
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
DEPARTMENT OF TELECOMMUNICATIONS

ARCHITEKTURA PRO GLOBÁLNÍ DISTRIBUOVANOU
SIP SÍŤ S VYUŽITÍM IPV4 ANYCASTU
AN ARCHITECTURE FOR GLOBAL DISTRIBUTED SIP NETWORK USING IPV4
ANYCAST

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE BC. LADISLAV ANDĚL
AUTHOR

VEDOUCÍ PRÁCE ING. PETR KOVÁŘ
SUPERVISOR

BRNO 2008

ABSTRAKT
Tato diplomová práce se zabývá metodami pro výběr nejbližší RTP proxy k VoIP klientům
s použitím IP anycastu. RTP proxy servery jsou umístěny v síti Internetu a přeposílají
RTP data pro VoIP klienty za síťovými překladači adres(NAT). Bez zeměpisně rozmís-
těných RTP proxy serverů a metod pro nalezení nejbližšího RTP proxy serveru by došlo
ke zbytečnému poklesu kvality přenosu médialních dat a velkému zpoždení. Tento doku-
ment navrhuje 4 metody a jejich porovnání s podrobnějšími rozbory metod s využitím
DNS resolvování a přímo SIP protokolu. Tento dokument také obsahuje měření cho-
vání IP anycastu v porovnání mezi metrikami směrování a metrikami časovými. Nakonec
dokumentu je také uvedena implemetace na SIP Express Router platformě.

KLÍČOVÁ SLOVA
SIP, Anycast, RTP proxy, IP směrování, NAT

ABSTRACT
This thesis is about using IP anycast-based methods for locating RTP proxy servers
close to VoIP clients. The RTP proxy servers are hosts on the public Internet that relay
RTP media between VoIP clients in a way that accomplishes traversal over Network
Address Translators (NATs). Without geographically-dispersed RTP proxy servers and
methods to find one in client’s proximity, voice latency may be unbearably long and
dramatically reduce perceived voice quality. This document proposes four methods their
comparison with further design of DNS-based and SIP-based methods. It includes IP
anycast measurements that provides an overview of IP anycast behaviour in terms of
routing metrics and latency metrics. It also includes implementation on SIP Express
Router platform.

KEYWORDS
SIP, Anycast, RTP proxy, IP Routing, NAT

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma „Architektura pro globální distribuo-
vanou SIP síť s využitím IPv4 anycastuÿ jsem vypracoval samostatně pod vedením ve-
doucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů,
které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením
této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl
nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom
následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb.,
včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zá-
kona č. 140/1961 Sb.

V Brně dne .
(podpis autora)

First of all I would like to express my appreciation and thanks

to my advisor Dipl.-Ing. Jiří Kuthan for his guidance and

support, as well as many inspiring discussions and constructive

criticism. He deserves recognition for his tremendous

contribution to this work.

My special thanks go to Ing. Petr Kovář, my mentor at the

Brno University of Technology, for all the valuable discussions,

support, and understanding.

My gratitude goes to my entire family, especially my parents,

who always supported and encouraged my studies over the

years.

GLOSSARY

Affinity

Tendency of subsequent packets of a ”connection” to be delivered to the same target.

Anycast

Anycast is a network technique which allows a client to access the nearest host of a

group of hosts that provide the same service.

Autonomous System(AS)

Autonomous System(AS) is a set of routers under a single technical administration,

using an interior gateway protocol and common metrics to route packets within the

AS, and using an exterior gateway protocol(IBGP) to route packets to other ASs.

ICE (Interactive Connectivity Establishment)

A Methodology for Network Address Translator (NAT) Traversal for Multimedia

Session Establishment Protocols.

NAT

Network Address Translation

Proximity

Ability to find close-by members of the anycast group.

RTP (Real-time Transport Protocol)

RTP is designed to provide end-to-end network transport functions for applications

transmitting real-time data, such as audio, video or simulation data over multicast

or unicast network services.

RTT (Round-Trip Time)

SDP (Session Description Protocol)

SDP is intended for describing multimedia sessions for the purposes of session an-

nouncement, session invitation, and other forms of multimedia session initiation.

5

SIP (Session Initiation Protocol)

IETF standard for session initiation in multi-purpose communication systems.

STUN (Simple Traversal of User Datagram Protocol (UDP) Through

Network Address Translators (NATs))

STUN is a lightweight protocol that allows applications to discover the presence and

types of NATs and firewalls between them and the public Internet.

TURN (Traversal Using Relay NAT)

TURN is a protocol that allows for an element behind a NAT or firewall to receive

incoming data over TCP or UDP.

UAC (User Agent Client)

A User Agent Client is a logical entity that creates a new request.

UAS (User Agent Server)

A User Agent Server is a logical entity that generates a response to a SIP request.

The response accepts, rejects, or redirects the request.

UA (User Agent)

A User Agent acts as both a User Agent Client and User Agent Server. It is an end

device in a SIP network. They originate SIP transactions turning to dialogs and

media sessions. Alternatively, a user agent can be a gateway to another network,

such as a Public Switched Telephone Network (PSTN) gateway.

URI (Uniform Resource Identifier)

VoIP (Voice over IP)

The transmission of voice over data networks that use the Internet Protocol (IP).

6

CONTENTS

Glossary 5

Introduction 12

1 Background Technologies 14

1.1 SIP . 14

1.1.1 Supporting Technologies Dealing with NAT 14

1.1.2 Reference Network Organization 15

1.2 Anycast . 16

1.2.1 Pros and Cons of Anycast . 17

1.2.2 Non-anycast Server Selection Alternatives 18

1.2.3 Convergence Measurements 18

1.2.4 Latency Measurements . 20

2 SIP and Anycast in detail 23

2.1 SIP . 23

2.1.1 Protocol Structure . 23

2.1.2 SIP Requests . 25

2.1.3 SIP Responses . 25

2.1.4 User Agent . 26

2.1.5 SIP Proxy . 26

2.1.6 SIP Registrar . 26

2.1.7 Record Routing . 26

2.2 RTP . 27

2.2.1 SDP Documents . 28

2.3 NAT Traversal using a SIP Proxy with an RTP Proxy 28

2.3.1 SIP Requests . 28

2.3.2 SIP Responses . 29

2.3.3 SDP and NATs . 30

2.4 Anycast . 31

2.4.1 Network-layer(IP) anycast . 31

2.4.2 Common IP Anycast Deployments 32

2.4.3 Routing Consideration . 33

2.4.4 UDP, TCP transports and Anycast 34

2.4.5 Network Configuration . 35

2.4.6 IP Anycast and its Characteristics 37

2.4.7 Application-layer Anycast . 38

2.5 BGP - Border Gateway Protocol . 42

2.5.1 BGP Attributes . 43

2.5.2 BGP Path Selection . 45

2.5.3 BGP routing stability . 46

3 Solution Space 48

3.1 Evaluation Criteria . 48

3.1.1 Network Constraints . 49

3.2 Anycast-based Methods for Finding the Closest RTP Servers 49

3.3 Anycasting Geographically Spread DNS Servers 50

3.3.1 Call Flows . 50

3.4 Anycasting SIP Proxy Servers . 53

3.4.1 Call Flows . 53

3.4.2 TCP Persistent Connection Issue 54

3.5 Anycasting SIP Tunnels . 56

3.5.1 Call Flows . 56

3.6 Anycast “bootstrap” Redirect Service 59

3.6.1 Call Flows . 59

3.7 Evaluation of Methods . 62

3.8 Summary and Comparison of Methods 63

3.9 Conclusion about Methods . 63

4 Design of the Fronting Element 64

4.1 DNS-based Fronting Element . 64

4.1.1 SIP call flow in detail for DNS-based method 64

4.1.2 Technical Issues with DNS-based Method 68

4.2 SIP-based Fronting Element . 68

4.2.1 INVITE and CANCEL/ACK 69

4.2.2 Technical Issues with SIP-based Fronting Element 70

4.3 PATH Processing . 71

4.4 Implementation Details . 74

5 Conclusion 76

5.1 Future Work . 77

Bibliography 78

List of Appendicies 81

A Anycast Measurements 82

A.1 Latency of ICMP replies of Prague and Berlin Anycast Nodes 82

B SER Configurations 85

B.1 SER Config for Anycast DNS-based Method 85

B.2 SER Config for Anycast SIP-based Method 89

LIST OF FIGURES

1.1 SIP cluster . 16

1.2 Route convergence time to Berlin’s anycast node 19

1.3 Route convergence time to Prague’s anycast node 19

1.4 Anycast ping compared to unicast shortest ping destinations 21

1.5 The gap between latency of the shortest unicast ping and anycast ping 22

2.1 RTP streams - User Agents receive and send packets on the same

port(symmetric RTP) . 27

2.2 NAT traversal . 28

2.3 IP anycast mechanism . 31

2.4 Static IGP routes . 36

2.5 Dynamic IGP routes . 36

2.6 BGP prefix advertisement . 37

2.7 OASIS system overview . 41

2.8 EBGP, IBGP, and Multiple ASs . 42

2.9 BGP no-export Community Attribute 45

3.1 Anycasting DNS servers . 51

3.2 Anycasting DNS servers - call flow 52

3.3 Anycasting SIP proxy scenario . 54

3.4 Anycasting SIP proxy call flow . 55

3.5 Broken TCP persistency . 55

3.6 Anycasting SIP tunnels . 56

3.7 Anycasting SIP tunnels - call flow . 58

3.8 Anycast “bootstrap” redirect service 59

3.9 Anycast “bootstrap” redirect service call flow 61

4.1 DNS-based scenario - referential call flow 65

4.2 DNS lookup . 68

4.3 REGISTERing over TCP . 71

4.4 Path extension header field . 72

4.5 Service-route header field(simplified) 73

4.6 Proprietary Contact mangling . 74

LIST OF TABLES

1.1 Destinations of planet-lab host ICMP requests 18

3.1 Comparison of methods using IP anycast to find the nearest RTP proxy 63

INTRODUCTION

This thesis is about using IP anycast-based methods for locating RTP proxy ser-

vers close to VoIP clients. The RTP proxy servers are hosts on the public Internet

that relay RTP media between VoIP clients in a way that accomplishes traversal

over Network Address Translators (NATs). Without geographically-dispersed RTP

proxy servers and methods to find one in client’s proximity, voice latency may be

unbearably long and dramatically reduce perceived voice quality. We are focusing

on using IP anycast to find a reasonably close RTP proxy. IP anycast is Internet’s

capability to route IP packets from a source to one of multiple possible destinations.

The destinations share the same IP address block and are advertised using a routing

protocol. The choice of destination is made by routers using available routing tables.

IP anycast is not a stable environment for stateful protocols(notably TCP), especi-

ally “long lived” sessions. However, recent studies and measurements[5] showed that

the use of IP anycast may be even deployed with stateful services when deployed

carefully and there has already been an existing deployment such as CacheFly[16].

The major use of IP anycast today is by DNS root-servers since requests sent to

DNS servers are on query/reply basis, in other words it is a stateless service that do

not suffer from routing instabilities.

As IPv4 address space suffers from shortage, NATs have significantly delayed this

shortage but caused that almost anyone on the world is behind NAT. SIP (Session

Initiation Protocol) as one of VoIP protocols and its deployment is not able to deal

with SIP clients behind NAT on itself. There were introduced technologies handling

this issue such as STUN, TURN, ICE or in the worst case an RTP proxy – a server

through which RTP packets are relayed. If such an RTP proxy is too far away

from both SIP clients, resulting latency is going to impair perceived voice quality

dramatically. It is thus important for global SIP deployments, to have a network of

geographically dispersed RTP proxy servers and actually use those that are close to

the clients.

The focus of this work is anycast-based mechanisms for discovering an RTP proxy

in SIP client’s proximity. The mechanism shall satisfy the following criteria: it shall

be easy to integrate with state-of-the-art SIP clients and servers, allow for fail-over on

a geographically dispersed basis and be resilient against routing instabilities despite

use of anycast. In particular dealing with routing instabilities is important as IP

anycast tends to be sensitive to those. Delivery of subsequent packets to different

anycast destinations can cause broken transactions on transport or application level

if stateful.

The rest of this work is structured as follows. In chapter 1, readers are introduced

12

to background technologies: SIP and IP anycast. In chapter 2, readers get famili-

arized with related work done in the field. In chapter 3 we are reviewing several

architectural options and their trade-offs. The options of our choice and their imple-

mentation details are explained in chapter 4. Finally chapter 5 provides conclusion

and notes about future work.

13

1 BACKGROUND TECHNOLOGIES

1.1 SIP

The protocol is used for creating, modifying, and terminating sessions with one or

more participants. By sessions we understand a set of senders and receivers that

communicate and the state kept in those senders and receivers during the commu-

nication. Examples of a session can include Internet telephone calls, distribution of

multimedia, multimedia conferences etc. For more about SIP see 2.1.

SIP on itself is not capable to handle SIP clients behind NATs. There were

introduced supporting technologies handling this issue such as STUN, TURN, ICE

or in the worst case simply RTP proxy.

1.1.1 Supporting Technologies Dealing with NAT

STUN

Simple Traversal of User Datagram Protocol (UDP) through Network Address Transla-

tors (NAT) or STUN is defined in RFC 3489 [30]. It provides a lightweight protocol

that allows User Agents to probe and discover the type of NAT that exist between

the User Agent and the STUN server on the public network. It also provides details

of the external IP address/port combination used by the NAT device to represent

the NATed UA on the public facing side of a NAT. On learning of such an external

representation, a UA can use accordingly as the connection address in SDP to pro-

vide NAT traversal. STUN only works with Full Cone, Restricted Cone and Port

Restricted Cone type NATs. STUN does not work with Symmetric NATs as the

technique used to probe for the external IP address/port representation.

If SIP User Agents discover that it can traverse the NAT using STUN then it

will do so and such UA will look like a UA with the public IP to SIP proxy – special

treatment or use of RTP proxy is not necessary.

TURN

As mentioned above, STUN protocol does not work for UDP traversal through a

Symmetric NAT. Traversal Using Relay NAT (TURN) provides the solution for

UDP and TCP traversal of symmetric NAT. TURN is very similar to STUN in

both syntax and operation. It provides an external address at a TURN server that

will act as a relay and guarantee traffic will reach the associated private address.

The full details of the TURN specification are defined in [26]. A TURN service will

almost always provide media traffic to a SIP User Agent but it is recommended that

14

this method only be used as a last resort and not as a general technique for NAT

traversal. This is because using TURN has high performance costs when relaying

media traffic and can lead to unwanted latency.

ICE

A lot of NAT traversal techniques have been introduced, but none of them works

universally or are applicable to all real world scenarios. These techniques make use

of Connection Oriented Media, STUN, TURN, ALG and so on. All the techniques

have been collected into one single document, which is called ICE. ICE (Interactive

Connectivity Establishment) is a methodology for traversing NAT, but it is not

a new protocol. It is a collection of all previously mentioned attempts to traverse

NAT which work universally. The methodology is quite complex and requires mutual

cooperation of all SIP entities involved in the communication. Refer to [27] for more

details about ICE.

RTP Proxy Servers

RTP proxy servers are intermediate servers for media sessions established by SIP

proxies. RTP proxy server is used as a last resort when no NAT technique is able

with helping to traverse the media over NAT. Mostly, when symmetric NATs are

involved. Using RTP proxy servers are similar to TURN servers but the difference

is that SIP clients have TURN support and can ask for relaying RTP stream over

TURN server on its own whilst RTP proxy servers are controlled from SIP proxy.

SIP proxies forcibly rewrites SDP bodies in SIP messages enforcing NAT compatible

symmetric packet flows.

RTP proxy servers introduce few drawbacks:

• adds extra hop for media that cause higher voice latency in between SIP clients

depending on geographic location of RTP proxy

• may reduce perceived voice quality depending on network capacity and traffic

RTP proxy servers may be co-located with SIP proxies or may run separately

from SIP proxies managed using an RTP control protocol. If they run remotely there

may be introduced some delay issues while establishing a call that may cause timing

out of some transaction timers.

1.1.2 Reference Network Organization

A typical state-of-the-art SIP deployment is organized in a cluster consisting of the

SIP servers, frequently referred to as home proxies (HPs), and load balancers (LBs).

15

The load balancers distribute SIP traffic over the home proxies and also manage

their availability. Either the load balancers or home proxy servers implement NAT

traversal. Such SIP clusters appear as a simple SIP proxy to outside network. The

home proxy servers share in some way database with SIP-related data.

In our architecture, we additionally put ”fronting-elements” in front of existing

SIP clusters(see Figure 1.1). The task of these fronting elements is discovery of the

nearest RTP proxy using anycast and the RTP proxy functionality itself. A key

design objective is to be able to put this distributed auto-discovered RTP network

in front of existing SIP clusters without need for additional support in the cluster or

client. As a side-effect the fronting-elements must also take over the NAT traversal

role – this must be always done by the element closest to the clients unless it is fully

transparent. We are leaving the more detailed definition of the fronting element

to Chapter 3, in which we actually describe the NAT traversal details and several

different designs of RTP proxy discovery.

Fig. 1.1: SIP cluster

We have deployed this network architecture with fronting elements located in

Prague and Berlin. As part of getting those available to the Internet with propagated

anycast IP address we measured the convergence time(time to take over the service

when one anycast node fail). For more details about convergence time see Section

1.2.3.

1.2 Anycast

Anycast is a network technique which allows a client to access the nearest host of a

group of hosts that provide the same service. The nearest host is defined according

16

to the routing system’s measure of distance. Usually, those hosts in the anycast

group are replicas, able to provide the same service. To take an advantage of an

anycast, servers are distributed topologically and geographically across the Internet.

An anycast deployment solely depends on the network, routers and routing protocols.

More detailed description of anycast is in Chapter 2.4.

We are examining several different uses of anycast for sake of discovery of RTP

proxy. Anycast does not provide the best proximity in terms of latency but at

least eliminate the worst case scenarios. It helps to select an RTP proxy as close

as possible to one of SIP clients in session. A particular problem to deal with is

anycast’s sensitivity to routing instability. This problem is addressed in detail in

Chapter 3.

