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Abstrakt

Predkladana prace se zabyva ndvrhem modelu dynamiky paralelniho manipuldtoru
optimalniho pro ucely navrhu fizeni. Zvoleny pfistup je zaloZen na modelovani dynamiky
systému v simula¢nim prostfedi Matlab SimMechanics néasledovaném linearizaci modelu.
Vysledny stavovy linearni model mimo jiné umoziluje snadné posouzeni fiditelnosti a
pozorovatelnosti modelu. Diky své relativni jednoduchosti je model také vypocetné
nenaroc¢ny. Piistup je demonstrovan na navrhu dvouvrstvého tizeni SimMechanics modelu

YV v

Stewartovy platformy, na kterém bylo nasledné navrzené tizeni usp€sSné testovano.

Podstatnd c¢ast prace obsahuje pfistup k modelovani neurCitych parametri
dynamického modelu Stewartovy platformy a stejnosmérného motoru Maxon RE 35 a jeho
vysledky. PredloZeny ptistup je zaloZzen na modelovani parametrické neurcitosti zplisobem,
kdy je neurcitost definovdna individudlné pro jednotlivé prvky stavovych matic modelu.
Samotna neurcitost je potom urcena rozdilem mezi jednotlivymi parametry ptisluSnych matic
nominalniho modelu a modelu se stanovenou maximalni neurCitosti parametri. Vysledny
neurcitostni model je vzhledem ke své stavové reprezentaci vhodny pro ndvrh regulatoru
zalozeném na metodach navrhu robustniho ftizeni, naptiklad minimalizaci normy H-
nekonecno.

Popsana metoda byla pouzita pro kompenzaci posunu mezi pracovnimi body, okolo
kterych je provadéna linearizace a pro kompenzaci nepfesnosti modelovani vybranych
parametri modelt Stewartovy platformy a stejnosmérného motoru.

Ziskané modely (v prostfedi SimMechanics a neurcitostni model) byly experimentalné
porovnany s chovanim jednoho z linedrnich pohont Stewartovy platformy. Rozdil v datech
obdrzenych ze simulace v prostfedi SimMechanics a naméfenych na redlném stroji byl témér
kompletné pokryt neurc¢itostnim modelem.

Prezentovana metoda neurcitostniho modelovani je velice univerzalni a aplikovatelna
na libovolny stavovy model.

Klic¢ova slova: Stewartova platforma, parametrickd neurcitost, simula¢ni modelovani






Abstract

The proposed work is dealing with an optimal model of a parallel manipulator
dynamics for a control design purposes. The approach is based on modeling of the system
dynamics in Matlab Simmechanics followed by the model linearization. The obtained linear
model may be simply inspected from the controllability and observability point of view. It is
also computational modest thanks to its simplicity. This is demonstrated on designing of a
two — layer control for a model of a Stewart platform. The control based on such a linear
model was successfully tested on the original nonlinear model.

The essential part of the the work is dealing with modeling of uncertain parameters in
the dynamic model of the Stewart platform and DC motor Maxon RE 35. The proposed
approach is based on modeling of a parametric uncertainty where the uncertainty is defined
individually for particular elements of the model state matrices. The uncertainty itself is set by
the difference between parameters of corresponding matrices of the nominal linear model and
model with maximally perturbed parameters. The obtained uncertain model is for its form
suitable for the robust control design methods, for example via minimizing an H-infinity
norm.

The method was used for a compensation of the shifting of the linearization operating
points in the Stewart platform and for compensation of the modeling inaccuracy of selected
parameters in the Stewart platform and the DC motor model.

The obtained models (SimMechanics and uncertain state - space) were compared with
the single linear actuator of the Stewart platform. The difference between the simulated
SimMechanics model and measured data was almost completely covered by the uncertain
model.

The method is highly versatile and applicable on any state-space model.

Keywords: Stewart platform, parametric uncertainty, simulation modeling






Preface

Modeling and simulation of mechanic and mechatronic systems is significant part of
development of a new product or improving of a current one. It allows introducing new
technologies to industry, decreasing product costs, increasing a product quality and at last but
not least it indirectly contributes to the environmental protection. These are just some of
fundamental factors influencing the human civilization development.

There are nowadays opened new possibilities to the modeling of systems thanks to the
fast growth of the computer technologies. This makes possible to simulate and model
complicated systems which would be unthinkable to simulate only twenty years ago.

The proposed work presents an approach to modeling of parallel mechanisms which
recently gained ground in machining applications, fast pick and place applications or in high
accurate positioning applications. The approach is highly versatile thus applicable on wide
spectrum of systems.
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1.

Introduction

Design of complex systems is an iterative process which is often cross-disciplinary.
The goal is to create a system with given parameters, thus all of simulation based methods
require initial model of the system with predictable properties. Simulations as close to reality
as possible are then used for experiments with the system properties and for achieving of
desired information about the system.

The problem is that there is no universal design process. Known approaches are more
often characterized as methodical instructions.

The fundamental approach to the design of the complex systems is for example
described in [38]. The core of the system is typically made of the basic system which might
be mechanical, electrical or other physical principle. It is connected through sensors and
actuators to elements processing the information. Let’s note that it is also possible to realize
sensors, measuring the state values, in form of observers, i.e. in a software way. The measured
data then defines actions influencing the system states in the desired way. The actions are
linked to the system via actuators.

The aim of the design of the model based system is compact prognosis and
optimization of the system behavior. The advantage of the model based design is then in
possibility of testing of the control software with controllers before a prototype is
manufactured.

It is also necessary to test the functionality of the system in the designing phase
because it is often impossible to suppress the design errors in its later phases.

Nowadays the model is often used for design of a control system which is then able to
predicate the system behavior. This might be used for dynamical compensation of unwanted
behavior. The use of a model is suitable for [54]:

Kinematic compensation,

processing of signals from additive state sensors,

dynamic compensation,

thermal compensation,

prediction of error by detection of the deviation from the standard behavior,
suppression of critical states (vibrations) by prediction of critical areas from the
model.



The model based control is very interesting possibility not even for robotics but also
for other technical disciplines. Obtaining of high accuracy control is nowadays often solved
by implementing of the model to the control system. Model of the system built into the
control system monitors data obtained from the sensors and actuators. Implementation of such
controllers is nowadays possible thanks to the computational power of modern computers
[24].

The models are differentiated according to the structure and prediction quality. Basic
concepts are mainly [54]:

simplified models, mainly linear,
fenomenologic equation,

neural networks,

decision trees,

look- up tables.

From the presented point of view arise following requirements on the optimal model
of the system and on the optimization of the design with the model support:

evaluation in the shortest possible time,

possibility of the processing of the deviations from the reality,

(simple) investigation of the system controllability

(simple) investigation if it is possible to use the model for estimation of selected
parameters (especially in cases of parameters which is difficult or impossible to
measure)

The proposed work is then focused on such an optimal modeling of a parallel robot
generally known as Stewart platform.

The construction of general parallel robot basically stands on a closed kinematic chain.
Therefore a load carried by the end-effector is divided between particular kinematic chains
linking the effector to the base. Such a construction of a manipulator leads to very high
stiffness of the device and high load/robot mass ratio, possibility of lighter construction, thus
better dynamics. Other advantages may be higher positioning accuracy, using same parts for
all links or possibility of mounting of the actuators to the base of the device. These are some
of advantages when comparing parallel manipulators with serial ones (open kinematic chain).
The main disadvantage of a parallel manipulator construction is then quite small volume of
the workspace limited by singular areas and usually quite complicated kinematics and
dynamics.

The history of the first industrially used parallel manipulators started in a year 1955
when Gough [30] constructed the first prototype of a six degrees of freedom parallel
manipulator for tire wear testing (used in Dunlop Tires till year 2000). The machine consisted
of a platform (end-effector) and six extendable links which connected the platform to the base
frame. The very similar construction was used approximately 10 years later by Cappel and
also by Stewart for a flight simulator construction. From then parallel manipulators have been
used in many other sectors of industry where their advantages as high stiffness, precise
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positioning, high load/robot mass ratio, may be used. Let’s name for all fast pick and place
applications (ABB FlexPicker, Fanuc M-1iA), machining robots (Metrom P-800), positioning
of heavy antennas, microscopes (usually hexapods in general), spot welding (Fanuc F-200iB),
etc.

The parallel robots are in general suitable for applications where high positioning
accuracy is more important than volume of the workspace, for applications where
manipulation with heavy loads in small workspace (simulators, antenna manipulation, ...) is
needed or fast pick and place applications.

The presented work is based on needs of projects MSM0021630518 “Simulation
modeling of mechatronic systems® and MSMT KONTAKT 1POSME789 “Simulation of
mechanical function of selected elements of human body* which had been solved at BUT
recently. One of aims of named projects was to construct a Stewart platform. The device is
planned to use for biomechanical experiments such as joints endoprosthesis (hip, knee) wear
testing or for spinal elements testing. Such an usage leads to specific requirements in
construction and control. Hence it was necessary to build a model of the system dynamics and
kinematics according to the engineering design at first. The model was built in such a way to
satisfy requirements for a control design and for testing of the designed control as well as for
testing of the device behavior. In other words the model had to be sufficiently precise in the
system description but on the other hand it had to be modest in computational time
consumption.

Building a model which is suitable for simulation and optimal for a control design at
the same time might be quite complicated task — especially in case of dynamic model
containing high number of interacting bodies within a spatial closed kinematics chain with six
degrees of freedom of the end-effector.

The proposed approach is based on modeling of dynamics within a modern simulation
tools with possibility of linearization. The modeling inaccuracies are compensated by defining
of uncertain parameters in the model. The obtained structure of the model is in a state-space
form which is suitable either for simulations or for a control design.

Let’s note that proposed approach demonstrated on the Stewart platform is highly
versatile and easily applicable to wide range of systems and processes. The method reflects
actual industry needs leading to increase of a product quality, preciseness, production
capacity, dependability, system economy and decrease of the environment damage. The
simulation and control of the system significantly influences all of these needs.

11



2.

State of the art

2.1 Kinematics of parallel manipulators

Modeling of a parallel mechanism kinematics may be solved as direct and inverse
task. The inverse kinematics is characteristic with known position and orientation of the end-
effector and joint coordinates are solved. Solving the inverse kinematics is necessary for the
position control of a manipulator. There are generally two approaches to the solving of the
inverse kinematics — analytical based on work with transformation matrices [29], [48] and
geometrical [50].

