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Abstract 
This thesis deals with the Model-Driven Development of Big Data tasks in the Apache Spark 
environment. In the beginning, the reader is introduced to the Apache Spark framework and 
necessary details. Afterward, a closer look at the Model-Driven Development methodology 
is provided, and its advantages and disadvantages are described. The second part describes 
the designed meta-model for modeling Spark tasks. The designed Profile diagram features 
that extend the Class diagram are described in detail. Afterward, the code generator is 
implemented. The input of the generator are models that satisfy the designed meta-model. 
The thesis also contains example models and their evaluation. 

Abstrakt 
Táto diplomová práca sa zaoberá modelom riadeným vývojom Big Data úloh v prostredí 
Apache Spark. Na začiatok je čitateľovi predstavený framework Apache Spark a potrebné 
detaily. Ďalej sa priblíži problematika modelom riadeného vývoja a popíšu sa jeho výhody a 
nevýhody. V druhej časti je popísaný navrhnutý meta-model pre modelovanie úloh Sparku. 
Detailne sú popísané vlastnosti navrhnutého profilového diagramu, ktorý rozširuje diagram 
tried. Následne je implementovaný generátor kódu, ktorého vstup sú modely vyhovujúce 
navrhnutému meta-modelu. Práca taktiež obsahuje príklady modelov a ich vyhodnotenie. 
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Rozšířený abstrakt 
Svet sa dňom, čo dňom vyvíja vpred a ľudia sa snažia pochopiť, čo sa deje. Na to aby niekto 
mohol niečo správne pochopiť, musí analyzovať dáta, ktoré má k dispozícii. V dnešnej 
dobe je ale týchto dát čoraz viac a viac a ich objem rastie exponenciálne. S postupným 
vývojom internetu sa začali objavovať termíny ako Big Data. Pojem Big Data popisuje dáta, 
ktoré môžu byť rôznorodé, a prichádzať rýchlo a vo veľkom objeme. Aby boli počítačové 
systémy schopné tieto dáta spracovávať, začalo vznikať niekoľko distribuovaných riešení. 
Jedným z týchto technológií je práve Apache Spark. Často považovaný za následníka Apache 
Hadoop a jeho výpočetného modelu Map Reduce. Spark používa inovatívny prístup k 
distribuovanému spracovaniu dát v podobe acyklických orientovaných grafov. 

S neustálym rastom množstva dát a výkonom technológii na ich spracovanie je potrebné, 
aby aj ľudia pracujúci s týmito technológiami dokázali udržiavať tempo. Metodológia mode
lom riadeného vývoja prináša niekoľko výhod pre analytikov, vývojárov a iných odborníkov. 
Základom tejto metodológie je grafická reprezentácia systému diagramom a následne vy
generovanie výsledného kódu. Abstrakcia, ktorú modelom riadený vývoj prináša, pomáha 
zvyšovať produktivitu pri analýze a vývoji systému, ale aj pri komunikácii medzi expertami 
z rôznych pozícií. Modelom riadený vývoj pokračuje v stopách objektovo-orientovaného 
prístupu k vývoju, ale snaží sa čo najlepšie abstrahovať technológiu a kód, tým že sys
témy majú detailne definovaný doménový model, z ktorého je možne vytvoriť plne funkčný 
systém. 

Cieľom tejto diplomovej práce je preskúmať a navrhnúť spôsob, ako spojiť modelom 
riadený vývoj a spracovanie Big Data pomocou úloh v Sparku. V práci sú najprv detailne 
priblížené obe tématiky - Spark a Modelom riadený vývoj (MDD). Po zoznámení sa s 
potrebnými konceptami sú predstavené riešenia, ktoré sa zameriavali na podobný problém. 

V druhej časti je popísaný navrhnutý meta-model, ktorý sa používa pri modelovaní úloh 
v Sparku. Tento meta-model vychádza z navrhnutého doménového modelu. Meta-model 
bol realizovaný ako profilový diagram rozširujúci diagram tried. Doménový model vychádza 
z prístupu Sparku k spracovaniu rozsiahlych dát. Je reprezentovaný ako súbor acyklických 
orientovaných grafov. Profilový diagram a diagram tried bol vybraný z dôvodu vysokej 
podpory existujúcich nástrojov a celkovej znalosti v sfére objektovo-orientovaného vývoja. 
Profilový diagram definuje niekoľko stereotypov, ktoré rozširujú slovník triedneho diagramu. 
Tieto stereotypy obsahujú tzv. tagged values, ktoré umožňujú konfigurovat konkrétne entity. 
Ďalej sú popísané detaily, ako sa s meta-modelom pri tvorení konkrétneho modelu pracuje, 
aby bol vygenerovaný kód Sparku valídny. 

V časti implementácie je popísaný Eclipse Acceleo generátor. Acceleo používa štandard 
od Object Management Group (OMG) zvaný M2T - Model to Text. Implementovaný gen
erátor zo vstupného modelu generuje kód v jazyku Scala. Vygenerovaný kód je navrhnutý 
tak, aby bol ako model, tak aj meta-model rozšířitelný. Tak isto je navrhnutý tak, aby bolo 
možné potenciálne opačné generovanie modelu z kódu. 

V poslednej časti je navrhnutý meta-model a implementovaný generátor vyhodnotený 
a predstavený na súbore ukážkových Spark úloh, konkrétne; WordCount - považovaný za 
Hello, World! program v kontexte Big Data úloh, PageRank - algoritmus, ktorý Google 
Search používa na vyhodnotenie relevancie stránky, a spracovanie dát rôznych typov, ktoré 
poukazuje na ostatné vlastnosti meta-modelu. Tieto úlohy sa snažia ukázať ako výhody, 
tak aj nevýhody tohto riešenia. Rovnako ukazujú aj vylepšenia oproti predstaveným, už 
existujúcim riešeniam. Zdrojové súbory generátora a Eclipse Papyrus projekt meta-modelu 
boli zverejnené ako open-source na serveri GitHub. 



Na záver je vyhodnotený celý prístup a výstup diplomovej práce, sú priblížené výhľady 
na budúcu prácu v tejto problematike, ako napríklad priblíženie abstrakcie, aby modely 
neboli viazané na Scalu alebo opačné generovanie modelov zo zdrojového kódu. 
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Chapter 1 

Introduction 

With the world constantly evolving day to day, people want to understand what is hap
pening. To properly understand something, one needs to analyze data. In today's age, 
the volume of the produced data rises exponentially. The term Big Data was first coined 
in 2005 and was a direct consequence of the development of Web 2.0. Many distributed 
frameworks were developed with the need to process data that contains greater variety, 
arriving in increasing volumes and with more velocity. One of these frameworks is Apache 
Spark. The successor to Apache Hadoop's Map Reduce uses an innovative programming 
model for distributed data processing. Chapter 2 describes Spark in more detail and men
tions some details and workflows necessary for this thesis. 

As the volume of the data increases, the need to develop applications in processing 
frameworks follows the same trend. To reduce the necessary work to develop these applica
tions, people search for an optimization. One possible approach is to formalize the design 
and then automate the development. A Model-Driven Development approach introduces 
a way to develop software using graphical modeling. Afterward, the source code of the appli
cation is generated. A n overview and advantages of Model-Driven Development and Model-
Drive Architecture can be found in chapter 3. 

This thesis' motivation is to design a method to formally model Big Data processing 
tasks in Spark and implement the solution. With the rundown of the essential concepts out 
of the way, the next chapter 4 describes the related and already existing work in this field. 
Previous projects offer inspiration but also an insight into what can be improved. 

Chapter 5 goes over the proposed meta-model design while describing it in detail. An
alyzing the previous solutions turned out the already existing ecosystem for modeling is 
designed with extensibility in mind. The meta-model to describe Spark tasks is an ex
tension of the U M L Class diagram using the U M L Profile diagram. By using already 
established tools, the meta-model becomes easier to extend and also learn. 

The aim of chapter 6 is to take a closer look at the implementation of the code generator 
in Eclipse Acceleo. Acceleo implements the „MOFM2T" standard, from the Object Man
agement Group, for performing the model-to-text transformation. The generator consists 
of O C L templates and Java services and produces any text from a model input. 

In the last chapter 7, I evaluate the proposed meta-model and the implementation 
of the generator using sample test cases. The first test is a Word Count application often 
considered to be the ,flello, World!" program for Big Data processing. The next test case 
is the Page Rank algorithm used by Google Search. This case focuses on presenting more 
features and the possibility of modeling a more complex task. Finally, the last example 
showcases the use of the remaining features and type system using Spark's datasets. 
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Chapter 2 

Apache Spark 

Apache Spark is an open-source framework that enables data scientists, data engineers, and 
machine learning engineers to run large-scale data processing distributed across a cluster, 
mainly Big Data processing. It ensures necessary features, such as data parallelism and 
fault tolerance. Spark provides expressive and intuitive A P I for several popular languages -
Python, Scala, Java, SQL, and R. The Spark ecosystem also offers many tools and settings 
to make Big Data processing more straightforward. One of these tools is a command-line 
interface in Python and Scala used for quick ad-hoc data analysis and simple applications. 
It was designed to effectively support various types of workloads - batch processing, stream 
processing, interactive queries and interactive algorithms, machine learning training, and 
graph analysis. That means Spark is a good choice for developers since they only need 
to use one engine for multiple types of data processing. 

2.1 A p a c h e H a d o o p M a p Reduce 

Spark is considered a successor to Map Reduce of the Apache Hadoop framework. Both 
technologies analyze Big Data, but their approach is very different. Apache Spark claims 
to be 3X - 100X faster than Map Reduce [7]. 

To understand the differences between these two popular processing engines, let us 
look at Map Reduce. Hadoop's Map Reduce distributed processing is as simple as three 
operations or steps. 

• Map: each worker node inside a cluster applies the map function and produces new 
data stored in temporary storage. 

