
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FRAMEWORK FOR A WEB INTERNET SERVICE IM
PLEMENTED IN GOOGLE CLOUD PLATFORM
FRAMEWORK PRO PLACENOU INTERNETOVOU SLUŽBU V PROSTŘEDÍ GOOGLE CLOUD

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ANDREI ROSHKA
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN HRUBÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification
25187

Student: Roshka Andrei
Programme: Information Technology
Title: Framework for a Web Internet Service Implemented in Google Cloud

Platform
Category: Web
Assignment:

1. Study literature about program containerization. Learn about programming of web
applications. Learn about Google Cloud Platform (GCP).

2. Design a web interface for remote execution of containers (from Docker) as an Internet
service. Design a framework for administration of users of this service and ways how to
monetize the service. All design must be compliant to GCP, i. e. authentization of users,
deployment via Cloud Run, Kubernetes etc.

3. Implement the service with a demonstration container. Deploy the service on GCP.
4. Test the service using a simulated traffic.

Recommended literature:
• Documentation of Docker.
• Documentation of Google Cloud Platform.

Requirements for the first semester:
• First two points of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Hruby Martin, Ing., Ph.D.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: April 13, 2022

Bachelor's Thesis Specification/25187/2021/xroshkOO Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
This thesis aims to design and implement a framework for a paid internet service and deploy
it to the cloud services provided by the Google Cloud Platform with the lowest operation
price. The resulting architecture is serverless, so it uses Firebase services such as Firestore
NoSQL database, Firebase Storage, and Firebase Authentication. The solution is written in
TypeScript and consists of two main parts - the front-end application and the worker, which
processes computational tasks. React is used to build component-based UI for the front-
end, forming a solid foundation with Redux for centralized application state management.
As a server for the front-end, Nginx is used. The worker is based on the Node.js back-end
JavaScript runtime environment. The application is successfully deployed to the Cloud Run
as a set of Docker containers using a C I / C D pipeline built on Cloud Build.

Abstrakt
Cílem této bakalářské práce je navrhnout a naimplementovat rámcové řešení pro placenou
internetovou službu a nasadit ho na cloudové služby poskytované Google Cloud Platform s
nejnižší provozní cenou. Výsledná architektura je serverless a používá služby Firebase jako
Firestore NoSQL databáze, Firebase Storage a Firebase Authentication. Řešení je psáno
v jazyce TypeScript a skládá se ze dvou hlavních části - front-end aplikace a pracovního
procesu, který zpracovává výpočetní úlohy. React se používá k vytvoření uživatelského
rozhraní založeného na komponentách spolu s Reduxem pro centralizovanou správu stavu
aplikací. Jako server pro front-end se používá Nginx. Pracovní proces je postaven na
Node.js - serverovém prostředí pro JavaScript. Aplikace je úspěšně nasazena do servisy
Cloud Run jako sada Docker kontejneru za použitím C I / C D pipeliny postavené na Cloud
Build.

Keywords
Web, React, Node.js, Nginx, framework, cloud-based web application, Google Cloud Plat
form, Cloud Run, Firebase, Firestore, Cloud Storage, Docker, on-demand computing.

Klíčová slova
Web, React, Node.js, Nginx, framework, cloudová webová aplikace, Google Cloud Platform,
Cloud Run, Firebase, Firestore, Cloud Storage, Docker, on-demand computing.

Reference
R O S H K A , Andrei. Framework for a Web Internet Service Implemented in Google Cloud
Platform. Brno, 2022. Bachelor's thesis. Brno University of Technology, Faculty of Infor
mation Technology. Supervisor Ing. Martin Hruby, Ph.D.

Rozšířený abstrakt
Tato bakalářská práce se zabývá návrhem a implementací rámcového řešení pro placenou in
ternetovou službu do cloudového prostředí Google Cloud Platform se zaměřením na nejnižší
cenu provozu. Dnes stále více aplikací migruje na cloudová řešení. Aplikace přecházejí z
monolitické architektury na mikroslužby, protože je to snazší na rozdělení práce mezi týmy
a udržování. Takové mikroslužby obvykle běží uvnitř kontejnerů Docker. Vznik kontejnerů
Docker v roce 2013 byl obrovským krokem v technologiích kontejnerizace. Zmírnil křivku
učení kontejnerizace a přinesl j i širší veřejnosti. Kromě toho, Docker kontejnery představily
významná vylepšení ve srovnání s možnostmi Linux Containers (LXC) , což je zabalení ap
likace a všech její závislostí ve virtuálním kontejneru, který může běžet na mnoha různých
platformách.

Aplikace musí být někde hostování a zde dochází k otázce, jak zefektivnit proces hos
tování. Aplikace může být samozřejmě hostování klasickým způsobem, když běží na fyz
ickém nebo virtuálním soukromém serveru, ale to vyžaduje spoustu ruční konfigurace a
údržby. Často je dokonce nutné mít inženýra nebo dva, kteří se zaměřují pouze na údržbu
a nasazení aplikace do takového prostředí.

Poskytovatele cloudových služeb neboli Cloud Service Providers nabízejí několik možností
pro jejích nasazení. Jedním z nej významnějších hráčů na cloudovém trhu je Google se svou
Google Cloud Platform. Poskytuje mnoho služeb na jiné úrovni abstrakce od základní
infrastruktury, jako jsou virtuální stroje v Cloud Compute, klastry v Kubernetes Engine,
plně zvládnutelné a automaticky škálovatelné výpočetní platformy Cloud Run pro spuštění
kontejnerových služeb a cloudové funkce. Nabízí také mnoho cloudových řešení pro kompo
nenty aplikační infrastruktury, jako jsou databáze, úložiště, monitorování, logování a další.
Ale některé cloudové služby mohou být těžko pochopitelné pro průměrného uživatele, který
chce provést nějaký výpočetní úkol náročný na zdroje na tomto stroji.

Proto některé Internetové služby jsou vyvinuty pro vytvoření další abstrakční vrstvy nad
cloudovými službami k vyřešení problému popsaného výš. Obvykle je to nějaká SaaS (Soft
ware as a Service) služba. Základní struktura placených internetových služeb pro provoz
kontejnerů Docker může být vypracována předem, tím pádem zjednoduší implementaci
takové služby.

V rámci této práci vnikl základní kód pro vývoj, testování a nasazení takové služby.
Zahrnuje knihovnu, která zjednodušuje komunikaci front-end klienta a back-end pracovního
procesu s Firestore databází. Knihovna pro pracovní proces navíc poskytuje mechanismus
pro uzamčení zdroje, který momentálně zpracovává, aby se zabránilo současnému zpracování
jinými možnými instancemi. Díky tomuto mechanismu je možné aplikaci bezpečně škálovat.
Dále se práce zabývá bezpečnostními aspekty implementace služby s použitím Google Cloud
a Firebase produktu, který je postaven na Google Cloud. Tyhle BaaS (Backend as a Service)
služby umožňují postavit serverless aplikace s minimálním úsilím. Rámcové řešení bude
používat tyhle BaaS služby v plné míře a poskytne přehled o postavení aplikace na nich.

Řešení je psáno v jazyce TypeScript a skládá se ze dvou hlavních části - front-end ap
likace a pracovního procesu, který zpracovává výpočetní úlohy. React se používá k vytvoření
uživatelského rozhraní založeného na komponentách spolu s Reduxem pro centralizovanou
správu stavu aplikací. Jako server pro front-end se používá Nginx. Pracovní proces je
postaven na Node.js - serverovém prostředí pro JavaScript. Aplikace je úspěšně nasazena
do servisy Cloud Run jako sada Docker kontejneru za použitím C I / C D pipeliny postavené
na Cloud Build.

Framework for a Web Internet Service Implemented
in Google C l o u d P la t form

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the au
thor under the supervision of Mr . Martin Hruby. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Andrei Roshka
May 11, 2022

Acknowledgements
I would like to acknowledge my supervisor, Ing. Martin Hruby, Ph.D., for his assistance
and guidance that contributed to the creation of this thesis. Throughout my entire studies
at the Brno University of Technology, I have gained valuable knowledge and experience, for
which I thank every teacher I have met during this period.

Finally, my family has been supportive and kind over these three years. I am very
grateful for this.

Contents

1 Introduction 3

2 Key Technologies 5

2.1 Web Applications Programming 5
2.2 Relational and Non-relational Databases 9
2.3 Virtual Machines and Containerization 9
2.4 Cloud Computing 10
2.5 Server less 11

3 Tooling 13

3.1 Docker 13
3.2 TypeScript 14
3.3 Node.js 14
3.4 Used packages 15
3.5 Google Cloud Platform 16
3.6 Firebase 16
3.7 Nginx 17

4 Architecture Design 18

4.1 Service Architecture 18
4.2 Pricing conciderations 20
4.3 Database Structure 22
4.4 Payment System 24

5 Implementation 25

5.1 Preparing Firebase 25
5.2 Client Application 27
5.3 Client library 33
5.4 Worker 35
5.5 Worker library 36
5.6 Firebase 37

6 Deploying Demo Services to the Google Cloud Platform 40

6.1 Storing Containers in Artifact Registry 40
6.2 Deploying Services to Cloud Run 41
6.3 Configuring C I / C D with Cloud Build 42

7 Testing 44

1

8 Conclusion 47

Bibliography 48

A Contents of the included storage media 50

2

Chapter 1

Introduction

Today, more and more web applications migrate to cloud-based solutions. Applications
are being refactored from a monolithic architecture to microservices because it is easier to
maintain and split between different development teams. Such microservices are usually
running inside the Docker containers. Docker containers appearance back in 2013 was a
massive step in containerization technologies. It eased the containerization learning curve
and brought it to a wider public. Moreover, Docker containers introduced significant im
provements compared to Linux Containers capabilities, allowing for the packaging of an
application and all its dependencies in a virtual container that can run on many different
platforms. The application has to be hosted somewhere, and here it comes to the question
of how to make the hosting process more efficient and effortless. Of course, the application
can be hosted in a classical way when it is running on a physical or a virtual private server,
but this requires tons of manual configuration and maintenance. It is often even necessary
to have an engineer or two who focuses only on maintaining and deploying the application
to such an environment.

Cloud Service Providers (CSP) are coming to the rescue bringing the Infrastructure
as a Service, Platfrom as a Service, and serverless solutions for the businesses. It allows
deploying an application to the cloud while not being concerned with the server's security,
OS maintenance, and software updates. One of the most prominent players in the cloud
market is Google with its Google Cloud Platform. It provides many services on a different
level of abstraction from the underlying infrastructure, such as virtual machines in Cloud
Compute, clusters in Kubernetes Engine, fully manageable and automatically scalable com
pute platform Cloud Run for running containerized services, and Cloud Functions. It also
offers many cloud solutions for application infrastructure components such as databases,
storage, monitoring, logging, and more.

