
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y
DEPARTMENT O F INFORMATION S Y S T E M S

METHODOLOGY OF CONSTRUCTION COMPILER
FRONT-END AND ITS INTEGRATION INTO THE GNU
COMPILER COLLECTION

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

AUTOR PRÁCE Be. PETR MACHATA,
AUTHOR

VEDOUCÍ PRÁCE Ing. MILOŠ EYSSELT, CSc.
S U P E R V I S O R

BRNO 2007

Abstrakt
Vstupní bariéra pro vývoj uvnitř G C C se během posledních let znatelně snížila. Na

konferencích, v časopisech a na webu se objevují články s architektonickými přehledy
a návody. Věci se nadále zjednodušují použitím oficiálního vnitřního jazyka G E N E R I C :
pro komunikaci mezi přední částí a zbytkem překladače již není nutné zabývat se obtížným
a nepřehledným R T L .
Přesto je práce se souborem zdrojových kódů velikosti G C C nutně složitá. Je třeba napsat
určité soubory a provést určitá nastavení, oboje jen s poměrně malým množstvím doku
mentace.
Cílem této práce je pomoci s posledním zmíněným bodem. Práce popisuje ukázkovou přední
část: vše od vytvoření zdrojových souborů, přes různé konstrukce jazyka G E N E R I C , až k
problémům s kompilací běhové podpory nebo používání nativního preprocesoru.

Klíčová slova
G C C , G N U Compiler Collection, prední část, Algol 60, kompilátor

Abstract
The entry barrier to the development for G C C got considerably lower during the last years.

Articles with various architectural overviews and how-to documents pop up in magazines,
websites, and on conferences. Wi th official intermediate language, G E N E R I C , used for
communication between front end and the rest of the compiler, things are yet easier: it's
no more necessary to bear the tedium of R T L when one writes new front end.
Yet there is a complexity inherent in handling a source base the size of G C C . There are files
to be written, peculiar options to be set up, and this all with relatively thin documentation.
This work is written to help with this last point. A n example front end is described,
with everything from the source base setup, through various G E N E R I C constructs, up to
compilation of runtime library, or using G C C native preprocessor.

Keywords
G C C , G N U Compiler Collection, frontend, front end, Algol 60, compiler

Citace
Petr Machata: , diplomová práce, Brno, F IT V U T v Brně, 2007

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.

Miloš Eysselta, C S c , pod technickým dozorem pana Ing. Lukáš Szemly. Uvedl jsem všechny
literární prameny a publikace, ze kterých jsem čerpal.

Petr Machata
22nd May 2007

Poděkování
I owe thanks for patience and advices to the thesis' supervisor, Ing. Lukáš Szemla, who
was bombarded by my status reports monthly; and Professor Jan van Katwijk of Delft
University of Technology, for advices regarding odds and ends of A L G O L 60.

© Petr Machata, 2007.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4

2 Why G C C , Why Now 5
2.1 Language Processors Breakdown 5
2.2 Processing With G C C 5
2.3 What's Ahead 6

3 G C C Architecture 7
3.1 Compilation Driver and Compiler Proper 7
3.2 Front End, Middle End, and Back End 7
3.3 G E N E R I C and G I M P L E 8
3.4 Fronted ASTs 8
3.5 Source Base 9
3.6 Garbage Collector 9
3.7 Summary 10

4 Hello World 11
4.1 Agenda 11
4.2 Setting Up Source Base 12

4.2.1 G C C Reference Version 12
4.2.2 Create Front End Directory 12

4.3 uberlangl.c 12
4.3.1 Custom Data 12
4.3.2 Langhooks 13
4.3.3 Blinded Out Langhooks 13
4.3.4 Empty Langhooks 14
4.3.5 Initialization And Deinitialization 14
4.3.6 Parse File Langhook 15

4.4 Language Specific Components of the Driver 15
4.5 Build System Integration 17
4.6 Integration of Existing Parser 18

4.6.1 Joining In The Minimal Front End 18
4.6.2 Versioning Issues 20

4.7 Summary 21

1

5 The A L G O L 60 G C C Front End 22
5.1 gcc-algol the Project 22
5.2 Overall Architecture 22

5.2.1 Visitors 23
5.2.2 Dynamic Typing 23

5.3 The Tour of A L G O L 60 25
5.3.1 Expressions 26
5.3.2 Statements 26
5.3.3 Declarations 27

5.4 Implementation 28
5.4.1 Polymorphism and Visitors 28
5.4.2 Messages and Locus Support 29
5.4.3 Semantic Checks 30

6 Targeting G C C 31
6.1 G E N E R I C in General 31
6.2 Variables, Types, Symbols 32

6.2.1 Declarations 32
6.2.2 Types 33

6.3 Expressions 34
6.3.1 Literals 34
6.3.2 Other Expressions 35
6.3.3 Expressions Evaluated Once 36
6.3.4 Addresses and Dereferences 36

6.4 Statements 37
6.4.1 Blocks 37
6.4.2 Loops 38
6.4.3 Flow Control 38

6.5 Debugging Information 38
6.5.1 Loci 38
6.5.2 Emitting Debugging Information 40

7 G C C Services 41
7.1 Preprocessing 41
7.2 Command Line Options 42

7.2.1 Processing Options 43
7.2.2 Defining New Options 43
7.2.3 Interesting Langhooks 43

7.3 Diagnostics 44
7.3.1 Configuring Reports V i a Command Line 44
7.3.2 Pedantic Settings 44
7.3.3 Other Reporting Functions 46
7.3.4 Formatting the Report Strings 46

7.4 Runtime Libraries 46
7.4.1 Agenda 46
7.4.2 The Library Subdirectory 47
7.4.3 Patching Toplevel Build System 47
7.4.4 Linking the Binaries Wi th Runtime Library 48

7.4.5 Depending on System Libraries 49
7.5 Regression Test Suite 49

7.5.1 Build System Adjustments 49
7.5.2 Organization of G C C Test Suite 50
7.5.3 Test Directives 50

8 Conclusions 52
8.1 The Summary of Contributions 52
8.2 Future Research 52

Chapter 1

Introduction

The grok of G C C is comprised of a very vast array of assorted information bits. There is
no chance one person could achieve it in course of one academic year. In fact, software
products with a complexity similar to G C C usually surround themselves with a shroud of
mystery, and recognizing the behavior as designed from mere coincidence or a bug becomes
a difficult task. Writing for G C C , as simple as it became, is still an adventure, in both
senses of the word.

In this work, albeit inevitably incomplete given what was just written, I strive to give
the implementer a sort of kick start on writing new language support for G C C . It is by no
means a reference work, but it's useful "how to", that gives at least a glimpse of all what
there is to writing G C C front end.

This work is only partially designed to be read sequentially. It's more of a collection of
how-to themes.

The first two chapters (not including this) are basically sequential: some arguments
for G C C are presented in chapter 2, and an overview of G C C architecture is provided in
chapter 3.

The chapter 4 is a tour through a minimal G C C front end. Files are examined one at
a time, and an explanation is provided on various constructs. This chapter should be read
before all the other chapters.

The chapter 5 gives a glimpse of A L G O L 60 the language, and high-level organization
of its compiler.

The chapter 6 describes G E N E R I C , a tree-based language that G C C uses to describe
program structure. You will want to read selected parts of this chapter, as you will imple
ment various features of your language. In a last section (6 .5) , emitting debugger informa
tion is described.

The chapter 7 collects descriptions of various features of G C C , that are not directly
related to the translation of source language. These include use of preprocessor (7 .1) ,

processing command line options (7 .2) , emitting diagnostic messages (7 .3) , integration of
language run time library (7 .4) , and integration of test suite (7 .5) .

Enjoy.

4

Chapter 2

Why G C C , Why Now

When facing a task of engineering a processor of a given language, you have several
options.

2.1 Language Processors Breakdown

You could write an interpreter, a tool that, given a program, emulates its actions token
by token, possibly using some form of compilation into intermediate code. Interpreter has
the advantage of being rather simple to write. And if the language still isn't sorted out
completely, it will be simple to adjust the processor.

You could write a compiler that emits other high-level language, such as C. Compilation
via C is quite popular, but it has drawbacks. E.g. programs in C will contain artifacts
introduced during the compilation, and those will be visible in debugger. C may not support
all the necessary constructs that your language needs, and you may have to use an even
higher-level language. You will typically have to give artificial names to various thunks
of code, and mangle program identifiers. On the other hand, C is well understood, with
ubiquitous compilers, and tons of documentation.

Another option is producing virtual machine instructions, such as J V M or C L R . This
can be advantageous, if you can count on having the target machine on binary host site.
Virtual machines typically do just in time compilation, so you can experience near-native
speed of programs. And they can be ported to several platforms, which means your compiler
will be portable for free.

2.2 Processing W i t h G C C

This thesis describes yet another option: writing the processor as a part of a well known
compiler suite, G C C .

Crafting G C C front ends used to be hard. One had to understand quirks of R T L ,
GCC ' s intermediate language, which was neither easy, nor high-level. But things changed:
G C C team took tree language used as an A S T representation in C and C+-1- front ends, and
generalized it into an official intermediate language called G E N E R I C . Work with G E N E R I C
is rather easy [8], on par, I'd say, with emitting C. Unlike C, there are all G C C bells and
whistles: attributes, inline assembly, OpenMP. So it's very powerful platform, compared to
C.

1 I n a general sense of a tool that allows direct or indirect execution of a program in a given language.

5

Unlike C, however, the documentation is rather thin. Quite often I found myself scan
ning through other front ends in hunt for particular usage of some feature. Quite often
G C C died on me with assertion error, and I had to look up what went wrong, and figure
out why. This is actually easier than it sounds, but the fact is, G C C would benefit from
better documentation.

G C C is work in progress. For some twenty years as of now. Things change. If you
won't get your front end into G C C trunk, you will have to deal with those changes yourself.
And as far as I know, new languages are not exactly the priority of G C C team, supposedly
for exactly the reason that they would have to maintain them. It would have to be very
high-impact language for that to happen. If you won't carry your compiler forward, it will
become irrelevant as time passes. Just as are GCC-2.9x slowly drifting towards irrelevance
today 2.

Given G C C ' s strong C heritage, it's still best fit for compilation of C-like languages.
Currently the G C C family contains C, C++, their Objective variants, Java, F O R T R A N ,
and Ada. Those are all rather C-like languages. I can imagine compiling something like
Python through G C C , and Mercury, a declarative logic/functional language was imple
mented as G C C front end. But still the best match will be for imperative C-like languages.

On the other hand, G C C is a mature, even if underdocumented compiler. Big companies
depend on G C C , on both the vendor and the consumer sides. It is ported to a huge number
of platforms, and has the necessary drive and impact. Lots of people know how to use it,
build it, package it, distribute it, and that means lots of people will know how to work with
your front end from the day one. This is very important. Clever usage of G C C features
will make your processor another option for wide range of tasks, from high-level parallel
computations to systems programming.

2.3 What 's Ahead

I have written an A L G O L 60 [1] front end for G C C 3 to get myself familiar with the platform.
I was expecting days 4 spent in G C C ' s internals, digging in code knee deep. Much to my
surprise, no such thing happened. I had my share of cursing, but overall I was pleasantly
surprised. I doubt going via C would make the work significantly easier.

What's ahead is description of my experience with development of A L G O L 60 front end.
It's a mix of things from G C C Internals documentation [3], things cut'n'pasted from other
people's code and later analyzed, and things either found in G C C comments or tried by
chance and found to work, all wrapped up and delivered as a continuous, and hopefully
coherent text.

2 I ' l l risk upsetting some people, and wi l l claim that for purposes of mainstream use, G C C 2.9x already is
irrelevant. I know of several developers that stick with it, e.g. for reasons of binary compatibility, hardware,
OS or other dependencies, and typical corporation won't change the core compiler in a moment's thought.
But these are niche uses from mainstream perspective.

3

http://projects.almad.net/gcc-algol
4 O r rather nights. W i t h lots of tea.

http://projects.almad.net/gcc-algol

Chapter 3

G C C Architecture

G C C can translate from variety of source languages into variety of assemblers. Wi th one
command, decorated with various flags, it's possible to do preprocessing, compilation, as
sembly and linking. How does it achieve this?

In following sections, we delve into successively deeper levels of overall G C C architecture.

3.1 Compilation Driver and Compiler Proper

On the outermost level, G C C is divided into a compilation driver, and a compiler proper.
Besides this, G C C uses several host tool chain components, an assembler and a linker.

Compilation driver is a user-interfacing application. It knows about all languages that
G C C supports. Given a source file, it can guess what to do based on file's suffix. Then
it launches various other tools, most prominently compiler proper, but also preprocessor,
assembler, and, eventually, linker.

Whole compilation works as a pipeline on an application level. After optional pre
processing, the source file is fed into compiler proper, that emits assembly. This is then
assembled into object file. Finally, object file is handed over to linker to produce final
executable. This process is managed by compilation driver. Depending on command line
switches in effect it can be cut short in any of the stages: after preprocessing (-E), after
compilation (-S), and after assembly (-c).

From our standpoint, the critical component is the compiler proper. There is one such
component for each language, each in separated executable binary. You can run the binary
yourself if you so wish, just as driver does. Let's look at that component closer in next
section.

3.2 Front End, Middle End, and Back End

The compiler proper itself is composed from three components: a front end, a back end,
and a middle end. While the front end is suited specifically to each language, the two other
ends are the same in all various compiler propers. Front end is the part that encapsulates
all the logic special to your language.

Just like the compilation process done by the driver, the compilation of a source file
can be viewed as a pipeline that converts one program representation into another. Source
code enters the front end and flows through the pipeline, being converted at each stage

7

into successively lower-level representation forms until final code generation in the form of
assembly code [6].

There are two intermediate languages that are used on the interfaces between the three
GCC' s ends. The higher level one, used between front end and middle end, is called
GENERIC. The lower level one, used between middle end and back end, is called R T L , or
Register Transfer Language. Both middle end and back end do various optimizations on
their intermediate representation before they turn it into yet lower level one.