• Shuffle: Worker nodes now redistribute data created by map in the previous step 
with their output key. 

• Reduce: workers now apply the reduce function on shuffled data. 

Because of the simple nature of this approach, multiple aspects might be improved 
upon. First, the Map Reduce A P I is too complicated and requires a lot of boilerplate 
code. Secondly, it lacks the possibility of combining other data processing workloads such 
as machine learning tasks or stream processing. Finally, complex data processing tasks 
need to chain multiple Map Reduce operations. That makes Map Reduce tasks very disk 
dependent. The data are written back to the local disk of each worker node after every 
Map Reduce stage. 
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2.2 Spark's design and architecture 

To improve these shortcomings, other data processing frameworks were developed. One 
of these frameworks is Spark which uses a multi-stage approach to distributed processing 
instead of a two-stage one. Spark uses in-memory storage after each computation. Also, 
it includes libraries for workloads such as interactive queries (Spark SQL), real-time data 
stream processing (Structured Streaming), machine learning (MLlib), and graph processing 
(GraphX). Under the hood, Spark constructs a directed acyclic graph for its computation. 

Spark's design philosophy centers around four key characteristics [5]. 

M o d u l a r i t y 

As mentioned above, Spark operations can be applied across many types of workloads and 
written in any of the supported programming languages mentioned above. In addition, 
Spark also provides highly documented libraries that include the following modules - Spark 
SQL, Spark Streaming, MLl ib , and GraphX. 

These modules can all be used together in a single application without the need to learn 
different engines and libraries to process the desired task. 

E x t e n s i b i l i t y 

Spark design focuses on its fast in-memory processing engine. That makes decoupling 
of computation engine and storage possible. Moreover, since the storage is wholly decou
pled, an extensive range of input data sources can be used - such as Apache Hadoop, Apache 
Cassandra, Apache HBase, MongoDB, Apache Hive, Apache Kafka, cloud storages Azure 
Storage and Amazon S3. 

The community even maintains a list of libraries that enriches the Spark ecosystem. 
That would not be possible if Spark's design was not extensible or easy to use. 

E a s e o f use 

Using Spark, one can build Big Data processing applications with a simple programming 
model in popular languages. The primary abstraction of data is called Resilient Distributed 
Dataset (RDD). RDDs bring simplicity to the A P I . Higher data abstractions are constructed 
upon it - DataFrames and Datasets. Programming Spark application is then simply using 
actions and transformations on these data structures. 

I will describe the Resilient Distributed Dataset and other data abstractions below 
in more detail 2.2.2. 

S p e e d 

As already mentioned, Spark outperforms Hadoop in speed. Futhermore, Spark is able 
to utilize computer hardware thanks to its fundamental architecture design fully. Spark 
transforms computations to directed acyclic graphs (DAG). DAGs are then processed and 
optimized by graph algorithms and redistributed to worker nodes across the cluster for par
allel execution. 
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2.2 .1 S p a r k a r c h i t e c t u r e 

As already mentioned, Spark is a distributed data processing system. That means multiple 
machines inside a cluster collaborate to execute the submitted task. Let us take a look 
at the architecture of this distributed engine [3] [6]. Spark uses a standard master/worker 
pattern shown in 2.1. 

• Driver - The machine responsible for initiating the computation. This machine has 
multiple roles. First, it is responsible for instantiating and hosting the SparkContext 
inside its J V M process. Second, it requests resources from the cluster manager node, 
such as memory or C P U . Finally, it transforms Spark code into D A G and distributes 
it to worker nodes. That means the driver is responsible for coordinating workers and 
the overall execution of submitted tasks. 

• Cluster manager - is the master node of a cluster. It manages the resources of work
ers and makes them run the executor program. Spark is compatible with multiple 
implementations of cluster managers closely described in 2.2.2. 

• Workers - also known as slaves - are responsible for executing the calculation. They 
are the compute nodes where the executor program lives. When the SparkContext 
is initialized each worker node starts its executor ( J V M process). This process does 
not stop after every step and waits for more commands from the driver. Thanks 
to this Spark worker nodes are able to compute received operations of constructed 
D A G faster. 

The fact that the executor is a J V M process makes both horizontal(multiple worker 
nodes) and vertical (multiple executors on a single node) scalability possible. 

Spark Executor 

Figure 2.1: Cluster architecture of Apache Spark nodes 
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2 .2 .2 S p a r k e c o s y s t e m 

Spark creators have won a prestigious award for one of their publications, describing Spark 
as a „Unified Engine for Big Data Processing" [19]. As shown in 2.2, Sparks unified stack 
offers multiple modules, cluster managers, and APIs. Unlike all the other processing 
frameworks, Spark unifies all components under a single engine. Although Sparks con
tains its own modules, it is still possible to develop open-source libraries or packages -
https: //spark-packages.org/. A l l of these modules are separate from the core computa
tional fault-tolerant engine. That means every Spark application, whether using all or no 
modules or written either in Python or Scala, is still processed and decomposed into D A G , 
which the Spark core executes. Using a modular ecosystem brings multiple advantages. 
The first is the nature of the layered structure. If a component on the lower level is opti
mized, all the components on any higher level become faster as well. Second, modules were 
designed to be highly compatible. As a result, when developers need to integrate multiple 
workloads, they need to set up and maintain only one system. That reduces a lot of cost 
and time to use. 

Now let us talk about the parts in more detail. 

S p a r k C o r e 

Spark Core is the base of Spark functionality. It is responsible for the main features of Spark 
- task dispatching, memory management, communication with the data sources, and much 
more. It is also the place that provides the specialized data structure called R D D (Resilient 
Distributed Datasets) 2.2.2. Spark Core offers A P I for this structure. 

S p a r k S Q L 

Spark SQL is used to work with structured data. It offers an abstraction built on R D D called 
DataFrame. This structure offers more information about the data than the R D D interface. 
That means Spark SQL is able to optimize the calculations and store them in permanent 
or temporary tables. Spark also supports SQL and H Q L (Hive Query Language) used 
in Apache Hive. Sparks SQL also follows standard 1 and can be used as a pure SQL engine. 
Thanks to this module, one can read data stored in various R D B M S or structured file 
formats such as C S V or JSON. 

S p a r k S t r e a m i n g 

Big Data is often created in real-time, and there is a need for real-time stream processing. 
Spark Streaming is a module that solves this issue. It provides an A P I to manipulate and 
process stream data similar to the Spark Core R D D fault-tolerant usage. The advantage 
of this module is that developers can use both stream and static data inside a single appli
cation. For example, they can treat logs from a web server as they would static data inside 
a table. Also, streams can be consumed from various data sources such as Kafka, Kinesis, 
HDFS, or Twitter. This is a perfect example of Spark's ease of use and modularity. 

1https://en.wikipedia.org/wiki/SQL:2003 

7 

http://spark-packages.org/
https://en.wikipedia.org/wiki/SQL:2003


M L l i b 

Wi th the rise of machine learning (ML) and its computational heavy training algorithms, 
Spark also implemented the support to distribute the computation to multiple machines. 
MLl ib also contains a new data abstraction called Dataset. Dataset APIs offer multiple 
algorithms, including classification, regression, decision trees, clustering, and many more. 
As mentioned above, Spark is faster than Hadoops Map Reduce in many ways. MLl ib 
claims to run a logistic regression algorithm 100X faster [1]. 

G r a p h X 

The last tightly integrated module is GraphX. It can be used to compute graph algorithms 
in parallel. This module can be easily used with MLl ib , SQL, and Streaming which only 
broadens the possibilities of the Spark framework. 

C l u s t e r manage r s 

Cluster managers, also known as task schedulers, are mainly responsible for resource allo
cation across the worker nodes inside a cluster. A cluster manager decides what node and 
when should run the task executor. Since the Spark computation cluster might contain 
hundreds to thousands of nodes, this job is essential. Because of the modular approach 
of Spark, it is possible to use different kinds of managers, as stated in Spark documentation 
[16]. 

• Standalone - the out-of-the-box solution. It is native to Spark, and its main goal is 
to be easy to use. It only supports FIFO (First in First Out) scheduling which might 
not be optimal. 

• Y A R N - released with Apache Hadoop version 2.0, and the advantages are the data 
locality inside HDFS and better scheduling and resource management than the stan
dalone deployment. 

• Mesos 

• Kubernetes (experimental) 

• Amazon EC2 
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Data D a t a s o u r c e s 

Figure 2.2: Unified stack of Apache Spark 

2.3 Resi l ient d i s t r ibuted datasets 

Spark achieves its high speed by using a data abstraction called Resilient Distributed 
Dataset. They can be described as read-only collections of objects with assured fault-
tolerant parallel processing, hence the name R D D . They were first introduced in the paper 
[21]. Let us go over these features in more detail [6]: 

• Resilient - fault-tolerant, R D D can be recalculated after a fault of a node or when 
a partition is missing. That is possible because a lineage graph of all operations is 
kept. 

• Distributed - data reside on several nodes of a cluster 

• Dataset - collections of data with primitive or structured values that represent 
records of the data you work with. 

• In-Memory - as previously mentioned, Spark calculates and holds data in memory 
to make the processing faster. It tries to keep as much data and as long as possible 
to optimize time and size. 

• Immutable - RDDs are read-only structures. That means they do not change after 
they are created. After using a transformation on R D D a new R D D is created. 

• Lazy evaluated - another feature that can optimize the calculation is lazy evaluation. 
It means R D D is only calculated after an action prompts the execution. That means 
that multiple transformations might be chained before the evaluation. 

• Cacheable - even though Spark uses in-memory computations, it is still possible 
to hold data in persistent storage. 

• Parallel - since the data is distributed across the cluster, parallel processing is pos
sible. 
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• Typed - R D D records have types - primitive, e.g., Int, String, or structured, e.g., 
tuples (Int, String) or objects. 