Cloud Services might be hard to understand for an average user who wants to perform
some resource-demanding computational task on a machine capable of its demand. Some
additional paid internet services are developed to build an abstraction layer above Cloud
Services to solve this problem. The underlying structure of paid internet services for running
Docker containers can be worked out in advance. It will simplify the implementation of
such a service. This thesis aims to implement a framework for a paid internet service and
deploy it to the Google Cloud Platform with the lowest operation price. It will provide a
boilerplate code for developing, testing, and deploying the service. It includes the library,
which simplifies the communication of the front-end client and the back-end worker with
the database. Moreover, the library for the worker provides a mechanism for locking the
resource that the worker is processing in order to prevent the simultaneous processing by

3

other possible worker instances. Thanks to this mechanism, it is possible to scale the
application safely. Also, the thesis will cover the security aspects of implementing the
service on top of Google Cloud and Firebase product, which is built on top of Google
Cloud.

As a result, I will describe the common aspects of the solution that I have tried to
develop and describe an implementation of a demonstration application. First of all, in
Chapter 2, I will research the key technologies in web development today. Then in Chapter
3, there is an overview of the tools used to implement the application. In Chapter 4 I will
describe the developed architecture model for such an application. Then in Chapter 5, I
will highlight the main aspects of the framework implementation. Then in Chapter 6, I will
provide an overview of my experience in deploying the application. At the end of Chapter
7, I will test a service with simulated traffic.

4

Chapter 2

K e y Technologies

This chapter provides a brief history of Web application programming, an understanding
of the client-server architecture, highlights the best practices and design patterns in Web
application development, and an overview of the most popular frameworks for creating Web
applications today. Also, it introduces the idea of containerization and shows the differences
between containers and virtual machines. Finally, this chapter familiarizes with the cloud
computing concept.

2.1 Web Applications Programming

Nowadays, Web technologies help to build many modern applications. People do not need
to install software on their computers locally anymore. They can create, communicate,
and collaborate online. Even sophisticated programs such as spreadsheets1, 2D graphical
editors2, 3D modeling software3, and even games1 can run in the web browser today.

The Web

C E R N introduced the World Wide Web (Web) in the 1990s as the instrument that allowed
publishing, sharing, accessing, and linking vast amounts of data. Scientists primarily gen
erated this data. It uses the Hyper Text Transfer Protocol (HTTP) as the primary protocol
for transmitting hypermedia documents, primarily written in HyperText Markup Language
(H T M L) . The H T T P is a simple request-reply protocol designed to make a document from
the server computer available on the client computer. Moreover, The Web introduced a
method of naming and referring to the documents that are called Uniformed Resource Lo
cator (URL), thanks to which it is possible to address the documents using names such as
example. com instead of their IP address.

In the beginning, the Web consisted of H T M L documents with static content, and these
documents could also be statically linked to each other. These days, this Web is often
referred to as Web 1.0 2.1. Soon it was clear that the server could execute sophisticated
programs and return their results to the client. That is how the Web evolved into the
so-called Web 2.0. Compared to Web 1.0, Web 2.0 2.2 applications are interactive and
can react to user requests. The Common Gateway Interface (CGI) helped to achieve this

1Google Spreadsheets https://docs.google.com/spreadsheets
2 2D editor Figma https://figma.com
3 3D editor Vectary https://www.vectary.com/
4JavaScript DOS Emulator https://js-dos.com/games/

5

https://docs.google.com/spreadsheets
https://figma.com
https://www.vectary.com/
https://js-dos.com/games/

interactivity. It allowed web servers to execute a script to process user requests. Thanks to
CGI, a developer can configure a server, so it will execute a script on a server when a U R L
is requested. The result is usually inserted directly into the requested document. These
programs were first created in the P E R L interpretive language and then in PHP. [11]

Server-side Client-side

Files

V
Web Server HTTP Request

f >

Browser Files

V \J

w
Pre-created:
HTML

Web Server

HTTP Response — >

f >

Browser

CSS
Javascript
other files

Figure 2.1: Basic static application server diagram https://developer.mozilla.org/en-

US/docs/Learn/Server-side/First_steps/Client-Server_overview

Client-server architecture
A classical Web application today consists of both the client-side and the server-side. [15]
A client-side is essentially a document displayed to a user that is an H T M L page filled
with some data. A user may interact with the document in the browser due to scripts
written in the JavaScript language. These scripts are embedded into an H T M L document.
Thanks to the scripts, an application may interactively react to different events such as user
clicks, mouse movements, and inputs from the keyboard. Also, it is possible to modify the
document right in the browser. Every node in the document, such as a heading, paragraph,
or text inside an H T M L tag, is parsed into a Document Object Model (DOM) - object
representation of an H T M L page - that an embedded script can modify. The server-side is
a script that processes a request. Depending on the specifics of an application, the server-
side may perform authentication and authorization, store and retrieve information from a
database, and perform any tasks that usual software can perform.

The M V C design pattern

From the software engineering point of view, Web applications have the same concept.
A n interactive user interface presents some data to a user and allows them to operate
over this data. In 1979, Trygve Reenskaug introduced the design pattern Model-View-
Controller (M V C) . [22] Over time, that pattern has transformed into different forms. Such
as Model-View-Presenter (MVP) [16], Model-View-ViewModel (M V V M) [24], which is an
M V C pattern with two-way data binding between View and ViewModel which allows au
tomatically propagating changes made in the user interface. However, the main idea has
remained the same, decouple application logic and divide it into several parts, as shown in
figure 2.3.

The view is responsible for presentational logic, i.e., how to present given data to the
user. Its primary purpose is to suppress some parts of the data, which are unnecessary
in the specific case, and highlight the others. The Model is the source of all the data
for the view. Usually, it is a layer between a view and some source, e.g., a database, and

(i

https://developer.mozilla.org/en-

Server-side Client-side

HTML
Templates

Static resources:/' N
• CSS \7J
• Javascript

Images
• other files ©

r Request data:
I • URL encoding
| • GET/POST data
I • Cookies

1_

0

Web Server

©

©
HTTP GET Request

HTTP Response

Browser

HTML
ess

JavaScript

Figure 2.2: Basic dynamic application server diagram https://developer.mozilla.org/

en-US/docs/Learn/Server-side/First_steps/Client-Server_overview

often provides View-specific data. The Controller is responsible for processing the incoming
requests. It is a part that connects the Model and the View. Usually, it passes the data
through the Model and then passes the results to the view.

Application frameworks

There are plenty of frameworks for both client-side and server-side that provide an abstrac
tion layer that makes following best practices and using quality patterns easier. Almost any
language allows writing a server-side back-end. Among them are Ruby, PHP, Java, Python,
and even JavaScript, thanks to the well-known back-end runtime environment Node.js dis
cussed later in Chapter 3. It is usual to follow the M V C pattern for such frameworks, as
mentioned before. Server-side frameworks provide a convenient way to work with requests,
e.g., fill particular structures with data collected from a request, authenticate and authorize
users, and perform routing. There are also Object-Relational Mapping (ORM) frameworks
that provide a better experience working with databases. Using such a framework improves
code readability by converting relational data from the database with the entity objects. It
also reduces the potential errors in an SQL code and the risk of SQL injections.

As for client applications, there are also many frameworks for implementing user inter
faces, such as Angular, React, Svetle, and Vue.

AJAX

Asynchronous JavaScript and X M L or A J A X is a model of updating the content in web
applications without the need to reload the whole page. A J A X makes the application faster
and more responsive to user actions. It uses the XMLHttpRequest object to communicate
with the server. Various formats such as H T M L , X M L , JSON, and plain text can be used
to communicate. Two things that define A J A X are the ability to make requests to the
server without reloading the page and receive the data from the server to work with it.

7

https://developer.mozilla.org/

Model
Defines data structure

e.g. updates application to reflect
added item

Updates /
e.g. list item to show added item /

/
V

\ Manipulates

View
Defines display (Ul)

e.g. user clicks 'add to cart'

Sends input from user

Controller
Contains control logic

e.g. receives update from view
then notifies model to 'add item'

View
Defines display (Ul)

e.g. user clicks 'add to cart'

Controller
Contains control logic

e.g. receives update from view
then notifies model to 'add item'

View
Defines display (Ul)

e.g. user clicks 'add to cart'
Sometimes updates directly

Controller
Contains control logic

e.g. receives update from view
then notifies model to 'add item'

Figure 2.3: Model-View-Controller diagram https://developer.mozilla.org/en-US/

docs/Glossary/MVC

Release web application

In the case of a classical desktop application, it is necessary to notify users about the new
version of the software and distribute it. In the case of a Web application, there is only one
copy of the application on the server. Users access it through the browser every time they
get the newest version of the software. Unlike the classical desktop application, which is
released once every several months or even years, it is common to deliver new versions of
Web applications several times a day. [11]

Deploy web application

In order to run, a Web application must be deployed on a server machine running some
server software. The most common options are Apache Server or N G I N X Server. Both
of them are open source. As for a database, standard options are open-source relational
database management systems MySQL and PostgreSQL and document-oriented MongoDB.

[11]

8

https://developer.mozilla.org/en-US/

2.2 Relational and Non-relational Databases

Applications of every size require some persistent data storage. It is necessary to choose
between two main types: relational (SQL) and Non-relational (NoSQL or not only SQL)
databases. The classical and still relevant approach is to use a relational database model,
which has a quite rigid schema. That schema must be created ahead of time before data
is uploaded. Changing the schema of databases is complex, especially when the database
is partitioned between numerous servers. Oppositely, a non-relational database „addresses
several issues that the relational model is not designed to address, like large volumes of
structured, semi-structured structured and unstructured data, agile sprints, quick iteration,
frequent code pushes, object-oriented programming, efficiency, monolithic architecture and
so on" [9].

Data is stored in columns and rows according to the table schema in a relational
database. In a non-relational database, data is stored either in documents, graphs, col
umn family stores, or key-value pairs. Of course, it introduces additional code overhead
with data checking, but on the other hand, document-based databases are more flexible
and fast. [9]

2.3 Vi r tua l Machines and Containerization

Even though Web applications have many benefits, it is still a piece of software that demands
configured executive environment and dependencies to run. It is a common problem when an
application is developed on a local machine without problems during its execution. However,
errors occur due to incorrect configuration or libraries' absence when the application is
pushed to a production environment. That is why there is a requirement for a technology
that will help avoid these problems, and software engineers will be able to predict how
the software will behave on any machine. Virtualization and containerization can help to
achieve this. This subchapter has been adopted from [26].

Virtual machines

There are several ways in that applications can run. The most traditional way is to have
a dedicated physical server that will run server software. A server is an entire physical
machine reserved for running one particular application in such a case. That is not very
efficient since the machine resources are underutilized at every moment. Moreover, if this
machine is used to run more applications, some may need different versions of the same
libraries. It is possible to achieve, but such a setup will be complex in maintenance and
updating.

Another option is to run the application on the Virtual Machine (VM) . V M is software
that emulates a process of an actual computer with an Operating System (OS) on it. [1] It
is run on a real machine, and one such machine can have several V M instances on it. The
only limiter here is machine resources which are distributed between V M instances. Also,
V M instances may be distributed between different machines thanks to Hypervisor, which
creates and runs V M s . In the case of V M s , a whole OS comes packed with the software. It
requires more resources and memory than needed for running the software.

