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Abstrakt 

Předkládaná práce se zabývá návrhem modelu dynamiky paralelního manipulátoru 

optimálního pro účely návrhu řízení. Zvolený přístup je založen na modelování dynamiky 

systému v simulačním prostředí Matlab SimMechanics následovaném linearizací modelu. 

Výsledný stavový lineární model mimo jiné umožňuje snadné posouzení řiditelnosti a 

pozorovatelnosti modelu. Díky své relativní jednoduchosti je model také výpočetně 

nenáročný. Přístup je demonstrován na návrhu dvouvrstvého řízení SimMechanics modelu 

Stewartovy platformy, na kterém bylo následně navržené řízení úspěšně testováno. 

Podstatná část práce obsahuje přístup k modelování neurčitých parametrů 

dynamického modelu Stewartovy platformy a stejnosměrného motoru Maxon RE 35 a jeho 

výsledky. Předložený přístup je založen na modelování parametrické neurčitosti způsobem, 

kdy je neurčitost definována individuálně pro jednotlivé prvky stavových matic modelu. 

Samotná neurčitost je potom určena rozdílem mezi jednotlivými parametry příslušných matic 

nominálního modelu a modelu se stanovenou maximální neurčitostí parametrů. Výsledný 

neurčitostní model je vzhledem ke své stavové reprezentaci vhodný pro návrh regulátoru 

založeném na metodách návrhu robustního řízení, například minimalizaci normy H-

nekonečno. 

Popsaná metoda byla použita pro kompenzaci posunu mezi pracovními body, okolo 

kterých je prováděna linearizace a pro kompenzaci nepřesnosti modelování vybraných 

parametrů modelů Stewartovy platformy a stejnosměrného motoru. 

Získané modely (v prostředí SimMechanics a neurčitostní model) byly experimentálně 

porovnány s chováním jednoho z lineárních pohonů Stewartovy platformy. Rozdíl v datech 

obdržených ze simulace v prostředí SimMechanics a naměřených na reálném stroji byl téměř 

kompletně pokryt neurčitostním modelem. 

Prezentovaná metoda neurčitostního modelování je velice univerzální a aplikovatelná 

na libovolný stavový model. 
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Abstract 

The proposed work is dealing with an optimal model of a parallel manipulator 

dynamics for a control design purposes. The approach is based on modeling of the system 

dynamics in Matlab Simmechanics followed by the model linearization. The obtained linear 

model may be simply inspected from the controllability and observability point of view. It is 

also computational modest thanks to its simplicity. This is demonstrated on designing of a 

two – layer control for a model of a Stewart platform. The control based on such a linear 

model was successfully tested on the original nonlinear model. 

The essential part of the the work is dealing with modeling of uncertain parameters in 

the dynamic model of the Stewart platform and DC motor Maxon RE 35. The proposed 

approach is based on modeling of a parametric uncertainty where the uncertainty is defined 

individually for particular elements of the model state matrices. The uncertainty itself is set by 

the difference between parameters of corresponding matrices of the nominal linear model and 

model with maximally perturbed parameters. The obtained uncertain model is for its form 

suitable for the robust control design methods, for example via minimizing an H-infinity 

norm. 

The method was used for a compensation of the shifting of the linearization operating 

points in the Stewart platform and for compensation of the modeling inaccuracy of selected 

parameters in the Stewart platform and the DC motor model. 

The obtained models (SimMechanics and uncertain state - space) were compared with 

the single linear actuator of the Stewart platform. The difference between the simulated 

SimMechanics model and measured data was almost completely covered by the uncertain 

model. 

The method is highly versatile and applicable on any state-space model. 
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Preface 

Modeling and simulation of mechanic and mechatronic systems is significant part of 

development of a new product or improving of a current one. It allows introducing new 

technologies to industry, decreasing product costs, increasing a product quality and at last but 

not least it indirectly contributes to the environmental protection. These are just some of 

fundamental factors influencing the human civilization development. 

There are nowadays opened new possibilities to the modeling of systems thanks to the 

fast growth of the computer technologies. This makes possible to simulate and model 

complicated systems which would be unthinkable to simulate only twenty years ago. 

The proposed work presents an approach to modeling of parallel mechanisms which 

recently gained ground in machining applications, fast pick and place applications or in high 

accurate positioning applications. The approach is highly versatile thus applicable on wide 

spectrum of systems. 
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1. 

Introduction 

Design of complex systems is an iterative process which is often cross-disciplinary. 

The goal is to create a system with given parameters, thus all of simulation based methods 

require initial model of the system with predictable properties. Simulations as close to reality 

as possible are then used for experiments with the system properties and for achieving of 

desired information about the system.  

The problem is that there is no universal design process. Known approaches are more 

often characterized as methodical instructions. 

The fundamental approach to the design of the complex systems is for example 

described in [38]. The core of the system is typically made of the basic system which might 

be mechanical, electrical or other physical principle. It is connected through sensors and 

actuators to elements processing the information. Let’s note that it is also possible to realize 

sensors, measuring the state values, in form of observers, i.e. in a software way. The measured 

data then defines actions influencing the system states in the desired way. The actions are 

linked to the system via actuators. 

The aim of the design of the model based system is compact prognosis and 

optimization of the system behavior. The advantage of the model based design is then in 

possibility of testing of the control software with controllers before a prototype is 

manufactured. 

It is also necessary to test the functionality of the system in the designing phase 

because it is often impossible to suppress the design errors in its later phases. 

Nowadays the model is often used for design of a control system which is then able to 

predicate the system behavior. This might be used for dynamical compensation of unwanted 

behavior. The use of a model is suitable for [54]: 
 

 kinematic compensation, 

 processing of signals from additive state sensors, 

 dynamic compensation, 

 thermal compensation, 

 prediction of error by detection of the deviation from the standard behavior, 

 suppression of critical states (vibrations) by prediction of critical areas from the 

model. 
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The model based control is very interesting possibility not even for robotics but also 

for other technical disciplines. Obtaining of high accuracy control is nowadays often solved 

by implementing of the model to the control system. Model of the system built into the 

control system monitors data obtained from the sensors and actuators. Implementation of such 

controllers is nowadays possible thanks to the computational power of modern computers 

[24]. 

The models are differentiated according to the structure and prediction quality. Basic 

concepts are mainly [54]: 
 

 simplified models, mainly linear, 

 fenomenologic equation, 

 neural networks, 

 decision trees, 

 look- up tables. 

From the presented point of view arise following requirements on the optimal model 

of the system and on the optimization of the design with the model support: 
 

 evaluation in the shortest possible time, 

 possibility of the processing of the deviations from the reality, 

 (simple) investigation of the system controllability 

 (simple) investigation if it is possible to use the model for estimation of selected 

parameters (especially in cases of parameters which is difficult or impossible to 

measure) 
 

The proposed work is then focused on such an optimal modeling of a parallel robot 

generally known as Stewart platform. 

The construction of general parallel robot basically stands on a closed kinematic chain. 

Therefore a load carried by the end-effector is divided between particular kinematic chains 

linking the effector to the base. Such a construction of a manipulator leads to very high 

stiffness of the device and high load/robot mass ratio, possibility of lighter construction, thus 

better dynamics. Other advantages may be higher positioning accuracy, using same parts for 

all links or possibility of mounting of the actuators to the base of the device. These are some 

of advantages when comparing parallel manipulators with serial ones (open kinematic chain). 

The main disadvantage of a parallel manipulator construction is then quite small volume of 

the workspace limited by singular areas and usually quite complicated kinematics and 

dynamics. 

The history of the first industrially used parallel manipulators started in a year 1955 

when Gough [30] constructed the first prototype of a six degrees of freedom parallel 

manipulator for tire wear testing (used in Dunlop Tires till year 2000). The machine consisted 

of a platform (end-effector) and six extendable links which connected the platform to the base 

frame. The very similar construction was used approximately 10 years later by Cappel and 

also by Stewart for a flight simulator construction. From then parallel manipulators have been 

used in many other sectors of industry where their advantages as high stiffness, precise 
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positioning, high load/robot mass ratio, may be used. Let’s name for all fast pick and place 

applications (ABB FlexPicker, Fanuc M-1iA), machining robots (Metrom P-800), positioning 

of heavy antennas, microscopes (usually hexapods in general), spot welding (Fanuc F-200iB), 

etc. 

The parallel robots are in general suitable for applications where high positioning 

accuracy is more important than volume of the workspace, for applications where 

manipulation with heavy loads in small workspace (simulators, antenna manipulation, …) is 

needed or fast pick and place applications. 

The presented work is based on needs of projects MSM0021630518 ―Simulation 

modeling of mechatronic systems― and MŠMT KONTAKT 1P05ME789 ―Simulation of 

mechanical function of selected elements of human body― which had been solved at BUT 

recently. One of aims of named projects was to construct a Stewart platform. The device is 

planned to use for biomechanical experiments such as joints endoprosthesis (hip, knee) wear 

testing or for spinal elements testing. Such an usage leads to specific requirements in 

construction and control. Hence it was necessary to build a model of the system dynamics and 

kinematics according to the engineering design at first. The model was built in such a way to 

satisfy requirements for a control design and for testing of the designed control as well as for 

testing of the device behavior. In other words the model had to be sufficiently precise in the 

system description but on the other hand it had to be modest in computational time 

consumption. 

Building a model which is suitable for simulation and optimal for a control design at 

the same time might be quite complicated task – especially in case of dynamic model 

containing high number of interacting bodies within a spatial closed kinematics chain with six 

degrees of freedom of the end-effector. 

The proposed approach is based on modeling of dynamics within a modern simulation 

tools with possibility of linearization. The modeling inaccuracies are compensated by defining 

of uncertain parameters in the model. The obtained structure of the model is in a state-space 

form which is suitable either for simulations or for a control design. 

Let’s note that proposed approach demonstrated on the Stewart platform is highly 

versatile and easily applicable to wide range of systems and processes. The method reflects 

actual industry needs leading to increase of a product quality, preciseness, production 

capacity, dependability, system economy and decrease of the environment damage. The 

simulation and control of the system significantly influences all of these needs. 
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2. 

State of the art 

2.1 Kinematics of parallel manipulators 

Modeling of a parallel mechanism kinematics may be solved as direct and inverse 

task. The inverse kinematics is characteristic with known position and orientation of the end-

effector and joint coordinates are solved. Solving the inverse kinematics is necessary for the 

position control of a manipulator. There are generally two approaches to the solving of the 

inverse kinematics – analytical based on work with transformation matrices [29], [48] and 

geometrical [50]. 

