

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

DEPARTMENT OF BIOMEDICAL ENGINEERING

METODY PRO DETEKCI FOTORECEPTORŮ VE SNÍMCÍCH SÍTNICE S VYSOKÝM ROZLIŠENÍM

PHOTORECEPTOR DETECTION METHODS IN HIGH-RESOLUTION RETINAL IMAGES

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Jana Vicianová

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Jan Odstrčilík, Ph.D.

BRNO 2023

Diplomová práce

magisterský navazující studijní program Bioinženýrství

Ústav biomedicínského inženýrství

Studentka: Bc. Jana Vicianová Ročník: 2

ID: 195200 *Akademický rok:* 2022/23

NÁZEV TÉMATU:

Metody pro detekci fotoreceptorů ve snímcích sítnice s vysokým rozlišením

POKYNY PRO VYPRACOVÁNÍ:

1) Seznamte se s principem snímání sítnice pomocí kamery využívající adaptivní optiku. 2) Proveďte rešerši aktuálních přístupů z oblasti detekce fotoreceptorů se zaměřením na snímky získané pomocí tzv. flood illuminated adaptivní optiky. 3) Proveďte implementaci alespoň tří vybraných metod pro detekci fotoreceptorů. 4) Z dodaných snímků sítnice si připravte sadu dat pro testování navržených postupů a proveďte testování. 5) Vybranou metodu upravte za účelem dosažení co nejvyšší přesnosti metody. 6) Proveďte komplexní testy a srovnání navržené metody s již publikovanými přístupy a komerčně dostupnou metodou, výsledky dostatečně popište a diskutujte.

DOPORUČENÁ LITERATURA:

[1] GILL, Jasdeep S., Mariya MOOSAJEE and Adam M. DUBIS. Cellular imaging of inherited retinal diseases using adaptive optics. Eye, 33(11), 1683-1698. 2019.

[2] MARIOTTI, Letizia and Nicholas DEVANEY. Performance analysis of cone detection algorithms. Journal of the Optical Society of America A. 32(4), 497-506, 2015.

Termín zadání: 6.2.2023

Termín odevzdání: 22.5.2023

Vedoucí práce: Ing. Jan Odstrčilík, Ph.D.

doc. Ing. Radim Kolář, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

ABSTRAKT

Diplomová práca sa zaoberá detekciou fotoreceptorov v obrazoch snímaných kamerou využívajúcou adaptívnu optiku. V teoretickej časti práce je popísaná anatómia a fyziológia oka, sietnica a ochorenia, ktoré ju postihujú. Ďalej sú popísané aktuálne prístupy z oblasti detekcie fotoreceptorov. V praktickej časti práce sú implementované vybrané metódy. Ich úpravou je vytvorený detektor fotoreceptorov. Výsledky jednotlivých metód sú zhodnotené a porovnané.

KĽÚČOVÉ SLOVÁ

oko, zobrazovanie sietnice, ochorenia sietnice, adaptívna optika, detekcia fotoreceptorov, prehľad metód, spracovanie obrazov

ABSTRACT

This thesis deals with the detection of photoreceptors in images captured by a camera using adaptive optics. The theoretical part of the work describes the anatomy and physiology of the eye, the retina and the diseases affecting it. Subsequently, current approaches in the field of photoreceptor detection are described. Selected methods are implemented in the practical part of the work. Modifying them, a photoreceptor detector is created. The results of individual methods are evaluated and compared.

KEYWORDS

eye, retina imaging, retina diseases, adaptive optics, photoreceptor detection, review, image processing

VICIANOVÁ, Jana. *Metody pro detekci fotoreceptorů ve snímcích sítnice s vysokým rozlišením*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav biomedicínského inženýrství, 2023, 95 s. Diplomová práca. Vedúci práce: Ing. Jan Odstrčilík, Ph.D.

Vyhlásenie autora o pôvodnosti diela

Meno a priezvisko autora:	Bc. Jana Vicianová
VUT ID autora:	195200
Тур práce:	Diplomová práca
Akademický rok:	2022/23
Téma závěrečnej práce:	Metody pro detekci fotoreceptorů ve snímcích sítnice s vysokým rozlišením

Vyhlasujem, že svoju záverečnú prácu som vypracovala samostatne pod vedením vedúcej/cého záverečnej práce, s využitím odbornej literatúry a ďalších informačných zdrojov, ktoré sú všetky citované v práci a uvedené v zozname literatúry na konci práce.

Ako autorka uvedenej záverečnej práce ďalej vyhlasujem, že v súvislosti s vytvorením tejto záverečnej práce som neporušila autorské práva tretích osôb, najmä som nezasiahla nedovoleným spôsobom do cudzích autorských práv osobnostných a/alebo majetkových a som si plne vedomá následkov porušenia ustanovenia § 11 a nasledujúcich autorského zákona Českej republiky č. 121/2000 Sb., o práve autorskom, o právach súvisiacich s právom autorským a o zmene niektorých zákonov (autorský zákon), v znení neskorších predpisov, vrátane možných trestnoprávnych dôsledkov vyplývajúcich z ustanovenia časti druhej, hlavy VI. diel 4 Trestného zákonníka Českej republiky č. 40/2009 Sb.

Brno

podpis autorky*

 $^{^{*}\}mathrm{Autor}$ podpisuje iba v tlačenej verzii.

Obsah

Ú	vod		17
1	Oko	,	19
	1.1	Anatómia oka a sietnice	19
	1.2	Fotoreceptory	20
	1.3	Refrakčné vady oka	22
	1.4	Ochorenia sietnice	22
2	Snír	nanie sietnice	27
	2.1	História	27
	2.2	Adaptívna optika	27
		2.2.1 Senzor vlnoplochy	28
		2.2.2 Korektor vlnoplochy	29
		2.2.3 Použitie AO	30
	2.3	Flood illumination fundus kamera	31
	2.4	Skenovací laserový oftalmoskop	32
	2.5	Optická koherenčná tomografia	33
3	Met	tódy detekcie fotoreceptorov	35
	3.1	Metóda založená na intenzite jasu	35
	3.2	Metóda založená na histograme	36
	3.3	Metóda založená na geometrii obrazu	37
	3.4	Metóda založená na viacškálovom modelovaní	
		a normalizovanej krížovej korelácii	38
	3.5	Metóda založená na Houghovej transformácii	39
	3.6	Metóda založená na Hessian - Laplaciáne	
		Gaussovho filtra	40
	3.7	Metóda založená na konvolučnej neurónovej sieti	41
4	Pra	ktická časť	43
	4.1	Dataset	43
	4.2	Implementácia vybraných metód	44
		4.2.1 Metóda založená na intenzite jasu	44
		4.2.2 Metóda založená na viacškálovom modelovaní \hdots	46
		4.2.3 Metóda založená na histograme	49
	4.3	Modifikácia zvolenej metódy	51

5	Výs	ledky	53
	5.1	Metriky úspešnosti testu	53
	5.2	Algoritmus vyhodnotenia úspešnosti detekcie	54
	5.3	Úspešnosť metód detekcie fotoreceptorov	55
		5.3.1 Úpešnosť metódy založenej na intenzite jasu	55
		5.3.2 Úspešnosť metódy založenej na viac škálovom modelovaní	60
		5.3.3 Úspešnosť metódy založenej na histograme	63
		5.3.4 Úspešnosť modifikovanej metódy	66
	5.4	Porovnanie výsledkov	69
Zá	ver		71
Li	terat	úra	73
Zo	znar	n symbolov a skratiek	81
Zc	znar	n príloh	83
A	Zoz	nam výsledkov úspešnosti metódy	
	zalo	ženej na intenzite jasu	85
в	Zoz	nam výsledkov úspešnosti metódy	
	zalo	ženej na viacškálovom modelovaní	88
С	Zoz	nam výsledkov úspešnosti metódy	
	zalo	ženej na histograme	91
D	Zoz	nam výsledkov úspešnosti modifikovanej metódy	94

Zoznam obrázkov

1.1	Anatómia oka (Prevzaté z [4] a upravené)	19
1.2	Anatómia sietnice (vľavo) a histologický rez sietnice (vpravo) (Pre-	
	vzaté z [8] a upravené) \ldots	21
1.3	Zdravé oko (a) a astigmatizmus rohovky oka (b) (Prevzaté z $\left[9\right]$ a	
	upravené)	22
1.4	Snímky ochorení sietnice (Prevzaté z [21][22][23][24][25] v poradí) \therefore	25
2.1	Schéma adaptívnej optiky (Prevzaté z [29] a upravené) $\ldots \ldots \ldots$	28
2.2	Ukážka funkcie detektoru vlnoplochy pre dokonalé oko bez aberácií	
	(a) a oko s aberáciami (b) (Prevzaté z [28] a upravené) $\ldots \ldots \ldots$	29
2.3	Príklad zrkadla prispôsobeného prichádzajúcej vlnoploche (a), seg-	
	mentované deformovateľné zrkadlo jednoduché (b), segmentované de-	
	formovateľné zrkadlo s nakláňaním segmentov (c), spojité zrkadlo (d)	
	(Prevzaté z [28] a upravené) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	30
3.1	Vývojový diagram metódy založenej na intenzite jasu $\ .\ .\ .\ .$	35
3.2	Vývojový diagram metódy založenej na histograme $\ . \ . \ . \ . \ .$	36
3.3	Vývojový diagram metódy založenej na geometrii obrazu $\ .\ .\ .$.	37
3.4	Vývojový diagram metódy založenej na krížovej koreláci i $\ldots\ldots\ldots$	39
3.5	Vývojový diagram metódy založenej na Houghovej transformácii $\ . \ .$	39
3.6	Vývojový diagram metódy založenej na Hessian - Laplaciáne Gaus-	
	sovho filtra	41
3.7	Vývojový diagram metódy založenej na CNN	42
4.1	Ukážka (a) pôvodnych dát, (b) dostupných snímkov a (c) anotácie	
	(červenou - anotátor A, zelená - anotátor B, modrá - anotátor C) $\ . \ .$	44
4.2	Ukážka detekcie fotoreceptorov metódou založenou na intenzite jasu $% \mathcal{A}$.	45
4.3	Ukážka často sa vyskytujúcich fotoreceptorov	46
4.4	3D reprezentácia často sa vyskytujúcich fotoreceptorov (a,c,e) a vy-	
	tvorené Gaussove modely $(\mathbf{b},\!\mathbf{d},\!\mathbf{f})$	47
4.5	Postup detekcie fotoreceptorov metódou založenou na viacškálovom	
	modelovaní	48
4.6	Predspracovanie obrazu	49
4.7	Postup detekcie metódou založenou na histograme	50
4.8	Postup maskovania ciev	51
5.1	Ukážka postupu hodnotenia úspešnosti detekcie pre $1~{\rm fotoreceptor}$	54
5.2	Porovnanie anotácií a detekcie metódou založenou na intenzite jasu $% \mathcal{A}$.	56
5.3	Ukážka chýb metódy založenej na intenzite jasu	57
5.4	Ukážka neostrých obrazov	58
5.5	Ukážka obrazov, kde sú zachytené cievy	59

5.6	Porovnanie detekcie metódou založenou na viacškálovom modelovaní	60
5.7	Ukážka detekcií na obrazoch, kde sú zachytené cievy	62
5.8	Ukážka chýb detekcie metódou krížovej korelácie	62
5.9	Nedostatky metódy založenej na histograme	65
5.10	Por ovnanie anotácie a detekcie metódou založenou na histograme $\ . \ .$	65
5.11	Rozsahy hodnôt senzitivity	67
5.12	Rozsahy hodnôt PPV	68
5.13	Porovnanie detekcie s a bez maskovania ciev pre obr. č. 76 $\ .$	68
5.14	FP detekcie, neoznačené anotátorom	68
5.15	Porovnanie úspešnosti metód	69

Zoznam tabuliek

5.1	Vyhodnotenie úspešnosti metódy založenej na intenzite jasu	55
5.2	Vyhodnotenie úspešnosti metódy založenej na intenzite jasu na upra-	
	venej databáze \ldots	57
5.3	Porovnanie úspešnosti metódy 1 medzi snímkami fove i a periférie $\ $.	59
5.4	Vyhodnotenie úspešnosti metódy založenej na viac škálovom modelovaní $% \mathcal{O}(\mathcal{O})$	61
5.5	Vyhodnotenie úspešnosti metódy založenej na viacškálovom modelo-	
	vaní pre upravenú databázu	61
5.6	Porovnanie úspešnosti metódy 2 medzi snímkami fove i a periférie $\ $	63
5.7	Vyhodnotenie úspešnosti metódy založenej na histograme	63
5.8	Vyhodnotenie úspešnosti metódy založenej na histograme na uprave-	
	nej databáze	64
5.9	Porovnanie úspešnosti metódy 3 medzi snímkami fove i a periférie $\ $	64
5.10	Vyhodnotenie úspešnosti modifikovanej metódy	66
5.11	Vyhodnotenie úspešnosti modifikovanej metódy na upravenej databáze	66
5.12	Porovnanie úspešnosti metódy 4 medzi snímkami fove i a periférie $\ $.	67
5.13	Porovnanie úspešnosti medzi anotátormi	69

Úvod

Ochorenia sietnice sú častou príčinou zhoršenia zraku a neraz spôsobujú úplnú slepotu. Veľa patologických zmien na sietnici vzniká na bunkovej úrovni a prvé zmeny nastávajú skôr ako pacient začne pociťovať ťažkosti so zrakom. Bežné klinicky používané technológie nedosahujú dostatočné rozlíšenie, a preto je včasné odhalenie ochorení sietnice náročné.

Tento problém dokáže vyriešiť adaptívna optika (AO). Je to technológia pôvodne využívaná v astronómii. Slúži ako prídavný optický systém, čiže sa dá kombinovať s už existujúcimi prístrojmi na zobrazovanie sietnice. Jej funkciou je znížiť vplyv optických aberácií oka, a tak v reálnom čase kompenzovať deformáciu vlnoplochy. Podstatne je tým zlepšené rozlíšenie snímkov a dajú sa ňou zobraziť detaily na bunkovej úrovni. Pokrok v AO umožnil skúmanie sietnice, aké bolo predtým možné len histológiou. Dajú sa pozorovať jednotlivé fotoreceptory, ich odrazivosť, rozmiestnenie či usporiadanie.

Zatiaľ AO nie je rozšírená pre bežné klinické využitie. Používa sa väčšinou ako výskumný nástroj. Základom pre rozšírenie do ambulantnej praxe je vývoj robustných programov, ktoré dokážu AO snímky spracovať a analyzovať. Podstatou takého programu je detekcia polôh jednotlivých fotoreceptorov. Zo získaných informácií by bolo možné sledovať napríklad hustotu fotoreceptorov a ďalšie parametre, upresňujúce rozvoj degradácií alebo účinnosť aplikovanej liečby.

Pokrok v zobrazovaní a skúmaní sietnice môže ponúknuť včasnú diagnostiku, urýchlené aplikovanie liečby a zabrániť tak vývoju chorôb sietnice. Dá sa predpokladať, že AO systémy budú v budúcnosti hrať hlavnú úlohu pri diagnostike sietnice a monitorovaní terapií.

1 Oko

Na prácu so snímkami sietnice je nutné poznať základnú anatómiu a fyziológiu oka. V následujúcich podkapitolách je popísané oko a fotoreceptory. Zahrnutá je aj kapitola s ochoreniami sietnice, ktoré ovplyvňujú fotoreceptory.

1.1 Anatómia oka a sietnice

Oko je párový orgán uložený v očných jamkách lebky, ktoré ho chránia. Veľkosť očnej buľvy je priemerne 24,2 mm transverzálne a od druhého roku života sa už podstatne nemení. Tvar a tonus oka udržiava skléra, tvorená hustými kolagénovými vláknami. Medzi ďalšie ochranné mechanizmy oka patrí obočie, mihalnice, slzné žľazy a viečka. Viečko a biela časť oka – skléra sú navzájom prepojené pomocou spojiviek. Spojením bulbárnej spojivky oka a palpebrálnej spojivky viečka je tak zabránené vniknutiu cudzích objektov za oko. Pod bulbárnou spojivkou sa nachádza bohato prekrvená episkléra, ktorá vyživuje skléru [1][2].

Funkciou oka je videnie. Na oko je upevnených šesť extraokulárnych svalov, umožňujúcich pohyb do všetkých smerov. Svetlo do oka vstupuje cez rohovku. Vypuklá rohovka nadväzuje na bielko, skladá sa z piatich vrstiev a zabezpečuje približne dve tretiny ostriacej schopnosti oka. Jej optická mohutnosť je +42 D a z optického hľadiska je najdôležitejšie refrakčné prostredie [1][3].

Obr. 1.1: Anatómia oka (Prevzaté z [4] a upravené)

Vnútornú časť oka môžeme rozdeliť na predný a zadný segment. V prednom segmente sa nachádzajú dve komory predelené dúhovkou. Prednú komoru vypĺňa komorová tekutina zabezpečujúca výživu nevaskularizovaným štruktúram, rohovke, šošovke a dúhovke. Nadbytočná tekutina je odvádzaná prostredníctvom Schlemmovho kanáliku, čím sa udržiava optimálny vnútroočný tlak. Dúhovka je pomocou svalov schopná meniť svoju veľkosť, a tak funguje ako clona. Jej otvor v strede, zrenica, sa preto dokáže prispôsobiť svetelným podmienkam a zaostrovaniu [1].

Zrenica prepúšťa svetlo do zadnej komory, kde ďalej prestupuje šošovkou. Šošovka je na svojej pozícii upevnená tenkými vláknami na hladký sval, nazývaný riasnaté (ciliárne) teliesko, ktorý dokáže zmeniť zakrivenie šošovky, a tým zaostriť na požadovanú vzdialenosť. Jav kedy sa teliesko kontrahuje a šošovka zvýši svoju optickú mohutnosť sa nazýva akomodácia. Pri akomodácii súčasne dochádza aj ku zmenšeniu zrenice a konvergencii očí (rotácii dovnútra). Zadná komora je taktiež vyplnená komorovou tekutinou, ktorú produkuje už spomínané riasnaté teliesko [1][5].

Zadný segment tvorí sklovec, sietnica a cievnatka. Sklovec je transparentné spojivové thanivo s objemom 4 ml obklopené obalom. Z 99 % ho tvorí voda, v ktorej sú rozpustené fyziologicky dôležité molekuly. V prednej časti oka tvorí obal sklovca zadné puzdro šošovky a vzadu membránu sietnice. Prekrvenie a výživu pre sietnicu zabezpečuje cievnatka [1].

Sietnica je zmyslové tkanivo organizované do rozdielnych bunkových vrstiev, ktoré spolu dokážu premeniť svetelné lúče na signál posielaný ďalej do mozgu. Jej hrúbka dosahuje od 0,2 mm do 0,5 mm. Tvorí ju päť tried neurónových buniek s Müllerovými gliovými bunkami pre podporu [3][6].

Lúče svetla prechádzajú cez gangliové bunky a ďalšie vrstvy až ku fotoreceptorom. Tu dochádza ku prevodu stimulu na membránový potenciál a uvoľneniu neurotransmiterov. Fotoreceptory sú ďalej napojené na bipolárne bunky vedúce signál do hlbších vrstiev. Synaptický prenos medzi nimi je modulovaný horizontálnymi bunkami. Bipolárne bunky sú prepojené s amakrínnymi a gangliovými bunkami. Amakrinné bunky riadia excitáciu gangliových buniek. Výstupnými neurónmi sietnice sú gangliové bunky, ktorých axóny vedú do vyšších centier zraku [3][6].

1.2 Fotoreceptory

V ľudskom oku sa nachádzajú dva typy fotoreceptorov, približne 140 miliónov tyčiniek a 5 miliónov čapíkov. Môžeme ich rozlíšiť podľa tvaru vonkajšieho a vnútorného segmentu, umiestnenia jadra a tvaru synaptických zakončení. Vo vonkajšom segmente sa nachádza zrakový pigment a dochádza tu ku konverzii svetla, vo vnútornom prebiehajú metabolické procesy. U ľudí bývajú čapíky masívnejšie ako tyčinky [3]. Tyčinky reagujú pri tlmenom osvetlení a v noci. Sú mimoriadne citlivé na svetlo a dokážu zaznamenať aj jediný fotón. Čapíky sú stonásobne menej citlivé, ale na podnet reagujú rýchlejšie. Ich funkcia sa uplatňuje pri dennom svetle, pretože na rozdiel od tyčiniek dokážu rozoznávať farby. Existujú tri druhy čapíkov, z toho je každý druh citlivý na inú vlnovú dĺžku svetla [3][6].