• Partitioned and Location-Stickiness - records of R D D are split into logical par
titions and distributed across the cluster. One can also define placement preference 
for R D D . 

Users can manipulate R D D with two types of operations. Let us describe them in more 
detail. 

• Actions - unlike transformations, action calls do not return another R D D . Actions 
start the worker nodes' evaluation of the chain of transformations. Actions results are 
sent back to the driver node. Examples of these operations are count, reduce, foreach, 
and others. Actions can also save the result to data storage instead of sending it back 
to the driver node, such as the saveAsTextFile function. 

• Transformations - operations applied on existing R D D that create new RDDs. 
DAGs that are later optimized consist of a chain of these operations. Transformations 
use lazy evaluation, and two types of transformations exist. 

Transformations can be described as having either narrow or wide dependencies. The two 
types of transformations are illustrated on 2.3 

Any transformation that can be evaluated from a single partition as input is nar
row. Narrow transformation is computed on a single partition of R D D without the need 
for knowledge of the other partitions - without any exchange of data between nodes. Some 
examples of these transformations are map, f i l ter , union, or flatMap. 

The second type is so-called wide transformation. Computing this transformation will 
collect data from multiple nodes, process it, and shuffle it. This transformation can lead 
to repartitioning of data and even a change in the number of partitions. These operations 
are time-consuming since a ton of data has to move around. Examples of these operations 
are groupBy or orderBy. 

Narrow transformation Wide tranformation 

Figure 2.3: Two types of R D D transformations 
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D a t a F r a m e a n d D a t a s e t 

Wi th the development of Spark and its module came a need and a possibility to create 
new data abstractions. A new data structure abstraction called DataFrame has been in
troduced in the Spark version 1.3 release. A few versions later, specifically 1.6, the next 
abstraction was added called Dataset. In the major version of Spark 2.0, these were merged 
[18]. DataFrame is only an alias for Dataset [Row] in Scala programming language or 
Dataset<Row> in Java. That means it is Dataset with the type Row. These data structures 
are heavily tied to the Spark SQL module. 

D a t a F r a m e 

DataFrame takes features from both R D D and relational database tables. That makes it 
immutable, distributed, fault-tolerant, and structured in columns and rows. They were de
signed to make data processing easier with higher-level structured abstraction. In addition, 
providing SQL-like language to manipulate the data makes it possible for a wider audience 
of developers. 

D a t a s e t 

Datasets are the newest data structure in the Spark ecosystem. It provides benefits of both 
RDDs (strongly typed, lambda functions) and Spark SQL's execution engine. Even though 
the Dataset A P I is available only in Scala and Java, Python and R are still able to utilize 
multiple benefits due to their dynamic nature. 

Let us take a look at why merging Dataset and DataFrame APIs was beneficial. 

• Static typing- Syntax and semantic analysis are already being checked at compila
tion which prevents possible run-time errors. 

• Highly abstract data structure - as I already mentioned, DataFrame is an alias 
for Dataset [Row]. That makes the data highly structured with the possibility to map 
it to a user-defined class in a supported language. 

• Ease of use - the A P I offers functions similar to SQL aggregation operations. It may 
lead to a reduced number of operations from the use of RDDs. 

• Performance - Spark SQL uses an optimizer called Catalyst. Thanks to this opti
mization, using DataFrames can lead to better performance than RDDs which do not 
use any built-in optimizer. The part of Catalyst is the Tungsten memory manager. 
Tungsten converts data to binary form that takes up less memory than serialized 
data. 

2.4 E x a m p l e of Spark code i n Scala 

Finally, let us look at some code snippets of the Spark framework in Scala. These snippets 
will be helpful when discussing the code generation of the Spark application. 

I already mentioned that a new R D D is created after using a transformation on an al
ready existing R D D . There must be a way to create R D D from pure data. Listing 2.1 shows 
how new R D D can be created in Scala. The usage of transformation and action operations 
are displayed on listing 2.2. Finally, usage of Dataset and conversion back to R D D is shown 
in listing 2.3 taken from [17]. 
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// sc - SparkContext 

// create rdd using parallelize 

val rddl = sc.parallelize(1 until 10) 

// create rdd from f i l e 

val rdd2 = sc.textFile("/path/to/data/file.txt") 

Listing 2.1: How to create new R D D 

// sc - SparkContext 

// transformation of previously created rdd 

val odd = rdd.filter(x => x7,2 == 1) 

// action does not return new rdd 

odd.foreach(println) 

// prints out: (the order is random because RDD is distributed) 

// 1 

/ / 7 
/ / 9 
// 3 

/ / 5 

Listing 2.2: Usage of transformation and action on R D D 

val linesDS = sc.parallelize(Seq("Spark is fast", "Spark has Dataset", "Spark 

Dataset is typesafe")) .toDSO 

val words = linesDS.flatMap(_.toLowerCase.split(" " ) ) . f i l t e r ( _ != "") 

val groupedDS = words .groupByCvalue") 

val countsDS = groupedDS.count() 

countsDS. showQ 

val rddFromDS = countsDS.rdd 

// + +- + 

// | value|count| 

// + +- + 

// 1 fasti 11 

// I i s | 21 

// | spark| 31 

// | datasetI 21 

// 1 nasi 11 

// |typesafe| 11 

// + +- + 

Listing 2.3: Usage of Dataset 
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Chapter 3 

M o del-driven Development 

Model-driven Development is a methodology of building complex software with the use 
of simplified abstractions of already existing components. The main idea is to move the de
velopment to a higher level of abstraction that is later used to generate the source code. 
These components are visual building blocks that show the application and the business 
needs instead of looking through complicated lines of code. M D D helps bridge the gap 
between developers and business domain experts. 

Model is the fundamental part of the M D D paradigm. It defines the behavior, structure, 
and functionality of a system or a part of it. The M D D approach focuses on the construction 
of a visual representation of a software model. The model specifies how the system works 
and is used to generate the necessary code. 

M D D methodology claims to have multiple advantages: 

• It increases developers' productivity because most of the code is generated from 
the model or its components. 

• The fact that M D D increases the system's abstraction level makes the communication 
between developers and other business experts easier. Business experts often do not 
understand the complex code but can communicate their ideas to developers using 
a simple graphical representation. 

• Since the code is generated, it becomes more consistent across the codebase because 
of reusable components. 

• Wi th enough support for code generation, modeling a system is independent of the un
derlying technology. 

In any technical decision, there always comes a trade-off. So let us mention some flaws 
that might hold M D D back. 

• The complexity of some artifacts might be too high to model properly with abstract 
modeling. That may lead to manually editing the generated code, creating inconsis
tencies across the codebase. 

• The usage of models or U M L is very different across the developers. Some may sketch 
the model to get the idea across. Others might use it to design the software, later 
coded by the developers. These two approaches differ from the M D D methodology 
of using modeling as a programming language. 
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• To create proper code generation tools, most of the M D D notations need to be stan
dardized. 

There are still a few things a developer could question, such as performance, maintainability, 
or scalability. Performance could be compared to traditional compilers, where it took 
a long time and effort to create optimal compilers, while M D D is still a developing concept. 
Maintainability comes from the usage of M D D . If the developer changes the code without 
reflecting the change in the model, they can introduce many inconsistencies. This problem 
could be solved with a reverse code generation to regenerate the graphical model from code. 
Finally, scaling is the biggest advantage M D D offers. Providing a higher level of abstraction 
to a system worked on by hundreds of developers can hold the generated codebase and 
diagrams more consistent across the company [15]. 

M o d e l - d r i v e n a r c h i t e c t u r e 

M D A is an approach to software design, development, and implementation introduced by 
The Object Management Group 1 . M D A offers guidelines for structuring software repre
sented by models. It separates the business and application logic from the underlying plat
form. That means platform-independent models of applications or systems can be realized 
on virtually any platform. It also means the separation of the two that creates a possibility 
for each to develop at their own pace. The business quickly responds to business needs, 
and the technology improves with the new development [10]. 

3.1 U M L - U n i f i e d M o d e l i n g Language 

The Unified Modeling Language is a formally defined and standardized modeling language 
to specify, design, and document software systems (or other systems). It is a programming 
language independent. U M L is widely known and used to model systems, especially object-
oriented software. 

There are three common ways people use U M L [8]: 

• as a sketch - usually by hand without the need of modeling tools 

• as a blueprint - with the use of modeling software to generate parts of the source 
code 

• as a programming language - the model is designed so it can run without any 
other interaction 

In U M L , we want to work with the abstraction of reality, and with different language 
means, we create the abstraction of the system - the model. In this model, we try to capture 
relationships between different elements of the designed system. As the systems we try 
to design can be pretty complex, we need to use multiple types of diagrams. Therefore, 
U M L offers several types of diagrams that can be categorized into views. This categorization 
helps capture only the relevant parts for the modeling and ignore the others. 

The set of views that is known as the 4+1 Views of Software Architecture(see figure 
3.1) with examples of a diagram is as follows [20]: 

1https://www.omg.org/ 
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• logical view - an abstract description of the structure of units of implementations: 
modeling of its components and relationships (class diagram, sequence diagram) 

• process view - the model of system behavior (activity diagram) 

• deployment view - model the components required for deploying the system (de
ployment diagram) 

• implementation view - describes how components are organized in packages and 
modules (component diagram) 

• use case view - captures the user requirements of a system (use case diagram) 

CONCEPTUAL PHYSICAL 

Logical View Implementation View 

Class, Object , Package, 
Composi te Structure, 
State Mach ine . . _ . „ Componen t 

Use Case View 
Use Case, Activity 

Process View Deployment View 
Sequence, 
Communicat ion , 
Activity r Timing, 
Interaction Overview Deployment 

Figure 3.1: U M L views 

3.2 U M L profile 

U M L , on its own, is a very generic modeling tool. However, when a developer wants to model 
a domain-specific problem, the standard U M L might not be sufficient. The need for an ex
tension of U M L that would specify the domain-related problem made the O M G consortium 
include an extension mechanism called U M L profile [12]. Profile package included in U M L 
provides the means to extend U M L meta-classes that still follow the U M L standard. The 
usage of profiles can lead to adjusted U M L for a specific domain problem. That means the 
code generators for a specific domain can be developed easier. This technique is not used 
to create a new type of diagram; instead it extends an already existing type. Most U M L 
editing software (CASE - Computer-Aided Software Engineering) supports the creation 
and usage of profiles because they only graphically extend elements of already existing and 
well-known diagrams. 