The opposite is the direct kinematics where the joint coordinates are known and 

position and orientation of the end-effector is solved [2], [20]. Solving of the direct 

kinematics is much more complicated than inverse in case of parallel manipulators. This is in 

opposite with kinematics of serial manipulators. The method is usually based on a numerical 

iterative principle [51], [48], use of genetic algorithm [4] or for example using of extra 

sensors [37]. Very interesting method based on solving the determinant of Sylvester’s matrix 

suitable for a real –time use was proposed in [43]. 

2.2 Dynamics of parallel manipulators 

The model of system dynamics is usually needed for a control of devices which move 

fast or heavily loaded devices, i.e. of devices where their dynamics effects strongly affect the 

system behavior. The one of problems of dynamics modeling is that not all of the parameters 

are known precisely even with use of on-line estimation methods. The other problem is the 

computational time intensity. 

There are often used common methods for dynamics of machines modeling in case of 

parallel manipulators. These are Newton-Euler principle [14], [18], [19], [21], principle of 

virtual works [13], [17], [28], [30], [45], Lagrange’s equations [15], [63] and the Hamilton 

principle [52]. There are sometimes used combinations of methods, e.g. combination of 

Lagrange’s equations and Newton-Euler principle in [49]. 
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Description of a parallel manipulator full dynamics via one of these methods is usually 

quite complicated and numerical solution of the obtained model is too much time consuming. 

Such a dynamics model is inappropriate for a control design. Therefore simplifying 

suggestions shortening the computational time are often made. 

One of such simplifications might be neglecting of inertia moments of the robot links 

and at the same time assuming their masses at their ends [17], [56]. This approach was 

successfully applied on Delta robot (the robot structure is using for example ABB in their 

FlexPicker). Although the approach was successfully implemented with Delta robot, 

neglecting of links inertia moments in case of Stewart platform leads to insufficient 

positioning accuracy of the controller [27]. Another approach is presented in [42] where the 

simplification is based on small workspace of the Stewart platform. The configuration-

dependent coefficient matrices of the dynamic equations are approximated to be constant. The 

introduced modeling error is compensated by the H-infinity controller. Other publications 

dealing with the simplification of a model dynamics are for instance [16], [25], [47], [57], 

[62], [64]. 

Very interesting possibilities of dynamics modeling are nowadays offered by 

numerous simulation softwares – Adams, Matlab – SimMechanics, Chrono R3D, Inventor, 

SolidWorks, etc. The advantage is that such environments allow user to work with the model 

in much more complex way (build a model, design a controller, connecting of models, etc.). 

This might be very efficient tool for ―rapid prototyping‖ or classical mechatronic approach 

where it is taken into account that different phases of a product design are mutually connected 

and strongly influencing each other. Very inspiring example from the point of view of parallel 

manipulators is used in Matlab demos where a simple model of a Stewart platform was built, 

linearized and consequently a PID controller was designed [61]. However the model is in its 

simplest form and contains no uncertainties. 

2.3 Notes to the control of parallel manipulators 

Control of parallel manipulators might be quite complicated especially in cases where 

the dynamics model is needed. Most common is the position control [41], [42], [59] but in 

some cases also a torque control is used [66]. Possibilities of simplified dynamics models are 

studied recently (see above). Interesting possibility of H-infinity controller application for 

compensation of inaccuracies caused by a model simplification was studied in [42]. Nonlinear 

adaptive control applied on a 6 DOF manipulator describes [35]. The possibilities of parallel 

manipulators control are also described in [5], [12], [22], [23], [46], [47], [62], [64], [65]. 
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2.4 Notes to modeling of systems with uncertainties 

The most of models describing dynamics of systems are more or less inaccurate. It 

may be mostly caused by mentioned simplifications, neglecting of some factors influencing 

the dynamics or general modeling inaccuracy. It is possible to describe these inaccuracies by 

defining an uncertainty of the whole model or of the chosen parameters. The model 

containing the uncertainty description is then applicable for design of a robust controller. 

Such a controller is then able to control all systems within a given uncertainty range. 

The uncertain modeling is very versatile and easily applicable on wide spectrum of 

human activity. The standard approach to modeling of uncertain mechanical systems for a 

robust control purposes is described in [32] or [33]. 

2.5 Summary and the problem description 

The inverse kinematics of the parallel manipulators has been intensively studied for 

several decades and its solution is no more a problem. On the other hand the direct kinematics 

is for its strong nonlinearity still quite challenging task especially in cases where a real-time 

application is considered. Very promising solution of a Stewart platform real-time direct 

kinematics was proposed in [43]. 

The modeling of dynamics of parallel manipulators is mostly solved by classical 

methods of dynamics but often also by a simulation modeling. The problem is typically 

insufficient computational efficiency for a real-time use. This is often treated by simplifying 

suggestions where some of the system parameters are neglected or the model is simplified 

[42]. 

The problem of simplifications or approximations of the dynamic models introduced 

in order to increase the computational efficiency is following. It has to be very carefully 

considered for every individual type of a mechanism which simplifications it is possible to 

make. Some of simplifications can be made for some type of a mechanism but for other not – 

the method is not versatile. 

The other problem is that a model of dynamics usually contains many inaccuracies. 

The problem is getting worse by introducing of mentioned simplifications and 

approximations. 

Modeling of systems with uncertainties is nowadays used in many even nontechnical 

applications [34], [44], [60] for description of a model inaccuracy. But in case of modeling of 

parallel robots it is very rare. 
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3. 

Goals of the work 

The main goal of the work is to propose and verify a methodology for design of 

dynamic models of parallel manipulators optimal for a control design. Such an optimal model 

must satisfy following conditions: 

 evaluation in the shortest possible time, 

 possibility of the processing of the deviations from the reality, 

 (simple) investigation of the system controllability 

 (simple) investigation if it is possible to use the model for estimation of selected 

parameters (especially in cases of parameters which is difficult or impossible to 

measure) 

Let’s note that actual needs of the modern industry are taken into account, thus it is 

expected use of more advanced controllers than just a simple PID and use of modern control 

techniques. 

The method should be also universal and applicable on other mechatronic systems 

such as machining tools, robotics in general, engines and other. 

Building of such an optimal model satisfying the above requirements will be 

illustrated on the Stewart platform developed at BUT which has intended use in 

biomechanical applications [10], [11].  

Thus the model will be optimized for investigation of possibility of control design 

techniques application, description of modeling inaccuracies and for computational modesty. 

Sectional goals are following: 

 Analyze present methods of modeling of parallel mechanism 

 Design an appropriate method for a parallel robot modeling 

 Build a model describing kinematics and dynamics of the Stewart platform 

 Optimize the model for the control design purposes 

 Verify the model with the real device 

 Formulation of conclusions 
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4. 

Background theory 

4.1 Linear vs. nonlinear systems 

The linear system must satisfy conditions of superposition      f x y f x f y    

and homogeneity    f kx kf x  for inputs x, y and any real number k. Any other system is 

considered as nonlinear. 

Hence a linear system may be divided into several parts which are then solved 

separately. There is a wide background theory of working with linear systems but the most of 

engineering problems are mostly nonlinear. 

Nonlinear systems are typical with many possible equilibrium points, system stability 

depending on initial conditions, possible chaotic behavior, etc. It is then often proceeded to 

linearization of the nonlinear models because of its complicated possibilities of study. 

Obtained linear model has behavior very close to the nonlinear model but only for a small 

area around the linearization point. 

Typical sources of nonlinearities in mechanical systems are for example Coulomb 

friction or a backlash. 

The nonlinear system is generally not suitable for a control design purposes. While the 

linear representation of the system offers standardized tools for inspection of controllability 

and observability, as well as other linear control theory methods [55]. Let’s just briefly walk 

through some of these methods. 

Let’s consider a linear continuous state – space system 

x Ax Bu

y Cx Du

 

   

. (4.1) 

The system is stable if all eigenvalues of matrix A have negative real parts, i.e. if  Re 0i  . 

The controllability condition is satisfied for 
n nA R  , 

n mB R   and 

0 1 1 1 2 1 1 1n

rR A B A B A B A B     if 

 rrank R n .  (4.2) 
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The controllability in general says if it is possible to change a state of the system by an input. 

The observability then guarantees the possibility to observe all of the system states, i.e. 

possibility of reconstruction of the system states based on knowledge of input. This is 

profitable especially in cases of the system states which is difficult or impossible to measure 

by standard techniques. The observabiliy condition is satisfied for n nA R  , n nC R   and 

       
0 1 2 1n

T T T T T T T T

oR C A C A C A C A
 

  
 if 

 orank R n .  (4.3) 

The typical methods utilizing a linear state – space model for a controller design are 

for example pole placement method [40] or linear quadratic regulator design [32]. 

4.2 Modeling of uncertain systems 

The precise description of a model is not always possible even with use of advanced 

modeling tools. The modeling inaccuracy is typically caused by unmodeled dynamics, 

neglected nonlinearities, reduced order of the system, parameter variations or inaccurate 

description in general. The model is an approximation of the real system. However this might 

be a problem when designing a control of the system – the precise model is needed for proper 

design of a controller. 

The approach dealing with this problem is based on modeling of the real system as a 

set of linear time-invariant models built around a nominal one, i.e. the model is built as 

uncertain within known boundaries. The benefit of such a representation of a model is the 

possibility of designing a robust controller stabilizing a closed loop system even with 

uncertainties. The most degraded model within defined uncertainty is then called ―the worst 

case scenario‖. The ideal goal is to design a controller capable of stabilizing even the ―the 

worst case scenario‖. Such a controller then also guarantees stabilizing all of realizations of 

the model within the given uncertainty boundaries. 

There are two most general ways of representing the uncertainty [33] – the 

unstructured and structured uncertainty. 

4.2.1 The unstructured uncertainty 

The unstructured uncertainty is ―a global‖ uncertainty of the system where individual 

contributions to the uncertainty are described by a single perturbation. This kind of 

uncertainty is typical for instance for unmodeled dynamics or neglected nonlinearities. It is 

mostly used for high-frequency dynamics description. 
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The most common representations of the unstructured uncertainty are for the nominal 

system G , perturbed system pG  and perturbation block Δ following [33]: 

 

 Additive perturbation pG G   

 Multiplicative perturbation  pG G I   

 Inverse additive perturbation 
1 1

pG G    

 Inverse multiplicative perturbation  1 1

pG G I    

It is characteristic for the unstructured uncertainty that block Δ may be unknown transfer 

function matrix, in general it is a full matrix. 