1.2.1 Pros and Cons of Anycast

General pros and cons of anycast for selection an RTP proxy include:

Pros:

• locality/latency improvements by reducing network distance between client

and RTP proxy servers (at least eliminating the worst case)

• high availability - provides a service without outages

• reduce list of geographically dispersed servers to a single distributed anycast

address

Cons:

• IP anycast wastes the address space(the longest IP prefix is /24), even though

one IP address used for running a service(see Section 2.4.3). This is because

of BGP policy and route propagation in the Internet.

• Anycast may break connection affinity (Ballani et al[5] measured that this

issue is quite negligible)

• IP anycast does not always offer the nearest anycast server (latency-based

proximity).

• BGP sometimes converges slowly(when a service became unavailable it may

make the service unreachable for even minutes[17]).

• Not suitable for “long lived” sessions if not handled carefully (keeping the TCP

context)

17

1.2.2 Non-anycast Server Selection Alternatives

Another techniques for server selection have been developed. Such as virtual co-

ordinate systems, on-demand probing overlays and some kinds of application-layer

anycasts(see Section 2.4.7). However, these techniques need co-operation on appli-

cation layer. The advantage of IP anycast is that it can be transparently handled

on IP layer.

1.2.3 Convergence Measurements

Methodology

We wanted to find out how fast the convergence of our network setup is so we used

planet-lab.org, a global research network, to measure latency of ICMP echo replies

from anycast nodes in Prague and Berlin. We measured convergence time when one

of BGP daemon stopped propagation of its route. The convergence time is expected

not to be very high since Prague and Berlin are not so far from each other. Out of

these measurements we are also able to derive the time of the service unavailability

in case there is running an application server.

On planet-lab hosts were installed two scripts. One of them measured ICMP echo

replies in 8 seconds interval and the other one was collecting results from traceroute

in 2 minutes interval to see what anycast node is used for a particular planet-lab

host.

Results

1. Table of ICMP packet destination to anycast nodes measured from 142 planet-

lab hosts.

Anycast node No. of hosts routed to the node

Prague 103

Berlin 39
∑

142

Tab. 1.1: Destinations of planet-lab host ICMP requests

2. Convergence time of ICMP packets originally destined to Prague and then

re-routed to Berlin (see Figure 1.2)

18

<10 10−20 20−30 30< not−converged
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

5

69

11

15

3

Time in seconds

N
o

.
o

f
n

o
d

e
s

Fig. 1.2: Route convergence time to Berlin’s anycast node

Not-converged: 3 planet-lab hosts could not reach new destination. Interes-

tingly, all 3 planet-lab hosts are situated in Italy.

3. Convergence time of ICMP packets originally destined to Berlin and then re-

routed to Prague (see Figure 1.3)

<10 10−20
0

3

5

8

10

13

15

18

20

23

25

28

30 29

11

Time in seconds

N
o

.
o

f
n
o
d
e
s

Fig. 1.3: Route convergence time to Prague’s anycast node

19

Conclusion about Measurements

Most of planet-lab hosts directed ICMP packets to Prague node. It shows that in

routing path prospective Prague anycast node is situated within an ISP(Internet

Service Provider) on a back-bone that is more accesible in terms of routing metrics

from the Internet. This does not always provide the best geographic location pro-

ximity to a given anycast node though. In our case to find the nearest RTP proxy,

selected anycast node may not be the best to SIP client’s location. ICMP packets

from a lot of planet-lab hosts originally destined to Berlin did not register any service

outage meaning that the convergence time was very fast for them.

1.2.4 Latency Measurements

Planet-lab network provides many nodes all around the world giving us a good image

of routing in the Internet. The measuring of latency is ICMP echo based which give

us a knowledge if our design proposals provide a good proximity for SIP clients

which is our main goal.

We measured following destinations(IP addresses):

• anycast/Prague

• anycast/Berlin

• unicast/Prague

• unicast/Berlin

Methodology

From each planet-lab host we measured latency of ICMP echo replies of each IP

address and also “tracerouted” to see what anycast box was ”selected” by the par-

ticular planet-lab node. For better statistical results we collected 100 echo replies

for each IP address destination where each planet-lab host produced RTT stats with

min/avg/max values. Presented stats are for min value. For the average value there

were nearly the same results (differs just in one planet-lab node).

Stats

We were interested if anycast nodes give the best proximity for SIP clients in com-

parison to unicast IP address destinations. The stats show:

• if anycast gave the best proximity by matching the unicast shortest-ping and

anycast-ping

20

• time difference of anycast RTT against unicast RTT to the same place

• time difference of anycast RTT against shortest-ping destination

• difference of the same as both above in per-centage

The full results are included in Appendix A.

Does anycast ping destination match to shortest unicast ping?

ICMP packets from 146 planet-lab nodes were routed to Prague anycast node and

from 49 planet-lab nodes packets were routed to Berlin anycast node. 32.8%(64

nodes) matched and 67.2%(131 nodes) did not match the measured latency of

selected anycast destination and unicast ping to the same destination. Measured

out of total 195 planet-lab nodes. As can be seen using anycast does not give the

best proximity. This is caused by close geographic location of Prague and Berlin

and not so much different routing path for packets from planet-lab nodes. Figure

1.4 shows the results in graph.

Prague Berlin
0

20

40

60

80

100

120

140

160
146

49

33

18

113

31

Anycast selected

Match

No Match

N
o
.
o
f

n
o
d

e
s

Fig. 1.4: Anycast ping compared to unicast shortest ping destinations

The gap between latency of the shortest unicast ping and anycast ping

(for not matched hosts)

Following graph (Figure 1.5) shows that anycast in our scenario does not really give

the best proximity. The conclusion about the graph is that anycast nodes should

not be very close to each other to give better results.

21

<2 2−5 5−10 10−20 20−50 50<

0

3

5

8

10

13

15

18

20

23

25

28

30

33

35

6

29

35

27

20

14

Latency gap [%]

N
o
.
o
f

n
o
d

e
s

Fig. 1.5: The gap between latency of the shortest unicast ping and anycast ping

Unicast and anycast routes are different even for the same physical desti-

nation

• 46 planet-lab hosts measured that anycast RTT is lower than unicast RTT.

• 44 planet-lab hosts measured that anycast RTT is higher than unicast RTT.

22

2 SIP AND ANYCAST IN DETAIL

2.1 SIP

SIP (Session Initiation Protocol) is application-layer control protocol which has been

developed and designed within the IETF(Internet Engineering Task Force). The

protocol has been designed with easy implementation, good scalability, and flexibility

in mind.

The specification is available in form of several RFCs and the most important

one is RFC3261 [24] which contains the core protocol specification.The protocol is

used for creating, modifying, and terminating sessions with one or more participants.

By sessions we understand a set of senders and receivers that communicate and the

state kept in those senders and receivers during the communication. Examples of a

session can include Internet telephone calls, distribution of multimedia, multimedia

conferences etc.

However, SIP is the subject of numerous specifications that have been pro-

duced by the IETF. It can be difficult to locate the right document, or even to

determine the set of Request for Comments (RFC) about SIP. There is a speci-

fication covering completely SIP at <https://datatracker.ietf.org/drafts/draft-ietf-

sip-hitchhikers-guide/>. This specification serves as a guide to the SIP RFC series. It

lists the specifications under the SIP umbrella, briefly summarizes each, and groups

them into categories.

2.1.1 Protocol Structure

Communication using SIP (often called as signalling) includes series of messages.

SIP messages can be transported independently by the network usually over TCP,

UDP or TLS. They are text based and the syntax and header fields are quite similar

to HTTP. Each message consist of ”first line”, message header, and message body.

The first line identifies type of the message. There are two types of messages -

requests and responses. Requests are usually used to initiate some action or inform

the recipient with something (connection info etc.). Responses are used to confirm

that a request was received and processed and contain the status of the processing.

Following is a typical SIP request:

INVITE sip:admin@iptel.org SIP/2.0
Via:SIP/2.0/UDP 192.168.1.101:5060;rport;branch=z9hG4bK9FF9B
From: natuser <sip:nateduser@iptel.org>;tag=223549693
To: <sip:admin@iptel.org>
Contact: <sip:nateduser@192.168.1.101:5060>

23

https://datatracker.ietf.org/drafts/draft-ietf-sip-hitchhikers-guide/
https://datatracker.ietf.org/drafts/draft-ietf-sip-hitchhikers-guide/

Call-ID: 032BC0C9-C29E-4F23-9558-CDA469FFE75C@192.168.1.101
CSeq: 7111 INVITE
Max-Forwards: 70
Content-Type: application/sdp
User-Agent: X-Lite release 1103m
Content-Length: 241

v=0
o=nateduser 4955765 4955765 IN IP4 192.168.1.101
s=X-Lite
c=IN IP4 192.168.1.101
t=0 0
m=audio 8000 RTP/AVP 0 8 97 101
a=rtpmap:0 pcmu/8000
a=rtpmap:8 pcma/8000
a=rtpmap:97 speex/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

The first line says it is an INVITE message, which is used to establish a session.

The URI(Uniform Resource Identifier) on the first line -- sip:admin@iptel.org is

called Request URI and contains URI of intended next hop of the message. In this

case it will be host iptel.org.

A SIP request can contain one or more Via header fields which are used to record

path of the request. They are later used to route SIP responses exactly the same

way. This INVITE message contains just one Via header field which was created

by the user agent that sent the request. From the Via field we can tell that the

user agent is running on host 192.168.1.101 and port 5060. Branch parameter of Via

header fields contains a transaction identifier.

From and To header fields identify initiator (caller) and recipient (callee) of the

invitation. From header field contains a tag parameter, which serves as a dialog

identifier.

Contact header field contains IP address and port where the sender is awaiting

further requests sent by callee.

Call-ID header field is a dialog identifier and its purpose is to identify messages

belonging to the same call. Such messages have the same Call-ID identifier. CSeq is

used to maintain order of requests. Because requests can be sent over an unreliable

transport that can re-order messages, a sequence number must be present in the

messages so that recipient can identify retransmissions and out of order requests.

The Max-Forwards serves to limit the number of hops a request can transit on the

way to its destination and protects from possible loops. Other header fields are

self-explanatory.

Message header is delimited from message body by an empty line. Message body

of the INVITE request contains a description of the media type accepted by the

24

sender and encoded in SDP(Session Description Protocol).

2.1.2 SIP Requests

Above is described how an INVITE request looks like and mentioned that the request

is used for invitation a callee to a session.

Other important requests are:

• ACK - This message acknowledges receipt of a final response to INVITE.

• BYE - Bye messages are used to tear down multimedia sessions.

• CANCEL - Cancel is used for cancelling not yet fully established session.

• REGISTER - Purpose of REGISTER request is to let registrar know of current

user’s location.

2.1.3 SIP Responses

When a user agent or proxy server receives a request it send a reply. Each request

must be replied except ACK requests which trigger no replies.

A typical reply looks like this:

SIP/2.0 200 Ok
Via: SIP/2.0/UDP 192.168.1.50;branch=z9hG4bK9fbd.a095ba92.0
Via: SIP/2.0/UDP 10.0.10.3:5060;received=192.168.1.100;rport=5060
;branch=z9hG4bKB8D1CE9011C544AB90EA794B9C56D16E
From: natuser <sip:nateduser@iptel.org>;tag=223549693
To: <sip:admin@iptel.org>;tag=3280384206
Contact: <sip:admin@192.168.1.101:5060>
Record-Route: <sip:192.168.1.50;ftag=223549693;lr=on>
Call-ID: 032BC0C9-C29E-4F23-9558-CDA469FFE75C@10.0.10.3
CSeq: 7112 INVITE
Content-Type: application/sdp
Server: X-Lite release 1103m
Content-Length: 0

As can be seen, responses are very similar to requests, except for the first line.

The first line of response contains protocol version (SIP/2.0), response code, and

reason phrase.

The reply code is an integer number from 100 to 699 and indicates type of the

replies. There are 6 classes of replies.

25

2.1.4 User Agent

User Agent(UA) is an Internet end-point that use SIP to find another end-point

where negotiating session characteristics between each other. User Agents usually,

but not necessarily, reside on a user’s computer in form of an application - this is

currently the most widely used approach, but user agents can be also cellular phones,

PSTN gateways, PDAs, automated IVR systems and so on.

User Agents are often referred to as User Agent Server (UAS) and User Agent

Client (UAC). UAS and UAC are logical entities only, each user agent contains a

UAC and UAS. UAC is the part of the user agent that sends requests and recei-

ves responses. UAS is the part of the user agent that receives requests and sends

responses.

2.1.5 SIP Proxy

SIP Proxy servers are very important entities in the SIP infrastructure. They perform

routing of a session invitations according to callee’s current location, authentication,

accounting and many other important functions.

2.1.6 SIP Registrar

The registrar is a special SIP entity that receives registrations from User Agents,

extracts information about their current location (IP address, port and username in

this case) and stores the information into location database.

2.1.7 Record Routing

All requests sent within a dialog are by default sent directly from one User Agent to

the other. Only requests outside a dialog traverse SIP proxies. This approach makes

SIP network more scalable because only a small number of SIP messages hit the

proxies.

There are certain situations in which a SIP proxy need to stay on the path of

all further messages. For example, proxies controlling NAT devices or proxies doing

accounting need to stay on the path of BYE requests.

Mechanism by which a proxy can inform user agents that it wishes to stay on

the path of all further messages is called record routing. Such a proxy would in-

sert Record-Route header field into SIP messages which contains address of the

proxy. Messages sent within a dialog will then traverse all SIP proxies that put a

Record-Route header field into the message.

26

The recipient of the request receives a set of Record-Route header fields in the

message. It must mirror all the Record-Route header fields into responses because

the originator of the request also needs to know the set of proxies.

2.2 RTP

RTP (Real-time Transport Protocol) defines a standardized packet format for deli-

vering audio and video over the Internet. This protocol can be used for media-on-

demand or for interactive services such as Internet telephony. It goes along with the

RTP Control Protocol (RTCP) and it’s built on top of the UDP[28].

When used with SIP signalling, parameters for RTP stream are negotiated

through SDP documents. This way clients decide what media format will be figuring

in a session.

RTP streams and NATs

There can be a number of RTP streams in a session. In the case where is a session

between two User Agents, there are two RTP streams, one in each direction (sending

and receiving RTP packets). If one of the User Agents involved in the session is with

private IP address, that stream from the public UA towards the NAT will not be

allowed to reach the UA on the inside of the NAT. Therefore the UA with public

IP must send the packets to the source IP address and port of packets coming from

the UA behind NAT.

Following Figure 2.1 shows both way direction RTP streams and also points

out required feature for successful NAT traversal - symmetric RTP. In short a User

Agent receives and sends packets on the same port. Currently, most of UAs has been

supporting this feature as default.

Fig. 2.1: RTP streams - User Agents receive and send packets on the same

port(symmetric RTP)

27

2.2.1 SDP Documents

SDP(Session Description Protocol) is intended for describing multimedia sessions for

the purposes of session announcement, session invitation, and other forms of mul-

timedia session invitation. Within these SDP documents a SIP User Agent usually

sends its IP address and port where RTP stream can be received. SDP document

also includes a set of supported media codecs by the User Agent.

SDP document generated by a User Agent include lines "c=" and "m=" with IP

address and port where media can be received.

For Example:

c=IN IP4 147.229.213.156
m=audio 8000 RTP/AVP 0 8 97 101

2.3 NAT Traversal using a SIP Proxy with an

RTP Proxy

This section describes what must be changed at SIP proxy to make sure that SIP

messages get delivered back to UA behind NAT and UAs establish two-directional

media session. The key idea is making all traffic symmetric which is known to ac-

commodate most of available NATs. Figure 2.2 shows possible scenario where one

SIP client is behind NAT and RTP proxy is used for relaying media.

Fig. 2.2: NAT traversal

2.3.1 SIP Requests

Via Header

When a SIP proxy receives a request (e.g. REGISTER, INVITE), it examines the

topmost Via header field value. If this Via header field value contains an ”rport”

parameter with no value, it must set the value of the parameter to the source port

28

of the REGISTER request. This is analogous to the way in which a SIP proxy will

insert the ”received” parameter into the topmost Via header field value which is

source IP address where a request came from.

For example:

IP address/port in Via header field received by SIP proxy.

Via:SIP/2.0/UDP 192.168.1.101:5060;rport;branch=z9hG4bK9FF9B128

SIP proxy add source IP address/port to received and rport parameters.

Via:SIP/2.0/UDP 192.168.1.101:5060;rport=1024;received=1.2.3.4
;branch=z9hG4bK9FF9B128

Contact Header

To keep a UAC routable from public network SIP proxy overwrites Contact header

IP address/port to source IP address/port and saves it in user location databases

for subsequent requests.

Contact IP address is used for forming new SIP requests by SIP User Agents.

For example:

Original Contact address.

Contact: <sip:admin@192.168.1.1:5060>

Overwritten by SIP proxy to routable contact IP address/port from public network

and saved in location database.

Contact: <sip:admin@1.2.3.4:1024>

2.3.2 SIP Responses

Via Header

SIP response created with ”rport” and ”received” parameters in the Via header

and sent to IP address/port where IP address is ”received” parameter and port is

”rport” parameter.

For UASs the response must be sent from the same address and port that the

request was received on in order to traverse symmetric NATs. This is also called

symmetric signalling extension. Refer to RFC3581[25] for more information.

29

Contact Header

Contact header field is appended to the response, which will contain the current

location of the UA. It is the same approach as it is done in SIP requests.

Note: Contact header is appended to 2xx and 3xx responses only.

2.3.3 SDP and NATs

If SIP proxy detects that SIP request (e.g. INVITE) is received from UA behind

NAT, media must be relayed. This is achieved by forcing the RTP media to traverse

an RTP proxy. The SIP proxy server must then replace UA’s private IP address in

SDP payload with IP address of the RTP proxy. (Note that communication of the

SIP proxy server with the RTP proxy is out of scope of this section.)

The example shows particular lines in SDP payload:

o=nateduser 4955765 4955765 IN IP4 192.168.1.101

This line describes the sender of this SDP message and its IP address. This address

has to be changed to RTP proxy server’s IP address.

c=IN IP4 192.168.1.101

This line indicates the IP address where the UA will be ready to receive RTP packets.

It also has to be changed by SIP proxy to RTP proxy address.

m=audio 8000 RTP/AVP 0 8 97 101

Eventually, UA’s listening port number advertised in "m=" line must be replaced

with RTP proxy server’s.