To define U M L profile we use three standard elements as defined in [8]: 
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Ste r eo types 

Stereotypes signify that an element has a particular use or intent. Stereotypes are most often 
shown by specifying the name of the stereotype between two guillemots - «s tereotype». 
The number of stereotypes an element can be extended by is not limited. In that case, they 
are separated by a comma: « s t e r e o t y p e l » , «stereotype2». As shown in figure 3.2, while 
modeling Java classes, we can define stereotypes such as Entity Bean and Session Bean that 
inherit from the Bean stereotype. Other well-known stereotypes often used in the use-case 
diagram are « include» and «extend». 

T a g g e d va lues 

Tagged values are tied to stereotypes. A stereotype may have multiple tagged values asso
ciated with it. A piece of extra information is provided in a key-value manner. Figure 3.3 
shows how tagged values are graphically represented. They can also be displayed in a note 
attached to the stereotyped element. As stated, tagged values are used to extend the proper
ties of U M L and are most commonly used for code generation, version control, configuration 
management, or authorship. 

C o n s t r a i n t s 

Although stereotypes and tagged values are graphically represented in a diagram, con
straints are not. Constraints impose rules and restrictions on model elements. Constraints 
can be defined in informal language or using O C L - Object Constraint Language. Most 
diagram editing software supports this language and can check the validity of the diagram 
based on these constraints. 

« S t e r e o t y p « » 
Bean (Component) 

3 
« S t e r e o t y p e » 

Entity (Component) 
« Stereotype» 

Session (Component) 

state : Enu m state : Enu m 

« S t e r e o t y p e » 
Rerrote (Class) 

« S t e r e o t y p e » 
Home (Class) 

« S t e r e o t y p e » 
JAR (Artifact) 

Figure 3.2: Example of stereotype 

Two tagged values Employe* 
{author - 'Bobby-} 
{version = »2.11 

l"3lVC 
•address 

Figure 3.3: Example of tagged values 
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3.3 Ecl ipse P a p y r u s 

Eclipse Papyrus is an open-source graphical editing tool for U M L 2 as defined by O M G . 
Eclipse Papyrus targets to implement 100% of the O M G specification. It provides an ed
itor for almost all U M L diagrams and supports U M L profiles [13]. Papyrus also provides 
complete support to SysML to enable model-based system engineering. It includes an imple
mentation of the SysML static profile and the specific graphical editors required for SysML. 
Papyrus is an excellent addition to the Acceleo workflow and Eclipse ecosystem overall. 

3.4 Ecl ipse Acceleo 

Eclipse Acceleo is a code generator implementing the Model-to-text specification [11] de
fined by O M G . Acceleo lives in the Eclipse ecosystem, which is rich in modeling features. 
Acceleo is not only a code generator but has many features to extend Eclipse IDE with 
helpful tooling. Acceleo can generate any kind of code with its M T L (Model to Text) lan
guage that is compatible with any EMF-based model (Eclipse Modeling Framework) such 
as U M L or SysML. The code generation language uses a template-based approach. A tem
plate is a text containing dedicated parts where the resulting code is then calculated from 
the input model. The dedicated parts are expressions specified on the element of the input 
model to extract pieces of information defined in it. Acceleo uses O C L (Object Constraint 
Language) to extract these pieces of information. 

Acceleo supports incremental generation. This feature allows people to modify pieces 
of generated code without losing these modifications when the code is regenerated, allowing 
the usage of generators to be more flexible. These ctr6cts sire defined using the [protected] 
tag. 

Acceleo is written in Java and is deployed as an Eclipse plugin and integrated into 
the Eclipse IDE. This plugin also brings multiple tools for the development of an Acceleo 
generator, such as an editor with syntax highlighting, auto-completion, error detection, 
a debugger to check the state of generation step by step, and a profiler. 

Since only running an Acceleo generator using Eclipse IDE is not optimal, Acceleo 
can also be used as a stand-alone application. The parsing and the generation engine 
are generated as a Java class that allows an Acceleo generator to be programmatically 
integrated into any Java application. 

• 
Input Model 

A c c e l e o 

[/] Generated Code 
? 

Code Template 

Figure 3.4: Eclipse Acceleo 2 

2 https: / / www. eclipse .org/acceleo/overview, html 
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Java services 

Using O C L inside [query] construct in Acceleo might not always be enough to extract or 
modify the relevant information. Therefore, Acceleo offers an option to invoke Java code 
inside an Acceleo template. These services allow developers generate even the most complex 
requests. In order to use a Java service, use the Acceleo invoke operation in order to tell 
Acceleo to call your Java method and return the result. Java services are limited to param
eters and return values with a type from one of the meta-models used in the generator or 
a primitive type (String, Integer, Real, Boolean, etc.). 
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Chapter 4 

Related work 

With the continuous rise of M D D several other projects with a similar goal in mind have 
been developed. The goal of this thesis is to design and implement a model-driven tool 
to create Spark applications. By closely inspecting already existing solutions we can pin
point the advantages and disadvantages of the given solution. 

4.1 Executable U M L 

First described in a book Executable U M L : A Foundation for Model-Driven Architecture 
[2]. Both a method and language to develop software, Executable U M L (xUML) offers 
highly abstract and platform independent solution to generate source code from defined 
model. Even though x U M L is a subset of Unified Modelling Language - U M L , it uses 
slightly different semantics. The model does not include any code, but parts of the model 
are mapped to specific code snippets for target platform. Executable U M L is a perfect 
example of Model-driven architecture in practice. 

4.2 M a p Reduce generator 

With the rise of the need for Big Data processing applications the field also tries to develop 
tools to make the analytic work more straightforward. The first proof of concept for Model-
driven Development of Big Data processing applications was published in [14]. Designing 
a meta-model for Map Reduce applications and subsequently generating a working source 
code proved that a Model-driven approach could be applied to processing tasks to bridge 
the gap between developers and complex systems by abstraction. Even though this project 
uses a Map Reduce approach to data processing it still brings valuable insight into how 
Spark application can be modeled. The conclusion of this paper showed that M D D approach 
increased the productivity without any noticable performance overhead. 

4.3 T h e cus tom Spark generator 

This project was developed as a master thesis [4] with a similar goal. The meta-model 
of this solution does not follow any standard. That makes it harder to learn. Even though 
the solution works, the modeling approach is quite complex. Using this meta-model you 
could model very complex applications as it is quite similar to modeling a Scala program 

19 



by assigning variables, calling and defining a function, and determining the order of execu
tion. The takeaway from this solution is the need for a meta-model to design the application 
with a much less complex diagram by trying to reduce the modeling space of an application. 
Also, the new meta-model has to use standard modeling language instead of a custom one, 
to make it easily integrable to Acceleo. 

4.4 S t r e a m G E N 

A very robust solution described in paper [9]. They developed a system with a simi
lar approach and technical stack using U M L profile and Eclipse Acceleo. StreamGEN is 
a system to generate Streaming Applications to multiple platforms - Apache Flink and 
Apache Spark. StreamGEN consists of a modeling language - StreamUML and an Acceleo 
code generator - StreamCGM. The meta-model is defined using U M L profile to extend 
the Class diagram and the Composite Structure diagram. The authors decided to gener
ate the application source code as Java code because it is widely supported by different 
platforms. Since this solution is mainly focused on streaming applications it defines mul
tiple domain-specific stereotypes such as a WindowTransformer, WindowedStream, 
or RandomlyPartitionedStream. Because the meta-model mainly focuses on stream 
processing some features are missing 
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Chapter 5 

Meta-model design 

In this chapter, I will introduce the designed meta-model that can be used to create a model 
of Big Data processing in Spark. I will describe its usage, advantages and disadvantages, 
and thought processes behind the design. 

As the previous chapter indicates I decided to extend the existing U M L diagram with 
U M L profile to add vocabulary to already existing, well-known language. U M L and various 
domain-specific stereotypes are well known and have great support for both modeling and 
code generation - especially Eclipse Acceleo. To keep the trend of well-known principles I 
decided to extend the most common U M L diagram - the Class diagram. 

The advantages of this approach are extensibility, reusability, and ease of use. The class 
diagram can be easily extended with different profiles and used by different generators 
to create a more robust solution. The class diagram is also well known and more easily 
read than code. Finally, as stated in the previous chapter the Model-driven design makes 
diagrams reusable solutions as they can easily model parts of the system. 

The proposed design also brings a few disadvantages. The designer needs to understand 
the Spark framework and Scala programming language. It does not abstract the internals 
enough to seamlessly work without a prior knowledge of Spark. Also, the more advanced 
features of Spark are unable to be modeled (Streaming, MLlib) as their workflow is struc
tured differently than the generic Spark processing pipeline. 

This design is mostly inspired by the related work [9], that was mentioned earlier. They 
took a similar approach by extending both the Class diagram and the Composite Structure 
diagram. Although this approach can bring better and more robust abstraction, I find using 
only one diagram more maintainable and reusable. This can bring a few hurdles that I will 
discuss later. 