9

Containerization
Containers is a lightweight virtual machine alternative. It removes performance overheads
of V M s by sharing the same OS kernel. The first idea lying behind containers is the U N I X
chroot, which appeared in 1979. The chroot changes a root directory for a process and its
children. Such a process cannot refer to the directories outside the specified root, which
isolates software, and introduces abilities for better dependencies control and security. Then
in 2000, FreeBSD jails were introduced. It is a mechanism that allows separating OS into
several virtual environments sharing the same kernel. It introduced another level of security
and allowed the creation of a superuser in each jail , in contrast, to chroot that was quickly
breakable by the user with privileged access. In 2005 Solaris company developed Solaris
Containers „to provide OS and hardware-level abstractions to isolate applications from
P M in terms of applications, device paths, and network interface names." The following
important virtualization technology was introduced in 2008: Linux Containers (L X C) . It
brought two essential mechanisms to the world of containers. The first one, cgroups, allows
partitioning groups of processes and limits memory, C P U , block input/output, and network
resources for each group, i.e., container. The second one, namespaces, allows customizing
view of the system resources for namespaces with which processes are associated.

In oppose to V M , in the container, the software is packed into a so-called image with
its executives, libraries, and dependencies ready to start. The main difference between
containers and V M s is that containers do not contain the entire OS inside and run directly
above the host machine OS with the help of the containerization system engine, as shown
in the figure 2.4.

Container ized Appl icat ions

Host Operat ing System

Virtual Machine

Guest
Operating

System

Virtual Machine

Guest
Operating

System

Virtual Machine

Guest
Operating

System

Figure 2.4: Comparison of Virtual Machine and Containers https://www.docker.com/
resources/what-container/

2.4 Cloud Computing

Today there is no need to own an actual machine to host a server or database, run V M
on it, or organize data storage. This can be done on the remote machines provisioned
and maintained by the Cloud Service Provider (CSP). Cloud computing is a model of on-
demand access to computing resources remotely over the Internet. These resources are
storage, servers, services, networking and security tools, and applications. The resources

10

https://www.docker.com/

are dynamically utilized from the shared pool of resources. CSP provides the facilities for
utilizing the resources to the customer.

The distinctive feature of cloud computing is billing on a per-usage basis. Such billing
implies measuring the usage of the resources. For instance, the count of requests to a server,
transmitted bytes, or the number of retrieved documents from the storage. This subchapter
has been adopted from [18].

There are several computing models provided by CSPs:

Infrastructure as a Service (IaaS)

In this model, virtualized computer resources such as C P U , R A M , OS, and Application
software are provided in the cloud. It can be dynamically provisioned for the customer,
released, and scaled according to their needs at any time. One of the main benefits is that
the customer gains access to enterprise-grade IT resources and infrastructure. Examples of
the IaaS are Amazon Web Services (AWS), Google Compute Engine (GCE) , and Microsoft
Azure.

Platform as a Service (PaaS)

PaaS is a more advanced cloud computing service. CSP provides and maintains both OS
and the software necessary to run customers' applications in this model. Customers are
charged for access to the platforms where they can host their applications. CSP undertakes
the duty of upgrading and maintaining the software. This way, customers are not obliged
to own either hardware or software. Examples are AWS Elastic Beanstalk, Google App
Engine, and Heroku.

Software as a Service (SaaS)

In this model, CSP develops, runs, and maintains application software. It provides access to
the application through a web-based interface, i.e., customers can use its services through
the browser from any device. The model advantage is that customer does not need to
buy a license, upgrade, or maintain the software. The SaaS services are efficient, easily
configurable, and scalable. Examples of SaaS solutions are Gmail, Dropbox, and Zoom.

2.5 Serverless

According to the source, [23], "Serverless is a cloud-native development model that allows
developers to build and run applications without having to manage servers". It is another
abstraction layer above the PaaS model, in which the CSP undertakes not only resource
provisioning and maintaining the software but also scaling the server infrastructure. In
contrast to the IaaS cloud computing model, serverless infrastructure is running only when
the application is active, e.g., got the H T T P request. It is the CSP's responsibility to scale
the infrastructure when the application is under a higher load.

Back-end as a Service (BaaS)

BaaS provides access to third-party services such as authentication services, cloud-based
databases, push notifications, and hosting. Developers do not really know how the service
works under the hood but only use the public A P I to build an application.

11

Cloud service models

Figure 2.5: Hierarchy of cloud service models https://www.stackscale.com/blog/cloud-
service-models/

Function as a Service (FaaS)

Unlike BaaS, FaaS gives the developer much more control over the logic of an application.
Developers write the code for functions that will run in the containers fully managed by
a cloud provider. FaaS is an event-driven cloud computing model, so it is executed on
demand.

12

https://www.stackscale.com/blog/cloud-

Chapter 3

Tooling

This chapter will describe the tools I used to create the framework for the paid internet
service.

3.1 Docker

Docker is written in the Go programming language and uses benefits provided by L X C (a
reference to L X C) in particular namespaces and cgroups, to create an isolated workspace.
Docker is an open platform for developing, shipping, and running applications. It allows
bundling and executing a program with dependencies in a container, a loosely separated
environment. Thanks to isolation and security, it is possible to run several containers on
the same host simultaneously. Containers are lightweight and include everything needed
for running an application, so users do not have to rely on what is already installed on the
host. [4]

Architecture

The heart of Docker is Docker Engine, which uses the client-server architecture to work.
There is a daemon called dockerd (server), which is a long-run process that manages
containers. A user can communicate with it through Application Programming Interface
(API) using docker (client) Command Line Interface (CLI).

Docker daemon

Docker daemon is a long-running process that manages the containers. Users interact with
it primarily using Docker C L I . Docker daemon does all the hard work, meaning building,
running, and pushing containers to the registry. It listens for Docker A P I requests and
manages images, containers, networks, and volumes. To manage Docker services, it can
also communicate with other Daemons.

Docker CLI

Docker client is the primary way to interact with the Docker daemon. When a user executes
commands for building, running, pushing, and performing other operations over containers,
it sends commands to the Docker daemon.

13

Registry
Docker registry is the storage for Docker images. For example, there is an official Docker
registry called Docker Hub.

Images

A Docker image is a template with the instructions for creating a container. It may be
based on other images and customized as needed. Users can assemble their images and use
other publicly available images. Most popular software usually has its images provided by
official developers through Docker Hub.

In order to build an image, build commands should be described in a Dockerfile with
a simple syntax. Every instruction creates an additional cached layer. The rebuild of the
layer occurs only when necessary.

Containers

A container is a sandboxed process, i.e., isolated from other processes on the host ma
chine. It is a runnable instance of an image. It is possible to connect it to a network and
attach storage. Also, a developer can create an image from its current state. Initially,
containers are strongly isolated from the host machine and other containers, but it is easily
configurable. More on containers can be found in Containerization 2.3 section.

3.2 TypeScript

Typescript is an open-source superset of the JavaScript language that extends it allowing
static type checking. TypeScript increases code quality and readability, allowing scale
applications more efficiently with all benefits of both statically-typed and dynamically-
typed languages.

Type checking is done using variable type annotations. It can be skipped sometimes,
for example, when the TypeScript can infer a variable type from a value assigned to it using
its inferring mechanism. TypeScript compiles to the plain JavaScript for a production run.
TypeScript can catch type errors at runtime and during the compilation process. [25]

3.3 Node.js

Node.js is an open-source, cross-platform JavaScript runtime designed to create network ap
plications. It is built on Chrome's V8 engine and can be executed at the back-end. Node.js
is asynchronous and event-driven, so it is easier to write Node.js applications than thread-
based applications because no thread management is needed. Asynchronous applications
use callbacks to notify about task execution results. Except for synchronous operations
from the standard library, most operations are not blocked. [13]

Node Package Manager

Node Package Manager (npm) is a JavaScript package manager with millions of open-
source packages. Many packages contain Node modules and can be easily used in Node
application development. A typical npm package consists of the source code and metadata

14

about the package stored in the file called package. j son. It represents a module and stores
information about its dependencies, entry file, and other metadata. [14]

3.4 Used packages

React
React is an open-source JavaScript framework for building User Interfaces (UI) created and
maintained by Meta 1 and its community. The framework uses a component-based approach.
Thus it is highly scalable and allows to keep the codebase logically divided. Since React
is declarative, it drives all the work of updating and re-rendering the components, making
the implementation of the interfaces much more effortless. [19]

JavaScript syntax extension

Moreover, React provides an extension called JavaScript Syntax Extension (JSX) that
makes writing components more straightforward and more convenient. This extension al
lows inserting components H T M L right in the JavaScript or TypeScript code. As a result,
the code written on plain JS looks like this: [19]

const element = React.createElement("hi", null, "Hello, world!");

With J S X can be written as:

const element = <hl>Hello, world!</hl>;

React Router

React Router is a library for both client-side and server-side routing. It provides a con
venient way to manage application routes on the client-side. In my thesis, it is used for
client-side routing. [20]

Redux Toolkit

Redux is a state container for JavaScript applications. It brings the centralized state to
the application, which allows to manage the data in the application conveniently. Redux
Toolkit provides a layer above the Redux with the good defaults and the most commonly
used Redux addons such as asynchronous thunk middleware built-in. [21]

Webpack

Webpack is a highly configurable module bundler. Initially, it bundles only JavaScript
modules, but with plenty of plugins and loaders, it may also bundle the assets such as
H T M L , CSS, and the images.

Mocha

Mocha is a simple test library providing convenient tools for asynchronous application
testing. It provides an ability to define test suites, hooks, and individual tests.

1Former Facebook.

15

3.5 Google Cloud Platform

Google Cloud Platform (GCP) is a set of cloud computing services supplied by Google. It
is built on the same infrastructure that Google uses for its own SaaS 2.4 products such
as Google Mai l , Google Docs, Google Drive, and others. Google Cloud Platform provides
IaaS, PaaS, and serverless computing opportunities.

Resources are assigned on a per-project basis. Every account on G C P can have multiple
projects under control. Users can add editors and give them relevant, granular privileges:
whether it is a project resource control permissions or access to the billing of the particular
V M . Also, it allows the creation of service accounts, a special kind of account used by
applications rather than people. Its permissions are also can be configured similarly. [18]

Almost all Google Cloud products are bound to particular regions and zone within
the region. The zone is the so-called regional failure domain. It represents an underlying
structure of physical resources, and zonal outages can affect some or all of the resources
in the zone. A developer can choose where to locate services. Service price, latency, and
availability depend on the location. In the work europe region was used to have minimal
latency in Europe. [8]

Google Cloud Run

Google Cloud Run is a G C P service for running containerized applications. It provides a
convenient Web user interface for setting up and deploying the container images in a few
clicks.

Google Artifact Registry

In order to deploy a container image, it needs to be uploaded to a registry. Google provides
the Artifact Registry service, which allows the creation of repositories for different artifacts
and using them inside G C P infrastructure. Among available Artifact repository formats
are Docker containers, Maven artifacts, npm, and Python packages.

3.6 Firebase

Firebase is an app development platform developed by Google. It provides tools such as
authentication, non-relational databases, file storage, hosting, serverless cloud functions,
and machine learning.