Najväčšia koncentrácia (až 10 %) čapíkov na sietnici je vo fovei alebo inak nazývanej žltej škvrne. Nachádza sa v strede makuly a predstavuje miesto najostrejšieho videnia. Hustota čapíkov tu dosahuje až 300 000 na mm². Nenachádzajú sa tu žiadne tyčinky. V blasti okolo fovei počet čapíkov so vzdialenosťou rýchlo klesá, za hranicou makuly je pomerne konštantný a v periférii sietnice sa už nenachádzajú takmer žiadne. Vznikajúce priestory medzi čapíkmi postupne vypĺňajú tyčinky. Najvyššiu hustotu, 125 000 na mm², tyčinky dosahujú približne 20 stupňov od fovei a periférne taktiež klesajú [1][7].

Pätnásť stupňov nasálne od makuly sa nachádza optický disk. V mieste optického disku sa zbiehajú nervové vlákna, vystupujú z oka a smerujú do mozgu. Okrem nervov tu vystupuje žila a vstupuje tepna. Z toho dôvodu sa tu nenachádzajú žiadne fotoreceptory a miesto sa označuje aj ako slepá škvrna. Napriek tomu, že v oblasti pätnásť stupňov temporálne od pozorovaného bodu a mierne pod stredným horizontom človek prakticky nevidí, mozog vie túto časť zorného poľa doplniť [1].

Obr. 1.2: Anatómia sietnice (vľavo) a histologický rez sietnice (vpravo) (Prevzaté z [8] a upravené)

1.3 Refrakčné vady oka

Napriek tomu, že väčšina ľudí nepotrebuje okuliare, veľký počet očí má určitú refrakčnú vadu. Najčastejšie sa vyskytuje astigmatizmus znázornený na obrázku 1.3. Ide o refrakčnú vadu kedy optický systém oka, hlavne rohovka, prípadne šošovka, nie je dokonale sférický. To znamená, že optická mohutnosť rohovky nie je symetrická, svetlo sa láme do rôznych smerov a videnie je neostré, prípadne rozmazané. Zakrivenie je často tak malé, že jedincovi pri bežnom dni neprekáža [1].

Dalšia častá vada oka je myopia, inak nazývaná ako krátkozrakosť. Jedinec po určitý bod vidí jasne, ale nevie zaostriť na viac vzdialené objekty. Pri myopii je objekt v nekonečne premietaný pred sietnicou, zatiaľ čo ku pozorovaniu objektu medzi ďalekým bodom a okom stačí menšia akomodácia než u zdravého oka. Vadu je možné kompenzovať rozptylkami [1][3].

Opakom je hypermetropia, ďalekozrakosť, kedy jedinec vníma rozmazane blízke objekty. Ohnisko leží za sietnicou. Hyperopiu riešia šošovky spojky [1].

Obr. 1.3: Zdravé oko (a) a astigmatizmus rohovky oka (b) (Prevzaté z [9] a upravené)

1.4 Ochorenia sietnice

Predpokladá sa, že viac ako 50% ochorení oka vzniká v zadnom segmente. Tieto ochorenia priamo alebo nepriamo ovplyvňujú funkciu fotoreceptorov. Pri nedostatočnej liečbe väčšina z nich vedie ku slepote. Na rozdiel od predného segmentu, je ich liečba komplikovanejšia. Zaraďujeme tu napríklad degeneráciu makuly, dieru makuly, diabetickú retinopatiu, edém makuly, vírusovú retinitídu, retinálne vaskulárne oklúzie, neovaskularizáciu cievnatky, farbosleposť a retinitis pigmentosa [10].

Degenerácia makuly

Vekom podmienená degenerácia makuly je vo vyspelých krajinách najčastejšou príčinou straty videnia. Rizikové faktory sú napríklad vek, dedičnosť, slnečné žiarenie, fajčenie, hypertenzia či obezita. Príčina doteraz nie je presne známa. Ide o ochorenie, pri ktorom dochádza k postupnému zániku buniek sietnice. Najviac postihuje jej centrálnu časť, makulu. Degenerácia makuly sa vyskytuje v dvoch formách, suchej (80 %) a vlhkej [11][12].

V skorom štádiu suchej formy ochorenia sú prejavy nenápadné. Pri oftalmologickom vyšetrení sú pozorované drúzy, ktoré vyzerajú ako malé žlté bodky na sietnici. Pacient ešte nemusí mať subjektívne ťažkosti pri videní. Drúzy časom pribúdajú. Najprv sa znižuje schopnosť vidieť jemné detaily. Postupne sa centrálna zraková ostrosť znižuje a videnie je rozmazané. V centre videnia sa objaví fľak alebo úplný výpadok, pretože je tam menej fotoreceptorov ako predtým. Periférne videnie ale ostáva nezmenené [11][13].

Ak suchá forma prejde do vlhkej, dôjde ku patologickému prerasteniu ciev z cievnatky do sietnice. Videnie je náhle zhoršené, vyskytuje sa krvácanie a opuch sietnice. Vlhká forma je agresívnejšia a jej liečba je zložitejšia [13].

Diera makuly

Diera makuly je degenerácia makuly v celej jej hrúbke, ktorá sa postupom času zväčšuje. Je to vekom podmienená makulopatia. Jej príčinou je trakcia - ťah sklovca na sietnicu. V prvom štádiu dochádza ku elevácii fovey. Fotoreceptory sú rozťahované smerom z centra. Ak sa ochorenie rozvíja, vznikajú malé dierky a sklovec sa odlučuje od fovey. Diera 2. štádia sa môže zahojiť alebo sa v štádiu 3 zväčšiť. V poslednom štádiu sa sklovec odlúči od sietnice úplne [3].

Dôsledkom makulopatie je videnie neostré až zdeformované. Pacient má pocit ako keby sa pozeral cez pokrivené sklo. Je to jav spôsobený rozpadom fovey, kedy sa fotoreceptory presúvajú smerom ku jej okraju. Po posledom štádiu vzniká v strede zorného poľa výpadok. Periférne videnie môže byť zachované [3].

Diabetická retinopatia

Diabetická retonopatia je najčastejšie sa vyskytujúce ochorenie sietnice u diabetických pacientov a vedúca príčina slepoty. Vyvoláva neurálnu aj vaskulárnu disfunkciu. Degeneratívne zmeny neurálnych funkcií vznikajú ešte pred detekovateľnými vaskulárnymi zmenami. Napriek tomu, že sa ochoreniu často nedá úplne zabrániť, je ho možné oddialiť alebo spomaliť . Rizikové faktory sú: vek, hyperglykémia, hypertenzia, hyperlipidémia a fajčenie [14][15]. Diabetická retinopatia prebieha v niekoľkých štádiách. V prvom štádiu dochádza k uvoľneniu hemato-retinálnej bariéry. To znamená, že cievne steny sú poškodené. Ďalšie štádium, neproliferatívna diabetická retinopatia, je charakteristické tvorbou mikroaneuryziem. Tieto malé vydutia ciev často praskajú, pričom vznikajú hemo-ragie. Mikroaneuryzmy sa môžu aj upchať. Kapiláry potom nie sú priechodné a dochádza ku hypoxii sietnice. Niektoré prípady prechádzajú do edému [14][15].

V pokročilom proliferatívnom štádiu, pri chronickej hypoxii, sa vytvárajú žlté, tvrdé ložiská. Telo sa pred hypoxiou bráni a vyvoláva neovaskularizáciu. Nové cievy ale nie sú plnohodnotné, je ich príliš veľa a dokážu prerastať až do sklovca. Vytvára sa ťah sietnice, ktorý vyústi do odlúpenia sietnice. Po odlúpení fotoreceptory stratia kontakt s cievnatkou a degenerujú [14].

Edém makuly

Edém makuly je mikrovaskulárne, neurodegeneratívne ochorenie sietnice vyskytujúce sa pri diabetes mellitus. Väčšinou je následok diabetickej retinopatie. Môže sa prejaviť aj po operácii oka alebo po zápaloch. Vyvíja sa pomaly a funkčné či patologické zmeny sú ťažko pozorovateľné. Zmeny na sietnici sa objavujú pred zhoršením zrakovej ostrosti. Aj keď sa v skorom štádiu neprejavujú subjektívne zrakové problémy, bol prekázaný pokles citlivosti na modro-žltú farbu a kontrast [16][17].

Pri edéme dochádza ku abnormálnemu zhrubnutiu sietnice a opuchu. Dôvodom je nahromadenie tekutiny a/alebo tvrdých metabolitov v centre makuly, alebo v jej blízkosti. Tekutina, pochádzajúca zo zničených ciev, sa hromadí v bunkách sietnice alebo extracelulárne. Na vzniku edému sa podieľa hyperglykémia, hyperlipidémia a hypertenzia. Pacient vidí neostro, zvlnene až pokrivene, často so škvrnami a farby sú vyblednuté. Pri rýchlom priebehu môže dôjsť až ku slepote [16].

Edém makuly sa prejavuje znížením hustoty pigmentu fotoreceptorov, zmenou ich orientácie, usporiadania a štruktúry alebo až zánikom [18].

Retinitis pigmentosa

Retinitis pigmentosa je dedičná dystrofia sietnice. Je zapríčinená mutáciou niektorého z 50 génov, ktoré nesú informácie o proteínoch, potrebných pre fotoreceptory. Genetické zmeny spôsobujú stratu funkcie fotoreceptorov alebo ich zánik. V počiatočnom štádiu je charakteristický prejav výskyt ložísk pigmentu, najmä v periférii [19].

Tyčinky degradujú väčšinou skôr ako čapíky. Preto je prvý symptóm slepota za šera. Ochorenie je na začiatku tažké rozpoznať, pretože pacient si často zhoršené videnie za šera neuvedomuje. Pri dennom svetle sa žiadne tažkosti nevyskytujú. Nasleduje strata periférneho videnia aj cez deň. Pacient má stažené bežné denné aktivity a vyvíja sa u neho fotofóbia, čiže citlivosť na svetlo. Vnímanie modrých a žltých odtieňov je zhoršené. V poslednej fázi pacientom ostáva len pár stupňov zorného poľa okolo bodu fixácie, fotofóbia je intenzívna. Ložiská pigmentu pribúdajú a zasahujú aj makulu. Postupne môže dôjsť až ku úplnej slepote [19][20].

(a) degenerácia makuly

(c) diabetická retinopatia

(d) edém makuly

(e) retinitis pigmentosa

Obr. 1.4: Snímky ochorení sietnice (Prevzaté z [21][22][23][24][25] v poradí)

2 Snímanie sietnice

2.1 História

Štúdium sietnice začalo napredovať po vynáleze priameho oftalmoskopu. Ďalší pokrok priniesol nepriamy oftalmoskop, ktorý umožňoval použitie rovnakého systému na konvergenciu lúčov do oka aj na zobrazovanie. Tvorba digitálnych snímok začala s príchodom fundus kamery v kombinácii s CCD kamerami. Nový spôsob zobrazovania nastal so skenovacím laserovým oftalmoskopom. Funguje na princípe osvietenia len malého bodu na sietnici a snímania odrazených lúčov z celého okolia. Postupným skenovaním väčšej oblasti rotujúcimi zrkadlami vzniká kvalitnejší obraz s presnostou na mikrometer. Výhodou je aj možnosť použiť svetlo o výrazne menšej energii. Možnosť snímania priečneho rezu sietnicou vznikla s vývojom optickej koherentnej tomografie, s penetráciou až 1 milimeter a submikrónovým axiálnym rozlíšením [26].

Snímanie sietnice bolo navzdory technickým pokrokom obmedzované optickými aberáciami (odchýlkami) oka, pretože deformácia vlnopolchy vstupujúcich lúčov znižuje rozlíšenie. Aberácie vlnoplochy sa rozdeľujú na odchýlky nízkeho a vysokého rádu. Deformácie nížšieho rádu spôsobuje napríklad astigmatizmus a iné spomínané v kapitole 1.3. Predstavujú až 90% a vačšina prístrojov je schopná ich vyriešiť. Naopak trefoil, coma, sekundárny astigmatizmus a sférické odchýlky majú za následok aberácie vyššieho rádu, ktoré naďalej predstavujú prekážku [26].

2.2 Adaptívna optika

Adaptívna optika (AO) bola prvýkrát použitá v astronomických ďalekohľadoch. V zdravotníctve je to relatívne nová, inovatívna metóda, umožňujúca štúdium sietnice oka na bunkovej úrovni. Od axiálneho rozlíšenia naviac poskytuje vynikajúce laterálne rozlíšenie, a tým zobrazenie jednotlivých fotoreceptorov, ciev a detailov vyústenia optického nervu. Jej cieľom je kompenzovať optické aberácie oka a zdokonaliť výstupný obraz. Jednotlivé snímky sú zhotovované noninvazívne in vivo. AO zmenila celkový pohľad na sietnicu a pomohla objasniť štruktúru a funkciu sietnice, či priebeh jej ochorení [26][27].

V optickom systéme oka dochádza kvôli mnohým faktorom, napríklad toku krvi, k neustálemu kolísaniu aberácií. Na dosiahnutie ich správnej kompenzácie je nutné použiť dynamický optický prvok, ktorý sa zmenám dokáže prispôsobovať [28].

Adaptívna optika sa skladá z troch hlavných komponentov: senzor vlnoplochy (wave front), korektor vlnoplochy (deformovateľné zrkadlo) a softvér umožňujúci ich vzájomné pôsobenie. Senzor, najčastejšie Hartmann-Shack, meria optické aberácie oka. Deformovateľné zrkadlo je pomocou komplexného pohonného systému nastavované tak, aby kompenzovalo namerané aberácie [26].

Proces snímania sietnice prebieha nasledovne. Cez zrenicu je namierený zväzok lúčov na sietnicu, malá časť z toho sa odrazí naspäť do optického systému a dopadá na deformovateľné zrkadlo. Odrazené svetlo ďalej putuje na snímač obrazu a senzor vlnoplochy. Senzor zmeria aberácie a predá informáciu kontrolnému softvéru. Podľa pokynov softvéru je upravené zrkadlo a obraz môže byť snímaný. Schéma je na obrázku 2.1 [26].

Obr. 2.1: Schéma adaptívnej optiky (Prevzaté z [29] a upravené)

2.2.1 Senzor vlnoplochy

Senzor vlnoplochy meria štruktúru optických aberácií oka. Pozostáva z poľa šošoviek umiestnených pred plošným detektorom. Šošovky sú štvorcové a súvislé. Pole rozdeľuje vlnoplochu. Každou šošovkou prechádza jej príslušná časť, ktorá je sústreďovaná na CCD zariadenie. Na detektore sa tak vytvorí plocha bodov. Ak je optický systém oka dokonalý, čiže lúče odrazené od sietnice sú paralélne, vlnoplocha je rovina a vzniknuté body sú na detektore rozmiestnené pravidelne, ako je vidieť na obrázku 2.2 (a). V prípade, že sa sústredený bod z časti vlnoplochy nenachádza na určenom mieste (obrázok 2.2 (b)), vypovedá to o aberácii na konkrétnom mieste v zrenici. Z vypočítanej odchýlky je určená amplitúda a sklon vlnoplochy [27][28][29][30]. Pri výbere vhodného senzoru je treba dbať na jeho parametre. Senzor musí byť dostatočne rýchly aby dokázal zaznamenať meniace sa aberácie v čase. Vzorkovacia frekvencia by mala byť aspoň 20-30 Hz. Dôležité je aj priestorové rozlíšenie, dynamický rozsah a senzitivita. Zdroj svetla taktiež ovplyvňuje detekciu. Používa sa úzkopásmový zdroj ako napríklad laser alebo superluminiscenčná dióda. Výhodná vlnová dĺžka je v blízkom infračervenom pásme. Sietnica je na svetlo v danej oblasti menej citlivá a jej odrazivosť je vyššia. Bez jej poškodenia môže byť zvýšená intenzita svetla [28].

Obr. 2.2: Ukážka funkcie detektoru vlnoplochy pre dokonalé oko bez aberácií (a) a oko s aberáciami (b) (Prevzaté z [28] a upravené)

2.2.2 Korektor vlnoplochy

Vlnoplocha odmeraná senzorom je opravená korektorom. Korektor vlnoplochy je adaptívna časť systému. Kompenzuje optické vady oka, najčastejšie použitím deformovateľného zrkadla. Plocha zrkadla je sériou citlivých aktuátorov vychyľovaná do požadovaného tvaru. Zrkadlo je tak vytvarované do rovnakého tvaru ako vlnoplocha, ale s polovičnou amplitúdou, pretože sa počíta so vzdialenosťou, ktorú svetlo prejde pred dopadom na zrkadlo a po odraze. Vo výsledku je časť vlnoplochy, ktorá napreduje nútená prejsť väčšiu vzdialenosť a po odraze tvorí so zaostávajúcimi časťami jednu rovinu ako je vidieť na obrázku 2.3 (a) [27][28].

Deformovateľné zrkadlo môže byť spojité alebo rozdelené na časti. Segmentované zrkadlo je rozdelené na veľký počet malých zrkadiel, z čoho má každé vlastné aktuátory. Príkladom je deformovateľné zrkadlo so 140 aktuátormi na ploche o priemere 4,9 mm. Jednotlivé zrkadlá sú posúvané do priestoru (obrázok 2.3 (b)) alebo kombinujú posun s nakláňaním (obrázok 2.3 (c)). Nevýhodou daného systému sú medzery vznikajúce medzi segmentmi zrkadiel, ktoré môžu spôsobovať difrakcie a straty svetla. Pretože každé zrkadlo je regulované samostatne, systém je výhodný na korekciu modelov s aberáciami vyššieho rádu. Spojité zrkadlo je rovnako upravované aktuátormi. Na rozdiel od segmentovaného zrkadla sa pri úprave povrchu mení aj okolitá plocha použitého aktuátoru. Jeho použitie sa uplatňuje pri aberáciách nižšieho rádu [28].

Obr. 2.3: Príklad zrkadla prispôsobeného prichádzajúcej vlnoploche (a), segmentované deformovateľné zrkadlo jednoduché (b), segmentované deformovateľné zrkadlo s nakláňaním segmentov (c), spojité zrkadlo (d) (Prevzaté z [28] a upravené)

2.2.3 Použitie AO

Adaptívna optika samotná nevytvára snímky ale je zakomponovaná do zobrazovacieho zariadenia. Môže byť kombinovaná s flood illumination fundus kamerou, skenovacou laserovou oftalmoskopiou alebo optickou koherenčnou tomografiou. Výsledkom sú vysoko kvalitné snímky s laterálnym rozlíšením až do 2 mikrometrov [26].

Využitie siaha od priameho zobrazovania fotoreceptorov, epitelových pigmentových buniek sietnice, krvných buniek až po cievy. Najviac vedeckých prác sa zaoberá práve snímaním fotoreceptorov, prevažne čapíkov. Kvôli malému priemeru je zobrazovanie tyčiniek náročnejšie ako zobrazovanie čapíkov. Pôsobenie liečby alebo strata fotoreceptorov sa dá odhaliť ihneď, preto je AO citlivejšia a výhodnejšia metóda ako iné vyšetrenia zraku [26][27].

Spracovaním získaného obrazu môže byť vypočítaná hustota fotoreceptorov, vytváranie medzier a Voronoi parameter, ktorý určuje pravidelnosť fotoreceptorov. Sledovaním daných parametrov je možné odhaliť potenciálne ochorenia sietnice vo veľmi skorom štádiu.

Bolo zistené, že hustota fotoreceptorov je v myopickom oku nižšia. V zdravom oku je hustota približne 40 000 čapíkov/mm2 vo vzdialenosti 1° a 10 000 čapíkov/mm2 vo vzdialenosti 7° od fovei. Ich usporiadanie je v oblasti blízko fovei hexagonálne, so vzdialenosťou sa stáva menej pravidelné. Na základe topografie fotoreceptorov sa taktiež dajú rozlíšiť rôzne príčiny farbosleposti [26][27].

Ako ďalší parameter je možné skúmať odrazivosť fotoreceptorov, ktorá predstavuje ich celistvosť. Pri ochoreniach sietnice sú fotoreceptory riedko rozostavené a ich odrazivosť je znížená [26][27].

2.3 Flood illumination fundus kamera

Fundus kamera je v podstate mikroskop spojený s kamerou. Jej optický systém je založený na princípe nepriameho oftalmoskopu. Svetlo zo zdroja je cez sadu filtrov nasmerované na okrúhle zrkadlo. Od zrkadla je svetlo odrazené do systému šošoviek, ktoré ho zaostrujú. Za poslednou šošovkou je umiestnená maska tvarujúca zväzok lúčov do tvaru donutu. Zväzok následne dopadá na polopriepustné zrkadlo s dierou uprosred a cez objektív a zrenicu na sietnicu. Lúče odrazené od sietnice potom prechádzajú cez stredový výrez zrkadla a korektor astigmatizmu na zobrazovaciu optiku a detektor [31][32].

Pomocou fundus kamery je sietnica snímaná priamo, cez zrenicu. Pacient je usadený, oprie si bradu a čelo na podložku. Kamera je nastavená a zaostrená. Na zhotovenie snímky je použitý záblesk [31].