Both interfaces mentioned are unidirectional: front end feeds G E N E R I C into middle
end, middle end feeds R T L into back end. But sometimes the other direction is also
necessary. For example, during alias analysis, middle end has to know whether two objects
of different data types may occupy the same memory location [6]. Each language has its
own rules for that, and front end is the place where language-dependent things happen.
For this purpose, G C C has a mechanism of language hooks or langhooks, which provide a
way to front end's participation in lower layers of compilation process.

The goal of front end is to analyze source program, and ensure all types are correct
and all constraints required by the language definition hold. If everything is O K , it has
to provide G E N E R I C representation of the program. For this reason, a bulk of this thesis
deals with G E N E R I C . You don't have to know anything about R T L to write front end—at
least I don't.

3.3 G E N E R I C and G I M P L E

The intermediate form that is important to us is called G E N E R I C . From expressiveness
point of view, it's similar to C. From notation point of view, it's similar to Lisp. G E N E R I C
is capable of representing whole functions, i.e. it supports everything there is to represent
in a typical C function: variables, loops, conditionals, function calls, etc.

G E N E R I C is a tree language (hence the Lisp qualities). As any well behaving tree, it's
recursive in nature, having both internal and leaf nodes, with internal nodes capable of
holding other internal nodes. Typical leaves are identifier references, integer numbers, etc.
Internal nodes are then unary or binary operations, block containers, etc.

For optimization purposes, G E N E R I C is still too high level a representation. During a
course of compilation, it's lowered. The intermediate code that it's lowered into is called
GIMPLE. The process of lowering is thus inevitably called gimplification. G I M P L E is a
subset of G E N E R I C . Nesting structures are still represented as containers in G I M P L E ,
but all expressions are broken down to three address code, using temporaries to store
intermediate results[5]. There are actually two G I M P L E forms: high G I M P L E and low
G I M P L E . In low G I M P L E containers are further transformed into gotos and labels[6].

Apart from predefined nodes, G C C provides a mechanism to define your own G E N E R I C
node types. Of course it wouldn't know how to gimplify them, and a langhook is neces
sary for this purpose. C and C + + front ends actually don't use G E N E R I C for their A S T
representation, but extend it with their own node types, and then provide means of gim
plification.

3.4 Fronted A S T s

While it is possible to use G E N E R I C for representation of programs in your front end, it
is recommended not to do so [6] [8]. Your own A S T representation can suit the language

in hand better, and furthermore you are better shielded from the changes in G C C core.
Besides, the language analysis tools that you write are then shielded from GCC itself, which
makes them reusable in other tasks: e.g. as a syntax checker and pretty printer in smart
editors.

This thesis aims very strongly towards the direction of your own A S T . Under such a
scenario, there are four layers actually: front end is further divided into two. The top one
is a generic language processing library; the bottom one is actual G C C front end, and it
translates one tree form (your AST) into other (GCC's G E N E R I C) .

3.5 Source Base

Unfortunately, all G C C front ends have to be built inside the G C C tree. There is no way to
use e.g. public headers and link against G C C libraries that would implement lower layers
of compilation process. You will have to store your source files into places where G C C
expects them and adhere to the overall G C C build policy. In following text, directories are
referred to relatively to the directory where you unpacked a distribution tar file. E.g. gcc /
refers to actual directory gcc-4 .2 .0/.

The core of compiler is stored in directory gcc /gcc / . Directly in this directory are the
files that compose a C Front End, general G C C services, whole middle end, and a machine
independent parts of back end. Besides this, there is a number of directories with front
ends. E.g. g c c / g c c / c p / contains a C++ front end. One interesting front end is Treelang
(gcc/gcc/ t reelang/) , a toy language showing off how to write front ends. You will have to
create one such directory, chapter 4 deals with this.

Another interesting directory is gcc/gcc/ testsui te/ , which contains automated DejaGNU
test suite. You will most probably want to have your own files there. Section 7.5 is dedicated
to subject of writing test suite.

In top level directory, a G C C runtime services are stored. This includes runtime libraries
for various front ends, e.g. gcc/l ibstdc++-v3/ with C++ runtime library. Most probably
you will want to write your own runtime library. Section 7.4 deals with this.

If you can afford depending on G C C , i.e. you don't want your front end to be completely
independent, you can use data types and routines from a gcc/ l ibiberty/ library.

3.6 Garbage Collector

Internally, G C C uses garbage collector 1 [3, chapter Memory Management and Type In
formation] for its memory management. The objects with indeterminable lifetime, which
includes trees, are not managed explicitly, but instead garbage-collected. The collector used
is of mark & sweep kind. Pointers (variables, fields, ...) that should be collected are explic
itly tagged, the tags are gathered during the build, and marking and scanning routines are
generated.

The garbage collector data are also used for implementation of precompiled headers.
The precompiled header mechanism can only save static variables if they're scalar. Complex
data structures must be allocated in garbage-collected memory to be saved in a precompiled
header.

x

http://gcc.gnu.org/wiki/Memory_management

http://gcc.gnu.org/wiki/Memory_management

3.7 Summary

In this chapter, I covered overall structure of G C C , as well as some internal details that
will be useful later. Let's recap.

• The G C C as a whole is composed of a driver and a number of actual compilers,
one for each language. Driver knows about all the compilers, and depending on its
command line settings it preprocesses the file, hands it over to one of the compilers,
and assembles and links its output.

• The compilers themselves have three layers each: a front end, where the language
specific logic is located, platform independent middle end, and platform dependent
back end.

• The language that is used to represent programs in middle end, and that front end
emits, is called G E N E R I C . G E N E R I C is C-like tree language. Besides predefined
node types, front end can register its own node types and use them at will . Subset
of G E N E R I C , used for optimizations, is called G I M P L E , and the process of lowering
G E N E R I C to G I M P L E a gimplification. You have to provide gimplifying routines for
your front end's own tree nodes.

• While it is possible to use G E N E R I C as an A S T representation, it is advisable to use
it rather as a target language, and craft the A S T to suit your front end's needs.

• G C C uses garbage collector. Garbage collected structures are tagged, and memory
scanners are generated based on the tags during the build process.

Chapter 4

Hello, World!

In this section, we will create minimal G C C front end. The criteria are very simple: the
front end has to be recognized and compiled by G C C , and when launched, it has to provide
deterministic results; it must not fail. Note that we don't require the results to depend in
any way on the source file being compiled. To cut the teeth, we will create a front end,
whose only purpose is producing the code equivalent to the following C code:

int main (void) {
return 7;

}

The return value of "7" is picked arbitrarily. I used to have "4" in its place, but found
out that G C C uses 4 as a return value when it fails, and thus it's less clear when the G C C
fails, and when it succeeds and the binary answers 4.

The prerequisite here is that you already know how to build G C C for your system.
There is no chance experimenting with front ends if you never built G C C yourself.

Besides reading this chapter, you can find inspiring some other minimal front ends. I
created a "Hello World" front end as part of work on gcc-algol 1 . Surprisingly enough, real
" G C C Hello World" exists2, as was brought to my attention later. Another possibility is
to look at G C C ' s Treelang front end.

4.1 Agenda

The following will be covered in this chapter:

1. G C C source base set up; in section 4.2.

2. Mandatory files of front end are described. See 4.3, 4.4, and 4.5.

3. Few tips are given on joining minimal front end with existing language parser. Read
4.6.

4. Some versioning issues are resolved in 4.6.2.
x

http://projects.almad.net/gcc-algol/browser/trunk/gcc/algol60?rev=58
2

http://svn.gna.org/viewcvs/gsc/branches/hello-world/

11

http://projects.almad.net/gcc-algol/browser/trunk/gcc/algol60?rev=58
http://svn.gna.org/viewcvs/gsc/branches/hello-world/

4.2 Setting U p Source Base

4.2.1 G C C Reference Version

This work is being written with G C C version 4.2 in mind.

4.2.2 Create Front E n d Directory

Each front end lives in a subdirectory of its own. Decide on the name of your fronted and
create a subdirectory in gcc /gcc / . For sake of demonstration, I will use the hypothetical
language Uberlang.

$ cd gcc /gcc /
$ mkdir uberlang

Then you will have to populate the front end directory with source files. This is covered
in sections that follow.

4.3 uberlangl.c

While it is possible to use other languages than C to write G C C front end, most of G C C is
written in C. There are exceptions, e.g. Java front end is written in C++, and Ada front
end is written in Ada. For now, I ' l l assume that you will start up with simple C source
base.

The file uberlangl.c will make up the compiler itself, or the front-end-specific part
thereof. It has to contain all the necessary langhooks, init functions, and data structures
that the rest of the compiler expect from your front end.

4.3.1 Custom Data

Each frontend can have its own data in various G C C data nodes. Since there are five kinds
of these nodes, five structures will have to be defined:

// language-specific identifier data
struct langJdentifier;
// language-specific tree node data
union lang_tree_node;
// language-specific type data
struct lang_type
// language-specific declaration data
struct lang.decl
// language-specific function data
struct language.function

A l l structures may be empty, except for the langJdentifier, which has to contain common
part of identifier definition:

struct langJdentifier GTY(()) {
struct treeJdentifier common;

};

This example shows also the GTY(Q) tag, necessary for proper garbage collection scan
ners to be generated. Each structure has to have such a tag.

As the last thing regarding the custom data, you have to provide definitions of tree_code_type,
tree_code_length, and tree_code_name arrays. These have to contain both the system node
types, and your own types. This is done with the following trick:

#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
const enum tree_code_class tree_code_type[] = {
#include "tree.def"

tcc.exceptional

};
#undef DEFTREECODE

The file gcc/gcc/tree.def contains data ready for preprocessing, with records neatly
defined in columns of DEFTREECODE calls. By including this file three times, each time
with different definition of DEFTREECODE, you fill the three arrays.

The last member of array has the class of tcc_exceptional, which serves here as a sentinel.
The name of the last node can be arbitrary, e.g. "@@dummy", and the length will be 0.

4.3.2 Langhooks

The list of all various langhooks is long. You can find it in file gcc/gcc/ langhooks.h together
with comments. Default value of each langhook is in gcc/gcc/langhooks-def.h. Both files
have to be ^ inc luded in uberlangl.c. If you are not comfortable with value (i.e. name) of
any given hook, the following mantra is used to redefine it:

#undef LANG_HOOKS_INIT
#define LANG_HOOKS_INIT uberlangJnit

Many hooks are predefined in G C C . The file gcc/gcc/ langhooks.c contains these defini
tions. Any langhooks not defined there have to be provided by the front end—even if that
will be blind definition from the beginning. Review of the langhooks that have to be in
minimal front end, together with the action that has to be taken, is in table 4.1. Review
of the various actions follow.

4.3.3 Blinded Out Langhooks

By blinding langhook out, I have in mind something like this:

void insert_block (tree block ATTRIBUTEJJNUSED) {
gcc.unreachable ();

}

Function gcc_unreachable aborts the compiler if it is ever hit by a thread of execution.
If that happens, error message is printed out denoting the file and line where the offending
gcc_unreachable appeared.

The ATTRIBUTE_UNUSED cookie tells G C C that given variable may be unused in the
function body. G C C has a very pedantic flag settings during bootstrapping, and huge

Langhook Action
L A N G _ H O O K S _ G L O B A L _ B I N D I N G S _ P gcc.unreachable
L A N G . H O O K S . I N S E R T . B L O C K gcc.unreachable
L A N G _ H O O K S _ P U S H D E C L gcc.unreachable
L A N G _ H O O K S _ B U I L T I N _ F U N C T I O N gcc.unreachable
L A N G _ H O O K S _ T Y P E _ F O R _ M O D E gcc.unreachable
L A N G _ H O O K S _ T Y P E _ F O R _ S I Z E gcc.unreachable
L A N G _ H O O K S _ U N S I G N E D _ T Y P E gcc.unreachable
L A N G _ H O O K S _ S I G N E D _ T Y P E gcc.unreachable
L A N G . H O O K S . S I G N E D . O R _ U N S I G N E D . T Y P E gcc.unreachable
L A N G _ H O O K S _ M A R K . A D D R E S S A B L E gcc.unreachable
tree convert (tree type, tree expr) gcc.unreachable
LANG_HOOKS_INIT_OPTIONS empty
L A N G _ H O O K S _ H A N D L E _ O P T I O N empty
LANG_HOOKS_POST_OPTIONS empty
LANG_HOOKS_FINISH empty
L A N G . H O O K S . I N I T see 4.3.5
L A N G _ H O O K S _ P A R S E _ F I L E see 4.3.6

Figure 4.1: Breakdown of langhooks in minimal front end.

amounts of warnings are printed out for various legal, yet suspicious C constructs. The
ATTRIBUTE, cookies work as G C C pacifiers, so that you are actually able to spot any new
warnings.

The langhooks that will be blinded out could in fact be empty. But having them
blinded out will make sure that G C C fails early and noisily[7] once it tries to use them.
This condition is easier to track down than when G C C gets nonsensical value in return, or
thinks that langhook did its job, and fails on its own internal assertion thousands of cycles
later.

The function convert is not a langhook. It can be blinded out, too, but it has to be here,
and as opposed to langhook functions, it must not be static, because G C C calls is directly.

4.3.4 Empty Langhooks

Some more langhooks need to contain non-failing code, because they are called always.
They are not required to do anything useful however, and their bodies may be empty. This
also includes langhooks that return NULL.TREE, one of the arguments, etc.

4.3.5 Initialization A n d Deinitialization

The setup and teardown are implemented by LANG.HOOKS.INIT and LANG.HOOKS.FINISH
langhooks. The finish langhook is among the empty ones, because it doesn't have to contain
any code just now. It is called after all compilation is done, and you can use it to clean up
whatever is necessary. Initialization, however, can't be empty.

Most of G C C is self-initializing, but there are several functions that need to be called.
Quite possibly your front end requires some initializations of its own, e.g. to build its own
tree nodes for language standard types. Init hook is a convenient place to do so.

During initialization you want to call the following functions:

http://LANG.HOOKS.SIGNED.OR_UNSIGNED.TYPE

• build_common_tree_nodes, which creates nodes for all integer types.