4.2.2 The structured uncertainty 

The other uncertainty representation – the structured uncertainty – is describing all of 

the uncertainty contributions individually. It is typical especially for description of variations 

of the system parameters (parametric uncertainty) or shifting of operating points, i.e. for low-

frequency dynamics description. 

The standard form of the structured uncertainty representation is for the augmented 

system M presented in Fig. 4.1 It is standard configuration called M - Δ describing relation 

between inputs and outputs of the system and their affection by uncertainties. 
 

 

Fig. 4.1 M - Δ configuration of a model with uncertainty 

It is typical for the structured uncertainty that the perturbation matrix Δ is diagonal, i.e. 

it has certain structure  1diag , ..., m  Δ . The augmented system M is obtained from the 

nominal system G  with its nominal parameters and their variations 1, ..., m   by upper linear 

fractional transformation. 

Let’s note that the standard M – Δ configuration is also applicable on the unstructured 

uncertainty as well but with a full Δ matrix. 

4.2.3 Upper linear fractional transformation 

Upper linear fractional transformation was for the first time in connection with a 

robust control described in [58]. From then it is widely used for uncertainty modeling. The 

general principle is following. 
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M is an interconnection transfer function matrix according to 

 
 
 

11 12

21 22

Μ Μ
M =

Μ Μ
 

 (4.4) 

and 

Δ is the perturbation matrix with dimensions conformed to M11. 

 

M11, …, M22 are obtained according to 

 

   
1

22 21 11 12,u


  F M Δ M M Δ I M Δ M ,  (4.5) 

 

where  ,uF M Δ  is called upper linear fractional transformation of M and Δ. 

The unstructured uncertainty may be then defined with interconnection matrices M according 

to [33] as: 

additive perturbation 
0 I

I G

 
  
 

M , multiplicative perturbation 
0 I

G G

 
  
 

M , inverse 

additive perturbation 
G G

G G

 
  

 
M  and inverse multiplicative perturbation 

I I

G G

 
  

 
M . 

4.2.4 Robust stability for unstructured uncertainty 

A system is robust when it remains stable for a bounded set of perturbations according 

to [32]. Thus it is necessary to find a stabilizing controller of a closed loop containing a 

controller and a nominal system under a defined perturbation that stabilizes the closed-loop 

for all possible perturbations of the system. Such a controller is then of course stabilizing even 

the nominal plant. 

The following Fig. 4.2 presents a closed – loop system containing a controller K and a 

nominal system G  with given additive perturbation Δ which is a full matrix. 
 

 
Fig. 4.2 Closed loop system with additive uncertainty 
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The transfer function of the v to u is then  
1

uvT K I GK


   . It is obtained by 

applying the Small – Gain theorem [53] that a closed loop is robustly stable if K stabilizes the 

nominal system and  

 
 

1

1K I GK




    and  
1

1K I GK




    (4.6) 

or 

 

 
1 1

K I GK





 


. (4.7) 

The control design problem is then formulated as finding an optimal stabilizing controller K 

that minimizes the norm (4.7). 

Conditions of the robust stability may be similarly expressed for other forms of 

representation of the unstructured uncertainty [33]: 

multiplicative perturbation  
1 1

KG I GK





 


, inverse additive perturbation 

 
1 1

G I GK





 


 and inverse multiplicative perturbation  
1 1

I GK





 


. 

4.2.5 Robust stability for structured uncertainty 

The general robust stability conditions may be also written in form 

   det 0I M j j      , ,R   , where M is the nominal closed loop system which 

is assumed to be stable, [53].  

The structured uncertainty is characterized by diagonal perturbation matrix 

 1diag , ..., m    . i  may be in general any transfer matrix satisfying   1,i    . 

Then may be defined so called structured singular value  M  which analyzes the 

smallest possible uncertainty that makes    det 0I M j j      . It is then 

 

 
    

1

min det 0 for some structured 
M

I M





     
, (4.8) 

if there is no Δ satisfying  det 0I M   , then   0M , [26] . 

The robust stability condition for the system with a structured uncertainty is then 

 
  1,M    . (4.9) 
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4.2.6 Notes to the robust performance 

Sometimes it is not sufficient to design a controller which is only stabilizing but also 

other properties are desired. The given properties depend on the minimized norm. An 

overview of minimized norms and corresponding properties is following [33]: good tracking 

 
1

I GK




 , disturbance attenuation  
1

I GK




 , noise suppression  
1

I GK GK




   

and control energy minimization  
1

K I GK




 . 

Combination of norms leads to solving a mixed sensitivity optimization problem. 

Mixed sensitivity norm may be for example described as 
 

 

1

1

I GK

K I GK











. A controller K 

minimizing the norm then offers good tracking with minimal possible control energy. 

The proposed work utilizes mainly described upper linear fractional transformation. 

The robust stability and performance was not solved because it exceeds the scope of the work. 
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5. 

Proposed approach 

The proposed approach is based on mentioned advantages of the linear model 

representation. 

The model itself utilizes advantages of Matlab SimMechanics simulation environment 

which offers many tools for modeling of kinematics and dynamics of mechanisms as well as 

the possibility of linearization. The simulation environment is for its good connectivity with 

Simulink suitable for simulations of a control and for the model and data manipulation. 

There are also derived standard equations of the inverse kinematics for the simulation 

and control purposes. 

The linear model obtained from SimMechanics guarantees simplicity, computational 

efficiency and wide spectrum of methods for the manipulation with the model and for a model 

based controller design. 

Inaccuracies of the model caused by the linearization, neglected dynamics or 

improperly defined parameters are then described by definition of uncertainties for the 

individual model parameters. 

The uncertain modeling is used for describing of inaccuracies caused by shifting of the 

linearization operating points of the Stewart platform and by modeling inaccuracy of selected 

parameters of the Stewart platform and the DC motor model. 

The method for modeling of uncertainties of the DC motor is based on the standard 

parametric uncertainty definition. It is then proposed a method for defining of individual 

parameters of the model state matrices as uncertain. This is profitable especially in cases of 

higher order models. The method is used in case of the Stewart platform uncertainty 

modeling. 

The uncertain model may be with advantage used for a ―worst case scenario‖ analysis 

and for a robust control design. The uncertain model is linear thus keeping all advantages of 

the linear representation. 
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6. 

The device description 

6.1 The linear actuator with gearings 

The Stewart platform consists of six linear actuators (links) which manipulate with top 

plate of the platform. The change of the actuator length leads to the change of the platform 

position and orientation. The links lengths needed to obtain desired position and orientation of 

the platform are then easily evaluated with the knowledge of the inverse kinematics. 

The choice of joints within the linear actuator itself is subjected to the overall 

movement of the platform which has to be fully three dimensional, i.e. with six degrees of 

freedom. Thus the upper joint connecting the actuator to the platform is spherical (three 

rotational degrees of freedom) and the lower joint connecting the actuator to the base is 

universal (two rotational degrees of freedom). With the middle translational joint (ball screw 

in our case) connecting together upper and lower part of the linear actuator. 

6.1.1 Mechanical parts of the linear actuator 

Let’s note at first that the linear actuator is the most complicated part of the whole 

Stewart platform because of the number of its mechanical parts. The actuator parts may be in 

general divided into two groups. The first group would be joints and the second group would 

be bodies (this will be very useful for later SimMechanics modeling). The joints group (Fig. 

6.1) contains the spherical joint 1, a ball screw (screw joint) 2, the ball screw guidance 3, plate 

for attachment of a DC motor 4, a screw nut 5, gearings (a spur gearing and a planetary 

gearbox) 6 and finally the universal joint 7. The bodies group (Fig. 6.2) basically contains the 

upper part of the actuator (the ball screw 1a with its nut 2a) and the lower part of the actuator 

3a which is connected to the DC motor 4a by the plate 4. These are main parts having 

influence on kinematics and dynamics of the machine. 
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Fig.6.1 Joints of the linear actuator (by 

Houška, P.) 
1 spherical joint, 2 ball screw, 3 ball screw guidance, 

4 motor attachment plate, 5 screw nut, 6 gearings, 7 

universal joint 

Fig.6.2 Bodies of the linear actuator (by 

Houška, P.) 
1a ball screw, 2a screw nut, 3a lower part of the link, 

4a DC motor 

 

Technical parameters are following. The used DC motor is Maxon RE 35 (90 W), 

single stage planetary gearbox Maxon GP 32 C with gear ratio 4.8:1, the gear ratio of the spur 

gearing is 41:21, the screw-thread is 4 mm. The maximal length of the single linear actuator is 

188 mm, the minimal length is 159 mm. 

6.2 The Stewart platform 

The basic geometry of the device (Fig. 6.3, 6.4) is defined by position of the base and 

platform connection points for linear actuators attachment, Fig 6.5, 6.6. The basic geometry of 

the Stewart platform is amongst others described in [50]. 

6.2.1 Basic geometry of the Stewart platform and its inverse kinematics 

The Stewart platform geometry may be in the simplest form described as follows: The 

circular movable platform is defined by coordinates of points _ _ _[ ]T

i x i y i zp p p
i

p . There 

are six links (linear actuators) i i
b p  connecting the platform to the base circular body which is 

defined by points _ _ _[ ]T

i x i y i zb b b
i

b , 1, ..., 6i  . The platform and base are parallel and 

axially aligned in the steady state. The points of the platform and the base are 
1

3
  mutually 

shifted. 

The inverse kinematics describes relation between actuated joints coordinates and 

given end-effector configuration. The actuated joints are prismatic in case of the Stewart 

platform, thus the joint coordinates are defined as lengths of the links. 
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Let’s note that establishing of the inverse kinematics equations is the fundamental step 

to the position control design. The inverse kinematic equations might be according to [3], 

[8],[36] also used for determination of the system Jacobians and consequently to analyze the 

singular states of the machine. 
 

 
Fig. 6.3 The designed Stewart platform – 3D model (by Houška, P.) 

 
Fig. 6.4 The designed Stewart platform – reality (by Houška, P.) 

 

There are defined two main coordinate systems on the Stewart platform, Fig. 6.5, 6.6. 

It is the coordinate system of the base (CSb) which at the same time corresponds with the 

global coordinate system and local coordinate system of the platform (CSp). Both systems are 

in the steady state of the platform axially aligned along the z-axis. 
 