AO flood illumination fundus kamera

Adaptívna optika môže byť integrovaná s rôznymi zobrazovacími modalitami. Často je používaná v kombinácii s flood illuminated fundus kamerou s vysokým zväčšením. Ako zdroj svetla slúži superluminiscenčná alebo laserové dióda s rovnomerným osvetlením a nízkou koherenciou. Nízka priestorová koherencia je dôležitá na zníženie speckle šumu (tzn. bod sa javí ako rozmazaný). Aby sa predišlo chromatickým aberáciám, je používané úzke spektrálne pásmo [28][30][33]. CCD kamera na snímanie obrazu je umiestnená v konjugovanej rovine so sietnicou. Výhodou je, že snímky sú vytvorené do približne 4 ms. Rýchlosť bráni rozmazaniu spôsobenému pohybmi oka, aké môžu nastať napríklad pri skenovacích metódach. Flood illuminated systémy dokážu snímať kvalitné obrazy. Frekvencia snímania nedosahuje veľkosť ako napríklad AO-SLO a AO-OCT ale je dostačujúca. V porovnaní s inými technikami, nevýhoda spočíva v nižšom kontraste výsledných obrazov, axiálne rozlíšenie je nižšie. AO-FIO bol vytvorený skôr ako AO-SLO a AO-OCT. Cena býva v porovnaní s ostatnými nižšia, tým pádom je dostupnejší [28][30][33][34].

2.4 Skenovací laserový oftalmoskop

Skenovací laserový oftalmoskop (SLO) spočíva v tenkom laserovom zväzku lúčov, ktorý postupne skenuje sietnicu. Snímka je tvorená bod za bodom. Ako zdroj svetla je používaná laserová dióda. Vyžiarené svetlo je kolimované šošovkou a putuje cez výstupný rozdeľovač lúčov (napr. dichroické zrkadlo) do XY skenovacej jednotky. Tá slúži na vychyľovanie laseru v dvoch smeroch, čím sa vytvára rastrovací vzor. Zobrazovacou optikou je laserový paprsok namierený na zrenicu. Optika musí byť regulovateľná, kvôli kompenzácii prípadnej hyperopie alebo myopie [35].

Svetlo odrazené od sietnice prechádza rovnakou optickou cestou a je deskenované na statický zväzok lúčov. Následne je rozdeľovačom lúčov oddelené od svetla vychádzajúceho zo zdroja a nasmerované na detekčnú časť systému. Svetlo ďalej prechádza cez šošovku do dierky, ktorá slúži ako konfokálna štrbina. Pomocou nej je zabránené svetlu, odrazenému z iného miesta ako zo sietnice, dostať sa na detektor. Nakoniec je svetlo detekované a prevedené na elektrický signál pre ďalšie spracovanie [35].

Použitím SLO je možné obdržať kvalitné snímky. Výhodou je, že stačí použiť menej ako 1/1000 množstva svetla oproti klasickému nepriamemu oftalmoskopu, čo je pre pacienta príjemnejšie. V klinickej praxi je to zaužívaný nástroj na diagnózu glaukómu a ochorení sietnice. Okrem toho sa často používa ako referenčný obraz pri sledovaní pohybov oka v iných zariadeniach [35][36].

AO skenovací laserový oftalmoskop

Hlavnou výhodou spojenia adaptívnej optiky so SLO oproti konvenčným systémom je lepší kontrast a vyššie transverzálne rozlíšenie. Axiálne rozlíšenie je ale v porovnaní s AO-OCT nižšie. Naopak, rýchlosť snímania je vyššia, a naviac je možné snímať aj fluorescenčný signál. Použitím AO je fotónový šum zredukovaný a zníženie aberácií umožňuje axiálne delenie sietnice na vrstvy rôznej hĺbky. Na rozdiel od flood illuminated zobrazovania, kde kontrast znižuje svetlo z ostatných rovín, je pri AO-SLO zobrazované len svetlo z roviny zaostrenia. Snímanie je uskutočnené v reálnom čase, čiže sa dajú pozorovať procesy ako napríklad tok krvi [34][37].

2.5 Optická koherenčná tomografia

Optická koherenčná tomografia (OCT) slúži na zobrazovanie priečneho rezu tkaniva sietnice. Typické rozlíšenie je 20 až 5 µm. Axiálne rozlíšenie závisí na zdroji svetla. Väčšinou je využívané svetlo v blízkej infračervenej oblasti, ktoré dokáže penetrovať do hĺbky. Princípom sa dá prirovnať ku lekárskemu ultrazvuku, s tým rozdielom, že OCT používa svetlo. Vlnenie dopadajúce na tkanivo sa odrazí, odmeria sa jeho oneskorenie, a tým pádom hĺbka [38][39].

Oneskorenie sa nedá merať priamo, preto sa používa referencia. Interferometrickou zostavou je svetlo rozdelené do dvoch dráh. Časť je nasmerovaná na oko a časť putuje do referenčného segmentu o známej dĺžke. Cesty svetla odrazeného od oka aj referenčného svetla sú na konci spojené, pričom dochádza ku interferencii. Intenzita svetla je po dopade na detektor premenená na elektrický signál. Takýto signál odpovedá rozdielom v optickej dráhe, čím sa získa hĺbkový profil [38].

AO optická koherenčná tomografia

Na kompenzáciu aberácií oka a zvýšenie kvality obrazov bola adaptívna optika integrovaná aj s OCT. Prvýkrát tak bolo dosiahnuté objemové zobrazenie sietnice in vivo s vysokým izotropným rozlíšením. Má vysoké axiálne aj transverzálne rozlíšenie, čím je možné zobrazovať bunky v 3D. Jeho nevýhodou je pomalá rýchlosť snímania, čo pri pohybe oka môže spôsobiť zníženie kvality snímok. Ďalším nedostatkom je, že nedokáže zaznamenať fluorescenčný signál [34][40].

3 Metódy detekcie fotoreceptorov

Nasledujúca kapitola spracováva metódy použité na detekciu fotoreceptorov v snímkoch sietnice s vysokým rozlíšením. Sú popísané postupy autorov využívajúcich snímky predovšetkým z flood illumination kamery, prípadne AO-SLO. Jednotlivé postupy sú založené na jase, Houghovej transformácii či neurónových sieťach.

3.1 Metóda založená na intenzite jasu

Prvý krok metódy, ktorú použili [41] a [42] spočíva v odstránení vysokofrekvenčného šumu z obrazu, pretože by mohol spôsobiť detekciu falošne pozitívnych pixelov. Použitý je FIR filter typu dolná prepusť. Nasleduje rozpoznanie pixelov - kandidátov, ktoré sú prípadnými fotoreceptormi. Matica o veľkosti 3x3 vzorkov prechádza po obraze. Ak je intenzita centrálneho prvku matice vyššia ako jeho okolie, daný pixel je považovaný za lokálne maximum, čiže stred možného fotoreceptoru.

Veľkosť fotoreceptoru ale nie je len 1 pixel, preto nasleduje ďalší krok, spájanie nájdených kandidátov. V prípade vzájomnej vzdialenosti, menšej ako minimálny rozostup fotoreceptorov $(2 \ \mu m)$ [43], sú kandidáti považovaní za jeden fotoreceptor a združení. Samotné združenie je realizované rozšírením - dilatáciou lokálnych maxím do ich okolia, s polomerom 1 μm . Po zjednotení je v novovzniknutom regióne nájdený stred, a ten je vybraný ako aktuálny kandidát.

Na záver [42] pridal rozhodovacie pravidlo pre finálnu kontrolu a odstránenie falošných detekcií. Z toho dôvodu je vypočítaný prah ako priemerná hodnota obrazu. Kandidáti, ktorých intenzita jasu je vyššia ako prah sú považovaní za polohy fotoreceptorov, zvyšok je zamietnutý.

Obr. 3.1: Vývojový diagram metódy založenej na intenzite jasu

3.2 Metóda založená na histograme

Metóda navrhnutá [44] je založená na histograme predspracovaného obrazu. Pôvodný obraz je konvolovaný s Gaussovým filtrom, čím sa získa pozadie obrazu. Výsledok je následne odčítaný z pôvodného obrazu. Odčítanie pozadia je nasledované lineárnym škálovaním. Vďaka tomu sa zvýši jas fotoreceptorov a celkovo sa zlepší vizualizácia obrazov.

V ďalšom kroku je využitá skutočnosť, že intenzita jasu fotoreceptorov je vyššia ako jeho okolie a najjasnejší bod je zvyčajne v strede fotoreceptoru. Stanovením intenzity najtmavšieho a najsvetlejšieho fotoreceptoru, v tomto prípade 6-255, môže byť nastavený rozsah intenzít jasu v histograme obrazu. Jasový rozsah je následne rozdelený na menšie úseky po 10 hodnôt jasu. Hraničné intenzity jasu boli v tomto prípade zvolené manuálne, používateľom.

Samotná detekcia fotoreceptorov prebieha iteračne. Začína sa na úseku najvyššieho jasu a postupuje nadol. To znamená, že sú hľadané pixely s intenzitou danou aktuálnym úsekom histogramu. Po detekcii je pixelu a jeho okoliu priradená nová hodnota intenzity tak, aby v nasledujúcej iterácii nebol označený opäť. Na záver, ak sa dve a viac súradníc nachádza bližšie ako je minimálna medzera medzi fotoreceptormi, za novú polohu je považovaný centroid súradníc. Po prebehnutí iterácií sú získané polohy fotoreceptorov.

Obr. 3.2: Vývojový diagram metódy založenej na histograme
3.3 Metóda založená na geometrii obrazu

Algoritmus navrhnutý [45] je založený na rekurzívnej tvorbe spojených komponentov, ak sú semienka rekurzií regionálne maximá obrazu. Prvým krokom je vyhľadanie regionálnych maxím obrazu. Samotné vyhľadanie maxím ale nie je dostačujúce na ich prehlásenie za fotoreceptory. Na rozdiel od metódy 3.1, kde je použité prahovanie, je v tomto algoritme zadefinovaný geometrický koncept oblasti vplyvu maxima, pomenovanej maximálna oblasť.

Rekurzívne pokrývanie je aplikované na body regionálnych maxím. Z nich je definovaná maximálna oblasť, až po parameter tolerancie T. Parameter T vyplýva zo stromovej dekompozície obrazu. To znamená, že obraz je považovaný za dekompozíciu do množstva spojených komponentov. Parameter T ovplyvňuje veľkosť maximálnej oblasti. Ak pixel spadne do levelu tolerancie, je tento pixel zaradený do maximálnej oblasti. Čiže čím vyššia je hodnota tolerancie, tým je počet nájdených fotoreceptorov menší, a tým sú maximálne oblasti väčšie.

Výsledkom môže byť aj spojenie viac pôvodných regionálnych maxím do jednej oblasti. Tvorbou maximálnych oblastí je tak eliminovaný počet nežiadúcich bodov. Tolerancia je v tomto algoritme volená užívateľom, kvôli vysokej premenlivosti použitých obrazov.

Podmienky ukončujúce opakovania sú odvodené z predchádzajúcich geometrických argumentov. Priradzovanie nových pixelov do maximálnych oblastí končí, ak sa dosiahne pixel, ktorý nespadá do tolerancie, alebo už patrí do inej oblasti, alebo je jeho intenzita vyššia ako pôvodné regionálne maximum. Finálne polohy fotoreceptorov sú pixely s najvyššími hodnotami v spojených oblastiach.

Obr. 3.3: Vývojový diagram metódy založenej na geometrii obrazu

3.4 Metóda založená na viacškálovom modelovaní a normalizovanej krížovej korelácii

Prvým krokom v metóde podľa [46] je modelovanie veľkosti a tvaru fotoreceptorov pomocou modelu založenom na Gaussiáne. Je vytvorená skupina viacškálových Gaussových modelov. 2D Gaussov model môže byť definovaný ako

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}},$$
(3.1)

kde x,y určujú veľkosť modelu a štandardná odchýlka σ ovplyvňuje rozpätie modelu. Na rozpätí závisí, či bude mať model vysoký jas a ostrý pokles alebo nižší jas a plochý tvar. Hodnoty modelu sú v rozmedzí 0 až 1. Gaussove modely popisujú 3 najčastejšie typy fotoreceptorov: tmavý a široký, stredne veľký a jasný, veľmi jasný a úzky.

Následne je použitá normalizovaná krížová korelácia (cross-correlation) na aplikovanie Gaussovho modelu na obraz. Postupne je tak porovnávaný vytvorený model s časťami obrazu. Výstupom sú hodnoty od -1 do 1 pre každý pixel. Tieto hodnoty predstavujú podobnosť časti obrazu s modelom, pričom väčšia podobnosť je bližšie ku 1. Ak je časť obrazu vzhľadom na model invertovaná, hodnoty pixelov sa budú blížiť -1. Sú teda zvýraznené všetky oblasti podobné tvaru Gaussiánu. Štandardnú normalizovanú krížovú koreláciu môžeme zapísať ako

$$NCC(u,v) = \frac{\sum_{x,y} \left(f(x,y) - \overline{f}_{u,v} \right) \left(t(x-u,y-v) - \overline{t} \right)}{\left\{ \sum_{x,y} (f(x,y) - \overline{f}_{u,v})^2 \sum_{x,y} (t(x-u,y-v) - \overline{t})^2 \right\}^{0.5}},$$
(3.2)

kde f je obraz, t je maska, \overline{t} je priemer masky a $\overline{f}_{u,v}$ je priemer oblasti pod maskou. Vzhľadom na to, že je masiek viac, je aplikovaný každý model v poradí. Vznikajú tak 3 sety výsledkov.

Na vyhľadanie potenciálnych fotoreceptorov sú vo výsledkoch korelácie detekované lokálne maximá. Maximá sú vyhľadávané v oblastiach určitého rozmeru, a to veľkosti Gaussovho modelu. Pretože sú lokálne maximá hľadané v troch setoch výsledkov, vytvoria sa 3 zoznamy polôh fotoreceptorov. Pomocou Euklidovej vzdialenosti sú iteračne zhodnotené vzdialenosti jednotlivých kandidátov, a tak sú zoznamy skombinované. Ak je niekoľko kandidátov v tesnej blízkosti, za fotoreceptor je považovaný stred ich polôh. Kandidáti už zahrnutí vo fotoreceptore sú vymazávaní aby nedošlo ku duplicite. Nakoniec je ešte aplikovaný prah odvodený z výsledkov korelácie.

Obr. 3.4: Vývojový diagram metódy založenej na krížovej korelácii

3.5 Metóda založená na Houghovej transformácii

Ďalší spôsob detekcie fotoreceptorov, aký použila [47], je Houghova transformácia (HT). Využíva fakt, že HT dokáže identifikovať akýkoľvek tvar, ktorý môže prejsť geometrickou transformáciou v obraze. Ak je známa parametrická rovnica hľadaného tvaru, detekcia je možná. Parametrická rovnica kruhu je definovaná ako

$$\begin{aligned} x_i &= a_i + r_i cos(\theta) \\ y_i &= b_i + r_i sin(\theta), \end{aligned} \tag{3.3}$$

kde r je polomer kruhu, a, b sú súradnice stredu kruhu, θ je uhol (prechádza celých 360°) a body x, y predstavujú súradnice obvodu kruhu. Takže na základe známych bodov v obraze, ktoré sa nachádzajú na okrajoch - hranách fotoreceptorov sú hľadané parametre a,b,r pre každý kruh.

Najprv je potrebné z obrazu vytvoriť hranovú reprezentáciu. Vzniká tak binárny obraz, kde sú hrany objektov znázornené jednotkami. Hľadané sú 3 parametre kruhu, preto bude parametrický priestor 3D. Dá sa to predstaviť ako umiestnenie kužeľov na hrany (x,y). Kužeľ z toho dôvodu, že nie je známy polomer kruhu a sú skúšané rôzne polomery. Umiestnením kužeľa do každého bodu hranovej reprezentácie vznikajú priesečníky kužeľov. Body kde sa navzájom pretne najviac kužeľov predstavujú hľadané parametre kruhov [48].

Vzhľadom na to, že je parametrický priestor 3D, by bola aplikácia HT výpočtovo a pamäťovo náročná. Riešením je použiť známy polomer kruhu alebo rozdeliť HT do dvoch etáp ako [47]. V prvej etape sú hľadané stredy kruhov (a, b) v 2D Houghovom priestore. V druhej etape je vytvorený histogram vzdialeností všetkých bodov hranovej reprezentácie od nájdených stredov kruhov. Z histogramu je získaný polomer kruhov a je možné použiť kruhovú HT. Výsledkom sú polohy fotoreceptorov.

Obr. 3.5: Vývojový diagram metódy založenej na Houghovej transformácii

3.6 Metóda založená na Hessian - Laplaciáne Gaussovho filtra

Metóda navrhnutá [49] začína predspracovaním obrazu. Je zvýšená kvalita, znížený šum a zlepšený kontrast. Pre zvýraznenie fotoreceptorov je použitý 'blob' zlepšujúci filter, ktorý spočíva vo viacškálovej analýze Hessian matice. Hessian matica je pre 2D obraz definovaná ako matica parciálnych derivácií druhého rádu pre každý pixel (x, y)

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}, kdef_{xy} = f_{yx}.$$
(3.4)

Filtrácia je dosiahnutá konvolúciou obrazu s Gaussovou vyhladzovacou funkciou. Pretože je hľadaných objektov s priemermi v rozmedzí $[d_0, d_1]$ v obraze viac, sú vypočítané Gaussove kernely σ ako

$$\sigma_1 = \frac{d_0}{4}, \sigma_2 = r\sigma_1, \sigma_3 = r^2\sigma_2, \dots, \sigma_N = r^{N-1}\sigma_1 = \frac{d_1}{4},$$
(3.5)

kde d je priemer objektu, $r = (d_1/d_0)^{1/(N-1)}$ a N je počet vyhladzovacích váh. Pre každú váhu σ , je obraz konvolovaný s parciálnou deriváciou druhého rádu odpovedajúcej Gaussovej funkcie. Sú vypočítané eigenhodnoty Hessian matice a z toho blob filter. Výsledná hodnota pixelu je maximum z výsledkov aplikácie filtrov všetkých N váh.

Po blob filtrácii nasleduje konvolúcia s LoG operátorom. Takto je výrazne zvýšený kontrast kruhových objektov a celkovo presnejšia detekcia objektov. LoG operátor obrazu I(x, y), je vyjadrený ako

$$LoG_{\sigma}(x,y) = \frac{1}{\pi\sigma^4} \left(1 - \frac{x^2 + y^2}{2\sigma^2} \right) exp\left(-\frac{x^2 + y^2}{2\sigma^2} \right).$$
(3.6)

LoG filter je kruhovo symetrický filter, má vysoký okrúhly centrálny lalok s pozitívnymi váhami a okolo neho je prstenec negatívnych hodnôt. Odozva filtra je teda silnejšia pre kruhové objekty v obraze.

Výsledkom filtrácie sú záporné hodnoty okolia fotoreceptorov. Nastavením záporných hodnôt na 0, je segmentované pozadie. Ďalej je prahovaním získaná binárna maska obrazu, kde jednotky predstavujú fotoreceptory. Najprv je Otsu menódou vypočítaný globálny prah obrazu a z toho je experimentálne určený prah ako 60% globálneho prahu. Posledným krokom je určenie lokálnych maxím obrazu na miestach výskytu fotoreceptorov. To znamená, tam kde sa maska prekrýva s obrazom.

Obr. 3.6: Vývojový diagram metódy založenej na Hessian - Laplaciáne Gaussovho filtra

3.7 Metóda založená na konvolučnej neurónovej sieti

Autori [50] zvolili na detekciu fotoreceptorov metódu založenú na tvorbe pravdepodobnostnej mapy. Táto mapa je tvorená malým posúvnym oknom konvolučnej neurónovej siete (CNN) a neskôr je spracovaná na určenie polôh fotoreceptorov. CNN sa učí vlastnosti bodov záujmu priamo z trénovacích dát. Pred trénovaním sú všetky obrazy normalizované, aby sa hodnoty intenzity jasu pohybovali od 0 do 255.

Na začiatku sú zo setu dát s anotáciami extrahované plochy okolo určených fotoreceptorov a plochy kde sa fotoreceptory nenachádzajú. Veľkosť plochy bola určená dostatočne veľká, aby obsahovala fotoreceptory a ich okolia. Polohy miest, kde sa fotoreceptory nenachádzajú neboli anotáciou určené, preto metóda používa Voronoi diagramy na ich zistenie. Fungujú na rozdelení obrazu do buniek. V každej bunke sa nachádza práve jedna poloha fotoreceptoru určená anotáciou a všetky pixely, ktorých Euklidova vzdialenosť ku danej polohe je menšia ako ku ostatným polohám. Hrany buniek - Voronoi hrany sú považované za oblasti medzi fotoreceptorov. Plochy presahujúce okraje obrazu boli vynechané a zostávajúce plochy potom slúžia na trénovanie CNN klasifikátora.