Firebase CLI

Firebase command-line interface provides tools for managing, configuring, and deploying
Firebase projects. It also introduces an ability to download and run emulators of the
almost entire Firebase infrastructure, including services such as Firestore, Storage, Realtime
Database, Authentication, Functions, and more. [5]

Authentication

Firebase Authentication provides back-end services for user authentication. Authentication
is performed with minimal effort from the developer side. It is enough to use the convenient
SDK provided by Firebase. Users can be identified using a password, phone number, or

16

multiple popular identity providers such as Google, Facebook, and Twitter. Moreover,
Firebase Authentication seamlessly integrates with other Firebase services.

Firestore Database

Firestore Database is a real-time, non-relational (NoSQL) 2.2 cloud database. Unlike clas
sical relational databases, data in this database is not stored in columns and rows but
rather in the documents. Documents have a structure similar to JavaScript Object Nota
tion (JSON) format with some extensions, e.g., in the case of Firestore Database, these
extensions are map, timestamp, geopoint, and reference data types. The top-level data
in Firestore Database is organized into collections. The collection itself does not hold the
actual data, but it consists of documents. Documents contain fields mapping to values.
The values can be either usual data types or nested collections. Data from the database is
retrieved using the flexible querying system provided by SDK.

Storage

Firebase Storage is a cloud storage solution based on Google Cloud Storage. It is an object
storage service that enables securely storing files in the cloud. Storage uses buckets for
organizing and controlling access to data. A bucket is a primary container that holds
files and directories but not other buckets. Files in the Firebase Storage are immutable,
meaning that uploaded files cannot be modified later but can be replaced. Underneath, it
uses Google Cloud Storage, which makes the buckets accessible from either of the services.
Objects are individual pieces of data accompanied by object metadata specified by the user.
Metadata is just a collection of key-value pairs.

3.7 Nginx

Nginx is an open-source web server that is one of the most popular on the market. It is
very lightweight and fast. Also, it offers the functionality of reverse proxy, load balancer,
mail proxy, and H T T P cache. [12]

17

Chapter 4

Architecture Design

This chapter describes service architecture design. First of all, it justifies the chosen tech
nologies according to the thesis purpose. The purpose is to deploy an application with as
low a cost as possible of running and storing the necessary resources. Then, it reviews
the pricing of the chosen technologies and configuration considerations. It also covers user
interaction with the service.

4.1 Service Architecture

Considering the service will run on the G C P , there is a broad functionality of the cloud
services available. I analyzed possible solutions for running such a service in the cloud. The
serverless architecture 2.5 approach was used. I identified cloud services that will be used
in the solution.

Database

For a database NoSQL solution Cloud Firestore 3.6 was chosen. Its flexibility allows the
creation of applications to be easier and faster. Also, it has natively implemented real-time
updates notifications, which not only allows to provide a good user experience but also
serves as an essential feature on top of which the workers could be implemented.

Storage

As for storage, object Firebase Storage 3.6 was picked. It offers convenient data access and
different storage classes which could be potentially used for archiving older data, which
minimizes costs.

Authentication

Firebase Authentication is a perfect cloud-based solution for the purpose of the application.
It allows authenticating a user via multiple methods, as was mentioned in the section 3.6,
catching up quickly with the rest of the services provided by Firebase. For example, it is
actively used when defining the security rules for the Firestore and Firebase Storage.

18

Container images deployment
Then I had to decide which service to use to run the containers on the G C P . In general,
there are several options:

• Compute Engine V M instance

• Google Kubernetes Engine (GKE)

• Cloud Run

Since the aim is to deploy a loosely coupled, scalable serverless application, Compute
Engine V M instance was not a good option. The biggest con is that Compute Engine V M
requires much manual configuration of the OS to run the containers. For example, it is
essential to install Docker on it and implement a monitoring system for the containers or
integrate it into them. When the new version of the application is out, updating the images
on the V M is complicated. It is necessary to SSH into it, pull the latest images or changes
from a repository with the source code and build it, and then manually start the updated
versions.

Instead, G C P provides more convenient ways to deploy and run the containers such as
G K E and Cloud Run. G K E is a powerful tool for deploying Kubernetes clusters to the
cloud. Kubernetes is an orchestration tool for containerized applications. Unlike Compute
Engine V M , in G K E , developers do not need to maintain the V M s used by Kubernetes and
the software itself. Kubernetes seemed like a convenient choice for the application since
it does all the job of deploying changes to production without downtime, managing and
scaling the application containers and clusters, resource balancing, networking, and traffic
management. Nevertheless, G K E clusters require a lot of configuration and maintenance,
and it is not worth using them for this small application.

In this case, an ideal tool to use is Cloud Run. It is a fully managed serverless platform
that allows creating services and deploying container images quickly and easily. Also, it
provides configurations to control service scalability. It is enough to specify the desired
image from Artifact Registry and perform basic configuration.

As a result, I came up with the model shown in figure 4.1.

Client application server

In the figure 4.1 on the right side, there is a service that represents the client application
server. The client-server is very simple and is only serving the static client files since routing
can be done on the client-side using React Router 3.4. The client application will be sent to
the user's browser and perform calls to the different Firebase APIs. By virtue of serverless
architecture, all other checks and validations usually performed by a server will happen in
the cloud, and therefore no additional A P I exposed to the application is needed. The client
service will be deployed as a separate service to the Cloud Run.

Worker

In the figure 4.1 in the bottom, there is a stack of workers. A worker is an application
that will be listening to the database updates. It is on the worker which tasks it is able to
process. It is assumed that each worker has responsibility for performing only one type of
task, so it could be potentially scaled in the cloud when the CSP detects a spike in C P U

19

• A p p C l i e n t O O O

< < ^ h t t p s : / / w w w . a p p . c o m < \ W Cloud Run
/ ^ App Server
\ W Cloud Run
/ ^ App Server

Firestore C O Cloud
1 1

Storage
Firebase

Authentication

Cloud Run
Worker

Listens to upates in a Database.
Processing tasks communicating
with Storage and Database

Figure 4.1: Service architecture

and memory consumption. The type of tasks it is processing will fetch the tasks from the
database and/or storage to process them. Since several instances of the worker might be
running simultaneously, the worker must lock the task and only then process it. Otherwise,
other instances can start to process it too, and as a result, the task will be processed twice.
The desired lock is similar to the mutex in Linux, which is used to lock shared resources in
multithreaded programming to avoid inconsistency. The aspects of the implementation of
the lock will be covered in the section 5.5.

4.2 Pric ing conciderations

Artifact Registry
To at-rest stored images, Cloud Storage pricing is applied in the repository. Nonetheless,
Artifact pricing also consists of network egress. While ingress is free, egress pricing is based
on the premium network tier 1. Egress to other G C P services is free if data moves within

1Network Service Tiers pricing https://cloud.google.eom/network-tiers/pricing#premium-pricing

20

https://www.app.com
https://cloud.google.eom/network-tiers/pricing%23premium-pricing

the same location or from regional to multi-regional G C P service within the same continent
and vice-versa.

Cloud Run

Cloud Run charges for used resources such as C P U , memory, requests, and networking.
C P U usage is tracked in vCPU-second units, memory in GiB-second units. Each resource
has a free tier and a paid tier that depends on C P U allocation configuration and region.
The free tier resource usage is shared between projects within one billing account and resets
every month. There are two C P U allocation strategies: only during request processing and
constant, so the C P U is always allocated. The first strategy offers smaller free-tier quotes
and higher paid-tier costs. Oppositely, the second strategy offers bigger free-tier quotes and
lower paid-tier costs. Also, it does not count requests. [2]

The containerized server that serves the front-end application introduced in this thesis
only needs to respond to user requests. It is the same for the worker application, which
listens to updates from the Firestore database and processes the tasks. Hence, for this
small application, it is cheaper to use C P U allocation only during requests. The free tier
for the chosen C P U allocation strategy includes:

. First 180,000 vCPU-seconds

. First 360,000 GiB-seconds

• 2 million requests

• 1 G i B free egress within North America per month

Resources used beyond these limits will be billed according to Cloud Run paid-tier
pricing [2].

Firebase Storage

Firebase Storage is using Cloud Storage under the hood. As a result, Cloud Storage pricing
is applied. It builds up from storage location, data processing, and network usage. There
are different classes of storage, divided by access frequency. Among them are standard (the
most expensive in storage but the cheapest in operations), nearline, coldline, and archive
(the cheapest storage but the most expensive in operations). The data may be stored either
in the region, dual-region, or multi-region storage. Storage buckets listing, data insert, read,
update, and others are between data processing operations. The processing operations are
also divided into classes with different operational fees. Network usage forms from egress,
i.e., data read from Cloud Storage, and ingress, i.e., data written to Cloud Storage. [3]

However, Firebase has its own pricing for Cloud Storage which is different. The default
bucket usage fees apply according to Cloud App Engine pricing 2 , and only additional
buckets are billed according to Cloud Storage pricing [3]. Firebase also offers a no-cost
tier for its paid products. In the case of Firebase Cloud Storage, it includes 5GB of total
storage and 1GB bandwidth per day.

2 App Engine pricing https://cloud.google.com/appengine/pricing

21

https://cloud.google.com/appengine/pricing

Firestore
Firestore Database offers 1 G B stored in total, 10 G B bandwidth per month, 20,000 writes,
20,000 deletes, and 50,000 reads per day for free. For exceeded stored data, Firebase
pricing [6] is applied, but for network egress and read, write, delete, operations, Google
Cloud pricing 3 is applied.

Google Cloud provides a convenient pricing calculator'1, which allows estimating the
price of selected services. It is possible to perform detailed configurations and calculate
different services estimate altogether.

4.3 Database Structure

Tasks collection

To create a framework for task processing, it is necessary to abstract from what particular
workers will perform. I have highlighted the following noticeable characteristics of tasks:

• Type - to divide the tasks between different workers

• Creation date - to process tasks queue

• Owner id - to bound a task to the owner account

• Status - so a worker could work on the task, and a user could see progress

• Processing time - to bill the user accordingly

• Task identifier

This data should be present in every task in the database, no matter which task type is.
Now and later, I will call it service data. Even though an identifier is present in the service
data, it is not stored in the service data but only added to the data during task processing
to be available for convenience. Firestore will generate a task identifier as part of a task
document metadata. To make the service data extensible in the future, a developer using
the framework passes the desired name of the service field to the client function for tasks
creating, which is described in section 5.3. This will help to avoid collisions in the naming
inside the same document, and service data will have its place in the document as so:

// document /tasks/{taskld}

{

serviceFieldName: {

creationDate: timestamp,

ownerUid: string,

processTimelnMs: number,

status: string,

type: string

}.

otherFields

3Google Cloud Firestore pricing https://firebase.google.com/pricing
4Google Cloud Pricing Calculator https://cloud.google.com/products/calculator

22

https://firebase.google.com/pricing
https://cloud.google.com/products/calculator

}

Users collection
It is not necessary to store much data about users authenticated via Google. A l l essential
information, such as display user name, email address, profile picture, and user identifier, is
defined by the provider and available through the Auth S D K . Thus, in the user document,
primarily billing-related information will be stored. For demonstration purposes, there will
be only two fields:

• User balance

• Invoices collection

Invoices collection in a collection of invoice data defined by the following fields:

• Creation date

• Payment rate defined in dollars per millisecond

• Total amount calculated using payment rate

The resulting document will look like follows:

// document /users/{userld}

{

balanceInCents: number,

invoice: { // document /invoices/{invoiceId]-

creationDate: timestamp,

dollarsPerMs: number,

total: number

}

}

Security rules requirements

One of the most critical things in the application is its security. Unlike relational databases,
which have strictly defined type constraints for the columns, the user authorization, and
inserted values validation is performed on the server. It is different in a serverless Firebase
application since Firestore has its mechanism for securing and validating data right in the
cloud. A configuration file called Firestore rules allows applying constraints to the document
writing and reading. The rules can be very flexible, and it is possible to apply the rules
to different collections separately. I followed the principle of least privileged, which means
a user has privileges only necessary to use the application and no more. This principle is
implemented bottom-up: a user has no permissions initially. Then, when it is required for
a user to have some privileges, they are granted.