 

 

Fig. 6.5 Platform angles Fig. 6.6 Base angles 
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The position of the base connection points i
b  is defined in CSb (Appendix B) as 

_ _

_ _

cos cos

sin , sin

0 0

mb i pb i

b mb i b pb ir r

 

 

   
   

 
   
      

2i-1 2ib b   (6.1) 

for    _ _

2 1 2 1
1 , 1

3 6 3 2
mb i b pb i bi i                and 1, ..., 3i  . 

The meaning of terms is following: 10,84b    is the offset angle on the base according to 

Fig. 2.6 and 175,02br mm  is the base radius. The same process was used for obtaining 

coordinates of the platform connection points. 

The position of the platform points i
p  is defined in CSp (Appendix B) as 

_ _

_ _

cos cos

sin , sin ,

0 0

mp i pp i

p mp i p pp ir r

 

 

   
   

 
   
      

2i-1 2ip p   (6.2) 

 

for    _ _

2 1 2 1
1 , 1

3 6 3 6
mp i p pp i pi i                and 1, ..., 3i  . 

6,47p    is the offset angle on the platform (Fig. 6.5), 190pr mm  is the platform radius. 

It is necessary to transform the platform points to the coordinate system of the base 

(global coordinate system) for obtaining the general position of the platform points in a 3D 

space: 

, 
iT ip T p R   (6.3) 

 

for 
_ _ _i x i y i z

T

T T Tp p p 
 iTp  and 1, ..., 6.i   

 

T

x y zt t t   T  is the translation vector and R  is the matrix of rotations 
 

cos cos sin cos sin cos sin sin cos cos sin sin

sin cos cos cos sin sin sin cos cos cos cos sin

sin sin sin cos cos

           

           

    

  
 

    
 
  

R  with Euler 

angles , ,   . 
 

The lengths of the links are then defined as 

     
_ _ _

2 2 2

_ _ _ ,
i x i y i zT i x T i y T i zp b p b p b     

iT ip b  (6.4) 

 

for 1, ..., 6i  . 

The link lengths might be then easily evaluated for the desired position of the platform 

gravity centre (i.e. translation vector T) and desired orientation of the platform gravity centre 
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(Euler angles). This is the commonly used approach for the Stewart platform kinematics 

description. 

However the construction of the proposed Stewart platform is slightly different [11]. 

The main difference is in the universal joint construction. The standard construction has the 

universal joint with axes of its revolute joints intersecting at the base connection point i
b . The 

used universal joint has axes of its revolute joints orthogonal but shifted between each other 

by ci, Fig. 6.7, 6.8. It is because of simpler manufacturability. This results into a bit more 

complicated kinematics described in [9]. 
 

 

 

 

Fig. 6.7 The latest construction of the link (by 

Houška, P.) 

Fig. 6.8 Geometry of the u-joint (by Houška, 

P.) 
 

The connection points on the base i
b  and on the platform i

p  are already known. Also 

approach for obtaining coordinates of 
iTp  remains unchanged. The global coordinates of the 

new points i
d  representing connection points of the shifted revolute joints and the links have 

to be determined. The new lengths of the links are then 
iT ip d . 

There were determined auxiliary points i
m  (Appendix B) which represent the central 

points of bearings. Their global coordinates are known from the construction design. The 

solution for i-th link is following. 

 

New local coordinates are defined according to 

*

* *

* * *

,

, ,

.

i

i i

i i i

 

   

 

i i i

i i

z T i z

x m b

w p b z x w

y z x

  (6.5) 
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The coordinates of i
d  transformed into a global coordinate system are 

,
iT i id = d R +T   (6.6) 

where T represents the translation of i
b  with respect to the origin of the global coordinate 

system and Ri is the rotation matrix 

* * *

* * *

* * *

* * *

* * *

* * *

xi xi xi

i i i

yi yi yi

i i i

zi zi zi

i i i

x y z

x y z

x y z

 
 
 
 
 


 
 
 
 
  

i

x y z

R
x y z

x y z

.  (6.7) 

 

The link lengths are then 

_ _ _

2 2 2

_ _ _( ) ( ) ( )
i x i y i zi x T i y T i z Tp d p d p d     

ii Tp d . (6.8) 
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7. 

SimMechanics modeling of the device 

7.1 Stewart platform and the linear actuator modeling 

The joints and bodies groups of the linear actuator are already known from the 

engineering design [10], [11] as well as the geometry information. The geometry information 

in this case means the information about location of connection points between bodies and 

centre of gravity on the particular body. These are then defined as vectors related to global or 

local coordinate system. The information about body inertia moments and body masses may 

be easily obtained from the software where the engineering design was projected (Inventor). 

The model of the linear actuator is then built with use of SimMechanics joints and 

bodies libraries, Fig. 7.1. 

 

 

Fig. 7.1 SimMechanics model of the 

Stewart platform linear actuator 

Fig. 7.2 SimMechanics model of gearings 

(planetary gearbox and spur gearing) 
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Gearings (the spur gearing and the planetary gearbox) are modeled as a system of 

massless bodies with ―Gear constraints‖ blocks, Fig.7.2. These blocks defines the gear ratio 

between movements of bodies which create the gearings system and guarantee transfer of 

kinematic and force effects between constrained bodies. 

The Stewart platform model is then built from six linear actuators subsystems and the 

platform body [6], Fig. 7.3.  

 
Fig. 7.3 SimMechanics model of the Stewart platform with linear actuator subsystems. 

Platform connection points correspond with CS1,…, CS6 and the base points with 

Ground1,…, Ground6 
 

See Appendix A for the information about particular values of the body and joint 

parameters, position vectors of body coordinate systems origins and gearbox modeling of the 

linear actuator and Appendix B for the further information about the particular values of the 

body parameters of the Stewart platform. 

7.1.1 Notes to the SimMechanics modeling of the linear actuator 

It is very profitable to define within each body a local system which is the reference 

system for the other systems located on the body. What is also important for the modeling 

simplicity, such a system should have its axes aligned along axes of the body. 

The global coordinate system of the Stewart platform is defined according to Fig. 6.6 

The orientation of the local coordinate systems axes (valid for bodies lower link, screw nut, 

ball screw and motor body) may be defined via unit vectors, Fig. 7.4.  

The vectors of the i
th

-link are: 

ii T iw = p -d ,  (7.1) 

 

for 1,...,6.i   
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The unit vectors are described as  

ˆ i
i

i

w
K =

w
, 

0

ˆ ˆ 0

1i

 
 
 
  

i i
I = K ×  and ˆ ˆ ˆ

i i i
J = -I ×K ,  (7.2) 

for 1,...,6.i   
 

 
Fig. 7.4 Example of a local coordinate system axis orientation 

7.1.2 Inputs/Outputs analysis 

Inputs and outputs of the Stewart platform SimMechanics model are given by 

supposed control requirements. The basic idea is to control the position and orientation of the 

platform by DC motors shaft torques which are produced by the motors input voltage. The 

position and orientation of the platform is given by the links lengths which are described by 

the inverse kinematics. The changes of the links lengths are then given by rotation of the 

screw nut which moves the ball screw. 

The inputs/outputs of the Stewart platform mechanical model are on the most basic 

layer following: the inputs are torques  1 6, ,
T

M Mm  produced by DC motors and 

outputs are angular displacements of the screw nuts  1 6, , q  and their angular 

velocities  1 6, , q . 

Adding chosen inputs and outputs to the SimMechanics model is provided by 

connecting blocks of sensors and actuators. The torque actuator is added to the input element 

of the planetary gearbox in case of the DC motor torques and the joint sensor is added to the 

revolute joint representing rotational movement of the screw nut, Fig. 7.5. 
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Fig. 7.5 SimMechanics model input/output routing (red arrows) within its subsystems (black 

arrows) 
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7.2 DC motor modeling 

The model contained two kinds of subsystems till now. It was the linear actuator 

subsystem and the gearings subsystem. The new subsystem will represent the DC motor 

Maxon RE35. 

The RE 35 (catalogue number 273754 – Appendix C) has power of 90W, its nominal 

torque is 0,0977Nm, nominal voltage 42V, nominal speed is 6770rpm and no load speed 

7530rpm.. 
 

The unloaded DC motor model is based on well known description: 

1

1 1

b

f m

Kdi R
i u

dt L L L

d
K K i

dt J J






   

  

.  (7.3) 

The second equation is then transformed by 
d

J M
dt


  in order to obtain a shaft torque as the 

system output into 

f mM K K i   ,  (7.4) 

where M  is the motor shaft torque, MK is the torque constant, J is the rotor inertia, fK  is 

the linear approximation of the viscous friction, i  is the momentary value of the electrical 

current,   is the momentary angular velocity of the shaft, bK  is the voltage constant, R  is 

the terminal resistance, L  is the terminal inductance and finally u  is the momentary driving 

voltage. 

The values of the terms are according to the Maxon catalogue for the RE 35 (273754) 

following: 2,07R   , 0,00062L H , 0,052m

Nm
K

A
 , 

1
0,052

.
b

V
K

rad s
 , 

0,000048fK  , 
6 27,2.10 .J kg m . 

The model of the motor (Fig. 7.6) was modeled as a subsystem of the Stewart platform 

model and the linear actuator model, Fig. 7.7. There is no need to use the SimMechanics 

model libraries for the DC motor modeling. 
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Fig. 7.6 Simulink model of the DC motor 

 

 
Fig. 7.7 DC motor subsystem (green) as a part of the linear actuator model 

 

Momentary angular velocity marked at the block diagram as ―w‖ is measured from the 

input element of the gearings subsystem. The output of the DC motor model corresponds with 

a produced torque. This signal is routed also to the input element of the gearings subsystem. 
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Comparison of the unloaded model of the motor in the steady state with the 

manufacturer data for the input of 42V proved difference in output angular velocity 1,2%. The 

simulated output was 779,1rad/s while the manufacturer publishes 788,5rad/s. 

7.2.1 The state – space representation and investigation of the model 

The basic state – space representation of the linear model of the a DC motor is 

 

       

1

0

0 1 0

b

fm

KR

i id L L
u tL

Kdt K

J J

i
y t u t

 



 
                    

    

 
  

 

.  (7.5) 

There were investigated controllability and observability conditions of the model (7.5) for 

Maxon RE 35 parameters according to (4.2) and (4.3). There were utilized Matlab functions 

ctrb and obsv. 