CNN aplikuje sekvenciu transformujúcich vrstiev na vstupný obraz, čím vyberie jeho príznaky a nakoniec klasifikuje vstup. Prvá vrstva, konvolučná, slúži na konvolúciu vstupu o veľkosti W x H x D s N kernelmi o veľkosti w x h x D na vytvorenie výstupu veľkosti W x H x N. Výstup si možno predstaviť ako maticu N máp príznakov, z čoho bola každá vytvorená príslušným kernelom. Veľkosť kernelov – filtrov je 5x5x1 pixel.

Pooling vrstvy aplikujú buď maximum alebo priemer operáciu v okne veľkom 3x3. Vstup tejto vrstvy je podvzorkovaný faktorom 2. Je tým znížená výpočtová náročnosť a zlepšená robustnosť voči malým artefaktom obrazu. Vrstvy nelineárnej aktivačnej funkcie ReLU transformujú svoje vstupy nastavením všetkým záporných hodnôt na 0, kladné ostávajú nezmenené. Použité sú na urýchlenie trénovania a zlepšenie výkonu siete pridaním nelinearity.

Vrstvy Batch normalizácie normalizujú svoje vstupy na základe priemeru a rozptylu, čím sa predchádza preučeniu a zvyšuje sa rýchlosť učenia. Záverom sú plne prepojené vrstvy, ktoré spájajú výstupné príznaky do jednej vrstvy. Každý výstupný uzol vrstvy je získaný váženou kombináciou všetkých hodnôt z predchádzajúcej vrstvy. Posledná plne prepojená vrstva poskytuje skóre pre každú triedu. Nakoniec je vykonaná klasifikácia funkciou softmax. Tá priradí vstupu pravdepodobnosti, určujúce do ktorej triedy patrí.

Na to aby CNN fungovala, musí sa naučiť parametre použitých filtrov. Prvotné váhy sú nastavené náhodne a postupne sú upravované pomocou zostupu gradientu a spätného šírenia. Po ukončení učenia sú vytvorené plochy okolo každého pixelu nového obrazu. CNN určuje, s akou pravdepodobnosťou plochy obsahujú fotoreceptory a vzniká pravdepodobnostná mapa. V nej sú vyhľadané maximálne oblasti. Výsledkom sú centrá oblastí spĺňajúcich podmienku prahu. Výhodou metódy je, že môže byť použitá aj na snímkach z inej modality, napríklad split detector AOSLO.

Autori [51] použili plne konvolučné siete (FCN). Sú rozšírením konvolučných neurónových sietí (CNN) a ich hlavnou výhodou je, že spracujú obraz naraz, poskytnú pravdepodobnostnú mapu pre každý pixel a sú rýchlejšie.

Obr. 3.7: Vývojový diagram metódy založenej na CNN

4 Praktická časť

Praktická časť práce sa zaoberá detekciou fotoreceptorov. Z kapitoly 3 sú vybrané a implementované 3 metódy. Zvolená metóda je následne modifikovaná pre lepšie výsledky detekcie.

4.1 Dataset

Ku práci boli použité snímky sietnice z oblasti makuly, získané od desiatich zdravých osôb. Na ich zhotovenie bola zvolená flood illumination kamera s adaptívnou optikou (rtx1e, Imagine Eyes, Orsay, France). Kamera sníma obrazy o veľkosti 1500 \times 1500 pixelov. Zorné pole má rozsah 4° na 4°. K dispozícii je 80 snímkov anotovaných troma odborníkmi. Anotované snímky sú výrezy z pôvodných snímkov. Ich veľkosť je 201 x 201 pixelov. 40 je z oblasti fovei a 40 z periférie makuly. Ukážka je na obrázku 4.1.

Pre lepšiu prácu s dostupnými dátami bola na začiatku práce vytvorená funkcia create_database. Funkcia slúži na zjednotenie dát do jednej bunky s názvom Data. Vstupom funkcie je cesta uloženej zložky s dátami a výstupom je databáza obsahujúca názvy obrazov, samotné obrazy a 3 anotácie ku každému obrazu. V práci je využitý program Matlab 2021b (The MathWorks, Inc.).

(a) pôvodný snímok

(b) výstrižok snímku

(c) anotovaný snímok

Obr. 4.1: Ukážka (a) pôvodnych dát, (b) dostupných snímkov a (c) anotácie (červenou - anotátor A, zelená - anotátor B, modrá - anotátor C)

4.2 Implementácia vybraných metód

4.2.1 Metóda založená na intenzite jasu

Ako prvá bola implementovaná metóda popísaná v kapitole 3.1. Na začiatku bol v obraze filtrovaný šum vysokej frekvencie. Filtrácia je realizovaná pomocou konvolúcie obrazu a filtra. Keďže je realizácia konvolúcie jednoduchšia vo frekvenčnej oblasti, bola na pôvodný obraz aplikovaná 2D Fourierová transformácia (FT). Filter dolná prepust bol navrhnutý podľa [52]. Amplitúdová charakteristika filtra je znázornená na obrázku 4.2c. Nasledovalo násobenie obrazu a masky filtra vo frekvenčnej oblasti. Výsledok bol prevedený inverznou FT naspäť do časovej oblasti, čím bol získaný filtrovaný obraz znázornený na obrázku 4.2d.

Ďalším krokom bolo vyhľadanie lokálnych maxím obrazu. Na to bola použitá funkcia imregionalmax z balíčka Image Processing Toolbox. Výstupom funkcie je binárny obraz, kde jednotky predstavujú polohy maxím obrazu. Binárny obraz bol funkciou imdilate dilatovaný v tvare disku aby boli prípadné duplicitné detekcie spojené. Ukážka dilatácie je na obrázku 4.2f.

Posledným krokom bolo vyhľadanie stredov dilatovaných oblastí. Tieto súradnice sú hľadané polohy fotoreceptorov. Výsledok je zobrazený na obrázku 4.2h. Autori implementovanej metódy na záver použili ešte prahovanie výsledných polôh. V našom prípade bol tento krok vynechaný, kvôli zhoršeniu výsledkov.

Obr. 4.2: Ukážka detekcie fotoreceptorov metódou založenou na intenzite jasu

4.2.2 Metóda založená na viacškálovom modelovaní

Druhou implementovanou metódou je algoritmus založený na viacškálovom modelovaní a krížovej korelácii popísaný v kapitole 3.4. Ako prvé boli vytvorené Gaussove modely reprezentujúce fotoreceptory. Ich vzorom sú najčastejšie sa vyskytujúce príklady fotoreceptorov v snímkoch. Sú to ostré a jasné fotoreceptory ako napríklad na obrázku 4.3a, širšie a menej jasné ako 4.3b alebo tmavé a neostré fotoreceptory ako je vidieť na obrázku4.3c.

Obr. 4.3: Ukážka často sa vyskytujúcich fotoreceptorov

Na obrázku 4.4 sú znázornené priestorové reprezentácie troch zástupcov fotoreceptorov z obrázku 4.3 a im odpovedajúce Gaussove modely. Veľkosť a štandardná odchýlka modelov boli zvolené experimentálne.

Na vytvorený model a snímok sietnice bola následne aplikovaná normalizovaná krížová korelácia. Bola na to využitá funkcia **normxcorr2**, ktorá pracuje podľa rovnice 3.2. Postup bol realizovaný pre každý model zvlášť, vznikli teda tri korelačné matice. Hodnoty v korelačných maticiach sa pohybujú od -1 do +1, kde 1 predstavuje vysokú mieru korelácie modelu s obrazom, čiže podobnosť. Príklad jedenej matice je vidieť na obrázku 4.5a.

Na získanie polôh fotoreceptorov boli v nasledujúcom kroku vyhľadané lokálne maximá všetkých korelačných matíc. Vznikli tak tri sety súradníc. Medzi nimi sa nachádzali aj viacnásobne označené fotoreceptory, preto boli súradnice ďalej zjednotené, a to nasledovne. Duplicitné súradnice bodov boli odstránené a medzi všetkými ostávajúcimi bodmi boli vypočítané Euklidove vzdialenosti. Súradnice bodov, ktoré sa vyskytovali v tesnej blízkosti, čiže patriace do jedného fotoreceptoru, boli zlúčené do bodu s ich priemernou hodnotou.

Na záver bolo na nadobudnuté fotoreceptory uplatnené prahovanie, na odstránenie falošných detekcií. Prah bol aplikovaný na hodnoty súradníc v korelačnej matici, získanej priemerom troch korelačných matíc. Finálne polohy fotoreceptorov sú znázornené na obrázku 4.5d.

Obr. 4.4: 3D reprezentácia často sa vyskytujúcich fotoreceptorov (a,c,e) a vytvorené Gaussove modely $({\rm b},{\rm d},{\rm f})$

(c) zjednotené lok. maximá

(d) Polohy fotoreceptorov

Obr. 4.5: Postup detekcie fotoreceptorov metódou založenou na viacškálovom modelovaní

4.2.3 Metóda založená na histograme

Treťou implementovanou metódou detekcie fotoreceptorov bol algoritmus popísaný v kapitole 3.2, založený na histograme obrazu. Jeho prvou časťou je predspracovanie obrazu. Obraz bol filtrovaný Gaussovým vyhladzovacím kernelom, čím bolo získané pozadie obrazu ako je vidieť na obrázku 4.6b. Parameter filtra, štandardná odchýlka sigma, bola zvolená experimentálne na hodnotu 3, podľa žiadaného stupňa vyhladenia. Následne bolo pozadie odčítané od pôvodného obrazu ako znázorňuje obrázok 4.6c a vo výsledku bol škálovaný jas, pre zastúpenie všetkých jasových hodnôt (obr.4.6d).

Obr. 4.6: Predspracovanie obrazu

V takto upravených obrazoch boli iteračne vyhľadávané polohy fotoreceptorov. Najprv boli nájdené pixely s intenzitou jasu v rozmedzí 246-255 ako je zobrazené na obrázku 4.7a, pretože pre fotoreceptory spravidla platí, že majú najjasnejšiu hodnotu v strede. Aby bolo zabránené viacnásobným detekciám, bola nájdeným pixelom a ich okoliu priradená nulová hodnota. Postupne bola hodnota jasového rozmedzia zmenšovaná, vyhľadávané ďalšie fotoreceptory a vymazávané ich oblasti. Posledné rozmedzie pre najtmavšie fotoreceptory bolo v hodnotách 35-45. Výsledok detekcie je vidieť na obrázku 4.7f.

(e) vymazané všetky fotoreceptory

(f) vyhľadané fotoreceptory

Obr. 4.7: Postup detekcie metódou založenou na histograme

4.3 Modifikácia zvolenej metódy

Z implementovaných metód mala najlepšiu úspešnosť metóda založená na histograme. Do postupu metódy boli pridané kroky na jej zlepšenie.

Prvým krokom bolo odstránenie falošne pozitívnych detekcií v oblastiach, kde sa vyskytujú cievy. Týmto nedostatkom trpeli snímky periférie. Techniky na extrakciu ciev [54] aplikované na snímky sietnice v praxi nie sú vhodné na tento účel, pretože ide o veľmi detailné zábery. Preto bol aplikovaný nasledujúci postup, ktorého podstatou je tvorba masky na prekrytie oblastí ciev.

Na začiatku bol obraz vyhladený Gaussovým filtrom na odstránenie jemných detailov ako stvárňuje obrázok 4.8b. V obraze bol ďalej upravený kontrast s ohľadom na hrany v obraze. Konkrétne bol znížený v lokálnych oblastiach, pričom hrany zostali zachované. V takom obraze ako je 4.8c bolo možné rozoznať tmavé oblasti ciev od fotoreceptorov. Binárna maska bola získaná prahovaním s hodnotou intenzity hraničného pixelu 56. V ojedinelých prípadoch, ako napríklad v obraze 4.8d, boli prahovaním do masky zahrnuté aj oblasti neobsahujúce cievy. Bola teda uplatnená podmienka, kontrolujúca obsah oblastí, označených binárnou maskou. Malé plochy ako na obrázku 4.8e boli z masky odstránené. Výsledkom je maska cievy. Pred samotnou detekciou bola maska aplikovaná na obraz ako na obrázku 4.8g, čím v danej oblasti neobil označené žiadne fotoreceptory.

(e) chybné oblasti (f) upravená maska (g) maskovaná cieva

Obr. 4.8: Postup maskovania ciev

Ďalšou úpravou bolo pridanie masky aj na okraje obrazu. Tým sa zabránilo FP detekciám aj ne[pln7ch] fotoreceptorov. Problémové boli aj neostré, rozmazané snímky. Na čiastočné vyriešenie bolo aplikované zostrenie, kedy boli zvýraznené hrany zvýšením kontrastu.

5 Výsledky

V kapitole je popísaný spôsob vyhodnocovania úspešnosti metód detekcie fotoreceptorov a predstavený algoritmus, vytvorený na porovnanie výsledkov metód s anotáciami. Ďalej sú diskutované dosiahnuté výsledky jednotlivých metód, opísané ich výhody či nevýhody a prezentované ukážky detekcií. Na záver sú metódy porovnané.

5.1 Metriky úspešnosti testu

Výsledok implementovanej metódy bol vyhodnotený metrikou úspešnosti testu, používajúcou senzitivitu a pozitívnu prediktívnu hodnotu (PPV). Pre ich výpočet je nutné poznať nasledujúce hodnoty:

- TP *skutočne pozitívny* fotoreceptor lokalizovaný vybranou metódou bol označený aj anotátorom,
- FP *falošne pozitívny* fotoreceptor lokalizovaný vybranou metódou nebol označený anotátorom,
- FN *falošne negatívny* fotoreceptor označený anotátorom nebol lokalizovaný vybranou metódou.

Hodnoty TN - skutočne negatívy nemá v tomto prípade význam počítať, nie je to možné.

Senzitivita určuje, koľko percent zo všetkých fotoreceptorov označených anotátormi bolo detekovaných vybranou metódou. Vypočítať ju je možné podľa vzorca

$$senzitivita = \frac{TP}{TP + FN}.$$
(5.1)

PPV vyjadruje, koľko percent z fotoreceptorov nájdených vybranou metódou bolo označených anotátormi, čiže správne detekovaných. Vypočítať sa dá podľa vzorca

$$PPV = \frac{TP}{TP + FP}.$$
(5.2)

Zo senzitivity a PPV je možné určiť F-skóre (F1), ktoré predstavuje ich harmonický priemer. Metriky sú tak súmerne spojené do jednej, pričom najvyššia dosiahnuteľná hodnota úspešnosti testu je 1. Používa vzorec

$$F1 = 2 \frac{senzitivita * PPV}{senzitivita + PPV}$$
[53]. (5.3)

5.2 Algoritmus vyhodnotenia úspešnosti detekcie

Z dôvodu, že počet fotoreceptorov sa v obrazoch pohybuje v stovkách, bola na vyhodnotenie metódy vytvorená funkcia **evaluation**. Jej ideou je vytvorenie párov anotácia-detekcia tak, aby boli ku sebe priradené prvky s čo najmenšími vzájomnými vzdialenosťami, a aby zároveň nedochádzalo ku duplicitám.

Obr. 5.1: Ukážka postupu hodnotenia úspešnosti detekcie pre 1 fotoreceptor

Funkcia prechádza všetky obrazy a porovnáva anotácie troch odborníkov s detekciou. Postupne sú vyberané súradnice fotoreceptorov určené anotáciou, ku ktorým bude hľadaný odpovedajúci fotoreceptor z detekcie. Ku každému takému fotoreceptoru je vytvorené okolie s veľkosťou ± 2 pixely (určené z dostupných dát). V takto vzniknutej maske, o veľkosti 5x5 pixelov sú hľadané fotoreceptory určené detekciou. Môžu nastať 3 možnosti: v oblasti na nenachádza žiaden detekovaný fotoreceptor, nachádza sa tu práve 1 fotoreceptor alebo viac.

Ak sa v okolí anotácie nachádza iba 1 fotoreceptor, je považovaný za skutočne pozitívny. Avšak, mohla by nastať situácia, kedy bol fotoreceptor v predchádzajúcich krokoch priradený už ku inej anotácii, preto je doplnená kontrola. Ak áno, ide o FN, pretože anotácia nemá pár. Ak detekcia ešte netvorí pár so žiadnou anotáciou, je detekcia označená za TP. Keď je v okolí nájdených viac fotoreceptorov, je vybraný ten, ktorý sa ku anotácii nachádza najbližšie. Slúži na to Euklidova vzdialenosť. Po výbere nasleduje opäť kontrola.

Ak je prehľadávané okolie anotácie prázdne, nasleduje kontrolné zväčšenie okolia. Je to z dôvodu, že plocha fotoreceptorov je veľmi malá a anotátor sa pri označovaní nemusel trafiť presne do jej stredu, vyhodnotenie by teda bolo nesprávne. Ďalej je opakovaný rovnaký postup ako v predchádzajúcich krokoch. V prípade opakovaného prázdneho okolia je usúdené, že fotoreceptor nebol metódou zachytený, a tak je označený za falošne negatívny. Výstupom funkcie sú počty TP, FP a FN detekcií.

Ukážka postupu funkcie je na obrázku 5.1 a príklad zaradenia detekcie je znázornený na obrázku 5.2d.

5.3 Úspešnosť metód detekcie fotoreceptorov

5.3.1 Úpešnosť metódy založenej na intenzite jasu

Súhrn výsledkov úspešnosti metódy detekcie fotoreceptorov založenej na intenzite jasu je zhrnutý v tabuľke 5.1. Detekcia bola porovnaná s troma anotáciami. Najlepšie výsledky metóda dosahuje, ak je za ground truth považovaný anotátor A. Spolu bolo 37 724 detekcií skutočne pozitívnych, 6 391 falošne pozitívnych a 8 378 fotoreceptorov nebolo vyhľadaných vôbec.Výsledná senzitivita je 81,83%, PPV 85,51% a F1 skóre 0,84.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
А	$37\ 724$	6 391	8 378	81,83	85,51	0,84
В	$37 \ 334$	6 781	$9\ 794$	79,22	84,63	0,82
С	37 7 33	$6 \ 382$	8 870	$80,\!97$	$85,\!53$	$0,\!83$
Priemerne				80,67	85,22	0,83

Tab. 5.1: Vyhodnotenie úspešnosti metódy založenej na intenzite jasu

Na obrázkoch 5.2a - 5.2c sú priblížené ukážky detekcie. Hviezdičky označujú anotácie, červená anotátora A, zelená anotátora B a modrá anotátora C. Purpurové krížiky predstavujú polohy detekovaných fotoreceptorov.

Nízke hodnoty úspešnosti metódy čiastočne spôsobujú rozdiely v anotácii. Napríklad hneď v prvom obraze anotátor A označil spolu 534 fotoreceptorov, zatiaľ čo anotátor B 442 a anotátor C až 893 kusov. Preto sa dá predpokladať, že v anotáciách sú nedostatky. Je pochopiteľné, že keď ide o manuálne označovanie, ku tomu ešte veľkého množstva dát, sa jednotlivec riadi subjektívne a môže dôjsť aj ku chybe.

Implementovaná metóda dokáže zaznamenať aj objekty s nízkym jasom. Príkladom sú oblasti na obrázku 5.3 vyznačené obdĺžnikmi. Tieto plochy vyzerajú a v skutočnosti by mohli byť fotoreceptormi, neboli ale označené anotátorom. Detekcie sú zaradené do skupiny FP. Opäť, záleží na subjektívnom vnímaní anotátora či nastavení zobrazenia monitora. Ďalší problém môže nastať pri vyhodnocovaní úspešnosti, ako je vidieť v kruhu na obrázku 5.3a. V tomto prípade, fotoreceptor nebol pri anotácii označený presne. Jeho poloha je zaznačená mimo jeho oblasť. Detekcia preto môže byť zaradená do FP a anotácia do FN, pričom malo ísť o TP detekciu.

Problémom metódy sú aj okraje obrazu. Vzniká tam mnoho FP detekcií, ako znázorňuje prerušovaný obdĺžnik na obrázku 5.3b. Dôvodom je použitie regionálnych maxím. Sú nimi označované aj polovičné alebo aj menšie časti fotoreceptorov prípadne šumu, zatiaľ čo anotátor väčšinou označoval len celé fotoreceptory. Riešením by mohla byť záverečná kontrola polohy okrajových detekcií, prípadne kontrola ich plochy, čím sa zabráni FP detekciám.

(a) porovnanie anotácie A s detekciou

(b) porovnanie anotácie B s detekciou

(c) porovnanie anotácie C s detekciou

(d) príklad TP, FP a FN detekcie

Obr. 5.2: Porovnanie anotácií a detekcie metódou založenou na intenzite jasu

Obr. 5.3: Ukážka chýb metódy založenej na intenzite jasu

V prílohe A je zhrnutá úspešnosť metódy pre každý obraz zvlášť. Pri pohľade na tabuľku je zrejmé, že úspešnosť detekcie je odlišná pre každý obraz. Najvyššia senzitivita, 98,19%, bola vypočítaná pre detekciu v obraze číslo 70 pre anotátora C. Najvyššia PPV s hodnotou 95,66% bola zaznamenaná v obraze 39 v porovnávaní s anotátorom A. Najlepšia hodnota F1 skóre 0,947 bola určená pre 15ty obraz.

