
VYSOKÉ UCENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA E L E K T R O T E C H N I K Y
A KOMUNIKAČNÍCH TECHNOLOGIÍ
ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING A N D
COMMUNICATION
D E P A R T M E N T OF T E L E C O M M U N I C A T I O N S

A R C H I T E K T U R A PRO GLOBÁLNI DISTRIBUOVANOU
SIP SÍŤ S VYUŽITÍM IPv4 A N Y C A S T U
A N A R C H I T E C T U R E FOR G L O B A L DISTRIBUTED SIP N E T W O R K USING IPv4
A N Y C A S T

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

A U T O R PRÁCE BC. LADISLAV ANDĚL
A U T H O R

VEDOUCÍ PRÁCE ING. P E T R KOVÁŘ
SUPERVISOR

BRNO 2008

ABSTRAKT
Tato diplomová práce se zabývá metodami pro výběr nejbližší R T P proxy k VolP klientům

s použitím IP anycastu. R T P proxy servery jsou umístěny v síti Internetu a přeposílají

R T P data pro VolP klienty za síťovými překladači adres(NAT). Bez zeměpisně rozmís

těných R T P proxy serverů a metod pro nalezení nejbližšího R T P proxy serveru by došlo

ke zbytečnému poklesu kvality přenosu mediálních dat a velkému zpoždění. Tento doku

ment navrhuje 4 metody a jejich porovnání s podrobnějšími rozbory metod s využitím

DNS resolvování a přímo SIP protokolu. Tento dokument také obsahuje měření cho

vání IP anycastu v porovnání mezi metrikami směrování a metrikami časovými. Nakonec

dokumentu je také uvedena implemetace na SIP Express Router platformě.

KLÍČOVÁ SLOVA
SIP, Anycast, R T P proxy, IP směrování, NAT

ABSTRACT
This thesis is about using IP anycast-based methods for locating R T P proxy servers

close to VoIP clients. The R T P proxy servers are hosts on the public Internet that relay

R T P media between VoIP clients in a way that accomplishes traversal over Network

Address Translators (NATs). Without geographically-dispersed R T P proxy servers and

methods to find one in client's proximity, voice latency may be unbearably long and

dramatically reduce perceived voice quality. This document proposes four methods their

comparison with further design of DNS-based and SIP-based methods. It includes IP

anycast measurements that provides an overview of IP anycast behaviour in terms of

routing metrics and latency metrics. It also includes implementation on SIP Express

Router platform.

KEYWORDS
SIP, Anycast, R T P proxy, IP Routing, NAT

PROHLÁŠENÍ

Prohlašuji, že svou diplomovou práci na téma „Architektura pro globální distribuo

vanou SIP síť s využitím IPv4 anycastu" jsem vypracoval samostatně pod vedením ve

doucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů,

které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením

této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl

nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom

následků porušení ustanovení §11 a následujících autorského zákona č. 121/2000 Sb.,

včetně možných trestněprávních důsledků vyplývajících z ustanovení §152 trestního zá

kona č. 140/1961 Sb.

V Brně dne

(podpis autora)

First of all I would like to express my appreciation and thanks

to my advisor Dipl.-lng. Jiří Kuthan for his guidance and

support, as well as many inspiring discussions and constructive

criticism. He deserves recognition for his tremendous

contribution to this work.

My special thanks go to Ing. Petr Kovář, my mentor at the

Brno University of Technology, for all the valuable discussions,

support, and understanding.

My gratitude goes to my entire family, especially my parents,

who always supported and encouraged my studies over the

years.

GLOSSARY
Affinity

Tendency of subsequent packets of a "connection" to be delivered to the same target.

Anycast

Anycast is a network technique which allows a client to access the nearest host of a
group of hosts that provide the same service.

Autonomous System(AS)

Autonomous System(AS) is a set of routers under a single technical administration,
using an interior gateway protocol and common metrics to route packets within the
AS, and using an exterior gateway protocol(IBGP) to route packets to other ASs.

ICE (Interactive Connectivity Establishment)

A Methodology for Network Address Translator (NAT) Traversal for Multimedia
Session Establishment Protocols.

N A T

Network Address Translation

Proximity

Ability to find close-by members of the anycast group.

R T P (Real-time Transport Protocol)

RTP is designed to provide end-to-end network transport functions for applications
transmitting real-time data, such as audio, video or simulation data over multicast
or unicast network services.