In the case of tasks, it is necessary to ensure a user can:

• Create task only if the user is authorized

23

• Create task containing only service field

• Service field discussed earlier 4.3 must contain only part of the service data, such as

1. Owner identifier

2. Type

3. Status

4. Creation date

• Service data fields must have the corresponding types

• Owner user identifier must correspond to the one in the request

• Created task must be in the queued state

As for the users' collection, users should not be able to define their balance and invoices.
A payment system callback will invoke a cloud function, which will update the values in
the database. The implementation of such a function is not a part of this thesis.

4.4 Payment System

Considering the usage of G C P services for running containers, it should be possible to
estimate the pricing of the services relying on the Cloud Run pricing system described in the
section 4.2. Thus it is possible to hardcode price for computations or evaluate it dynamically
depending on the worker configuration. When performing a task, it is possible to measure
used resources and store this information along with task data and the configuration of an
instance used to process a task. Then, the processed task price can be calculated, and the
user can be billed accordingly.

24

Chapter 5

Implementation

This chapter covers how the demo client application, worker, and framework libraries were
developed. The framework covers some routines in processing tasks by providing client and
server libraries. Also, the demo application shows how security rules are applied to the
database in order to secure the application based on the framework. The entire solution
is written in TypeScript using the Node.js framework, UI libraries, and SDK libraries for
communication with Firebase services.

For demonstration purposes, the worker is accepting a file submitted by the user with
the integers separated by commas. The worker extracts the numbers, computes their sum,
and writes the result to the output file. This also allows demonstrating the work with the
storage, which is usually a part of almost every application.

5.1 Preparing Firebase

Google Cloud projects are the foundation for creating, managing and using Google Cloud
services. Projects also make per-project billing possible, adding collaborators, govern
ing services permissions, and sharing resources. For this thesis, the project with the
vut-bachelor-thesis identifier was created. It will appear in the different URLs and
service settings, so it is good to keep it in mind while working on a project.

There are several ways to start with Firebase. The desired project from G C P is imported
to the Firebase or created directly in the Firebase. When a project is created, it forms the
Firebase config, which is used by the client application for communication with the Firebase
services. After that, activation of all required features such as Authentication, Firestore,
and Storage becomes available. The connection of the client application will be discussed
later in the section 5.2.

Firebase Authentication

The domain must be added to the Firebase authorized domains list to perform authentica
tion on either the development or production domain. Development domain, i.e., localhost
should be added to the authorized domains in the Firebase Authentication as shown in fig
ure 5.1.

25

Authorized domains ©

T y p e

Domain

localhost

A d d a d d i t i o n a l d o m a i n s to s a f e l i s t f o r G o o g l e o r th i rd -par ty O A u t h a u t h e n t i c a t i o n .

Cancel

Figure 5.1: Authorizing Firebase Auth domain

Emulated development environment
Since this thesis aims to introduce the cheapest way to run the service in the cloud, the so
lution also includes a fully prepared development environment. Firebase CLI , among other
features, allows for installing and running emulated Firebase services locally. Using an emu
lator can reduce the costs of two following aspects during application development. Firstly,
it allows a developer not to be concerned about wasting too many free or paid requests
to Firestore. Also, it leaves out uploading unnecessary data or data above the free limit
to storage. Secondly, it prevents the things mentioned above while testing an application.
Most importantly, it eliminates the possibility of breaking a production database when
tests go wrong and occasionally wipes all the data in the database. Thus, the following
instructions for building images, including the Firebase emulator, were created:

FROM node:14-alpine

WORKDIR /app

RUN apk add —no-cache —update openjdkll-jre bash l i b i n t l && \

apk add — v i r t u a l build_deps gettext && \

cp /usr/bin/envsubst /usr/local/bin/envsubst && \

apk del build_deps && \

npm i -g firebase-tools

CMD ["./docker-entrypoint.sh"]

/ test/Dockerfile.dev

It will install the platform for running Java, which is required to run Firebase CLI ,
the Firebase CLI , and envsubst - utility for populating file templates with environment
variables. At container startup, it will run script /test/docker-entrypoint. sh, thus sub
stitute the variables from /test/firebase. JSON.template, install all emulators specified
there and run them on the custom ports defined in the . env:

FIREBASE_EMULAT0R_UI_P0RT=7777

FIREST0RE_EMULAT0R_P0RT=7000

FIREBASE_ST0RAGE_EMULAT0R_P0RT=7001

FIREBASE_AUTH_EMULAT0R_P0RT=7002

26

FIREBASE_EMULAT0R_HUB_P0RT=4400

FIREBASE_EMULAT0R_L0G_P0RT=4500

/variables.env

The emulator also must get the FIREBASE_TOKEN variable containing the authorization
token. Firebase authorization token can be obtained using f irebase login and f irebase
login :ci consequently. This variable should be added to .env. This file is not included in
appendices files since it contains sensitive credential information.

5.2 Client Application

Client application requirements

A typical user should be able to:

• Log in

• Submit a computational task

• List their previously submitted tasks

• List invoices for the processed

The client application will cover this functionality. As already mentioned, internet
services use a browser as an application client. So the client should provide a GUI to the
user and the ability to submit the computational task to the service.

User interface

Firstly, according to the requirements, the client UI was mocked. The viewport is divided
into a sidebar and content area. The sidebar consists of information about the logged-in
user and the navigation menu. The content area holds information relevant to the current
page.

Figure 5.2 shows a page with the form for submitting tasks to the database. It covers
all necessary service fields discussed in section 4.3, which user should specify, i.e., only task
type. The other fields, such as user identifier, initial task status, and creation date, could
be derived by the client library itself. Also, it introduces a couple of demo-specific inputs,
such as the name of the task and file input.

Also, there is a table that will hold information about previously submitted tasks and
their statuses. If a worker has already started working on a task or the task is already done,
information will be automatically updated and displayed here without the need to reload
the page. As a part of the payment system concept, the mockup of the invoices page was
implemented. It shows the user their balance and processed tasks with its price and invoice
status.

Routes

The implementation of the server only for the sake of routing was left out in this serverless
application. Thanks to the React Router package, routing can be conveniently performed

27

• Tasks

^ ^ O https://www.app.com/

ooo

Hello, Andrei

[Log out]

Create Task

| Task type

Input file

Choose File No file chosen

T y p e 1

T y p e 2

Task Name Status Type Input Output

Taskl queued typel file.txt -

MyTask error type2 damaged-file.pdf -

Very long computation done type3 numbers.csv Download

Figure 5.2: Mockup of the Login and Tasks pages

right on the client-side, making it easy to create a single-page application (SPA). SPA
loads just a single H T M L page file and updates the content of that page dynamically using
JavaScript. JavaScript fetches content parts by using. Thus, users do not need to load the
whole page every time they redirect to another site page server. The application has several
routes:

• /login - login form for unauthorized users

• / - root containing tasks dashboard along with the form if user is authorized

• /invoices - invoices overview page

Which are defined in the applicatio in the following way:

<Routes>

<Route

path="/" element={

<RequireAuth>

<Page title={'Tasks'} component={<TasksPage />} />

</RequireAuth>

>
/>
<Route

path="/invoices"

element={

<RequireAuth>

<Page title={'Billing'} component={<InvoicesPage/>]-/>

28

https://www.app.com/

Invoices

[] https://www.app.com/invoices

ooo

[Log out]

Invoices
Your balance is: $25

Task Name Status Type Price Paid

Task 1 queued typel $0.00032 X

MyTask error type2 $0.000023 X

Very long computation done type3 $0.120034 V

Figure 5.3: Mockup of the Invoices page

</RequireAuth>

/>
<Route path="/billing"

element={

<RequireAuth>

<Page title={
,

Billing
)

]- component={<TasksPage />} />

</RequireAuth>

>
/>
<Route path="/login" element={<LoginPage/>]-/>

</Routes>

/ a PP/ s r c / App. tsx

The resulting user interface of tasks and invoices pages is shown in Figure 5.4 and Figure
5.5 respectively.

Connecting application to Firebase

Firebase config have to be passed to the Firebase S D K application initializer. Initialization
of the Firebase application is performed as follows:

import { initializeApp } from 'firebase/app'

import { getFirestore, connectFirestoreEmulator } from 'firebase/firestore'
import { getStorage, connectStorageEmulator } from 'firebase/storage'
import { getAuth, connectAuthEmulator } from 'firebase/auth'

import config from './config'

29

https://www.app.com/invoices

M o u n t a i n O l i ve

mounla in.o l ive.433@example.com

Balance: $0

Tasks
Add task

T a s k t y p e *

Creat ion date Type Input Output

Another task 11. 5 .2022 1:53:22 sum •nore numbers.csv

11. 5 .2022 1:52:51 sum Tiore numbers.csv Download

Task 3 1 1 . 5 . 2 0 2 2 1:52:26 sum nurnbers-fail.csv

T a s k 2 1 1 . 5 . 2 0 2 2 1:52:19 sum numbers.csv Download

Task 1 11. 5 .2022 1:52:13 sum numbers.csv Download

Figure 5.4: UI of the tasks dashboard

export const firebaseConfig = {

apiKey: 'AIzaSyBS3WhhMEQs2sjEqA94BAsnECEoqe-lllQ',

authDomain: 'vut-bachelor-thesis.firebaseapp.com',

projectld: 'vut-bachelor-thesis',

storageBucket: 'vut-bachelor-thesis.appspot.com',

messagingSenderld: '328686553325',

appld: '1:328686553325:web:1863dl693dfd89048124e4',

measurementId: 'G-W7ZG3NPH5Y',

export const app = initializeApp(firebaseConfig)

export const auth = getAuth(app)

export const db = getFirestore(app)

export const storage = getStorage(app)

/ a P P / s r c / utils / firebase.ts

After that, all necessary instances are ready to work with. In order to make the in
stances work with emulator instead of production Firebase services, special functions from
SDK connectAuthEmulator, connectFirestoreEmulator, and connectStorageEmulator
should be called as shown below:

i f (config.isDev) {

connectAuthEmulator(

auth,

30

mailto:mounlain.olive.433@example.com

M o u n t a i n O l i ve

iu ntai n. olive.433 <g example.