The opposite is the direct kinematics where the joint coordinates are known and
position and orientation of the end-effector is solved [2], [20]. Solving of the direct
kinematics is much more complicated than inverse in case of parallel manipulators. This is in
opposite with kinematics of serial manipulators. The method is usually based on a numerical
iterative principle [51], [48], use of genetic algorithm [4] or for example using of extra
sensors [37]. Very interesting method based on solving the determinant of Sylvester’s matrix
suitable for a real —time use was proposed in [43].

2.2 Dynamics of parallel manipulators

The model of system dynamics is usually needed for a control of devices which move
fast or heavily loaded devices, i.e. of devices where their dynamics effects strongly affect the
system behavior. The one of problems of dynamics modeling is that not all of the parameters
are known precisely even with use of on-line estimation methods. The other problem is the
computational time intensity.

There are often used common methods for dynamics of machines modeling in case of
parallel manipulators. These are Newton-Euler principle [14], [18], [19], [21], principle of
virtual works [13], [17], [28], [30], [45], Lagrange’s equations [15], [63] and the Hamilton
principle [52]. There are sometimes used combinations of methods, e.g. combination of
Lagrange’s equations and Newton-Euler principle in [49].
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Description of a parallel manipulator full dynamics via one of these methods is usually
quite complicated and numerical solution of the obtained model is too much time consuming.
Such a dynamics model is inappropriate for a control design. Therefore simplifying
suggestions shortening the computational time are often made.

One of such simplifications might be neglecting of inertia moments of the robot links
and at the same time assuming their masses at their ends [17], [56]. This approach was
successfully applied on Delta robot (the robot structure is using for example ABB in their
FlexPicker). Although the approach was successfully implemented with Delta robot,
neglecting of links inertia moments in case of Stewart platform leads to insufficient
positioning accuracy of the controller [27]. Another approach is presented in [42] where the
simplification is based on small workspace of the Stewart platform. The configuration-
dependent coefficient matrices of the dynamic equations are approximated to be constant. The
introduced modeling error is compensated by the H-infinity controller. Other publications
dealing with the simplification of a model dynamics are for instance [16], [25], [47], [57],
[62], [64].

Very interesting possibilities of dynamics modeling are nowadays offered by
numerous simulation softwares — Adams, Matlab — SimMechanics, Chrono R3D, Inventor,
SolidWorks, etc. The advantage is that such environments allow user to work with the model
in much more complex way (build a model, design a controller, connecting of models, etc.).
This might be very efficient tool for “rapid prototyping” or classical mechatronic approach
where it is taken into account that different phases of a product design are mutually connected
and strongly influencing each other. Very inspiring example from the point of view of parallel
manipulators is used in Matlab demos where a simple model of a Stewart platform was built,
linearized and consequently a PID controller was designed [61]. However the model is in its
simplest form and contains no uncertainties.

2.3 Notes to the control of parallel manipulators

Control of parallel manipulators might be quite complicated especially in cases where
the dynamics model is needed. Most common is the position control [41], [42], [59] but in
some cases also a torque control is used [66]. Possibilities of simplified dynamics models are
studied recently (see above). Interesting possibility of H-infinity controller application for
compensation of inaccuracies caused by a model simplification was studied in [42]. Nonlinear
adaptive control applied on a 6 DOF manipulator describes [35]. The possibilities of parallel
manipulators control are also described in [5], [12], [22], [23], [46], [47], [62], [64], [65].
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2.4 Notes to modeling of systems with uncertainties

The most of models describing dynamics of systems are more or less inaccurate. It
may be mostly caused by mentioned simplifications, neglecting of some factors influencing
the dynamics or general modeling inaccuracy. It is possible to describe these inaccuracies by
defining an uncertainty of the whole model or of the chosen parameters. The model
containing the uncertainty description is then applicable for design of a robust controller.
Such a controller is then able to control all systems within a given uncertainty range.

The uncertain modeling is very versatile and easily applicable on wide spectrum of
human activity. The standard approach to modeling of uncertain mechanical systems for a
robust control purposes is described in [32] or [33].

2.5 Summary and the problem description

The inverse kinematics of the parallel manipulators has been intensively studied for
several decades and its solution is no more a problem. On the other hand the direct kinematics
is for its strong nonlinearity still quite challenging task especially in cases where a real-time
application is considered. Very promising solution of a Stewart platform real-time direct
kinematics was proposed in [43].

The modeling of dynamics of parallel manipulators is mostly solved by classical
methods of dynamics but often also by a simulation modeling. The problem is typically
insufficient computational efficiency for a real-time use. This is often treated by simplifying
suggestions where some of the system parameters are neglected or the model is simplified
[42].

The problem of simplifications or approximations of the dynamic models introduced
in order to increase the computational efficiency is following. It has to be very carefully
considered for every individual type of a mechanism which simplifications it is possible to
make. Some of simplifications can be made for some type of a mechanism but for other not —
the method is not versatile.

The other problem is that a model of dynamics usually contains many inaccuracies.
The problem is getting worse by introducing of mentioned simplifications and
approximations.

Modeling of systems with uncertainties is nowadays used in many even nontechnical
applications [34], [44], [60] for description of a model inaccuracy. But in case of modeling of
parallel robots it is very rare.
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3.

Goals of the work

The main goal of the work is to propose and verify a methodology for design of
dynamic models of parallel manipulators optimal for a control design. Such an optimal model
must satisfy following conditions:

evaluation in the shortest possible time,

possibility of the processing of the deviations from the reality,

(simple) investigation of the system controllability

(simple) investigation if it is possible to use the model for estimation of selected
parameters (especially in cases of parameters which is difficult or impossible to
measure)

Let’s note that actual needs of the modern industry are taken into account, thus it is
expected use of more advanced controllers than just a simple PID and use of modern control
techniques.

The method should be also universal and applicable on other mechatronic systems
such as machining tools, robotics in general, engines and other.

Building of such an optimal model satisfying the above requirements will be
illustrated on the Stewart platform developed at BUT which has intended use in
biomechanical applications [10], [11].

Thus the model will be optimized for investigation of possibility of control design
techniques application, description of modeling inaccuracies and for computational modesty.

Sectional goals are following:

e Analyze present methods of modeling of parallel mechanism

e Design an appropriate method for a parallel robot modeling

e Build a model describing kinematics and dynamics of the Stewart platform
e Optimize the model for the control design purposes

e Verify the model with the real device

e Formulation of conclusions
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4.

Background theory

4.1 Linear vs. nonlinear systems

The linear system must satisfy conditions of superposition f(x+y)=f(x)+f(y)

and homogeneity f (kx)=kf (x) for inputs x, y and any real number k. Any other system is

considered as nonlinear.

Hence a linear system may be divided into several parts which are then solved
separately. There is a wide background theory of working with linear systems but the most of
engineering problems are mostly nonlinear.

Nonlinear systems are typical with many possible equilibrium points, system stability
depending on initial conditions, possible chaotic behavior, etc. It is then often proceeded to
linearization of the nonlinear models because of its complicated possibilities of study.
Obtained linear model has behavior very close to the nonlinear model but only for a small
area around the linearization point.

Typical sources of nonlinearities in mechanical systems are for example Coulomb
friction or a backlash.

The nonlinear system is generally not suitable for a control design purposes. While the
linear representation of the system offers standardized tools for inspection of controllability
and observability, as well as other linear control theory methods [55]. Let’s just briefly walk
through some of these methods.

Let’s consider a linear continuous state — space system

X = Ax+Bu

y=Cx+Du (41)

The system is stable if all eigenvalues of matrix A have negative real parts, i.e. if Re(ﬂ,I ) <0.

The  controllability  condition is  satisfied for AeR™, BeR™ and
R =[AB'" A'B" AB' ... AV'B']if
rank (R, )=n. (4.2)
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The controllability in general says if it is possible to change a state of the system by an input.

The observability then guarantees the possibility to observe all of the system states, i.e.
possibility of reconstruction of the system states based on knowledge of input. This is
profitable especially in cases of the system states which is difficult or impossible to measure

by standard techniques. The observabiliy condition is satisfied for AeR™, CeR™ and
R, :[(cT VA (CT) AT (YA L (CT) AT} if

rank(R,)=n. (4.3)

The typical methods utilizing a linear state — space model for a controller design are
for example pole placement method [40] or linear quadratic regulator design [32].

4.2 Modeling of uncertain systems

The precise description of a model is not always possible even with use of advanced
modeling tools. The modeling inaccuracy is typically caused by unmodeled dynamics,
neglected nonlinearities, reduced order of the system, parameter variations or inaccurate
description in general. The model is an approximation of the real system. However this might
be a problem when designing a control of the system — the precise model is needed for proper
design of a controller.

The approach dealing with this problem is based on modeling of the real system as a
set of linear time-invariant models built around a nominal one, i.e. the model is built as
uncertain within known boundaries. The benefit of such a representation of a model is the
possibility of designing a robust controller stabilizing a closed loop system even with
uncertainties. The most degraded model within defined uncertainty is then called “the worst
case scenario”. The ideal goal is to design a controller capable of stabilizing even the “the
worst case scenario”. Such a controller then also guarantees stabilizing all of realizations of
the model within the given uncertainty boundaries.

There are two most general ways of representing the uncertainty [33] — the
unstructured and structured uncertainty.

4.2.1 The unstructured uncertainty

The unstructured uncertainty is “a global” uncertainty of the system where individual
contributions to the uncertainty are described by a single perturbation. This kind of
uncertainty is typical for instance for unmodeled dynamics or neglected nonlinearities. It is
mostly used for high-frequency dynamics description.
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The most common representations of the unstructured uncertainty are for the nominal
system G, perturbed system G, and perturbation block A following [33]:

e Additive perturbation G, =G +A
e Multiplicative perturbation G, =G(1+A)
e Inverse additive perturbation G,' =G +A

e Inverse multiplicative perturbation G,' =G (1 +A)

It is characteristic for the unstructured uncertainty that block A may be unknown transfer
function matrix, in general it is a full matrix.

4.2.2 The structured uncertainty

The other uncertainty representation — the structured uncertainty — is describing all of
the uncertainty contributions individually. It is typical especially for description of variations
of the system parameters (parametric uncertainty) or shifting of operating points, i.e. for low-
frequency dynamics description.

The standard form of the structured uncertainty representation is for the augmented
system M presented in Fig. 4.1 It is standard configuration called M - A describing relation
between inputs and outputs of the system and their affection by uncertainties.

U, Y,

u M

y

Fig. 4.1 M - 4 configuration of a model with uncertainty

It is typical for the structured uncertainty that the perturbation matrix A is diagonal, i.e.
it has certain structure Azdiag{Al, .. A, }. The augmented system M is obtained from the

nominal system G with its nominal parameters and their variations A, ..., A by upper linear
fractional transformation.

Let’s note that the standard M — A configuration is also applicable on the unstructured
uncertainty as well but with a full A matrix.