R T T (Round-Trip Time)

SDP (Session Description Protocol)

SDP is intended for describing multimedia sessions for the purposes of session an
nouncement, session invitation, and other forms of multimedia session initiation.

5

SIP (Session Initiation Protocol)

IETF standard for session initiation in multi-purpose communication systems.

S T U N (Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs))

S T U N is a lightweight protocol that allows applications to discover the presence and
types of NATs and firewalls between them and the public Internet.

T U R N (Traversal Using Relay NAT)

T U R N is a protocol that allows for an element behind a NAT or firewall to receive
incoming data over T C P or UDP.

U A C (User Agent Client)

A User Agent Client is a logical entity that creates a new request.

U A S (User Agent Server)

A User Agent Server is a logical entity that generates a response to a SIP request.
The response accepts, rejects, or redirects the request.

U A (User Agent)

A User Agent acts as both a User Agent Client and User Agent Server. It is an end
device in a SIP network. They originate SIP transactions turning to dialogs and
media sessions. Alternatively, a user agent can be a gateway to another network,
such as a Public Switched Telephone Network (PSTN) gateway.

URI (Uniform Resource Identifier)

VoIP (Voice over IP)

The transmission of voice over data networks that use the Internet Protocol (IP).

6

CONTENTS

Glossary 5

Introduction 12

1 Background Technologies 14
1.1 SIP 14

1.1.1 Supporting Technologies Dealing with NAT 14
1.1.2 Reference Network Organization 15

1.2 Any cast 16
1.2.1 Pros and Cons of Anycast 17
1.2.2 Non-anycast Server Selection Alternatives 18
1.2.3 Convergence Measurements 18
1.2.4 Latency Measurements 20

2 SIP and Anycast in detail 23
2.1 SIP 23

2.1.1 Protocol Structure 23
2.1.2 SIP Requests 25
2.1.3 SIP Responses 25
2.1.4 User Agent 26
2.1.5 SIP Proxy 26
2.1.6 SIP Registrar 26
2.1.7 Record Routing 26

2.2 RTP 27
2.2.1 SDP Documents 28

2.3 NAT Traversal using a SIP Proxy with an RTP Proxy 28
2.3.1 SIP Requests 28
2.3.2 SIP Responses 29
2.3.3 SDP and NATs 30

2.4 Anycast 31
2.4.1 Network-layer(IP) anycast 31
2.4.2 Common IP Anycast Deployments 32
2.4.3 Routing Consideration 33
2.4.4 UDP, T C P transports and Anycast 34
2.4.5 Network Configuration 35
2.4.6 IP Anycast and its Characteristics 37
2.4.7 Application-layer Anycast 38

2.5 B G P - Border Gateway Protocol 42
2.5.1 B G P Attributes 43
2.5.2 B G P Path Selection 45
2.5.3 B G P routing stability 46

3 Solution Space 48
3.1 Evaluation Criteria 48

3.1.1 Network Constraints 49
3.2 Anycast-based Methods for Finding the Closest RTP Servers 49
3.3 Anycasting Geographically Spread DNS Servers 50

3.3.1 Call Flows 50
3.4 Anycasting SIP Proxy Servers 53

3.4.1 Call Flows 53
3.4.2 T C P Persistent Connection Issue 54

3.5 Anycasting SIP Tunnels 56
3.5.1 Call Flows 56

3.6 Anycast "bootstrap" Redirect Service 59
3.6.1 Call Flows 59

3.7 Evaluation of Methods 62
3.8 Summary and Comparison of Methods 63
3.9 Conclusion about Methods 63

4 Design of the Fronting Element 64
4.1 DNS-based Fronting Element 64

4.1.1 SIP call flow in detail for DNS-based method 64
4.1.2 Technical Issues with DNS-based Method 68

4.2 SIP-based Fronting Element 68
4.2.1 INVITE and C A N C E L / A C K 69
4.2.2 Technical Issues with SIP-based Fronting Element 70

4.3 P A T H Processing 71
4.4 Implementation Details 74

5 Conclusion 76

5.1 Future Work 77

Bibliography 78

List of Appendicies 81

A Anycast Measurements 82
A . l Latency of I C M P replies of Prague and Berlin Anycast Nodes 82

B SER Configurations
B . l SER Config for Anycast DNS-based Method
B.2 SER Config for Anycast SIP-based Method