Naopak problémové obrazy, ktoré znižujú celkovú úspešnosť metódy, dosahujú senzitivitu od 45,57% do 70%, PPV od 46,10% a F1 skóre od 0,60. Patria tu najmä obrazy číslo 30, 32-36, 38, 40, 41, 57-59, 67, 73 a 75. Po preskúmaní bolo zistené, že v prípade č.30, 32-36, 38, 40, 41 ide o obrazy, ktoré sú príliš rozmazané. Nie sú na nich zreteľné jednotlivé fotoreceptory a označovanie anotátorom je nepresné, miestami priam nepodložené ako je vidieť na obrázkoch 5.4. Jedná sa o snímky z oblasti fovei. Vzhľadom na ich nedostatočnú kvalitu nie sú vhodné na testovanie metódy. Po ich odstránení z testovacej sady dát bola senzitivita zvýšená na 84,65%, PPV mierne klesla pre všetkých anotátorov. Výsledky sú zhrnuté v tabuľke 5.2.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
А	33 285	6 022	$6\ 034$	84,65	84,68	0,85
В	32 810	$6\ 497$	$6\ 288$	83,92	$83,\!47$	0,84
С	$33 \ 475$	5 832	$6\ 784$	$83,\!15$	85,16	0,84
Priemerne				83,91	84,44	0,84

Tab. 5.2: Vyhodnotenie úspešnosti metódy založenej na intenzite jasu na upravenej databáze

(e) anotácie a detekcie v obraze č.33

(f) anotácie a detekcie v obraze č.35

Obr. 5.4: Ukážka neostrých obrazov

Čo sa týka problémov detekcie v obrazoch 43, 47, 51, 57-59, 67, 73 a 75-77, sú spôsobené tým, že na snímkach sú zachytené cievy. Implementovaná metóda nepočíta s výskytom ciev na snímkach a nijak ich neošetruje. Prehľadáva taktiež tmavé oblasti ciev, a aj malé zvýšenie jasu považuje za potenciálne fotoreceptory. Vzniká tak mnoho falošne pozitívnych detekcií, ktoré zhoršujú celkovú úspešnosť metódy, konkrétne hodnoty PPV. Ako riešenie by mohlo pomôcť prahovanie alebo segmentácia ciev pred samotnou detekciou. Príklady spomínaných obrazov a znázornenie výsledku detekcie je možné vidieť na obrázkoch 5.5.

Spomínané nedostatky sú badateľné aj pri porovnaní úspešnosti detekcie medzi snímkami fovei (1-40, bez chybných obrazov) a snímkami periférie (41-80) v tabuľke 5.3. Senzitivita algoritmu je vyššia v snímkoch z periférie, pretože sú tieto obrazy kvalitnejšie a fotoreceptory ostrejšie. Naopak PPV je nižšia kvôli FP detekciám v oblastiach ciev. Pre snímky z oblasti fovei je senzitivita horšia z dôvodu väčšej rozmazanosti snímkov.

	Fovea			Periféria		
Anotátor	Senzitivita[%]	PPV[%]	F1	Senzitivita[%]	PPV[%]	F1
A	80,85	89,86	0,85	90,09	78,85	0,84
В	83,21	85,46	0,84	84,77	81,20	0,83
C	77,06	90,73	0,83	92,60	$78,\!91$	$0,\!85$
Priemerne	80,37	88,70	0,84	89,15	$79,\!65$	0,84

Tab. 5.3: Porovnanie úspešnosti metódy 1 medzi snímkami fove
i a periférie

(e) detekcie v obrázku č.57

(f) detekcie v obrázku č.58

Obr. 5.5: Ukážka obrazov, kde sú zachytené cievy

5.3.2 Úspešnosť metódy založenej na viacškálovom modelovaní

Detekcia fotoreceptorov metódou založenou na viacškálovom modelovaní a krížovej korelácii bola taktiež porovnaná s anotáciami od troch autorov. Jej výsledky a vypočítaná úspešnosť metódy je zhrnutá v tabuľke 5.4. Najlepšiu zhodu metóda opäť preukazuje s anotátorom A. Metóda správne našla 86,12% fotoreceptorov zo všetkých označených anotátorom, a zo všetkých vyhľadaných sa 83,19% zhodovalo s anotátorom. Z týchto hodnôt senzitivity a PPV bolo určené F1 skóre 0,85.

Na obrázkoch 5.6a - 5.6c sú priblížené ukážky detekcie. Hviezdičky označujú anotácie, červená anotátora A, zelená anotátora B a modrá anotátora C. Purpurové krížiky predstavujú polohy detekovaných fotoreceptorov. Je možné pozorovať mnoho TP detekcií ale aj pár FP a FN označení.

(a) porovnanie anotácie A s detekciou (b) porovnanie anotácie B s detekciou

(c) porovnanie anotácie C s detekciou

Obr. 5.6: Porovnanie detekcie metódou založenou na viacškálovom modelovaní

Anotátor	ΤP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
A	39 701	8 023	6 401	86,12	83,19	0,85
В	$39 \ 345$	8 379	7783	83,49	82,44	0,83
C	39 515	8 209	7088	84,79	82,80	0,84
Priemerne				84,80	82,81	0,84

Tab. 5.4: Vyhodnotenie úspešnosti metódy založenej na viacškálovom modelovaní

V prílohe B je tabuľka vypočítanej úspešnosti metódy pre každý obraz samostatne. Ako v predchádzajúcej metóde, úspešnosť detekcie je rôzna pre každý obraz. Najvyššia senzitivita s hodnotou 100%, bola určená pre detekciu v obraze číslo 78 pre anotátora C. Najlepšia PPV, 97,81%, bola vypočítaná pre obraz 44 v porovnávaní s anotátorom A. Najvyššia hodnota F1 skóre 0,95 bola dosiahnutá v obraze 15 a 63. Z testovacej databázy boli odstránené už spomínané, nekvalitné obrazy číslo 30, 32-36, 38, 40 a 41. Výsledky testov na novej databáze zhŕňa tabuľka 5.5. Najväčšiu zhodu metóda preukazuje rovnako s anotátorom A. Priemerná hodnota senzitivity sa zvýšila na 87,30%, PPV klesla o 1% ale celkové F1 skóre sa taktiež zlepšilo.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
А	34 627	7544	4 692	88,07	82,11	0,85
В	$34\ 169$	8 002	$4 \ 929$	87,39	$81,\!02$	0,84
C	34 794	7 377	$5\ 465$	86,43	82,51	0,84
Priemerne				87,30	81,88	0,85

Tab. 5.5: Vyhodnotenie úspešnosti metódy založenej na viacškálovom modelovaní pre upravenú databázu

Problémové obrazy, ktoré znižujú celkovú úspešnosť metódy sú, tak ako v predchádzajúcej metóde, rovnaké čísla 43, 47, 51, 57-59, 67, 73 a 75-77. Snímky patria k obrazom s nasnímanými úsekmi ciev. Metóda nevie tieto úseky pri detekcii vylúčiť, čím vzniká veľký počet FP detekcií. Príklad je na obrázku 5.7.

Dalšie nedostatky metódy sú rovnaké ako v predchádzajúcom prípade. Konkrétne, FP detekcie na okrajoch obrazu a FP detekcie oblastí s malým jasom, ktoré anotátor nepovažoval za fotoreceptory (v niektorých prípadoch diskutabilné). FN detekcie vznikajú hlavne pri snímkoch s nižšou kvalitou. Tu nie sú jednotlivé fotoreceptory dostatočne výrazné, navzájom splývajú a metóda ich nevie rozoznat. Rovnaký problém mali aj anotátori, ako vidieť na obrázkoch 5.8. Je tu znázornená rovnaká časť obrazu, kde každý anotátor volil výrazne inak.

(a) detekcie v obrázku č.75 (b) detekcie v obrázku č.76

Obr. 5.7: Ukážka detekcií na obrazoch, kde sú zachytené cievy

- (a) detekcia a anotácia A
- (b) detekcia a anotácia B

(c) detekcia a anotácia C

(d) FP a FN detekcie

Obr. 5.8: Ukážka chýb detekcie metódou krížovej korelácie

Porovnaním výsledkov úspešnosti metódy na obrazoch z oblasti fovei a periférie dostávame podobný trend ako v predchádzajúcej metóde. Senzitivita v oblasti periférie sa pohybuje v hodnotách priemerne 93,38% a PPV je nižšia, kvôli cievam v snímkach. Pre oblasť fovei je to naopak.

	Fovea			Periféria		
Anotátor	Senzitivita[%]	PPV[%]	F1	Senzitivita[%]	PPV[%]	F1
A	83,87	88,89	0,86	94,06	74,85	0,83
В	85,42	83,68	0,85	89,77	78,18	0,84
C	80,05	89,86	$0,\!85$	96,33	$74,\!62$	0,84
Priemerne	83,11	87,48	0,85	93,38	75,88	0,84

Tab. 5.6: Porovnanie úspešnosti metódy 2 medzi snímkami fovei a periférie

5.3.3 Úspešnosť metódy založenej na histograme

Výsledky detekcie metódou založenou na histograme boli porovnané s troma anotáciami. Súhrn úspešnosti na celej databáze je v tabuľke 5.7. Priemerná hodnota senzitiviy je 89,75%, PPV 82,93% a priemerné F1 skóre je 0,86. Po odstránení chybných obrazov je senzitivita a F1 skóre vyššie, PPV mierne pokleslo ako zobrazuje tabuľka 5.8. V prílohe C sú vypočítané metriky hodnotenia úspešnosti metódy pre každý obraz zvlášť. Niektoré obrazy dosahujú senzitivitu nad 99% a PPV nad 96%. Najnižšia senzitivita je práve pre už spomínané nekvalitné snímky. Najvyššie F1 skóre je 0,96.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
А	41 771	8 671	$4\ 754$	90,61	82,81	0,87
В	41 877	8 565	$5\ 251$	88,86	83,02	0,86
С	41 849	8 593	$4\ 754$	89,80	82,96	0,86
Priemerne				89,75	82,93	0,86

Tab. 5.7: Vyhodnotenie úspešnosti metódy založenej na histograme

V porovnaní úspešnosti metódy medzi snímkami fovei a periférie v tabuľke 5.9 je opäť vidieť rozdiely. Senzitivita v oblasti periférie dosahuje priemerne 94,51% a v oblasti fovei 89,28%. PPV je naopak väčšie pre snímky fovei, a to 85,75%. Je to z rovnakého dôvodu ako v predošlých prípadoch, cievami v periférii a neostrými obrazmi fovei.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
A	$36\ 071$	7 932	3 248	91,74	81,97	0,87
В	35 874	8 129	$3\ 224$	91,75	$81,\!53$	0,86
C	36 497	7 506	$3 \ 762$	90,66	82,94	0,87
Priemerne				91,38	$82,\!15$	0,87

Tab. 5.8: Vyhodnotenie úspešnosti metódy založenej na histograme na upravenej databáze

	Fovea			Periféria		
Anotátor	Senzitivita[%]	PPV[%]	F1	Senzitivita[%]	PPV[%]	F1
А	89,51	86,54	0,88	94,92	$76,\!54$	0,85
В	91,40	$81,\!68$	0,86	92,18	$81,\!35$	0,86
С	86,94	89,04	0,88	96,42	$75,\!69$	$0,\!85$
Priemerne	89,28	85,75	0,87	94,51	77,86	0,85

Tab. 5.9: Porovnanie úspešnosti metódy 3 medzi snímkami fovei a periférie

Z nesprávne určených fotoreceptorov sa viac vyskytujú FP detekcie ako FN. Tieto chyby sú spôsobené hlavne falošnými detekciami v oblastiach ciev, ktorých príkladom je obrázok 5.9b. Ďalej sa vyskytujú detekcie ako napríklad v obdĺžniku na obrázku 5.9a, kedy zreteľne ide o fotoreceptory, ale anotátor ich neoznačil. Naopak, niektoré anotácie ako napríklad tie v kruhoch, sú príliš tmavé a rozmazané, tým pádom ich metóda nedokázala zachytiť a sú vyhodnotené ako FN. Problémové sú opäť aj okraje obrazov, ale v porovnaní s predošlými metódami bolo vyhľadaných menej FP okrajových detekcií.

(a) problémy detekcie obr.20 (b) problémy detekcie obr.75

Obr. 5.9: Nedostatky metódy založenej na histograme

(a) porovnanie anotácie A s detekciou (b) porovnanie anotácie B s detekciou

(c) porovnanie anotácie C s detekciou

Obr. 5.10: Porovnanie anotácie a detekcie metódou založenou na histograme

5.3.4 Úspešnosť modifikovanej metódy

Porovnaná s anotáciami od troch autorov bola aj detekcia fotoreceptorov modifikovanou metódou. Jej výsledky a vypočítaná úspešnosť metódy je zhrnutá v tabuľke 5.10. Najlepšiu zhodu metóda opakovane preukazuje s anotátorom A. Metóda správne našla 93.09% fotoreceptorov zo všetkých označených anotátorom, a zo všetkých vyhľadaných sa 80.73% zhodovalo s anotátorom. Z týchto hodnôt senzitivity a PPV bolo vzpočítané F1 skóre 0,86.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
А	42 918	$10\ 244$	3 184	93,09	80,73	0,86
В	42 958	$10\ 204$	4 170	$91,\!15$	80,81	0,86
С	42 732	10 430	3 871	$91,\!96$	$80,\!38$	0,86
Priemerne				91,98	80,64	0,86

Tab. 5.10: Vyhodnotenie úspešnosti modifikovanej metódy

Po upravení databázy, odstránením chybných obrazov dosahuje senzitivita hodnotu 93,98%, PPV 79,74% a F1 skóre zostáva 0,86. Úpravou metódy bol dosiahnutý nárast senzitivity ale za cenu zníženia PPV. Je to z dôvodu detekovania viac FP fotoreceptorov. Maskovanie okrajov a ciev počet FP detekcií prvotne znížilo, počet ale narástol po zaostrení vstupných obrazov. Ako už bolo ukázané pri predošlých metódach, nie všetky FN detekcie odpovedajú realite, a iba neboli označené anotátorom. Preto je potrebné vzhliadať na tieto hodnoty s rezervou. Príkladom sú obrázky 5.14, kde krížiky predstavujú detekcie a červené hviezdičky anotácie. Porovnanie výsledkov pred a po maskovaní je na obrázku 5.13. Je tu vidieť aj zníženie počtu FP detekcií na okrajoch. Oproti predošlým metódam klesol počet FN detekcií, čo je výsledkom ostrenia obrazu.

Anotátor	TP	FP	$_{\rm FN}$	Senzitivita[%]	PPV[%]	F1
A	36 952	9 386	$2\ 367$	93,98	79,74	0,86
В	36 657	9 681	2 441	91,76	79,11	0,86
C	$37 \ 212$	9 126	$3 \ 047$	$92,\!43$	80,31	0,86
Priemerne				93,39	79,72	0,86

Tab. 5.11: Vyhodnotenie úspešnosti modifikovanej metódy na upravenej databáze

V porovnaní výsledkov úspešnosti metódy na obrazoch z oblasti fovei a periférie zaznamenávame zvýšenie senzitivity v oblasti periférie na priemerne 96,42% a v

oblasti fovei na 91,33%. Prejavuje sa tu rovnaký trend ako v predchádzajúcich metódach. Senzitivita v oblasti periférie je vyššia ako v oblasti fovei a PPV je nižšia. Pre oblasť fovei je to naopak.

	Fovea			Periféria		
Anotátor	Senzitivita[%]	PPV[%]	F1	Senzitivita[%]	PPV[%]	F1
A	91,85	84,23	0,88	97,02	74,39	0,84
В	93,12	$78,\!93$	0,85	94,53	$79,\!32$	0,86
C	89,04	86,49	0,88	97,70	$72,\!93$	0,84
Priemerne	91,33	83,21	0,87	96,42	$75,\!55$	$0,\!85$

Tab. 5.12: Porovnanie úspešnosti metódy 4 medzi snímkami fovei a periférie

V prílohe D je vyhodnotenie metódy vypočítané pre každý obraz zvlášť. Zhrnutie výsledkov je v grafe 5.11 a 5.12. Z grafov je poznať, že senzitivita sa pre polovicu obrazov pohybuje v rozmedzí 95-100%. Najlepšia zhoda je s anotátorom A. Obrazy najnižšiu senzitivitou dosahujú pre anotaátora B, pričom ide o už spomínané nekvalitné obrazy.

Obr. 5.11: Rozsahy hodnôt senzitivity

Obr. 5.12: Rozsahy hodnôt PPV

(a) pred maskovaním ciev

(b) po maskovaní ciev

Obr. 5.13: Porovnanie detekcie s a bez maskovania ciev pre obr.č.76

Obr. 5.14: FP detekcie, neoznačené anotátorom

5.4 Porovnanie výsledkov

V práci sme sa stretávali s rozdielmi medzi anotáciami. Na dokázanie rozdielov bola na anotátorov použitá rovnaká metóda vyhodnotenia úspešnosti metódy ako na implementované algoritmy. Za ground truth bol považovaný vybraný anotátor a zostávajúci dvaja boli vyhodnotení. Bola vypočítaná senzitivita, PPV a F1 skóre. V tabuľke 5.13 sú zaznačené výsledky. Z hodnôt je patrné, že úspešnosť medzi anotáciami dosahuje najviac senzitivitu 87,84%, PPV 87,88% a F1 skóre 0,86. S modifikovanou metódou boli dosiahnuté priaznivejšie výsledky.

		$\mathrm{Sen}.[\%]$			PPV[%]			F1	
	А	В	С	A	В	С	А	В	С
A (GT)	/	87,84	87,37	/	85,93	86,43	/	86,88	86,90
B (GT)	85,97	/	85,42	87,88	/	86,38	86,91	/	$85,\!90$
C (GT)	86,02	86,20	/	86,95	85,24	/	86,48	85,72	/

Tab. 5.13: Porovnanie úspešnosti medzi anotátormi

Porovnanie jednotlivých metód je zhrnuté v grafe 5.15. Najvyššia senzitivita bola dosiahnutá s modifikovanou metódou. Najlepšia PPV pre prvú metódu, kde ale bola senzitivita najnižšia.

Obr. 5.15: Porovnanie úspešnosti metód

Záver

Na začiatku práce je popísaná anatómia oka, podrobnejšie sú popísané fotoreceptory a ochorenia sietnice, ktoré ich postihujú. V práci sú využité snímky sietnice s vysokým rozlíšením. Je vysvetlená problematika adaptívnej optiky použitej na získanie daných snímkov. Ďalej sú popísané existujúce metódy detekcie fotoreceptorov.

Cieľom bolo úpravou postupov vytvoriť algoritmus detekcie fotoreceptorov a porovnať úspešnosť jednotlivých metód. Vybrané metódy boli implemetované v programe Matlab. Prvá z nich je metóda založená na jase a lokálnych maximách obrazu. Druhou je metóda založená na viacškálovom modelovaní a normalizovanej krížovej korelácii. Posledná metóda, založená na histograme, dosahovala najlepšie výsledky, preto bola vybraná pre modifikáciu. Úpravami bolo dosiahnuté zvýšenie senzitivity metódy. Je uvedený postup práce a výsledky.

V dosiahnutých výsledkov je možné povedať, že metódy fungujú najlepšie pre kvalitné snímky. Nezaostrené snímky sú problémové. Pri predpoklade zhotovenia ostrých snímkov je metóda využiteľná. Z detekovaných polôh fotoreceptorov je možné odvodiť hustotu rozmiestnenia, typ usporiadania a iné parametre užitočné pre diagnostiku.
Literatúra

- [1] LENS, Al, Coyne NEMETH a Janice LEDFORD. Ocular anatomy and physiology [online]. 2nd edition. Thorofare, NJ: SLACK Incorporated, 2008 [cit. 2021-10-09]. ISBN 978-1-55642-792-3. Dostupné z: https://books.google.cz/books?id=Cphm_fxwvl8C&printsec=frontcover&dq=eye+anatomy&hl=sk&sa=X&redir_esc=y#v=onepage&q=eye%20anatomy&f=false.
- BEKERMAN, Inessa, Paul GOTTLIEB a Michael VAIMAN. Variations in Eyeball Diameters of the Healthy Adults. *Journal of Ophthalmology*, vol. 2014 [online]. 05.11.2014, (Article ID 503645) [cit. 2021-11-07]. Dostupné z: https://doi.org/10.1155/2014/503645.
- [3] KUCHYNKA, Pavel. Oční lékařství. Grada Publishing, 2016 [cit. 2021-10-17]. ISBN 978-80-247-5079-8.
- [4] Human eye: Horizontal section of the eye. Britannica [online]. Encyclopædia Britannica, 2013 [cit. 2021-10-22]. Dostupné z: https://www.britannica.com/ science/human-eye/Extraocular-muscles.
- [5] FISCH, Adam. Chapter 15 Clinical Examination of the Cranial Nerves. Nerves and Nerve Injuries [online]. Indianapolis, IN, USA: Academic Press, 2015, s. 195-225 [cit. 2021-10-11]. ISBN 9780124103900. Dostupné z URL: https://doi.org/10.1016/B978-0-12-410390-0.00016-0.
- [6] HOON, Mrinalini, Haruhisa OKAWA, Luca Della SANTINA a Rachel O.L. WONG. Functional architecture of the retina: Development and disease. *Progress in Retinal and Eye Research* [online]. Volume 42. Seattle, WA, USA, 2014, s. 44-84 [cit. 2021-10-15]. ISSN 1350-9462. Dostupné z: https://doi.org/10. 1016/j.preteyeres.2014.06.003.
- [7] Rods & Cones. Rochester Institute of Technology: College of Science [online]. Rochester [cit. 2021-10-19]. Dostupné z: https://www.cis.rit.edu/people/ faculty/montag/vandplite/pages/chap_9/ch9p1.html.
- [8] The Organization of the Retina. SlidePlayer [online]. Pearson Education, 2015 [cit. 2021-10-22]. Dostupné z: https://slideplayer.com/slide/7698610/.
- [9] A guide to astigmatism. In: Vision Direct [online]. York, 19.04.2018
 [cit. 2022-10-11]. Dostupné z: https://www.visiondirect.co.uk/blog/ astigmatism-guide.