4.2.3 Upper linear fractional transformation

Upper linear fractional transformation was for the first time in connection with a
robust control described in [58]. From then it is widely used for uncertainty modeling. The
general principle is following.
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M is an interconnection transfer function matrix according to
M, M

M :[ H 1"} (4.4)
M21 M22

and

A is the perturbation matrix with dimensions conformed to M.

M1, ..., My, are obtained according to
-1
F,(M,A)=M,, +M,A(I-M_,A) M,,, (4.5)

where F, (M,A) is called upper linear fractional transformation of M and A.

The unstructured uncertainty may be then defined with interconnection matrices M according
to [33] as:

0 1 0 |
additive perturbation M:{I G}' multiplicative perturbation Mz[é G] inverse
-G

-G

® O

-1 1
additive perturbation M { } and inverse multiplicative perturbation M =[ & G]

4.2.4 Robust stability for unstructured uncertainty

A system is robust when it remains stable for a bounded set of perturbations according
to [32]. Thus it is necessary to find a stabilizing controller of a closed loop containing a
controller and a nominal system under a defined perturbation that stabilizes the closed-loop
for all possible perturbations of the system. Such a controller is then of course stabilizing even
the nominal plant.

The following Fig. 4.2 presents a closed — loop system containing a controller K and a
nominal system G with given additive perturbation A which is a full matrix.

¥

A

Fig. 4.2 Closed loop system with additive uncertainty
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The transfer function of the v to u is then T,, =—K(I +GK)71. It is obtained by

applying the Small — Gain theorem [53] that a closed loop is robustly stable if K stabilizes the
nominal system and

— — -1
HAK(I+GK) <1 and HK(I+GK) Al <1 (4.6)
or
K(1+GK)"| <2 (4.7)
Je+e] <par

The control design problem is then formulated as finding an optimal stabilizing controller K
that minimizes the norm (4.7).

Conditions of the robust stability may be similarly expressed for other forms of
representation of the unstructured uncertainty [33]:

multiplicative  perturbation HKC_B(I +C_5K)_1 <ﬁ, inverse additive perturbation
HG(I +(§K)_l <ﬁ and inverse multiplicative perturbation H(I +C_5K)_1 <ﬁ.

4.2.5 Robust stability for structured uncertainty

The general robust stability conditions may be also written in form
det[l -M (ja))A(ja))] #0, Vo eR, VA, where M is the nominal closed loop system which

is assumed to be stable, [53].

The structured uncertainty is characterized by diagonal perturbation matrix
A=diag{Al,...,Am}. A, may be in general any transfer matrix satisfying E(Ai)sl, Vo.

Then may be defined so called structured singular value ,uA(M) which analyzes the

smallest possible uncertainty that makes det[l -M (jo)A( ja))] #0. It is then

1
+(M) min, {5(A)| det(1 —MA) =0 for some structured A}
if there is no A satisfying det(l -M A) =0, then u, (I\/I )D 0, [26] .
The robust stability condition for the system with a structured uncertainty is then
yA(M)<1, Vo . (4.9)
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4.2.6 Notes to the robust performance

Sometimes it is not sufficient to design a controller which is only stabilizing but also
other properties are desired. The given properties depend on the minimized norm. An
overview of minimized norms and corresponding properties is following [33]: good tracking

H(I +GK)”

. disturbance attenuation H(I +GK )_1

, noise suppression H—(I +GK)_1C_5K

00 o0

and control energy minimization HK(I +GK )_1

Combination of norms leads to solving a mixed sensitivity optimization problem.

— -1
| +GK
Mixed sensitivity norm may be for example described as ( ) . A controller K

K(1+6K)"

o0

minimizing the norm then offers good tracking with minimal possible control energy.

The proposed work utilizes mainly described upper linear fractional transformation.
The robust stability and performance was not solved because it exceeds the scope of the work.
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S.

Proposed approach

The proposed approach is based on mentioned advantages of the linear model
representation.

The model itself utilizes advantages of Matlab SimMechanics simulation environment
which offers many tools for modeling of kinematics and dynamics of mechanisms as well as
the possibility of linearization. The simulation environment is for its good connectivity with
Simulink suitable for simulations of a control and for the model and data manipulation.

There are also derived standard equations of the inverse kinematics for the simulation
and control purposes.

The linear model obtained from SimMechanics guarantees simplicity, computational
efficiency and wide spectrum of methods for the manipulation with the model and for a model
based controller design.

Inaccuracies of the model caused by the linearization, neglected dynamics or
improperly defined parameters are then described by definition of uncertainties for the
individual model parameters.

The uncertain modeling is used for describing of inaccuracies caused by shifting of the
linearization operating points of the Stewart platform and by modeling inaccuracy of selected
parameters of the Stewart platform and the DC motor model.

The method for modeling of uncertainties of the DC motor is based on the standard
parametric uncertainty definition. It is then proposed a method for defining of individual
parameters of the model state matrices as uncertain. This is profitable especially in cases of
higher order models. The method is used in case of the Stewart platform uncertainty
modeling.

The uncertain model may be with advantage used for a “worst case scenario” analysis
and for a robust control design. The uncertain model is linear thus keeping all advantages of
the linear representation.
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6.

The device description

6.1 The linear actuator with gearings

The Stewart platform consists of six linear actuators (links) which manipulate with top
plate of the platform. The change of the actuator length leads to the change of the platform
position and orientation. The links lengths needed to obtain desired position and orientation of
the platform are then easily evaluated with the knowledge of the inverse kinematics.

The choice of joints within the linear actuator itself is subjected to the overall
movement of the platform which has to be fully three dimensional, i.e. with six degrees of
freedom. Thus the upper joint connecting the actuator to the platform is spherical (three
rotational degrees of freedom) and the lower joint connecting the actuator to the base is
universal (two rotational degrees of freedom). With the middle translational joint (ball screw
in our case) connecting together upper and lower part of the linear actuator.

6.1.1 Mechanical parts of the linear actuator

Let’s note at first that the linear actuator is the most complicated part of the whole
Stewart platform because of the number of its mechanical parts. The actuator parts may be in
general divided into two groups. The first group would be joints and the second group would
be bodies (this will be very useful for later SimMechanics modeling). The joints group (Fig.
6.1) contains the spherical joint 1, a ball screw (screw joint) 2, the ball screw guidance 3, plate
for attachment of a DC motor 4, a screw nut 5, gearings (a spur gearing and a planetary
gearbox) 6 and finally the universal joint 7. The bodies group (Fig. 6.2) basically contains the
upper part of the actuator (the ball screw 1a with its nut 2a) and the lower part of the actuator
3a which is connected to the DC motor 4a by the plate 4. These are main parts having
influence on kinematics and dynamics of the machine.
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Fig.6.1 Joints of the linear actuator (by Fig.6.2 Bodies of the linear actuator (by

Houska, P.) Houska, P.)
1 spherical joint, 2 ball screw, 3 ball screw guidance, 1a ball screw, 2a screw nut, 3a lower part of the link,
4 motor attachment plate, 5 screw nut, 6 gearings, 7 4a DC motor

universal joint

Technical parameters are following. The used DC motor is Maxon RE 35 (90 W),
single stage planetary gearbox Maxon GP 32 C with gear ratio 4.8:1, the gear ratio of the spur
gearing is 41:21, the screw-thread is 4 mm. The maximal length of the single linear actuator is
188 mm, the minimal length is 159 mm.

6.2 The Stewart platform

The basic geometry of the device (Fig. 6.3, 6.4) is defined by position of the base and
platform connection points for linear actuators attachment, Fig 6.5, 6.6. The basic geometry of
the Stewart platform is amongst others described in [50].

6.2.1 Basic geometry of the Stewart platform and its inverse kinematics

The Stewart platform geometry may be in the simplest form described as follows: The
circular movable platform is defined by coordinates of points p, =[p, , B, , pi_z]T . There
are six links (linear actuators) b,p; connecting the platform to the base circular body which is

defined by points b, =[b , b , b ,I', i=1...,6. The platform and base are parallel and

_y
axially aligned in the steady state. The points of the platform and the base are %7[ mutually

shifted.

The inverse kinematics describes relation between actuated joints coordinates and
given end-effector configuration. The actuated joints are prismatic in case of the Stewart
platform, thus the joint coordinates are defined as lengths of the links.
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Let’s note that establishing of the inverse kinematics equations is the fundamental step
to the position control design. The inverse kinematic equations might be according to [3],
[8].[36] also used for determination of the system Jacobians and consequently to analyze the
singular states of the machine.

S 2 - £ ¢,,_

The desind Stewart blaffbrm — reality (by Houska, P.)

Fig. 6.4

There are defined two main coordinate systems on the Stewart platform, Fig. 6.5, 6.6.
It is the coordinate system of the base (CSb) which at the same time corresponds with the
global coordinate system and local coordinate system of the platform (CSp). Both systems are
in the steady state of the platform axially aligned along the z-axis.

Fig. 6.5 Platform angles Fig. 6.6 Base angles
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The position of the base connection points b, is defined in CSb (Appendix B) as

COS S, | €os By,
bzi-l = Sinﬂmb_i ) b2i =5 Sinﬂpb_i (6.1)
0 0
for B, | :gﬁ(i—1)+ab—%7z, B i zgﬁ(i—l)—ab+%7z and i=1,...,3.

The meaning of terms is following: o, =10,84° is the offset angle on the base according to

Fig. 2.6 and r, =175,02mm is the base radius. The same process was used for obtaining
coordinates of the platform connection points.

The position of the platform points p; is defined in CSp (Appendix B) as

cos B, i cos By, i
p2i-l = rp SiIr\ﬂmp_i ! p2i = rp Sin IBpp_i ! (62)
0 0

2 . 1 2 . 1 .
for g, =§7r(|—1)—ap e Bop i =§7z(l—1)+ap to and i=1,...,3.
a, =6,47° is the offset angle on the platform (Fig. 6.5), r, =190mm is the platform radius.

It is necessary to transform the platform points to the coordinate system of the base
(global coordinate system) for obtaining the general position of the platform points in a 3D
space:

pr =T+pR, (6.3)

for Pr :[pﬂ_x [oN pTi_ZT and i=1,...,6.

i_y

T= [tx t, t ]T is the translation vector and R is the matrix of rotations

COSy COSg—siny cosdsing  cosysing+siny cos@cosg  sinysing
R =| —siny cos¢—cosy cosdsing —sinysing+cosy cosécosg cosysind | with Euler

sin@sin ¢ —sin@cos ¢ cosd
angles ¢,y,0.
The lengths of the links are then defined as
2 2 2
pa] = (e ~b) +(py b, ) +(p, b (6.4
fori=1...,6.