Balance: SO

Invoices
Y o u r cur rent b a l a n c e is : $0

Name Creation date Type Statu ľ Price Payment status

Another task 11. 5 2022 1:53:22 sum m SO.007150483799934 Not paid X

Task 4 11. 5 2022 1:52:51 sum SO.007023433599948 Not paid X

Task 3 11. 5 2022 1:52:26 sum m SO Not paid X

Task 2 11. 5 2022 1:52:19 • m SO.006120260200023 Not paid X

Task 1 11. 5 2022 1:52:13 sum m SO.0063S0516800045 Not paid X

Figure 5.5: UI of the invoices dashboard

'http://localhost:${config.firebaseAuthEmulatorPort]-',

{

disableWarnings: true

>
)
connectFirestoreEmulator(

db,

'localhost',

config.firestoreEmulatorPort,

)
connectStorageEmulator(

storage,

'localhost',

config.firebaseStorageEmulatorPort,

)

/ a P P / s r c / U-tils / firebase.ts

Assuming the following conf i g , filled with environment variables which was discussed
earlier in the section 5.1:

const config = {

isDev: process.env.N0DE_ENV === 'development',

serviceField: '_taskerService',

taskCollectionPath: 'tasks',

31

http://localhost:$%7bconfig.firebaseAuthEmulatorPort%5d-'

firestoreEmulatorPort: parselnt(process.env.FIRESTORE_EMULATOR_PORT ||

'7000', 10),

firebaseStorageEmulatorPort: parselnt(process.env.

FIREBASE_ST0RAGE_EMULAT0R_P0RT || '7001', 10),

firebaseAuthEmulatorPort: parselnt(process.env.

FIREBASE_AUTH_EMULAT0R_P0RT || '7002', 10),

}

/ app / src / utils / config.ts

Since the browser does not have the process variable because it is defined by Node.js
when running scripts on the back-end, the Webpack plugin is used to inject it to the client
during the build as so:

plugins: [

new DefinePlugin({

'process.env.FIREST0RE_EMULAT0R_P0RT': JS0N.stringify(process.

env.FIREST0RE_EMULAT0R_P0RT),

'process.env.FIREBASE_ST0RAGE_EMULAT0R_P0RT': JS0N.stringify(

process.env.FIREBASE_ST0RAGE_EMULAT0R_P0RT),

'process.env.FIREBASE_AUTH_EMULAT0R_P0RT': JS0N.stringify(

process.env.FIREBASE_AUTH_EMULAT0R_P0RT),

}) ,
].

/app/webpack.common.js

The client application production Dockerfile consists of two simple parts. Firstly, it will
bundle the application TypeScript using Webpack, transpiling it to the plain JavaScript
using node image as a builder:

FROM node:14-alpine as builder

create app directory

W0RKDIR /app

install dependencies

COPY package*.json ./

RUN npm i

COPY . .

RUN npm run build

/ app/Dockerfile

Then it copies the production ready code and nginx config to the nginx image:

FROM nginx:alpine

COPY —from=builder /app/dist /usr/share/nginx/html

32

copy nginx config template

COPY ./nginx/nginx.conf.template /etc/nginx/templates/nginx.conf.template

RUN rm /etc/nginx/conf.d/default.conf

EXPOSE $P0RT

/ aPP/Dockerfile

The Nginx config defines the root location, which will always fall back to index.html,
in order to client-side navigation may work properly:

server {

listen ${P0RT>;

add_header Access-Control-Allow-Origin *;

location / {

root /usr/share/nginx/html;

index index.html index.htm;

try_files $uri $uri/ /index.html;

}

error_page 500 502 503 504 /50x.html;

location = /50x.html {

root /usr/share/nginx/html;

}

}

/ app/nginx/nginx.config.template

5.3 Client library

The client library consists of two main classes. The TaskerClient class represents a
client, and a Task class, which has not been used directly and always will be filled by
TaskerClient. Once the application is initialized, the TaskerClient is instantiated in the
following way:

constructor(auth: Auth, serviceField: string) {

this.auth = auth

this.serviceField = serviceField

}

/ a P P / s r c / utils / tasker / TaskerClient. ts

It accepts two parameters:

1. Application Firebase Auth instance which was obtained in the section 5.2

2. Chosen name of the service field

After initialization, the client is ready to create and list tasks in the Firestore.

33

Creating a task
The function createTask can be called on the TaskerClient instance in order to create a
task. Here is its signature:

async createTask<T extends DocumentData>(

type: string,

collectionRef: CollectionReference,

data: T,

) : Promise<Task<T»

/ a P P / s r c / utils / tasker / TaskerClient. ts

The parameters are:

1. Task type to create

2. Reference to the tasks collection

3. User defined data to store in the task

When creating the task document, the Tasker under the hood merges all necessary
service data to the provided data and wraps the data into Task instance.

Getting tasks

Task client is used for getting tasks as follows:

async getTasks<T>(

collectionRef: CollectionReference,

...queryConstraints: QueryConstraint[]

): Promise<Task<T>[]>

/ a PP/ s r c /ut i ls / tasker/TaskerClient .ts

As a parameters it accepts:

1. Reference to the tasks collection

2. Query constraints like orderBy, where, limit, and others supported by Firestore
S D K

At this moment, under the hood, the tasker will check if the current user is authorized
on the client-side, add a query constraint where for the field ownerUid with the comparison
between the current user id and the user id stored in the document. Then it returns an
array of docs wrapped into Task instances.

As for getting one instance, everything is way easier:

async getTask<T>(taskRef: DocumentReference<T>): Promise<Task<T»

/ a PP/ s r c /ut i ls / tasker/TaskerClient .ts

It accepts task document reference, gets it, and wraps it into Taks instance as always.

34

5.4 Worker

Each worker type should only implement the function that will handle whatever input
will be provided from the task document. As was already mentioned, in this case, for
demonstration purposes, it will process files uploaded by users.

Connecting worker to Firebase

Unlike the client Firebase SDK, f irebase-admin does not accept Firebase application
configuration. Instead, it accepts a Google Cloud service account credentials, which has an
administrator role for the Firebase services. Service account information is stored in the
JSON file, and this file is passed to the initializer. In this case, the storage bucket name is
also provided to the initializer, as this demonstration worker will need to access Firebase
storage.

By default, the worker is connected to the production Firebase services. In order to
change that, special environmental variables must be present. These variables are defined
in the variables. env discussed earlier:

FIREST0RE_EMULAT0R_P0RT=7000

FIREBASE_ST0RAGE_EMULAT0R_P0RT=7001

FIRESTORE_EMULATOR_HOST=firebase_emulator:$FIRESTORE_EMULATOR_PORT

FIREBASE_STORAGE_EMULATOR_HOST=firebase_emulator:

$FIREBASE_STORAGE_EMULATOR_PORT

/variables, env

If these variables are present, the worker will be connected to the local emulator.
Even though the worker is supposed to receive events by subscribing to the Firestore

updates, it is also running the server to receive Cloud Run health check H T T P requests.
Otherwise, it would not be possible for Cloud Run to know if the instance needs to be
restarted.

The worker container definition is the following. In the first step, the builder container
builds the bundle in the environment with the development dependencies:

FROM node:14-alpine as builder

WORKDIR /app

install dependencies

COPY ./package*.json ./

RUN npm i

bundle app source

COPY . .

RUN npm run build

/ sum-worker/Dockerfile

Then it transfers the resulting bundle to the clean node: 14-alpine image and installs
the production dependencies. When run, the container will execute the bundle using node:

35

FROM node:14-alpine

WORKDIR /app

COPY ./package*.json ./

RUN npm ci —only=production

COPY —from=builder /app/dist /app/dist

CMD ["node", "./dist/bundle.js"]

/ sum-worker/Dockerfile

5.5 Worker library

The worker library, as well as the client library, consists of two classes. These classes are
Tasker for the tasks handling, and Task for wrapping the individual documents for conve
nience as it does TaskerClient. The implementation differs from the client library, since the
f irebase-admin S D K is used instead of f irebase client SDK. Also, while TaskerClient
for the front-end has the purpose of convenient creation and retrieval of tasks, Tasker for
the back-end worker does not do that. Instead, it is focused on subscription to the updates
in the databases, obtaining a lock on the document so that other workers do not start to
process it, measuring execution time, and providing the ability to execute different lifecycle
callbacks.

Before processing tasks, it is necessary to instantiate Tasker as well as on the client. In
the case of the worker library constructor awaits the following:

constructor(firestore: Firestore, type: string, serviceField: string,

handler: TaskHandler<T>)

/sum-worker/src/tasker/Tasker.ts

1. Firestore instance

2. Type of the tasks this worker will process

3. Service field name

4. Handler function. The result of the handler function is the document data that should
be merged into the document

Then Tasker is ready to handle the query. To listen on the particular queue, the
function listenQueue is used:

async listenQueue(query: Query<T>): Promise<Function>

/sum-worker/src/tasker/Tasker.ts

The query here is library user-defined query including constraints such as where, order-
By and others defined by the SDK. The listenQueue function works as follows:

1. Subscribes on the updates of the given collection by applying the following conditions:

• Task status should be equal to the queued

36

• Task type should correspond to the worker type

• Limit to the 1 document only

2. When the event is fired, a document lock is obtained by creating a document in locks
collection

3. The document wrapped into Task passed to the handler function

4. If the task is successfully processed, then the result is merged to the document with
status done

5. Otherwise, document status is set to error, and it is not processed

6. In both cases document representing the lock is deleted from the database

The most important thing here is obtaining the lock using the property of Firebase
create operation. When create operation is performed on the existing document, it fails.
Therefore it indicates whether the task is already in processing or not. If the document is
already in processing by another worker, Tasker will skip it. If the document is not locked,
Tasker will lock it and set its status to processing.

Also, Tasker supports several lifecycle callbacks. Among them are before, after and
onError. The callbacks are fired right before a task is passed to the handler function, right
after, and if an error occurred while processed by the handler function respectively. The
task wrapped into Task object is passed to every callback. In the case of onError callback,
the error is passed as a second argument, so the worker can do something according to the
error type.

