 3D spruce model has been used to investigate scattering, reabsorption and an­
gular isotropy of the chlorophyll fluorescence emissions produced by the plant cellular photo-
systems I and II. Results, presented at the Remote Sensing of Fluorescence, Photosynthesis 
and Vegetation Status Workshop (Malenovský et al. 2017), demonstrated a strong angular 
anisotropy of the top-of-canopy chlorophyll fluorescence signal caused by size, spatial geometry 
and clumping of spruce needles and shoots. Such sensitivity analyses contribute to full com­
prehension of this new vegetation optical signa, which wi l l from 2022 acquired by a new E S A 
satellite mission called F L E X (Drusch et al . 2016). 
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List of Abbreviations 

B R F Bidirectional Reflectance Factor 

Cab leaf Chlorophyll a+b content 

Car Carotenoid content 

C E S B I O Centre d'Etudes Spatiales de la BlOsphere 

C m Dry matter content 

C w Water content 

D A R T Discrete Anisotropic Radiative Transfer 

E S A European Space Agency 

H D R F Hemispherical-Directional Reflectance Factor 

H D T F Hemispherical-Directional Transmittance Factor 

L A D Leaf Angle Distribution 

L A I Leaf Area Index 

L i D A R Light Detection and Ranging 

L U T Look-Up-Tables 

M S E Mean Square Error 

N N-number used by P R O S P E C T 

N I R Near InfraRed 

R A M I RAdia t ion transfer Model Intercomparison 

R M S E Root Mean Square Error 

RS Remote Sensing 

R T Radiative Transfer 

R T M Radiative Transfer Model 

S2 Sentinel-2 

S V C Support Vector Classification 
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S V M Support Vector Machines 

S V R Support Vector Regression 

U T C Coordinated Universal Time 

U T M Universal Transverse Mercator 

VIS VISible 

W G S World Geodetic System 
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