• set_sizetype, which is used to set the type of the internal equivalent of size_t; it is
simplest to set this always to long_unsigned_type_node, which was created in previous
call.

• build_common_tree_nodes_2 uses size type to create few more tree types.

4.3.6 Parse File Langhook

This is the langhook that does all the parsing, semantic analysis and code generation needed
for the input file. This is where our return 7; code resides.

The code itself is listed in figure 4.2. It's quite verbose, and of course by now nothing
was written about the G C C framework, so the functions are not likely to tell you much.
I ' l l just cover the basic points, and leave the full elaboration for the later chapters.

The argument debug of the langhook is nonzero, if debugging messages should be
dumped to the standard error. See description of -dy in [4, chapter G C C Command Op
tions] .

The macros TREE_PUBLIC, DECL_CONTEXT and similar are used for runtime access
into discriminated union that makes up node of G E N E R I C tree. They set various flags
and auxiliary values of node in question. In a development tree, there is a runtime check
whether using the macro on a given node is legal. This check goes away in final build. You
will want to enable this checking (via configure flags) when doing development inside stable
G C C tree, otherwise you will slowly go insane from all the ICEs that will pop up.

The functions bu i ld l , build2 and buiId3 are used to build, respectively, unary, binary,
and ternary G E N E R I C nodes. The first argument is the node type, the second argument
is the type of expression, and the remaining arguments are the children of the node being
built.

Meaning of other functions can be more or less deduced from their name, and the details
are not important just now.

4.4 Language Specific Components of the Driver

The lang-specs.h file describes your front end to the G C C driver. It tells the driver the
file extensions that, when seen on the command line, should cause G C C to invoke your
front end. It also gives the driver some instructions for what other programs must be run,
such as whether the assembler should be run after your front end and how to pass or modify
certain command-line options. It may take a while to write this file, as specs are their own
strange language [8].

The contents of the file for the minimal front end will be pretty simple, along these
lines:

{".ubl", "@ubl", 0, 0, 0},
{ ". UBL", "@ubl", 0, 0, 0},
{"@ubl", "%{!E:uberlangl %% % (cel.options) %{I*}"

"%{!fsyntax-only :%(invoke.as)}}", 0, 0, 0},

void

algol60_parse_file (int debug ATTRIBUTE_UNUSED)

{

/* Build declaration of 'main* functions */

tree main_type =

build_function_type_list (integer_type_node, NULL_TREE);

tree decl = build_function_decl ("main", main_type);

DECL_CONTEXT (decl) = NULL_TREE;

TREE_PUBLIC (decl) = 1;

DECL_ARTIFICIAL (fndecl) = 0;

DECL_EXTERNAL (decl) = 0;

TREE_STATIC (decl) = 0;

DECL_ARGUMENTS (decl) = NULL_TREE;

rest_of_decl_compilation (decl, 1, 0);

/* Build RESULT DECLARATION, which is used for storing function

return value. */

tree resultdecl

= build_decl (RESULT_DECL, NULL_TREE, integer_type_node);

/* Build function BODY:

'(<block> (return (init_expr resultdecl (int_cst 7))))' */

tree assign = build2 (INIT_EXPR, void_type_node, resultdecl,

build_int_cst (integer_type_node, 7));

TREE_USED (assign) = 1;

TREE_SIDE_EFFECTS (assign) = 1;

tree body = buildl (RETURN_EXPR, void_type_node, assign);

TREE_USED (body) = 1;

tree block = build_block (NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE);

DECL_SAVED_TREE (decl) = build3 (BIND_EXPR, void_type_node,

NULL_TREE, body, block);

DECL_INITIAL (decl) = block;

TREE_USED (block) = 1;

/* Emit code for the function */

allocate_struct_function (decl);

gimplify_function_tree (decl);

cgraph_finalize_function (decl, false);

cgraph_finalize_compilation_unit ();

cgraph_optimize ();

Figure 4.2: Program listing of parse file langhook

This reads, roughly: if no - E is seen on commandline, invoke uberlangl, which is the
name of frontend binary. Further, if -fsyntax-only is not specified, assemble the resulting
file. Note how the second action is "embedded" in the first, thus providing the context
under which it should be considered.

GCC' s spec language is described in file gcc/gcc/gcc.c .

T h e lang.opt f i le is an option specification file. It can be empty for now. More about
compiler command line options is written in section 7.2.

T h e spec.c f i le contains language-specific G C C driver components. In particular, two
functions and one variable. Function lang_specific_driver is given a vector of command line
arguments and is free to do any processing, including reordering and changing the vector,
before the main G C C routines take over. This is used for linking in language runtime
libraries, see 7.4 for details.

The other function, lang_specific_pre_link, is called before linking is done. Whatever
language processing you need can be done here. The function has to return 0 on success
and -1 on failure. We don't need this function, and will leave it empty.

The variable lang_specific_extra_outfiles is used in concert with lang_specific_pre_link, and
keeps track of the number of extra output files that lang_specific_pre_link may generate.

Note that this special processing is only done, if you run the compilation through the
language-specific driver, e.g. g++ for C++ or gubl for Uberlang.

4.5 Bu i ld System Integration

T h e config-lang.in f i le is a sort of high-level descriptor of your front end. It contains
variables for toplevel configure (i.e. it's written in a shell syntax). The file is very simple
overall and only defines few variables:

language= "uberlang"
compilers= "uberlangl$(exeext)"
gtfiles= "$(srcdir)/uberlang/uberlangl.c"

The variable language defines the name of the front end as recognized by the build
system. This is really a name of the language, it doesn't have to match name of the front
end subdirectory. However the name will be used in make targets, and users will call this
your language on configure command line when they'll wish to include it in G C C build. For
this reason the name should be 7-bit ASCII clean.

Variable compilers contains list of all compilers created during the build.
Very important variable gtfiles contains the list of files that should be scanned for

GTY(()) tags. Garbage collection scanners are built from these.
More is written about this file, and which variables are recognized, in [3, section

Anatomy of a Language Front End].

T h e Make-lang.in f i le serves as a fragment of Makefile.in, from which configure will even
tually create Makefile. G C C build machinery does calls into front end-specific Makefile, and
you have to implement certain targets.

This file has to contain many targets, exactly which ones is specified in [3, section The
Front End language Directory]. But like in case of C language hooks, most of these may be
empty. The only ones necessary to make whole thing tick are listed in figure 4.3.

The compilation starts at the root component, named after your front end language. It
is then dispatched to build the two components that make up language support in G C C :
language-specific driver, and the compiler proper. The driver is called gubl in our case, like
G C C Uberlang 3 . The compiler proper is called uberlangl, which is standard naming of
compiler component in G C C . The variables that this Makefile fragment uses, are inherited
from parental make invocation.

Note that the fragment actually doesn't present hooks, but make rules. Only the first
rule in the list is actually a hook. The first two rules, then, have not only the dependence list,
but also a body. This doesn't hold for the other two rules, which only contain dependence
list, and use mechanism of implicit rules to sort out the exact order of compilation.

Because other hooks are empty, including uberlang.install-* family, the minimal front
end won't be installable. You will have to run it like this:

$ pwd
/pa th / t o /bu i l d /
$. /gcc/uber lang l ./file.ubl &> /dev /nu l l & & cat ./file.s

.file 1 "file.ubl"

.abicalls

.text
etc ...

4.6 Integration of Exist ing Parser

Chances are you already have the language processor written, and need to integrate it into
the G C C . (By the way, this is the approach that I have taken. Parts of A L G O L compiler
were written long before I started poking GCC.)

4.6.1 Joining In The Min imal Front E n d

At this point, you have two components in hand: a minimal G C C front end, and your
compiler. The first step to get them joined should be inclusion of your compiler into the
build system. If you don't want to port entire compiler over to G C C ' s Makefile machinery,
you will have to invent some mechanism of transferring the build into your subdirectory.
Basically $ (M A K E) - C should be enough, but you will have to take care of passing necessary
build/host/target trichotomy variables and paths over to your build system, and respecting
them there. This in fact holds for all various variables that are passed from one recursive
make instance to the other.

You may want to take advantage of certain G C C ' s services. E.g. error reporting,
integrated test suite, building runtime library as part of overall build; or you may wish

3 A more customary meaning of this abbreviation would be G N U Überlang. But there are lots of restric
tions for one's project to become part of G N U .

General hook

uberlang: gubl$(exeext) uberlangl$(exeext)

.PHONY: uberlang

Compiler proper

uberlangl$(exeext): uberlang/uberlangl.o $(BACKEND) $(LIBSDEPS)

$(CC) $(ALL_CFLAGS) $(LDFLAGS) -Im -o $@ \

uberlang/uberlangl.o $(BACKEND) $(LIBS) attribs.o

Language-specific driver

gubl$(exeext): gcc.o version.o prefix.o intl.o $(EXTRA_GCC_OBJS) \

$(LIBDEPS) uberlang/spec.o

$(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ uberlang/spec.o \

gcc.o version.o prefix.o intl.o $(EXTRA_GCC_OBJS) $(LIBS)

Compiler front end

uberlang/uberlangl.o: uberlang/uberlangl.c $(CONFIG_H) $(SYSTEM_H) \

coretypes.h $(TM_H) toplev.h $(GGC_H) $(CGRAPH_H) \

$(TREE_DUMP_H) $(TREE_GIMPLE_H) $(LANGHOOKS_DEF_H) langhooks.h \

tree.def gt-uberlang-uberlangl.h gtype-uberlang.h

Language-specific driver component

uberlang/spec.o: algol60/spec.c $(CONFIG_H) $(SYSTEM_H) \

coretypes.h diagnostic.h $(TREE_H) flags.h toplev.h langhooks.h $(TM_H)

Figure 4.3: Program listing of Make-lang.in essentials

to extend your language with various GCC-isms 4 , such as C-like preprocessing or inline
assembly.

For special-casing the code that's built as part of G C C , you can use IN_GCC preprocessor
variable. It's #defined when the file is built as part of G C C build process.

It's not usually a good idea to mess G C C and an existing code. G C C ' s garbage collecting
engine has infamous habit of poisoning certain memory-related functions (e.g. malloc, calloc,
strdup). Using these symbols then leads to code that is classified by cpp:

cpp error: attempt to use poisoned malloc

Hand-managed code is O K with G C C , so it's best to keep the collector off already
written code base. On the other hand, if you know you are writing what will become part
of G C C , it is perhaps better to use garbage collector from the beginning. It saves some
nerves.

4.6.2 Versioning Issues

Most probably, you will want to keep your front end versioned separately from the G C C
itself. I will describe the approach that I'm taking. Toplevel t runk/ directory (I'm using
subversion, but of course, you are free to keep your stuff versioned to your likings) contains
the following subdirectories:

trunk/doc/

trunk/gcc/

trunk/gcc/libga60/

trunk/gcc/gcc/

trunk/gcc/gcc/algol60/

trunk/gcc/gcc/testsuite/

trunk/gcc/gcc/testsuite/lib/

trunk/gcc/gcc/testsuite/algol60.dg/

More will be written about the t runk/gcc/ l ibga60/ and t runk/gcc/gcc/ testsui te/ in their
respective sections, 7.4 and 7.5. For now, you can skip their description, if you so wish.

The toplevel split to t runk /doc / and t runk /gcc / is here to keep my diploma thesis texts
separated from the G C C development part. This may come in handy in your case, too,
if you want to keep the G C C subtree clean, and store e.g. documentation, scripts, etc.
separately.

The subtree rooted at t runk /gcc / mimics G C C ' s distribution subtree (e.g. gcc-4 .2 .0/).
This is advantageous for two reasons. First, you can just tar and zip the contents of
directory t runk /gcc / , and distribution package is ready. User will just enter the G C C ' s
distribution directory, unpack your front end here, do necessary patching, and G C C tree is
ready to build your front end. Second, it keeps the things tidy.

Then I just symlink the files from G C C tree into my front end tree. This is only possible
on systems that support symlinks, but with G C C being unixish compiler, it is reasonable
requirement. In several cases, symlinking works as intended even on directory level:

4 Yes, I know this term is pejorative. But this doesn't decrease usefulness of certain GCC-specific con
structs.

gcc/gcc/algol60
-> /a/path / to/gcc-algol/trunk/gcc/gcc/algol60

gcc/gcc/ testsuite/algol60.dg
-> /a/path / to/gcc-algol/trunk/gcc/gcc/testsuite/algol60 .dg

But for test suite, you will have to add two files into subdirectory gcc/gcc/ testsu i te / l ib / ,
and you have to symlink those two files explicitly (we need to "merge" the two directory
subtrees, which is not simply done in most OSes):

gcc/gcc/testsuite/lib/algol60-dg.exp
-> /a/path / to/gcc-algol/trunk/gcc/gcc/testsuite/lib/algol60-dg.exp

gcc/gcc/testsuite/lib/algol60.exp
-> /a/path / to/gcc-algol/trunk /gcc/gcc/testsuite/lib/algol60.exp

The directory that really causes trouble is gcc/ l ibga60/ , a runtime library subdirectory.
Build scripts will use the path in a relative manner: gcc / l ibga60/ . . / . This doesn't work with
symlinks, because the ../ component will point to the target directory's . . / , not back to gcc / .
For this reason I had to create gcc/ l ibga60/ as an ordinary directory, and symlink there all
the files from front end's gcc/ l ibga60/ . You will have to either take care and symlink back
by hand when someone adds new files into version system (maybe with support of nice VCS
hook), or store all source files in subdirectory e.g. gcc/ l ibga60/src / , symlink that, and only
keep in gcc/ l ibga60/ the build machinery files that need to be there.

4.7 Summary

• Each front end lives in a directory of its own. Even for minimal front end, several
files are necessary to honor requirements of G C C build system. They are lang-specs.h
with the description of actions that should be taken depending on the source file suffix
and command line switches; lang.opt with the description of command line switches
specific to your front end (this file may be empty); config-lang.in with meta-data about
your front end; Make-lang.in with the description of build itself; spec.c with language-
specific components of G C C compilation process; and your-language-namel.c with
the code itself.