30

2.4 Anycast

2.4.1 Network-layer(IP) anycast

IP Anycast is a network technique which allows a client to access the nearest host

of a group of hosts that share the same anycast IP address, where the nearest host

is defined according to the routing system’s measure of distance. It is also referred

as one-to-any communication where “any” means one host of the anycast group.

Usually, those hosts in the anycast group are replicas, able to provide the same

service. To take an advantage of an anycast, servers are distributed topologically

and geographically across the Internet. An IP anycast deployment solely depends

on the network, routers and routing protocols. The scale of anycast deployment

within the routing system can vary from a small network handled by Interior Ga-

teway Protocol(IGP)[3], to Border Gateway Protocol(BGP)[2], handling requests

from the global Internet. Figure 2.3 shows the basic idea of a network-layer(IP)

anycast deployment.

Fig. 2.3: IP anycast mechanism

Patridge et al[19] originally proposed the idea of anycast at the network-layer(IP).

They defined that anycast is a stateless best effort delivery of an anycast datagram

to at least one host, and preferably only one host. In RFC4786[1] J. Abley and K.

Lindqvist cover the best current practices of using IP anycast or Kevin Miller[18]

very well summarize deploying of IP anycast.

31

Ballani et al.[4] states that today deployment of IP anycast is quite limited to just

query/reply services such as for DNS root servers[2], primarily to spread the load as

a defence against DoS attacks. On the other hand Ballani et. al.[5] performed some

measurements regarding proximity1 and affinity2 and states that IP anycast is also

a good candidate for using other services based on TCP or applications with long-

lived sessions(2.4.4). They found that IP anycast itself in global deployment provides

good affinity. The measurement states that 93.75% of the source-destination pairs

never changed(probability of selecting the same anycast node). In other words, the

probability that a two minute(or one hour) connection would experience a change

is roughly 1 in 13000 (or 1 in 450).

There has also been an existing deployment such as CacheFly[16] that uses any-

cast for their stateful service.

Routing Schemes

To make it clear here is just a short overview of communication ways in a network.

• Unicast - the process of sending a packet from one host to an individual host.

• Broadcast - the process of sending a packet from one host to all hosts in the

network

• Multicast - the process of sending a packet from one host to a selected group

of hosts

• Anaycast - the process of sending a packet from one host to an indivi-

dual(nearest) host out of group of hosts

2.4.2 Common IP Anycast Deployments

AS 112 project

The anycasted AS112 servers are used to draw in reverse DNS queries to and for

the link local address space (RFC1918 addresses – 10.0.0.0/8, 172.16.0.0/12 and

192.168.0.0/16). In other words they use anycasted sink-hole servers.

DNS Root Servers

Wide-scale deployment of DNS root servers. Anycasting of six of the thirteen root-

servers C, F, I, J, K and M root. It takes advantage of simple query/reply behaviour.

1ability to find close-by members of the anycast group.
2tendency of subsequent packets of a ”connection” to be delivered to the same target.

32

On local scale, IP anycast is used by operators to simplify and improve local

DNS server availability.

IPv4-to-IPv6 relays

6to4 routers involve connecting v6 networks across v4 infrastructure. Anycast pro-

vides an easy way for end sites to locate relays into the native IPv6 world by using

globally known IPv4 anycast prefix for 6to4 routers.

Rendezvous Discovery for IP Multicast

IP multicast packets are routed to shared multicast Rendezvous points using IP

anycast address.

2.4.3 Routing Consideration

Addressing in IP Anycast

IP anycast address is an IP address which identifies a group of nodes(servers). This

address is then assigned to each anycast node. IP anycast address must also be

chosen from IP address space(prefix) that corresponding routes will be allowed to

propagate within given routing system[1]. The length of prefix must be sufficiently

short that it will not be discarded by commonly-deployed import policies in BGP

speaking routers.

For an IPv4 numbering and deployment across the Internet the IP address is

given by an address space where the minimum RIR(Regional Internet Registry)

allocation size is 24 bits. It means that reachability of a service with anycast address

would be in /24 subnet (24-bit prefix) for example 112.54.8.0/24. The disadvantage

is that it uses the address space inefficiently.

An anycasted service deployed within a private network[22] can use locally-

unused address and that address might be reached by 32-bit host route. This also

apply for deploying anycast within area under single administration such as an au-

tonomous system. The anycast service is within IGP has no inherent restrictions on

the length of prefix as stated in [1].

In IPv6 network IP anycast addresses are not scoped differently from unicast

addresses. However, IPv6 Anycast is beyond the scope of this document.

33

Route Advertising

Members of an anycast group have to indicate to the routers that they wish to receive

anycast packets. One approach is to have the anycast host run a routing protocol

and be able to advertise its anycast address to other routers in a network. Section

2.4.5 describe network configuration for intra-domain and inter-domain routing.

Service Management

Although each anycast host is intended to be reached by a particular community of

clients via anycast address, there is also a requirement to be able to reach individual

hosts in a predictable fashion for the purposes of systems administration, and so

that service performance can be monitored. For this reason each host has a unique,

unicast management IP address associated with it.

2.4.4 UDP, TCP transports and Anycast

It is important to remember that routing in the Internet is stateless. An anycast

network has no obligation to deliver two successive packets sent to the same anycast

host. This might happen when a client is topologically in the middle of two anycast

hosts with equal-cost paths.

UDP

Since UDP transport is connectionless and anycasting is a stateless service, UDP

can treat anycast addresses like regular IP addresses. A UDP datagram sent to an

anycast address is just like a unicast UDP datagram from the perspective of UDP

and its application.

Some services have very short transaction times, and may even be carried out

using a single packet request and a single packet reply (e.g. DNS transactions over

UDP transport). Here is no problem with Anycast.

Some services have long transaction times and need to exchange more datagram

in between client and anycast host. This problem is discussed in Ballani’s et al.

paper[5] as connection affinity and concludes that packet delivery to different host

is negligible.

TCP

TCP’s use of anycasting is less straightforward because TCP is stateful. It is hard

to envision how one would maintain TCP state with an anycast server when two

34

successive TCP segments sent to the anycast server might be delivered to completely

different hosts.

Engel et al[12] propose a solution for this problem. This proposal is based on

minor modification of TCP/IP stack at the host part where the anycast service

is running. It does not require any modifications to routers and routing protocols.

These modifications are limited to changes at the IP layer of the recipient of the TCP

connection, making this scheme suitable to a client/server environment. Especially,

it focuses on TCP transport protocol stateful connections since they tend to cause

problems in anycast routing as described in [19]. The basic idea is to pin the end-

host to which the first packet of the flow has been sent. The author states that it is

very similar to route pinning in the context of QoS routing. The pinning is done by

inserting a loose source route option in all subsequent packets from the same TCP

flow.

2.4.5 Network Configuration

To deploy an anycast service there are two ways to set the anycast hosts up. Using

either intra-domain routing or inter-domain routing configurations.

Intra-domain configuration

If the anycasted service is entirely within one routing domain(AS) or multiple intra-

domain locations(more ASs but bound with an IGP protocol), only intra-domain

consideration is needed. Routers need to be configured to deliver traffic to anycast

servers either with static routes on first-hop router as shown in figure 2.4 or setting

up dynamic routing by running a routing daemon on anycast hosts using for instance

Zebra/Quagga. See figure 2.5. Static routes provides simple configuration but does

not respond to server failure quickly. On the other hand it provides the ability to

relocate servers without outage. Whilst in dynamic routes the anycast host is route

originator and when the host is down the route is automatically withdrawn from

routing system. Intra-domain anycast approach is described in [3].

Inter-domain Configuration

Setting up inter-domain routing for anycast is more difficult because this configu-

ration needs its own AS, ISP independent IP prefix (see 2.4.3 and able to adver-

tise the service anycast supernet. In this prospect Intra-domain routing must be

correctly configured such as anycast servers can be IBGP peered and can use IGP

redistribution. It must be able to withdraw routes when service is unavailable. Some

deployments distinguish “global” nodes from “local” nodes[2] where global nodes

35

Router A Router C

Router B

Router D

10.10.0.1
10.5.0.1(A)

10.20.0.1
10.5.0.1(A)

10.30.0.1
10.5.0.1(A)

source
172.16.0.1

route 10.5.0.1 via 10.10.0.1

Fig. 2.4: Static IGP routes

Router A Router C

Router B

Router D

10.10.0.1
10.5.0.1(A)

10.10.0.1
10.5.0.1(A)

10.10.0.1
10.5.0.1(A)

source
172.16.0.1

10.5.0.1/32 connected

10.5.0.1/32 connected

10.5.0.1/32 connected

Fig. 2.5: Dynamic IGP routes

are announced to Internet routing system without restriction and local nodes add

“no-export” BGP community attribute (2.5 to limit the clients that will use the

node. For instance F-root DNS servers are using this approach. See section 2.4.5 for

more details. Figure 2.6 shows advertisement of anycast address to the upstream

ISP.

Global Nodes

In conjunction with an anycast service distribution across the global Internet, Global

Nodes provides service to clients anywhere in the network. To be able to reach the

service globally, BGP routers propagate reachability information, without restriction

2.5, by advertising routes covering the anycast service addresses for global transit

to one or more ISPs.

More than one Global Node can exist for a single service which is commonly

used (see Section 2.4.2 for reasons of redundancy and load-balancing.

36

Fig. 2.6: BGP prefix advertisement

Local Nodes

On the other hand, it is sometimes desirable to deploy an anycast node which only

provides services to a local catchment of autonomous systems, and which is purposely

not available to the entire Internet. These nodes are referred to as Local Nodes. For

instance a Local Node may be appropriate in regions with good internal connectivity

but unreliable, congested or expensive access to the rest of the Internet.

Local Nodes advertise covering routes for anycast service addresses in a restricted

way of propagation. This might be done using BGP community attribute such as

no export (covered more in Section 2.5.1) or nopeer[15] or by arranging with peers

to apply a conventional ”peering” import policy instead of a ”transit” import policy,

or some suitable combination of measures.

2.4.6 IP Anycast and its Characteristics

Ballani et al. [5] focused on measurements of IP Anycast despite previous studies

did not report clear measurements and conclusions on IP Anycast performance such

as failover, load distribution, proximity and affinity. Their measurements were ac-

complished on four existing IP Anycast deployments including two anycasted DNS

root-servers and their own small scale IP Anycast service where they could test fai-

lure scenarios. The purpose of this study is to provide information on suitability of

IP Anycast for stateful services.

Ballani’s measurements states that current deployments such as J-root servers,

does not offer good latency-based proximity. They found that approximately 40%

of measured clients are directed to a root-server that is more than 100 msec farther

away from the closest server and concluded that inter-domain routing metrics have

an even more severe impact on the selection of paths to anycast destinations. The

proposal is to ensure that an ISP, that provides transit to an anycast server, has

37

global presence and is (geographically) well covered by such servers improves the

latency-based proximity offered by the anycast deployment. Basically, those me-

asurements were compared between latencies of the unicast address and anycast

address of tested server probed by clients. The unicast address is also usually used

as management and monitoring access to servers.

IP Anycast is also affected by delayed routing convergence therefore clients using

anycast service may experience slow failover. A failover may be caused by outage of

anycasted service or BGP stability issues (see section 2.5.3. The already mentioned

proposal addresses this by reducing the scope of routing convergence that follows a

server failure and therefore may ensure fast failover for clients. The study shows a

slow failover when anycast servers run in different ISP networks.

Their study concludes that IP Anycast offers good affinity to all clients with

the exception of a small fraction that explicitly load balance traffic across multiple

upstream ISPs. That means IP Anycast does not interact poorly with inter-domain

routing and therefore should not significantly impact stateful services.

They also measured and load balanced servers by AS PATH prepending which

resulted in allowing for coarse-grained control over the distribution of client load

across the deployment. AS PATH prepending performs BGP speaker(on the anycast

server) by adding its AS number more times in AS PATH attribute which makes

the anycasted server farther from clients.

2.4.7 Application-layer Anycast

Application-layer anycast is based on server or application metrics, such as available

capacity, measured RTT(Round-trip time), number of active connections. However,

application-layer anycast depends on an external entity that probes the location

of clients, monitors the location and the status of servers in anycast group. Usu-

ally, it does not involve any change in clients but involves an overlay on existing

routing infrastructure. Ballani et al[5] describes it as follows. One way of providing

application-layer anycast is mapping high-level names, such as a DNS name, into

one server of anycast group, returning the selected server’s IP address to the cli-

ent. Such an approach offer a number of advantages over IP anycast: it is easier to

deploy, offers fine-grained control over the load on the servers and can provide very

fast failover to clients. These advantages have led to the widespread adoption of

application-layer anycast as a service discovery possibility. For example, commercial

CDNs(Content Delivery Networks) use DNS-based redirection (in combination with

URL-rewriting) to direct clients to an appropriate server.

Since application-layer anycast brings a lot of advantages it is not useful for

38

all protocols/applications. The fact that IP anycast operates at the network layer

implies that it is only form of anycast that can be used by low-level protocols for

example the use of anycast in IPv4-to-IPv6 relays. Ballani et al states that operating

at the network layer gives IP Anycast a “ground level” resilience not easily achieved

by application-layer anycast – for example, using DNS-based redirection to achieve

resilience across a group of web servers requires first that the DNS servers themselves

be available. It is this that makes IP Anycast particularly well suited for replicating

critical infrastructures such as the DNS.

There are several projects using application-layer anycast approach such as

OASIS(Anycast for Any Service)[13], Cisco DistributedDirector[10] and Application

Layer Anycasting[7]. The up-to-date project and used by several services is OASIS

which is further described in following section 2.4.7.

OASIS:Anycast for Any Service

Global anycast faces several requirements.

• must be fast and accurate

• must minimize probing to reduce risk of abuse complaints

• must scale to many services and provide high availability

• must integrate seamlessly with unmodified client applications

OASIS(Overlay-based Anycast Service InfraStructure)[13], a global distributed

anycast system, addresses these challenges which allows legacy clients to find nearby

or unloaded replicas for distributed services. Two main features distinguish OASIS

from prior systems. First, OASIS allows multiple application service to share the any-

cast service. Second, OASIS avoids on-demand probing when clients initiate requests.

This is because OASIS maintains locality information (an application independent

way) by mapping portions of the Internet in advance(based on IP prefixes) to the

geographic coordinates of the nearest known landmark.

OASIS, a shared locality-aware server selection infrastructure, allows a service

to register a list of servers for later optimal selection which is also the primary

approach. However, selection also bases on liveness and load of a individual server

in a distributed service. OASIS can, for example, be used for locating IP anycast

proxies[6], or it can select distributed SMTP servers in large email services.

Before introducing OASIS some other techniques have been used so far such as

virtual coordinate systems (e.g. Vivaldi) and on-demand probing overlays. While on-

demand probing potentially offers greater accuracy, it has several drawbacks. First,

39

probing adds latency and second, performing several probes to clients might trigger

intrusion-detection alerts, resulting in abuse complaints.

OASIS eliminates on-demand probing(when clients make anycast requests) by

probing (in OASIS -> clients direction) in the background. OASIS uses techniques

which practically measure the entire Internet in advance. By leveraging the locality

of the IP prefixes[14], OASIS probes only each prefix, not each client. In practice,

IP prefixes from BGP dumps are used as starting point. OASIS is implemented at

each service replica and thus delegates measurements to them. Service replica is a

one copy of serving server in a distributed network.

To share OASIS across services and to make background probing feasible, OASIS

requires stable network coordinates 3 for maintaining locality information. However,

virtual coordinates tend to drift over time so instead, OASIS stores the geographic

coordinates of the replica closest to each prefix it maps.

OASIS is publicly deployed on PlanetLab(http://www.planet-lab.org/) and has

already been adopted by a number of services such as CoralCDN, OCALA, OpenDHT

and more. The full list can be found at OASIS project page http://oasis.coralcdn.org/.

As a service selection algorithm it uses a DNS redirector that performs server

selection upon hostname lookups, thus supporting a wide range of unmodified client

applications(almost every network application firstly does DNS lookup before pro-

ceeding with other tasks). However, OASIS also provide HTTP and RPC interface

for locality estimation.

System and design overview

The OASIS architecture combines reliable core nodes that implement anycast with

a larger number of replicas belonging to different services that assist in network

measurement. Firstly, every replica knows its geographic coordinates before any

network measurement. Then, OASIS estimates the geographic coordinates of every

netblock on the Internet(OASIS as a shared infrastructure spread measurement costs

over many hosts). OASIS re-probe every physical location quite infrequently since

IP prefixes rarely change[23].

The system consists of a network core nodes that help clients select appropriate

replicas of various services as shown in Figure 2.7. All services employ the same core

nodes. Replicas also run OASIS-specific code, both to report their own load and

liveness information to the core, and to assist the core with network measurements.

Clients need not to run any special code to use OASIS, because the core nodes

3Network coordinates provide a scalable way to estimate latencies among large numbers of hosts

40

http://www.planet-lab.org/
http://oasis.coralcdn.org/

provide DNS or HTTP based redirection. For example, an OASIS nameserver calls

its core node with client resolver’s IP address and a service name extracted from the

requested domain name (e.g. coralcdn.nyuld.net indicates service coralcdn).

Fig. 2.7: OASIS system overview

41

2.5 BGP - Border Gateway Protocol

The Border Gateway Protocol (BGP), specifically BGP-4, is defined in RFC 4271[21].

In this section are some citations taken from [11] and [33]. BGP provides loop-free

inter-domain routing between autonomous systems. An autonomous system(AS) is a

set of routers that operate under the same administration and routing policy. BGP

is often used within the networks of Internet service providers (ISP). BGP is an

exterior routing protocol(EGP) which use a path-vector routing protocol.

Routers that belong to the same AS and exchange BGP updates are said to

be running internal BGP (IBGP), and routers that belong to different ASs and

exchange BGP updates are said to be running external BGP (EBGP). Figure 2.8

shows a network that demonstrates the difference between EBGP and IBGP.

Note that this section covers just necessary information about BGP to under-

stand anycast and is explained on a cisco router. The rest is beyond the scope of

this document.