Now let us take a look at a Domain model of a typical Spark application. As we can 
see in figure 5.1, a Spark application structure is rather simple. A n instance of Spark appli
cation has its own configuration. Most Spark applications use the command-line interface 
with provided arguments for control. After the Spark application is configured the flow 
of the program can be represented as a directed acyclic graph. This is similar to how Spark 
actually works on the inside. These processing graphs begin with the source node. After
ward, multiple transformations can chain to modify the input data provided by the source 
node. The last type of processing node is the action node. Action node represents an action 
on computed R D D (or Dataset). 
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Figure 5.1: Domain model of Spark Application 

Up until now, the order of generated code did not matter because the RDDs or transfor
mation nodes were not evaluated. If the respective transformations were chained correctly 
the flow of the program was apparent. The problem arises when a single Spark application 
uses multiple actions. Their order must be deterministic because a premature action can 
modify the not yet evaluated source. That can be avoided by explicitly selecting the priority 
of a specific action. 

Wi th this domain model in mind I will define the meta-model in more detail. Figure 5.2 
and table 5.1 show the designed U M L profile. As already mentioned U M L profile extends 
the most common diagram - the Class diagram. The most important types of elements 
of a U M L diagram, or more specifically the Class diagram, are relationships (meta-class 
Association) and classifiers (meta-class Class). The meta-model also extends a less known 
meta-classes - Model and Datatype, to display the model with a better composition and 
provide a tuple data structure often used in Spark. 

5.1 D e s c r i p t i o n of provided stereotypes 

In this section I will describe the designed profile diagram and defined stereotypes in detail. 
It is necessary to mention the designed meta-model is designed with the Scala programming 
language in mind. Many tagged values of stereotypes require the user to specify Scala code 
snippets to define a function or an array of some sort. 

First I will describe miscellaneous elements that diagram provides. These elements 
all contribute to the type system of the meta-model. The Snippet primitive is defined 
to distinguish the fields that expect String primitive or Scala code snippet to be pro
vided. The structered DataTypes Option and Program Argument are defined as types 
used in the meta-model to introduce structured tagged values. Option is key-value map 
where key is a string literal and value is a Scala code snippet (either a string literal in quo-
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tation marks or a variable name). Program Argument defines Spark Application program 
arguments, their data types and default values. Enumaration File Source Type narrows 
down the values for « F i l e Source» stereotype. 

• «Spark Application* - this model stereotype defines Spark Application as a whole. 
Spark applications usually need a configuration. The most common attribute - master 
is defined as an explicit tagged value. Next tagged value is conf. Conf uses the de
fined Option type to configure the Spark object using key-value pair configuration. 
Similiarly arguments define input arguments for Spark Application and their default 
values. Imports is a list of packages to be imported into the Spark Application. 
Last, initialCodeBlock is used to inject specific code at the start of the generated 
application. 

• «Process ing Node» - the processing of input with transformations and finally evalu
ating it with action is the core of Spark applications. The processing node stereotype 
is abstract and defines the processing graph node. Multiple stereotypes extend it. 

• «Source» - the entry point of the data processing. Source node represents the initial 
creation of R D D (or Dataset). Tagged value priority is used to determine the or
der of execution to prevent any undefined behaviour occuring. Source stereotype is 
extended by specific ways of R D D creation. 

• «RDD Parallelize* - the most basic creation of R D D . The tagged value array rep
resents a Scala code snippet of an array of data, for example - array="Seq(l ,2,3)". 

• « F i l e source» - Spark supports multiple file types to load the data from. The type 
of file can be selected using the tagged value format and the Fi le source types enu
meration. The enumeration is used to limit the input scope. The path to the input 
file is configured using the f ilePath tagged value. Similar to conf in Spark Appli
cation stereotype, file source can be configured with options tagged value. The fact 
that Spark application can load both R D D and Dataset from files means it might be 
necessary to provide a data type for Dataset. 

• «SQL» - represents the SQL query from the Spark SQL storage. Using the tagged 
value query to define an input query. Also uses datatype tagged value. 

• «JDBC» - the last supported data source is by loading data from a database. The URL 
tagged value is self-explanatory. The options and datatype work the same as in 
the file source. The necessary options are also explicitly used as tagged values - user, 
password, tableName. 

• «Transf ormation» - transformation nodes are the central part of the processing 
graph. The designed meta-model supports both R D D and Dataset transformations 
that make this stereotype abstract. The tagged value that both transformations in
herit is the func value. It is used to define the transformation provided by the Scala 
Spark A P I 1 . For example, if we want to use the map function to double the value 
of records in R D D we would set the tagged value as follows: func="map(x => x*2)". 

• «RDD transf ormation» - stereotype representing the R D D transformation. Doesn't 
contain any tagged values because it inherits func from abstract transformation. 

1https://spark.apache.org/docs/latest/api/scala/org/apache/spark/index.html 
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«Dataset Transformation» - works similar to R D D transformation but for Dataset 
A P I . The purpose of this stereotype is to be able to tell the generator to convert 
the R D D to Dataset. 

«Action» - the next defined stereotype extending the Class meta-class represents 
the last node of the graph - the Action. Actions' func values work the same way 
as in terms of transformations. Most of the action functions just return a value. 
«RDD Action» and «Dataset Action» stereotypes are also defined and work similarly 
to transformation. 

«Code Block» - even though Spark Application mostly consists of the previously 
mentioned processing graphs, there is still need of some utility code either to display 
or format outputs or assign values to variables. The tagged value code contains a Scala 
code snippet. The stereotype is also part of the processing graph and the provided 
code is generated while traversing the graph. The output of the previous node is 
injected into the code using $out variable. 

«Variable» - in some specific cases we need to introduce a variable into our compu
tation. We might need to iterate in a loop while joining constantly changing R D D 
with another R D D . Or we just want our mapper to use program arguments. The need 
of this stereotype might be more apparent when I discuss it's usage in a later chap
ter. It is possible to store a specific output of a processing node by connecting this 
stereotype with Information Flow relationship to it. Tagged value dataType defines 
the dataType variable will hold and isRDD is a bool flag to tell the generator variable 
will contain R D D of the provided data type. 

«Flow» - this stereotype extends Information Flow relationship and is used to increase 
the ability to define the order of execution and reuse already defined transformations. 
Priority is used when a transformation output is sent to multiple nodes. The gen
erated code will traverse the graph in depth-first search manner. Tag helps to name 
a specific flow in the graph. It is only useful if a specific transformation has input 
from two different nodes. The output of this transformation for each of these nodes 
is accessed via the same tag. If the Information Flow relationship does not use this 
stereotype the priority is always considered to be traversed last. Also the graph is 
generated for each tag from the input flows. 

«Argument» - extends the association relationship. Some of the transformations pro
vided in Spark A P I use another RDD/Dataset to process the input e.g. zip, join 
or intersect. This relationship helps to inject a Variable stereotype as a function 
argument to a transformation node. 

«Tuple» - while working with RDDs in Spark one can use transformations, such as 
groupByKey or reduceByKey, that need tuples as their data type. This stereotype 
extends DataType meta-class making it possible to use it as a data type in model 
when necessary. 

«Loop» - similarly to «Spark Application* stereotype this stereotype also extends 
the Model meta-class to display a proper composition of the application. « I t e r a t i o n 
Loop» and «Condit ional Loop» stereotypes define the loop condition since this 
stereotype is abstract. Both iterations and condition tagged values are Scala 
code snippets and represent the behaviour of the loop. 
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5.2 T h e usage of the profile 

There are a few non-standard design choices that need to be described to understand 
the usage of the proposed meta-model. In this section I will go over the details that are 
necessary to understand to use the designed meta-model properly. 

O r d e r o f e x e c u t i o n 

The source node and the action node can have multiple outputs and inputs respectively. 
The transformation node can have both multiple inputs and outputs. This creates a situa
tion where one diagram can define multiple processing pipelines. To determine which code 
is generated first, the source nodes and Information Flow relationships have priority values. 
The order of generation is as follows: 

1. find the highest priority source node 

2. generate the code representing graphs in depth-first search manner where higher num
ber has higher priority 

3. select next source node and repeat 

In many Spark Application the processing nodes might only contain one output. To make 
the modeling process more straight-forward, even the Information Flow relationships with
out the «Flow» can be used to model the computation. These relationships are then con
sidered to have the lowest priority when possible branching occurs. 

D a t a T y p e s 

The graph, created using Information Flow relationships as edges and processing nodes 
as nodes, instantiates the processing pipeline of the application. Each edge must contain 
data type of the R D D that is being processed. This data type is selected using conveyed 
property of the Information Flow relationship. 

To define data types used by different elements across the diagram, such as Informa
tion Flow relationships, variables, and sources, the package element of a Class diagram 
is used. If the package is contained inside the «Spark Application* stereotype model 
element, the appropriate data structures are also created by the code generator. Class 
diagram offers primitive data types - Integer, Real, Boolean and String. It is also possible 
to modify the multiplicity of the attribute to create a list. Meta-model supports the defi
nition of a structure type with primitive data types and their multiplicity. The generated 
case classes and data types are later described in chapter 6. On the other hand, some 
data structures, or in this CctSG SCctlcl case classes, can include properties that can not be 
modeled in the U M L Class diagram. The meta-model can still support these data types 
as an imported anonymous data type. To import the data types, use the imports tagged 
value of the «Spark Application* stereotype. Afterward, create a package element with 
a DataType element inside. This element does not need to have any properties defined, 
but requires the name to match the imported name. The difference between imported and 
generated data type can be seen in figure 5.3. 
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«Spark Application» 
R | App 

F"l Imported Package 

«Data Type» 
l ' p ' l ImportedDataType 

Figure 5.3: Difference between generated and imported data type 

L o o p s 

The analyzed related projects did not include any form of loops in their design. Therefore, 
the addition of loops to the meta-model brought the possibility to model more complex ap
plications. To properly include this feature, both the readability and functionality of the di
agram must be considered. Similarly to the Application element, loops are also represented 
as the model element of the Class diagram. The model element can display what nodes of 
the computation are inside. Now it is crucial to determine when the loop scope starts and 
where it ends. As the generator traverses the computational graph, when the first node 
with a new loop scope is visited, the loop header will be generated. The closure of the loop 
happens when the generator visits the first node outside of the model element. The meta-
model also supports nested loops and thanks to the model element the diagram remains 
readable. 