The matrix of controllability is in Matlab defined as 

co = ctrb([-R/L -K_b/L;K_m/J -K_f/J],[1/L 0]'); 

and number of uncontrollable states as 

unco = length([-R/L -K_b/L;K_m/J -K_f/J]) - rank(co). 

This yelds unco = 0, thus all states of the system are controllable. 

The matrix of observability is in Matlab defined as 

ob = obsv([-R/L -K_b/L;K_m/J -K_f/J],[0 1]); 

and number of unobservable states as 

unob = length([-R/L -K_b/L;K_m/J -K_f/J]) - rank(ob). 

This yelds unob = 0, thus all states of the system are observable. 

The investigation of controllability and observability of the model proved its 

suitability for a control design. 
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8. 

Linearization 

8.1Linerization in Matlab SimMechanics 

There are in general two linearization algorithms in Simulink: Block-by-block 

analytical linearization and Numerical perturbation. 

The first algorithm (block-by-block analytical) linearizes the model block by block 

individually and results are then combined to the linear model of the whole system. The 

advantage is that high amount of Simulink/SimMechanics blocs contains the analytically 

expressed Jacobian for the exact analytical linearization. This is very advantageous in cases 

that blocks contain some kind of discontinuity thus for blocks which are not suitable for the 

linearization by the numerical perturbation. This is the default method. Blocks which do not 

contain the Jacobian are automatically perturbed when using this method. 

The second algorithm linearizes the whole system at once by slight changes of inputs 

and states. The method is quite simple and fast thus suitable for complicated systems. The 

disadvantage is that even blocks containing Jacobian for the exact linearization are linearized 

by the perturbation. 
 

The obtained linear model is then in both of cases according to [39] described in state-space 

form as 

 

 

δx Aδx Bδu

δy Cδx Dδu
,  (8.1) 

 

where 

 

 

 

0

0

0

δx x x

δu u u

δy y y

.  (8.2) 

 

It is valid for the outputs at the operating point: 

 

  

0 0 0

0 0 0

x = f x ,u = x

y g x ,u y
.  (8.3) 
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A, B, C and D are constant coefficient matrices defined as the Jacobians of the system, 

evaluated at the operating point 

0 0 0 0

0 0 0 0

, ,

, ,

x u x u

x u x u

 

 

 

 

f f
A = B =

x u

g g
C = D =

x u

.  (8.4) 

8.2 Linearization of the Stewart platform model 

The linearization is performed for the pure mechanical model of the Stewart platform 

without DC motors. 

It is necessary to set the operating point at first. The operating point is given by 

coordinates of the platform mass center in the global coordinate system [0 0 0,1262] m. This 

position is approximately in the middle of the possible z-axis workspace of the platform and 

corresponds with the assumed initial position. 

The input parameters for the linearization describing the operating point are the input 

torques holding the platform in the desired initial position against gravity. The torques may be 

easily measured from the model when zero movement to the platform joints is prescribed. The 

measured torque value is 
30,8701.10
 Nm for each linear actuator. 

It may be proceed to the linearization itself when the input parameters defining the 

operating point are known. It is also important to mark the model inputs and outputs in the 

scheme according to the Fig. 7.5. There was chosen the step-by-step analytical linearization 

algorithm as the linearization method because of the described advantages. 

A state-space model consisting of matrices A, B, C, D is obtained after the 

linearization. The model has 6 inputs (torques produced by DC motors) and 12 outputs 

(angular displacements and angular velocities of the srew nut) according to the input/output 

analysis. The minimal realization of the model has 12 states which are automatically chosen 

by SimMechanics (typically joint states). 

8.2.1 Comparison between the linear model and the nonlinear SimMechanics model 

The comparison between the linear and the nonlinear model was performed for the 

same input torque with amplitude 0,1Nm and frequency 2Hz for all of the linear actuators, 

Fig. 8.1. Thus the movement of the platform is just in the z-axis. The maximal z-axis distance 

between the centers of gravity of the base and the platform allowed by construction of the 

device is 0,1462m. The maximal distance reached during the simulation was 0,1407m – the 

platform was very close to its maximal workspace borders, Fig. 8.2. 
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Fig. 8.1 Input torque of all linear actuators 

for both linear and nonlinear model 

Fig. 8.2 Position of the platform during the 

simulation (nonlinear model) 
 

There were compared outputs of both models (angular displacement and angular velocity of 

the screw nut) during the simulation, Fig. 8.3, 8.4. 
 

  
Fig. 8.3 Comparison between linear and 

nonlinear model – angular displacements 

Fig. 8.4 Comparison between linear and 

nonlinear model – angular velocities 
 

  
Fig. 8.5 Comparison between linear and 

nonlinear model – angular displacements 

(%) 

Fig. 8.6 Comparison between linear and 

nonlinear model – angular velocities (%) 
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The behavior of the linear model is obvious and expected – with increasing distance 

from the operating point decreases identity of both models. The difference between outputs is 

approximately 1,5% (angular displacement) and 2,1% (angular velocity) close to the 

workspace borders, Fig. 8.5, 8.6. 

Advantage of such a linear model is that it is with its twelve states quite simple. Thus 

its simulations are very fast and model itself is for its computational modesty suitable for a 

control design. 

8.2.2 Controllability and observability of the obtained linear model 

The minimal realization of the obtained linear state – space model is defined as Matlab 

variable Model_sys. The matrix of controllability is then defined as 

co = ctrb(Model_sys.A,Model_sys.B); 

and number of uncontrollable states as 

unco = length(Model_sys.A) - rank(co). 

This yields unco = 0, thus the linear model of the Stewart platform is controllable. 

The matrix of observability is defined as 

ob = ctrb(Model_sys.A,Model_sys.C); 

and number of unobservable states as 

unob = length(Model_sys.A) - rank(ob) 

This yields unob = 0, thus the system is observable. 

The investigation of the controllability and observability proved that the linear state – 

space model of the Stewart platform is suitable for a control design. 
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9. 

Stewart platform control design 

9.1 SimMechanics model based control design 

The Stewart platform linear state-space model was obtained in the previous chapter. 

The model was used for a control design which described in [12]. The control was 

successfully tested with original SimMechanics nonlinear model. 

The basic idea of the control structure is to divide it into two layers – upper and lower 

layer. The upper layer (Fig. 9.1) is represented by a multichannel PID controller which 

prescribes torques produced by DC motors according to a desired position and orientation of 

the platform. The desired position and orientation of the platform may be easily transformed 

into linear actuators extensions and screw nuts angular displacements by using inverse 

kinematics description (6.8). The controller representing this layer is based on the Stewart 

platform linear state-space model. 

 

 
Fig. 9.1 Upper control layer [12] 

 

The lower layer (Fig. 9.2) consists of six independent PID controllers which prescribe 

driving voltages for each of six DC motors according to the torques prescribed by the upper 

layer. The controllers in this layer are based on the state-space model of the DC motor (7.3-

7.4). 
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Fig. 9.2 Lower control layer [12] 

 

9.1.1 Upper layer control design 

The control law for the multichannel PID of the upper layer is according to [12] described as: 

 

 
0

t

i ref p dd   m K q q K q K q , (9.1) 

where m the vector of actuating torques  1 6, ,
T

M Mm , q is the vector of corresponding 

measured angular displacements of the screw nuts  1 6, , q  and refq  is the vector of 

referential angular displacements. i p dK ,K ,K  are the controller gains. 

 

According to 

 
2 3 33 3 refp p p p   q q q q q , (9.2) 

the Stewart platform dynamics is stable on aperiodicity margin for  1 23p p K D I C , 

 1 3d p K D I B , 
3 1

i p K D  for 0p  . B, C, D are the state matrices of the linear model 

of the Stewart platform. 

9.1.2 Lower layer control design 

The control law for the lower layer is then according to [12] following 

 

  
0 0

t

i m m p m d mref
u k M M d k M k M d



 
 

    
 
  , (9.3) 

 

where mM  is the torque produced by a DC motor (measured),  m ref
M  is then the referential 

torque. 
 

Choosing    3d f mk pLJ LK RJ K J   ,    23p f b m mk p LJ RK K K K J   , 

 3

i mk p L K  leads for 0p   to stable dynamics on aperiodicity margin according to  

 
 2 3 33 3m m m m m ref

M pM p M p M p M    . (9.4) 
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9.1.3 Simulation results 

The simulation movement of the platform may be simply described as follows. The 

platform gravity center moves from its initial position [0 0 0,1262]m to the position [0 0 

0,1312]m at the first stage. Then (approximately at 2s of the simulation time) the movement 

in all of degrees of freedom continues with a sine wave. The simulation movement was 

chosen in such a way because of the real working cycle of the device is expected to be at least 

very similar. 

The sine waves have following parameters: amplitudes for all of the position waves 

are 0,005m, amplitudes for all of the orientation waves are 0,02rad. Frequency is same for all 

signals 0,5Hz. 

The comparison between desired and measured position and orientation of the 

platform gravity center is documented in Fig. 9.3, 9.4, 9.5. 

 

  
Fig. 9.3 X, Y – axis position of the platform 

gravity center (desired and measured) 

Fig. 9.4 Z – axis position of the platform 

gravity center (desired and measured) 

  
Fig. 9.5 Orientation of the platform gravity 

center (desired and measured) 

Fig. 9.6 Position error (x, y - axis) 



43 

 

  
Fig. 9.7 Position error (z - axis) Fig. 9.8 Orientation error (x, y, z - axis) 

 

The position and orientation error is then documented in figures Fig. 9.6, 9.7, 9.8. The 

maximal positioning error is approximately 0,2mm for movement in each axis. The maximal 

orientation error is approximately 
30,8.10
rad for rotation around each axis. There is no 

special requirement on the device positioning accuracy because of its planned use. Hence the 

presented accuracy is sufficient.  

The following pictures document DC motors torques and voltages, Fig. 9.9 – 9.20. The 

maximal amplitudes of the torque and voltage are for the given trajectory measured for the 

link number four which also reaches its maximal extension, Fig. 9.21. The nominal torque for 

the RE 35 DC motor is 0,0977Nm and its nominal voltage is 42V. The nominal values of 

torque and voltage were not exceeded during the simulation. 