Fig. 2.8: EBGP, IBGP, and Multiple ASs

Before the routing system exchanges information with an external AS, BGP

ensures that networks within the AS are reachable. This is done by a combination

of internal BGP peering among routers within the AS and by redistributing BGP

routing information to Interior Gateway Protocols (IGP) that run within the AS,

42

such as Open Shortest Path First (OSPF), Intermediate System-to-Intermediate

System (IS-IS) and Routing Information Protocol (RIP).

BGP uses the Transmission Control Protocol (TCP) as its transport protocol

(specifically port 179). Any two routers that have opened a TCP connection to

each other for the purpose of exchanging routing information are known as peers or

neighbours. In figure 2.8, routers A and B are BGP peers, as are routers B and C,

and routers C and D. The routing information consists of a series of AS numbers

that describe the full path to the destination network. BGP uses this information to

construct a loop-free map of ASs. Note that within an AS, BGP peers do not have

to be directly connected.

BGP peers initially exchange their full BGP routing tables when the TCP con-

nection between peers is first established. When changes to the routing table are

detected, the BGP routers send to their peers only those routes that have chan-

ged. BGP routers do not send periodic routing updates, and BGP routing updates

advertise only the optimal path to a destination network.

2.5.1 BGP Attributes

Routes learned via BGP have associated properties that are used to determine the

best route to a destination when multiple paths exist to a particular destination.

These properties are referred to as BGP attributes, and an understanding of how

BGP attributes influence route selection is required for the design of robust networks.

This section describes the attributes that BGP uses in the route selection process:

• Weight

• Local Preference(LOCAL PREF)

• Multi-exit discriminator (MULTI EXIT DISC)

• ORIGIN

• AS PATH

• NEXT HOP

• Community

Weight Attribute

Weight is a Cisco-defined attribute that is local to a router. The weight attribute is

not advertised to peering routers. If the router learns about more than one route to

the same destination, the route with the highest weight will be preferred.

43

Local Preference

Local Preference(LOCAL PREF) shall be included in all UPDATE messages that a

given BGP speaker sends to other internal peers. A BGP speaker shall calculate the

degree of preference for each external route based on the locally-configured policy,

and include the degree of preference when advertising a route to its internal peers.

The higher degree of preference must be preferred. A BGP speaker uses the degree

of preference learned via LOCAL PREF in its Decision Process.

Multi-exit discriminator

The Multi-exit discriminator(MULTI EXIT DISC) is intended to be used on exter-

nal (inter-AS) links to discriminate among multiple exit or entry points to the same

neighbouring AS.

ORIGIN

ORIGIN specifies the origin of the routing update. When BGP has multiple routes,

it uses the ORIGIN as one factor in determining the preferred route. It specifies one

of the following origins:

• IGP — The route is interior to the originating AS. This value is set when the

network router configuration command is used to inject the route into BGP.

• EGP — The route is learned via the Exterior Border Gateway Protocol

(EBGP).

• Incomplete — The origin of the route is unknown or learned in some other

way. An origin of incomplete occurs when a route is redistributed into BGP.

AS PATH

This attribute identifies the autonomous systems through which routing information

carried in BGP UPDATE message has passed.

NEXT HOP

The NEXT HOP is an attribute that defines the IP address of the router that should

be used as the next hop to the destinations listed in the UPDATE message.

44

Community Attribute

Community attribute is an extension of BGP-4 protocol[8]. Community attribute

provides a way of grouping destinations, called communities, to which routing deci-

sions (such as acceptance, preference, and redistribution) can be applied. Predefined

community attributes are:

• no-export — Do not advertise this route to EBGP peers.

• no-advertise — Do not advertise this route to any peer.

• internet — Advertise this route to the Internet community; all routers in the

network belong to it.

Figure 2.9 shows the no-export community. AS 1 advertises 172.16.1.0 to AS 2

with the community attribute no-export. AS 2 will propagate the route throughout

AS 2 but will not send this route to AS 3 or any other external AS. This way is

configured a Local Node in IP anycast as described in section 2.4.5.

Fig. 2.9: BGP no-export Community Attribute

2.5.2 BGP Path Selection

BGP could possibly receive multiple advertisements for the same route from multiple

sources. BGP selects only one path as the best path. When the path is selected,

45

BGP puts the selected path in the IP routing table and propagates the path to its

peers. BGP uses the following criteria, in the order presented, to select a path for a

destination:

• If the path specifies a next hop that is inaccessible, drop the update.

• Prefer the path with the largest weight.

• If the weights are the same, prefer the path with the largest local preference.

• If the local preferences are the same, prefer the path that was originated by

BGP running on this router.

• If no route was originated, prefer the route that has the shortest AS path.

• If all paths have the same AS path length, prefer the path with the lowest

origin type (where IGP is lower than EGP, and EGP is lower than incomplete).

• If the origin codes are the same, prefer the path with the lowest MED attribute.

• If the paths have the same MED, prefer the external path over the internal

path.

• If the paths are still the same, prefer the path through the closest IGP nei-

ghbour.

• Prefer the path with the lowest IP address, as specified by the BGP router ID.

2.5.3 BGP routing stability

BGP routing changes happen for a variety of reasons[23]. The exchange of update

messages depends on having an active BGP session between a pair of routers. De-

vice failures or reconfiguration may trigger the closing of the BGP session, forcing

each router to withdraw the routes learned from its neighbour. After re-establishing

the session, the routers exchange their routing information again. Each router ap-

plies local policies to select the best route for each prefix and to decide whether

to advertise this route to the neighbour. Changes in these policies can trigger new

advertisements. A group of ASs may have conflicting policies that lead to repe-

ated advertising and withdrawing of routes. In addition, intra-domain routing or

topology changes may cause some routers to select new BGP routes and advertise

them to neighbouring ASs. BGP routing changes can cause performance problems.

A single event, such as a link failure, can trigger a long sequence of updates as the

routers explore alternate paths. During this convergence period, the packets headed

46

toward the destination prefix may be caught in forwarding loops. Exchanging and

processing the update messages also consumes bandwidth and CPU resources on

the BGP speaking routers in the network. In addition, the new advertisements from

neighbouring ASs may change the paths that traffic takes through the network. This

can cause congestion on certain links in the AS. Frequent changes in the adverti-

sements from other domains make it difficult for operators to engineer the flow of

traffic through an AS. For example, a BGP routing change may cause traffic to a

particular destination prefix to leave the AS through a different egress point. If BGP

routing changes affect a large portion of the traffic, past information about BGP

updates would not be a good basis for future operations decisions.

47

3 SOLUTION SPACE

In this chapter, we are reviewing several anycast-based methods for discovery of

an RTP proxy server. The key objective of all the method is to avoid use of RTP

proxy servers that are too distant from a call party. In the first section we set several

evaluation criteria. In the next section we suggest four different methods to solve

the proximity problem. We conclude with a comparison of all the methods based on

the criteria set in previous sections.

3.1 Evaluation Criteria

Easy of Integration

This means what must be done about to make a proposed method working and how

difficult is to deploy it.

“Proxy” Effect

A ”middlebox” between client and anycast server that leads to the middlebox being

used for discovery instead of the client.

SIP Interoperability

It is a behaviour and cooperation of all SIP entities in the SIP communication. If

one of the SIP entity does not support a required feature it is not possible to use the

feature. An anycast solution must be as SIP interoperable as possible and should

not break any standards and policy issues.

Resilience against Routing Instabilities

It is important to keep the system resilient against changes in routing. That means

that the fronting elements must be as stateless as possible. I.e., the elements shall

minimize its transport-layer and application-layer context to either stateless or at

least short-lived transactions.

Integration Overhead

If RTP proxies are not co-located with SIP proxies then they must be controlled

by SIP proxy servers remotely. This introduces additional concerns: latency and

security. This particularly applies to methods that concentrate SIP servers in a

single place, from which multiple geographically-dispersed RTP proxy servers are

controlled. RTP control is a specific source of complexity.

48

Failure-reactiveness

Time for a SIP client to switch over if a fronting-element fails.

3.1.1 Network Constraints

When designing the ”fronting element”, the following constraints have to be kept in

mind:

• For the anycast proximity service to take effect, the anycast service(which is

not the RTP proxy itself!) must be co-located with the RTP proxy.

• Scope shall be easily extended to one-way RTP servers such as SEMS(SIP

Express Media Server).

• Anycast can unlikely deliver the best proximity but importantly it avoids

reliably the worst-case.

• NAT traversal has to be accomplished by fronting element’s SIP proxy un-

less the fronting-element is completely SIP-unaware. (see the IP-tunnel-based

method later)

3.2 Anycast-based Methods for Finding the Clo-

sest RTP Servers

We are suggesting several proxy-discover anycast-based methods, that differ in how

they are integrated in the whole system.

• Anycasting geographically spread DNS servers

• Anycasting SIP Proxy Servers

• Anycasting SIP tunnels

• Anycast “bootstrap” redirect service

In the following sections will be described upsides and downsides of mentioned

methods in architectural detail and made comparison among them.

49

3.3 Anycasting Geographically Spread DNS Ser-

vers

The DNS-based method, used also similar way in OASIS[13] features application-

independence and high resilience against routing instabilities. It relies on geogra-

phically dispersed DNS servers responsible for the serving domain. The IP address

returned by the DNS server is used to associate client with that particular region

and to find the appropriate RTP proxy. In this scenario, the RTP proxy and SIP

proxy(fronting element) are co-located with this DNS server. The RTP proxy and

SIP proxy servers listen on unicast address, whereas the DNS server uses anycast.

Clients before sending SIP messages perform a DNS lookup which is usually han-

dled by provider’s DNS resolver. DNS resolver recursively finds the closest anycast

DNS server which returns unicast IP address and used for sending SIP messages.

After SIP client sends SIP messages to resolved unicast IP address and anycast IP

address does not play any other role(until DNS re-lookup given by TTL parameter).

The path of these SIP messages must be remembered for use by subsequent SIP

traffic. Otherwise, it could hit a different fronting element without appropriate TCP

context, or with a different IP address that would not be accepted by symmetric

NATs.

The scenario and the call flow are shown in 3.1 and 3.2.

3.3.1 Call Flows

This call flow shows how fronting elements(SIP proxies) are involved in the SIP

traffic. For simplicity there are no SIP user authorizations included.

DNS Lookup

1. Before UA1 sends any request it performs a DNS lookup. The lookup is done

usually by provider’s DNS resolver that recursively finds the closest anycast

DNS server.

2. This anycast DNS server returns a unicast IP address particular for the region.

Actually, this unicast IP address is associated with SIP fronting element and

RTP proxy where is also residing the DNS server.

REGISTER

UA1 sends REGISTER message to unicast IP address of the nearest SIP proxy

#1(fronting element). The SIP proxy #1 changes the Contact header field to

50

Fig. 3.1: Anycasting DNS servers

remember the path of the message. SIP proxy #1 sends the request to SIP

cluster which stores the Contact of UA1 in location DB. For details about

path processing see Section 4.3 - remember the path.

INVITE

3. UA1 wants to setup a call with UA2. UA1 sends INVITE to unicast IP address

of the SIP proxy #1.

4. SIP proxy #1 changes the Contact header - remember the path(see 4.3) and

sends it to SIP cluster. The message is also record routed to stay in the same

path for BYE requests. If the message came from behind it does NAT traversal

procedure as described in Section 2.3 and mark the message that the NAT

traversal was done here. RTP binding is allocated and SDP changed.

5. SIP cluster look up Contact of UA2 and replace the Request URI and send to

the host part of the Request URI which is SIP proxy #2.

6. As SIP proxy #2 receives INVITE it parses the Request URI, uses the infor-

mation stored in it and sends the INVITE to UA2.

51

7. UA2 replies 200 OK towards SIP proxy #2 based on top most Via header of

INVITE.

8. SIP proxy #2 changes the Contact header in the 200 OK reply(remember the

path) and sends it to SIP cluster.

9. SIP cluster forwards it to SIP proxy #1.

10. SIP proxy #1 changes the Contact header of 200 OK and sends it to UA1.

11. A media flows between UA1 and UA2 based on INVITEs and 200OKs SDP

bodies.

BYE

12. Similarly as with INVITE the processing is done with BYE.

Fig. 3.2: Anycasting DNS servers - call flow

52

3.4 Anycasting SIP Proxy Servers

In this alternative, it is the SIP proxy server in the fronting element that listen on

anycast address for discovery purposes. RTP proxies are co-located with each anycast

SIP proxy. The SIP proxy does NAT traversal handling and also Contact mangling

to remember the path for future requests. The SIP proxy shall stay as stateless as

possible to guarantee minimum impact of routing instabilities. This is however not

entirely possibly. On the transport layer, use of TCP breaks this requirement. On

the SIP layer, the proxy can be stateless. Importantly, all the anycast SIP proxy

servers must produce the same transaction id (branch Via parameter) otherwise

down-stream SIP cluster will not match requests belonging to the same transactions

during routing instabilities.

3.4.1 Call Flows

REGISTER

1. UAs register with SIP cluster through their closest SIP proxy server. Once a

SIP proxy receives REGISTER message it fixes Contact header (as described

in Path processing section 4.3) by adding unicast IP address of the proxy to

the host field of SIP URI and encoding source IP address of received message

into the Contact header.

2. The SIP proxy forwards the message to SIP cluster where it saves the fixed

Contact in location DB and returns a response 200 OK to the UA1 back

through the SIP proxy server.

INVITE

3. UA1 sends INVITE to SIP proxy anycast address. As the message is received

the SIP proxy #1 fixes the Contact header(Path processing). If the request

comes from behind NAT the SIP proxy mangles SIP message. RTP binding

is allocated and SDP changed as described in section NAT traversal 2.3. The

request is also record routed and forwarded to SIP cluster but from unicast

address of that SIP proxy.

4. Once the INVITE is received at SIP cluster it looks up contact of UA2 in

location DB, replace the Request URI and forwards the message to unicast IP

address of SIP proxy #2.

5. As SIP proxy #2 receives INVITE it strips down the Request URI and for-

wards the message to UA2 from anycast IP address.

53

6. UA2 replies with 200 OK and sends the message back to SIP proxy #2 . If the

reply comes from UA behind NAT then applies appropriate NAT mangling to

this reply.

7. SIP cluster forwards message based on top most Via header to SIP proxy #1

and finally SIP proxy #1 towards UA1 from anycast address as source IP

address. SIP proxy #1 might apply any NAT traversal mangling if the UA2

was marked as behind NAT.

BYE

8. BYE requests are processed similar way as INVITEs. As earlier was introdu-

ced record routing this transaction will go through the same path as it was

record-routed by INVITE transaction. (UA1->proxy-1->SIP cluster->proxy-

2->UA2)

Fig. 3.3: Anycasting SIP proxy scenario

3.4.2 TCP Persistent Connection Issue

The key problematic part of anycasting SIP proxy servers is routing instability issues.

In case a SIP client uses TCP transport for sending SIP messages it needs to create

a TCP connection with a SIP proxy server. The connection must be kept persistent

because of reachability of this client. In case a re-routing occurs the connection is

lost and TCP ACK is not able to reach the SIP proxy. Figure 3.5 shows the impact.

54

Fig. 3.4: Anycasting SIP proxy call flow

Fig. 3.5: Broken TCP persistency

55

3.5 Anycasting SIP Tunnels

This concept is based on IP tunnels. There will be more tunnel entrances at geogra-

phically dispersed anycast nodes with RTP proxies listening on unicast IP address.

SIP messages are tunneled through a tunnel to SIP proxy where the tunnel is termi-

nated which produces IP packets as if they came directly from a UA. SIP proxy runs

on anycast address too. Packets before entering the tunnel are somehow marked(ToS

field) with the ID of RTP proxy running at this end-point and encapsulated to this

tunnel. Packets get de-capsulated at the end of the tunnel and the mark of is used

for matching against RTP proxy list with their unicast IP addresses and used for

further NAT traversal processing.

Fig. 3.6: Anycasting SIP tunnels

3.5.1 Call Flows

REGISTER

1. UA1 sends REGISTER to anycast IP address that gets forwarded to SIP

cluster via tunnel.

2. SIP server replies with 200 OK directly to UA1.

56

INVITE

3. UA1 sends INVITE to anycast IP address. A VPN tunnel is listening on this

address that forwards the INVITE to the SIP cluster. The tunneled packets are

marked with an ID of RTP proxy running on that node. At the end of tunnel

(VPN server) the INVITE gets de-capsulated and delivered to SIP cluster

listening also at anycast IP address. Packet marking is used in the cluster to

identify which RTP proxy to control.

4. SIP cluster record-routes the INVITE and sends it directly to UA2.

5. UA2 replies with 200 OK. The message can go through different anycast tunnel

but always gets delivered to the same SIP cluster where the call was initiated.

6. SIP cluster matches the transaction and replace IP addresses in SDP body with

unicast IP address of RTP proxy #1 as marked at the beginning of transaction

and sends to UA1 directly.

57

Fig. 3.7: Anycasting SIP tunnels - call flow

58

3.6 Anycast “bootstrap” Redirect Service

This concept is based on selecting RTP proxy during SIP redirection. The SIP cluster

redirects an initial INVITE to anycast SIP proxy with co-located RTP proxy. This

proxy redirects the INVITE back to the cluster with location information in it. The

SIP cluster uses the location information to steer the proper RTP proxy and passes

the request on. Note that RTP proxies are controlled remotely from SIP cluster that

causes additional complexity and call setup delay.

Fig. 3.8: Anycast “bootstrap” redirect service

3.6.1 Call Flows

REGISTER

There is no change to common SIP setup with REGISTER requests.

1. UA1 sends REGISTER to unicast IP address of SIP cluster where the UA1s

Contact is saved in location DB. In case the UA is behind NAT the SIP cluster

also save that the UA is behind NAT.

INVITE

2. UA1 sends INVITE to SIP cluster that checks if UA1 is behind NAT. If so,

then it checks if combinations Client-IP, RTPproxy IP is in cache(location DB

59

in memory), if the cache is empty then SIP cluster redirects to Anycast SIP

proxy.

3. Anycast SIP proxy receives INVITE and redirects it back to SIP cluster. The

redirection URI in Contact HF stores a URI parameter with unicast IP address

of co-located RTP proxy.

4. UA1 sends INVITE to SIP cluster with parameter including IP address of

RTPproxy as URI param in Contact, SIP cluster parse the parameter and

store in local cache Client-IP, RTPproxy IP.