5.6 Firebase

Defining Security Rules

The security rules requirements discussed in the section 4.3 can be deployed from the
/test project folder using Firebase C L I using firebase deploy command. Alternatively,
it can be written directly on the Firebase web. Following mentioned earlier least privileged
principle, the rules for the tasks collection should be defined as follows:

match /tasks/{taskld]- {

allow create: i f

request.auth != null &&

request.auth.uid == request.resource.data._taskerService.ownerUid &&

// f i e l d keys

request.resource.data.keys().hasOnly(['_taskerService', '

inputFilePath', 'name']) &&

request.resource.data._taskerService.keys().hasOnly(['ownerUid', '

type', 'status', 'creationDate']) &&

// service data types

request.resource.data._taskerService.status is string &&

37

request.resource.data._taskerService.creationDate is timestamp &&

request.resource.data._taskerService.type is string &&

// service values

request.resource.data._taskerService.status == 'queued' &&

// app types

request.resource.data.inputFilePath is string &&

request.resource.data.name is string;

allow read: i f

request.auth != null &&

request.auth.uid == resource.data._taskerService.ownerUid;

}

/ test / firestore.rules

And the rules for the users collection:

match /users/{userld]- {

allow create: i f

request.auth != null &&

request.auth.uid == request.resource.data.uid;

allow read: i f

request.auth != null &&

request.auth.uid == userld;

match /invoices/{invoiceId]- {

allow read: i f

request.auth != null &&

request.auth.uid == userld;

}

}

/ test / firestore.rules

Now, users' privileges fully correspond with the requirements, and the application can
be securely exposed to the actual users. Also, user needs privileges to upload and download
files from the Storage. The rules for the storage are defined as follows:

rules_version = '2';

service firebase.storage {

match /b/{bucket}/o {

match /tasks/{userId]-/{taskInputFileJ- {

allow create: i f

request.auth != null &&

request.auth.uid == userld &&

request.resource.contentType.matches('text/csv');

allow read: i f

38

request.auth != null &&

request.auth.uid == userld;

/ test / storage, rules

39

Chapter 6

Deploying Demo Services to the
Google Cloud Platform

This chapter provides an overview of experience deploying a dockerized application to the
Google Cloud Platform services. Firstly, it covers uploading the images to the Artifact
Registry. Then it explains the uploaded image deployment to the Cloud Run. Also, it
introduces Continuous Integration and Continuous Development (CI /CD) with the Cloud
Build.

G C P provides highly configurable services, and there are several ways to interact with
them. The most convenient way is to use the Google Cloud Console GUI and specify
all settings using it. Most of the time, it is convenient to use Cloud Console. However,
sometimes it is valuable or even necessary to use Google Cloud Command Line Interface
(CLI) gcloud. For example, when creating a C I / C D pipeline, the building steps are using
Google Cloud CLI . [7]

6.1 Storing Containers in Artifact Registry

After the application is dockerized, it is ready to be deployed to the G C P . To deploy
an application to the G C P , it is necessary to push the images to the G C P using Artifact
Registry or to Container Registry, which provides only a subset of Artifact Registry features.
Artifact Registry allows storing not only Docker images 3.5. The first step is to create a
Docker repository in the Artifact Registry. I have chosen ibp name for the repository,
location europe-west4 (Netherlands) and Google-managed encryption key.

Then the repository is ready for uploading the docker images. A repository address
template can be represented template:

LOCATION-docker.pkg.dev/PROJECT/REPOSITORY_NAME

Where LOCATION is a repository location, PROJECT is a project name, and REPOSITORY-
_NAME is the name of a repository. So my repository has an address europe-west4-
docker.pkg.dev/vut-bachelor-thesis/ibp. To push the images from the local machine,
I used the option of configuring gcloud as a credential helper for the repository.

$ gcloud auth configure-docker europe-west4-docker.pkg.dev

Then it becomes possible to push an image to the repository using docker push com
mand. In order to do that, there should be a local image on the machine tagged in the fol
lowing way europe-west4-docker.pkg.dev/vut-bachelor-thesis/ibp/IMAGE: TAG where

40

http://europe-west4-docker.pkg.dev/vut-bachelor-thesis/ibp/IMAGE

,- N a m e * —

[ibP

Format

@) Docker

O M a v e n

O n P m

O Py thon

O Ap t

O Kube f l ow P ipe l ines

Loca t i on type

® Reg ion

O Mul t i - region

, Region *

eu rope-wes t4 (Nether lands)

Labe l s

+ A D D L A B E L

Encryption

(J) G o o g l e - m a n a g e d encrypt ion key

No configuration required

O C u s t o m e r - m a n a g e d encrypt ion key (C M E K)

Manage via Google Cloud Key Management Service

Figure 6.1: Creating an Artifact Registry Repository

IMAGE is the image name and TAG is a version tag of the image. Omitting the :TAG part
will automatically tag it as latest, as it normally occurs when pushing Docker containers.
I have decided to use names app for the demo application and sum-worker for the worker.
[17]

6.2 Deploying Services to Cloud Run

For a start, I have chosen to deploy the latest image revisions of the app application front-
end and sum-worker worker to the europe-west4 region, allocating C P U only during
request processing. I left the default Autoscaling setting from 0 to a maximum number of
100 instances on both of the services.

As for ingress, settings for app and sum-worker are different, app must allow all unau-
thenticated traffic in order to get the incoming requests and serve the client front-end.
sum-worker on the contrary, should not allow any incoming traffic since it is only a worker,
and it will listen to changes in the Cloud Firestore database and react to it.

The worker must have specified environmental variable STORAGE_BUCKET to indicate a
Firebase Storage bucket it works with. Also, it must have access to the f irebase-admin
SDK through the service account created earlier. So I specified all needed variables and
secrets in the corresponding tab as shown in figure 6.3.

As soon as a container is deployed to the service successfully, it gets a unique U R L .
Services are automatically served through H T T P S with a redirect from H T T P to H T T P S .
Their URLs have the following structure:

41

A se r v i ce e x p o s e s a un ique endpo in t and au toma t i ca l l y s c a l e s t he under ly ing

in f rast ructure to hand le i n c o m i n g reques t s . S e r v i c e n a m e and region canno t be c h a n g e d

later.

(5) Dep loy one rev is ion f rom an ex is t ing con ta ine r i m a g e

(Container image URL

e u r o p e - w e s t 4 - d o c k e r . p k g . d e v / v L t - b a c h e l o r - t h e s i s / i b p / a p p @ s h a 2 5 6 : c S E L E C T

T E S T W I T H A S A M P L E C O N T A I N E R

Should listen for HTTP requests on SPORT and not rely on local state How to build a
container?

Q C o n t i n u o u s l y dep loy new rev is ions f r o m a s o u r c e repos i to ry

- Service name *

app

. Region *

eu rope -wes t4 (Ne ther lands) •

How to pick a region?

CPU allocation and pricing 0

(5) C P U is on ly a l l oca ted dur ing reques t p r o c e s s i n g

You are charged per request and only when the container instance processes a
request.

O C P U is a l w a y s a l l o c a t e d

You are charged for the entire l ifecycle of the container instance.

Figure 6.2: Creating a Service in Cloud Run

https://APP-PROJ_HASH-REGION_SHORTCUT.run.app

In the case of the app service it got the https://app-gkeo4mmi5a-ez.a.run.app/
U R L . As when the app was developed on the localhost, I allowed the new domain in the
Firebase Auth configuration panel. After these steps the app and sum-worker are deployed
to the cloud and fully functioning.

6.3 Configuring C I / C D with Cloud Bu i ld

The Google Cloud Build is a serverless C I / C D solution for automating project build and
deployment. Source code may be imported via Cloud Storage, Cloud Resource Repositories,
Github, and Bitbucket. Cloud Build runs the build as a sequence of user-configured steps,
each running in its own Docker container. [10]

Builds are based on build configuration cloudbuild.yml. It can be present either in
the repository or added manually in the Cloud Console. To prepare a repository for build
automation, a Cloud Build trigger should be created. The trigger is associated with a source
code repository, and it allows to choose an event trigger that will invoke the build. It can be
a pull, push, or pull request to any branch, webhook, or manual invocation. Also, it allows
specifying the substitution variables for the cloudbuild.yml file, which work similarly to
environment variables.

At first sight, it is cheaper not to use Cloud Build for deploying the containers because
it is also billed. Although there are 120 minutes of free builds, it can be many builds if
used right, and it makes sense to use it at least before 120 minutes is spent.

In this demonstration example, two services need to be built and deployed - the demon
stration client application and the worker. It is convenient to create two different configs
and two different triggers because it will help eliminate unnecessary builds when nothing
is changed. Also, it will help not to waste build time if one of the builds is failed because

Autoscaling @

Min imum number of instances * , Max imum number of instances

100

Set to 1 to reduce co ld starts. Learn
more

Ingress 0

(5) A l l o w all t raff ic

O A l l o w internal traff ic and traff ic f r o m C l o u d L o a d B a l a n c i n g

O A l l o w internal traff ic only

Authentication * Q

(J) A l l o w unau then t i ca ted i nvoca t i ons

Check this if you are creating a public API or website

(3 Requ i re au then t i ca t i on

Manage authorized users with Cloud IAM

Container, Variables & Secrets, Connections, Security

42

https://APP-PROJ_HASH-REGION_SHORTCUT.run.app
https://app-gkeo4mmi5a-ez.a.run.app/

Container, Variables & Secrets, Connections, Security

< CONTAINER VARIABLES & SECRETS CONNECTIONS

Environment var iables

, Name 1 , , Value 1
STORAGE_BUCKET Vut-bachelor-thesis appspot.c

e.g. ENV e.g. prod

+ ADD VARIABLE

Secrets 0

Reference a Secret

,- Secret*
vut-ibp-

- Reference method
Mounted as volume

- Mount path *

Speci f ied paths for secret vers ions

Path 1 * . , Version 1 -
/secrets/ service-account.json latest

Figure 6.3: Defining Variables and Secrets for the Container

then the whole build is terminated, and nothing is deployed. So they could be deployed
separately, two similar build configurations were created:

steps:

- name: 'gcr.io/cloud-builders/docker'

args: ['build', ' - t ' , '${_L0CATI0N>-docker.pkg.dev/$PROJECT_ID/${

_REPOSITORY>/${_IMAGE>', './app']

- name: 'gcr.io/google.com/cloudsdktool/cloud-sdk'

entrypoint: gcloud

args:

- 'run'

- 'deploy'

- '${_SERVICE>'

- '—image'

- '${_L0CATI0N>-docker.pkg.dev/$PR0JECT_ID/${_REPOSITORY>/${_IMAGE>'

- '—region'

- '${_L0CATI0N}'

images:

- '${_L0CATI0N>-docker.pkg.dev/$PR0JECT_ID/${_REPOSITORY>/${_IMAGE>'

/ cloudbuild.app.yml

The cloudbuild config shown above consists of two steps. First, it will build the ap
plication image in the . /app folder context and upload it to Artifact Registry to the the
repository ${_REP0SIT0RY]- with name ${_IMAGE]-. The variables starting with an under
score are substitution variables, and they can be provided to the cloudbuild from a trigger.
Second, it will deploy the resulting image to the ${_SERVICE>.

43

Chapter 7

Testing

Thanks to the emulator installed in Section 5.1, it is easy to test the Firebase application. I
used the Mocha 3.4 test framework, which provides convenient tools for asynchronous test
ing. Firebase, in turn, provides its library for unit-testing called @f irebase/rules-unit-
testing. It allows to easily create a testing environment to simulate the requests from
both unauthenticated and authenticated users. I divided tests into two main parts: tests of
the security rules and the correct workers functioning, which will indicate that the worker
library 5.5 is working as expected.