- [10] KAUR, Indu Pal a Shilpa KAKKAR. Nanotherapy for posterior eye diseases. Journal of Controlled Release [online]. Volume 193. Chandigarh: University Institute of Pharmaceutical Sciences, 2014, s. 100-112 [cit. 2021-10-12]. ISSN 0168-3659. Dostupné z: https://doi.org/10.1016/j.jconrel.2014.05.031.
- [11] ČERNÁK, Martin. Patológia vitreoretinálneho rozhrania [online]. Univerzita Komenského v Bratislave, 2014 [cit. 2021-12-22]. ISBN 978-80-223-36246. Dostupné z: https://www.fmed.uniba.sk/fileadmin/lf/sluzby/ akademicka_kniznica/PDF/Elektronicke_knihy_LF_UK/Patologia_ vitreoretinalneho_rozhrania.pdf.
- [12] VAN LOOKEREN CAMPAGNE, Menno, Jennifer LECOUTER, Brian L. YAS-PAN a Weilan YE. Mechanisms of age-related macular degeneration and therapeutic opportunities. *The Journal of Pathology* [online]. 2014, 232(2), 151-64 [cit. 2021-12-22]. Dostupné z: https://doi.org/10.1002/path.4266.
- [13] ČERNÁK, Andrej, Martin ČERNÁK a Branislav TRNAVEC. Vekom podmienená degenerácia makuly. *Medicína pro praxi. Mezioborové přehledy.* [online]. 2009, 6(2), 81-84 [cit. 2021-12-22]. Dostupné z: https://www.solen.cz/pdfs/ med/2009/02/07.pdf.
- [14] MÁLIŠ, Vladimír a Nikoleta JAVORKOVÁ. Diabetes mellitus z pohľadu oftalmológa. Via practica [online]. 2008, 5(7-8), 319-322 [cit. 2021-12-22]. ISSN 1336 - 4790. Dostupné z: https://www.solen.sk/storage/file/article/ f09a3cc91bb61a36cf15efcb68dbc1ff.pdf.
- [15] SACHDEVA, Mira. Diabetic Retinopathy. In: Johns Hopkins medicine [online]. Baltimore: The Johns Hopkins University, 2022 [cit. 2022-11-01]. Dostupné z: https://www.hopkinsmedicine.org/health/conditions-and-diseases/ diabetes/diabetic-retinopathy.
- [16] KALVODOVÁ, Bohdana a Jan KALVODA. Nové trendy v diagnostice a léčbě diabetického makulárního edému. Interní medicína pro praxi [online]. 2013, 15(1), 19-21 [cit. 2021-12-20]. ISSN 1212-7299. Dostupné z: https://www.internimedicina.cz/pdfs/int/2013/01/05.pdf.
- [17] Macular Edema. National Eye Institute [online]. 2019 [cit. 2021-12-20]. Dostupné z: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/macular-edema.
- [18] LARDENOYE, Charlotte W. T. A., Kiki PROBST, Peter Jaap DELINT a Aniki ROTHOVA. Photoreceptor Function in Eyes with Macular Edema. Investigative Ophthalmology & Visual Science[online]. 2000, 41(12), 4048-4053

[cit. 2022-11-02]. ISSN 1552-5783. Dostupné z: https://iovs.arvojournals. org/article.aspx?articleid=2162563.

- [19] HAMEL, Christian. Retinitis pigmentosa. Orphanet Journal of Rare Diseases
 [online]. 2006, 1(40) [cit. 2021-12-21]. Dostupné z: https://doi.org/10.1186/ 1750-1172-1-40.
- [20] Retinitis Pigmentosa. National Eye Institute [online]. 2019 [cit. 2021-12-23]. Dostupné z: https://www.nei.nih.gov/learn-about-eye-health/ eye-conditions-and-diseases/retinitis-pigmentosa.
- [21] Age-Related Macular Degeneration. In: Vitreous Retina Macula Consultants of New York [online]. New York: New York Medical Marketing, 2022 [cit. 2022-11-07]. Dostupné z: https://www.vrmny.com/conditions/ age-related-macular-degeneration/.
- [22] JÜRGENS, Ignasi. Macular hole. In: ICR Centro Oftalmológico [online]. Barcelona: Institut Català de Retina, 2018, 31.08.2020 [cit. 2022-11-07]. Dostupné z: https://icrcat.com/enfermedades-oculares/agujero-macular/.
- [23] Diabetic Retinopathy: Cause and Treatment. In: Retina Group of New England: Specialists in Retinal and Macular Diseases [online]. Waterford [cit. 2022-11-07]. Dostupné z: https://retinagroupofnewengland.com/ conditions-we-treat/diabetic-retinopathy/.
- [24] Macular Edema Symptoms and Diagnosis. In: Retina Care Consultants [online]. Sarasota, 2022 [cit. 2022-11-08]. Dostupné z: https://www. retinacareflorida.com/patient-services-education/macular-edema/.
- [25] GRIFFITHS, Dylan. Retinitis Pigmentosa fundus. In: EyeWiki [online]. American Academy of Ophthalmology, 01.08.2011 [cit. 2022-11-08]. Dostupné z: https://eyewiki.aao.org/File:Retinitis_Pigmentosa_fundus.jpg.
- [26] BATTU, Rajani, Supriya DABIR, Anjani KHANNA, Anupama Kiran KUMAR a Abhijit Sinha ROY. Adaptive optics imaging of the retina. *Indian Journal* of Ophthalmology [online]. 2014, 62(1). [cit. 2021-11-05]. Dostupné z: https: //doi.org/10.4103/0301-4738.126185.
- [27] GODARA, Pooja, Adam M. DUBIS, Austin ROORDA, Jacque L. DUNCAN a Joseph CARROLL. Adaptive Optics Retinal Imaging: Emerging Clinical Applications. Optometry and Vision Science [online]. 2010, 87(12), 930-941 [cit. 2021-11-20]. Dostupné z: https://doi.org/10.1097/0PX.0b013e3181ff9a8b.

- [28] HAMPSON, K.M. Adaptive optics and vision. Journal of Modern Optics [online]. 2008, 55(21), 3425-3467 [cit. 2021-11-21]. Dostupné z: https://doi.org/ 10.1080/09500340802541777.
- [29] GILL, Jasdeep S., Mariya MOOSAJEE a Adam M. DUBIS. Cellular imaging of inherited retinal diseases using adaptive optics. *Eye* [online]. 2019, 33(11), 1683–1698 [cit. 2021-11-21]. Dostupné z: https://doi.org/10.1038/ s41433-019-0474-3.
- [30] BURNS, Stephen A., Ann E. ELSNER, Kaitlyn A. SAPOZNIK a Raymond L. WARNER. Adaptive optics imaging of the human retina. *Progress in Retinal and Eye Research* [online]. 2019, Volume 68, 1-30 [cit. 2021-11-25]. ISSN 1350-9462. Dostupné z: https://doi.org/10.1016/j.preteyeres.2018.08.002.
- [31] Fundus Photography Overview. SAINE, Patrick J. a Marshall E. TYLER. Ophthalmic Photography: Retinal Photography, Angiography, and Electronic Imaging, 2nd Edition [online]. Butterworth-Heinemann Medical, 2002 [cit. 2021-12-18]. ISBN 0750673729. Dostupné z: https://www.opsweb.org/page/ fundusphotography.
- [32] PANWAR, Nishtha, Philemon HUANG, Jiaying LEE, et al. Fundus Photography in the 21st Century—A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare. *Telemedicine journal and e-health* : the official journal of the American Telemedicine Association [online]. 22(3), 198-208 [cit. 2021-12-18]. Dostupné z: https://doi.org/10.1089/tmj.2015.0068.
- [33] RHA, Jungtae, Ravi S. JONNAL, Karen E. THORN, Junle QU, Yan ZHANG a Donald T. MILLER. Adaptive optics flood-illumination camera for high speed retinal imaging. *Optics Express* [online]. 2006, 14(10), 4552-4569 [cit. 2021-12-19]. Dostupné z: https://doi.org/10.1364/0E.14.004552.
- [34] ZHANG, Bing, Ni LI, Jie KANG, Yi HE a Xiao-Ming CHEN. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update. *International Journal of Ophthalmology* [online]. 2017, 10(11), 1751–1758 [cit. 2021-12-19]. Dostupné z: https://doi.org/10.18240/ijo.2017.11.18.
- [35] FISCHER, Jörg, Tilman OTTO, François DELORI, Lucia PACE a Giovanni STAURENGHI. Chapter 2: Scanning Laser Ophthalmoscopy (SLO). High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics [Internet] [online]. Springer, 2019 [cit. 2021-12-17]. Dostupné z: https://www.ncbi.nlm.nih.gov/books/NBK554043/.

- [36] MAINSTER, Martin A., George T. TIMBERLAKE, Robert H. WEBB a George W. HUGHES. Scanning Laser Ophthalmoscopy Clinical Applications. *Ophthalmology* [online]. Elsevier, 1982, 89(7), 852-857 [cit. 2021-12-18]. Dostupné z: https://doi.org/10.1016/S0161-6420(82)34714-4.
- [37] ROORDA, Austin, Fernando ROMERO-BORJA, William J. DONNELLY III, Hope QUEENER, Thomas J. HEBERT a Melanie C.W. CAMPBELL. Adaptive optics scanning laser ophthalmoscopy. *Optics Express* [online]. 2002, 10(9), 405-412 [cit. 2021-12-20]. Dostupné z: https://doi.org/10.1364/0E.10.000405.
- [38] AUMANN, Silke, Sabine DONNER, Jörg FISCHER a Frank MÜLLER. Optical Coherence Tomography (OCT): Principle and Technical Realization. *High Re*solution Imaging in Microscopy and Ophthalmology [online]. Springer, Cham, 2019, 59-85 [cit. 2021-12-20]. ISBN: 978-3-030-16638-0. Dostupné z: https: //doi.org/10.1007/978-3-030-16638-0_3.
- [39] FUJIMOTO, James G., Costas PITRIS, Stephen A. BOPPART a Mark E. BREZINSKI. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. *Neoplasia* [online]. 2000, 2(1-2), 9-25 [cit. 2021-12-21]. Dostupné z: https://doi.org/10.1038/sj.neo.7900071
- [40] PIRCHER, Michael a Robert J. ZAWADZKI. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. *Biomedical Optics Express* [online]. 2017, 8(5), 2536-2562. [cit. 2021-12-20]. Dostupné z: https://doi.org/10.1364/BOE.8.002536.
- [41] LI, Kaccie Y. a Austin ROORDA. Automated identification of cone photoreceptors in adaptive optics retinal images. *Journal of the Optical Society* of America A [online]. 2007, 24(5), 1358-1363 [cit. 2022-12-14]. Dostupné z: https://doi.org/10.1364/JOSAA.24.001358.
- [42] PARK, Sung Pyo, Jae Keun CHUNG, Vivienne GREENSTEIN, Stephen H. TSANG a Stanley CHANG. A study of factors affecting the human cone photoreceptor density measured by adaptive optics scanning laser ophthalmoscope. *Experimental Eye Research* [online]. 2013, 108, 1-9 [cit. 2022-12-10]. doi: 10.1016/j.exer.2012.12.011. Dostupné z: https://www.ncbi.nlm.nih. gov/pmc/articles/PMC4388135/#R20.
- [43] CURCIO, C. A., K. R. SLOAN, R. E. KALINA a HENDRICKSON. Human photoreceptor topography. *The Journal of comparative neurology* [online]. 1990, 292(4), 497-523 [cit. 2022-12-12]. Dostupné z: https://doi.org/10.1002/cne. 902920402.

- [44] XUE, Bai, Stacey S. CHOI, Nathan DOBLE a John S. WERNER. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. *Journal of the Optical Society of America A* [online]. Optica Publishing Group, 2007, 24(5), 1364-1372 [cit. 2022-12-10]. doi: 10.1364/josaa.24.001364. Dostupné z: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2583217/#FD2.
- [45] LOQUIN, Kevin, Isabelle BLOCH, Kiyoko NAKASHIMA, Florence ROSSANT a Michel PAQUES. Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians. *IEEE International Symposium on Biomedical Imaging: From Nano to Macro* [online]. Chicago, IL, United States, 2011, 191-194 [cit. 2022-12-17]. Dostupné z: https://doi.org/10.1109/ISBI.2011.5872385.
- [46] TURPIN, Alan, Philip MORROW, Bryan SCOTNEY, Roger ANDERSON a Clive WOLSLEY. Automated Identification of Photoreceptor Cones Using Multi-scale Modelling and Normalized Cross-Correlation. *Image Analysis and Processing - ICIAP* [online]. Springer, 2011, 6978, 494-503 [cit. 2022-12-19]. Dostupné z: https://doi.org/10.1007/978-3-642-24085-0_51.
- [47] BUKOWSKA, Danuta M., Avenell L. CHEW, Emily HUYNH, Irwin KAS-HANI, Sue Ling WAN a Fred K CHEN. Semi-automated identification of cones in the human retina using circle Hough transform. *Biomedical Optics Express* [online]. 2015, 6(12), 4676–4693 [cit. 2022-12-14]. Dostupné z: https: //doi.org/10.1364/BOE.6.004676.
- [48] RHODY, Harvey. Hough Circle Transform. In: Introduction to Digital Image Processing [online]. Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, October 11,2005 [cit. 2022-12-15]. Dostupné z: https://www.cis.rit.edu/class/simg782/lectures/lecture_ 10/lec782_05_10.pdf.
- [49] LAZAREVA, Anfisa, Panos LIATSIS a Franziska G. RAUSCHER. Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images. *Journal of the Optical Society of America A* [online]. 2016, 33(1), 84-94 [cit. 2022-12-16]. Dostupné z: https://doi.org/10.1364/JOSAA. 33.000084.
- [50] CUNEFARE, David, Leyuan FANG, Robert F. COOPER, Alfredo DUBRA, Joseph CARROLL a Sina FARSIU. Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional

neural networks. *Scientific Reports* [online]. 2017 Jul, 7, 6620 [cit. 2022-12-13]. Dostupné z: https://doi.org/10.1038/s41598-017-07103-0.

- [51] HAMWOOD, Jared, David ALONSO-CANEIRO, Danuta M. SAMPSON, Michael J. COLLINS a Fred K. CHEN. Automatic Detection of Cone Photoreceptors With FullyConvolutional Networks. *Translational Vision Science & Technology* [online]. November 2019, 8(10) [cit. 2022-12-15]. Dostupné z: https://doi.org/10.1167/tvst.8.6.10.
- [52] Indian Institute of Information Technology. MATLAB-Ideal Lowpass Filter in Image Processing. Geeks for geeks [online]. 22 Apr 2020 [cit. 2022-12-22]. Dostupné z: https://www.geeksforgeeks.org/ matlab-ideal-lowpass-filter-in-image-processing/.
- [53] HOSSIN, Mohammad a Sulaiman M.N. A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process [online]. 2015, 5(2), 01-11 [cit. 2022-12-27]. Dostupné z: https://doi.org/10.5121/ijdkp.2015.5201.
- [54] KHAN, Bahadar Khan, Amir A. KHALIQ, Abdul JALIL, Muhammad Aksam IFTIKHAR, Najeeb ULLAH, Muhammad Waqar AZIZ, Kifayat ULLAH a Muhammad SHAHID. A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. *Pattern Analysis and Applications* [online]. 2019, 05 October 2018, 22, 767–802 [cit. 2023-05-02]. Dostupné z: https://doi.org/10.1007/s10044-018-0754-8.

Zoznam symbolov a skratiek

AO	adaptívna optika
CCD	nábojovo viazaná súčiastka (charged-coupled device)
\mathbf{CNN}	konvolučná neurónová sieť (convolutional neural network)
DP	dolná prepusť
FCN	plne konvolučná sieť (fully convolutional network)
FIO	flood illumination oftalmoskopia
FIR	konečná impulzná odozva (finite impulse response)
\mathbf{FN}	falošne negatívny (false negative)
\mathbf{FP}	falošne pozitívny (false positive)
\mathbf{FT}	Fourierová transformácia
\mathbf{GT}	ground truth
HT	Houghova transformácia
OCT	optická koherenčná tomografia
\mathbf{PPV}	pozitívna prediktívna hodnota
SLO	skenovací laserový oftalmoskop
\mathbf{TN}	skutočne negatívny (true negative)
TP	skutočne pozitívny (true positive)

Zoznam príloh

A	Zoznam výsledkov úspešnosti metódy založenej na intenzite jasu	85
в	Zoznam výsledkov úspešnosti metódy založenej na viacškálovom modelovaní	88
С	Zoznam výsledkov úspešnosti metódy založenej na histograme	91
D	Zoznam výsledkov úspešnosti modifikovanej metódy	94