Tags 

The meta-model is designed to be a Class diagram. Classes are not meant to represent 
objects already instantiated in the application. The overall thought behind the meta-
model design is that the nodes represent the structure and the template of computations, 
while Information Flow relationships instantiate them inside the application's main method. 
Therefore, all the nodes inside the diagram must be unique. Tagged value tag in the «Flow» 
stereotype aims to prevent a definition of multiple classes with the same method, but 
different name. When the computation requires to process multiple inputs with the same 
function, it is possible to connect these inputs to a processing node. These input edges 
must then be distinguished by tagging them with a specific value. To differentiate between 
the output flows, the same tag must be used in the out-coming relationship. If no tag is used 
in the output Information Flow relationship, all the inputs are processed and the generator 
continues to generate the pipeline for each of them. It is important to mention that if 
only single Information Flow relationship is used it can only hold a single conveyed data 
type, whereas the inputs types to the processing node may differ. The use of tags is shown 
in the Dataset processing test case described in the section 7.3. 

«Data Type» 
]E| DataTypel 

[CJ ] + Proper ty l : String [1 

[ C J ] + Property2: Integer [1 
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D a t a s e t s 

When using Spark's Dataset A P I , it is often necessary to use the name of the input Dataset 
variable. A n example can be seen in listing 5.1. However, the name of the generated 
variable holding the value is unknown. Therefore it is necessary to provide this functionality 
to the model designer somehow. Test case 7.3 shows the code snippet of the solution. 
Because outputs from all the nodes are cast to R D D , the transformation and action methods 
need to use A P I with the $ notation. The input Dataset is then renamed to this using 
an alias method. 

people.filter("age > 30") 

.join(department, people("deptld") === department("id")) 

.groupBy(department("name"), "gender") 

.agg(avg(people("salary")), max(people("age"))) 

Listing 5.1: Dataset A P I using the name of Dataset variable 

V a r i a b l e s 

Another fairly non-standard feature is the use of variables. This element defines a variable 
in the main method of the application. The name of the element matches the variable 
inside any Scala code snippets. The injected variable also uses the same identifier inside 
the transformation and action function. 

Stereotype Inherits from Type 

« Spark Application » Model Concrete 
« Computation Node» Class Abstract 
«Source» « Computation Node» Abstract 
«File Source» «Source» Concrete 
«SQL» «Source» Concrete 
« Parallelize » «Source» Concrete 
«JDBC» «Source» Concrete 
« Transformation » «Computation Node» Abstract 
«RDD transformation» « Transformation » Concrete 
« Dataset transformation » « Transformation » Concrete 
« Action » «Computation Node» Abstract 
«RDD Action» « Action » Concrete 
« Dataset Action » « Action » Concrete 
«Flow» «Information Flow» Concrete 
«Code Block» Class Concrete 
« Variable » Class Concrete 
« Tuple » DataType Concrete 
«Loop» Model Abstract 
«Iteration Loop» «Loop» Concrete 
« Conditional Loop» «Loop» Concrete 
« Argument» Association Concrete 

Table 5.1: The list of defined stereotypes 
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Chapter 6 

Implementation details 

For this chapter, I will go over the implementation details of the Spark Application code gen
erator. Both the meta-model definition and code generator are integrated into the Eclipse 
modeling ecosystem. Futhermore, both Papyrus and Acceleo follow O M G standards. There
fore the designed solution is technologically independent in theory. 

The code generator is implemented in Acceleo and can be divided into two parts. First, 
the generation of necessary Scala classes, and second, the generation of the computational 
graph. The implementation also contains two kinds of source files. Acceleo .mtl template 
files and Java services, both found in src folder. Java services are mostly used to generate 
the complex computational graph while templates are used to define the folder structure 
and class implementations. 

The final generated main/scala/{app name}/ folder has the following structure: 

• actions/ - folder containing action classes 

• dataTypes/ - folder containing dataType case classes 

• sources/ - folder containing source classes 

• transformations/ - folder containing transformation classes 

• {app name} App.scala - file with the application object and the main method 

The generated folder structure represents the application source code. The best ap
proach to folder structure is to include the generated folder in the src/ folder of the project. 
The generator does not generate the whole project but only the needed source code. 

6.1 Scala classes 

The generator creates multiple classes. To make the model more extensible, each node 
of the computational graph is represented as a Scala class. Also, the data types defined 
in the model are generated as Scala case classes. Scala's case classes represent immutable 
data defined as a data structure with methods. A sample generated data type is shown 
in listing 6.1. If the case class needs to be enriched with potential methods to modify data, 
the already mentioned [protected] tag is used and represented as a user code comment. 
This section can be modified and is not included in the model. This code block is not lost 
after a subsequent generation of the application if a change occurs. 
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case class WordCount( 

var Word: String, 

var Count: Long, 

){ 
//Start of user code WordCount 

//End of user code 

} 

Listing 6.1: The generated Counter class 

As per Scala's best practices, each class is generated into its own file. This approach 
to class-based code generation is different than how most Spark Application code is written. 
I believe that this approach is more extensible and robust, even though it creates more 
boilerplate code. A n example of a generated class can be seen on listing 6.2. 

Multiple important details might be pointed out. The class consists of a single method 
and multiple properties. These properties do not influence the generated application in any
way. They serve to demonstrate the potential possibility of reverse model generation. 
In the future, a tool might be developed that would complement Acceleo's M2T generation 
by reversing it to Text to Model transformartion. By introducing these properties it is 
possible to define the stereotype and tagged values of a class. 

class Counter() { 

val S_rDDTransformation = true 

val TV_func = reduceByKey(_+_) 

def transform[T: TypeTag](rdd: RDD[T]) = { 

typeOf[T] match { 

case typel i f typel =:= typeOf[(String, Long)] => 

rdd.asInstanceOf[RDD[(String, Long)]] 

.reduceByKey(_+_) 

} 

} 
//Start of user code Counter 

//End of user code 

} 

Listing 6.2: The generated Counter class 

Every single computational node; source, transformation and action contain a single 
method - source, transform and action respectively. This method implements the logic 
provided by tagged value func. The method uses generic types and reflection because 
a single transformation or action can have multiple inputs with different types. The use of 
reflection is closely described in section 6.6. The use of multiple data type inputs to a single 
processing node can be seen later in section 7.3. Both transformation nodes and action 
nodes extend R D D and Dataset operations. To abstract away the communication between 
them, every output is defined as RDD [T] of the specific type. This leads to the need of re
typing R D D to Dataset using toDSO method, when Dataset action or transformation is 
used. 
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6.2 C o m p u t a t i o n a l graph 

The more complex part of the code generation that creates the flow of the application is 
the generation of the computational graph. Because of the complex nature most of the gen
eration is located in Java services. The implementation of the computation is located in 
the main method of the App object. If the previous generated code was represented by 
classes of the model, this part is represented by Information Flow relationships that instan
tiate the classes and produce outputs. A few other necessary elements are also included in 
this part of the generation, namely loops, code blocks and variables. 

First, all necessary classes are instantiated. A l l nodes are stored in variables with a spe
cific name - prefix S_, T_ and A_ and properly formatted name of the class in the diagram. 
After that, the graph is traversed depth-first while creating necessary statements. The out
put of each node is then stored in a variable with a similar name to the node it was produced 
by. Starting with prefix s_, t_ and a_ and the name of the node, and ending with suffix 
_{tag_name}. The suffix is omitted if the particular flow does not contain any tag. 

6.3 Loops 

Some Big Data processing tasks might include a specific loop to process data, e.g., tasks 
such as k-means clustering, linear regression, or page rank calculation (described in chapter 
7 in more detail). Including loops in the meta-model brought many hurdles implementation-
wise. Since loops extend model, the graph node must have been searched for recursively in 
the application model. 

Looking at how the loop is structured in code, we can see it wraps statements inside it. 
To correctly generate the loop while traversing the graph, the header is generated before 
the node statement when the computation enters a new loop scope. The recursive traversal 
of the graph keeps track of the loops in the model and currently active loops - meaning 
loops where the end of the scope is yet to be generated. When processing a new node, 
the generator checks the scopes it is inside of. If any active loops are missing, the proper 
loop scope is closed. 

As previously mentioned, new variables are defined for each output of a node. Therefore, 
some of these variables can be defined inside the loop's scope. During the first prototyping 
of loop implementation, a problem arose when these variables needed to be accessed outside 
the loop's scope. This situation happens when the graph leaves the loop and uses the out
put of the last node inside the loop. The implemented code generator handles the problem 
by defining the variables located inside the loop at the beginning of the graph. Only neces
sary variables are defined to lower the amount of generated boilerplate code. The solution 
can be seen in a sample code snippet shown in listing 7.3. 

6.4 D a t a Types 

Scala as a programming language is statically-typed. That means all necessary data types 
must be known during the compilation of a program. The fact that the generator creates 
much boilerplate code to make the model more extensible also removes the possibility 
of utilizing Scala's type inference feature. Also, the type system in U M L modeling is 
fairly limited. As previously mentioned, it is only possible for a few primitive types, their 
multiplicity, or the user-defined structure of these primitives. The import and data type 
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definition outside the model element feature attempts to include more complicated data 
types. These data types are then generated as {datatype_name}. See the code snippet 
in section 7.3. 

It is necessary to mention the use of primitive types of the U M L , especially Integer and 
Real. The internal conversion between Dataset and R D D using toDSO and rdd methods, 
introduces a possible typing problem. To prevent this Integer is represented as Long data 
type in Scala and Real is Double. This fact is also necessary to understand when modeling 
a Spark task using the meta-model. As seen in figure 7.1, the Count Adder class uses 1L 
to define the number as Long. 