Test suits for both parts were created, thus allowing to run each suite separately. Mocha
is very descriptive, and a typical test case looks like the following:

describe('Security*, () => {

describe('Firestore: Tasks collection', () => {

it('Unauthorized user can't create tasks', async () => {

const testDoc = firestoreUnauthed.doc('tasks/testDoc')

const docData = {

[SERVICE_FIELD]: {

ownerUid: 'anon',

type: 'sum',

status: 'queued',

creationDate: new Date(),

}.
}

await assertFails(testDoc.set(docData))

})

/test/test.js

Firstly, I tested the security rules. In an attempt to cover most possible scenarios, tests
shown in figure 7.1 were created.

A l l the rules were working as expected. Then I tested the demonstration worker in
two setups. In the first case, there was a single instance of the worker running, which
is shown on the first screenshot of figure 7.2. Next, I scaled the worker, allowing it to
run in three instances simultaneously using the command docker-compose up -d -scale
sum worker=3. This scenario result is shown in the second screenshot.

44

Test Results 537 ms
v Securi ty

Firestore: Tasks col lect ion
* / Unauthorized user can't create tasks

*S Unauthorized user can't write to random collections in db

User can't write to random collections in db
User can create task with own uid

User can't create task with foreign uid

User can read task with own uid

User can't read task with foreign uid
User can't skip obligatory field

User can't skip obligatory field
*S User can't skip obligatory field
iS User can't skip obligatory field
Firestore: users col lect ion

/ Unauthorized user can't create a document in the users collection
Authorized user can't create a document in the users collection

v ^ Storage

Unauthenticated user cannot create file in the storage
Authenticated user cannot create file in the storage
Authenticated user can create csv in the /tasks folder

Figure 7.1: Security tests result

As expected, both single and multiple instances started processing tasks in order of
creation date. Moreover, multiple instances were correctly skipping already locked tasks.

45

demo--sum worker -1 Processing testTaskO...

demo--sum _worker -1 Processing testTaskl. . .

demo--sum worker -1 Processing testTask2...

demo--sum worker -1 Processing testTask3.. .

demo--sum_ _worker -1 Processing testTask4. . .

demo--sum worker -1 Processing testTask5. . .

demo--sum worker -1 Processing testTask6. . .

demo--sum _worker -1 Processing testTask7. . .

demo--sum worker -1 Processing testTaskS. . .

demo--sum worker -1 Processing testTask9. . .

demo--sum_ _worker -1 testTaskO processed successfully in 3206. 7499000430107ms...

demo--sum worker -1 testTask2 processed successfully i n 3129. 274999976158ms...

demo--sum worker -1 testTaskl processed successfully i n 3145. 240900039673ms...

demo--sum _worker -1 testTask3 processed successfully i n 3158. 7301999926567ms...

demo--sum worker -1 testTask4 processed successfully i n 3139. 5547999739647ms...

demo--sum worker -1 testTask5 processed successfully i n 3164. 9781999588013ms...

demo--sum _worker -1 testTask8 processed successfully i n 3113. 352199971676ms...

demo--sum worker -1 testTask6 processed successfully i n 3151. 5969000458717ms...

demo--sum worker -1 testTask7 processed successfully i n 3131. 0169000029564ms...

demo--sum _worker -1 testTask9 processed successfully i n 3106. 1568999886513ms...

Processing testTaskO...

Processing testTaskl...

Processing testTask2...

Processing testTask3...

Processing testTask4...

demo-sum worker--1 | Processing testTask5...

demo-sum worker--2 | Processing

Processing

Processing

Processing

testTask6...

testTask7...

testTaskS...

testTask9...

testTaskO processed successfully in 3262 .6489999890327ms..

testTaskl processed successfully in 3176 .756600022316ms...

testTask2 processed successfully i n 3210 .790199995041ms...

testTask3 processed successfully in 3156 .408599972725ms...

testTask4 processed successfully in 3107 .322600007057ms...

demo-sum worker--1 | testTask5 processed successfully i n 3187 .934199988842ms. . .

testTask7 processed successfully in 3048 .4257999658585ms. .

testTask8 processed successfully in 3050 .2482999563217ms..

demo-sum worker-•2 testTask6 processed successfully i n 3264 .850199997425ms.. .

testTask9 processed successfully i n 3047 .093400001526ms.. .

Figure 7.2: Worker tests. One worker instance on the top, three worker instances on the
bottom

46

Chapter 8

Conclusion

As a result, the development of web applications, from classical to the constantly growing
cloud-based serverless solutions, was researched. I developed the framework for a specific
purpose: running computational tasks in the cloud using Docker containers. Even though
the solution is written using the TypeScript language and Node.js environment, thanks
to its highly decoupled architecture, the different workers can be written in any language,
providing the ability to run any software for task processing.

The client-side demonstration application was developed using the ReactJS library to
build the component-based UI with a powerful Redux for managing the centralized applica
tion state. The M U I user interface components library was used for the styling. As of logic,
the TaskerClient library was developed, which makes working with the tasks easier by
wrapping database documents into Task objects. It abstracts some aspects of task creation,
making the work with Firestore easier and leaving the S D K flexible.

The worker was written using pure TypeScript capabilities, using Firestore features such
as a subscription to the real-time updates from the Firestore Database. The work with the
database in terms of the tasks' state management and locking the processed resource was
also abstracted into class Tasker. This solution allows focusing on the task processing
instead of writing logic for the queue and provides an excellent point to start with a similar
service.

The billing solution is shallow but provides an excellent point to start. The users can
be billed according to the processing time recorded in the service data by the Tasker. The
demonstration solution shows an example of how this information can be utilized.

The application is deployed to the Cloud Run, which is a fully manageable platform
for running Docker containers. As for essential web application components, it uses the
Firestore NoSQL database and Google Cloud Storage. A n Artifacts Repository is used
in order to store the images. Also, the C I / C I pipeline was leveraged using Cloud Build
C I / C D .

47

Bibliography

[1] C E R V O N E , H . F . A n overview of virtual and cloud computing. OCLC Systems &
Services: International digital library perspectives. Emerald Group Publishing
Limited. 2010. ISSN 1065-075X.

[2] Cloud Run pricing [online]. Google [cit. 2022-04-28]. Available at:
https: / / cloud.google.com/run/pricing.

[3] Cloud Storage pricing [online]. Google [cit. 2022-04-29]. Available at:
https: / / cloud.google.com/storage/pricing.

[4] Docker Documentation [online]. Docker [cit. 2022-05-01]. Available at:
https: //docs, docker, com/.

[5] Firebase CLI reference [online]. Firebase [cit. 2022-05-11]. Available at:
https: / / f irebase.google.com/docs/cli.

[6] Firebase Pricing [online]. Firebase [cit. 2022-04-28]. Available at:
https: //firebase.google.com/pricing.

[7] Gcloud CLI overview [online]. Google [cit. 2022-04-25]. Available at:
https: / / cloud.google.com/sdk/gcloud.

[8] Geography and regions [online]. Google [cit. 2022-04-25]. Available at:
https: / / cloud.google.com/docs/geography- and-regions.

[9] G Y O R O D I , C., G Y O R O D I , R. and S O T O C , R. A comparative study of relational and
non-relational database models in a Web-based application. International Journal of
Advanced Computer Science and Applications. Citeseer. 2015, vol. 6, no. 11, p. 78-83.

[10] Integrating with Cloud Build [online]. Google [cit. 2022-05-01]. Available at:
https://cloud.google.com/artifact-registry/docs/configure-cloud-build.

[11] J A Z A Y E R I , M . Some trends in web application development. In: I E E E . Future of
Software Engineering (FOSE'07). 2007, p. 199-213. ISBN 0-7695-2829-5.

[12] Nginx news [online]. N G I N X [cit. 2022-05-11]. Available at: http://nginx.org/.

[13] Node.js [online]. Node.js [cit. 2022-05-01]. Available at: https://nodejs.org/.

[14] Npm [online], npm [cit. 2022-05-01]. Available at: https://www.npmjs.com/.

[15] O L U W A T O S I N , H . S. Client-server model. IOSRJ Comput. Eng. 2014, vol. 16, no. 1,
p. 2278-8727. ISSN 2278-0661.

18

http://cloud.google.com/run/pricing
http://cloud.google.com/
http://irebase.google.com/docs/
http://google.com/pricing
http://cloud.google.com/
http://cloud.google.com/docs/geography-
https://cloud.google.com/artifact-registry/docs/configure-cloud-build
http://nginx.org/
https://nodejs.org/
https://www.npmjs.com/

[16] P O T E L , M . M V P : Model-View-Presenter the Taligent programming model for C++
and Java. Taligent Inc. 1996, vol. 20.

[17] Pushing and pulling images [online]. Google [cit. 2022-05-10]. Available at:
https://cloud.google.com/axtifact-registry/docs/docker/pushing-and-pulling.

[18] R A S H I D , A . and C H A T U R V E D I , A . Cloud computing characteristics and services: a
brief review. International Journal of Computer Sciences and Engineering. 2019,
vol. 7, no. 2, p. 421-426. ISSN 2347-2693.

[19] React - A JavaScript library for building user interfaces [online]. Meta Platforms, Inc
[cit. 2022-05-03]. Available at: https://reactjs.org/.

[20] Zoom [online]. Remix [cit. 2022-05-03]. Available at: https://reactrouter.com/.

[21] Redux Toolkit [online]. Dan Abramov [cit. 2022-05-11]. Available at:
ht tps: / / redux-toolki t . js.org/.

[22] R E E N S K A U G , T. M . H . The original M V C reports. 1979.

[23] What is serverless? [online]. RedHat, 2017 [cit. 2022-05-05]. Available at:
https://www. redhat.com/en/topics/cloud-native-apps/what-is-serverless.

[24] S O R E N S E N , E . and M I K A I L E S C , M . Model-view-ViewModel (M V V M) design pattern
using Windows Presentation Foundation (WPF) technology. MegaByte Journal.
2010, vol. 9, no. 4, p. 1-19.

[25] TypeScript: JavaScript With Syntax For Types, [online]. Microsoft [cit. 2022-05-03].
Available at: https://www.typescriptlang.org/.

[26] W A T A D A , J. , R O Y , A . , K A D I K A R , R., P H A M , H . and X u , B . Emerging trends,
techniques and open issues of containerization: a review. IEEE Access. I E E E . 2019,
vol. 7, p. 152443-152472. DOI: 10.1109/ACCESS.2019.2945930.

49

https://cloud.google.com/axtifact-registry/docs/docker/pushing-and-pulling
https://reactjs.org/
https://reactrouter.com/
https://redux-toolkit
http://js.org/
https://www
http://redhat.com/en/topics/
https://www.typescriptlang.org/

Appendix A

Contents of the included stora
media

I — app/ — demo front-end application

I | — nginx/ — nginx configuration

I |— src/
I I I — components/
I I I — pages/

I I I I — InvoicesPage/
I I I I — LoginPage/

M l ' — TasksPage/

I | ' — utils/

I I I — hoc/
I I I — redux/

I | ' — tasker/ — client library

I ' — static/
I — sum-worker/ — demo worker application

I '— src/
I | — tasker/ — worker library

I '— utils/

' — test/ — emulator and tests

50