• The file your-language-namel.c, in the past chapter conveniently called uberlangl.c,
contains the G C C that is required by the rest of G C C stack. This includes definitions
of custom data structures and language hooks. Most language hooks, though required
to be defined, may be empty of blinded out. Some of them must contain a code, most
prominently INIT and P A R S E langhooks.

• To keep G C C garbage collector happy, you will have to annotate data structures with
GTY(()) tags. Furthermore, all files that contain such annotations have to be included
in a list gtfiles in config-lang.in.

Chapter 5

The A L G O L 60 G C C Front End

The A L G O L 60 G C C front end has been written in an attempt to get a first hand experience
on work with G C C . A L G O L 60 itself turned out to be a kinky language, and as of now, is
not yet fully implemented. This chapter presents overview of the compiler architecture and
implementation, and ways it handles certain interesting A L G O L 60 constructs.

5.1 gcc-algol the Project

The programming language A L G O L 60 was picked purposefully, because language such as
this is best fit for G C C . It is structured, with static typing, has arrays and functions, and
will profit from support of runtime library. Lastly it has a rigorous standard, which is not
that important in and on itself, but why invent new language?

The A L G O L 60 compiler was started as a project independent on G C C 1 . I knew I would
plug it in G C C one day, but I specifically avoided any relation to G C C before the time
came. This helped me simulate the situation where the company or an individual wants to
port existing work to G C C back end 2.

The front end is written in a language C. As mentioned before, C is natural fit for
G C C . If you have the choice, choose either C, or other G C C language that can compile
transitively from C. Front end written in such a way is simpler to distribute and build at
user sites.

I strove to avoid any extra dependencies of the front end, to the end of writing linked
list and generic string modules from scratch just for the purpose of A L G O L parser. These
two modules are the only library functionality beyond pure libc—even symbol tables are
stored in linked lists 3 .

5.2 Overall Architecture

From the bird's eye view, A L G O L compiler is a straightforward compiler: it has Flex-
based lexical analyser, Yacc-based parser, and several C modules with A S T and semantic
analysis. The compiler itself consists of two main parts: a front end, whose work is to
transform stream of bytes into AST; and back end, whose work is to convert A S T into
G E N E R I C . Note that under this scenario, the back end of the compiler is actually front

1 Despite the language being picked to suit G C C !
2 I n the sense of G C C itself being the back end.
3 I wi l l fix this, I promise.

22

end of G C C . For the rest of this chapter, I will use the term compiler to denote the part of
ga60, that transforms the stream of bytes into G E N E R I C .

Algol compiler uses encapsulation heavily. There is no (official) way to get inside struc
tures, everything is passed as a pointer to undefined structure 4. Only in the module that
handles that particular type is the structure actually defined, so that the implementation
has full, unrestricted access to bits.

The encapsulation zeal is exposed by use of visitors. There are certain polymorphic
structures in A L G O L A S T (more about polymorphism and subtyping in A L G O L 60 com
piler will be written in section 5.2.2). For example expressions may be numbers, variable
references, unary and binary expressions, function calls, etc. A l l expression kinds are passed
around as the same opaque expressions pointer. To do any action depending on exact type
of expression, one has to define a visitor over the expression structure, and let the visitor
dispatch on the desired expression object.

Other means of achieving safety include strong trend towards checking. Whatever can
be checked statically, by compiler giving a warning, is checked so. If the warning can be
turned to full error, perhaps with some extra coding, so much the better. If compiler can't
check that, runtime will.

5.2.1 Visitors

The figure 5.1 presents an example of visitor creation and usage. You can see that the
expression visitor is created by a dedicated function new_visitor_expr, which accepts one
argument for each expression kind. The arguments have to be ca l lbacks pointers: to
convert function pointer to callback, you have to pass it through appropriate callback
builder, a60_expr_callback in this case. Callback builder doesn't do any actual work, it just
typecasts to pointer, but if you try to pass wrongly typed function pointer, it will bail out.
Visitor builder, in turn, requires exact number of callback arguments.

In addition, the visitor builder knows it builds visitor for expression type, and when in
debug mode, it records that information into visitor itself. Visitor dispatcher then dynam
ically checks that that visitor is dispatched over an expression, and not e.g. a statement.
In release mode, the check goes away.

5.2.2 Dynamic Typing

To implement rigorous runtime checking, each polymorphic objects carries around two
identifiers: a kind, which identifies subtype (e.g. "number"), and signature, which identifies
type (e.g. "expression"). Kind is actually used to model RTTI , but not so signature. Given
a void*, signature makes it possible to decide whether it points to (e.g.) expression or not.
This property is not used to emulate RTTI , but rather to provide additional type safety,
for example in a code like this:

void * mystery = slist.front (state—>for_statements);
statements * parent_for_stmt = a60_as_statement (mystery);
//statement-t * parent-forstmt = (statement-t *) mystery;

On first line, mysterious object is extracted from singly-linked list. Instead of typecast
ing it like in commented-out code, dedicated function is called, that actually checks exact

4Structure, not void. It is necessary to use void pointer at several places, but number of such instances
is kept as low as possible.

/// Excerpt from compiler context.

struct struct_al601_bind_state_t

{

visitor_t * expression_build_generic;

/// An example callback function.

/// Builds GENERIC for integer constant node.

void *

expr_int_build_generic (expressions * self, void * state)

{

tree ret = build_int_cst (integer_type_node, expr_int_value (self));

return ret;

}

/// Creates new compiler context.

al601_bind_state_t *

new_bind_state (void)

{

al601_bind_state_t * ret = xmalloc (sizeof (al601_bind_state_t));

ret->expression_build_generic = new_visitor_expr (

a60_expr_callback (expr_int_build_generic),

a60_expr_callback (expr_real_build_generic),

a60_expr_callback (expr_string_build_generic),

a60_expr_callback (expr_bool_build_generic),

a60_expr_callback (expr_idref_build_generic),

a60_expr_callback (expr_if_build_generic),

a60_expr_callback (expr_binary_build_generic),

a60_expr_callback (expr_unary_build_generic),

a60_expr_callback (expr_call_build_generic),

a60_expr_callback (expr_subscript_build_generic)

) ;
return ret;

}

/// Wrapper function, uses visitor to build GENERIC from given expression,

tree

expr_build_generic (expressions * expression, al601_bind_state_t * state)

{

return (tree)a60_visitor_dispatch (state->expression_build_generic,

expression, expression, state);

}

Figure 5 .1: Example use of visitors in A L G O L 60 front end.

static void *

private_check_expr_lvalue (void * ptr, void * data ATTRIBUTE_UNUSED)

{

expression_t * expr = a60_as_expression (ptr);

i f (expr && !expr_is_lvalue (expr))

expr = NULL;

return expr;

}

statement_t *

new_stmt_assign (cursor_t * cursor, s l i s t _ t * lhss, expression_t * rhs)

{

statement_t * ret = private_new_statement (sk_assign, cursor, NULL);

slist_set_type (lhss, private_check_expr_lvalue, NULL);

ret->assign.lhss = lhss;

ret->assign.rhs = rhs;

return ret;

}

Figure 5.2: Example use of typed slists in A L G O L 60 front end.

type, and if it doesn't match, aborts. You can't place a condition on the result of type
checking, the mechanism is here to prevent errors, not to emulate dynamic typing systems.

In release mode, the checks go away, and a60_as_statement ends up being a macro that
expands to direct C typecast.

This same dynamic typing mechanism is used for visitors. Visitor knows which object
type it should dispatch on, and given a visitor and an object (passed in as void*), it can
decide whether the visitor matches the object type.

Dynamic typing is used for implementation of typed slists, i.e. singly-linked lists with
associated predicate that is guaranteed to hold for its elements. For example, in A L G O L

60, each assignment statement is made up from a vector of left hand sides, which have to
be lvalues, and one right hand side. To express this property, code such as the one at figure
5.2 can be written.

A function private_check_expr_lvalue is a predicate, that, given a void* pointer, can decide
whether the given pointer points to lvalue expression. It does so by first checking that void*
is expression at all, and then asks expression module (because it's safe by now) on lvalue
status. This predicate is attached as a type to the passed-in list of left hand sides (lhss),
thus providing additional checking in case anything slipped between fingers of yacc parser.
Slist module would abort if one of the elements didn't pass the test, or an element that
doesn't pass was added.

As is the case for other dynamic features, in release mode this one goes completely away,
so there is neither a performance const, nor a memory overhead.

5.3 The Tour of A L G O L 60

Perhaps whole A L G O L 60 can be explained in terms of the following three fundamental
abstractions: statements, expressions and declarations. In this section, I will give a glimpse

of A L G O L 60. This serves a purpose of laying foundations for next section, where an
implementation of various A L G O L 60 constructs is explained. Also in this section are
described bits and pieces of the A S T design: how is each A L G O L element modeled.

5.3.1 Expressions

The A L G O L 60 spec groups together two notions: numerical expressions (which includes
literals, arithmetic and Boolean expressions, variable references including array access, func
tion calls), and designational expressions, which more naturally belong to flow control. In
the compiler, these two kinds are disjoint: computed, numerical expressions are described
by a type expressions, and designational expressions by desig_expr_t.

Expressions use natural polymorphic organization: literals and symbols form leaf ex
pressions, and more complex expressions, such as binary, are recursively composed of other
expressions.

Despite their specification together with other expressions, designational expressions
are completely disjoint polymorphic hierarchy, used in other context, namely as targets of
the goto statement. There are three subtypes: a label reference, a switch expression, and
conditional designational expression. The following example gives an overview of what's
possible to express using the notion of designational expressions5:

begin
switch b := q, r, 5;
switch a := q, if k > 005 then r else 5, b[k];
integer array ar[l:100]; integer ix, k;
initialize(ar, ix, k);
goto a[ar[ix]];

q: puts (V') ;
r: puts(V7');
05:puts('5/0;
end;

As you can see, certain designational expressions use ordinary expressions as leaves
(that's the case of switch expression, which can be seen at the goto statement and as part
of declaration of switch a).

The example also shows that it's possible to use both numerical and symbolic labels.
Fortunately, expressions such as goto 1+1 are disallowed, but still the labels 5, 05 and 005
are considered equal. This is handled in parser, who translates the label into canonical
representation right away.

5.3.2 Statements

The repertoire of A L G O L 60 is on par with most C-like languages up to these days. Sup
ported statements are assignment, goto, conditional, and for. Most of them work as
expected. Assignment statement supports assignment of one value to several variables
(without reevaluation). Goto has unusually rich syntax for computation of target, see the
description of designational expressions in previous section. For has also rich syntax for
iteration, see this example:

5 I t doesn't compute anything interesting, but uses all computed goto features A L G O L 6 0 has, except for
non-local jump.

begin
integer i;
for i := 1, i + 1 while i < 10, 100, 105 step 2 until 181 do

perform J nteresti ng_st uff(i);
end;

The compiler uses auxiliary polymorphic type for_elmt_t to keep the list of iteration
branches. It has exactly three subtypes: an expression, a while-kind of branch, and an
until-kind of branch.

Statements can be grouped to blocks or compound statements6. Both abstractions are
described by the same type: a container with associated symbol table, a60_symtab_t7.

5.3.3 Declarations

The third fundamental element of A L G O L 60 programs are declarations. A L G O L distin
guishes switch declarations (those were seen in an example in section 5 .3.1) , variable dec
larations, and procedure declarations.

The simplest case is switch declaration: it consists of series of designational expressions,
which was described earlier. When used in a goto statement, switch declaration is used this
way:

goto sw[expr];

Where sw is a switch, and expr is arbitrary integer expression. The flow of control will
end up in the branch with the same number, as is the result of expr, counting from one.

Slightly more complicated case is with variables, mostly because of types. A L G O L 60

supports basic types such as integers, real numbers and Boolean values, and one compound
type: an array of basic types. Number of dimensions of array is static property of the
declaration, but the dimensions themselves are computed. Each variable can be marked
"own", which is basically the same as static in C . The last supported type is string, which
is only allowed as procedure argument, and cannot be otherwise manipulated or assigned
by A L G O L program. Inevitably, each string in A L G O L program ends up passed to native
code procedure. Few examples of variable declarations and types:

begin
integer a;
Boolean b;
own real c
integer array d[l:5];
own integer array c[2:6,3:9,4:10];

end;

The declaration on its own right is a procedure. Procedures are the reason why A L G O L
60 is kinky. In particular, formal argument of procedure can be declared as pass by name,

6 T h e difference being that block can contain declarations, while compound statement cannot. When the
grammar allows for compound command, it also allows for block, so it would seem that the distinction is
nil . Bu t labels are defined at the most enclosing block, so the compiler has to keep track of which container
is actually a block, and which is mere compound statement.

7 Non-clashing naming convention was introduced quite late in development cycle. Symbol table is as of
this writing the only type that uses the a60_ prefix.

which basically means that the actual argument of this formal parameter is reevaluated
each time it's hit in control flow—like if the function was actually a macro, and replaced
each occurrence of the formal with passed-in actual.

Also, by-name parameters don't have to be typed, an unusual feature in compiled
language. Coupled with the way A L G O L 60 handles parameter-less functions, it's possible
to pass in e.g. either an integer, or integer function without a parameter. Depending on
call site in effect, and the way each identifier ends up resolved, compiler has to emit either
variable access, or function call.

Yet another funny thing about the spec is that the resolution of non-local variable
references is done on a call site—another macro-like feature of A L G O L 60. These three
features combined are presented in a famous Man-or-Boy test of Donald Knuth's:

begin
real procedure A (k, x l , x2, x3, x4, x5);
value k; integer k;
begin

real procedure B;
begin k := k - 1;

B := A := A (k, B, x l , x2, x3, x4);
end;
if k < = 0 then A := x4 + x5 else B;

end;
outreal (A (10, 1, -1 , -1 , 1, 0));

end;

My humble A L G O L 60 compiler doesn't pass this test: not by a great distance. It's
on the way there, but ended up being half-finished in this respect. This is perhaps the
worst possible scenario, because functions, as of this writing, simply don't work: not even
semantic analysis is done, let alone code generation.