 

  
Fig. 9.9 DC motor torque – 1

st
 link Fig. 9.10 DC motor voltage – 1

st
 link 
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Fig. 9.11 DC motor torque – 2

nd
 link Fig. 9.12 DC motor voltage – 2

nd
 link 

  
Fig. 9.13 DC motor torque – 3

rd
 link Fig. 9.14 DC motor voltage – 3

rd
 link 

  
Fig. 9.15 DC motor torque – 4

th
 link Fig. 9.16 DC motor voltage – 4

th
 link 
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Fig. 9.17 DC motor torque – 5

th
 link Fig. 9.18 DC motor voltage – 5

th
 link 

  
Fig. 9.19 DC motor torque – 6

th
 link Fig. 9.20 DC motor voltage – 6

th
 link 

 

 
Fig. 9.21 Link extensions 

 

The simulation results proved suitability of the linearized SimMechanics model for the 

control purposes. The positioning error of the proposed control is acceptable with respect to 

the assumed application. The model itself is with its twelve states quite simple and usable for 

a wide spectrum of control design methods. 
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10. 

Uncertain modeling 

10.1Model of the DC motor with uncertain parameters 

The following DC motor model with uncertain parameters is based on description 

(7.3) and standard principles of uncertain modeling [33]. The equations may be for 1x i , 

2x   and by introducing the parametric uncertainty transformed into a form 

 
   

 
   

1 1 2

2 1 2

1

1

 


 


        


      

R b Kb

L

m Km f Kf

J

x R x K x u
L

x K x K x
J

, (10.1) 

where L , R , 
bK , J , 

mK , fK  are nominal parameters and L , R , Kb ,  J , Km , Kf
 are 

uncertainties of the nominal parameters. The model with uncertainties is then described by the 

following scheme, Fig. 10.1. 

 

Fig. 10.1 Scheme of the DC motor with uncertain parameters 
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The uncertain model in matrix form is then obtained according to scheme as 

 
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or in a compact form of interconnection matrix M 
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. (10.3) 

At the same time the perturbation matrix Δ is defined as 
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.  (10.4) 
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10.1.1 Simulation results 

The parameter with the highest possible uncertainty is fK  representing the linear 

approximation of viscous friction. It was proved by a simulation that 35% uncertainty of the 

parameter covers for the unloaded motor the output difference 1,2% between data obtained 

from the nominal model and published data by manufacturer (no load speed for the input 

42V). 

The simulation was performed for the uncertain model with uncertainty 35% in fK , 

i.e. for 0,000048 0,35Kf   . 

Fig. 10.2 presents step response of 20 random samples of the uncertain model with 

marked boundaries of the worst case and the nominal model. Next figure (Fig. 10.3) presents 

the steady state at input of 42V. The no load speed presented by the manufacturer (788,5 

rad/s) is covered by the uncertainty. Graphs also present the worst case corresponding with 

the most degraded model within the given uncertainty. 

 

  
Fig. 10.2 step response of the uncertain 

system with the worst case boundaries 

Fig. 10.3 Steady state for the input 42V (full 

black line – no load speed accodirng to the 

manufacturer) 

(full red line – worst case, dashed red line – nominal model, blue lines samples of the 

uncertain model) 

The worst case satisfies conditions of controllability and observability according to 

(4.2) and (4.3). 
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10.2 Stewart platform model with uncertain parameters 

The general approach to the parametric uncertainty modeling presented in the previous 

section is suitable for models where individual parameters are treated as uncertain. The 

method is strictly concentrated on the given parameters but this might be inconvenient for 

models of higher orders with large amount of parameters with an uncertainty or for models 

where the uncertainty in some parameters influences other parameters. 

The proposed method works with parametric uncertainty in a more complex way. It is 

based on knowledge of an uncertain linear model and corresponding linear model with 

maximally perturbed parameters. The uncertainty is then determined for each parameter of 

state matrices individually. 

The basic idea of uncertainty modeling demonstrated on the Stewart platform model is 

very simple. The approach is performed for two cases – shifting of operating points and 

possible modeling inaccuracy of mass and inertia parameters. 

There are obtained two linear models by the linearization of the SimMechanics 

Stewart platform model. The first one is linearized around the operating point defining its 

initial position and the second one is linearized around the operating point defining the 

position where the maximal (or minimal) links extensions are reached. The both models are 

described by state matrices. The uncertainty of such a system is then defined as a difference 

between parameters of corresponding state matrices of both models. This is the first case of 

uncertainty modeling which compensates shifting of operating points. The controller based on 

such a model has constant quality of regulation for the whole workspace between operating 

points. 

The second presented case of the Stewart platform uncertain modeling is describing 

uncertain modeling of mass and inertia parameters. The principle is same. The uncertainty 

would be described as a difference between model with nominal parameters and the model 

with maximal (or minimal) parameters of mass and inertia. 

The general principle of the uncertain modeling is then following. The nominal system 

is described as 

 

 

x Ax Bu

y Cx Du
  (10.5) 

and similarly the model with maximally perturbed parameters  

 

 

x Ax Bu

y Cx Du
.  (10.6) 

The meaning of equation terms is in case of the Stewart platform state-space model 

following: 

x represents the vector of twelve states which are established by SimMechanics during the 

linearization, x  represents the vector of the time derivations of the states, 
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 1 2 3 4 5 6

T
M M M M M Mu is the vector of inputs which are DC motors shaft 

torques,  1 2 3 4 5 6 1 2 3 4 5 6

T
           y  is the vector of outputs 

which are angular displacement and angular velocity of each one of the ball screw nuts. 

Matrices A,B,C,D  represent state matrices of the nominal system and A,B,C,D represent 

the state matrices of the model with perturbed parameters. 

State matrices of the system (10.6) may be defined as a sum of particular nominal 

matrix and a matrix containing the uncertainty. E.g. for A it is 

 A A A ,  (10.7) 

thus the uncertainty contribution is   A A A . Similarly are derived uncertainty 

contributions for matrices B, C, D. 

Applying of the upper linear fractional transformation 

   
1

22 21 11 12,u u u u


  F M Δ M M Δ I M Δ M   (10.8) 

and comparing with (10.7) it is obtained 21 12 M M A , 11 M 0 , 12 M I , 21 M A  and 

22 M A . The method is same for other state matrices. 

By substituting of the obtained parameters to the interconnection transfer function 

matrix 

 
 
 

11 12

21 22

M M
M =

M M
  (10.9) 

and according to schemes of particular transfer function matrices in Fig. 10.4, it is obtained 
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    

0 Iy u

B Bx u
 (10.10) 

and similarly 

C C 



    
     

    

0 Iy u

C Cy x
, D D 



    
     

    

0 Iy u

D Dy u
, (10.11) 

where , , ,A B C D   u u u u  are inputs to the perturbation matrices , , ,A B C D   Δ Δ Δ Δ , 

, , ,A B C D   y y y y  are outputs from the perturbation matrices. 
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Fig. 10.4 Schemes of particular transfer function matrices M [7] 

 

It is then valid 

A B

A

B

C

D

C D

   









   

   









   

x Ax A u B u Bu

y x

y u

y x

y u

y Cx C u D u Du

 and 

A A A

B B B

C C C

D D D

  

  

  

  









u Δ y

u Δ y

u Δ y

u Δ y

. (10.12) 

 

It is typically , , ,A B C D -I Δ I  for the symmetrical +/- perturbation of the uncertainty around 

the nominal value. 

 

The matrix representation of the (Stewart platform) uncertain model is then 

A A

B B

C C

D D

 

 

 

 

 

 

    
    
    
    

     
    
    
    
     

x xA A B 0 0 B

y uI 0 0 0 0 0

y u0 0 0 0 0 I

y uI 0 0 0 0 0

y u0 0 0 0 0 I

y uC 0 0 C D D

,  (10.13) 

with the perturbation matrix 

A A A

B B B

C C C

D D D

  

  

  

  

     
     
     
     
     
     

u Δ 0 0 0 y

u 0 Δ 0 0 y

u 0 0 Δ 0 y

u 0 0 0 Δ y

.  (10.14) 
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The ideal representation of the uncertain model for a robust controller design is according to 

[33] following 

v v v

v v v

v v v

 
 


 
  

1 2

1 11 12

2 21 22

A B B

G C D D

C D D

.  (10.15) 

The form (10.13) corresponds with (10.15) for 

v A A , [ ] 
v1

B A B 0 0 , 2v B B , 

 
 
 
 
 
 

v1

I

0
C =

I

0

, 2v C C ,  11v D 0 , 
12v

 
 
 
 
 
 

0

I
D

0

I

, 

 v21 Δ
D = 0 0 C D . 

The Simulink scheme of the uncertain Stewart platform model is then illustrated in 

Fig. 10.5. The scheme is identical for both cases of modeled uncertainty. Let’s note that the 

model has added a gravity input for the simulation purposes. 

 
Fig. 10.5 The Simulink scheme of the uncertain Stewart platform model 

 

The advantage of the method is that formulas (10.13), (10.14) describing the uncertain 

model are applicable on any state-space model of any system. The only necessary inputs are a 

nominal model and a model with maximally perturbed parameters. 
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The proposed method was published in [7]. The article also describes a brief 

experiment with an H-infinity based controller designed according to the uncertain model. 

10.3 Simulation of the Stewart platform model with uncertain parameters 

10.3.1 Case 1 – Uncertain position of the operating point 

The uncertain Stewart platform model is made of the model linearized in its nominal 

position ([0 0 0,1262m] position of the platform centre of gravity in CSb) and the model 

linearized in its position with minimal link lengths ([0 0 0,1062m] position of the platform 

centre of gravity in CSb) which corresponds in this case with the model with maximally 

perturbed parameters. The input to such an uncertain model was same as the input for 

comparison of the linear and nonlinear model – input torque represented by a sine wave with 

amplitude 0,1Nm and frequency 2Hz for all of linear actuators (Fig. 8.1). The following 

figures document comparison between outputs of the uncertain and the nominal model, Fig. 

10.6 – 10.9. 

There were done twenty random samples of the uncertain model for , , ,A B C D -I Δ I . 

Let’s note that maximal difference between outputs of the nominal system and 

maximal/minimal realization of the uncertain model is approximately ±1,13% of the nominal 

output value for the given trajectory of the platform. The rest of the outputs of the uncertain 

model are naturally placed within this range. The worst case (the most degraded model) 

corresponds with the maximal realization of the uncertainty system in this case, i.e. for 

, , ,A B C D Δ I . 