The link lengths might be then easily evaluated for the desired position of the platform
gravity centre (i.e. translation vector T) and desired orientation of the platform gravity centre
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(Euler angles). This is the commonly used approach for the Stewart platform kinematics
description.

However the construction of the proposed Stewart platform is slightly different [11].
The main difference is in the universal joint construction. The standard construction has the
universal joint with axes of its revolute joints intersecting at the base connection point b, . The

used universal joint has axes of its revolute joints orthogonal but shifted between each other
by ci, Fig. 6.7, 6.8. It is because of simpler manufacturability. This results into a bit more
complicated kinematics described in [9].

Fig. 6.7 The latest construction of the link (by  Fig. 6.8 Geometry of the u-joint (by Houska,
Houska, P.) P.)

The connection points on the base b, and on the platform p, are already known. Also

approach for obtaining coordinates of p; remains unchanged. The global coordinates of the

new points d, representing connection points of the shifted revolute joints and the links have

to be determined. The new lengths of the links are then p.d,.

There were determined auxiliary points m, (Appendix B) which represent the central

points of bearings. Their global coordinates are known from the construction design. The
solution for i-th link is following.

New local coordinates are defined according to

X; =m, —-b,,
W, =p; —b;, z; =X xw, , (6.5)
Yi =2 %X .
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The coordinates of d. transformed into a global coordinate system are

d;, =dR,+T, (6.6)

where T represents the translation of b, with respect to the origin of the global coordinate
system and R; is the rotation matrix

_X:i y; Z:i_
x| il |z
R =2 2o D (6.7)
X Yi Z
o Y Z
x| vl [z
The link lengths are then
‘pid‘ri ‘ = \/( pi_x _dTi_X)2 +(pi_y _dTi_y)2 +(pi_z _dTi_z)Z . (68)
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7.

SimMechanics modeling of the device

7.1 Stewart platform and the linear actuator modeling

The joints and bodies groups of the linear actuator are already known from the
engineering design [10], [11] as well as the geometry information. The geometry information
in this case means the information about location of connection points between bodies and
centre of gravity on the particular body. These are then defined as vectors related to global or
local coordinate system. The information about body inertia moments and body masses may
be easily obtained from the software where the engineering design was projected (Inventor).

The model of the linear actuator is then built with use of SimMechanics joints and
bodies libraries, Fig. 7.1.

T CZ
ne s 'L :
53 @ 88
:
Fig. 7.1 SimMechanics model of the Fig. 7.2 SimMechanics model of gearings
Stewart platform linear actuator (planetary gearbox and spur gearing)
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Gearings (the spur gearing and the planetary gearbox) are modeled as a system of
massless bodies with “Gear constraints” blocks, Fig.7.2. These blocks defines the gear ratio
between movements of bodies which create the gearings system and guarantee transfer of
kinematic and force effects between constrained bodies.

The Stewart platform model is then built from six linear actuators subsystems and the
platform body [6], Fig. 7.3.

G " Flatform

Platform
Platform
Platfarm
Platfarm
Platform

lingar linear lingar

linear linear linear
actuator 4 actuator 5 actuator &

actuator 1 actuator2 actuator 3

Base
B

Ground]. Ground2 Ground3 Ground4 GroundS Grounds

LEE_. ve latiorn

Machine
Environment

Fig. 7.3 SimMechanics model of the Stewart platform with linear actuator subsystems.
Platform connection points correspond with CS1, ..., CS6 and the base points with
Groundl, ..., Ground6

See Appendix A for the information about particular values of the body and joint
parameters, position vectors of body coordinate systems origins and gearbox modeling of the
linear actuator and Appendix B for the further information about the particular values of the

body parameters of the Stewart platform.

7.1.1 Notes to the SimMechanics modeling of the linear actuator

It is very profitable to define within each body a local system which is the reference
system for the other systems located on the body. What is also important for the modeling
simplicity, such a system should have its axes aligned along axes of the body.

The global coordinate system of the Stewart platform is defined according to Fig. 6.6
The orientation of the local coordinate systems axes (valid for bodies lower link, screw nut,
ball screw and motor body) may be defined via unit vectors, Fig. 7.4.
The vectors of the i"-link are:
W; = p'ri -di, (7-1)

for i=1,...,6.
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The unit vectors are described as

0
K,= §,=K,x| 0 |and J, =-i,xK,, (7.2)
[wi| i
-1
for i=1,...,6.

Fig. 7.4 Example of a local coordinate system axis orientation

7.1.2 Inputs/Outputs analysis

Inputs and outputs of the Stewart platform SimMechanics model are given by
supposed control requirements. The basic idea is to control the position and orientation of the
platform by DC motors shaft torques which are produced by the motors input voltage. The
position and orientation of the platform is given by the links lengths which are described by
the inverse kinematics. The changes of the links lengths are then given by rotation of the
screw nut which moves the ball screw.

The inputs/outputs of the Stewart platform mechanical model are on the most basic

layer following: the inputs are torques m:(Ml,...,MG)T produced by DC motors and

outputs are angular displacements of the screw nuts q:(qol,...,(pG) and their angular
velocities g =(¢,..., ¢ ).

Adding chosen inputs and outputs to the SimMechanics model is provided by
connecting blocks of sensors and actuators. The torque actuator is added to the input element
of the planetary gearbox in case of the DC motor torques and the joint sensor is added to the
revolute joint representing rotational movement of the screw nut, Fig. 7.5.
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Fig. 7.5 SimMechanics model input/output routing (red arrows) within its subsystems (black

arrows)
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7.2 DC motor modeling

The model contained two kinds of subsystems till now. It was the linear actuator
subsystem and the gearings subsystem. The new subsystem will represent the DC motor
Maxon RE35.

The RE 35 (catalogue number 273754 — Appendix C) has power of 90W, its nominal
torque is 0,0977Nm, nominal voltage 42V, nominal speed is 6770rpm and no load speed
7530rpm..

The unloaded DC motor model is based on well known description:

i R. K, 1

o ety
dt Ll L 1L_ (7.3)
S0 ZK, 0+ =K,

dt J J

The second equation is then transformed by J i—? =M in order to obtain a shaft torque as the

system output into
M=-K,o+K.i, (7.4)

where M is the motor shaft torque, K,, is the torque constant, J is the rotor inertia, K, is
the linear approximation of the viscous friction, i is the momentary value of the electrical
current, @ is the momentary angular velocity of the shaft, K, is the voltage constant, R is
the terminal resistance, L is the terminal inductance and finally u is the momentary driving
voltage.

The values of the terms are according to the Maxon catalogue for the RE 35 (273754)
Nm Vv

following: R=2,07Q, L =0,00062H , K, =0,052—, K, =0,052——,
A rad.s

K, =0,000048, J =7,2.10"°kg.m?.

The model of the motor (Fig. 7.6) was modeled as a subsystem of the Stewart platform
model and the linear actuator model, Fig. 7.7. There is no need to use the SimMechanics
model libraries for the DC motor modeling.
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Fig. 7.6 Simulink model of the DC motor
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Fig. 7.7 DC motor subsystem (green) as a part of the linear actuator model

Momentary angular velocity marked at the block diagram as “w” is measured from the
input element of the gearings subsystem. The output of the DC motor model corresponds with
a produced torque. This signal is routed also to the input element of the gearings subsystem.
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Comparison of the unloaded model of the motor in the steady state with the
manufacturer data for the input of 42V proved difference in output angular velocity 1,2%. The
simulated output was 779,1rad/s while the manufacturer publishes 788,5rad/s.

7.2.1 The state — space representation and investigation of the model

The basic state — space representation of the linear model of the a DC motor is

R K,

afil |"C LTl |2

— = u(t

fol e ko Eo )
3 3] : (7.5)

0= 1 | o)

There were investigated controllability and observability conditions of the model (7.5) for
Maxon RE 35 parameters according to (4.2) and (4.3). There were utilized Matlab functions
ctrb and obsv.

The matrix of controllability is in Matlab defined as

co = ctrb([-R/L -K_b/L;K_m/J -K_f/J],[1/L 0]);

and number of uncontrollable states as

unco = length([-R/L -K_b/L;K_m/J -K_f/J]) - rank(co).

This yelds unco = 0, thus all states of the system are controllable.
The matrix of observability is in Matlab defined as

ob = obsv([-R/L -K_b/L;K_m/J -K_f/J],[0 1]);

and number of unobservable states as

unob = length([-R/L -K_b/L;K_m/J -K_f/J]) - rank(ob).

This yelds unob = 0, thus all states of the system are observable.

The investigation of controllability and observability of the model proved its
suitability for a control design.
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8.

Linearization

8.1Linerization in Matlab SimMechanics

There are in general two linearization algorithms in Simulink: Block-by-block
analytical linearization and Numerical perturbation.

The first algorithm (block-by-block analytical) linearizes the model block by block
individually and results are then combined to the linear model of the whole system. The
advantage is that high amount of Simulink/SimMechanics blocs contains the analytically
expressed Jacobian for the exact analytical linearization. This is very advantageous in cases
that blocks contain some kind of discontinuity thus for blocks which are not suitable for the
linearization by the numerical perturbation. This is the default method. Blocks which do not
contain the Jacobian are automatically perturbed when using this method.

The second algorithm linearizes the whole system at once by slight changes of inputs
and states. The method is quite simple and fast thus suitable for complicated systems. The
disadvantage is that even blocks containing Jacobian for the exact linearization are linearized
by the perturbation.

The obtained linear model is then in both of cases according to [39] described in state-space
form as

ox = Aox + Bou
, (8.1)

o0y = Cox + Dou
where
0X =X —X,
du=u-u,. (8.2)
Oy =Y —Y,
It is valid for the outputs at the operating point:
Xx=f(X,,u,)=xX

( 0 0) 0 (83)

y:g(xo’uo)ZYO.
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A, B, C and D are constant coefficient matrices defined as the Jacobians of the system,
evaluated at the operating point

_of _of
OoX ou
ot ot (8.4)
C= 8_9 D= a_g
OX _ ou Yol

8.2 Linearization of the Stewart platform model

The linearization is performed for the pure mechanical model of the Stewart platform
without DC motors.

It is necessary to set the operating point at first. The operating point is given by
coordinates of the platform mass center in the global coordinate system [0 0 0,1262] m. This
position is approximately in the middle of the possible z-axis workspace of the platform and
corresponds with the assumed initial position.

The input parameters for the linearization describing the operating point are the input
torques holding the platform in the desired initial position against gravity. The torques may be
easily measured from the model when zero movement to the platform joints is prescribed. The

measured torque value is 0,8701.10° Nm for each linear actuator.