5. SIP cluster use the IP address in Contact for selecting RTP proxy and sub-

sequently used for relaying media. The message is record-routed to stay in

path for BYEs and forwards it to UA2.

6. UA2 replies with 200 OK, the message reaches the SIP cluster and the INVITE

transaction is matched with the IP address of RTP proxy used when the call

was initiated.

BYE

7. UA2 sends BYE towards SIP cluster that tests if the UA is behind NAT. It

should unforce RTP proxy based on earlier selection RTP proxy.

60

Fig. 3.9: Anycast “bootstrap” redirect service call flow

61

3.7 Evaluation of Methods

Anycasting DNS Servers

Upside: This method is simple to integrate at the system level and SIP messages are

simply sent to unicast IP address returned from DNS lookup. It is resilient

against routing instabilities as the anycast traffic is limited to a short-lived

UDP-based DNS transaction. RTP proxy servers are co-located with SIP proxy

servers and no remote control is needed.

Downside: Failure reactiveness is low for practical reasons. DNS resolvers in SIP clients

and DNS proxy servers are known to cache DNS information for quite long

time. If an anycast site fails and stops advertising its route, poor DNS clients

will keep using an unavailable IP address. Also, the proximity measurement

may be impaired if a client uses a DNS resolver that is not located in its

proximity.

Anycasting SIP Proxy Servers

Upside: RTP proxy servers are co-located with SIP proxy servers and no remote control

is needed.

Downside: Most sensitive against routing instabilities 3.1.

Anycast “bootstrap” Redirect Server

Upside: Easy to integrate at SIP level only. Resilient against routing instability.

Downside: INVITE-redirect brings too high uncertainty due to possible interoperability

and policy issues – to many SIP clients are known not to support redirection

due to poor implementation or for policy reasons (3xx to +1-900- ban). Call

setup latency increases. Controlling remotely RTP proxies that cause additio-

nal complexity and call setup delay.

Anycast SIP Tunnels

Upside: Resilient against routing stability issues. No need to do anything at SIP level.

Downside: Dealing with remote RTP proxy servers.

62

3.8 Summary and Comparison of Methods

Method Anycasting DNS
servers

Anycasting SIP
proxy servers

Anycast “boot-
strap” redirect
server

Anycast SIP tun-
nels

Easy of inte-
gration

Path processing

and NAT handling

Path processing

and NAT handling

Remote RTP proxy

control

Remote RTP proxy

control and Diff-

serv processing

“proxy” effect measuring DNS re-

solvers

measuring the out-

bound SIP proxy

measuring the out-

bound SIP proxy

measuring the out-

bound SIP proxy

Anticipated inte-
rop level

no problems (any-

cast only on DNS)

no problems (all

managed on server

side)

UA needs to have

enabled and functi-

onal redirect sup-

port, policy issues

Resilience aga-
inst routing
instabilities

good, routing chan-

ges have no impact

on DNS processing.

problematic, using

anycast IP addres-

ses for SIP signal-

ling

good – boot-strap

transaction is

short-lived

good – it does not

matter which IP

tunnel is used

Failure reactive-
ness

can be low with

mis-implemented

DNS clients and

DNS proxy servers

depends on how

fast BGP re-routing

is

depends on how

fast BGP re-routing

is

depends on how

fast BGP re-routing

is

Tab. 3.1: Comparison of methods using IP anycast to find the nearest RTP proxy

3.9 Conclusion about Methods

We have chosen the DNS-based method and SIP-based method for further observati-

ons. The primary reason is they are simple to deploy. They do not require sophis-

ticated integration (as would be the case with tunneling, marking and remote RTP

control) and are not going to suffer from interoperability issues (as the SIP boot-

strap method would). The key remaining concerns are low failure reactiveness for

the DNS-based method and low resilience against routing instabilities for the SIP-

based method. In the long-term, it may be beneficial to include the tunnel-based

method in future observations. Overcoming the integration effort can be rewarded

by both good failure reactiveness and resilience against routing instabilities.

63

4 DESIGN OF THE FRONTING ELEMENT

4.1 DNS-based Fronting Element

Each fronting element consists of DNS server, SIP proxy and RTP proxy. The DNS

server listens on anycast IP address for DNS queries and in response returns unicast

IP address of co-located SIP proxy and RTP proxy. The returned unicast IP address

is always from the closest DNS server in routing metrics(the way anycast works).

This way SIP client forwards SIP messages to returned unicast IP address where

the RTP proxy is co-located.

The SIP proxy should remain as stateless as possible. For TCP-based traffic and

traffic from behind NAT it must remain stateful however. This SIP proxy does NAT

traversal and uses co-located RTP proxy if necessary. If SIP traffic is TCP-based the

SIP proxy must use the same TCP connection initiated by SIP client’s REGISTER

request. We talk about TCP context which is described in Section 4.2.2 and which

is more significant for SIP-based anycast proxy. We need to remember the path

through this SIP proxy as described in Section 4.3. The same applies for traffic

coming from behind NAT. Also, if the SIP proxy remains stateful the SIP traffic

must be record routed.

4.1.1 SIP call flow in detail for DNS-based method

Firstly, SIP client performs DNS lookup. It receives a reply from DNS resolver with

unicast IP address of the closest fronting SIP proxy. For simplicity there are no SIP

authorizations and auxiliary replies included. SIP messages include just important

header fields for explanation the process. This call flow shows how path processing

is done(for more details see Section 4.3). Figure 4.1 shows possible scenario which

is followed by detailed SIP message description.

1. The UA1 constructs an INVITE message and sends it to the unicast IP address

of fronting SIP proxy. The SIP client is behind NAT as can be seen private IP

addresses appearing in the message.

Direction 147.229.214.225:5090() -> 213.192.59.77:5060()

INVITE sip:UA2@siptel.org SIP/2.0
Via: SIP/2.0/UDP 192.168.1.100:5090;rport;branch=z9hG4bKdxrbqiko
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:UA1@192.168.1.100:5090>

2. The fronting SIP proxy receives INVITE and checks if the message came from

behind NAT. Basing on this check the SIP proxy creates new Contact SIP URI

64

Fig. 4.1: DNS-based scenario - referential call flow

where in the username part includes, except the username, a mark that the

SIP client is behind NAT, source IP address and port of the packet, private IP

address and port of the SIP client. Host part includes the unicast IP address of

this fronting element. It is the address where replies will be expected. Once this

Contact header is mangled, then SIP proxy record route, marks the message

that RTP proxy used at this server the message and sends it to SIP cluster.

Direction 213.192.59.77:5060() -> 213.192.59.75:5060()

INVITE sip:UA2@siptel.org SIP/2.0
Record-Route: <sip:213.192.59.77;lr=on>
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK93ad.f50d8a83.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKdxrbqiko
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*@

213.192.59.77>
P-Behind-NAT: Yes
P-RTP-Proxy: YES

3. Once the SIP cluster receives INVITE it looks up the contact of UA2 in lo-

cation database. This contact inserts in Request URI header. SIP cluster also

finds that fronting SIP proxy already applied RTP proxy which says that no

other RTP proxy should be used. INVITE is sent to IP address stated in

Request URI. In this case it is the same fronting SIP proxy as for UA1.

65

Direction 213.192.59.75:5060() -> 213.192.59.77:5060()

INVITE sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*@
213.192.59.77 SIP/2.0
Record-Route: <sip:213.192.59.75;lr=on>
Record-Route: <sip:213.192.59.77;lr=on>
Via: SIP/2.0/UDP 213.192.59.75;branch=z9hG4bK63ad.1a75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*@
213.192.59.77>
P-Behind-NAT: Yes
P-RTP-Proxy: YES

4. As fronting SIP proxy receives the message it decodes the Request URI header.

From decoded information uses the public IP address of UA2 and sends it

there.

Direction 213.192.59.77:5060() -> 147.229.214.225:5080()

INVITE sip:UA2@192.168.1.101:5080 SIP/2.0
Record-Route: <sip:213.192.59.77;lr=on>
Record-Route: <sip:213.192.59.75;lr=on>
Record-Route: <sip:213.192.59.77;lr=on>
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK63ad.1130cb05.0
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.1a75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225

rport=5090;branch=z9hG4bKpcbtblbi
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*@
213.192.59.77>
P-RTP-Proxy: YES

5. Once UA2 receives INVITE, the UA2 inserts its own Contact header to 200

OK reply and sends it back to fronting SIP proxy.

Direction 147.229.214.225:5080() -> 213.192.59.77:5060()

SIP/2.0 200 OK
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK63ad.1130cb05.0
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.1a75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:UA2@192.168.1.101:5080>

6. Fronting SIP proxy encode the Contact header the same way as for INVITE

above and sends it to SIP cluster.

66

Direction 213.192.59.77:5060() -> 213.192.59.75:5060()

SIP/2.0 200 OK
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.1a75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*@

213.192.59.77>

7. SIP cluster simply forwards the message back to fronting SIP proxy as based

on Via header.

Direction 213.192.59.75:5060() -> 213.192.59.77:5060()

SIP/2.0 200 OK
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*@

213.192.59.77>

8. Fronting SIP proxy forwards the reply to UA1.

Direction 213.192.59.77:5060() -> 147.229.214.225:5090()

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*@

213.192.59.77>
P-RTP-Proxy: YES

9. UA1 sends ACK towards UA2 through all SIP proxies stated in Route header.

In Request URI is the full path UA2 SIP URI.

Direction 147.229.214.225:5090() -> 213.192.59.77:5060()

ACK sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*@
213.192.59.77 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.100:5090;rport;branch=z9hG4bKhyynxpop
Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs

67

10. The SIP cluster is skipped and this ACK is produced by fronting SIP proxy.

It shows that the Request URI is decoded and from decoded information uses

the public IP address and port of UA2 and sends it there.

Direction 213.192.59.77:5060() -> 147.229.214.225:5080()

ACK sip:UA2@192.168.1.101:5080 SIP/2.0
Record-Route: <sip:213.192.59.75;lr=on>
Via: SIP/2.0/UDP 213.192.59.77;branch=0
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKhyynxpop
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA1@siptel.org>;tag=etazs

4.1.2 Technical Issues with DNS-based Method

DNS-based method is resilient against re-routing which is a feature we need. However,

the best SIP proxy selection in SIP client proximity is dependent on periodic DNS

lookups. Firstly, it depends on ISP’s DNS resolver which usually caches DNS re-

cords and the TTL value is usually not low enough for refreshing the unicast IP

address of the closest SIP proxy in case of BGP re-routing. Secondly, DNS clients

are frequently mis-implemented and do DNS lookup just at boot time. Figure 4.2

shows the process.

This method results in possibly not the best SIP proxy selection but at least

it avoids selecting very far SIP proxies. In case of failure, the service might be

unavailable until new DNS lookup which might take some time.

Fig. 4.2: DNS lookup

4.2 SIP-based Fronting Element

Here is described the SIP-based method with SIP proxy listening on anycast IP

address as part of fronting element. The path processing(see 4.3) is the same as for

68

DNS-based method but the fronting SIP proxy deals with two IP addresses(anycast

and unicast IP address). This method is more error-prone against routing instability

issues and SIP messages must be handled carefully. For the best result, the fronting

element must be SIP-wise as stateless as possible to guarantee minimum impact of

routing instabilities. The proxy remains stateful TCP-wise but it may and actually

should remain a SIP-wise stateless machine(UDP-based traffic less affected). For

this purpose a path through this proxy must be remembered because each SIP

client might register through different anycast SIP proxy. This way we also loose

transparency of the SIP traffic because we deal with multiple anycast SIP proxies.

4.2.1 INVITE and CANCEL/ACK

The CANCEL request, as the name implies, is used for cancelling a previous request

sent by a client. A CANCEL request should be only used for pending calls as stated

in RFC3261 [24] section 9.1. Further, if a CANCEL request is sent it is part of the

INVITE transaction and Via header of this CANCEL is matched 4.2.1 against INVI-

TEs top most Via header at the first SIP proxy which is in our case the fronting SIP

proxy. In case of routing instability, cancelling pending calls might cause following

issue: CANCEL is forwarded through a different fronting SIP proxy than the ini-

tial INVITE and is not recognized as related by the downstream SIP cluster. Then

the SIP cluster replies “481 Transaction leg does not exist”. In this case for UDP

based SIP traffic the branch parameter should be generated statelessly as described

in 4.2.1. However, we can not match this transaction. Sent-by value is used as part

of the matching process because there could be accidental or malicious duplication

of branch parameters from different clients. The reason is that the transaction id is

formed by branch and sent-by, where sent-by is different for both fronting-elements

(if it was identical using anycast, we would loose guarantee that replies to requests

will get back to the same SIP proxy). This is a failure scenario where we can not do

nothing about.

Matching Requests to Server Transactions

When a request is received from the network by the stateful proxy, it is matched to

an existing transaction. This is accomplished in the following manner.

The branch parameter in the topmost Via header field of the request is exa-

mined. If it is present and begins with the magic cookie ”z9hG4bK”, the request

was generated by a client transaction compliant to this specification. Therefore, the

branch parameter will be unique across all transactions sent by that client. The

request matches a transaction if:

69

1. the branch parameter in the request is equal to the one in the top Via header

field of the request that created the transaction, and

2. the sent-by value in the top Via of the request is equal to the one in the request

that created the transaction, and

3. the method of the request matches the one that created the transaction, except

for ACK, where the method of the request that created the transaction is

INVITE.

This matching rule applies to both INVITE and non-INVITE transactions alike.

All above is taken from RFC3261, Section 17.2.3. See more in [24].

Stateless Generating Branch Parameter

In case of re-routing in time window between sending INVITE and CANCEL/ACK

we need to be able to deliver CANCEL/ACK without breaking the SIP transaction.

Fronting elements must generate branch parameter the same way for all messages to

match transactions stateless anycast environment. For instance by inserting a fixed

string in branch parameter of the Via header inserted by this fronting element.

4.2.2 Technical Issues with SIP-based Fronting Element

TCP context

RFC3261[24] says: “For reliable transports, the response is normally sent on the

connection on which the request was received. Therefore, the client transport MUST

be prepared to receive the response on the same connection used to send the request.”

The first time, the TCP connection is opened by REGISTERing of a SIP client.

For the subsequent SIP traffic the SIP client and SIP proxy must use the same TCP

connection. If a routing instability occurs this connection will be lost. This means

that SIP proxy should remain SIP-wise as stateless as possible that we can deal with

UDP traffic and not break the consistency of SIP dialogs.

SIP client may open a new connection with a different anycast SIP proxy in

case of re-routing. In case of opening a new connection in the middle of dialog, SIP

messages will get lost because transactions would not match.

TCP call flow - REGISTER

1. First UA1 open a new TCP connection with fronting SIP proxy.

70

2. Then the UA1 sends REGISTER over TCP connection to fronting SIP proxy

which forwards it through UDP transport to SIP cluster.

3. SIP cluster sends reply back through fronting SIP proxy. This proxy forwards

the reply through existing TCP connection.

Once a SIP client registers with SIP cluster the same TCP connection must be used

for upcoming SIP transactions.

Fig. 4.3: REGISTERing over TCP

Transaction Issues

Another problem is that the failure window for the SIP protocol is fairly large. For

example, if a client registers via anycasted SIP proxy, there may be up to one hour

(default re-registration period in RFC3261) until an incoming message comes in.

If in this period re-routing happens (which is not entirely unlikely since the time

window is REALLY long), failures may occur. TCP connection will fail for sure, as

the SIP proxy if it occurs to be stateful. The TCP issue may be improved by forcing

keep-alives to detect issues early (which has to be done due to NATs anyhow),

and relying clients to re-register. Even for UDP, there may be one minute between

INVITE and CANCEL/ACK, still fairly long time window.

4.3 PATH Processing

This subsection describes ways how to remember path of SIP messages. We need to

guarantee that incoming requests for a SIP client will go through the same SIP server

71

through which the SIP client registered. The reason is for SIP clients behind NAT

and for clients using TCP transport for their communication. If we do not remember

the path, replies may be destined to the client with different source IP address and

port and the delivery fails. There are SIP standards for path remembering. However,

the standards require support in end-devices, implementation of which is still quite

rare. See the following subsections to find out how these extensions work. The last

paragraph of this section “Proprietary path remembering” mentions an alternative

solution which does not require compliant clients at the price of possible message

integrity violation.

Path Extension(RFC3327)

This RFC3327 standard describes an extension for remembering the path of SIP

requests. The Path extension header field allows accumulating and transmitting

the list of proxies between UA1 and REGISTRAR. Intermediate nodes such as

SIP proxy#1 (see Figure 4.4)may statefully retain Path information if needed by

operational policy. This mechanism is in many ways similar to the operation of

Record-Route in dialog-initiating requests. The routing established by the Path

header field mechanism applies only to requests transiting or originating in the home

domain. However, this approach must be implemented at both sides. SIP client and

SIP proxy. For more details about Path extension see [31].

Fig. 4.4: Path extension header field

Service Route Extension

The “Service-Route” is a SIP extension header field (RFC 3608[32]), which can

contain a route vector that will direct requests through a specific sequence of proxies.

A registrar uses a Service-Route header field to inform a SIP client of a service

route that, if used by the SIP client, will provide services from a proxy or set of

proxies associated with that registrar. The Service-Route header field is included by

a registrar in the response to a REGISTER request.

Then SIP clients include a Route header field in an initial request to force that

request to visit and potentially be serviced by one or more proxies. Using such a

72

route (called a ”service route” or ”preloaded route”) allows a SIP client to request

services from a specific home proxy or network of proxies.

Fig. 4.5: Service-route header field(simplified)

This approach must also be implemented at both sides. SIP client and SIP regis-

trar which is not we are looking for because of interoperability issues. In our anycast

scenarios this would work as a kind of bootstrap solution(using firstly anycast add-

ress and then unicast address).

Proprietary Path Remembering

This proprietary solution of path remembering involves Contact mangling on fron-

ting element. The new Contact header must include the information where the SIP

message came from and the unicast IP address of this fronting element. All this

information is encoded as new Contact SIP URI. Finally, the message is forwarded

to SIP cluster 1.1.2. At SIP cluster this format of Contact is stored in user location

DB. The following example and Figure 4.6 shows the way of path remembering. The

downside of this approach is that modification of the Contact header-field conflicts

with possible use of Message Integrity Check in RFC 4474[20]. Mostly, these MICs

as described in the RFC 4474 are not implemented nowadays.

