Reinforcement learning s aplikací ve hrách – Vojtěch Kožuch
Vojtěch Kožuch
Diplomová práce
Reinforcement learning s aplikací ve hrách
Reinforcement Learning and its Application in Games
Anotace:
Cílem této práce je analýza a ověření metod přístupů užívaných v rámci reinforcement learning s aplikací ve hrách. První část práce je věnována teoretickému úvodu do problematiky včetně popisu jednotlivých metod, které jsou následně implementovány v praktické úloze. Té je věnována druhá část práce. Experimenty jsou prováděny v aplikaci vyvinuté v programovacím jazyce Python. Vizualizaci herního prostředí …víceAbstract:
The aim of this thesis is to analyse and validate the methods of approches used in reinforcement learning with application in games. The first part of the thesis describes the theoretical introduction to reinforcement learning, including a description of individual methods that are implemented as part of the practical task. The second part of the thesis is dedicated to the implementation task. Experiments …více
Jazyk práce: čeština
Datum vytvoření / odevzdání či podání práce: 30. 4. 2022
Identifikátor:
http://hdl.handle.net/10084/147488
Obhajoba závěrečné práce
- Obhajoba proběhla 1. 6. 2022
- Vedoucí: Jan Platoš
- Oponent: Lenka Skanderová
Citační záznam
Plný text práce
Právo: Plné texty vysokoškolských kvalifikačních prací obhájených na Vysoké škole báňské - Technické univerzitě Ostrava jsou uloženy v repozitáři DSpace. Přístup k plným textům mají všichni uživatelé bez omezení. Přístup je omezen pouze ve výjimečných případech, zpravidla z důvodu ochrany duševního vlastnictví. Nepřístupné práce jsou označeny jako closedAccess nebo embargoedAccess. Tištěné verze prácí jsou uloženy v Ústřední knihovně VŠB-TUO a jsou prezenčně přístupné ve studovně diplomových prací. Další nakládání s prací (kopírování, opisy, MVS)se řídí Knihovní a výpůjčním řádem Ústřední knihovny VŠB-TUO.
Obsah online archivu závěrečné práce
Zveřejněno v Theses:- autentizovaným zaměstnancům ze stejné školy/fakulty
Jak jinak získat přístup k textu
Instituce archivující a zpřístupňující práci: VŠB – Technická univerzita OstravaVŠB – Technická univerzita Ostrava
Fakulta elektrotechniky a informatikyMagisterský studijní program / obor:
Informační a komunikační technologie / Informatika a výpočetní technika
Práce na příbuzné téma
-
Monte Carlo Tree Search in Deep Reinforcement Learning Algorithms
Richard Schwarz -
Deep Risk-Constrained Reinforcement Learning with Safety Critics
Martin Gendiar -
Navigace v neznámém a pevně daném prostředí pomocí deep reinforcement learning algoritmu
Gabriela HRUBÁ -
Deep Reinforcement Learning for Decision Neuroscience
Faizanshaikh Abdulkhalil SHAIKH -
Grammatikfehlerkorrektur mit Deep Reinforcement Learning
Raj Kumar RANA -
Text classification with artificial neural networks
Anouk Wilstra -
Artificial Neural Networks in Space of Stock Returns: Volatility Prediction
Šimon Škorňa -
Interpretation of artificial neural networks for image recognition
Alexey Ulyanin