5.4 Implementation

5.4.1 Polymorphism and Visitors

Visitors and dynamic typing go hand in hand, and are both implemented by the same
module. Each module, that wants to participate in this scheme, has to list the field visitable.t
(from visitor-impl.h) as the first member of its data structure:

struct struct_expression_t {
visitable.t base;
// rest of structure as usual

};

The base structure contains a signature (only in debug mode), and a kind distinguisher.
Kind is simple int, and its values would typically be determined by some internal enum.

Signature is char const*, and is used as follows:

static char const * const private_expression_signature = "expression";
static expressions *

private_new_expr (cursor_t * location, expr_kind_t kind) {
expressions * ret = calloc (1, sizeof (expression^));

#ifndef N D E B U G
ret—>base.signature = private_expression_signature;

#endif
/ / . . .

}

First, using address of string gives us a unique pointer, usable for distinguishing between
structure types. Besides this, using strings is extremely useful for debugging and diagnostic
messages. A l l you have to do to find out the type of mysterious object is to dereference the
pointer and interpret what it points to as a string.

When creating a visitor, address of signature variable is used instead of signature itself.
Before dispatch, the visitor performs a simple check:

#ifndef N D E B U G
// check signature
char * obj_sig = *(char const* const*)object;
char * vis_sig = **(char const* const* *)visitor;
if (obj_sig != vis_sig) {

fprintf (stderr,
"error: visitor %p for '%s' dispatches over '%s'.\n",
(void*)visitor, vis_sig, obj_sig);

abort ();

}
#endif

As you can see, the very typing mechanism used gives us ability to deduce what's wrong,
and inform user in a meaningful way:

error: visitor 0x0804d200 for 'expression* dispatches over 'statement*.

5.4.2 Messages and Locus Support

Almost every part of A L G O L 60 needs to inform users about problems it found. This
includes warnings about constructs that are legal, but not moral or wholesome, or errors
for constructs that are disallowed by the spec.

Messages in the compiler are formatted in usual G N U format:

./fail-fun2.a60:5: warning: function 'fool' has an implicit parameter 'a'

./fail-fun2.a60:5: error: type mismatch in expression '(a + 1)':

'Boolean' + 'integer'

./fail-fun2.a60:9: error: at this point in f i l e .

Proper error reporting, as well as proper debuginfo generation, requires an information
about location of various program constructs. This support is introduced via cursor.t struc
ture. It is defined the way all other structures are, namely it uses signature for dynamic
type checking, is heap-allocated, and opaque.

Each message is output to log with given severity, which can be one of debug, info,
warning, error or fatal error. Each log has associated a filter threshold: messages with
severity below the threshold are thrown away, the rest is written.

Log and cursor are two structures at the edge between G C C and A L G O L specific code.
By default, they use their own structures and methods, but when compiled with G C C
(as is checked by IN_GCC preprocessor variable), they use G C C services: logger uses G C C
"native" error reporting tools, and cursor is capable of conversion to G C C locus. More will
be written about these topics in 6.5.1 and 7.3.

5.4.3 Semantic Checks

The front end does the compilation in several passes. First pass consists of lexical and syntax
analysis, processed in parallel. The output of this phase is raw A S T which represents merely
a syntactic structure of source text. Certain semantic checks are already performed in this
stage, e.g. identifiers are checked whether they are unique.

Second pass is true semantic analysis. The compiler recursively descends through whole
syntax tree, performs context checks, computes result types, etc. Each module handles its
own semantic checks in a function named something_resolve_symbols, e.g. stmt_resolve_symbols
During semantic analysis, three special types (i.e. subtypes of type_t) come into play: im
plicit, unknown and any.

The latter one, any, is used for querying. It is possible to ask e.g. for "a symbol that is
an array of any type". This is used mainly to look up functions by their signatures.

The type implicit is used to track implicit arguments of functions. When the compiler
parses the body of function declaration (which is a good thing to do, because it will discover
certain errors even if the function is not called), and it fails to resolve variable reference
in the body itself, it marks that variable as an implicit parameter of the function. Such
variable is then assigned a placeholder type of implicit.

Third mentioned type was unknown. This type is assigned to expression whose type
is not known, most often because there was an error found in the expression. When the
resolver hits this type, it will not do further type checking, and will not produce any error
messages. This is done at the leaf expression that caused the type to be unknown in the
first place.

Third pass is compilation into G E N E R I C , so called Binder. This step is performed
only when no previous pass resulted in an error. The compilation is, too, done by a
recursive descend through A S T . Exactly how is the compilation done will be described in
next chapter.

Chapter 6

Targeting G C C

This chapter describes how to generate G C C intermediate language called G E N E R I C , and
uses a lot of examples from the A L G O L Binder.

In comparison with G C C internals [3], the description in this thesis is kept in more
abstract level. I consider G C C to be a target of compilation process, and as such I'm
more interested in how the nodes are created and how to express various imperative con
structs. G C C internals documentation is directed also towards the analysis of G E N E R I C
and internal structure of nodes.

6.1 G E N E R I C in General

G E N E R I C is a tree-like language, similar in nature to A L G O L A S T . It's representation in
G C C is via polymorphic nodes of type tree :

tree ret = N U L L . T R E E ;

tree is itself a pointer type, so tree * denotes a pointer to tree . The value N U L L _ T R E E
is thus analogy to N U L L pointer of the void* world. Pointer to tree is occasionally also
used, e.g. as an output parameter of a function.

Each node has an arity, i.e. a number of child nodes that it needs; and signature1, which
describes what type each of children nodes has to have.

G C C defines nodes in a catalogue, stored in file gcc/tree.def. This is basically ordinary
header file, included in compiler proper .c file (e.g. algol601.c). Refer back to example 4.3.1
to see how it's used. Properties of each node (symbolic and string name, class and arity)
are described via series of calls to yet-undefined D E F T R E E C O D E . The macro is defined on
include site (in the compiler proper), and depending on its definition, it's possible to extract
desired information about nodes. Thorough explanation is provided for each node type in
a C comment.

The nodes are built via suite of build functions: buildO to build7, depending on a number
of node children, or arity of the node being built. Each build function has the following
signature:

tree buildX (enum tree.code code, tree type, ...);

1 W h i c h is an informal term, not used by G C C people as far as I know.

31

Here the code is a symbolic name of the node type, e.g. a M U L T . E X P R for multiplication:
type is a tree representing a result type of the node; the ellipsis represents children to attach
to the node.

When building G E N E R I C tree, you have to be very careful with what you attach to
which node. G C C is unfortunately not typed statically, and all checks are performed at
runtime. Moreover few things are checked explicitly: when you screw up, G C C is likely to
end up with ICE as some internal assertion fails. (Which is actually a good thing, because
should the assertion not be there, G C C would probably end up emitting wrong code, or
would fail with SIGSEGV.) There is little I can advise, generally just read tree.def, read
[3], and look to other front ends, in this order. Often it is helpful to inspect the failing site.
Surprisingly often it's possible to deduce what went wrong by looking at the assertion or
comments nearby.

For debugging purposes, a function debug.tree comes in handy. It recursively dumps
the tree passed in as argument, to the depth of 6, giving you a chance to inspect whether
the node in hand makes any sense.

6.2 Variables, Types, Symbols

Symbols in general appear in two contexts: in a declaration, their existence is announced.
In a definition, the symbol comes to an existence. In expressions, the symbol is referenced.

6.2.1 Declarations

The declaration vs. definition distinction is mostly a matter of programming language,
G C C doesn't care about that. A l l that matters from G C C viewpoint is where is the symbol
defined, i.e. which program block owns it, or whether it is global, and where should the
memory be allocated—whether in E L F section (assuming E L F output) or on stack. This
is described by what's called a declaration node.

Declaration is created with function called build_decl. The two arguments of the function
are identifier node, which denotes what's the declaration called; and type node, with obvious
meaning. A n example will show how is the declaration handled in A L G O L front end:

tree symboLvar_ordinary_build_generic (symboLt * sym, binder_context_t * ctx) {
labeLt const * Ibl = symbol-label (sym);
tree id = getJdentifier (estr_cstr (labeLid (Ibl)));
tree tt = type_build_generic (symboLtype (sym), ctx);
return build_decl (V A F L D E C L , id, tt);

}

The function getJdentifier takes a name represented as ordinary char* string, and creates
an identifier node with the same name. Identifier nodes with the same name are shared:
there is only one identifier node ever made for any particular name.

The function type.buiId-generic is a function of the front end, and it does recursive
dispatch. In the end it returns a node that represents the type of given symbol.

The two nodes thus obtained are then combined into the V A R . D E C L node.
There are more types of declaration nodes than just V A R . D E C L . Labels are represented

with L A B E L _ D E C L nodes, fields of structures with F IELD_DECL, types with T Y P E J D E C L ,
etc.

So you have the declaration in hand. Next you have to store it somewhere, so that a)
it's possible to look up declaration when symbol references it in an expression; and b) G C C
knows that it should allocate the memory for the declaration.

The solution to a) will depend on architecture of your front end. The approach used
for A L G O L 60 is that each symbol allows an "extra" information to be stored. When
the G E N E R I C declaration is built, it's immediately stored to the symbol. In expressions,
variable references are stored in idref A S T node. One attribute of this node, resolved during
semantic analysis, is the symbol to which the identifier refers. So when the expression is
translated, the compiler knows which symbol the variable references, and from that symbol
it extracts the declaration:

tree expr_idref_buiId-generic (expressions * self, binder_context_t * ctx) {
symboLt * sym = expr_symbol (self);
tree decl = symboLextra (sym);
return decl;

}

For handling of b) part, G C C prescribes the mechanism: when creating a block, the
chain of declarations at this block is one of the attributes. Furthermore, each declaration
has a D E C L . C O N T E X T attribute, which points to the containing block of the variable, or
is N U L L . T R E E for file-global variables.

Declarations with static storage (a.k.a static variables) are defined by having set the
TREE_STATIC attribute.

6.2.2 Types

Most types that A L G O L 60 supports are primitive types, such as integers, real numbers,
void, etc. G C C has these types predefined, so most of the type building procedures look
like this:

tree type_real_build_generic (type_t * self, binder_context_t * ctx) {
return double_type_node;

}

You have to take care of type building for non-trivial types, such as are structures and
arrays. A L G O L 60 doesn't support structures, but it does support arrays. This is how the
front end builds G E N E R I C for array type:

tree type_array_build_generic (type_t * self, binder_context_t * ctx) {
tree emtt = type_build_generic (type.host (self), data);
boundspair.t * bp = t_array_bounds (self);
tree highb = expr_build_generic (boundspair_hi (bp), ctx);
tree lowb = expr_build_generic (boundspairJo (bp), ctx);
tree arrbdst = build_range_type (integer_type_node, lowb, highb);
tree ret = build_array_type (emtt, arrbdst);
return ret;

}

The boundspair_t type holds a pair of expressions with dimensions the user has provided.
The function build_range_type is G E N R I C representation of the same. The build_array_type
then builds whole array type. Note that this function works recursively: if the element
type (emtt) happens to be an array, this function is invoked through the visitor dispatch in
type_build_generic. Multidimensional arrays are thus composed as arrays of arrays, just like
you would expect from well behaved tree language.

6.3 Expressions

There's not that much to say about expression nodes. They use directly the node-creation
mechanism that was described earlier: each expression has a type, and zero or more
operands.

6.3.1 Literals

Starting from the leaves, that is nodes with arity zero, A L G O L recognizes the following
literals: integer numbers, real numbers, string literals, and variable references. I will leave
variable references for next section, and only cover literals here.

Starting with integers, there are two basic function for creation of these, namely:

// in gcc/gcc/tree, h
tree build_int_cst (tree type, HOST_WIDE_INT);
tree build_int_cstu (tree type, unsigned HOST_WIDE_INT);

The type of integer node doesn't have to be int. For example character constants are
also represented with integer node. The type has to match the constructor function: if you
use _cstu variant, the type has to be unsigned. The size of type HOST_WIDE_INT depends
on a host platform, but is guaranteed to be at least 32 bits.

G C C allows you to create an identity of given type, with function build_one_cst. The
type of the "one constant" is the sole argument of this function. The indentity nodes are
shared, i.e. several calls to this function with the same type may yield the same tree pointer.

Floating point numbers are a bit more complex to create, because each platform has
its own idea of how many bits are used for exponent and mantissa. I E E E 754 has three
categories of floating point numbers: single-precission 32-bit, double-precission 64-bit and
double-extended-precission 80-bit. In addition some architectures support 128-bit floating
point, e.g. ia64 [2], and some platform don't have to support I E E E floating points at a l l 2 .
G C C has ways to deal with this diversity. It allows construction of floating point literals
from string as well as from various representations, has dedicated functions for comparison
and formatting them, and can also convert internal floating point number back to some
target representation. Look up the gcc/gcc/real .h header if you are interested.

The A L G O L 60 front end uses the way of building the real number from string:

tree expr_real_build_generic (expressions * self, binder_context_t * ctx) {
REAL_VALUE_TYPE real;
tree t = type.bui Id-generic (expr_type (self), data);
real_from_string3 (&real, estr_cstr (expr_reaLvalue (self)), TYPE_MODE (t));
if (REAL_VALUE_ISINF (real))

2 Al though I don't know if G C C is ported to any such platform.

pedwarn ("floating constant exceeds range of %qT", t);
tree ret = build.real (t, real);
return ret;

}

G C C also supports complex numbers, via a node C O M P L E X _ C S T , created with function
build_complex. The arguments are simply a type, a real node, and an imaginary node.

String literals are created by the function build_string. The two arguments of this func
tions are the length of string literal, and pointer to the character array. This is how A L G O L

front end does it:

tree expr_string_build_generic (expression_t * self, binder_context_t * ctx) {
estring_t const * s = expr_string_value (self);
int len = estrJength (s) + 1; / / +1 for trailing zero
tree ret = build_string_literal (len, estr.cstr (s));
return ret;

}

(The business actually represents how deeply C-ish the A L G O L front end is. In
particular: estr.cstr has to return NUL-terminated character array, and all functions in
language runtime library have to assume NUL-terminated, C-like strings. E.g. Borland®-
compatible Pascal front end would probably want to encode strings so that the length is
stored in first byte, and the string would N O T be NUL-terminated. For G C C , string literal
is just a bunch of bytes with given length.)