The format of Contact before REGISTER enters fronting element(see 3.3 for the

scenario).

Contact: "Test" <sip:test@192.168.1.100:5060>;transport=udp"

The format of Contact when REGISTER is leaving fronting element where the

address field of SIP URI is 213.192.59.76 the unicast IP address of fronting element,

and the username field consists 147.229.214.225:5090 public IP address and port

where the request came from and 192.168.1.100:5090 is private IP address and port

of the SIP client behind NAT. The “ NAT ” mark is for requests that came from

behind NAT. It is used for recognition once the Contact is decoded.

73

Fig. 4.6: Proprietary Contact mangling

Contact: "Test" <sip:_NAT_*test**192.168.1.100*5090**147.229.214.225*5090*@
213.192.59.76>

4.4 Implementation Details

For deploying our own anycast network we requested RIPE(Regional Internet Re-

gistry) for assigning IP address block 91.199.168.1/24 and AS(autonomous system)

number - AS44592. We installed two anycast nodes, in Prague and Berlin. These

nodes are fronting elements as mentioned in Chapter 4. They are forwarding all SIP

traffic to iptel.org’s SIP cluster. These nodes have assigned two unicast IP addresses

and the shared anycast IP address. At each node is running DNS server(named)

listening on anycast IP address and two instances of SER(SIP Express Router) for

testing both DNS-based and SIP-based methods. One SER is configured to handle

unicast-way SIP traffic which is bound with DNS server. In Appendix B.1 is SER

configuration for DNS-based scenario. The latter listens on anycast and the other

unicast IP address for incoming and outgoing SIP traffic(see Appendix B.2 for the

configuration).

SIP Express Router

SER (SIP Express Router) is a high-performance, configurable, free SIP server.

It can act as SIP registrar, proxy or redirect server. SER is a modular based and

features for example an application-server interface, presence support, SMS gateway,

RADIUS/syslog accounting and authorization, server status monitoring, etc. SER’s

configuration script is very powerful tool parsing SIP messages at low level. SER’s

configuration ability meets the needs of a whole range of scenarios including small-

office use, enterprise PBX replacements and carrier services. SER is being developed

by a team at iptel.org based in Prague and Berlin. The developer’s page can be found

at <http://iptel.org>.

DNS server setup

In a DNS registrar(not important which one) we registered our DNS servers ns.siptel.org

with IP address 91.199.168.1 and ns3.siptel.org with IP address 91.199.168.3. At the

74

http://iptel.org

both fronting elements are running DNS server which replies to requests sent to these

anycast IP addresses. DNS servers returns unicast IP address depending on location

of DNS resolver. It always chooses the closest DNS server in routing metrics. This

way SIP client forwards SIP messages to returned unicast IP address where is also

co-located RTP proxy.

BGP daemon

Each anycast node runs BGP daemon propagating 91.199.168.0/24 route to the

upstream Internet Service Provider(ISP). From the ISP the route propagates further

to the Internet.

75

5 CONCLUSION

Our anycast fronting elements in Prague and Berlin were tested and measured on

ICMP echo reply basis from planet-lab hosts. Because the anycast locations are

very close to each other the route convergence time was quite short. Re-routing

from Prague to Berlin took for most of planet-lab hosts between 10 and 20 seconds.

Interestingly, the other way from Berlin to Prague it took less than 10 seconds for

most of planet-lab hosts. In other terms this would be an outage of the service if

one of the anycast nodes fails. We also compared latency between shortest unicast

IP address destination against anycast IP address destination. It shows that anycast

does not provide the best proximity for SIP clients in 131 cases measured out of 195

planet-lab hosts. The reason is that our anycast nodes are very close to each other

and the routing path from planet-lab hosts is not very different. We also found out

that unicast and anycast routes are different even for the same physical destination.

We can conclude and proof that anycast metrics are not latency metrics, as verified

in our measurements but at least would eliminate the worst case scenarios in global

deployment.

We proposed four IP anycast-based methods for locating an RTP proxy close to

SIP clients. We decided to choose for further observations the DNS-based method

and the SIP-based method because they were easy to deploy. DNS-based method is

resilient against re-routing, however due to frequently mis-implemented DNS clients

and proxy servers it can fail to react to changes timely and is subject to possible

proximity impairment. SIP-based method suffers from low resilience against routing

instabilities. These issues are covered in design chapter making our fronting elements

as stateless as possible and remaining stateful for TCP-based SIP traffic and SIP

traffic from SIP clients behind NAT.

We implemented DNS-based and SIP-based method at our anycast fronting ele-

ments using SIP Express Router. Our configuration worked and provided good pro-

ximity at coarse scale but not so much on finer scale. We did not thoroughly test it

because of problematic configuration for routing in instability scenarios and lack of

time for complete measurements. There are scenarios we are not able to solve such

as SIP-based method using TCP transport because of loosing connection in instable

scenario. We also found out that even for UDP is not easy to get smooth switch over

to different SIP proxy because of matching transaction ID at SIP cluster constructed

from branch and sent-by parameter at fronting elements. Sent-by is always different

because it is unicast IP address.

Each method we have been proposing has some drawbacks (see comparison in

Section 3.8). Also we had too few anycast nodes to validate the really important

76

coarse scenarios finding that anycast provides a good proximity.

5.1 Future Work

Proposed designs of methods mentioned in this thesis should be thoroughly tested,

tuned and measured. There are still some withstanding UDP and more complex

TCP issues especially for anycast SIP proxy servers and its behaviour in routing

instability scenarios we are facing to and need to solve.

We have not described the design of the IP-tunnels based method but it is a

good candidate for dealing with routing instability issues. There is no need to do

anything at SIP level but on the other side we must deal with remote RTP proxy

servers. This introduces additional concerns: latency and security. We need to do

further analysis of using the remote RTP proxy control protocol.

We need to do field measurements with an established global SIP user basis. This

will provide us with better view of locating RTP proxy for each method once we will

have more globally dispersed anycast nodes. Prague and Berlin locations are only

good as a functionality test but do not deliver a significant latency improvement.

We need to test how the SIP anycast setup will behave in failure scenarios such as

stopping the BGP route propagation and seeing what happens as the SIP traffic

converges to another anycast node.

Another work which needs to be done is a geo-failover. This means we need SIP

service with good latency and availability at different locations on the world. But we

need to solve two problems. One of them are geo-distributed RTP proxy servers and

the other one are geo-distributed SIP proxy servers. Anycast SIP proxy servers have

this feature build-in. The other methods will need further inspection and testing.

We need to test against some live populations and seeing the actual latency

savings. Also we need to remeasure with more better dispersed anycast nodes.

77

BIBLIOGRAPHY

[1] Abley J., Lindqvist K., Operation of Anycast Services, RFC 4786, December

2006 <http://www.ietf.org/rfc/rfc4786.txt>

[2] Abley J., Hierarchical Anycast for Global Service Distribution, ISC Technical

Note ISC-TN-2003-1, <http://www.isc.org/tn/isc-tn-2003-1.html>

[3] Abley J., A Software Approach to Distributing Requests for DNS Service using

GNU Zebra, ISC BIND 9 and FreeBSD, ISC Technical Note ISC-TN-2004-1,

March 2004, <http://www.isc.org/pubs/tn/isc-tn-2004-1.html>

[4] Ballani H., Francis P., Towards a Deployable IP Anycast Service, Proc. of First

Workshop on Real, Large Distributed Systems (WORLDS’04) San Francisco,

California, Dec 2004.

[5] Ballani H., Francis P., Ratnasamy S., A Measurement-based Deployment Pro-

posal for IP Anycast, Proc. of Internet Measurement Conference(IMC’06) Rio

de Janeiro, Brazil, Oct 2006.

[6] Ballani H., Francis P., Towards a global IP anycast service, SIGCOMM, 2005.

[7] Bhattacharjee S., Ammar M. H., Zegura Viren Shah E. W., Fei Z., Application-

Layer Anycasting, INFOCOM (3), pages 1388-1396, 1997.

[8] Chandra R., Traina P., BGP Communities Attribute, RFC1997, August 1996,

<http://www.ietf.org/rfc/rfc1997.txt>

[9] Chen, Lim, Katz, Overton, On the stability of nework distance estimation, SIG-

METRICS Perf. Eval. Rev., 2002

[10] CiscoTM Distributed Director, <http://www.cisco.com>

[11] Doyle J., Carroll J. D., Routing TCP/IP, Volume II (CCIE Professional Develo-

pment), Publisher: Cisco Press, April 2001, 976 pages, ISBN 978-1-57870-089-9

[12] Engel R., Peris V., Saha D., Basturk E., Haas R., Using IP Anycast For

Load Distribution And Server Location, In Proc. Third Global Internet Mini-

Conference, November 1998.

[13] Freedman M., Lakshminarayanan K., Mazieres D., OASIS: Anycast for Any

Service, In NSDI, 2006.

[14] Freedman M. J., Vutukuru M.,Feamster N., Balakrishnan H., Geographic loca-

lity of IP prefixes, In IMC, October 2005.

78

http://www.ietf.org/rfc/rfc4786.txt
http://www.isc.org/tn/isc-tn-2003-1.html
http://www.isc.org/pubs/tn/isc-tn-2004-1.html
http://www.ietf.org/rfc/rfc1997.txt
http://www.cisco.com

[15] Huston, G., NOPEER Community for Border Gateway Protocol (BGP) Route

Scope Control, RFC 3765, April 2004.

[16] Levine M., Lyon B., Underwood T., Operational experience with TCP and

Anycast - Cachefly, NANOG37, June 2006, <http://www.nanog.org/mtg-

0606/pdf/matt.levine.pdf>.

[17] Mao Z., Govindan R., Varghese G., Katz R., ”Route Flap Dampening exacer-

bates Internet routing convergence”, SIGCOMM’02, June 2002.

[18] Miller K., Deploying IP Anycast, Carnegie Mellon Network Group, NANOG

29, October 2003 <http://www.net.cmu.edu/pres/anycast/anycast.pdf>

[19] Partridge C., Mendez T., Milliken W., Host Anycasting Service, RFC 1546,

November 1993. <http://www.ietf.org/rfc/rfc1546.txt>

[20] Peterson J., Jennings C., Enhancements for Authenticated Identity

Management in the Session Initiation Protocol (SIP), August 2006,

<http://www.ietf.org/rfc/rfc4474.txt>

[21] Rekhter Y., Li T., Hares S., A Border Gateway Protocol 4 (BGP-4), RFC 4271,

January 2006, <http://www.ietf.org/rfc/rfc4271.txt>

[22] Rekhter Y., Moskowitz B., Karrenberg D., Groot G. J., Lear E., Add-

ress Allocation for Private Internets,BCP 5, RFC 1918, February 1996,

<http://www.ietf.org/rfc/rfc1918.txt>

[23] Rexford J., Wang J., Xiao Z., Zhang Y., BGP Routing Stability of Popular

Destinations, In IMW, Nov. 2002.

[24] Rosenberg J., Schulzrinne H., Camarillo G., Johnston A., Peterson J., Sparks

R., Handley M. and E. Schooler, SIP: Session Initiation Protocol, RFC 3261,

June 2002. <http://www.ietf.org/rfc/rfc3261.txt>.

[25] Rosenberg J., and Schulzrinne H., An Extension to the Session Ini-

tiation Protocol (SIP) for Symmetric Response Routing, August 2003

<http://www.ietf.org/rfc/rfc3581.txt>.

[26] Rosenberg J., Mahy R., and Huitema C., Traversal Using Relay NAT (TURN),

Sseptember 2005, <http://www.tools.ietf.org/html/draft-rosenberg-midcom-

turn-08>.

79

http://www.nanog.org/mtg-0606/pdf/matt.levine.pdf
http://www.nanog.org/mtg-0606/pdf/matt.levine.pdf
http://www.net.cmu.edu/pres/anycast/anycast.pdf
http://www.ietf.org/rfc/rfc1546.txt
http://www.ietf.org/rfc/rfc4474.txt
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1918.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.tools.ietf.org/html/draft-rosenberg-midcom-turn-08
http://www.tools.ietf.org/html/draft-rosenberg-midcom-turn-08

[27] Rosenberg J., Interactive Connectivity Establishment (ICE): A Methodology

for Network Address Translator (NAT) Traversal for Multimedia Session Es-

tablishment Protocols, October 2007, <http://tools.ietf.org/html/draft-ietf-

mmusic-ice-19>.

[28] Schulzrinne H., Casner S., Frederick R., Jacobson V., RTP: A Trans-

port Protocol for Real-Time Applications, RFC 1889, January 1996.

<http://www.ietf.org/rfc/rfc1889.txt>.

[29] Yu S., Zhou W. , Wu Y., Research on Network Anycast, Fifth International Con-

ference on Algorithms and Architectures for Parallel Processing (ICA3PP’02),

page 154, October 2002.

[30] Weinberger J., Huitema C., and Mahy R., STUN - Simple Traversal of User Da-

tagram Protocol (UDP)Through Network Address Translators(NATs), March

2003 <http://www.ietf.org/rfc/rfc3489.txt>.

[31] Willis D., Hoeneisen B., Session Initiation Protocol (SIP) Extension

Header Field for Registering Non-Adjacent Contacts, December 2002,

<http://www.ietf.org/rfc/rfc3327.txt>

[32] Willis D., Hoeneisen B., Session Initiation Protocol (SIP) Extension Hea-

der Field for Service Route Discovery During Registration, October 2003,

<http://www.ietf.org/rfc/rfc3608.txt>

[33] Cisco documentation - Border Gateway Protocol (BGP), October 2006,

<http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito doc/index.htm>

80

http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3608.txt
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm

LIST OF APPENDICIES

A Anycast Measurements 82

A.1 Latency of ICMP replies of Prague and Berlin Anycast Nodes 82

B SER Configurations 85

B.1 SER Config for Anycast DNS-based Method 85

B.2 SER Config for Anycast SIP-based Method 89

81

A ANYCAST MEASUREMENTS

A.1 Latency of ICMP replies of Prague and Ber-

lin Anycast Nodes
Prague anycast node

Hint:
PRG - Prague, TXL - Berlin
A2Uloc - difference of anycast/prague to unicast/prague
A2Usho - difference of anycast to shortest unicast ping
Match - if the shortest ping matches the anycast selection

Any PRG TXL A2Uloc A2Uloc A2Usho A2Usho Select Match Host
[ms] [ms] [ms] [ms] [%] [ms] [%] anycast

21 21 19 0.0 0.2 1.3 6.6 Prague No 146-179.surfsnel.dsl.internl.net
114 113 110 1.1 1.0 4.8 4.4 Prague No 75-130-96-12.static.oxfr.ma.charter.com
122 122 116 -0.3 -0.2 5.6 4.8 Prague No bob.cc.vt.edu
186 208 178 -21.5 -12.0 8.2 4.6 Prague No deimos.cecalc.ula.ve
114 109 108 4.7 4.3 5.8 5.4 Prague No earth.cs.brown.edu
308 307 297 1.0 0.3 10.8 3.6 Prague No eve.ee.ntu.edu.tw
190 190 182 0.1 0.0 8.6 4.7 Prague No grouse.hpl.hp.com
150 150 131 -0.3 -0.2 19.3 14.7 Prague No kc-sce-plab1.umkc.edu
159 141 131 18.1 13.7 27.9 21.1 Prague No kupl1.ittc.ku.edu
114 113 113 0.9 0.8 1.1 1.0 Prague No lefthand.eecs.harvard.edu
41 38 41 3.7 8.9 3.7 9.7 Prague Yes lsirextpc01.epfl.ch
197 198 180 -0.3 -0.2 17.5 9.7 Prague No node1.lbnl.nodes.planet-lab.org
168 169 156 -0.8 -0.5 12.0 7.7 Prague No node1.planetlab.uprr.pr
50 50 42 -0.0 -0.1 7.9 18.8 Prague No onelab3.warsaw.rd.tp.pl
109 109 101 0.2 0.2 7.9 7.8 Prague No orbpl1.rutgers.edu
39 40 45 -1.2 -2.7 -1.2 -3.0 Prague Yes peeramide.irisa.fr
109 112 125 -3.3 -2.6 -3.3 -2.9 Prague Yes pepper.planetlab.cs.umd.edu
57 63 69 -6.3 -9.0 -6.3 -9.9 Prague Yes pl1.grid.kiae.ru
294 294 281 0.7 0.2 13.2 4.7 Prague No pl1-higashi.ics.es.osaka-u.ac.jp
54 44 38 10.0 26.1 16.6 43.3 Prague No pl-1.hip.fi
292 292 281 -0.6 -0.2 10.8 3.8 Prague No pl1.planetlab.ics.tut.ac.jp
325 325 323 -0.3 -0.1 1.9 0.6 Prague No pl1snu.koren21.net
140 140 174 0.0 0.0 0.0 0.0 Prague Yes pl1.ucs.indiana.edu
16 16 39 0.0 0.1 0.0 0.3 Prague Yes plab1-c703.uibk.ac.at
161 172 133 -11.4 -8.5 27.3 20.4 Prague No plab1.eece.ksu.edu
185 184 168 0.9 0.5 17.3 10.3 Prague No plab1.engr.sjsu.edu
12 12 35 0.1 0.2 0.1 0.6 Prague Yes plab1-itec.uni-klu.ac.at
118 117 103 1.0 1.0 15.3 14.8 Prague No plab1.nec-labs.com
21 21 31 0.1 0.2 0.1 0.3 Prague Yes planck227.test.ibbt.be
122 122 116 0.1 0.1 6.3 5.4 Prague No planet02.csc.ncsu.edu
296 297 286 -1.4 -0.5 10.3 3.6 Prague No planet0.jaist.ac.jp
179 180 167 -1.0 -0.6 12.2 7.3 Prague No planet1.berkeley.intel-research.net
40 40 30 0.0 0.0 10.4 34.6 Prague No planet1.colbud.hu
114 115 104 -0.9 -0.8 10.2 9.8 Prague No planet1.cs.rochester.edu
180 180 173 -0.1 -0.0 6.7 3.9 Prague No planet1.cs.ucsb.edu
111 112 101 -1.5 -1.5 10.1 10.0 Prague No planet1.ecse.rpi.edu
107 106 95 0.5 0.5 11.7 12.2 Prague No planet1.scs.cs.nyu.edu
123 123 113 -0.2 -0.2 10.4 9.2 Prague No planet2.pittsburgh.intel-research.net
128 127 141 0.6 0.4 0.6 0.5 Prague Yes planet.cc.gt.atl.ga.us
174 179 165 -5.4 -3.2 8.9 5.4 Prague No planetdev01.fm.intel.com
110 110 99 -0.0 -0.0 11.0 11.1 Prague No planetlab-01.bu.edu
39 31 40 8.1 19.9 8.1 25.7 Prague Yes planetlab01.cnds.unibe.ch
185 182 172 2.8 1.6 12.3 7.1 Prague No planetlab01.cs.washington.edu
171 170 156 1.6 1.0 15.6 10.0 Prague No planetlab-01.ece.uprm.edu
32 32 26 -0.3 -1.0 6.3 24.0 Prague No planetlab01.ethz.ch
119 119 114 -0.5 -0.4 4.9 4.3 Prague No planetlab01.sys.virginia.edu
181 180 176 0.5 0.3 4.9 2.8 Prague No planetlab-1a.ics.uci.edu
7 7 30 -0.3 -1.0 -0.3 -4.1 Prague Yes planetlab1.ani.univie.ac.at