It may be proceed to the linearization itself when the input parameters defining the
operating point are known. It is also important to mark the model inputs and outputs in the
scheme according to the Fig. 7.5. There was chosen the step-by-step analytical linearization
algorithm as the linearization method because of the described advantages.

A state-space model consisting of matrices A, B, C, D is obtained after the
linearization. The model has 6 inputs (torques produced by DC motors) and 12 outputs
(angular displacements and angular velocities of the srew nut) according to the input/output
analysis. The minimal realization of the model has 12 states which are automatically chosen
by SimMechanics (typically joint states).

8.2.1 Comparison between the linear model and the nonlinear SimMechanics model

The comparison between the linear and the nonlinear model was performed for the
same input torque with amplitude 0,1Nm and frequency 2Hz for all of the linear actuators,
Fig. 8.1. Thus the movement of the platform is just in the z-axis. The maximal z-axis distance
between the centers of gravity of the base and the platform allowed by construction of the
device is 0,1462m. The maximal distance reached during the simulation was 0,1407m — the
platform was very close to its maximal workspace borders, Fig. 8.2.
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There were compared outputs of both models (angular displacement and angular velocity of
the screw nut) during the simulation, Fig. 8.3, 8.4.
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The behavior of the linear model is obvious and expected — with increasing distance
from the operating point decreases identity of both models. The difference between outputs is
approximately 1,5% (angular displacement) and 2,1% (angular velocity) close to the
workspace borders, Fig. 8.5, 8.6.

Advantage of such a linear model is that it is with its twelve states quite simple. Thus
its simulations are very fast and model itself is for its computational modesty suitable for a
control design.

8.2.2 Controllability and observability of the obtained linear model

The minimal realization of the obtained linear state — space model is defined as Matlab
variable Model_sys. The matrix of controllability is then defined as

co = ctrb(Model_sys.A,Model_sys.B);

and number of uncontrollable states as

unco = length(Model_sys.A) - rank(co).

This yields unco = 0, thus the linear model of the Stewart platform is controllable.
The matrix of observability is defined as

ob = ctrb(Model_sys.A,Model_sys.C);

and number of unobservable states as

unob = length(Model_sys.A) - rank(ob)

This yields unob = 0, thus the system is observable.

The investigation of the controllability and observability proved that the linear state —
space model of the Stewart platform is suitable for a control design.
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9.

Stewart platform control design

9.1 SimMechanics model based control design

The Stewart platform linear state-space model was obtained in the previous chapter.
The model was used for a control design which described in [12]. The control was
successfully tested with original SimMechanics nonlinear model.

The basic idea of the control structure is to divide it into two layers — upper and lower
layer. The upper layer (Fig. 9.1) is represented by a multichannel PID controller which
prescribes torques produced by DC motors according to a desired position and orientation of
the platform. The desired position and orientation of the platform may be easily transformed
into linear actuators extensions and screw nuts angular displacements by using inverse
kinematics description (6.8). The controller representing this layer is based on the Stewart
platform linear state-space model.

Ourt1 = In1 fi_ref +
In1 fi
- Desired shaft torque
- — fi torgue_ref = In1
Desired position and Desired sorew ] omess
orientation of the platform nut crientation omega ===
Multichanne! PID Nonlinear Stewart platform

model {SimMechanics)

Measured sorew nut angular velocity

Measured sorew nut angular displacement

Fig. 9.1 Upper control layer [12]

The lower layer (Fig. 9.2) consists of six independent PID controllers which prescribe
driving voltages for each of six DC motors according to the torques prescribed by the upper
layer. The controllers in this layer are based on the state-space model of the DC motor (7.3-
7.4).
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Fig. 9.2 Lower control layer [12]

9.1.1 Upper layer control design

The control law for the multichannel PID of the upper layer is according to [12] described as:

t
m=K,[(a4 -a)dr-K,q-K,q, (9.)
0

where m the vector of actuating torques m =(Ml,..., Mﬁ)T , q is the vector of corresponding
measured angular displacements of the screw nuts q =(g01,...,g06) and Q, Is the vector of

referential angular displacements. K;, K, K, are the controller gains.
According to
G+3pd+3p°a+p°d=p’, (9.2)
the Stewart platform dynamics is stable on aperiodicity margin for K, =D‘1(3p2I+C),

K,=D"(3pl+B), K, =p’D™ for p>0.B, C, D are the state matrices of the linear model

of the Stewart platform.

9.1.2 Lower layer control design

The control law for the lower layer is then according to [12] following
t T
u=j(kij((|v|m)ref—Mm)du—kpmm—kdmm}dr, (9.3)
0 0
where M, is the torque produced by a DC motor (measured), (Mm)ref is then the referential
torque.

Choosing k, =(3pLJ —LK, —RJ)/(K,J), k, =(3p’LI - RK, —K,K, ) /(K,J),

k, =(p3L)/Km leads for p >0 to stable dynamics on aperiodicity margin according to

I\7I'm+3pl\7lm+3pzl\)|m+p3Mm:p3(Mm)ref. (9.4)
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9.1.3 Simulation results

The simulation movement of the platform may be simply described as follows. The
platform gravity center moves from its initial position [0 0 0,1262]m to the position [0 O
0,1312]m at the first stage. Then (approximately at 2s of the simulation time) the movement
in all of degrees of freedom continues with a sine wave. The simulation movement was
chosen in such a way because of the real working cycle of the device is expected to be at least
very similar.

The sine waves have following parameters: amplitudes for all of the position waves
are 0,005m, amplitudes for all of the orientation waves are 0,02rad. Frequency is same for all
signals 0,5Hz.

The comparison between desired and measured position and orientation of the
platform gravity center is documented in Fig. 9.3, 9.4, 9.5.

Lx10°

5 T T T T

——desired position ——desired position
——-measured position - deswreq position

g —— P

0.136F

0.134F

0.132F

013

X, Y - axis platform position [m]
5 =]
Z - axis platform position [m)

0.1281

5 i 1 L 1 L i 1 L i 1
0 1 2 3 4 5 6 o1 260 1 2 3 4 5 6

time [s] time [s]
Fig. 9.3 X, Y — axis position of the platform Fig. 9.4 Z — axis position of the platform
gravity center (desired and measured) gravity center (desired and measured)

4

0.02 x10

3

T T
——X.y.z desired orientation
-—-x,y,z measured orientation

0.015F

0.01F

0.005F

X,y - axis position error [m]

-0.005

orientation of the platform gravity center [rad]
=)

-0.01F

-0.015f

0.02 H . i H . g 1 i \ L H
0 1 2 3 4 5 [ 0 1 2 3 4 5
time [s] time [s]

Fig. 9.5 Orientation of the platform gravity Fig. 9.6 Position error (x, y - axis)
center (desired and measured)
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The position and orientation error is then documented in figures Fig. 9.6, 9.7, 9.8. The
maximal positioning error is approximately 0,2mm for movement in each axis. The maximal

orientation error is approximately 0,8.10°rad for rotation around each axis. There is no

special requirement on the device positioning accuracy because of its planned use. Hence the
presented accuracy is sufficient.

The following pictures document DC motors torques and voltages, Fig. 9.9 — 9.20. The
maximal amplitudes of the torque and voltage are for the given trajectory measured for the
link number four which also reaches its maximal extension, Fig. 9.21. The nominal torque for
the RE 35 DC motor is 0,0977Nm and its nominal voltage is 42V. The nominal values of
torque and voltage were not exceeded during the simulation.

0.02, T T T T T 6

0.015F

0.01F

0.005F

torque, [Nm]
voltage, [V]

=)

-0.005F

-0.01F

-0.015
0

L L 1 n 1
1 2 3 4 S 6
time [s] time [s]

Fig. 9.9 DC motor torque — 1* link Fig. 9.10 DC motor voltage — 1* link
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Fig. 9.11 DC motor torque — 2" link
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Fig. 9.13 DC motor torque — 3" link
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Fig. 9.15 DC motor torque — 4™ link
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Fig. 9.12 DC motor voltage — 2" link
20 T T T T T

205 1 2 llmé[s] 3 5 6
Fig. 9.14 DC motor voltage — 3™ link
30, T T T T T
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Fig. 9.16 DC motor voltage — 4™ link
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Fig. 9.17 DC motor torque — 5" link
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Fig. 9.18 DC motor voltage — 5" link
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Fig. 9.20 DC motor voltage — 6™ link
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Fig. 9.21 Link extensions

The simulation results proved suitability of the linearized SimMechanics model for the
control purposes. The positioning error of the proposed control is acceptable with respect to
the assumed application. The model itself is with its twelve states quite simple and usable for

a wide spectrum of control design methods.
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10.

Uncertain modeling

10.1Model of the DC motor with uncertain parameters

The following DC motor model with uncertain parameters is based on description
(7.3) and standard principles of uncertain modeling [33]. The equations may be for x, =i,

X, = @ and by introducing the parametric uncertainty transformed into a form

1_; (B (K
Xl_(l:+5|_)[ (R+8)% —(Ky+6¢,) % +Uu]

o . | (10.1)
Xé :m[(Km+§Km)x1_(Kf +5Kf)X2]

where L, R, K,, J, K, K, are nominal parameters and &, , Sy, Sy, Oy, Oxms Oy are

uncertainties of the nominal parameters. The model with uncertainties is then described by the
following scheme, Fig. 10.1.

Fig. 10.1 Scheme of the DC motor with uncertain parameters
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The uncertain model in matrix form is then obtained according to scheme as

x| |-R/L
{x;HKm/a‘
z,] [-R/L
z, 1

Z; | Km/Jo
z,| | 0

Z, 1
1] [ O

i) [10]x
oo 1l

|

-K,/L|[x] [-1 -1 0
—Kf/j}{xj{o 0 -1
-K,/L (-1 -1 0
0 0 O

K, /J {Xl}r 0 0 -1
1 %] |0 0 O

0 0 0 O
1] 0 0 O

o O O O O

or in a compact form of interconnection matrix M

N LN |\)><~ |2<~

N N N N N
o £ w

SIS

1 [-R/C
R /3
_R/L
1
R /3

0
1
0
0

Ny
0

I =

R, /T
R, /T

L

/
/

<

-1
0
-1

o O O O O

-1 0
0 -1
-1 0
0 O
0 -1
0 O
0 O
0 O
0 O

0

-1

0
0

-1

o O O o

0
1
0
0
1
0
0
0

0

-1 0
0 0
-1 1L

O O O O o o
o O O O o o

At the same time the perturbation matrix A is defined as

dl

2

w

[$3]

Q_Q_bQ_Q_O_

[=2]

5.0
0 s,
0 0
o o0
0 0
| 1o o

o o oM™ o o

0

N

o O O O

N

1

N

w

N N N N N
ol S

(2]

o O O o o

-1
1 0

dl

dZ

d, +{UE
d, || o
d5

_d5_
a7 T
d,| | o
d,| | o
d,|"| o
d, | | 0
d,| | 0
.