6.5 A r g u m e n t s , code blocks and variables 

Spark Applications might need to use other code than R D D actions and transformations. 
This issue is solved by including code blocks and variables. These parts of code are also 
considered to be processing nodes in the diagram. The generator first defines all variables 
in diagram with their assigned data type and null value. If the variable is part of the compu
tational graph connected by Information Flow relationship, then a re-assignment statement 
is generated as the variable is already defined. 

Code blocks nodes and initialCodeBlock tagged value are generated at appropriate 
places as Scala code snippets are used to introduce custom functionality or possibility 
to model specific work-arounds. 

Finally, program arguments are generated as shown in listing 6.3. They represent the ap
plication input and can take value of any primitive data type. Futhermore, if a node needs 
to use it as an argument, simply define «Variable» stereotype with the same name. When 
the generator creates the variable definitions it omits the variables defined in program 
arguments, because the generated code would throw variable already defined error. 

var argMaster = i f (args.length > 0) args(0).toString else "local[*]" 

var arglnt = i f (args.length > 1) args(1).toLong else 1 

var argReal = i f (args.length > 2) args(2).toDouble else 1.1 

var argBool = i f (args.length > 3) args(3).toBoolean else true 

Listing 6.3: Generated program arguments 

6.6 Ref lect ion 

To fully utilize the advantages of model-driven development, we want to reuse already 
modeled processing nodes as much as possible. Wi th the introduction of tags in the meta-
model, it is possible to distinguish the incoming flows to a transformation or action. These 
flows might convey different data types while still being compatible with the node's function. 
To support this approach, the generated code uses type reflection and type assertion to limit 
the generated boilerplate code. 

Even though Scala programming language supports method overloading, it can only 
be used on types without type parameters. As we already know, the processing graph 
always produces RDD [T]. Therefore, type overloading would not work. The next Scala 
feature that enables this approach is compound types 1. Thanks to compound type a Scala 

x
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method returns values that act as multiple types at once. To distinguish the proper type, 
the generator uses type casting with the method asInstanceOf [T] in the computational 
graph code. The section 7.3 takes a closer look at the advantages and code snippets of this 
approach. 
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Chapter 7 

Sample test cases 

This chapter will demonstrate the usage, discuss and evaluate the solution. I prepared 
multiple relevant test cases that display the general usage and some of the features and 
quality of life design choices in the meta-model. By showing these test cases, I intend 
to demonstrate the advantages of the meta-model while also pointing out where the model-
driven solution to Spark tasks might come short. The diagrams, model meta-files and 
the generated sources, have also been submitted with this thesis for further inspection. 

7.1 W o r d C o u n t 

Word Count is considered to be the ,flello, World!" program for Big Data processing. This 
application counts the amount of each word in an input text. The sample model is shown 
in figure 7.1. 

«Spark Applications 
Ffcl WordCount 

P.-ll.-lllr-ll/.- • 
B Parallelizer 

«RDD Transformation» 
• Word Splitter 

«RDD Transformation» 
• CountAdder 

«RDD Transformations 
B Counter 

«RDD Action-
• Printer 

>̂ 
WordCount > 

>̂ 
WordCount > 

WordCount 

> 
>̂ 

WordCount > 
WordCount 

«Code Block» 
~Ü> g Result Printer 

-Parallelize. 
array=Seq("hello world", "hello spark", "spark 
priority=0 

«RDD Transformation» l \ 
func=map(x=>(x,ll_) 

«RDD Actiori» t̂ , 
func= collect!,) 

«RDD Transformation» t̂ , 
func=flatMap(x=>x.5plit(' ' «RDD Transformation» t̂ , 

func=reduceByKey(_+_) 
«Code Block» ^ 

:ode=println($out.mkString(" ")) 

«D ataType» 
.Tuple. 

@ WordCount 
j + Word: String [ i ; 

i- -i + Count: Integer [1 

«Spark App on 
master^argMaster 
imports=[scala.math.random, scala.io.Stdln] 
initialCod eBlock 

Figure 7.1: Word Count diagram 
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As seen in the figure, the diagram is a simple directed graph inside a model ele
ment. The quick overview of the algorithm is quite simple. First, the input R D D is 
created. Although it is most often created from a text file, for demonstration purposes, 
the « P a r a l l e l i z e » stereotype is used. Then, the input is split into R D D of strings of 
specific words using flatMap. After that, the Counter transformation processes the in
put to output defined key-value tuples. These tuples are then reduced by key to calculate 
the occurrence of each word in the source text. Finally, the action node is used to collect 
the desired result. 

As we can see, the diagram uses the «Tuple» stereotype to introduce key-value pair data 
structure. Every Information Flow relationship conveys a specific data type, as previously 
discussed, these types represent the type of the R D D sent between two nodes of the graph 
(for example RDD [(String, Long)] for the tuple WordCount). The only Information 
Flow relationship without any data type is used when the graph finishes with the «Code 
Block» stereotype node. The output value from the previous node is accessed using $out 
variable. The diagram also shows the need to use Long instead of Integer in the Count 
Adder class. 

As already stated, the generator creates a bunch of boilerplate code to make it more 
extensible or potentially introduce a possibility to support reverse model generation. Listing 
7.1 shows only the part of the main method, where the computation resides. 

val s_parallelizer = 

S_parallelizer.source().asInstanceOf[RDD[String]]; 

val t_wordSplitter = 

T_wordSplitter.transform(s_parallelizer).asInstanceOf[RDD[String]]; 

val t_countAdder = 

T_countAdder.transform(t_wordSplitter).asInstanceOf[RDD[(String, Long)]]; 

val t_counter = 

T_counter.transform(t_countAdder).asInstanceOf[RDD[(String, Long)]]; 

val a_printer = A_printer.action(t_counter); 

println(a_printer.mkString(" ")) 

Listing 7.1: The generated Word Count computation 

One may notice, that the generated computation seems very uniform and easy to read, 
that is because the code generator executes in the order of the computational graph. This 
uniform code also simplifies the potential reverse generation. 

A n argument can be had that this algorithm is only a simple sequence of steps without 
any complexity. However, the next test case introduces a more complex problem. 

7.2 Page R a n k 

The next chosen test case is the Page Rank algorithm. Google Search uses this algorithm 
to measure the importance of a website page. Not only is this algorithm used with Big 
Data, but it also uses a loop. This fact makes it an excellent example to demonstrate 
the usage of the designed meta-model. The integration into the Eclipse ecosystem that 
already has modeling features turns out to be a good choice for any modeling task. Papyrus 
offers the possibility only to display the selected elements. As shown in figure 7.2, some 
of the elements are hidden, so the diagram is more readable while still holding the necessary 
information to generate the final application. Now let us look at some of the features used 
in this diagram. 
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ĵ j Spli t ter 

String 

«RDD Transformation» 
f u n c = m a p { s = > 

val parts = s.spl i t (" \ \s+" 
(parts(O), par ts ( l ) ) 

} .dist inct() .groupByKey() 

tX I terable Value Tuple-

Alteration Loop» 
{iterations=iters 
r̂ n Loop 

• contr i t 

«Variable» 
dataType=Tuple 
isRDD=true 

ranks 

<Argument» 

«Code Block» 
code=ranks = $out 

;RDD Transformation: 
I Contribs 

;RDD Transformation: 
j . Calculate Ranks 

«Code Block» 
I re-assign ranks 

«DataType» 
«Tuple» 

[EgE] Tuple 

m + Key: String [i; 

+ Value: Real [1 

«DataType» 
«Tuple» 

g>[ I terable Value Tuple 

151 + Key: String [i; 

[ c j + IterableValue: String [* 

«Flow» 
Tuple 

Tuple 

«RDD Transformation» 
func=jo in(ranks) .values. f la tMap{ case (urls, rank) 

val size = urls.size 
urls.map(url = > (url, rank / size)) 

} 

«RDD Action» 
^ Collector 



First, we can see two tuples denned. The first defines a typical key-value pair already 
seen in the Word Count example. The second one differs in the multiplicity of the value 
element. This tuple is produced by the groupByKey operation. This tuple data type then 
represents RDD [String, Iterable [String] ]. 

Next, we can see that two nodes have multiple outputs. To determine the exact order 
of the execution, the «Flow» stereotype has been used for the higher priority path. As I 
already mentioned, Information Flows without the stereotype are evaluated last in an un
defined order. In this diagram, the generator first generates the path to the ranks node 
with the «Variable» stereotype. This variable holds the output of the previous node. As 
can be seen in the diagram, the variable ranks data type is RDD [(String, Double)]. 

The computation node Contribs uses the previously defined variable in its transfor
mation. We can see the «Argument» stereotype being used to inject the variable into 
the transformation. In a typical Spark application program, the transformation's anony
mous function could reach out of its scope and use all variables defined in the app's main 
method. Since all nodes are generated as separate classes, all necessary variables must be 
provided to the method scope. This approach introduces more modeling work but increases 
the transparency of the used transformation and might also prevent bugs by using variables 
out of scope. A n example of Linear Regression implementation with the transformation 
using variable out of the anonymous function scope can be seen in an official Spark example 
on Gi tHub 1 . 

L o o p 

Now let us discuss the loop. Listing 7.3 shows the full generated computation of the Page 
Rank diagram. The first thing to point out are the variable definitions for the nodes inside 
the loop. If the variables were not defined before hand, the last statement in the listing 
would fail, because the t_calculateRanks would only be defined in the scope of the loop. 
The diagram shows that the path enters do loop when the Splitter node sends data 
to the Contribs node. Because of this transition, the appropriate loop header was gener
ated. When the generator enters the Collector node, it closes the loop because the node 
is not inside the model element. 