Α

Zoznam výsledkov úspešnosti metódy založenej na intenzite jasu

1			а	notátor A					aı	notátor B					a	notátor C		
obraz	TP	FP	FN	sen. [%]	PPV [%]	F1	ТР	FP	FN	sen. [%]	PPV [%]	F1	ТР	FP	FN	sen. [%]	PPV [%]	F1
1	397	87	137	74,34	82,02	0,780	373	111	69	84,39	77,07	0,806	449	35	444	50,28	92,77	0,652
2	440	86	118	78,85	83,65	0,812	397	129	65	85,93	75,48	0,804	472	54	268	63,78	89,73	0,746
3	468	80	117	80,00	85,40	0,826	388	160	40	90,65	70,80	0,795	494	54	220	69,19	90,15	0,783
4	432	79	123	77,84	84,54	0,811	359	152	58	86,09	70,25	0,774	470	41	311	60,18	91,98	0,728
5	616	48	57	91,53	92,77	0,921	576	88	13	97,79	86,75	0,919	592	72	32	94,87	89,16	0,919
6	517	107	93	84,75	82,85	0,838	444	180	49	90,06	71,15	0,795	555	69	214	72,17	88,94	0,797
7	610	69	60	91,04	89,84	0,904	569	110	31	94,83	83,80	0,890	620	59	90	87,32	91,31	0,893
8	529	69	153	77,57	88,46	0,827	421	177	42	90,93	70,40	0,794	546	52	179	75,31	91,30	0,825
9	515	80	104	83,20	86,55	0,848	434	161	32	93,13	72,94	0,818	550	45	176	75,76	92,44	0,833
10	644	73	152	80,90	89,82	0,851	579	138	82	87,59	80,75	0,840	648	69	176	78,64	90,38	0,841
11	545	63	159	77,41	89,64	0,831	4/5	133	/4	86,52	78,13	0,821	552	56	203	73,11	90,79	0,810
12	490	54	70	73,40	90,07	0,609	441	103	90	02,12	01,07	0,010	4/0	65	70	74,11	07,07	0,604
13	795	- 59 - 72	142	91,07	93,09	0,921	<i>114</i> <i>51</i> 1	00	40	94,51	90,03	0,925	709 552	77	12	91,04	92,39	0,920
14	770	20	142	79,00	05,39	0,030	740	61	22	02,09	00,01	0,040	765	11	100	74,59	01,70	0,000
15	547	- 39 - 60	49	94,02	95,10	0,940	740 542	74	12/	97,14	92,40	0,947	578	28	254	94,10	94,50	0,943
17	159	52	105	79.56	80.62	0,031	151	60	134	77.76	07,99	0,039	471	40	101	72.24	93,03	0,790
18	400 513	74	123	80.53	87 30	0,037	520	58	129	72.87	00,20	0,027	540	40	226	72,24	92,17	0,010
10	551	67	124	80.44	80.16	0,030	550	50	230	70.85	90,12	0,000	540	71	174	75.87	88.51	0,790
20	523	66	142	78.65	88 79	0,040	520	69	205	70,00	88.29	0,793	530	59	162	76.59	89.98	0,017
20	695	67	125	84.76	91 21	0,004	693	69	141	83.09	90,23	0,751	672	90	141	82.66	88 19	0,027
22	644	50	241	72 77	92.80	0.816	614	80	156	79 74	88 47	0,839	636	58	192	76.81	91 64	0,836
22	594	146	44	93.10	80.27	0.862	638	102	82	88.61	86.22	0.874	681	59	130	83.05	92.03	0,000
24	543	66	164	76 80	89 16	0.825	528	81	159	76.86	86 70	0.815	542	67	159	77.32	89.00	0.827
25	590	43	173	77.33	93 21	0.845	569	64	137	80.59	89 89	0 850	588	45	164	78 19	92 89	0.849
26	747	53	155	82.82	93.38	0.878	708	92	101	87.52	88.50	0.880	741	59	141	84.01	92.63	0.881
27	549	59	198	73.49	90.30	0.810	532	76	135	79.76	87.50	0.835	549	59	196	73.69	90.30	0.812
28	608	61	188	76.38	90.88	0.830	594	75	163	78.47	88.79	0.833	620	49	192	76.35	92.68	0.837
29	675	59	141	82,72	91,96	0,871	668	66	151	81,56	91,01	0,860	679	55	169	80,07	92,51	0,858
30	542	48	185	74,55	91,86	0,823	556	34	277	66,75	94,24	0,781	560	30	255	68,71	94,92	0,797
31	746	44	149	83,35	94,43	0,885	734	56	144	83,60	92,91	0,880	742	48	158	82,44	93,92	0,878
32	490	42	215	69,50	92,11	0,792	508	24	332	60,48	95,49	0,741	505	27	300	62,73	94,92	0,755
33	412	35	308	57,22	92,17	0,706	427	20	510	45,57	95,53	0,617	419	28	347	54,70	93,74	0,691
34	521	35	260	66,71	93,71	0,779	534	22	432	55,28	96,04	0,702	519	37	288	64,31	93,35	0,762
35	575	35	262	68,70	94,26	0,795	589	21	417	58,55	96,56	0,729	572	38	269	68,01	93,77	0,788
36	546	29	297	64,77	94,96	0,770	556	19	444	55,60	96,70	0,706	463	112	83	84,80	80,52	0,826
37	723	35	245	74,69	95,38	0,838	717	41	224	76,20	94,59	0,844	615	143	74	89,26	81,13	0,850
38	459	51	234	66,23	90,00	0,763	473	37	423	52,79	92,75	0,673	415	95	159	72,30	81,37	0,766
39	661	30	208	76,06	95,66	0,847	667	24	263	71,72	96,53	0,823	608	83	107	85,03	87,99	0,865
40	565	33	259	68,57	94,48	0,795	566	32	321	63,81	94,65	0,762	523	75	185	73,87	87,46	0,801
41	329	61	324	50,38	84,36	0,631	315	75	350	47,37	80,77	0,597	282	108	200	58,51	72,31	0,647
42	344	107	45	88,43	76,27	0,819	348	103	54	86,57	77,16	0,816	325	126	23	93,39	72,06	0,814
43	346	96	164	67,84	78,28	0,727	320	122	96	76,92	72,40	0,746	277	165	28	90,82	62,67	0,742
44	427	33	121	77,92	92,83	0,847	374	86	58	86,57	81,30	0,839	361	99	18	95,25	78,48	0,861
45	385	85	86	81,74	81,91	0,818	371	99	72	83,75	78,94	0,813	353	117	32	91,69	75,11	0,826
46	408	43	60	87,18	90,47	0,888	376	75	53	87,65	83,37	0,855	384	67	18	95,52	85,14	0,900
47	350	108	138	71,72	76,42	0,740	339	119	145	70,04	74,02	0,720	310	148	65	82,67	67,69	0,744
48	410	43	81	83,50	90,51	0,869	398	55	80	83,26	87,86	0,855	388	65	37	91,29	85,65	0,884
49	376	71	19	95,19	84,12	0,893	367	80	46	88,86	82,10	0,853	357	90	14	96,23	79,87	0,873
50	397	64	26	93,85	86,12	0,898	396	65	65	85,90	85,90	0,859	393	68	29	93,13	85,25	0,890
51	213	181	10	95,52	54,06	0,690	290	104	82	77,96	73,60	0,757	301	93	93	76,40	76,40	0,764
52	387	80	33	92,14	82,87	0,873	392	75	73	84,30	83,94	0,841	414	53	72	85,19	88,65	0,869
53	357	138	21	94,44	72,12	0,818	417	78	90	82,25	84,24	0,832	411	84	59	87,45	83,03	0,852

54	343	82	23	93,72	80,71	0,867	373	52	87	81,09	87,76	0,843	362	63	26	93,30	85,18	0,891
55	391	122	28	93,32	76,22	0,839	433	80	78	84,74	84,41	0,846	414	99	38	91,59	80,70	0,858
56	377	47	62	85,88	88,92	0,874	353	71	35	90,98	83,25	0,869	352	72	25	93,37	83,02	0,879
57	260	201	21	92,53	56,40	0,701	312	149	67	82,32	67,68	0,743	303	158	34	89,91	65,73	0,759
58	267	184	29	90,20	59,20	0,715	289	162	43	87,05	64,08	0,738	287	164	35	89,13	63,64	0,743
59	213	246	26	89,12	46,41	0,610	235	224	36	86,72	51,20	0,644	228	231	35	86,69	49,67	0,632
60	370	45	51	87,89	89,16	0,885	353	62	25	93,39	85,06	0,890	363	52	23	94,04	87,47	0,906
61	529	37	45	92,16	93,46	0,928	486	80	20	96,05	85,87	0,907	518	48	35	93,67	91,52	0,926
62	392	118	36	91,59	76,86	0,836	447	63	130	77,47	87,65	0,822	426	84	56	88,38	83,53	0,859
63	563	34	36	93,99	94,30	0,941	562	35	38	93,67	94,14	0,939	550	47	27	95,32	92,13	0,937
64	406	81	10	97,60	83,37	0,899	410	77	45	90,11	84,19	0,870	400	87	20	95,24	82,14	0,882
65	337	109	35	90,59	75,56	0,824	377	69	108	77,73	84,53	0,810	355	91	40	89,87	79,60	0,844
66	354	87	41	89,62	80,27	0,847	377	64	91	80,56	85,49	0,829	369	72	50	88,07	83,67	0,858
67	290	209	29	90,91	58,12	0,709	296	203	43	87,32	59,32	0,706	304	195	16	95,00	60,92	0,742
68	354	85	40	89,85	80,64	0,850	384	55	69	84,77	87,47	0,861	367	72	23	94,10	83,60	0,885
69	526	69	23	95,81	88,40	0,920	542	53	82	86,86	91,09	0,889	510	85	22	95,86	85,71	0,905
70	447	30	27	94,30	93,71	0,940	436	41	33	92,96	91,40	0,922	433	44	8	98,19	90,78	0,943
71	539	52	17	96,94	91,20	0,940	542	49	51	91,40	91,71	0,916	536	55	13	97,63	90,69	0,940
72	402	67	18	95,71	85,71	0,904	414	55	61	87,16	88,27	0,877	404	65	15	96,42	86,14	0,910
73	282	244	19	93,69	53,61	0,682	341	185	106	76,29	64,83	0,701	309	217	16	95,08	58,75	0,726
74	356	111	32	91,75	76,23	0,833	393	74	121	76,46	84,15	0,801	358	109	15	95,98	76,66	0,852
75	183	214	20	90,15	46,10	0,610	256	141	113	69,38	64,48	0,668	229	168	38	85,77	57,68	0,690
76	342	114	18	95,00	75,00	0,838	362	94	86	80,80	79,39	0,801	317	139	7	97,84	69,52	0,813
77	365	135	33	91,71	73,00	0,813	383	117	70	84,55	76,60	0,804	372	128	25	93,70	74,40	0,829
78	443	29	35	92,68	93,86	0,933	417	55	41	91,05	88,35	0,897	421	51	12	97,23	89,19	0,930
79	484	53	26	94,90	90,13	0,925	486	51	51	90,50	90,50	0,905	474	63	16	96,73	88,27	0,923
80	379	60	22	94,51	86,33	0,902	381	58	57	86,99	86,79	0,869	369	70	9	97,62	84,05	0,903

B Zoznam výsledkov úspešnosti metódy založenej na viacškálovom modelovaní

2			а	notátor A					a	notátor B					a	notátor C		
obraz	TP	FP	FN	sen. [%]	PPV [%]	F1	ТР	FP	FN	sen. [%]	PPV [%]	F1	TP	FP	FN	sen. [%]	PPV [%]	F1
1	446	121	88	83,52	78,66	0,810	408	159	34	92,31	71,96	0,809	528	39	365	59,13	93,12	0,723
2	483	135	75	86,56	78,16	0,821	426	192	36	92,21	68,93	0,789	529	89	211	71,49	85,60	0,779
3	492	117	93	84,10	80,79	0,824	397	212	31	92,76	65,19	0,766	539	70	175	75,49	88,51	0,815
4	486	119	69	87,57	80,33	0,838	393	212	24	94,24	64,96	0,769	547	58	234	70,04	90,41	0,789
5	638	54	35	94,80	92,20	0,935	583	109	6	98,98	84,25	0,910	603	89	21	96,63	87,14	0,916
6	531	102	79	87,05	83,89	0,854	451	182	42	91,48	71,25	0,801	561	72	208	72,95	88,63	0,800
7	619	88	51	92,39	87,55	0,899	581	126	19	96,83	82,18	0,889	639	68	71	90,00	90,38	0,902
8	561	89	121	82,26	86,31	0,842	433	217	30	93,52	66,62	0,778	591	59	134	81,52	90,92	0,860
9	537	113	82	86,75	82,62	0,846	437	213	29	93,78	67,23	0,783	580	70	146	79,89	89,23	0,843
10	642	71	154	80,65	90,04	0,851	575	138	86	86,99	80,65	0,837	636	77	188	77,18	89,20	0,828
11	594	93	110	84,38	86,46	0,854	499	188	50	90,89	72,63	0,807	609	78	146	80,66	88,65	0,845
12	527	80	140	79,01	86,82	0,827	468	139	69	87,15	77,10	0,818	513	94	132	79,53	84,51	0,819
13	787	40	86	90,15	95,16	0,926	773	54	46	94,38	93,47	0,939	777	50	84	90,24	93,95	0,921
14	585	75	113	83,81	88,64	0,862	560	100	99	84,98	84,85	0,849	574	86	166	77,57	86,97	0,820
15	776	29	43	94,75	96,40	0,956	751	54	19	97,53	93,29	0,954	771	34	42	94,83	95,78	0,953
16	579	70	121	82,71	89,21	0,858	560	89	116	82,84	86,29	0,845	609	40	223	73,20	93,84	0,822
17	510	96	73	87,48	84,16	0,858	491	115	89	84,66	81,02	0,828	531	75	121	81,44	87,62	0,844
18	548	85	89	86,03	86,57	0,863	565	68	161	77,82	89,26	0,831	575	58	191	75,07	90,84	0,822
19	589	69	96	85,99	89,51	0,877	601	57	188	76,17	91,34	0,831	580	78	141	80,44	88,15	0,841
20	573	92	92	86,17	86,17	0,862	580	85	145	80,00	87,22	0,835	568	97	124	82,08	85,41	0,837
21	694	58	126	84,63	92,29	0,883	690	62	144	82,73	91,76	0,870	670	82	143	82,41	89,10	0,856
22	650	40	235	73,45	94,20	0,825	601	89	169	78,05	87,10	0,823	630	60	198	76,09	91,30	0,830
23	608	165	30	95,30	78,65	0,862	658	115	62	91,39	85,12	0,881	713	60	107	86,95	92,24	0,895
24	582	70	125	82,32	89,26	0,857	559	93	128	81,37	85,74	0,835	567	85	134	80,88	86,96	0,838
25	619	47	144	81,13	92,94	0,866	589	77	117	83,43	88,44	0,859	607	59	145	80,72	91,14	0,856
26	733	42	169	81,26	94,58	0,874	691	84	118	85,41	89,16	0,872	719	56	163	81,52	92,77	0,868
27	601	69	146	80,46	89,70	0,848	582	88	85	87,26	86,87	0,871	607	63	138	81,48	90,60	0,858
28	619	61	177	77,76	91,03	0,839	593	87	164	78,34	87,21	0,825	619	61	193	76,23	91,03	0,830
29	674	55	142	82,60	92,46	0,872	665	64	154	81,20	91,22	0,859	676	53	172	79,72	92,73	0,857
30	586	65	141	80,61	90,02	0,851	613	38	220	73,59	94,16	0,826	608	43	207	74,60	93,39	0,829
31	740	34	155	82,68	95,61	0,887	733	41	145	83,49	94,70	0,887	735	39	165	81,67	94,96	0,878
32	557	57	148	79,01	90,72	0,845	579	35	261	68,93	94,30	0,796	571	43	234	70,93	93,00	0,805
33	529	54	191	73,47	90,74	0,812	552	31	385	58,91	94,68	0,726	524	59	242	68,41	89,88	0,777
34	586	28	195	75,03	95,44	0,840	595	19	371	61,59	96,91	0,753	569	45	238	70,51	92,67	0,801
35	637	37	200	76,11	94,51	0,843	645	29	361	64,12	95,70	0,768	612	62	229	72,77	90,80	0,808
36	605	35	238	71,77	94,53	0,816	619	21	381	61,90	96,72	0,755	489	151	57	89,56	76,41	0,825
3/	/15	16	253	73,86	97,81	0,842	705	26	236	74,92	96,44	0,843	606	125	83	87,95	82,90	0,854
38	522	58	1/1	75,32	90,00	0,820	546	34	350	60,94	94,14	0,740	445	135	129	77,53	/6,/2	0,771
39	652	28	217	75,03	95,88	0,842	656	24	274	70,54	96,47	0,815	593	87	122	82,94	87,21	0,850
40	604	32	220	73,30	94,97	0,827	606	30	281	68,32	95,28	0,796	542	94	166	76,55	85,22	0,807
41	448	113	205	68,61	79,86	0,738	421	140	244	63,31	75,04	0,687	361	200	121	74,90	64,35	0,692
42	359	138	30	92,29	72,23	0,810	368	129	34	91,54	74,04	0,819	339	158	9	97,41	68,21	0,802
43	387	130	123	75,88	/4,85	0,754	350	167	66	84,13	67,70	0,750	293	224	12	96,07	56,67	0,713
44	461	33	87	84,12	93,32	0,885	387	107	45	89,58	78,34	0,836	373	121	6	98,42	75,51	0,855
45	420	115	51	89,17	78,50	0,835	399	136	44	90,07	74,58	0,816	3/1	164	14	96,36	69,35	0,807
46	431	50	37	92,09	89,60	0,908	393	88	36	91,61	81,70	0,864	393	88	9	97,76	81,70	0,890
4/	420	145	68	86,07	74,34	0,798	407	158	11	84,09	72,04	0,776	345	220	30	92,00	61,06	0,734
48	437	59	54	89,00	88,10	0,886	416	80	02	87,03	83,87	0,854	397	99	28	93,41	80,04	0,862
49	380	127	15	96,20	74,95	0,843	383	124	30	92,74	75,54	0,833	363	144	8	97,84	71,60	0,827
50	411	84	12	97,16	83,03	0,895	413	82	48	89,59	83,43	0,864	406	89	16	96,21	82,02	0,885
51	219	346	4	98,21	38,76	0,556	333	232	39	89,52	58,94	0,711	347	218	4/	88,07	61,42	0,724
52	403	128	17	95,95	75,89	0,848	419	112	46	90,11	78,91	0,841	438	93	48	90,12	82,49	0,861
53	371	174	7	98,15	68,07	0,804	444	101	63	87,57	81,47	0,844	430	115	40	91,49	78,90	0,847

54	351	124	15	95,90	73,89	0,835	393	82	67	85,43	82,74	0,841	373	102	15	96,13	78,53	0,864
55	409	138	10	97,61	74,77	0,847	463	84	48	90,61	84,64	0,875	434	113	18	96,02	79,34	0,869
56	401	70	38	91,34	85,14	0,881	362	109	26	93,30	76,86	0,843	358	113	19	94,96	76,01	0,844
57	265	241	16	94,31	52,37	0,673	334	172	45	88,13	66,01	0,755	317	189	20	94,07	62,65	0,752
58	283	237	13	95,61	54,42	0,694	320	200	12	96,39	61,54	0,751	313	207	9	97,20	60,19	0,743
59	224	318	15	93,72	41,33	0,574	252	290	19	92,99	46,49	0,620	243	299	20	92,40	44,83	0,604
60	388	69	33	92,16	84,90	0,884	361	96	17	95,50	78,99	0,865	373	84	13	96,63	81,62	0,885
61	548	30	26	95,47	94,81	0,951	497	81	9	98,22	85,99	0,917	531	47	22	96,02	91,87	0,939
62	407	159	21	95,09	71,91	0,819	480	86	97	83,19	84,81	0,840	445	121	37	92,32	78,62	0,849
63	576	36	23	96,16	94,12	0,951	579	33	21	96,50	94,61	0,955	567	45	10	98,27	92,65	0,954
64	409	103	7	98,32	79,88	0,881	424	88	31	93,19	82,81	0,877	409	103	11	97,38	79,88	0,878
65	352	142	20	94,62	71,26	0,813	417	77	68	85,98	84,41	0,852	374	120	21	94,68	75,71	0,841
66	372	96	23	94,18	79,49	0,862	404	64	64	86,32	86,32	0,863	385	83	34	91,89	82,26	0,868
67	300	204	19	94,04	59,52	0,729	309	195	30	91,15	61,31	0,733	315	189	5	98,44	62,50	0,765
68	363	121	31	92,13	75,00	0,827	410	74	43	90,51	84,71	0,875	377	107	13	96,67	77,89	0,863
69	538	57	11	98,00	90,42	0,941	555	40	69	88,94	93,28	0,911	525	70	7	98,68	88,24	0,932
70	456	29	18	96,20	94,02	0,951	444	41	25	94,67	91,55	0,931	440	45	1	99,77	90,72	0,950
71	545	53	11	98,02	91,14	0,945	552	46	41	93,09	92,31	0,927	543	55	6	98,91	90,80	0,947
72	409	81	11	97,38	83,47	0,899	423	67	52	89,05	86,33	0,877	414	76	5	98,81	84,49	0,911
73	288	296	13	95,68	49,32	0,651	375	209	72	83,89	64,21	0,727	320	264	5	98,46	54,79	0,704
74	372	128	16	95,88	74,40	0,838	423	77	91	82,30	84,60	0,834	371	129	2	99,46	74,20	0,850
75	198	345	5	97,54	36,46	0,531	304	239	65	82,38	55,99	0,667	262	281	5	98,13	48,25	0,647
76	349	158	11	96,94	68,84	0,805	378	129	70	84,38	74,56	0,792	322	185	2	99,38	63,51	0,775
77	389	189	9	97,74	67,30	0,797	410	168	43	90,51	70,93	0,795	389	189	8	97,98	67,30	0,798
78	454	38	24	94,98	92,28	0,936	429	63	29	93,67	87,20	0,903	433	59	0	100,00	88,01	0,936
79	502	60	8	98,43	89,32	0,937	510	52	27	94,97	90,75	0,928	488	74	2	99,59	86,83	0,928
80	390	70	11	97,26	84,78	0,906	395	65	43	90,18	85,87	0,880	376	84	2	99,47	81,74	0,897