LIST OF FIGURES
1.1 SIP cluster 16
1.2 Route convergence time to Berlin's anycast node 19
1.3 Route convergence time to Prague's anycast node 19
1.4 Anycast ping compared to unicast shortest ping destinations 21
1.5 The gap between latency of the shortest unicast ping and anycast ping 22
2.1 RTP streams - User Agents receive and send packets on the same

port (symmetric RTP) 27
2.2 NAT traversal 28
2.3 IP anycast mechanism 31
2.4 Static IGP routes 36
2.5 Dynamic IGP routes 36
2.6 B G P prefix advertisement 37
2.7 OASIS system overview 41
2.8 E B G P , IBGP, and Multiple ASs 42
2.9 B G P no-export Community Attribute 45
3.1 Anycasting DNS servers 51
3.2 Anycasting DNS servers - call flow 52
3.3 Anycasting SIP proxy scenario 54
3.4 Anycasting SIP proxy call flow 55
3.5 Broken T C P persistency 55
3.6 Anycasting SIP tunnels 56
3.7 Anycasting SIP tunnels - call flow 58
3.8 Anycast "bootstrap" redirect service 59
3.9 Anycast "bootstrap" redirect service call flow 61
4.1 DNS-based scenario - referential call flow 65
4.2 DNS lookup 68
4.3 REGISTERing over T C P 71
4.4 Path extension header field 72
4.5 Service-route header field(simplified) 73
4.6 Proprietary Contact mangling 74

LIST OF TABLES
1.1 Destinations of planet-lab host ICMP requests 18
3.1 Comparison of methods using IP anycast to find the nearest RTP proxy 63

INTRODUCTION
This thesis is about using IP anycast-based methods for locating RTP proxy ser
vers close to VoIP clients. The RTP proxy servers are hosts on the public Internet
that relay RTP media between VoIP clients in a way that accomplishes traversal
over Network Address Translators (NATs). Without geographically-dispersed RTP
proxy servers and methods to find one in client's proximity, voice latency may be
unbearably long and dramatically reduce perceived voice quality. We are focusing
on using IP anycast to find a reasonably close RTP proxy. IP anycast is Internet's
capability to route IP packets from a source to one of multiple possible destinations.
The destinations share the same IP address block and are advertised using a routing
protocol. The choice of destination is made by routers using available routing tables.
IP anycast is not a stable environment for stateful protocols(notably T C P) , especi
ally "long lived" sessions. However, recent studies and measurements[5] showed that
the use of IP anycast may be even deployed with stateful services when deployed
carefully and there has already been an existing deployment such as CacheFly[16].
The major use of IP anycast today is by DNS root-servers since requests sent to
DNS servers are on query/reply basis, in other words it is a stateless service that do
not suffer from routing instabilities.

As IPv4 address space suffers from shortage, NATs have significantly delayed this
shortage but caused that almost anyone on the world is behind NAT. SIP (Session
Initiation Protocol) as one of VoIP protocols and its deployment is not able to deal
with SIP clients behind NAT on itself. There were introduced technologies handling
this issue such as STUN, T U R N , ICE or in the worst case an RTP proxy - a server
through which RTP packets are relayed. If such an RTP proxy is too far away
from both SIP clients, resulting latency is going to impair perceived voice quality
dramatically. It is thus important for global SIP deployments, to have a network of
geographically dispersed RTP proxy servers and actually use those that are close to
the clients.

The focus of this work is anycast-based mechanisms for discovering an RTP proxy
in SIP client's proximity. The mechanism shall satisfy the following criteria: it shall
be easy to integrate with state-of-the-art SIP clients and servers, allow for fail-over on
a geographically dispersed basis and be resilient against routing instabilities despite
use of anycast. In particular dealing with routing instabilities is important as IP
anycast tends to be sensitive to those. Delivery of subsequent packets to different
anycast destinations can cause broken transactions on transport or application level
if stateful.

The rest of this work is structured as follows. In chapter 1, readers are introduced

12

to background technologies: SIP and IP anycast. In chapter 2, readers get famili
arized with related work done in the field. In chapter 3 we are reviewing several
architectural options and their trade-offs. The options of our choice and their imple
mentation details are explained in chapter 4. Finally chapter 5 provides conclusion
and notes about future work.

13

1 BACKGROUND TECHNOLOGIES

1.1 SIP
The protocol is used for creating, modifying, and terminating sessions with one or
more participants. By sessions we understand a set of senders and receivers that
communicate and the state kept in those senders and receivers during the commu
nication. Examples of a session can include Internet telephone calls, distribution of
multimedia, multimedia conferences etc. For more about SIP see 2.1.