6.3.2 Other Expressions

Let's look at expressions themselves a bit. First to cover are symbol references. I al
ready mentioned handling of symbols in a section 6.2.1. When used in expressions, the
tree node that represents variable reference is a declaration itself—look at the function
expr_idref_build_generic from example in section 6.2.1.

Simple expressions (binary and unary) are build in a straightforward manner. For
example this is how A L G O L 60 front end does it:

tree private_expr_build_binary_generic (expressions * self, binder_context_t * ctx, int op) {
type_t * t = expr_type (self);
tree ttt = type.buiId-generic (t, ctx);
tree o p l = expr_build_generic (expr_binary_left (self), ctx);
tree op2 = expr_build_generic (expr_binary_right (self), ctx);
tree ret = build2 (op, ttt, o p l , op2);
return ret;

}

Unary expressions are built in similar fashion, and also conditional (ternary) expression.
The argument op is set by the callee to the exact type of expression, e.g. M I N U S - E X P R or
E Q . E X P R . The only thing to keep in mind is typing of arguments. E.g. C O N D _ E X P R breaks
when other value than 0 or 1 is used as condition, and both branches have to have the same
type as whole expression. This all is written in a comprehensive manner in gcc/gcc/tree.def,
and also in [3].

Array access expression, or A R R A Y . R E F in G C C lingo, are similarly straightforward,
with one glitch, which is multidimensional arrays. This is nothing you wouldn't expect:
multidimensional array is simply array of arrays, and so the result of array access is another
array, with fewer dimensions. Single multidimensional access is then tree of array accesses,
each yielding result of the type one dimension "shorter" than the other. The code is a little
bit too verbose, and if you are interested, look up function expr_subscript_build_generic in
al60l-bind.c.

The last expression to cover is a function call. Just like at the variable reference,
you need to look up symbolic declaration first. Then you have to build expressions for all
arguments, and connect them via tree.cons operation to a list of expressions, in a backwards
fashion, i.e. last argument first. The G C C function build_function_call_expr is then used to
turn the decl and argument list into function call node. The example follows, edited to
pseudo code to take up less space, and assuming that expr_call_args are stored in backwards
manner:

tree expr_call_build_generic (expressions * self, binder_context_t * ctx) {
symboLt * sym = expr_symbol (self);
tree proc.decl = symboLextra (sym);
tree argJist = N U L L . T R E E ;
for (expressions * expr in expr_call_args (self))

argJist = tree.cons (N U L L _ T R E E , expr_build_generic (expr, ctx), argJist);
return build_function_call_expr (proc.decl, argJist);

}

6.3.3 Expressions Evaluated Once

In certain contexts, it is necessary to evaluate an expression, and use its value on several
places. In a C-like language, you would use a temporary variable for that. G E N E R I C
supports the notion of reused expression directly with S A V E . E X P R .

S A V E _ E X P R node has a single operand, which is the actual expression to be computed.
The resulting S A V E _ E X P R can be used on several places. The expression it wraps around
is ever computed only once, in further invocations it's replaced by a reference to temporary
variable.

The A L G O L 60 front end uses S A V E . E X P R for assignment of one right hand side to
several left hand sides, such as in this example:

V I := V2 := E X P R ;

6.3.4 Addresses and Dereferences

One more thing that A L G O L front end does is that it handles code such as this:

A[V] := V := E X P R ;

The A L G O L standard specifies that in such a case, the array accesses are resolved before
any assignment takes place. In other words, the newly-obtained value of V has no effect on
how the A[V] is computed.

The front end does this by first taking address of each left hand side, and then assigning
the left hand side expression to dereference of each of taken addresses. Two expression nodes

are in effect here: A D D R . E X P R for taking an address, and I N D I R E D . R E F for dereference.
Each of these has single operand, and they map, respectively, to & and * operators of C
language.

The type of A D D R _ E X P R node has to be a pointer. Given a type t, pointer to t is built
with G C C function build_pointer_type(t).

6.4 Statements

From the viewpoint of G E N E R I C , statements are expressions, too. Their type is void_type,
but otherwise they obey the same rules as nodes of "ordinary" expressions.

6.4.1 Blocks

One of major features of structured programming is the ability to group single statements
into compound statements, in a recursive manner (statement inside block can itself be a
block). G C C naturally supports the notion of blocks.

In context of G E N E R I C , compound statement is expressed with an expression node
B I N D _ E X P R . Block expression has three operands: a chain of variables local to the block,
a list of statements to process, and associated block.

First, the two sequences: the chain of variables, and list of statements. Each of them is
created differently. Chaining is natural operation of G E N E R I C nodes, built in for exactly
the reason to be able to form linked lists easily. To link two nodes together, use macro
T R E E X H A I N :

void bind_add_decl (binder_context_t * ctx, tree decl) {
T R E E . C H A I N (decl) = ctx->cur.b lock.vars;
ctx—>cur_block_vars = decl;

}

Statement lists are different beasts. New statement lists is created with function al-
loc_stmt_list, and new statements are added via append_to_statement_list:

void bind_add_stmt (binder_context_t * ctx, tree stmt) {
append_to_statement_list (stmt, &ctx—>cur_block_stmts);

}

Now for the "block" part. B I N D _ E X P R is node that binds block together with variables
and statements. Block is what expresses nesting structure of compound statements, and
also has a reference to its variables.

Each block has its associated superblock, set with a macro B L O C K . S U P E R C O N T E X T ,

and a list of subblocks, assigned in creation time. You have to keep everything in sync: bind
expressions, supercontexts and subblocks. If a bind expression A with block AB appears as
a statement inside a statement list B$ of bind expression B, then B L O C K _ S U P E R C O N T E X T

of AB has to be BB, and list of subblocks of BB has to contain AB-
A L G O L 60 front end has two functions for block handling: bind_state_push_block and

bind_state_build_block. The former one opens new block context, and actually does very
little work: only sets up initial (i.e. empty) values for list of statements, chain of variables,
and list of subblocks. The latter one does all the interesting things: builds B I N D . E X P R

from collected variables, statements, and subblocks; sets supercontext of each of collected

subblocks; and adds itself to the list of subblocks of next open block. Both functions are
available with minor edits in figure 6.1.

6.4.2 Loops

A l l loops in G E N E R I C are expressed with the same L O O P - E X P R node. Sole argument of
this node is the body, which the L O O P . E X P R endlessly processes. Computations of loop
control variables have to be done explicitly, as well as loop termination.

To end the loop, G E N E R I C uses a E X I T . E X P R node. It has one argument, which is a
condition that has to be true for the break to be taken. For example, following A L G O L 60
abstract loop:

for i := E while F do B O D Y ;

Would be translated to the following G E N E R I C :

L O O P . E X P R (void, B I N D . E X P R ({

1: i := E ;

2: E X I T _ E X P R (void, !F);
3: B O D Y ;

}))

The translation itself is lengthy, and not suitable for inclusion as an example.

6.4.3 Flow Control

Other flow control primitives include conditional statement, and jumps, labels and switches.
Conditional statement is done exactly like conditional expressions, except that the node

type is void.
While A L G O L 60 front end handles labels as symbols with attached statement (where

the label is defined), in G E N E R I C they have dual nature: a symbol part is described
by L A B E L . D E C L ; the location by L A B E L . E X P R , which is unary node whose parameter is
L A B E L . D E C L . Similarly goto is unary node, whose parameter is either a L A B E L . D E C L , or
arbitrary A D D R . E X P R that denotes the target site. This latter is used for implementation
of computed goto, and switch designators in A L G O L 60 front end.

Besides this, G E N E R I C has support for "true" C-like switches. The two interesting
nodes in this respect are S W I T C H _ E X P R and C A S E _ L A B E L _ E X P R .

6.5 Debugging Information

6.5.1 Loci

Locus is a simple stack-allocated structure that denotes a location of certain program con
struct in source code. It is used for diagnostic message reporting, and for tracking locations
for purposes of writing debugging information. The contents of locus are a name of the
file and a number of the line inside that file, where given construct appeared. Thus its cre
ation is straightforward, one just has to include the right headers. E.g. conversion between
A L G O L 60 front end's cursor type and locus is done this way:

void bind_state_push_block (binder_context_t * ctx) {

slist_pushfront (ctx->subblocks, NULL_TREE);

slist_pushfront (ctx->vars, NULL_TREE);

slist_pushfront (ctx->stmts, alloc_stmt_list ());

}

tree bind_state_build_block (binder_context_t * ctx) {

// Collect the subblocks that might have been added during

// translation of container statements.

tree subblocks = slist_popfront (ctx->subblocks);

if (subblocks)

subblocks = nreverse (subblocks);

tree vars = slist_popfront (ctx->vars);

tree stmts = slist_popfront (ctx->stmts);

// Create new block and make i t a superblock of a l l subblocks.

tree block = build_block (vars, subblocks, NULL_TREE, NULL_TREE);

if (subblocks) {

tree subblock_node;

for (subblock_node = subblocks; subblock_node != NULL_TREE;

subblock_node = TREE_CHAIN (subblock_node)) {

tree subblock = TREE_VALUE (subblock_node);

BLOCK_SUPERCONTEXT (subblock) = block;

>
}

// Then add the block to super's subblocks.

s l i s t _ i t _ t * i t = slist_begin (ctx->subblocks);

tree super_subs = slist_it_get (i t) ;

super_subs = tree_cons (NULL_TREE, block, super_subs);

slist_it_put (i t , super_subs);

// Finally return the binding expression that represents our block,

return build3 (BIND_EXPR, void_type_node,

BLOCK_VARS (block), stmts, block);

}

Figure 6.1: Block handling in A L G O L 60 front end.

#ifdef IN .GCC
include "system.h"
include "coretypes.h"
include "limits.h"
•#• include "input.h"

void cursor_to_loc (cursor_t const * cursor, location_t * loc) {
memset (loc, 0, sizeof (locat ions));
loc—>file = cursor—>filename;
loc—>line = cursor—>line;

}
#endif

6.5.2 Emitt ing Debugging Information

"Debuginfo" is additional information stored in compiled binary (be it object or resulting
executable), which allows debuggers map binary code to original source. G C C has a support
for this kind of additional information: it is possible to annotate expressions and statements
with locus. The interesting macro (for both cases) is S E T _ E X P R _ L O C A T I O N . This is how
A L G O L 60 front end does it:

void private_set_location (tree node, cursor_t * cursor) {
locat ions loc;
cursor_to_loc (cursor, &loc);
S E T _ E X P R _ L O C A T I O N (node, loc);

}

Be warned: it doesn't make a sense for all node types to bear line information. In
particular, constants are usually shared between expressions, and assigned locus mangles
them.

Chapter 7

G C C Services

7.1 Preprocessing

G C C makes it possible to preprocess the source files with a traditional C preprocessor. The
magic takes place in a language spec, which is defined in lang-specs.h file of the front end. I
will describe the hack in a little unusual way: start by spoiling the result, and will explain
how to get there and what it means. Have a look at a figure 7.1.

The spec prescribes that ordinary, pure A L G O L files have extension .a60 and .alg (i.e.
lower case), while files to be preprocessed are .A60 and .ALG (upper case). This convention
is used also in other cases, e.g. for assembly (.s vs. .S) and Fortran (.f90 vs. .F90), and
because nobody really uses A L G O L 60, it was an arbitrary decision.

Spec is line-oriented language: is has one statement per line. The statements are just
like normal shell command lines, with program at the beginning, followed by a list of options
separated by white space, except that redirection of input or output is not supported. The
special thing about spec lines is that %-prefixed parts are subject to additional processing.

Let's have a look at the non-preprocessing spec string. There is only one interesting
%-rule used: %{!S:X}, which "substitutes X , if the -S switch was N O T given to C C " .
Obviously, if user entered - E , he wants to stop compilation after the preprocessing, which
for .a60 file means do nothing. Similarly for - M and - M M . So the whole string reads
something like "if neither of the options E, M and M M is given, launch compiler. After
that, unless the option -fsyntax-only was given, invoke assembler."

Wait, how is it that the assembler is invoked on the same spec line as compiler? Actually,
%(invoke_as) is a macro (defined in gcc.c) and expands to new line with invocation of
assembler, unless there was a -S given.

The trick very similar to the one with assembler is also used for preprocessor. The file is
first preprocessed—this takes place always (given a right file name), because preprocessing
is the first step of compilation, //neither of the options E, M and M M is given, we redirect
the output of preprocessor (-o %|.a60) and emit pipe and newline. ("The pipe symbol at
the beginning of the predicate text is used to indicate that a command should be piped
to the following command, but only if -pipe is specified.") This way we form either only
one preprocessing command, or two commands: preprocessed output is then pushed into
compiler. (And actually, if -S is not given, that is then pushed to assembler.)

The last important bit is how the stages communicate with each other, and how they
know where to read the files from. That's where the %|.a60 bit comes in play: it's replaced
either by "-" (which is traditionally treated as a standard input or output), if -pipe is in
effect, or by a random name, replaced consistently in whole spec string.

41

/* This is the contribution to the
 <

default_compilers
)

 array in gcc.c

for the Algol 60 language. */

{".A60", "@a60-cpp-input", 0, 0, 0},

{".ALG", "@a60-cpp-input", 0, 0, 0},

{"@a60-cpp-input",

"ccl -E -traditional-cpp -D_ALG0L60_ %(cpp_options) \

°/„{E | M | MM: 7, (cpp_debug_options) }\
y
0
{!E:7

0
{!MM:7.{!M: -o%|.a60 I \n\

algol601 -fpreprocessed %|.a60 7
0
(ccl_options)

'/.{! fsyntax-only:
,

/.(invoke_as)}}}}", 0, 0, 0},

{".a60", "@a60", 0, 0, 0},

{".alg", "@a60", 0, 0, 0},

{"@a60", "7.{!E:7.{!MM:7.{!M:algol601 */.i 7.(ccl_options) 7,{I*}\
'/.{!f syntax-only:7.(invoke_as)}}}}\n" , 0, 0, 0},

Figure 7.1: lang-specs.h of A L G O L 60 front end

So you see, spec is one strange language (its definition is in gcc/gcc/gcc.c), but the
magic that gives you the preprocessor launched is not that esoteric.