C Zoznam výsledkov úspešnosti metódy založenej na histograme

3			а	notátor A					a	notátor B					а	notátor C		
obraz	TP	FP	FN	sen. [%]	PPV [%]	F1	TP	FP	FN	sen. [%]	PPV [%]	F1	TP	FP	FN	sen. [%]	PPV [%]	F1
1	502	204	32	94,01	71,10	0,810	435	271	7	98,42	61,61	0,758	646	60	247	72,34	91,50	0,808
2	517	189	41	92,65	73,23	0,818	455	251	7	98,48	64,45	0,779	602	104	138	81,35	85,27	0,833
3	535	173	50	91,45	75,56	0,828	421	287	7	98,36	59,46	0,741	603	105	111	84,45	85,17	0,848
4	533	195	22	96,04	73,21	0,831	412	316	5	98,80	56,59	0,720	637	91	144	81,56	87,50	0,844
5	622	39	51	92,42	94,10	0,933	584	77	5	99,15	88,35	0,934	603	58	21	96,63	91,23	0,939
6	568	154	42	93,11	78,67	0,853	481	241	12	97,57	66,62	0,792	640	82	129	83,22	88,64	0,858
7	623	60	47	92,99	91,22	0,921	583	100	17	97,17	85,36	0,909	626	57	84	88,17	91,65	0,899
8	616	120	66	90,32	83,70	0,869	455	281	8	98,27	61,82	0,759	646	90	79	89,10	87,77	0,884
9	578	149	41	93,38	79,50	0,859	456	271	10	97,85	62,72	0,764	647	80	79	89,12	89,00	0,891
10	680	66	116	85,43	91,15	0,882	614	132	47	92,89	82,31	0,873	682	64	142	82,77	91,42	0,869
11	636	117	68	90,34	84,46	0,873	529	224	20	96,36	70,25	0,813	661	92	94	87,55	87,78	0,877
12	595	102	72	89,21	85,37	0,872	510	187	27	94,97	73,17	0,827	576	121	69	89,30	82,64	0,858
13	780	45	93	89,35	94,55	0,919	775	50	44	94,63	93,94	0,943	786	39	75	91,29	95,27	0,932
14	648	100	50	92,84	86,63	0,896	615	133	44	93,32	82,22	0,874	645	103	95	87,16	86,23	0,867
15	765	27	54	93,41	96,59	0,950	751	41	19	97,53	94,82	0,962	766	26	47	94,22	96,72	0,955
16	637	105	63	91,00	85,85	0,883	612	130	64	90,53	82,48	0,863	680	62	152	81,73	91,64	0,864
17	546	116	37	93,65	82,48	0,877	534	128	46	92,07	80,66	0,860	576	86	76	88,34	87,01	0,877
18	592	121	45	92,94	83,03	0,877	635	78	91	87,47	89,06	0,883	640	73	126	83,55	89,76	0,865
19	646	118	39	94,31	84,55	0,892	685	79	104	86,82	89,66	0,882	645	119	76	89,46	84,42	0,869
20	625	123	40	93,98	83,56	0,885	644	104	81	88,83	86,10	0,874	629	119	63	90,90	84,09	0,874
21	723	/8	97	88,17	90,26	0,892	728	/3	106	87,29	90,89	0,891	/15	86	98	87,95	89,26	0,886
22	732	65	153	82,71	91,84	0,870	678	119	92	88,05	85,07	0,865	/1/	80	111	86,59	89,96	0,882
23	625	208	13	97,96	75,03	0,850	692	141	28	96,11	83,07	0,891	754	/9	55	91,95	90,52	0,912
24	643	114	64	90,95	84,94	0,878	626	131	50	91,12	82,69	0,867	622	135	/9	88,73	82,17	0,853
25	750	24	90	88,20	91,19	0,897	724	00 50	00	92,07	02,82	0,900	720	41	142	89,10	90,79	0,899
20	660	24	79	80.56	90,92	0,099	624	142	42	09,49	92,02	0,911	672	41	72	00,79	94,74	0,009
21	684	74	112	85.03	07,22	0,880	666	02	43	87.08	87.86	0,870	600	95 68	122	90,20	01,01	0,879
20	718	72	08	87.00	00.80	0,000	720	70	00	87.01	01,00	0,079	731	50	117	86.20	91,03	0,079
30	647	08	80	89.00	86.85	0,034	603	52	140	83.19	91,14	0,095	684	61	131	83.93	92,00	0,033
31	779	33	116	87.04	95.94	0.913	770	42	108	87 70	94 83	0.911	764	48	136	84.89	94.09	0.893
32	625	101	80	88.65	86.09	0.874	675	51	165	80.36	92.98	0.862	659	67	146	81.86	90 77	0.861
33	597	88	123	82.92	87 15	0 850	645	40	292	68.84	94 16	0 795	597	88	169	77.94	87 15	0.823
34	666	69	115	85.28	90.61	0.879	710	25	256	73.50	96.60	0.835	662	73	145	82.03	90.07	0.859
35	691	59	146	82.56	92.13	0.871	725	25	281	72.07	96.67	0.826	673	77	168	80.02	89.73	0.846
36	681	52	162	80,78	92,91	0,864	703	30	297	70,30	95,91	0,811	527	206	19	96,52	71,90	0,824
37	748	27	220	77,27	96,52	0,858	753	22	188	80,02	97,16	0,878	640	135	49	92,89	82,58	0,874
38	606	108	87	87,45	84,87	0,861	667	47	229	74,44	93,42	0,829	532	182	42	92,68	74,51	0,826
39	700	38	169	80,55	94,85	0,871	714	24	216	76,77	96,75	0,856	641	97	74	89,65	86,86	0,882
40	667	52	157	80,95	92,77	0,865	687	32	200	77,45	95,55	0,856	610	109	98	86,16	84,84	0,855
41	520	112	133	79,63	82,28	0,809	498	134	167	74,89	78,80	0,768	408	224	74	84,65	64,56	0,732
42	351	80	38	90,23	81,44	0,856	356	75	46	88,56	82,60	0,855	328	103	20	94,25	76,10	0,842
43	400	81	110	78,43	83,16	0,807	363	118	53	87,26	75,47	0,809	296	185	9	97,05	61,54	0,753
44	446	34	102	81,39	92,92	0,868	401	79	31	92,82	83,54	0,879	363	117	16	95,78	75,63	0,845
45	426	77	45	90,45	84,69	0,875	410	93	33	92,55	81,51	0,867	373	130	12	96,88	74,16	0,840
46	424	54	44	90,60	88,70	0,896	403	75	26	93,94	84,31	0,889	390	88	12	97,01	81,59	0,886
47	443	147	45	90,78	75,08	0,822	437	153	47	90,29	74,07	0,814	360	230	15	96,00	61,02	0,746
48	444	73	47	90,43	85,88	0,881	434	83	44	90,79	83,95	0,872	407	110	18	95,76	78,72	0,864
49	373	54	22	94,43	87,35	0,908	376	51	37	91,04	88,06	0,895	358	69	13	96,50	83,84	0,897
50	405	49	18	95,74	89,21	0,924	408	46	53	88,50	89,87	0,892	394	60	28	93,36	86,78	0,900
51	215	209	8	96,41	50,71	0,665	329	95	43	88,44	77,59	0,827	337	87	57	85,53	79,48	0,824
52	406	80	14	96,67	83,54	0,896	416	70	49	89,46	85,60	0,875	431	55	55	88,68	88,68	0,887

53	375	226	3	99,21	62,40	0,766	477	124	30	94,08	79,37	0,861	447	154	23	95,11	74,38	0,835
54	361	162	5	98,63	69,02	0,812	421	102	39	91,52	80,50	0,857	378	145	10	97,42	72,28	0,830
55	415	155	4	99,05	72,81	0,839	472	98	39	92,37	82,81	0,873	435	135	17	96,24	76,32	0,851
56	384	56	55	87,47	87,27	0,874	360	80	28	92,78	81,82	0,870	350	90	27	92,84	79,55	0,857
57	276	233	5	98,22	54,22	0,699	357	152	22	94,20	70,14	0,804	325	184	12	96,44	63,85	0,768
58	287	197	9	96,96	59,30	0,736	317	167	15	95,48	65,50	0,777	312	172	10	96,89	64,46	0,774
59	235	322	4	98,33	42,19	0,590	263	294	8	97,05	47,22	0,635	255	302	8	96,96	45,78	0,622
60	391	61	30	92,87	86,50	0,896	369	83	9	97,62	81,64	0,889	368	84	18	95,34	81,42	0,878
61	546	58	28	95,12	90,40	0,927	500	104	6	98,81	82,78	0,901	533	71	20	96,38	88,25	0,921
62	420	206	8	98,13	67,09	0,797	522	104	55	90,47	83,39	0,868	460	166	22	95,44	73,48	0,830
63	579	34	20	96,66	94,45	0,955	579	34	21	96,50	94,45	0,955	567	46	10	98,27	92,50	0,953
64	408	102	8	98,08	80,00	0,881	426	84	29	93,63	83,53	0,883	406	104	14	96,67	79,61	0,873
65	367	198	5	98,66	64,96	0,783	449	116	36	92,58	79,47	0,855	386	179	9	97,72	68,32	0,804
66	387	148	8	97,97	72,34	0,832	446	89	22	95,30	83,36	0,889	402	133	17	95,94	75,14	0,843
67	312	162	7	97,81	65,82	0,787	325	149	14	95,87	68,57	0,800	316	158	4	98,75	66,67	0,796
68	380	108	14	96,45	77,87	0,862	416	72	37	91,83	85,25	0,884	377	111	13	96,67	77,25	0,859
69	541	72	8	98,54	88,25	0,931	563	50	61	90,22	91,84	0,910	521	92	11	97,93	84,99	0,910
70	450	25	24	94,94	94,74	0,948	447	28	22	95,31	94,11	0,947	433	42	8	98,19	91,16	0,945
71	540	56	16	97,12	90,60	0,938	544	52	49	91,74	91,28	0,915	532	64	17	96,90	89,26	0,929
72	412	70	8	98,10	85,48	0,914	434	48	41	91,37	90,04	0,907	411	71	8	98,09	85,27	0,912
73	299	216	2	99,34	58,06	0,733	386	129	61	86,35	74,95	0,802	317	198	8	97,54	61,55	0,755
74	383	119	5	98,71	76,29	0,861	441	61	73	85,80	87,85	0,868	371	131	2	99,46	73,90	0,848
75	202	345	1	99,51	36,93	0,539	341	206	28	92,41	62,34	0,745	264	283	3	98,88	48,26	0,649
76	350	139	10	97,22	71,57	0,824	387	102	61	86,38	79,14	0,826	323	166	1	99,69	66,05	0,795
77	393	133	5	98,74	74,71	0,851	418	108	35	92,27	79,47	0,854	393	133	4	98,99	74,71	0,852
78	459	37	19	96,03	92,54	0,943	436	60	22	95,20	87,90	0,914	430	66	3	99,31	86,69	0,926
79	499	46	11	97,84	91,56	0,946	506	39	31	94,23	92,84	0,935	482	63	8	98,37	88,44	0,931
80	393	89	8	98,00	81,54	0,890	408	74	30	93,15	84,65	0,887	375	107	3	99,21	77,80	0,872

D Zoznam výsledkov úspešnosti modifikovanej metódy

4			а	notátor A					a	notátor B					a	notátor C		
obraz	TP	FP	FN	sen. [%]	PPV [%]	F1	TP	FP	FN	sen. [%]	PPV [%]	F1	TP	FP	FN	sen. [%]	PPV [%]	F1
1	507	261	27	94,94	66,02	0,779	437	331	5	98,87	56,90	0,722	662	106	231	74,13	86,20	0,797
2	528	240	30	94,62	68,75	0,796	456	312	6	98,70	59,38	0,741	622	146	118	84,05	80,99	0,825
3	540	210	45	92,31	72,00	0,809	420	330	8	98,13	56,00	0,713	622	128	92	87,11	82,93	0,850
4	536	227	19	96,58	70,25	0,813	412	351	5	98,80	54,00	0,698	640	123	141	81,95	83,88	0,829
5	641	41	32	95,25	93,99	0,946	588	94	1	99,83	86,22	0,925	613	69	11	98,24	89,88	0,939
6	575	196	35	94,26	74,58	0,833	480	291	13	97,36	62,26	0,759	658	113	111	85,57	85,34	0,855
7	641	89	29	95,67	87,81	0,916	594	136	6	99,00	81,37	0,893	655	75	55	92,25	89,73	0,910
8	624	147	58	91,50	80,93	0,859	456	315	7	98,49	59,14	0,739	659	112	66	90,90	85,47	0,881
9	586	192	33	94,67	75,32	0,839	456	322	10	97,85	58,61	0,733	656	122	70	90,36	84,32	0,872
10	702	94	94	88,19	88,19	0,882	628	168	33	95,01	78,89	0,862	710	86	114	86,17	89,20	0,877
11	657	137	47	93,32	82,75	0,877	533	261	16	97,09	67,13	0,794	676	118	79	89,54	85,14	0,873
12	606	154	61	90,85	79,74	0,849	518	242	19	96,46	68,16	0,799	590	170	55	91,47	77,63	0,840
13	806	50	67	92,33	94,16	0,932	792	64	27	96,70	92,52	0,946	809	47	52	93,96	94,51	0,942
14	657	144	41	94,13	82,02	0,877	624	177	35	94,69	77,90	0,855	656	145	84	88,65	81,90	0,851
15	781	26	38	95,36	96,78	0,961	757	50	13	98,31	93,80	0,960	780	27	33	95,94	96,65	0,963
16	658	127	42	94,00	83,82	0,886	623	162	53	92,16	79,36	0,853	703	82	129	84,50	89,55	0,870
17	561	155	22	96,23	78,35	0,864	540	176	40	93,10	75,42	0,833	589	127	63	90,34	82,26	0,861
18	601	138	36	94,35	81,33	0,874	639	100	87	88,02	86,47	0,872	646	93	120	84,33	87,42	0,858
19	655	126	30	95,62	83,87	0,894	696	85	93	88,21	89,12	0,887	647	134	74	89,74	82,84	0,862
20	629	171	36	94,59	78,63	0,859	658	142	67	90,76	82,25	0,863	638	162	54	92,20	79,75	0,855
21	753	87	67	91,83	89,64	0,907	756	84	78	90,65	90,00	0,903	732	108	81	90,04	87,14	0,886
22	741	66	144	83,73	91,82	0,876	683	124	87	88,70	84,63	0,866	723	84	105	87,32	89,59	0,884
23	624	243	14	97,81	71,97	0,829	701	166	19	97,36	80,85	0,883	776	91	44	94,63	89,50	0,920
24	655	137	52	92,64	82,70	0,874	635	157	52	92,43	80,18	0,859	639	153	62	91,16	80,68	0,856
25	701	94	62	91,87	88,18	0,900	672	123	34	95,18	84,53	0,895	693	102	59	92,15	87,17	0,896
26	801	41	101	88,80	95,13	0,919	754	88	55	93,20	89,55	0,913	781	61	101	88,55	92,76	0,906
27	691	115	56	92,50	85,73	0,890	642	164	25	96,25	79,65	0,872	689	117	56	92,48	85,48	0,888
28	/14	92	82	89,70	88,59	0,891	688	118	69	90,89	85,36	0,880	709	97	103	87,32	87,97	0,876
29	734	79	82	89,95	90,28	0,901	732	81	87	89,38	90,04	0,897	739	/4	109	87,15	90,90	0,890
30	700	104	100	91,75	06,01	0,691	720	21	113	00,43	93,39	0,696	703	40	112	00,20 96.44	91,10	0,007
22	642	100	62	00,00	90,24	0,923	702	42	140	09,07	94,90	0,919	602	40	122	00,44	94,42	0,903
22	622	123	03	91,00	03,92 94.20	0,073	602	50 50	245	72 95	91,50	0,072	625	116	123	04,72	09,15	0,009
24	701	80	80	80.76	80.76	0,001	746	25	245	73,03	92,14	0,020	607	84	110	86.37	80.24	0,037
35	725	64	112	86.62	03,70 01.80	0,030	740	32	2/0	75.25	95,92	0.843	697	07	1//	82.88	88.34	0,070
36	713	67	130	84 58	91 41	0,032	746	34	254	74.60	95.64	0,040	531	249	15	97.25	68.08	0,000
37	794	28	174	82.02	96 59	0.887	790	32	151	83.95	96 11	0,896	655	167	34	95.07	79.68	0.867
38	638	118	55	92.06	84.39	0.881	701	55	195	78.24	92 72	0.849	527	229	47	91 81	69 71	0 792
39	742	38	127	85.39	95 13	0,900	756	24	174	81.29	96.92	0.884	658	122	57	92.03	84.36	0.880
40	703	62	121	85.32	91.90	0.885	722	43	165	81.40	94.38	0.874	626	139	82	88.42	81.83	0.850
41	544	122	109	83.31	81.68	0.825	517	149	148	77 74	77.63	0 777	422	244	60	87.55	63.36	0.735
42	368	123	21	94.60	74.95	0.836	379	112	23	94.28	77.19	0.849	343	148	5	98.56	69.86	0.818
43	440	95	70	86.27	82.24	0.842	380	155	36	91.35	71.03	0 799	301	234	4	98.69	56 26	0 717
44	487	45	61	88.87	91.54	0.902	416	116	16	96.30	78.20	0.863	371	161	8	97.89	69.74	0.814
45	437	92	34	92.78	82.61	0,874	422	107	21	95.26	79.77	0,868	379	150	6	98,44	71.64	0,829
46	448	77	20	95.73	85,33	0,902	413	112	16	96.27	78.67	0,866	399	126	3	99.25	76.00	0,861
47	462	156	26	94.67	74.76	0,835	450	168	34	92.98	72.82	0,817	369	249	6	98,40	59.71	0,743
48	464	83	27	94.50	84,83	0,894	444	103	34	92.89	81.17	0,866	414	133	11	97.41	75.69	0,852
49	387	85	8	97.97	81,99	0.893	393	79	20	95.16	83,26	0.888	367	105	4	98.92	77,75	0.871
50	412	69	11	97.40	85.65	0,912	424	57	37	91.97	88.15	0,900	404	77	. 18	95.73	83.99	0,895
51	221	213	2	99.10	50,92	0,673	347	87	25	93.28	79.95	0,861	351	83	43	89.09	80.88	0,848
52	413	118	7	98,33	77,78	0,869	435	96	30	93,55	81,92	0,873	451	80	35	92,80	84,93	0,887

53	376	282	2	99,47	57,14	0,726	489	169	18	96,45	74,32	0,839	453	205	17	96,38	68,84	0,803
54	363	205	3	99,18	63,91	0,777	438	130	22	95,22	77,11	0,852	380	188	8	97,94	66,90	0,795
55	417	143	2	99,52	74,46	0,852	473	87	38	92,56	84,46	0,883	433	127	19	95,80	77,32	0,856
56	420	108	19	95,67	79,55	0,869	380	148	8	97,94	71,97	0,830	364	164	13	96,55	68,94	0,804
57	280	250	1	99,64	52,83	0,691	371	159	8	97,89	70,00	0,816	332	198	5	98,52	62,64	0,766
58	289	225	7	97,64	56,23	0,714	322	192	10	96,99	62,65	0,761	313	201	9	97,20	60,89	0,749
59	234	331	5	97,91	41,42	0,582	265	300	6	97,79	46,90	0,634	257	308	6	97,72	45,49	0,621
60	405	96	16	96,20	80,84	0,879	372	129	6	98,41	74,25	0,846	376	125	10	97,41	75,05	0,848
61	562	65	12	97,91	89,63	0,936	502	125	4	99,21	80,06	0,886	541	86	12	97,83	86,28	0,917
62	425	258	3	99,30	62,23	0,765	538	145	39	93,24	78,77	0,854	466	217	16	96,68	68,23	0,800
63	587	41	12	98,00	93,47	0,957	588	40	12	98,00	93,63	0,958	571	57	6	98,96	90,92	0,948
64	414	121	2	99,52	77,38	0,871	439	96	16	96,48	82,06	0,887	414	121	6	98,57	77,38	0,867
65	364	226	8	97,85	61,69	0,757	455	135	30	93,81	77,12	0,847	388	202	7	98,23	65,76	0,788
66	389	178	6	98,48	68,61	0,809	449	118	19	95,94	79,19	0,868	406	161	13	96,90	71,60	0,824
67	304	125	15	95,30	70,86	0,813	326	103	13	96,17	75,99	0,849	303	126	17	94,69	70,63	0,809
68	386	174	8	97,97	68,93	0,809	435	125	18	96,03	77,68	0,859	387	173	3	99,23	69,11	0,815
69	542	98	7	98,72	84,69	0,912	574	66	50	91,99	89,69	0,908	527	113	5	99,06	82,34	0,899
70	462	41	12	97,47	91,85	0,946	453	50	16	96,59	90,06	0,932	435	68	6	98,64	86,48	0,922
71	550	50	6	98,92	91,67	0,952	559	41	34	94,27	93,17	0,937	541	59	8	98,54	90,17	0,942
72	408	93	12	97,14	81,44	0,886	438	63	37	92,21	87,43	0,898	411	90	8	98,09	82,04	0,893
73	299	199	2	99,34	60,04	0,748	396	102	51	88,59	79,52	0,838	321	177	4	98,77	64,46	0,780
74	384	185	4	98,97	67,49	0,803	462	107	52	89,88	81,20	0,853	372	197	1	99,73	65,38	0,790
75	203	306	0	100,00	39,88	0,570	348	161	21	94,31	68,37	0,793	265	244	2	99,25	52,06	0,683
76	348	138	12	96,67	71,60	0,823	386	100	62	86,16	79,42	0,827	316	170	8	97,53	65,02	0,780
77	392	83	6	98,49	82,53	0,898	422	53	31	93,16	88,84	0,909	391	84	6	98,49	82,32	0,897
78	472	59	6	98,74	88,89	0,936	444	87	14	96,94	83,62	0,898	432	99	1	99,77	81,36	0,896
79	506	59	4	99,22	89,56	0,941	515	50	22	95,90	91,15	0,935	488	77	2	99,59	86,37	0,925
80	398	115	3	99,25	77,58	0,871	417	96	21	95,21	81,29	0,877	377	136	1	99,74	73,49	0,846