165 165 155 -0.2 -0.1 10.3 6.6 Prague No planetlab1.arizona-gigapop.net
1 1 21 -0.3 -1.3 -0.3 -19.5 Prague Yes planetlab1.cesnet.cz
48 48 32 0.1 0.4 16.3 50.3 Prague No planetlab1.ci.pwr.wroc.pl
121 121 121 0.4 0.4 0.4 0.4 Prague Yes planetlab1.cis.upenn.edu
162 163 141 -0.8 -0.6 21.1 14.9 Prague No planetlab1.citadel.edu
132 129 117 2.7 2.3 14.9 12.7 Prague No planetlab-1.cmcl.cs.cmu.edu
111 112 106 -0.8 -0.8 4.6 4.3 Prague No planetlab1.cnds.jhu.edu
110 111 113 -0.2 -0.2 -0.2 -0.2 Prague Yes planetlab1.csail.mit.edu
159 160 151 -1.3 -0.9 7.6 5.0 Prague No planetlab1.cs.colorado.edu
106 106 95 0.0 0.0 11.6 12.2 Prague No planetlab1.cs.columbia.edu
119 122 109 -2.5 -2.3 10.7 9.8 Prague No planetlab1.cs.cornell.edu
143 143 137 -0.3 -0.2 6.0 4.4 Prague No planetlab1.cse.msu.edu
146 146 181 0.0 0.0 0.0 0.0 Prague Yes planetlab1.cse.nd.edu
131 134 122 -2.5 -2.1 9.7 8.0 Prague No planetlab-1.cse.ohio-state.edu
32 32 26 -0.1 -0.3 5.7 21.5 Prague No planetlab1.csg.uzh.ch
82 82 71 -0.0 -0.0 10.3 14.4 Prague No planetlab1.cslab.ece.ntua.gr
140 140 170 -0.0 -0.0 -0.0 -0.0 Prague Yes planetlab1.cs.purdue.edu

82

153 153 148 -0.5 -0.3 4.4 2.9 Prague No planetlab1.csres.utexas.edu
180 180 175 -0.4 -0.2 5.0 2.9 Prague No planetlab1.cs.ucla.edu
181 181 175 -0.5 -0.3 6.1 3.5 Prague No planet-lab1.cs.ucr.edu
132 132 136 -0.6 -0.4 -0.6 -0.4 Prague Yes planetlab1.cs.uiuc.edu
112 110 98 2.2 2.2 13.8 14.0 Prague No planetlab1.cs.umass.edu
189 188 207 1.4 0.7 1.4 0.8 Prague Yes planetlab1.cs.uoregon.edu
15 15 14 -0.0 -0.3 1.4 9.6 Prague No planetlab1.cs.vu.nl
140 138 132 1.6 1.2 8.2 6.2 Prague No planetlab1.dtc.umn.edu
185 185 188 -0.6 -0.3 -0.6 -0.3 Prague Yes planetlab1.eas.asu.edu
187 187 175 -0.6 -0.4 12.0 6.8 Prague No planetlab1.ece.ucdavis.edu
130 130 131 0.0 0.0 0.0 0.0 Prague Yes planetlab1.eecs.northwestern.edu
157 157 154 -0.6 -0.4 2.5 1.6 Prague No planetlab1.eecs.ucf.edu
139 138 133 1.7 1.3 6.8 5.1 Prague No planetlab1.eecs.umich.edu
187 187 206 0.1 0.1 0.1 0.1 Prague Yes planetlab1.een.orst.edu
3691 3656 2756 35.3 1.3 935.4 33.9 Prague No planetlab1.eurecom.fr
62 62 60 -0.0 -0.1 2.5 4.2 Prague No planetlab1.fct.ualg.pt
289 278 274 10.5 3.8 15.5 5.7 Prague No planetlab-1.fing.edu.uy
4 4 25 -0.1 -0.3 -0.1 -1.5 Prague Yes planetlab1.fit.vutbr.cz

185 185 153 0.0 0.0 31.7 20.6 Prague No planetlab1.flux.utah.edu
45 45 37 -0.4 -1.0 8.4 22.7 Prague No planetlab1.fri.uni-lj.si
44 44 32 -0.1 -0.2 11.9 36.7 Prague No planetlab1.hiit.fi
311 314 320 -2.9 -0.9 -2.9 -0.9 Prague Yes planetlab1.icu.ac.kr
44 49 28 -4.4 -15.4 16.1 56.1 Prague No planetlab1.ifi.uio.no
282 282 270 0.5 0.2 12.4 4.6 Prague No planetlab1.iii.u-tokyo.ac.jp
299 301 292 -2.1 -0.7 6.9 2.4 Prague No planetlab1.iitb.ac.in
35 35 23 -0.0 -0.2 12.6 54.5 Prague No planetlab-1.imperial.ac.uk
32 32 26 0.0 0.0 6.6 25.1 Prague No planetlab1.inf.ethz.ch
57 57 55 0.2 0.4 2.1 3.8 Prague No planetlab-1.iscte.pt
112 112 108 -0.8 -0.7 3.1 2.9 Prague No planetlab1.isi.jhu.edu
53 53 44 0.0 0.0 8.8 19.7 Prague No planetlab1.it.uc3m.es
43 38 26 4.6 17.0 16.6 61.7 Prague No planetlab-1.it.uu.se
45 45 51 0.1 0.2 0.1 0.2 Prague Yes planetlab1lannion.elibel.tm.fr
269 269 245 0.0 0.0 24.1 9.8 Prague No planetlab1.larc.usp.br
53 53 48 -0.1 -0.3 4.9 10.1 Prague No planetlab1.ls.fi.upm.es
34 45 30 -10.5 -35.0 4.7 15.6 Prague No planetlab-1.man.poznan.pl
185 186 174 -0.8 -0.5 11.7 6.7 Prague No planetlab1.millennium.berkeley.edu
358 357 335 1.2 0.3 23.3 7.0 Prague No planetlab1.netmedia.gist.ac.kr
35 35 22 -0.3 -1.2 12.8 56.0 Prague No planetlab1.nrl.dcs.qmul.ac.uk
320 309 296 10.8 3.7 24.2 8.2 Prague No planetlab1.ntu.nodes.planet-lab.org
107 107 95 0.4 0.4 12.2 12.8 Prague No planetlab1.poly.edu
357 299 209 58.0 27.8 148.7 71.1 Prague No planetlab1.pop-mg.rnp.br
191 191 201 -0.1 -0.1 -0.1 -0.1 Prague Yes planetlab1.postel.org
72 72 48 0.0 0.0 23.9 49.3 Prague No planetlab1.science.unitn.it
57 58 56 -0.1 -0.2 1.7 3.1 Prague No planetlab-1.tagus.ist.utl.pt
72 71 62 0.6 0.9 9.2 14.6 Prague No planetlab1.tlm.unavarra.es
40 40 30 -0.0 -0.0 10.7 35.2 Prague No planetlab1.tmit.bme.hu
34 34 43 0.1 0.2 0.1 0.3 Prague Yes planetlab-1.tssg.org
403 413 396 -10.4 -2.6 6.8 1.7 Prague No planetlab1.ucb-dsl.nodes.planet-lab.org
135 138 129 -2.5 -2.0 6.7 5.2 Prague No planetlab1.uc.edu
183 183 178 0.0 0.0 4.9 2.7 Prague No planetlab1.ucsd.edu
276 273 204 2.7 1.3 72.1 35.3 Prague No planet-lab1.ufabc.edu.br
39 39 40 -0.1 -0.2 -0.1 -0.2 Prague Yes planetlab1.unineuchatel.ch
154 165 152 -11.3 -7.4 2.0 1.3 Prague No planetlab-1.unk.edu
67 67 62 -0.0 -0.1 4.9 7.9 Prague No planetlab1.upc.es
151 151 141 0.3 0.2 9.7 6.8 Prague No planetlab1.uta.edu
139 140 137 -0.6 -0.4 2.6 1.9 Prague No planetlab-1.vuse.vanderbilt.edu
110 111 101 -0.5 -0.5 9.4 9.3 Prague No planetlab1.williams.edu
41 41 28 -0.0 -0.2 13.1 46.5 Prague No planetlab1.xeno.cl.cam.ac.uk
29 30 18 -0.3 -1.5 11.7 64.7 Prague No planetlab-2.amst.nodes.planet-lab.org
349 357 342 -7.4 -2.2 7.4 2.2 Prague No planetlab2.comp.nus.edu.sg
127 127 118 0.1 0.1 9.5 8.1 Prague No planetlab2.cs.pitt.edu
82 82 79 -0.2 -0.3 3.3 4.1 Prague No planetlab2.cs.uoi.gr
138 137 141 1.1 0.8 1.1 0.8 Prague Yes planetlab2.cs.wisc.edu
147 146 143 1.4 0.9 3.9 2.7 Prague No planetlab-2.ece.iastate.edu
333 329 260 4.6 1.8 73.4 28.2 Prague No planetlab2.pop-rs.rnp.br
129 128 119 1.1 0.9 10.3 8.6 Prague No planetlab-2.rml.ryerson.ca
165 167 162 -2.2 -1.4 3.3 2.1 Prague No planetlab2.utep.edu
48 38 32 10.2 31.8 16.3 50.6 Prague No planetlab3.mini.pw.edu.pl
57 57 49 0.0 0.0 7.9 16.0 Prague No planetlab3.piotrkow.rd.tp.pl
32 32 39 0.1 0.3 0.1 0.4 Prague Yes planetlab-europe-01.ipv6.lip6.fr
188 188 197 -0.2 -0.1 -0.2 -0.1 Prague Yes planetlabnode-1.docomolabs-usa.com
111 112 99 -0.9 -0.9 11.5 11.5 Prague No planetlabone.ccs.neu.edu
177 177 165 -0.1 -0.0 12.4 7.5 Prague No planetslug1.cse.ucsc.edu
787 821 531 -34.0 -6.4 256.1 48.2 Prague No plnode01.cs.mu.oz.au
295 294 284 1.1 0.4 10.7 3.8 Prague No pub1-s.ane.cmc.osaka-u.ac.jp
165 166 169 -0.6 -0.4 -0.6 -0.4 Prague Yes ricepl-1.cs.rice.edu
178 177 194 0.2 0.1 0.2 0.1 Prague Yes sanfrancisco.planetlab.pch.net
133 133 120 0.1 0.1 12.7 10.5 Prague No scratchy.cs.uga.edu
81 81 71 0.1 0.2 9.8 13.7 Prague No stella.planetlab.ntua.gr
40 41 46 -0.4 -0.9 -0.4 -1.0 Prague Yes sv01-h010.utt.fr
140 140 131 -0.2 -0.1 9.0 6.9 Prague No vn1.cs.wustl.edu

83

Berlin anycast node

Hint:
PRG - Prague, TXL - Berlin
A2Uloc - difference of anycast/berlin to unicast/berlin
A2Usho - difference of anycast to shortest unicast ping
Match - if the shortest ping matches the anycast selection

Any PRG TXL A2Uloc A2Uloc A2Usho A2Usho Select Match Host
[ms] [ms] [ms] [ms] [%] [ms] [%] anycast

26 22 26 0.1 0.4 4.3 19.5 Berlin No aladdin.planetlab.extranet.uni-passau.de
28 36 27 0.2 0.5 0.2 0.5 Berlin Yes chronos.disy.inf.uni-konstanz.de
165 184 165 0.6 0.4 0.6 0.4 Berlin Yes cs-planetlab1.cs.surrey.sfu.ca
18 24 18 0.1 0.7 0.1 0.7 Berlin Yes edi.tkn.tu-berlin.de
23 31 23 0.3 1.4 0.3 1.4 Berlin Yes freedom.ri.uni-tuebingen.de
19 27 19 -0.3 -1.7 -0.3 -1.7 Berlin Yes host1.planetlab.informatik.tu-darmstadt.de
21 29 20 0.5 2.4 0.5 2.4 Berlin Yes irabonnie.iralab.uni-karlsruhe.de
133 140 131 1.7 1.3 1.7 1.3 Berlin Yes mtuplanetlab1.cs.mtu.edu
119 130 119 -0.0 -0.0 -0.0 -0.0 Berlin Yes pl1.csl.utoronto.ca
141 129 145 -4.3 -2.9 11.6 8.9 Berlin No pl1.cs.utk.edu
64 55 64 -0.0 -0.0 9.7 17.6 Berlin No plab-1.sinp.msu.ru
18 15 18 0.0 0.1 2.9 18.8 Berlin No plab201.wiai.uni-bamberg.de
22 24 23 -0.3 -1.2 -0.3 -1.2 Berlin Yes plane-lab-pb1.uni-paderborn.de
18 24 18 0.0 0.1 0.0 0.1 Berlin Yes planet01.hhi.fraunhofer.de
18 20 18 0.0 0.1 0.0 0.1 Berlin Yes planet1.inf.tu-dresden.de
19 21 19 -0.2 -0.9 -0.2 -0.9 Berlin Yes planet1.l3s.uni-hannover.de
132 133 131 1.1 0.9 1.1 0.9 Berlin Yes planet1.ottawa.canet4.nodes.planet-lab.org
165 168 167 -2.6 -1.5 -2.6 -1.5 Berlin Yes planet1.scs.stanford.edu
20 15 20 0.2 0.8 5.9 39.4 Berlin No planet2.prakinf.tu-ilmenau.de
122 131 122 -0.0 -0.0 -0.0 -0.0 Berlin Yes planetlab01.erin.utoronto.ca
298 303 292 5.7 2.0 5.7 2.0 Berlin Yes planetlab-01.kyushu.jgn2.jp
21 12 22 -0.1 -0.5 9.3 73.9 Berlin No planetlab01.mpi-sws.mpg.de
279 293 279 -0.1 -0.0 -0.1 -0.0 Berlin Yes planetlab-01.naist.jp
276 287 276 -0.0 -0.0 -0.0 -0.0 Berlin Yes planetlab0.dojima.wide.ad.jp
269 280 269 -0.1 -0.0 -0.1 -0.0 Berlin Yes planetlab0.otemachi.wide.ad.jp
133 118 127 6.0 4.8 15.0 12.7 Berlin No planetlab1.cs.dartmouth.edu
145 134 139 6.0 4.3 11.3 8.4 Berlin No planetlab1.csee.usf.edu
110 118 111 -1.2 -1.1 -1.2 -1.1 Berlin Yes planetlab-1.cs.princeton.edu
165 168 170 -5.3 -3.1 -3.7 -2.2 Berlin No planetlab-1.cs.uh.edu
189 198 189 0.0 0.0 0.0 0.0 Berlin Yes planetlab1.eecs.wsu.edu
25 15 25 0.0 0.1 9.8 62.1 Berlin No planetlab1.exp-math.uni-essen.de
20 15 20 -0.1 -0.6 5.7 37.7 Berlin No planetlab1.fem.tu-ilmenau.de
19 24 19 0.0 0.2 0.0 0.2 Berlin Yes planetlab-1.fokus.fraunhofer.de
131 110 125 6.3 5.0 20.7 18.7 Berlin No planetlab1.georgetown.edu
21 22 21 0.2 0.8 0.2 0.8 Berlin Yes planetlab1.informatik.uni-goettingen.de
23 13 23 -0.1 -0.2 9.6 69.8 Berlin No planetlab1.informatik.uni-kl.de
23 14 23 0.1 0.4 9.4 67.2 Berlin No planetlab1.informatik.uni-wuerzburg.de
23 13 23 0.1 0.5 9.6 69.3 Berlin No planetlab1.itwm.fhg.de
26 16 26 0.0 0.2 9.4 56.4 Berlin No planetlab1.lkn.ei.tum.de
269 282 269 0.0 0.0 0.0 0.0 Berlin Yes planetlab1.sfc.wide.ad.jp
135 137 136 -1.0 -0.8 -1.0 -0.8 Berlin Yes planetlab1.win.trlabs.ca
19 25 4 15.2 324.4 15.2 324.4 Berlin Yes planetlab1.wiwi.hu-berlin.de
23 24 23 -0.1 -0.6 -0.1 -0.6 Berlin Yes planetlab2.eecs.jacobs-university.de
279 351 346 -67.7 -19.5 -67.7 -19.5 Berlin Yes planetlab2.ie.cuhk.edu.hk
18 12 18 0.1 0.3 5.8 45.2 Berlin No planetlab2.informatik.uni-erlangen.de
119 128 128 -8.8 -6.8 -8.5 -6.7 Berlin No planetlab2.mnlab.cti.depaul.edu
23 30 24 -0.8 -3.5 -0.8 -3.5 Berlin Yes planetvs1.informatik.uni-stuttgart.de
104 114 108 -4.0 -3.6 -4.0 -3.6 Berlin Yes plgmu2.ite.gmu.edu
123 128 117 5.9 5.0 5.9 5.0 Berlin Yes server1.planetlab.iit-tech.net

ICMP packets from 146 planet-lab nodes were routed to Prague anycast node
and from 49 planet-lab nodes packets were routed to Berlin anycast node.