 

  
Fig. 10.6 Case 1 – comparison of the outputs 

of the uncertain model, nominal model and 

the worst realization – angular displacement  

Fig. 10.7 Case 1 – comparison of the outputs 

of the uncertain model, nominal model and the 

worst realization – angular displacement – 

detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 
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Fig. 10.8 Case 1 – comparison of the outputs 

of the uncertain model, nominal model and 

the worst realization – angular velocity 

Fig. 10.9 Case 1 – comparison of the outputs 

of the uncertain model, nominal model and 

the worst realization – angular velocity – 

detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 

10.3.2 Case 2 – Uncertain masses and inertia moments 

The second case works with uncertain parameters of mass and inertia of chosen 

bodies. The uncertain model is created from the model with nominal values of masses and 

inertia moments and from the model with maximal values of masses and inertia moments. 

Both models are linearized in its initial position. 

The lower part of the link (position 3a in the Fig. 6.2) was modeled as uncertain at 

first. This part was selected because of its complicated geometry thus quite high possibility of 

modeling inaccuracy. The uncertainty of both mass and inertia moment was experimentally 

set to ±2,5% of the nominal value (Case 2a). 

There were compared outputs of the nominal and uncertain model (twenty random 

samples for the uncertainty perturbed from , , ,A B C D -I Δ I ), Fig. 10.10 – 10.13. The 

maximal difference between outputs of the nominal and uncertain model is approximately 

±0,014% of the nominal values. 

The worst case corresponds with the minimal realization of the uncertain model, i.e.

, , ,A B C D  Δ I  in this case. This is also typical for the following examples. 
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Fig. 10.10 Case 2a – comparison of the 

outputs of the uncertain model, nominal 

model and the worst realization – angular 

displacement 

Fig. 10.11 Case 1 – comparison of the outputs 

of the uncertain model, nominal model and the 

worst realization – angular displacement – 

detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 

 

  
Fig. 10.12 Case 2a – comparison of the 

outputs of the uncertain model, nominal 

model and the worst realization – angular 

velocity 

Fig. 10.13 Case 2a – comparison of the 

outputs of the uncertain model, nominal model 

and the worst realization – angular velocity – 

detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 

 

The maximal difference in outputs between nominal and uncertain models is even for 

the uncertainty ±10% of the mass and inertia moment of the lower link body (Case 2b) still 

quite negligible - ±0,060% of the nominal values, Fig. 10.14 – 10.17. 
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Fig. 10.14 Case 2b – comparison of the 

outputs of the uncertain model, nominal 

model and the worst realization – angular 

displacement 

Fig. 10.15 Case 2b – comparison of the 

outputs of the uncertain model, nominal model 

and the worst realization – angular 

displacement - detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 

 

  
Fig. 10.16 Case 2b – comparison of the 

outputs of the uncertain model, nominal 

model and the worst realization – angular 

velocity 

Fig. 10.17 Case 2b – comparison of the 

outputs of the uncertain model, nominal model 

and the worst realization – angular velocity – 

detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 

 

The difference in outputs is higher in following example where the uncertainty ±2,5% is set 

for all masses and inertia moments of all modeled bodies (Case 2c). The maximal difference 

between the nominal and uncertain outputs is then ±2,54%. This is documented in Fig. 10.18 

– 10.21.  
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Fig. 10.18 Case 2c – comparison of the 

outputs of the uncertain model, nominal 

model and the worst realization – angular 

displacement 

Fig. 10.19 Case 2c – comparison of the 

outputs of the uncertain model, nominal model 

and the worst realization – angular 

displacement - detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 

 

  
Fig. 10.20 Case 2c – comparison of the 

outputs of the uncertain model, nominal 

model and the worst realization – angular 

velocity 

Fig. 10.21 Case 2c – comparison of the 

outputs of the uncertain model, nominal model 

and the worst realization – angular velocity – 

detail 

(full red line – the worst case, dashed red line – the nominal model, blue line – uncertain 

model samples) 
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11. 

The model verification 

The following chapter is dealing with verification of the proposed SimMechanics and 

derived uncertain models. The verification was performed for the single linear actuator with 

the DC. 

The very basic approach to the linear actuator control design will be described because 

the principle of the verification is then more obvious. Let’s note that following approach is 

nowadays implemented in the real device. 

The task of the linear actuator control design was simplified into a task of the DC 

motor control design according to [1]. The overall length of the link which is desired for the 

position control of the actuator as well as for the whole Stewart platform control is due to the 

complicated sensor attachment (to the Stewart platform) measured indirectly.  

The angular displacement of the motor shaft is measured directly by an IRC sensor 

(MR Enc L type). The link length is then obtained by using a formula: 

 
,

2

mot
a

p
L

k




  (11.1) 

where 
aL  is the length of the link, mot  is the angular displacement of the motor shaft, p  is 

the ball screw-thread and k  represents overall gear ratio implemented by planetary gearbox 

and spur gearing. 

The verification itself is based on comparison between measured and simulated values 

of the angular displacement and the angular velocity of the motor shaft on a single link for the 

same input voltage. The link is during the experiment part of a test jig which guarantees only 

linear movement of the attached cart, Fig. 11.1. 

 
Fig. 11.1 Test jig with the linear actuator 
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The IRC sensor data acquisition and the motor control are provided via NI LabVIEW 

interface communicating with a real-time computer complemented by a field - programmable 

gate arrays (FPGA) card, [1]. The motor driving voltage is approximately ±11,8V during the 

experiment, Fig. 11.2, 11.3 . The obtained data from IRC sensor are stored in universal form 

of *.txt file. This is then easily imported into Matlab workspace and used as the data for 

comparison with simulation results, Fig. 11.4. 

 

  
Fig. 11.2 Motor driving voltage Fig. 11.3 motor driving voltage – detail 

 

 
Fig. 11.4 Comparison of measured and simulated data – scheme 

The following pictures (Fig 11.5 – 11.8) documents comparison between measured 

data and data obtained from the simulation. The simulation was performed for the nominal 

(SimMechanics) model of the link with the nominal (Simulink) model of the DC motor. 

The maximal difference between the data obtained from the simulation and from the 

experiment is 11% in case of the angular displacement and 12,5% in case of the angular 

velocity for the given input voltage.  
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Fig. 11.5 Comparison of measured and 

simulated data for nominal models (motor 

and link) – angular displacement 

Fig. 11.6 Comparison of measured and 

simulated data for nominal models (motor 

and link) – angular displacement (detail) 

 

  
Fig. 11.7 Comparison of measured and 

simulated data for nominal models (motor 

and link) – angular velocity 

Fig. 11.8 Comparison of measured and 

simulated data for nominal models (motor 

and link) – angular velocity (detail) 

 

Such a difference may be caused by nonlinearities in the system, modeling inaccuracy, 

etc. This may be at least partially compensated by the proposed uncertain model. 

11.1 Uncertain model of the DC motor combined with the nominal 

(SimMechanics) model of the link 

The following case combines uncertain model of the DC motor with the nominal 

SimMechanics model of the link. The uncertainties in the parameters of the DC motor model 

correspond with the tested case from the previous chapter, i.e. 35% uncertainty in fK . 
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The difference between the nominal and the worst case of the uncertain model is for 

the peak values 9,3% for the angular displacement and 11,2% for the angular velocity, Fig. 

11.9 – 11.12. 

The result is still not satisfactory although the difference between models is smaller 

than in the case of nominal models. 

 

  
Fig. 11.9 Comparison of measured and 

simulated data for nominal model of the link 

and uncertain model of the motor – angular 

displacement 

Fig. 11.10 Comparison of measured and 

simulated data for nominal model of the link 

and uncertain model of the motor – angular 

displacement (detail) 

(black dashed line – measured data, red full line – the worst case, blue full line – samples of 

the uncertain model) 

 

 

  
Fig. 11.11 Comparison of measured and 

simulated data for nominal model of the link 

and uncertain model of the motor – angular 

velocity 

Fig. 11.12 Comparison of measured and 

simulated data for nominal model of the link 

and uncertain model of the motor – angular 

velocity (detail) 

(black dashed line – measured data, red full line – the worst case, blue full line – samples of 

the uncertain model) 
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11.2 Nominal (Simulink) model of the DC motor combined with the 

uncertain model of the link 

The model combining the nominal model of the DC motor and uncertain model of the 

link is providing much better results. The uncertain model of the link was experimentally 

modeled with 10% uncertainty for all body masses and inertia moments. 

The maximal difference between the measured data and the worst case of the uncertain 

model is 1% for the angular displacement and 2,2% for the angular velocity at the peaks, Fig. 

11.13 – 11.16. 
 

  
Fig. 11.13 Comparison of measured and 

simulated data for nominal model of the 

motor and uncertain model of the link – 

angular displacement 

Fig. 11.14 Comparison of measured and 

simulated data for nominal model of the 

motor and uncertain model of the link – 

angular displacement (detail) 

(black dashed line – measured data, red full line – the worst case, blue full line – samples of 

the uncertain model) 
 

  
Fig. 11.15 Comparison of measured and 

simulated data for nominal model of the 

motor and uncertain model of the link – 

angular velocity 

Fig. 11.16 Comparison of measured and 

simulated data for nominal model of the 

motor and uncertain model of the link – 

angular velocity (detail) 

(black dashed line – measured data, red full line – the worst case, blue full line – samples of 

the uncertain model) 
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11.3 Uncertain model of the DC motor combined with the uncertain model 

of the link 

The best results were obtained for the combination of the uncertain model of the DC 

motor with the uncertain model of the link. The peak values of the measured data are covered 

by the uncertainty, Fig. 11.17 – 11.20. 

 

  
Fig. 11.17 Comparison of measured and 

simulated data for uncertain model of the 

motor and uncertain model of the link – 

angular displacement 

Fig. 11.18 Comparison of measured and 

simulated data for uncertain model of the 

motor and uncertain model of the link – 

angular displacement (detail) 

(black dashed line – measured data, red full line – the worst case, blue full line – samples of 

the uncertain model) 

 

  
Fig. 11.19 Comparison of measured and 

simulated data for uncertain model of the 

motor and uncertain model of the link – 

angular velocity 

Fig. 11.20 Comparison of measured and 

simulated data for uncertain model of the 

motor and uncertain model of the link – 

angular velocity (detail) 

(black dashed line – measured data, red full line – the worst case, blue full line – samples of 

the uncertain model) 
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The last presented example is the most suitable for the robust control design of the 

device. The worst case of the uncertain model is very close to the measured data, thus the 

robust controller designed according to such a model should be able to stabilize even the real 

machine. 