X2

dl

d,

d;

d4

d5

d,

u_

}[u]

[u] (10.2)

(10.3)

(10.4)
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10.1.1 Simulation results

The parameter with the highest possible uncertainty is K, representing the linear

approximation of viscous friction. It was proved by a simulation that 35% uncertainty of the
parameter covers for the unloaded motor the output difference 1,2% between data obtained

from the nominal model and published data by manufacturer (no load speed for the input
42V).

The simulation was performed for the uncertain model with uncertainty 35% in IZf ,
i.e. for 8, =0,000048x0,35.

Fig. 10.2 presents step response of 20 random samples of the uncertain model with
marked boundaries of the worst case and the nominal model. Next figure (Fig. 10.3) presents
the steady state at input of 42V. The no load speed presented by the manufacturer (788,5
rad/s) is covered by the uncertainty. Graphs also present the worst case corresponding with
the most degraded model within the given uncertainty.

20 T T T T T 800,

angular velocity [rad/s]
=5
T T T
angular velocity [rad/s)

0 L i L L 750 L s L . L
0 0.1 0.2 0.3 0.4 0.5 086 0 01 0.2 03 0.4 0.5 0.6
time [s] time [s]

Fig. 10.2 step response of the uncertain Fig. 10.3 Steady state for the input 42V (full
system with the worst case boundaries black line — no load speed accodirng to the

manufacturer)
(full red line — worst case, dashed red line — nominal model, blue lines samples of the
uncertain model)

The worst case satisfies conditions of controllability and observability according to
(4.2) and (4.3).
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10.2 Stewart platform model with uncertain parameters

The general approach to the parametric uncertainty modeling presented in the previous
section is suitable for models where individual parameters are treated as uncertain. The
method is strictly concentrated on the given parameters but this might be inconvenient for
models of higher orders with large amount of parameters with an uncertainty or for models
where the uncertainty in some parameters influences other parameters.

The proposed method works with parametric uncertainty in a more complex way. It is
based on knowledge of an uncertain linear model and corresponding linear model with
maximally perturbed parameters. The uncertainty is then determined for each parameter of
state matrices individually.

The basic idea of uncertainty modeling demonstrated on the Stewart platform model is
very simple. The approach is performed for two cases — shifting of operating points and
possible modeling inaccuracy of mass and inertia parameters.

There are obtained two linear models by the linearization of the SimMechanics
Stewart platform model. The first one is linearized around the operating point defining its
initial position and the second one is linearized around the operating point defining the
position where the maximal (or minimal) links extensions are reached. The both models are
described by state matrices. The uncertainty of such a system is then defined as a difference
between parameters of corresponding state matrices of both models. This is the first case of
uncertainty modeling which compensates shifting of operating points. The controller based on
such a model has constant quality of regulation for the whole workspace between operating
points.

The second presented case of the Stewart platform uncertain modeling is describing
uncertain modeling of mass and inertia parameters. The principle is same. The uncertainty
would be described as a difference between model with nominal parameters and the model
with maximal (or minimal) parameters of mass and inertia.

The general principle of the uncertain modeling is then following. The nominal system
is described as

X = Ax+B
X _x+ _u (10.5)
y =Cx+Du
and similarly the model with maximally perturbed parameters
X=AXx+Bu

: (10.6)
y =Cx+Du

The meaning of equation terms is in case of the Stewart platform state-space model
following:

X represents the vector of twelve states which are established by SimMechanics during the
linearization, x represents the wvector of the time derivations of the states,
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u=[M, M, M, M, M, M,]is the vector of inputs which are DC motors shaft

torques, y=[@, @, @, o, @ @ o o, o o, o o ]T is the vector of outputs
which are angular displacement and angular velocity of each one of the ball screw nuts.
Matrices A,B,C,D represent state matrices of the nominal system and A, B, C, D represent
the state matrices of the model with perturbed parameters.

State matrices of the system (10.6) may be defined as a sum of particular nominal
matrix and a matrix containing the uncertainty. E.g. for A it is

A=A+A,, (10.7)

thus the uncertainty contribution is A, =A-A. Similarly are derived uncertainty
contributions for matrices B, C, D.

Applying of the upper linear fractional transformation
F,(M,A,) =M, + MA, (I-M,A, )" M,, (10.8)
and comparing with (10.7) it is obtained M, M, =A,, M;; =0, M, =1, M, =A, and
M,, = A. The method is same for other state matrices.

By substituting of the obtained parameters to the interconnection transfer function
matrix

M M
M - 11 12 (109)
I\/|21 M22

and according to schemes of particular transfer function matrices in Fig. 10.4, it is obtained

el b, o) oo

and similarly

e el e, ol ooy

where U,,,U,5,U,,U,y are inputs to the perturbation matrices A, ,Ag A Ap,

Y Yas Yac: Yap @re outputs from the perturbation matrices.
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AAA AAE

Uga yAA Usg yAe
X MA x' u ME xl
— —> E— —>

AAC AAD
UAC yAC UAD yAD
X M y u Mo y
—_— — —3 f—>

Fig. 10.4 Schemes of particular transfer function matrices M [7]

It is then valid

Xx=Ax+A,u,,+B,u, +Bu

Yan =X Uap =AY aa
=u U, =A
Yas and 28 ABY aB . (10.12)
Yac =X Uy =Axc¥ac
Yo =Uu Uys =AY a0

y=Cx+C,u,. +D,u,, +Du

Itis typically -1 <A, g p <I for the symmetrical +/- perturbation of the uncertainty around
the nominal value.

The matrix representation of the (Stewart platform) uncertain model is then

X A A B, 0 0 B x
Y I 0 0 0 0 O U,
Yo |[ |0 0 0 0 0 Iflug | (10.13)
Yac I 0 0 0 0 O0fu,
Yol [0 0 0 0 0 1]lug
'y |[C 0o 0 C, D, D|  u ]

with the perturbation matrix

Uja Ay 0 0 0 Yan
UAB — 0 AAB 0 0 YAB (10 14)
Uyc 0 0 Ay 0 ||y
u

AD 0 0 0 Ap Yo
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The ideal representation of the uncertain model for a robust controller design is according to
[33] following

AV BVl BVZ
G=/C, Dy Dy |- (10.15)
C, D D

v2 v21 v22

The form (10.13) corresponds with (10.15) for
I 0

— _ 0 — I
Av:A1 Bvl:[AA BA 0 O]! BVZZB’ Cu= | , CVZ:C’DVHZ[O]’ D, = 0
0 I

D, =[0 0 C, D,].

The Simulink scheme of the uncertain Stewart platform model is then illustrated in
Fig. 10.5. The scheme is identical for both cases of modeled uncertainty. Let’s note that the
model has added a gravity input for the simulation purposes.

y_delta_A
y_delta_B
y_delta
y_delta

D

input torque

\ A 4

Uncertain Stewart platform model

Ty

-

Angular displacement

-

Angular velocity

Fig. 10.5 The Simulink scheme of the uncertain Stewart platform model

The advantage of the method is that formulas (10.13), (10.14) describing the uncertain
model are applicable on any state-space model of any system. The only necessary inputs are a
nominal model and a model with maximally perturbed parameters.
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The proposed method was published in [7]. The article also describes a brief
experiment with an H-infinity based controller designed according to the uncertain model.

10.3 Simulation of the Stewart platform model with uncertain parameters

10.3.1 Case 1 — Uncertain position of the operating point

The uncertain Stewart platform model is made of the model linearized in its nominal
position ([0 0 0,1262m] position of the platform centre of gravity in CSb) and the model
linearized in its position with minimal link lengths ([0 0 0,1062m] position of the platform
centre of gravity in CSb) which corresponds in this case with the model with maximally
perturbed parameters. The input to such an uncertain model was same as the input for
comparison of the linear and nonlinear model — input torque represented by a sine wave with
amplitude 0,ANm and frequency 2Hz for all of linear actuators (Fig. 8.1). The following
figures document comparison between outputs of the uncertain and the nominal model, Fig.
10.6 —10.9.

There were done twenty random samples of the uncertain model for -1 <A <I.

AAB,C,D —
Let’s note that maximal difference between outputs of the nominal system and
maximal/minimal realization of the uncertain model is approximately +1,13% of the nominal
output value for the given trajectory of the platform. The rest of the outputs of the uncertain
model are naturally placed within this range. The worst case (the most degraded model)
corresponds with the maximal realization of the uncertainty system in this case, i.e. for

AAA,B,C,D =1I.

1575 s o

-15.8F

15.85F———— e

angular displacement [rad]
angular displacement [rad]

L L . L L i L i L s L H L L L L L L
01 0.2 03 0.4 05 06 07 08 09 1 0.9982 0.9984 09986 09988 0.999 0.9992 09994 09996 0.9998 1
time [s] time [s]

Fig. 10.6 Case 1 — comparison of the outputs  Fig. 10.7 Case 1 — comparison of the outputs
of the uncertain model, nominal model and  of the uncertain model, nominal model and the
the worst realization — angular displacement  worst realization — angular displacement —
detail
(full red line — the worst case, dashed red line — the nominal model, blue line — uncertain
model samples)
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Fig. 10.8 Case 1 — comparison of the outputs  Fig. 10.9 Case 1 — comparison of the outputs
of the uncertain model, nominal model and of the uncertain model, nominal model and
the worst realization — angular velocity the worst realization — angular velocity —

detail
(full red line — the worst case, dashed red line — the nominal model, blue line — uncertain
model samples)

.35 i L L
0 0.1 0.2 03

10.3.2 Case 2 — Uncertain masses and inertia moments

The second case works with uncertain parameters of mass and inertia of chosen
bodies. The uncertain model is created from the model with nominal values of masses and
inertia moments and from the model with maximal values of masses and inertia moments.
Both models are linearized in its initial position.

The lower part of the link (position 3a in the Fig. 6.2) was modeled as uncertain at
first. This part was selected because of its complicated geometry thus quite high possibility of
modeling inaccuracy. The uncertainty of both mass and inertia moment was experimentally
set to +£2,5% of the nominal value (Case 2a).

There were compared outputs of the nominal and uncertain model (twenty random
samples for the uncertainty perturbed from -1<A,,;.,<I), Fig. 10.10 — 10.13. The

maximal difference between outputs of the nominal and uncertain model is approximately
+0,014% of the nominal values.