That's obviously not all, because preprocessed file is littered with line markers, such as
this:

1 "x.A60"

1 "<built-in>"

1 "<command-line>"

1 "x.A60"

There are two options: either you disallow emitting of line markers by passing -P to
cpp; or you will cope with them, which means will be able to parse them, and will keep
line markers in mind when emitting error messages and debug info. Parsing is best done in
lexical analyser. Given that the marker can appear between arbitrary two tokens it's the
only place where it makes a sense.

You may want to disallow line markers in programs that didn't come from preprocessor.
This is the case of .a60 files of A L G O L 60 front end, where the issue is resolved by introduc
tion of command line option -fpreprocessed. Unless this option is given, the character
is considered invalid. Only when this option is given, further parsing of line marker is done.
Note that -fpreprocessed is passed to the compiler by spec line.

7.2 Command Line Options

Each G C C compiler has the capability of processing command line options. Moreover it
inherits all the options from the main part of G C C , so e.g. - 0 3 , -o file and others are
available for all front ends with no work. The only work is necessary for definition of
options peculiar to given front end, and even there is the tedium of command line parsing
left off your shoulders.

7.2.1 Processing Options

G C C understands both positive and negative variants of -f and - W options. E.g. when your
front end supports -fdump-ast, G C C will understand also -fno-dump-ast. Furthermore, each
option can be parametrized. Thus you can have e.g. — output-pch= option for output of
precompiled headers, and the part after "=" is delivered to option handler as an argument.

Of course, you have to write the handler for frontend-specific options yourself. A l l the
work takes place in L A N G _ H O O K S _ H A N D L E _ O P T I O N hook, G C C calls this function each
time it hits an option that the frontend understands. The communication isn't done through
option strings, though. Instead, G C C associates each option a symbolic identifier with
unique integer value. When option is handled, simple switch statement can be used to decide
what should be done. Option strings are transformed to identifiers in a straightforward
manner: each non-alphanumeric character in a string is replaced with underscore, and O P T
is prepended before the resulting string. Thus e.g. —output-pch= is referred-to by identifier
OPT__output_pch_.

Other parameters in option-handling hook are argument and value. Variable argument
is either N U L L , or it holds a string with the extra option argument (as was described few
paragraphs up). The variable value is 1 if an option is used in its positive variant, and 0
for no- variant.

Option handling hook can return three values: 0 if the option was invalid, 1 is if was
valid, and -1 if it was valid and no further processing of the option should be done.

7.2.2 Defining New Options

A l l front-end-specific options are defined in lang.opt. This file gives, through build magic,
rise to options.h. Format and features of lang.opt are to be found in G C C internals docu
mentation [3, chapter Options].

A warning is due when changing the lang.opt file. Almost whole G C C depends on
options.h, directly or indirectly. Changing lang.opt will lead to almost whole bootstrap
being processed again. Have a cup of tea ready before doing so.

7.2.3 Interesting Langhooks

Following langhooks are of interest when you are doing option processing:

1. LANG_HOOKS_INIT_OPTIONS is called before any option processing is done. You
will probably want to initialize your flags to their default values here.

2. L A N G _ H O O K S _ H A N D L E _ O P T I O N is called to handle a single command-line option.

3. L A N G . H O O K S . M I S S I N G . A R G U M E N T is called when the argument is missing to the
option that requires one. The hook is handed over an offending argument string and
its unique identifier. If it answers false, default missing-argument complaint should be
used, true means that you took care of the error message yourself. This hook doesn't
have to be defined, it's bound to false-returning empty function by default.

4. L A N G _ H O O K S _ P O S T _ O P T I O N S is called after all command-line processing has been
done. This lang hook also is a convenient place to determine the name of the input
file to parse.

7.3 Diagnostics

G C C uses its own functions for reporting problems. You may or may not use these in
your compiler. M y advise is do. First, if errors are not reported via G C C ' s mechanisms,
G C C thinks compilation was successful, and proceeds with compilation. Second, a lot of
development tools rely on the way G C C reports errors. Prime example is G C C ' s own test
suite, you will have to provide means of converting from your format to what's expected by
the test suite scripts. Third, G C C itself will use its own reporting tools nonetheless, e.g.
for purposes of reporting internal errors.

That said, using G C C reporting is simple. For example figure 7.2 has the program
excerpt that illustrates how A L G O L front end does error reporting.

7.3.1 Configuring Reports V i a Command Line

In G C C front ends, warnings make up significant part of reported messages, and can be
richly configured. Perhaps because C is very loose language, with almost everything allowed,
even though lots of it are just historical crud that you use only inadvertently. Anyway, G C C
allows a very fine-grained tuning of what to report, by way of various - W and -Wno- options.

Further, G C C error reporting primitive (report-diagnostic) allows an explicit setting of
dependency on particular command line option. For example, look at how it's done in
G C C ' s own warning function:

void
warning (int opt, const char *fmt, ...) {

diagnosticJnfo diagnostic;
vaJist ap;

va_start (ap, gmsgid);
diagnostic_set_info (^diagnostic, fmt, &ap, inputJocation, D K . W A R N I N G) ;
diagnostic.option_index = opt;

report-diagnostic (^diagnostic);
va_end (ap);

}

The interesting line is rendered in bold, the rest of function should be familiar from
figure 7.2. By setting the optionJndex, one explicitly states that given message should be
reported only if the associated option is in effect.

7.3.2 Pedantic Settings

On G C C command line, one can use an option -pedantic to express the desire to process
the program as closely to language standard, as possible. The use of-pedantic on command
line has the effect of setting the global variable pedantic to non-zero value, thus allowing for
conditions on this variable. Another option -pedantic-errors will turn these warnings into
full errors.

To honor G C C in this respect, you should report pedantic warnings with G C C function
pedwarn. This function will report a warning, unless -pedantic-errors was given on the
command line, in which case it issues an error. A n example from C front end:

#ifdef IN_GCC

// Use GCC-native error reporting when possible. This is at the end

// of definitions, to keep us away from GCC memory management poisoning.

include "config.h"

include "system.h"

include "coretypes.h"

include "limits.h"

include "toplev.h"

include "diagnostic.h"

static int

private_log_printfc (logger_t * logger, debug_level_t level,

cursor_t * cursor, char const * fmt, va_list * ap)

{

// GCC diagnostics are not intended for debug messages and notes.

// Fall back to our own reporting in such a case,

if (level < ll_warning)

return private_log_printfc_nogcc (logger, level, cursor, fmt, ap);

// Table to convert from our own severity encoding to GCC's.

static diagnostics gcc_diagnostic_kind_map[] = {

[ll_warning] = DK_WARNING,

[ll_error] = DK_ERR0R,

[ll_fatal_error] = DK_FATAL

} ;

diagnostic_info diagnostic;

location_t loc;

diagnostics gcc_level = gcc_diagnostic_kind_map [level];

i f (cursor != NULL)

cursor_to_loc (cursor, &loc);

else

memset (&loc, 0, sizeof (loc));

diagnostic_set_info (fediagnostic, fmt, ap, loc, gcc_level);

report_diagnostic (fediagnostic);

return 0;
}

#else

// ...

#endif

Figure 7.2: Error reporting via G C C tools

if (pedantic)
pedwarn ("ISO C does not support %<++%> and %<-%>"

" on complex types");

7.3.3 Other Reporting Functions

Apart from general reporting mechanism through report-diagnostic, G C C supports a lot of
quick reporting function for various levels of severity. These include inform, warning, error,
sorry, fataLerror and internaLerror (in the order of increasing severity). Most of them have
obvious meaning, sorry is used for reporting of unimplemented language features.

G C C assumes that you use its own global variable input-location (which is a locus of
currently processed part of source code), and if you don't, these functions won't produce
the output you expect.

You will probably want to use these functions only if your front end is written directly
for G C C .

7.3.4 Formatting the Report Strings

G C C uses its own formatting functions, presumably for independence on the host libc
environment. In the format string, it's possible to use traditional numerical tags (%d et
al.), modified optionally by I or II prefixes. In addition, prefix of w is available, expanding
to either I or II depending on width of type HOST_WIDE_INT. String formatting via various
%s variants is also allowed, etc.

In addition to these more or less standard tags, G C C also supports native language
quotes by way of %< and %> (as was seen in a pedwarn example above), and % H for
formatting of locat ions. This may come in very handy, although is seldom necessary,
because report-diagnostic takes care of this automatically.

Have a look at a comment before function pp_base_format in pretty.print.c for full refer
ence.

7.4 Runtime Libraries

Languages usually need a support beyond mere syntactic and semantic actions. This in
cludes input and output routines, some cunning numerical algorithms for scientific lan
guages, or simply language standard library, such as l ibstdc++ or Java platform. Most
probably you will have to roll one of these for your language.

Runtime support also includes system's libc and libm. To honor G C C interfaces, you
will have to pay some attention to these, too.

G C C doesn't support integration of the runtime library with the same ease it supports
new language front ends. There are files to be patched, an operation inherently unsafe in
a volatile environment of G C C trunk. Apart from that, however, the automation works
nicely, and with some rules in mind, you can build runtime library that is linked to your
binaries by default. Let's get dirty!

7.4.1 Agenda

You need the following.

1. To write the library itself. This includes source files and build system.

2. To include the library into the build chain. This includes patching toplevel configure
and Makefile.def.

3. To inject the library into compilation command line, so that it's linked in produced
binaries.

7.4.2 The Library Subdirectory

Given a toplevel directory gcc, runtime libraries typically reside in subdirectory gcc/l ibsomething.
This directory is basically ordinary library build directory: it is almost possible to simply
copy preexisting library files there.

G C C expects that the library provides a configure script, which, when launched, creates
Makefile. (Note that the created Makefile has to reside in a build directory, but the script
is launched from a source directory.) I assume that you obey autotools, as it will save you
a lot of work.

The best approach is probably simply to take other frontend's configure.ac and Make
file.am, look how is it done, and bend it to suit your needs. The files are mostly classical
autotools source files, but there are certain hacks here and there necessary for integration
into G C C build system. In particular:

• configure.ac has to call G C C _ T O P L E V _ S U B D I R S macro after A C J N I T . This relates to
the dreaded G C C ' s build/host/target trichotomy. Each of builds is separated in di
rectory of its own: build_subdir, host_subdir, and target_subdir. This macro determines
these values.

• In Makefile.am, gcc.version has to be calculated for use in expansion of toolexeclibdir
variable. This can be done by reading the contents of file g c c / g c c / B A S E - V E R .

• libtool version info (i.e. library soname) is not hardcoded into the Makefile, but rather
is stored in a file called gcc/l ibsomething/l ibtool-version. This is not compulsory step,
it just eases things a bit in that you don't have to rebuild autotools-generated files
when you update library version.

Besides the concrete cases just mentioned, other front ends usually contain workarounds
that were necessary to resolve problems in past. It's certainly not wise to copy blindly every
hack, as many of them may be outdated and superfluous. But other implementers likely
fallen into the same traps you did, and reinventing the wheel rarely pays off.

7.4.3 Patching Toplevel Bui ld System

One last step is necessary before your library gets built as part of build process. G C C has
to know about it. As it is, you have to touch G C C ' s privates to do it: you need to patch
toplevel configure and Makefile.def. Fortunately, both patches are trivial.

There is a variable target-libraries in toplevel configure. As the name implies, what
libraries get built is driven by the contents of this variable. You need to add the name of
your library among the others.

Patching Makefile.def is a more creative task. This file is used in concert with Makefile.tpl
by a tool called autogen to produce Makefile.in. Inside Makefile.def, it is possible to express

This patch is a r t i f i c i a l l y created to have the smallest possible

dependence on patched source.

Index: configure

configure (revision 118066)

+++ configure (working copy)

@@ -916,2 +916,3 @@

target_libraries="target-libiberty \

+ target-libga60 \

target-libgloss \

Index: Makefile.def

Makefile.def (revision 118066)

+++ Makefile.def (working copy)

@@ -100,0 +100,1 @@

+target_modules = { module= libga60; };

Figure 7.3: Toplevel G C C Patch for A L G O L 60 Front End

various inter-library dependencies to define exact conditions when your library should be
built, as well as whether the library should be installed, bootstrapped, or checked.

A n example toplevel patch, taken from A L G O L 60 front end, is at figure 7.3. If you want
to be extra independent on the exact layout of libraries in configure, you can craft e.g. a
sed script instead of patch:

sed '/~target_libraries="/s/"/"target-libga60 \\\n\t\t/' configure

Personally I'd rather stick with the patch approach, because a bit of dependence is
good: it helps make sure that the expectations hold. E.g. the sed script doesn't do any
error detection, duplicate detection or reporting, all of which patch does.

Release Mode

When doing a patch for release, i.e. not for development in G C C trunk, it's better to
rebuild the file Makefile.in after patching, and generate new patch from this. The user then
does not have to install development tools, autogen in particular. Build system in release
version of G C C will not change very much.

7.4.4 Linking the Binaries W i t h Runtime Library

The method that G C C uses to decide which runtime libraries to link in is pretty much a
hack: you will inject necessary libraries into the command line, before it's processed.

The work is done in lang_specific_driver. Very general command line tweaking can take
place here. The function is given pointer to argc and argv variables, and is free to reorder,
add or remove any of the arguments as seems fit. To support proper linking, you will want
to detect the situation when your runtime library, libc, libm, or any other required library
isn't at the command line yet (or is and shouldn't be), in which situation you will add
or remove it from the vector and adjust argc accordingly. It's necessary to support native

G C C switches, such as -nostdlib and -nodefaultlibs, as well as your own switches that imply
that no linking is to be done (e.g. -fsyntax-only or similar).

Unfortunately that implies processing command line arguments one at a time, skipping
their arguments as necessary (think -o, -Xlinker). It's really not nice solution, but that's
the way it works.