The model is still keeping its simple structure and computational modesty of the linear 

model. Let’s note that all worst cases of the previous examples are controllable and 

observable according to conditions (4.2), (4.3). 
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12. 

Contribution of the thesis 

12.1 Theoretical contribution 

The main theoretical contribution of the thesis is application of the uncertain modeling 

theory on modeling of dynamics of a parallel kinematics machine for a robust control design 

purposes. The sectional contributions may be summarized as follows: 

 there was created a SimMechanics model of the specific Stewart platform 

developed at BUT, the model is suitable for simulations of the machine 

dynamics, 

 consequently there was obtained a linear model of the Stewart platform for a 

control design purposes, 

 there was proposed a method for modeling of a parametric uncertainty for 

individual parameters of linear state-space models, 

 there were created uncertain models of the Stewart platform – one for 

description of the error caused by shifting of operating points with the 

workspace of the machine and the second one for description of the modeling 

inaccuracy of body masses and inertia moments, 

 there was verified a single linear actuator with the uncertain model. 

12.2 Practical contribution 

The practical contributions of the thesis are following: 

 proposed control of the Stewart platform based on the linear model 

 possibility of application of the uncertain model of the Stewart platform for 

the robust control design purposes, 

 versatility of the proposed method for the uncertain modeling and possibility 

of its application on other types of parallel kinematic machines or other 

mechatronic structures. 

12.3 Pedagogic contribution 

The thesis presents approach to the simulation modeling of a parallel kinematic 

machine which is applicable to many other mechatronic systems. The selected parts of the 

approach may be easily included into technical education as very actual topics. 
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13. 

Results 

The proposed work presents an approach for building of dynamic models of parallel 

kinematics machines optimal for a control design purposes. Such an optimal model must 

satisfy following requirements: 

 evaluation in the shortest possible time, 

 possibility of the processing of the deviations from the reality, 

 (simple) investigation of the system controllability 

 (simple) investigation if it is possible to use the model for estimation of selected 

parameters (especially in cases of parameters which is difficult or impossible to 

measure) 

The approach is based on modeling of the system dynamics and kinematics in Matlab 

SimMechanics followed by a linearization of the system and introducing of uncertain 

parameters. The inverse kinematics was also derived by classical analytical approach for the 

control purposes. 

The approach is presented on a Stewart platform which is a parallel manipulator with 

six degrees of freedom. The obtained linear model from SimMechanics is for its state-space 

representation with twelve states in case of Stewart platform quite simple thus it is 

computationally modesty with possible real-time evaluation. The model also satisfied 

conditions of observability and controllability.  

The linear model was consequently used for a controller design which was 

successfully tested with the original nonlinear SimMechanics model. 

The modeling itself introduced some modeling errors which, according to the 

verification with the assembled linear actuator, caused approximately 11% difference between 

outputs of the real and simulated system. 

The modeling inaccuracies caused by the linearization or inexact definition of the 

model parameters were compensated by defining of uncertain parameters and describing the 

system as uncertain. The method is based on definition of structured parametric uncertainty 

for a nominal linear model. The uncertainty is given by a difference between corresponding 

parameters of state matrices of the nominal model and a model with maximally perturbed 

parameters. The method is then treating all of the individual parameters in the state matrices 

as uncertain. The proposed approach is especially advantageous for large scale models where 
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defining of a parametric uncertainty individually for all of the system parameters would be 

very demanding. 

The application of the method results into an uncertain model which keeps its state-

space structure thus its simplicity and computational modesty. Such a model is suitable for 

analyzing of the ―worst case scenario‖ and for designing of a robust controller. 

The uncertainty modeling was used for designing of uncertain model of a DC motor 

which is part of the Stewart platform linear actuators. In this case the classical approach [33] 

was chosen. The uncertainty was defined for the only motor parameter representing the linear 

approximation of the viscous friction where is large possible source of the modeling 

inaccuracy.  

The proposed approach of the uncertainty modeling was applied in case of the 

uncertain model of the Stewart platform. The model is of the twelve order, thus it would be 

uncomfortable to set the uncertainty for the each parameter individually. The proposed 

method was used for constructing of a model describing the inaccuracy caused by the 

linearization, i.e. shifting of operating points within the workspace. The second example of 

the Stewart platform uncertain model describes the inaccuracy in body parameters of masses 

and inertia moments. 

The mentioned 11% difference between outputs of the real and simulated system was 

then by introducing of the uncertain model almost completely covered by the uncertainties. 

There was used a model combining the uncertain model of the DC motor with the uncertain 

model of the Stewart platform linear actuator for this purpose. 

The obtained uncertain model is optimal for the robust control because of its ability to 

describe the model inaccuracies which will be compensated by a robust controller. 

The proposed method of uncertain modeling was demonstrated on the Stewart 

platform parallel manipulator thus its suitability for the modeling of parallel manipulators was 

proved. The method is very versatile and applicable on any model which is possible to 

describe in a state-space form. Design of an uncertain model for a robust control design 

purposes is with obtained formulas (10.13), (10.14) very simple and only necessary inputs are 

a nominal model and a model with maximally perturbed parameters. 

The method reflects actual industry needs leading to increase of a product quality, 

preciseness, production capacity, dependability, system economy and decrease of the 

environment damage. The simulation and control of the system significantly influences all of 

these needs. 
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Appendix A – Parameters of the linear actuator model 

A1 – Body parameters of the linear actuator model 

 

 
Fig. A1 The body parameters of the linear actuator 

 

Terms of vectors defining position of connection points as well as mass and inertia of 

particular bodies were exported from the construction design of the device (by P. Houška) 

created at Inventor. 

 

The lower link (leg) 

CS1 [0 0 0] representing the conection point between the base and the lower link. CS1 

represents the origin of the local coordinate system of the body. Other CSs are defined with 

respect to this CS. 

CS3 [0 0 L_matice_spod] representing the connection point between the lower link and the 

screw nut. L_matice_spod = 0,08412m. 

CS4 [L_m2l 0 L_motor] represents the connection point between the lower link and the motor 

body. L_m2l = 0,03m; L_motor = 0,1041m. 

CS5, CS6, CS7 represent connection points for particular parts of the gearbox. Their position 

vectors are identical with CS4. 

CG [0 0 L_T_spod] represents the body center of gravity. L_T_spod = 0.06309m.  
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The body mass hmotnost_leg_spod = 0,435kg and its inertia inertia_Leg_spod = 

[0.000507492 0 0; 0 0.000499276 0; 0 0 0.000131934] kg.m
2
. 

 

The screw nut 

CS1 [0 0 0] representing the connection point between the screw nut and the lower link. CS1 

represents the origin of the local coordinate system of the body. Other CSs are defined with 

respect to this CS. 

CS2 [0 0 L_mat] represents the connection point between the screw nut and the ball screw. 

L_mat = 0,008m. 

CS3 [0 0 0] represents the onnection point between the screw nut and the gearbox. 

CG [0 0 L_mat]/2 represents the center of gravity of the screw nut. 

The body mass hmotnost_mat = 0,125kg and its inertia inertia_mat = [0.000019318 0 0; 0 

0.000019312 0; 0 0 0.000022071] kg.m
2
. 

 

The ball screw 

CS2 [0 0 0] representing the connection point between the ball screw and the screw nut. CS2 

represents the origin of the local coordinate system of the body. Other CSs are defined with 

respect to this CS. 

CS3 [0 0 -L_matice_hor] represents the connection point between the ball screw and the 

screw nut. L_matice_hor = 0,1095m. 

CG [0 0 –L_T_hor] represents the centre of gravity of the ball screw. L_T_hor = 0,07414m. 

The body mass hmotnost_leg_hor = 0,112kg and its inertia inertia_leg_hor = [0.000193005 0 

0; 0 0.000192973 0; 0 0 0.000001996] kg.m
2
. 

 

The motor body 

CS1 [0 0 0] representing the connection point between the lower link and the motor body. 

CS1 represents the origin of the local coordinate system of the body. Other CSs are defined 

with respect to this CS. 

CS2 [0 0 L_mot] represents no connection point. L_mot = 0,1087m. 

CG [0 0 L_mot/2] represents the motor center of gravity. 

The body mass hmotnost_mot = 0,34kg and its inertia inertia_mat = [0.000373333 0 0; 0 

0.000373325 0; 0 0 0.000064002] kg.m
2
. 

The position vectors are defined in local coordinate systems defined according to (7.2).  
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A2 – Joint parameters of the linear actuator model 

 
Fig. A2 The joints parameters of the linear actuator 

 

Universal joint 

natos1(Leg_n,:) corresponds with unit vector ˆ i
I  according to (7.2). 

natos2(Leg_n,:) corresponds with unit vector ˆ
iJ  according to (7.2). 

 

Universal joint 2 

c_posun = 10mm 

Leg_axis_spodni(Leg_n,:) corresponds with the vector (6.5) *i 
i i

x b -m  

 

Screw joint and revolute 

 

The rotation around an axis defined by unit vector ˆ
iK  according to (7.2). 
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Gearbox 

 

 
Fig. B3 Gear constraint blocks settings 
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Appendix B - Body parameters of the Stewart platform model 

P_points_SSB_trans(i,:) defines the platform transformed points 
iTp  for 1,...,6i  . Their 

coordinates transformed to the global coordinate system are for the platform initial position 

following: 

 

 X [mm] Y [mm] Z [mm] 

1Tp  174,2 75,8 126,2 

2Tp  152,8 113 126,2 

3Tp  -152,8 113 126,2 

4Tp  -174,2 75,8 126,2 

5Tp  -21,4 -188,8 126,2 

6Tp  21,4 -188,8 126,2 

B_points_SSB_trans(i,:) defines the base points i
b  for 1,...,6i  . Their coordinates are in the 

global coordinate systems following: 

 

 X [mm] Y [mm] Z [mm] 

1
b  165,3 -57,4 0 

2b  32,9 171,9 0 

3b  -32,9 171,9 0 

4b  -165,3 -57,4 0 

5b  -132,4 -114,5 0 

6b  132,4 114,5 0 

 

Auxiliary points i
m  

 

 X [mm] Y [mm] Z [mm] 

1
m  160 -73,5 16,9 

2
m  163,3 175,4 16,9 

3
m  -163,3 175,4 16,9 

4
m  -160 -73,5 16,9 

5
m  -143,7 -101,8 16,9 

6
m  143,7 -101,8 16,9 
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Fig. B1 Base and platform points of the Stewart platform model 
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Appendix C – Maxon RE 35 datasheet 

 

 
 