SIP on itself is not capable to handle SIP clients behind NATs. There were
introduced supporting technologies handling this issue such as STUN, T U R N , ICE
or in the worst case simply RTP proxy.

1.1.1 Supporting Technologies Dealing with NAT

S T U N

Simple Traversal of User Datagram Protocol (UDP) through Network Address Transla
tors (NAT) or STUN is defined in R F C 3489 [30]. It provides a lightweight protocol
that allows User Agents to probe and discover the type of NAT that exist between
the User Agent and the S T U N server on the public network. It also provides details
of the external IP address/port combination used by the NAT device to represent
the NATed U A on the public facing side of a NAT. On learning of such an external
representation, a U A can use accordingly as the connection address in SDP to pro
vide NAT traversal. S T U N only works with Full Cone, Restricted Cone and Port
Restricted Cone type NATs. S T U N does not work with Symmetric NATs as the
technique used to probe for the external IP address/port representation.

If SIP User Agents discover that it can traverse the NAT using S T U N then it
will do so and such U A will look like a U A with the public IP to SIP proxy - special
treatment or use of RTP proxy is not necessary.

T U R N

As mentioned above, S T U N protocol does not work for U D P traversal through a
Symmetric NAT. Traversal Using Relay NAT (TURN) provides the solution for
U D P and T C P traversal of symmetric NAT. T U R N is very similar to S T U N in
both syntax and operation. It provides an external address at a T U R N server that
will act as a relay and guarantee traffic will reach the associated private address.
The full details of the T U R N specification are defined in [26]. A T U R N service will
almost always provide media traffic to a SIP User Agent but it is recommended that

14

this method only be used as a last resort and not as a general technique for N A T
traversal. This is because using T U R N has high performance costs when relaying
media traffic and can lead to unwanted latency.

ICE

A lot of NAT traversal techniques have been introduced, but none of them works
universally or are applicable to all real world scenarios. These techniques make use
of Connection Oriented Media, STUN, T U R N , A L G and so on. A l l the techniques
have been collected into one single document, which is called ICE. ICE (Interactive
Connectivity Establishment) is a methodology for traversing NAT, but it is not
a new protocol. It is a collection of all previously mentioned attempts to traverse
NAT which work universally. The methodology is quite complex and requires mutual
cooperation of all SIP entities involved in the communication. Refer to [27] for more
details about ICE.

R T P Proxy Servers

RTP proxy servers are intermediate servers for media sessions established by SIP
proxies. RTP proxy server is used as a last resort when no NAT technique is able
with helping to traverse the media over NAT. Mostly, when symmetric NATs are
involved. Using RTP proxy servers are similar to T U R N servers but the difference
is that SIP clients have T U R N support and can ask for relaying RTP stream over
T U R N server on its own whilst RTP proxy servers are controlled from SIP proxy.
SIP proxies forcibly rewrites SDP bodies in SIP messages enforcing N A T compatible
symmetric packet flows.

RTP proxy servers introduce few drawbacks:

• adds extra hop for media that cause higher voice latency in between SIP clients
depending on geographic location of RTP proxy

• may reduce perceived voice quality depending on network capacity and traffic

RTP proxy servers may be co-located with SIP proxies or may run separately
from SIP proxies managed using an RTP control protocol. If they run remotely there
may be introduced some delay issues while establishing a call that may cause timing
out of some transaction timers.

1.1.2 Reference Network Organization

A typical state-of-the-art SIP deployment is organized in a cluster consisting of the
SIP servers, frequently referred to as home proxies (HPs), and load balancers (LBs).

15

The load balancers distribute SIP traffic over the home proxies and also manage
their availability. Either the load balancers or home proxy servers implement N A T
traversal. Such SIP clusters appear as a simple SIP proxy to outside network. The
home proxy servers share in some way database with SIP-related data.

In our architecture, we additionally put "fronting-elements" in front of existing
SIP clusters(see Figure 1.1). The task of these fronting elements is discovery of the
nearest RTP proxy using anycast and the RTP proxy functionality itself. A key
design objective is to be able to put this distributed auto-discovered RTP network
in front of existing SIP clusters without need for additional support in the cluster or
client. As a side-effect the fronting-elements must also take over the NAT traversal
role - this must be always done by the element closest to the clients unless it is fully
transparent. We are leaving the more detailed definition of the fronting element
to Chapter 3, in which we actually describe the NAT traversal details and several
different designs of RTP proxy discovery.