32.8%(64 nodes) matched and 67.2%(131 nodes) did not match the measured latency of selected
anycast destination and unicast ping to the same destination.
Measured out of total 195 planet-lab nodes.

84

B SER CONFIGURATIONS

B.1 SER Config for Anycast DNS-based Method
----------- global configuration parameters ------------------------

adjust debug level, useful values are 0 (shut up) or >5 (very verbose)
debug=3
memdbg=100

check_via=no
dns=no
rev_dns=no

listen="213.192.59.77"

------------------ module loading ----------------------------------

loadmodule "sl"
loadmodule "rr"
loadmodule "maxfwd"
loadmodule "nathelper"
loadmodule "textops"
loadmodule "ctl"
loadmodule "uri"
loadmodule "tm"
loadmodule "mangler"

optional listen addresses, if no one is specified,
ctl will listen on unixs:/tmp/ser_ctl
modparam("ctl", "binrpc", "unix:/tmp/ser_ctl_unicast") # default
unix sockets and fifo creation parameters
modparam("ctl", "mode", 0660) # permissions
#modparam("ctl", "group", "ser")

#: -- rr params --
#: add value to ;lr param to make some broken UAs happy
modparam("rr", "enable_full_lr", 1)

#: don’t add fromtags to RR, it helps keep the messages smaller
modparam("rr", "append_fromtag", 0)

#advanced options

dns_retr_time=1
dns_retr_no=1
dns_servers_no=1
dns_use_search_list=no

use_dns_cache=on
use_dns_failover=on

use_dst_blacklist=on
dst_blacklist_mem=10
dst_blacklist_expire=300
dst_blacklist_gc_interval=120

tcp_connection_lifetime=3600
tcp_max_connections=1024 # 1024 connections
tcp_send_timeout=5
tcp_connect_timeout=1
tcp_buf_write=1
tcp_fd_cache=1
tcp_conn_wq_max=65536
tcp_wq_max=10240000
tcp_delayed_ack=1
tcp_linger2=10
tcp_keepalive=yes
tcp_keepidle=30
tcp_keepintvl=5
tcp_keepcnt=4

flags F_NAT, F_FWD_IPTEL, F_RELAY_ANYCAST, F_ORIG_RTPPROXY,
F_MANGLE_CONTACT_NONNAT_REPLY;

route{

#: initial sanity checks -- messages with
#: max_forwards==0, or excessively long requests
if (!mf_process_maxfwd_header("10")) {

sl_send_reply("483","Too Many Hops");
break;

};

85

if (msg:len >= 2048) {
sl_send_reply("513", "Message too big");
break;

};

force_rport();
force_tcp_alias();

/* RR disabled, interferes badly with contact rewriting/uri fixing */
#: we record-route all messages -- to make sure that
#: subsequent messages will go through our proxy; that’s
#: particularly good if upstream and downstream entities
#: use different transport protocol
#: we don’t record route REGISTERs, messages within
#: a dialog (pointless).

if (!method=="REGISTER" && !has_totag())
if (proto==udp)

record_route_preset("213.192.59.77");
else if (proto==tcp)

record_route_preset("213.192.59.77;transport=tcp");
else{

sl_send_reply("500", "Unsupported protocol");
drop;

}
#record_route();

#: P-Hint and P-Behind-NAT are used by us, don’t allow it before
remove_hf("P-Hint");
remove_hf("P-Behind-NAT");

set source ip used for sending
if (src_ip==213.192.59.75){

if it comes from iptel use anycast
#force_send_socket(91.199.168.1);
route(R_FIX_URI); # fix possible mangled uris

}else{
else use normal ip (it should be forwarded back to iptel)
#force_send_socket(217.9.54.30);
append_hf("P-iptel-fwd: yes\r\n");
setflag(F_FWD_IPTEL);
if NAT, mangle contacts (we want subseq. messages to go
through us, so this should be applied both to normal contact
updating request and to REGISTERs)
if (isflagset(F_NAT) || nat_uac_test("19")){

setflag(F_NAT);
}
mangle all the contacts due to possible firewalls

if (!search(’^(Contact|m)[\t]*:.*sips?:[^>[:cntrl:]@]*_RCVD|NAT_’))
{

only if not already fixed
if (isflagset(F_NAT)){

encode_contact("_NAT_", "213.192.59.77");
append_hf("P-Behind-NAT: Yes\r\n");

}else{
encode_contact("_RCVD_", "213.192.59.77");
append_hf("P-Contact-Mangled: Yes\r\n");

}
if (method=="REGISTER"){

resetflag(F_NAT);
t_on_reply("R_UNMANGLE_CONTACT_REPLY");

}
}

}
/* RR interferes with the contact rewriting/uri fixing

(loose_route() sees a myself uri and thinks a strict router needs fixing..)
*/

#: subsequent messages withing a dialog should take the
#: path determined by record-routing
if (loose_route()) {

if (!has_totag()){
sl_send_reply("404", "Preloaded routes forbidden");
break;

}
resetflag(F_FWD_IPTEL); # obey rr

}

route(R_FWD); # forward
}

onreply_route[R_RTPPROXY_REPLY]{
if (status=~ "(183)|2[0-9][0-9]"){

if (!is_present_hf("P-RTP-Proxy")){
force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");

}
route(R_MANGLE_CONTACT_REPLY);

86

}
}

onreply_route[R_MANGLE_CONTACT_REPLY]{
if (status=~ "(18[0-9])|2[0-9][0-9]"){

if ((src_ip!=213.192.59.75) &&
!search(’^(Contact|m)[\t]*:.*sips?:[^>[:cntrl:]@]*_(RCVD|NAT)_’)){

if (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))
encode_contact("_RCVD_", "213.192.59.77");

else
encode_contact("_NAT_", "213.192.59.77");

}
}

}

onreply_route[R_UNMANGLE_CONTACT_REPLY]{
decode_contact_header();

}

failure_route[R_RTPPROXY_FAILURE]{
if (isflagset(F_ORIG_RTPPROXY))

unforce_rtp_proxy();
}

route[R_FWD]{
if (isflagset(F_NAT))

route(R_RTPPROXY);
else if (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))

t_on_reply("R_MANGLE_CONTACT_REPLY");
if (isflagset(F_RELAY_ANYCAST))

route(R_RELAY_ANYCAST);
else if (isflagset(F_FWD_IPTEL))

route(R_FWD_IPTEL);
else{

#forward(uri:host, uri:port);
t_relay();

}
}

route[R_RELAY_ANYCAST]{
t_relay();

}

route[R_FWD_IPTEL]
{

t_relay("sip01.iptel.org", "5060");
}

route[R_FIX_URI]
{

if (uri==myself){
if (uri=~"_NAT_"){

setflag(F_NAT);
if (!decode_contact()){

sl_reply("500", "decode uri failed");
drop;

}
append_hf("P-uri-decoded: NAT\r\n");

}else if (uri=~"_RCVD_"){
setflag(F_MANGLE_CONTACT_NONNAT_REPLY);
if (!decode_contact()){

sl_reply("500", "decode uri failed");
drop;

}
append_hf("P-uri-decoded: non-NAT\r\n");

}else{
sl_reply("500", "local uris not allowed");
drop;

}
setflag(F_RELAY_ANYCAST);

}else{
append_hf("P-iptel-fwd: failover\r\n");
setflag(F_FWD_IPTEL);

}
}

route[R_RTPPROXY]{
don’t RTP proxy if somebody already did it before us
if (!is_present_hf("P-RTP-Proxy")){

if (method=="BYE"||method=="CANCEL")

87

unforce_rtp_proxy();
else if (method=="INVITE"){

force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");
setflag(F_ORIG_RTPPROXY);
t_on_failure("R_RTPPROXY_FAILURE");
t_on_reply("R_RTPPROXY_REPLY");

}
}else{

if RTP PROXIED by someone else, we still want to
catch the reply to fix the contact
if (method=="INVITE")

t_on_reply("R_MANGLE_CONTACT_REPLY");
}

}

88

B.2 SER Config for Anycast SIP-based Method
----------- global configuration parameters ------------------------

adjust debug level, useful values are 0 (shut up) or >5 (very verbose)
debug=3
memdbg=100

check_via=no
dns=no
rev_dns=no

listen="91.199.168.1"
listen="213.192.59.76"

------------------ module loading ----------------------------------

loadmodule "sl"
loadmodule "rr"
loadmodule "maxfwd"
loadmodule "nathelper"
loadmodule "textops"
loadmodule "ctl"
loadmodule "uri"
loadmodule "tm"
loadmodule "mangler"

optional listen addresses, if no one is specified,
ctl will listen on unixs:/tmp/ser_ctl
modparam("ctl", "binrpc", "unix:/tmp/ser_ctl") # default
unix sockets and fifo creation parameters
modparam("ctl", "mode", 0660) # permissions

#: -- rr params --
#: add value to ;lr param to make some broken UAs happy
modparam("rr", "enable_full_lr", 1)

#: don’t add fromtags to RR, it helps keep the messages smaller
modparam("rr", "append_fromtag", 0)

#: -- nathelper params --
#modparam("nathelper", "rtpproxy_disable", 1)

#advanced options

#mlock_pages=yes
#shm_force_alloc=yes
#real_time=7

dns_retr_time=1
dns_retr_no=1
dns_servers_no=1
dns_use_search_list=no

use_dns_cache=on
use_dns_failover=on

use_dst_blacklist=on
dst_blacklist_mem=10
dst_blacklist_expire=300
dst_blacklist_gc_interval=120

tcp_connection_lifetime=3600
tcp_max_connections=1024 # 1024 connections
tcp_send_timeout=5
tcp_connect_timeout=1
tcp_buf_write=1
tcp_fd_cache=1
tcp_conn_wq_max=65536
tcp_wq_max=10240000
tcp_delayed_ack=1
tcp_linger2=10
tcp_keepalive=yes
tcp_keepidle=30
tcp_keepintvl=5
tcp_keepcnt=4

syn_branch=0 # we want to generate the same branch for the same request at
different boxes, to account for anycast routing changes

mid-transaction

flags F_NAT, F_FWD_IPTEL, F_RELAY_ANYCAST, F_ORIG_RTPPROXY,
F_MANGLE_CONTACT_NONNAT_REPLY;

route{

89

#: initial sanity checks -- messages with
#: max_forwards==0, or excessively long requests
if (!mf_process_maxfwd_header("10")) {

sl_send_reply("483","Too Many Hops");
break;

};
if (msg:len >= 2048) {

sl_send_reply("513", "Message too big");
break;

};

force_rport();
force_tcp_alias();

/* RR disabled, interferes badly with contac rewriting/uri fixing */
#: we record-route all messages -- to make sure that
#: subsequent messages will go through our proxy; that’s
#: particularly good if upstream and downstream entities
#: use different transport protocol
#: we don’t record route REGISTERs, messages within
#: a dialog (pointless).

if (!method=="REGISTER" && !has_totag())
if (proto==udp)

record_route_preset("213.192.59.76");
else if (proto==tcp)

record_route_preset("213.192.59.76;transport=tcp");
else{

sl_send_reply("500", "Unsupported protocol");
drop;

}

#: P-Hint and P-Behind-NAT are used by us, don’t allow it before
remove_hf("P-Hint");
remove_hf("P-Behind-NAT");

set source ip used for sending
if (src_ip==213.192.59.75){

if it comes from iptel use anycast
force_send_socket(91.199.168.1);
route(R_FIX_URI); # fix possible mangled uris

}else{
else use normal ip (it should be forwarded back to iptel)
force_send_socket(213.192.59.76);
append_hf("P-iptel-fwd: yes\r\n");
setflag(F_FWD_IPTEL);
if NAT, mangle contacts (we want subseq. messages to go
through us, so this should be applied both to normal contact
updating request and to REGISTERs)
if (isflagset(F_NAT) || nat_uac_test("19")){

setflag(F_NAT);
}
mangle all the contacts due to possible firewalls

if (!search(’^(Contact|m)[\t]*:.*sips?:[^>[:cntrl:]@]*_RCVD|NAT_’))
{

only if not already fixed
if (isflagset(F_NAT)){

encode_contact("_NAT_", "213.192.59.76");
append_hf("P-Behind-NAT: Yes\r\n");

}else{
encode_contact("_RCVD_", "213.192.59.76");
append_hf("P-Contact-Mangled: Yes\r\n");

}
if (method=="REGISTER"){

resetflag(F_NAT);
t_on_reply("R_UNMANGLE_CONTACT_REPLY");

}
}

}
/* RR interferes with the contact rewriting/uri fixing

(loose_route() sees a myself uri and thinks a strict router needs fixing..)
*/

#: subsequent messages withing a dialog should take the
#: path determined by record-routing
if (loose_route()) {

if (!has_totag()){
sl_send_reply("404", "Preloaded routes forbidden");
break;

}
resetflag(F_FWD_IPTEL); # obey rr

}

route(R_FWD); # forward
}

onreply_route[R_RTPPROXY_REPLY]{
if (status=~ "(183)|2[0-9][0-9]"){

90

if (!is_present_hf("P-RTP-Proxy")){
force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");

}
route(R_MANGLE_CONTACT_REPLY);

}
}

onreply_route[R_MANGLE_CONTACT_REPLY]{
if (status=~ "(18[0-9])|2[0-9][0-9]"){

if ((src_ip!=213.192.59.75) &&
!search(’^(Contact|m)[\t]*:.*sips?:[^>[:cntrl:]@]*_(RCVD|NAT)_’)){

if (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))
encode_contact("_RCVD_", "213.192.59.76");

else
encode_contact("_NAT_", "213.192.59.76");

}
}

}

onreply_route[R_UNMANGLE_CONTACT_REPLY]{
decode_contact_header();

}

failure_route[R_RTPPROXY_FAILURE]{
if (isflagset(F_ORIG_RTPPROXY))

unforce_rtp_proxy();
}

route[R_FWD]{
if (isflagset(F_NAT))

route(R_RTPPROXY);
else if (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))

t_on_reply("R_MANGLE_CONTACT_REPLY");
if (isflagset(F_RELAY_ANYCAST))

route(R_RELAY_ANYCAST);
else if (isflagset(F_FWD_IPTEL))

route(R_FWD_IPTEL);
else{

#forward(uri:host, uri:port);
t_relay();

}
}

route[R_RELAY_ANYCAST]
{

NOTE: force_send_socket doesn’t work w/ stateless forward,
(the forwarded replies will come from the forced socket
instead of the original socket on which the msg was recvd)
#forward(uri:host, uri:port);
#force_send_socket(91.199.168.1);
t_relay();

}

route[R_FWD_IPTEL]
{

see above NOTE
#forward(sip01.iptel.org, 5060);
#force_send_socket(213.192.59.76);
t_relay("sip01.iptel.org", "5060");

}

route[R_FIX_URI]
{

if (uri==myself){
if (uri=~"_NAT_"){

setflag(F_NAT);
if (!decode_contact()){

sl_reply("500", "decode uri failed");
drop;

}
append_hf("P-uri-decoded: NAT\r\n");

}else if (uri=~"_RCVD_"){
setflag(F_MANGLE_CONTACT_NONNAT_REPLY);
if (!decode_contact()){

sl_reply("500", "decode uri failed");
drop;

}
append_hf("P-uri-decoded: non-NAT\r\n");

}else{
sl_reply("500", "local uris not allowed");

91

drop;
}
setflag(F_RELAY_ANYCAST);

}else{
append_hf("P-iptel-fwd: failover\r\n");
setflag(F_FWD_IPTEL);

}
}

route[R_RTPPROXY]{
don’t RTP proxy if somebody already did it before us
if (!is_present_hf("P-RTP-Proxy")){

if (method=="BYE"||method=="CANCEL")
unforce_rtp_proxy();

else if (method=="INVITE"){
force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");
setflag(F_ORIG_RTPPROXY);
t_on_failure("R_RTPPROXY_FAILURE");
t_on_reply("R_RTPPROXY_REPLY");

}
}else{

if RTP PROXIED by someone else, we still want to
catch the reply to fix the contact
if (method=="INVITE")

t_on_reply("R_MANGLE_CONTACT_REPLY");
}

}

92

	Glossary
	Introduction
	Background Technologies
	SIP
	Supporting Technologies Dealing with NAT
	Reference Network Organization

	Anycast
	Pros and Cons of Anycast
	Non-anycast Server Selection Alternatives
	Convergence Measurements
	Latency Measurements

	SIP and Anycast in detail
	SIP
	Protocol Structure
	SIP Requests
	SIP Responses
	User Agent
	SIP Proxy
	SIP Registrar
	Record Routing

	RTP
	SDP Documents

	NAT Traversal using a SIP Proxy with an RTP Proxy
	SIP Requests
	SIP Responses
	SDP and NATs

	Anycast
	Network-layer(IP) anycast
	Common IP Anycast Deployments
	Routing Consideration
	UDP, TCP transports and Anycast
	Network Configuration
	IP Anycast and its Characteristics
	Application-layer Anycast

	BGP - Border Gateway Protocol
	BGP Attributes
	BGP Path Selection
	BGP routing stability

	Solution Space
	Evaluation Criteria
	Network Constraints

	Anycast-based Methods for Finding the Closest RTP Servers
	Anycasting Geographically Spread DNS Servers
	Call Flows

	Anycasting SIP Proxy Servers
	Call Flows
	TCP Persistent Connection Issue

	Anycasting SIP Tunnels
	Call Flows

	Anycast ``bootstrap'' Redirect Service
	Call Flows

	Evaluation of Methods
	Summary and Comparison of Methods
	Conclusion about Methods

	Design of the Fronting Element
	DNS-based Fronting Element
	SIP call flow in detail for DNS-based method
	Technical Issues with DNS-based Method

	SIP-based Fronting Element
	INVITE and CANCEL/ACK
	Technical Issues with SIP-based Fronting Element

	PATH Processing
	Implementation Details

	Conclusion
	Future Work

	Bibliography
	List of Appendicies
	Anycast Measurements
	Latency of ICMP replies of Prague and Berlin Anycast Nodes

	SER Configurations
	SER Config for Anycast DNS-based Method
	SER Config for Anycast SIP-based Method