The worst case corresponds with the minimal realization of the uncertain model, i.e.
A s cp =—1 inthis case. This is also typical for the following examples.
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Fig. 10.11 Case 1 — comparison of the outputs
of the uncertain model, nominal model and the
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detail

(full red line — the worst case, dashed red line — the nominal model, blue line — uncertain
model samples)
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Fig. 10.12 Case 2a — comparison of the
outputs of the uncertain model, nominal
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Fig. 10.13 Case 2a — comparison of the

0.246

outputs of the uncertain model, nominal model
and the worst realization — angular velocity —

detail

(full red line — the worst case, dashed red line — the nominal model, blue line — uncertain
model samples)

The maximal difference in outputs between nominal and uncertain models is even for
the uncertainty +10% of the mass and inertia moment of the lower link body (Case 2b) still
quite negligible - +0,060% of the nominal values, Fig. 10.14 — 10.17.
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The difference in outputs is higher in following example where the uncertainty +2,5% is set
for all masses and inertia moments of all modeled bodies (Case 2c). The maximal difference

between the nominal and uncertain outputs is then +2,54%. This is documented in Fig. 10.18
—-10.21.
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11.

The model verification

The following chapter is dealing with verification of the proposed SimMechanics and
derived uncertain models. The verification was performed for the single linear actuator with
the DC.

The very basic approach to the linear actuator control design will be described because
the principle of the verification is then more obvious. Let’s note that following approach is
nowadays implemented in the real device.

The task of the linear actuator control design was simplified into a task of the DC
motor control design according to [1]. The overall length of the link which is desired for the
position control of the actuator as well as for the whole Stewart platform control is due to the
complicated sensor attachment (to the Stewart platform) measured indirectly.

The angular displacement of the motor shaft is measured directly by an IRC sensor
(MR Enc L type). The link length is then obtained by using a formula:

I—a — qomot p , (111)
27k

where L, is the length of the link, ¢, is the angular displacement of the motor shaft, p is

the ball screw-thread and k represents overall gear ratio implemented by planetary gearbox
and spur gearing.

The verification itself is based on comparison between measured and simulated values
of the angular displacement and the angular velocity of the motor shaft on a single link for the
same input voltage. The link is during the experiment part of a test jig which guarantees only
linear movement of the attached cart, Fig. 11.1.

" Fig. 11.1 Test jig with the linear actuator
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The IRC sensor data acquisition and the motor control are provided via NI LabVIEW
interface communicating with a real-time computer complemented by a field - programmable
gate arrays (FPGA) card, [1]. The motor driving voltage is approximately £11,8V during the
experiment, Fig. 11.2, 11.3 . The obtained data from IRC sensor are stored in universal form
of *.txt file. This is then easily imported into Matlab workspace and used as the data for
comparison with simulation results, Fig. 11.4.

11.8F . 11.8f
10 8 101
5 5
= =
% 0 % 0
H H
5 5
-10F =10
-11.8F -11.8F
A5 | I A5 . s L L | L L |
o 5 10 15 : 5.58 588 6.18 6.48 678 7.08 7.38 768 7.98
time [s] time [s]
Fig. 11.2 Motor driving voltage Fig. 11.3 motor driving voltage — detail
From voltage measured | 2n9ular > ]
Workspace
angular displacement
voltage
angular v elocity P —d —»}
angular velocity —p
Link 1 subsystem displacement combination
]
Wo:—;g;r:cel angular displacement measured
>l
=] 18

From velocity combination

Workspace2

L

angular velocity measured

Fig. 11.4 Comparison of measured and simulated data — scheme

The following pictures (Fig 11.5 — 11.8) documents comparison between measured
data and data obtained from the simulation. The simulation was performed for the nominal
(SimMechanics) model of the link with the nominal (Simulink) model of the DC motor.

The maximal difference between the data obtained from the simulation and from the
experiment is 11% in case of the angular displacement and 12,5% in case of the angular
velocity for the given input voltage.
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Such a difference may be caused by nonlinearities in the system, modeling inaccuracy,
etc. This may be at least partially compensated by the proposed uncertain model.

11.1 Uncertain model of the DC motor combined with the nominal

(SimMechanics) model of the link

The following case combines uncertain model of the DC motor with the nominal
SimMechanics model of the link. The uncertainties in the parameters of the DC motor model

correspond with the tested case from the previous chapter, i.e. 35% uncertainty in K .
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The difference between the nominal and the worst case of the uncertain model is for
the peak values 9,3% for the angular displacement and 11,2% for the angular velocity, Fig.
11.9-11.12.

The result is still not satisfactory although the difference between models is smaller
than in the case of nominal models.

70, T T 70,

2
——B
i
-}

i

o
=
T

=
(=)

%)
(=1

angular displacement [rad
w
=]
T T
angular displacement [rad

time [s] time [s]

Fig. 11.9 Comparison of measured and Fig. 11.10 Comparison of measured and
simulated data for nominal model of the link  simulated data for nominal model of the link
and uncertain model of the motor — angular  and uncertain model of the motor — angular

displacement displacement (detail)
(black dashed line — measured data, red full line —the worst case, blue full line — samples of

the uncertain model)

r
G
=]

250

5]

=1

k=]
T

2001

@
(=]
T

150

=}
S
T

100

5]
=]
T

S0

0

angular velocity [rad/s]
=)
angular velocity [rad/s]

&
S
T

50k

=}
=}
T

-100f
-150F -150F

-2001

-200F

R i i R i L i L L
2500 5 10 15 250.; 55 6 65 7 75 8

time [s] time [s]

Fig. 11.11 Comparison of measured and Fig. 11.12 Comparison of measured and
simulated data for nominal model of the link  simulated data for nominal model of the link
and uncertain model of the motor — angular ~ and uncertain model of the motor — angular

velocity velocity (detail)
(black dashed line — measured data, red full line —the worst case, blue full line — samples of
the uncertain model)

61



11.2 Nominal (Simulink) model of the DC motor combined with the
uncertain model of the link

The model combining the nominal model of the DC motor and uncertain model of the
link is providing much better results. The uncertain model of the link was experimentally
modeled with 10% uncertainty for all body masses and inertia moments.

The maximal difference between the measured data and the worst case of the uncertain
model is 1% for the angular displacement and 2,2% for the angular velocity at the peaks, Fig.
11.13-11.16.
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11.3 Uncertain model of the DC motor combined with the uncertain model
of the link

The best results were obtained for the combination of the uncertain model of the DC
motor with the uncertain model of the link. The peak values of the measured data are covered
by the uncertainty, Fig. 11.17 — 11.20.
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The last presented example is the most suitable for the robust control design of the
device. The worst case of the uncertain model is very close to the measured data, thus the

robust controller designed according to such a model should be able to stabilize even the real
machine.

The model is still keeping its simple structure and computational modesty of the linear
model. Let’s note that all worst cases of the previous examples are controllable and
observable according to conditions (4.2), (4.3).
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12.

Contribution of the thesis

12.1 Theoretical contribution

The main theoretical contribution of the thesis is application of the uncertain modeling
theory on modeling of dynamics of a parallel kinematics machine for a robust control design
purposes. The sectional contributions may be summarized as follows:

e there was created a SimMechanics model of the specific Stewart platform
developed at BUT, the model is suitable for simulations of the machine
dynamics,

e consequently there was obtained a linear model of the Stewart platform for a
control design purposes,

e there was proposed a method for modeling of a parametric uncertainty for
individual parameters of linear state-space models,

e there were created uncertain models of the Stewart platform — one for
description of the error caused by shifting of operating points with the
workspace of the machine and the second one for description of the modeling
inaccuracy of body masses and inertia moments,

e there was verified a single linear actuator with the uncertain model.

12.2 Practical contribution

The practical contributions of the thesis are following:
e proposed control of the Stewart platform based on the linear model
e possibility of application of the uncertain model of the Stewart platform for
the robust control design purposes,
e versatility of the proposed method for the uncertain modeling and possibility
of its application on other types of parallel kinematic machines or other
mechatronic structures.

12.3 Pedagogic contribution

The thesis presents approach to the simulation modeling of a parallel kinematic
machine which is applicable to many other mechatronic systems. The selected parts of the
approach may be easily included into technical education as very actual topics.
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13.

Results

The proposed work presents an approach for building of dynamic models of parallel
kinematics machines optimal for a control design purposes. Such an optimal model must
satisfy following requirements:

evaluation in the shortest possible time,

possibility of the processing of the deviations from the reality,

(simple) investigation of the system controllability

(simple) investigation if it is possible to use the model for estimation of selected
parameters (especially in cases of parameters which is difficult or impossible to
measure)

The approach is based on modeling of the system dynamics and kinematics in Matlab
SimMechanics followed by a linearization of the system and introducing of uncertain
parameters. The inverse kinematics was also derived by classical analytical approach for the
control purposes.

The approach is presented on a Stewart platform which is a parallel manipulator with
six degrees of freedom. The obtained linear model from SimMechanics is for its state-space
representation with twelve states in case of Stewart platform quite simple thus it is
computationally modesty with possible real-time evaluation. The model also satisfied
conditions of observability and controllability.

The linear model was consequently used for a controller design which was
successfully tested with the original nonlinear SimMechanics model.

The modeling itself introduced some modeling errors which, according to the
verification with the assembled linear actuator, caused approximately 11% difference between
outputs of the real and simulated system.

The modeling inaccuracies caused by the linearization or inexact definition of the
model parameters were compensated by defining of uncertain parameters and describing the
system as uncertain. The method is based on definition of structured parametric uncertainty
for a nominal linear model. The uncertainty is given by a difference between corresponding
parameters of state matrices of the nominal model and a model with maximally perturbed
parameters. The method is then treating all of the individual parameters in the state matrices
as uncertain. The proposed approach is especially advantageous for large scale models where
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defining of a parametric uncertainty individually for all of the system parameters would be
very demanding.

The application of the method results into an uncertain model which keeps its state-
space structure thus its simplicity and computational modesty. Such a model is suitable for
analyzing of the “worst case scenario” and for designing of a robust controller.

The uncertainty modeling was used for designing of uncertain model of a DC motor
which is part of the Stewart platform linear actuators. In this case the classical approach [33]
was chosen. The uncertainty was defined for the only motor parameter representing the linear
approximation of the viscous friction where is large possible source of the modeling
inaccuracy.

The proposed approach of the uncertainty modeling was applied in case of the
uncertain model of the Stewart platform. The model is of the twelve order, thus it would be
uncomfortable to set the uncertainty for the each parameter individually. The proposed
method was used for constructing of a model describing the inaccuracy caused by the
linearization, i.e. shifting of operating points within the workspace. The second example of
the Stewart platform uncertain model describes the inaccuracy in body parameters of masses
and inertia moments.