7.4.5 Depending on System Libraries

You may or may not want to depend on system libraries, such as libc or libm. Their handling
is mostly the same as handling your own runtime library, except that you don't have to
build them.

Since version 4.3.0, G C C uses libgmp to do its constant folding, which means that the
library will be available at compiler runtime. Very often that means the library will also be
available at binary run site. That doesn't hold universally, but at least libgmp was ported
to all platforms where G C C has supported back ends. What this means for you is that you
can dispatch to this library many compile-time numerical algorithms that would otherwise
have to be hand-rolled or cut'n'pasted. As far as I know, this is the approach Fortran
fronted is about to take.

7.5 Regression Test Suite

During the development of a tool as complex as compiler is, thorough test suite is an
absolute necessity. The G C C project does contain such test suite. It's built on popular
dejagnu test harness, and as such suits best traditional regression testing approach.

Unit testing technically could be done through dejagnu, but natural fit here is processing
of output from given compiled binary. This works fine for compilers: the test suite contains
source files to be processed by your compiler, annotated with commands that describe
expected output of the compiler. Unit testing will be best done directly as part of build of
each module.

7.5.1 Bui ld System Adjustments

If you want your test suite to be run as part of generic make check performance, you have
to append checking target for your language to the the variable in Make-lang.in as follows:

List of targets that can use the generic check- rule.
lang.checks + = check-algol60

check-algol60 is handled automatically by a pattern rule in bui ld/gcc/Makef i le, you don't
have to provide that yourself.

If you want to include other means of testing, e.g. the test suite that is already written
as part of your front end, do so by explicitly stating dependency of check. E.g look at this
example:

interna l-algol60-checks:
$ (M A K E) - C $(srcdir)/algol60/tests check

. P H O N Y check: internal-algol60-checks

7.5.2 Organization of G C C Test Suite

Test suite is located in the subdirectory gcc/gcc/testsuite (see 3.5 for explanation of direc
tory notation) (this particular subdirectory will be referred to simply as testsuite/ in context
of this section). Under this directory is located testsuite/ l ib/ , which contains support files
for test suite; and number of front end specific directories, such as testsu i te /g+-hdg/ or
testsuite/algol60.dg/.

To run a testsuite for your front end, issue a line like this in bui ld/ directory:

$ gmake - C gcc check-algol60

(You would run internal-algol60-checks target similarly, if it is present. Alternatively,
simple make check will run all G C C tests, including yours.)

Going through each of the files that make up test suite really makes no sense. Setup
of test suite scripts for your language is a convoluted process, and I recommend simply
copying over test suite scripts from other front end (e.g. A L G O L 60, where I took a time
to clean up files a bit to get rid of what is not used or looks like historical crud). I ' l l just
explain what's the intent of each file.

First, testsuite/l ib/algol60.exp support file. This is the more entangled of the two support
files. It contains various initialization and tool-specific procedures, and also contains a very
important procedure algol60_target_compile, which binds GCC-specific side of test suite to
dejagnu back end.

Second, testsuite/lib/algol60-dg.exp support file. This file is included as a library by
various test suites that you can have. A L G O L 60 only has one test suite, but that doesn't
have to be the case. The important thing is, this file is tool-specific. This file abstracts
away from G C C part of the suite, so that you only have to sync implementation on one
place when porting test suites.

Third, the directory testsuite/algol60.dg/ itself. The name of this directory has to match
the name of your checking target. I named my check-algol60, and directory is named
accordingly. The directory contains a script testsuite/algol60.dg/dg.exp, which is test suite
driver. Basically what it does is that it iterates through all the test cases matching glob
*.a60, and runtest each of them.

7.5.3 Test Directives

By now we have developed a suite of scripts that checks that each test case passes, but
what's inside the test cases themselves?

Each test case is just a source file written in a language of tested front end, which
is A L G O L 60 in my case. The file contains dejagnu directives, a meta-information that
describes what to do with the test (i.e. compile, run, . . .) , and what output to expect
(particular error messages, output of test run, . . .) . The exact nature of the directives will
be best seen on an example:

comment { dg-do compile } ;
begin

integer a;
real b;
a := 4.5; comment { dg-error "type mismatch" } ;
b := 'ahoy'; comment { dg-error "type mismatch" } ;

end;

The first directive specifies that the test should be compiled. The following two di
rectives specify that the "type mismatch" error should appear on the line, on which the
directive appears. The test fails should the error not appear, or should it be different error,
and passes if the error message is matched.

There are many other directives, e.g. for capturing output of the test that was com
piled and run, for marking the test case as expected to fail, to limit the test to certain
architectures, etc. The full list is available in [3] 1 .

The directive processing tool expects the diagnostic messages to be in certain format,
namely the traditional file:line[:column]: severity: description. If your front end provides
e.g. more verbose, or differently formatted messages, you have to re-wrap them to suit
expectations. Have a look at testsuite/lib/gfortran-dg.exp if you are interested in that.

x

http://gcc.gnu.org/onlinedocs/gccint/Test-Directives.html

http://gcc.gnu.org/onlinedocs/gccint/Test-Directives.html

Chapter 8

Conclusions

1. A minimal front end and its integration into G C C build system is described in this
work. A l l files that the front end is comprised of are thoroughly examined, and
pitfalls mentioned. Several tips are provided on connecting such minimal front end
with preexisting language parser.

2. A n implementation of A L G O L 60 compiler is described, including the way various
A L G O L constructs are translated to G C C ' s G E N E R I C intermediate language.

3. Interfaces and services of G C C itself, such as parsing command line arguments, com
pilation of runtime library, etc., are also described, with real world examples taken
from the A L G O L 60 front end.

4. The conclusion: G C C should be considered as a viable alternative to other back
end solutions, especially as an alternative to emitting a C code. In general, G C C is
very attractive target for a lot of compiler-related research. It's open development
cycle makes up for great test bed: be it a new radical systems language, be it new
optimization technique, new hardware platform in development, G C C should be in
the loop.

8.1 The Summary of Contributions

This thesis is synthetic in nature. Information were taken from various sources, be it other
work of documentation, spoken word, a question over an email, or investigation of source
code. This very synthesis is sole contribution of the author: no other work exists, that
provides continuous explanation of this detail on the topic.

8.2 Future Research

This thesis describes odds and ends of the integration of the parser into G C C . There was
a lot of ground to cover, G C C is big software project with a lot of facets. Some topics
were left insufficiently explained, and certainly not everything was at least touched. For
example, G C C has native support for OpenMP, a parallel language, that is about to become
very interesting in years to come; it can handle classes, and object oriented programming
in general, an area that already is very interesting; it allows for direct inclusion of inline
assembly. This thesis describes none of these topics.

52

Bibliography

[1] J . W . Backus, F . L . Bauer, J . Green, C. Katz, J . McCarthy, A . J . Perlis, H . Rutishauser,
K . Samelson, B . Vauquois, J . H . Wegstein, A . van Wijngaarden, and M . Woodger.
Revised report on the algorithm language algol 60. Commun. ACM, 6(1):1—17, 1963.

[2] Intel Corporation. Intel®itanium(R)architecture software developer's manual.

[3] Free Software Foundation. Gcc internals manual. This electronic document is available
online at http://gcc.gnu.org/onlinedocs/gccint/.

[4] Free Software Foundation. Gcc manual. This electronic document is available online at
http://gcc.gnu.org/onlinedocs/gcc/.

[5] Jason Merill . Generic and gimple: A new tree representation for entire functions. In
Proceedings of the 2003 GCC Developers' Summit, pages 171-180, May 2003.

[6] Diego Novillo. Gcc-an architectural overview, current status, and future directions. In
Proceedings of the 2006 Linux Symposium, Volume Two, pages 185-200, 2006.

[7] Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003.

[8] Tom Tromey. Writing a gcc front end. Linux J., 2005(133):5, 2005.

53

http://gcc.gnu.org/onlinedocs/gccint/
http://gcc.gnu.org/onlinedocs/gcc/

Appendix: The A L G O L 60 Compiler

Requirements

The A L G O L 60 G C C front end has following build requirements:

• G C C 4.2.x with resolved dependencies. G C C 4.1.x or earlier will N O T work 1. You
will need either complete G C C package (e.g. gcc-4.2.0.tar.bz2), or core package and
test suite (e.g. gcc-core-4.2.0.tar.bz2 and gcc-testsuite-4.2.0.tar.bz2).

• Flex 2.5.31 or newer. Warning: this is a newer version than what G C C requires.

• Bison 2.3 or newer.

• Iibga60 wraps around target-native libc and libm, which have to be available on target
site.

Supported Arches

As of this writing, gcc-algol was successfully compiled and test suite passed on systems with
following triplets:

• i686-pc-linux-gnu

• ia64-unknwon-linux-gnu

• mips-sgi-irix6.5

This is quite diverse set of arches: little and big endians, 32 and 64 bits, two unrelated
operating systems, though no really obscure system. This illustrates that the front end is
probably written in enough hardware and OS independent way to be readily portable.

Bui ld Process

Only a straight build (i.e. no Canadian Crosses) is supported at the moment. (Or at least
tested. Chances are the compiler will work also for non-native setups.) First, prepare a
source tree:

1gcc-algol uses few functions that were only introduced in G C C 4.2.x. Their number is not high, and
the dependence is certainly for no fundamental reason. M y guess is gcc-algol could be ported to G C C 4.1.x
with a bit of effort.

54

$ Is
gcc-4.2.0. tar. bz2 gcc-algol60-0.2. tar. bz2
$ tar xjf gcc-4.2.0.tar.bz2
$ pushd gcc-4.2.0
$ tar xjf ../gcc-algol60-0.3.tar.bz2
$ patch - p i < gcc-4.2.0-toplevel.patch
patching file configure
patching file Makefile, in
patching file Makefile.def
$ popd

Then prepare for the build:

$ mkdir build-4.2.0
$ cd build-4.2.0
$../gcc-4.2.0/configure - p r e f i x = ' p w d 7 - - / i n s t - 4 - 2 - 0 / \

—enable-version-specific-runtime-libs \
—enable-languages=c,algol60 \
—disable-werror

The —disable-werror part is unfortunate, but necessary: the parser and lexer .c files,
generated from yacc and flex respectively, currently generate a lot of warnings.

Finally, do a build itself:

$ gmake -j 4
...lots of output...
gmake[l]: Leaving directory '/tmp/'build-4.2.0'

(The -j constant determines how many parallel processes make should launch. You will
want to adjust this value depending on number of CPUs or cores of your computer.)

You can test G C C as a whole with gmake check, or just A L G O L 60 front end with gmake
-C gcc check-algol60. If you so wish, you can install the front end with gmake install, it will
end up in configured —prefix directory.

Using gcc-algol
From now on, you can use it as an ordinary G C C command 2:

$ which ga60-4.2.0
/tmp/inst-4.2.0/bin/ga60-4.2.0
$ ga60-4.2.0 -version | head -n 1
ga60-4.2.0 (GCC) 4.2.0
$ cat foo.a60
'begin' puts('Yay, it works!'); 'end';
$ ga60-4.2.0 foo.a60 -o x
$. /x
Yay, it works!

2 Actual ly , in the case as illustrated, the compiler would likely end up in a directory outside P A T H and
L D . L I B R A R Y . P A T H . You may need to adjust these variables.

#if !defined(_ALG0L60_) II !defined(USK)

error That does not compute.

#else

'begin'

/* funky C-like comment */

include "y.ALG"

'end';

#endif

Figure 8.1: Preprocessing: Example file x . A L G

'string' a;

Figure 8.2: Preprocessing: Example file y . A L G

Let's have a look at the compiled binary:

$ readelf-a x | grep N E E D E D

0x0000000000000001 (NEEDED) Shared library: [Iibga60.so.lj
0x0000000000000001 (NEEDED) Shared library: [libm.so.6.1]
0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

The binary itself depends on libm and libc. These dependencies are injected into the
binary by the linking hook lang_specific_driver. If we link the binary with gcc driver, our
hook will not be called, and only libc will be linked in:

$ gcc-4.2.0 x.a60 -o x -Iga60
$ readelf-a x | grep N E E D E D
0x0000000000000001 (NEEDED) Shared library: [Iibga60.so.l]
0x0000000000000001 (NEEDED) Shared library: [libc.so.6.1]

Under current setup, where all A L G O L 60 services are provided by shared Iibga60, ex
plicit dependence on libm is unnecessary, and even wrong—Iibga60 itself should have these
dependencies (and has!). However, Iibga60 doesn't have to be shared, and in that case libm
has to be brought in explicitly.

gcc-algol uses a preprocessor, and understands traditional preprocessing directives. The
preprocessor is not run by default, only when the file extension is .A60 or .ALG (i.e. upper
case). For example, let's have the two files as shown on figures 8.1 and 8.2.

$ ga60-4.2.0 . / x . A L G
./x.ALG:2: error: #error That does not compute.
$ ga60-4.2.0 - D U S K . / x . A L G
./y.ALG.l: error: type 'string' is invalid in this context.
$ ga60-4.2.0 - D U S K - M . / x . A L G
x.o: x.ALG y.ALG
$ ga60-4.2.0 - D U S K - E . / x . A L G

http://Iibga60.so.lj

1 "./x.ALG"
1 "<built-in>"
... more preprocessed output

The errors at the first and second commands are intentional. The first is here to display
that it's possible to pass in your own defines. The second shows that gcc-algol correctly
tracks files and line numbers: even though the erroneous line appears as twelfth line of
preprocessed output, error message is located properly.

Finally, let's look that the binary supports debugging:

$ cat foo.a60
'begin'

puts ('ahoy');
exit (9);

'end'
$ ga60-4.2.0 foo.a60 -o x -ggdb3
$ gdb -q . /x
(gdb) break main
Breakpoint 1 at 0x804846a: file foo.a60, line 2.
(gdb) run
Starting program: /tmp/x
Breakpoint 1, main () at foo.a60:2
2 puts ('ahoy');
(gdb) cont
Continuing.
ahoy
Program exited with code 010.