The main reason to use a loop inside a Spark application is to modify inputs for a trans
formation. In this example, we need to modify the ranks variable in each iteration. If we 
tried to model the diagram differently, we might come across a problem. If the Calculate 
Ranks tried to overwrite the data inside the variable node, it would exit the model ele
ment, and the variable re-assignment would close the loop. Furthermore, if the meta-model 
allowed to define multiple classes with the same name, it would disobey the U M L standard. 
That is why the variable re-assignment is modeled as the «Code Block» stereotype. This 
situation shows that the meta-model might be improved, but also that it is flexible enough 
to allow a specific program requirements to be modeled. 

This test case aimed to present multiple features of the meta-model. The loops, the func
tion arguments, and the execution priority were proven to work correctly and offer a rel
atively intuitive modeling experience. This example also highlights the advantages of this 
solution compared to already existing ones. Improving the ability to model more com
plex tasks while also keeping the graphical model readable is one of the essential parts 
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of the model-driven approach. The last example test case will go over the remaining fea
tures supported by the integrated meta-model. 

var t_contribs: RDD[(String, Double)] = null 

var t_calculateRanks: RDD[(String, Double)] = null 

val s_fileSource = S_fileSource.source(filePath).asInstanceOf[RDD[String]]; 

val t_splitter = T_splitter.transform(s_fileSource).asInstanceOf[RDD[(String, 

Iterable[String])]]; 

val t_countAdder = 

T_countAdder.transform(t_splitter).asInstanceOf[RDD[(String, Double)]]; 

ranks = t_countAdder 

for(loop <- 1 to iters.tolnt) { 

t_contribs = T_contribs.transform(t_splitter, 

ranks).asInstanceOf[RDD[(String, Double)]]; 

t_calculateRanks = 

T_calculateRanks.transform(t_contribs).asInstanceOf[RDD[(String, 

Double)]]; 

ranks = t_calculateRanks 

} 

val a_collector = A_collector.action(t_calculateRanks); 

Listing 7.2: The Page Rank computation 

7.3 Dataset processing 

The final test case highlights the remaining features and provides a deeper look at how mul
tiple data flows can be modeled in a single diagram. The modeled Spark task is relatively 
simple. We load data from three different C S V files. The first file contains a list of an ab
breviation and the full name of American states. The two remaining files, which data we 
want to modify, are lists of American cities and Sports teams, both containing a state name 
in their records. In this task, we want to change the state's name to its abbreviation while 
highlighting the polymorphism of a single processing node. Afterward, to show the possi
bility of working with specific flows, we filter out all but N B A teams from the team flow. 
The model also uses a single node to save the modified data. This is accomplished using 
code block nodes that modify a variable. 

The modeled diagram is shown in figure 7.3. First, let us mention the imported package 
outside the Spark Application element. Defining data types outside the model element 
allows us to utilize it in the diagram, while the generator does not generate the correspond
ing Scala case class. However, the generator still has access to the name of the data type 
to generate typecasting properly. The imported class can be found in the submitted source 
files of this test case in the imported/ folder. 

The computation starts with the highest priority source node - the AbbrSource node, 
loading data and storing the resulting R D D in the abbrs variable. The tagged values 
of the variable define its type as RDD [Abbr]. This variable is then injected into the Re-
placeStateWithAbbr transformation. As previously stated, all processing node outputs 
are converted back to RDDs. Therefore, the function definition of the Dataset transfor
mation must explicitly cast the abbr variable to Dataset using the toDSO method. We 
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can also see the usage of the alias this inside the function that refers to the input RDD(or 
Dataset after implicit cast). 

def transforms: TypeTag] (rdd: RDD [T] , abbrs: RDD [Abbr]) = { 

import spark.implicits._ 

typeOf[T] match { 

case typel i f typel =:= typeOf[City] => 

rdd.asInstanceOf[RDD[City]] 

.toDSO .asC'this") . joinWith (abbrs. toDSO .asC'abbr") , $"this . State" 

=== $"abbr.State", "inner") 

.map(x => x._l.copy(State = 

x._2.Abbreviation)).as[City].rdd 

case type2 i f type2 =:= typeOf[Team] => 

rdd.asInstanceOf[RDD[Team]] 

.toDSO .asC'this") .joinWith (abbrs. toDSO .asC'abbr") , $"this . State" 

=== $"abbr.State", "inner") 

.map(x => x._l.copy(State = 

x._2.Abbreviation)).as[Team].rdd 

} 

} 

Listing 7.3: Using reflection to determine the R D D type parameter 

Next, the City Source node produces the input R D D and creates a flow tagged with 
city tag. The transformation that replaces the state name with its abbreviation has three 
output Information Flow relationships. Since the path is using the city tag, one of them 
is ignored. Traversing the graph using the higher priority flow, the next visited node is 
the code block node. This node is used to change the contents of outputPath variable, 
which is used in the next generated node to execute the defined action to store the data 
inside a file. 

Finally, the team flow is generated similarly to the city flow. After the abbreviation 
replacement the traversal continues with the only edge being tagged with the team tag. 
We filter teams only to include the N B A teams to show that the flows are separated again. 
Now the code block modifies the outputPath variable so the same action node can be 
used to store the result. 
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Chapter 8 

Conclusion 

This thesis aimed to design a meta-model for Big Data processing tasks in the Apache 
Spark framework and develop a tool to generate the target source code of the modeled 
task. First, I had to get familiar with Spark to accomplish this goal. The essential details 
to understand the framework are described in chapter 2. 

Afterward, the concept I had to get familiar with was Model-Driven Development 
(MDD). The advantages, disadvantages, and details are discussed in chapter 3. 

After I researched the necessary concepts to understand the problem, I took a look 
at already existing tools that try to solve a similar problem. A n overview of model-driven 
tools to solve Big Data processing is in chapter 4. 

The integral part of this thesis is chapter 5 that goes over the designed meta-model and 
the reasoning behind specific choices. In addition, it describes the U M L Profile diagram 
and its stereotypes in detail. Furthermore, the choices behind the generated code structure 
are also discussed. 

The details and highlights of the generator implementation are in chapter 6. This 
chapter brings a further insight into how the implemented Eclipse Acceleo code generator 
works and how the specific snippets of source code are generated. 

In the last chapter 7, a few test cases are presented to make the reader more familiar 
with the meta-model and to show the specific features in use. The test cases provide a mix 
between a simple processing pipeline, complex algorithm, and the processing of data with 
different structures. 

Finally, I published the source code, meta-model and model files as open source. The 
project can be found on Gi tHub 1 . In this next section, I will evaluate the solution and 
propose a possible future work to improve the modeling ecosystem. 

8.1 E v a l u a t i o n and future work 

I would like to evaluate the designed meta-model, code generator, and the overall approach 
to Model-Driven Development of Big Data processing tasks. The designed meta-model 
improved upon the disadvantages of several previous projects. The possibility of modeling 
a more complex, more readable diagram in a standardized (UML) environment definitely 
improves the overall M D D approach. The meta-model introduces features that abstract 
the code behind a relatively comprehensive graphical diagram. 

x

https: //github.com/MarekSalgovic/spark-m2t-generator 
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The first issue with the modeling approach of Spark tasks is that using this meta-
model might actually take more time than provisioning the solution with code. In simple 
processing applications, the generated code does not have enough volume to justify using 
a diagram instead of code. Furthermore, code completion and general IntelliSense features 
of code editors improve productivity more than the diagram's abstraction. The value of us
ing a diagram comes from introducing a uniform or a standard way to design applications 
while generating reusable code components. Furthermore, graphical diagrams might also 
convey more information about the application logic. 

The second issue comes from the robust typing system of the meta-model. While writing 
Spark code in Scala, the developer can rely on Scala's type inference feature. In addition, 
code editors would still highlight possible semantic errors. The implemented generator must 
explicitly generate the type notation to produce reusable, object-oriented code. The fact 
that the designer must always select appropriate data types in specific model parts also 
reduces productivity. 

Several solutions to these issues come to mind while preserving the diagram's abstract, 
reusable and straightforward way of expression. As mentioned multiple times in this thesis, 
a reverse text to model generation tool could heavily improve the productivity of the work
flow. The generated code was designed with this specific idea in mind. Also, O C L con
straints could be added to the meta-model to introduce semantic analysis similar to code 
editors. The data type issue could be solved if the meta-model was designed with a specific 
target programming language in mind. Spark framework also supports dynamically-typed 
Python. However, altering the meta-model to exclude the type system would tie it to a spe
cific technology. This approach would not work if the meta-model was to be used with a Java 
code generator. Java is statically-typed and does not support similar type inference as Scala 
does. 

In conclusion, I consider this project a step in the right direction for a model-driven ap
proach to data processing applications. However, there is still room for several refinements 
and supporting tools since Model-Driven Development is still a developing methodology. 
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Appendix A 

Memory media contents 

The submitted memory media contains source files of the thesis's text, .pdf file, Eclipse 
Papyrus projects and diagrams of the examples task and the meta-model, source code of 
the generator, compiled Java classes of the generator, .jar files of the used libraries, and 
finally the generated Scala code for the example tasks. 

The structure is as follows: 

• bin/ - the compiled generator 

• doc/ - thesis source files 

• libs/ - . j ar files of used libraries 

• out/ - generated Scala code, project setup and input files for example tasks and 
Makefile to run the generated tasks 

• src/ - source code of the generator 

• spark-metamodel/ - Eclipse Papyrus project of the meta-model Profile diagram 

• sparkWordCount - Eclipse Papyrus project of the first example task 

• sparkPageRank/ - Eclipse Papyrus project of the second example task 

• dataset-processing/ - Eclipse Papyrus project of the third example task 

• Makefile - contains the commands to run the generator and generate output 
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Appendix B 

Software versions 

The list of used software and their version to compile and run the project: 

• Apache Spark - 3.2.1 

. sbt - 1.6.2 

. Eclipse I D E - 2021-12 (4.22.0) 

. Eclipse Acceleo - 3.7.11.202102190929 

. Scala - 2.12 

. Java - openjdk version „17.0.2" 2022-01-18 LTS 
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