The mentioned 11% difference between outputs of the real and simulated system was
then by introducing of the uncertain model almost completely covered by the uncertainties.
There was used a model combining the uncertain model of the DC motor with the uncertain
model of the Stewart platform linear actuator for this purpose.

The obtained uncertain model is optimal for the robust control because of its ability to
describe the model inaccuracies which will be compensated by a robust controller.

The proposed method of uncertain modeling was demonstrated on the Stewart
platform parallel manipulator thus its suitability for the modeling of parallel manipulators was
proved. The method is very versatile and applicable on any model which is possible to
describe in a state-space form. Design of an uncertain model for a robust control design
purposes is with obtained formulas (10.13), (10.14) very simple and only necessary inputs are
a nominal model and a model with maximally perturbed parameters.

The method reflects actual industry needs leading to increase of a product quality,
preciseness, production capacity, dependability, system economy and decrease of the
environment damage. The simulation and control of the system significantly influences all of
these needs.
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Appendix A — Parameters of the linear actuator model

Al — Body parameters of the linear actuator model
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Fig. A1 The body parameters of the linear actuator

Terms of vectors defining position of connection points as well as mass and inertia of
particular bodies were exported from the construction design of the device (by P. Houska)
created at Inventor.

The lower link (leg)

CS1 [0 0 0] representing the conection point between the base and the lower link. CS1
represents the origin of the local coordinate system of the body. Other CSs are defined with
respect to this CS.

CS3 [0 0 L_matice_spod] representing the connection point between the lower link and the
screw nut. L_matice_spod = 0,08412m.

CS4 [L_m2l 0 L_motor] represents the connection point between the lower link and the motor
body. L_m2l = 0,03m; L_motor = 0,1041m.

CS5, CS6, CS7 represent connection points for particular parts of the gearbox. Their position
vectors are identical with CS4.

CG [0 0 L_T_spod] represents the body center of gravity. L_T_spod = 0.06309m.
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The body mass hmotnost_leg spod = 0,435kg and its inertia inertia_Leg spod =
[0.000507492 0 0; 0 0.000499276 0; 0 0 0.000131934] kg.m?.

The screw nut

CS1 [0 0 0] representing the connection point between the screw nut and the lower link. CS1
represents the origin of the local coordinate system of the body. Other CSs are defined with
respect to this CS.

CS2 [0 0 L_mat] represents the connection point between the screw nut and the ball screw.
L _mat = 0,008m.

CS3 [0 0 0] represents the onnection point between the screw nut and the gearbox.
CG [0 0 L_mat]/2 represents the center of gravity of the screw nut.

The body mass hmotnost_mat = 0,125kg and its inertia inertia_mat = [0.000019318 0 0; 0
0.000019312 0; 0 0 0.000022071] kg.m?.

The ball screw

CS2 [0 0 0] representing the connection point between the ball screw and the screw nut. CS2
represents the origin of the local coordinate system of the body. Other CSs are defined with
respect to this CS.

CS3 [0 0 -L_matice_hor] represents the connection point between the ball screw and the
screw nut. L_matice_hor = 0,1095m.

CG [0 0 —L_T_hor] represents the centre of gravity of the ball screw. L_T_hor = 0,07414m.

The body mass hmotnost_leg_hor = 0,112kg and its inertia inertia_leg_hor = [0.000193005 0
0; 0 0.000192973 0; 0 0 0.000001996] kg.m?.

The motor body

CS1 [0 0 O] representing the connection point between the lower link and the motor body.
CS1 represents the origin of the local coordinate system of the body. Other CSs are defined
with respect to this CS.

CS2 [0 0 L_mot] represents no connection point. L_mot = 0,1087m.
CG [0 0 L_mot/2] represents the motor center of gravity.

The body mass hmotnost_mot = 0,34kg and its inertia inertia_mat = [0.000373333 0 0; 0
0.000373325 0; 0 0 0.000064002] kg.m?.

The position vectors are defined in local coordinate systems defined according to (7.2).
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A2 — Joint parameters of the linear actuator model
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Fig. A2 The joints parameters of the linear actuator

Universal joint

natosl(Leg_n,:) corresponds with unit vector ii according to (7.2).

natos2(Leg_n,:) corresponds with unit vector ji according to (7.2).

Universal joint 2
c_posun = 10mm

Leg_axis_spodni(Leg_n,:) corresponds with the vector (6.5) x,*=b, -m,

Screw joint and revolute

The rotation around an axis defined by unit vector Ki according to (7.2).
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Fig. B3 Gear constraint blocks settings
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Appendix B - Body parameters of the Stewart platform model

P_points_SSB_trans(i,:) defines the platform transformed points p; for i=1,..,6. Their
coordinates transformed to the global coordinate system are for the platform initial position

following:

X [mm] Y [mm] Z [mm]
P 174,2 75,8 126,2
pr, 152,8 113 126,2
pr, -152,8 113 126,2
P, -174,2 75,8 126,2
pr, -21,4 -188,8 126,2
pr, 214 -188,8 126,2

B_points_SSB_trans(i,:) defines the base points b, for i=1,...,6. Their coordinates are in the
global coordinate systems following:

X [mm] Y [mm] Z [mm]
b, 165,3 -57,4 0
b, 32,9 1719 0
b, -32,9 171,9 0
b, -165,3 -57,4 0
b, -132,4 -114,5 0
b, 132,4 1145 0
Auxiliary points m,

X [mm] Y [mm] Z [mm]
m, 160 -73,5 16,9
m, 163,3 175,4 16,9
m, -163,3 175,4 16,9
m, -160 -73,5 16,9
m, -143,7 -101,8 16,9
m, 143,7 -101,8 16,9
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Mass properties
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Fig. B1 Base and platform points of the Stewart platform model
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Appendix C — Maxon RE 35 datasheet

RE 35 @35 mm, Graphite Brushes, 90 Watt

T
B o]
. <]
o w-] &
gz gl 5 Rch =
= e /
a §' - 8
T
] c
—_
Terminal 2.Bx0.5 5
{+Terminall 0 0
:IG Z026 MZ7x3 tiefrgeep 1.1 -0.2 135 -0.3 M2.5x4 .5 tipfsdeep (@ [g0.2 E
2‘0 78 Mi.bud tiefsdesp 3.3 max, 1.4 max.
[} 0
20 -0.5 71 max. 15.6 -1
M1:2
I Stock program
[Istandard program

Special program (on regquest)

according to dimensional drawing ELETLF| 323000 FIETLTIFTETET) 073755| 273756 | 273757 | 273756 FEERLT] 273760| 273761 273762 |273763
shaft length 15.6 shortened to 4 mm 285786 (323801 | 385786 | 285787 | 285788 285700 (285791 | 285792 | 285793

Motor Data
Values at nominal voltage
1 Mominal voltage V 150 240 300 420 480 480 480 480 480 480 480 480 480
2 No load spaed rem 7070 TE7F0 7220 7530 T270 6650 5060 4740 3210 3140 2570 2100 1620
3 No lead cument mA 245 168 123 927 773 687 597 447 342 27r1 216 172 129
4 MNominal speed rem 6270 6810 6420 6770 6490 5860 5150 3820 2970 2280 1710 1220 732
5 Nominal torque (max. continuous torque) mNm 732 033 9024 4077 085 082 088 102 105 105 105 104 104
& MNominal current {max. continuous cumant) A 400 336 250 105 163 151 138 1412 0045 0752 0.621 0503 0.391
7 Stall torgue miNm 874 1160 949 4070 967 878 766 613 493 394 320 253 184
8 Starting current A 450 397 244 203 155 129 104 643 446 274 183 1.8 0704
9 Max. efficiency % B 84 24 a8 a5 a5 B4 a3 g2 80 79 7 T4
Characteristics
10 Terminal resistance 2 0334 0605 123 207 309 372 475 746 115 175 262 405 682
11 Terminal inductance mH 0.085 0.191 0.340 0.620 0870 104 120 204 316 465 682 103 174
12 Torgua constant mNm/A 194 292 1380 525 g22 1] 758 052 110 144 175 214 276
13 Speed constant pm/V 401 328 248 142 154 140 126 100 805 664 G546 447 346
14 Speed / torgue gradient mpm/mMm 843 678 776 716 V62 T67 789 785 784 808 B19 B46 855
15 Mechanical time constant ms 597 580 550 540 538 5383 530 538 537 538 530 530 54
16 Rotor ineriia gc® 676 787 676 720 674 670 652 654 B55 636 628 608 604
Thermal data
17 Thermal resistance housing-ambient ~ 6.2K/w " LT I continuous operation )
18 Thermal resistance winding-housing 2.0 K /W QoW In obsarvation of above listed thermal resistance
19 Tharmal time constant winding 305 12000 e ey i e e ]
20 Tharmal time constant motor 1050 5 273754 temperatura “;1" be reached during confinuous
21 Ambient temperature 30 . +100°C Epﬁh':m“ala}rﬁi C ambianit.
22 Max. permissible winding temperature +155°C 8000 -

Short term operation

Mechanical data (ball bearings) The motor may be briefly overoaded (recurring).

23 Max. permissible zpaad 12000 rpm
24 Axial play 0.05 - 0.15 mm
25 Hadial play 0.025 mm
26 Max. axial Ioad (dynamic) 56N 100 150 M [mbim] Azzigned powar riting
27 Max. force for press fits (static) 110N f R T
istatic, shaft supported) 1200 N
28 Max. radial loading, 5 mm from flange Z8N -
maxon Modular System Overview on page 16 - 21
Other specifications
20 MNumber of pole pairs 1 ;lggdrr:nry Gearhead zzggﬁgzrr:m
30 Number of commutator segmants 13 0.75-6.0 Nm EE- B EI’ Scharnols
31 Weight of motor 309 page230/232/233 Page 263
Values listed in the table are nominal. ;lr‘ymw == g&fm:f HEES
Explanation of the figures on page 40. 4.0-8.0Nm 1 B 3 channels
_ Page 235 I Page 266 / 268
Option o Planetary Gearhead i N DC-Tacho DCT
Hellow shaft as special design 442 mm '_,_{ &92 mm
Praloaded ball bearings 3.15Nm = B 052V
Page 238 . Page 276
Recom ded Electronics:
Spindie Drive ADE s Pags 505 Brake AB 28
@32 mm — ADS 50/10 283 L 24VDC
Page 249 / 250 / 251 | ADS_E 50/5 283 0.4 Nm
ADS_E 5010 283 Page 318
EPOS2 24/5 305
EPOS2 50/5 305
EPOS2P 24/5 308
Motes 18
May 2010 edition / subject to change maxon DC motor 81

78