SIP cluster

anycast
fronting element

incoming/outgoing
SIP messages HP1

anycast
fronting element

HP2

Shared DB

S
HPx

Fig. 1.1: SIP cluster

We have deployed this network architecture with fronting elements located in
Prague and Berlin. As part of getting those available to the Internet with propagated
anycast IP address we measured the convergence time(time to take over the service
when one anycast node fail). For more details about convergence time see Section
1.2.3.

1.2 Anycast
Anycast is a network technique which allows a client to access the nearest host of a
group of hosts that provide the same service. The nearest host is defined according

16

to the routing system's measure of distance. Usually, those hosts in the anycast
group are replicas, able to provide the same service. To take an advantage of an
anycast, servers are distributed topologically and geographically across the Internet.
A n anycast deployment solely depends on the network, routers and routing protocols.
More detailed description of anycast is in Chapter 2.4.

We are examining several different uses of anycast for sake of discovery of RTP
proxy. Anycast does not provide the best proximity in terms of latency but at
least eliminate the worst case scenarios. It helps to select an RTP proxy as close
as possible to one of SIP clients in session. A particular problem to deal with is
anycast's sensitivity to routing instability. This problem is addressed in detail in
Chapter 3.

1.2.1 Pros and Cons of Anycast

General pros and cons of anycast for selection an RTP proxy include:

Pros:

• locality/latency improvements by reducing network distance between client
and RTP proxy servers (at least eliminating the worst case)

• high availability - provides a service without outages

• reduce list of geographically dispersed servers to a single distributed anycast
address

Cons:

• IP anycast wastes the address space (the longest IP prefix is /24), even though
one IP address used for running a service(see Section 2.4.3). This is because
of B G P policy and route propagation in the Internet.

• Anycast may break connection affinity (Ballani et al[5] measured that this
issue is quite negligible)

• IP anycast does not always offer the nearest anycast server (latency-based
proximity).

• B G P sometimes converges slowly (when a service became unavailable it may
make the service unreachable for even minutes [17]).

• Not suitable for "long lived" sessions if not handled carefully (keeping the T C P
context)

17

1.2.2 Non-anycast Server Selection Alternatives

Another techniques for server selection have been developed. Such as virtual co
ordinate systems, on-demand probing overlays and some kinds of application-layer
anycasts(see Section 2.4.7). However, these techniques need co-operation on appli
cation layer. The advantage of IP anycast is that it can be transparently handled
on IP layer.

1.2.3 Convergence Measurements

Methodology

We wanted to find out how fast the convergence of our network setup is so we used
planet-lab.org, a global research network, to measure latency of ICMP echo replies
from anycast nodes in Prague and Berlin. We measured convergence time when one
of B G P daemon stopped propagation of its route. The convergence time is expected
not to be very high since Prague and Berlin are not so far from each other. Out of
these measurements we are also able to derive the time of the service unavailability
in case there is running an application server.

On planet-lab hosts were installed two scripts. One of them measured ICMP echo
replies in 8 seconds interval and the other one was collecting results from traceroute
in 2 minutes interval to see what anycast node is used for a particular planet-lab
host.

Results

1. Table of ICMP packet destination to anycast nodes measured from 142 planet-
lab hosts.

Anycast node No . of hosts routed to the node

Prague 103

Berlin 39

E 142

Tab. 1.1: Destinations of planet-lab host ICMP requests

2. Convergence time of ICMP packets originally destined to Prague and then
re-routed to Berlin (see Figure 1.2)

18

http://planet-lab.org

70 -

65 -

60 -

55 -

50

45 -
40 -

35 -

30
25 -

20 -

15 -

10

5 -
0

<10 10-20 20-30

Time in seconds
30< not-converged

1.2: Route convergence time to Berlin's anycast node

Not-converged: 3 planet-lab hosts could not reach new destination. Interes
tingly, all 3 planet-lab hosts are situated in Italy.

. Convergence time of ICMP packets originally destined to Berlin and then re
routed to Prague (see Figure 1.3)

1.3: Route convergence time to Prague's anycast node

19

Conclusion about Measurements

Most of planet-lab hosts directed ICMP packets to Prague node. It shows that in
routing path prospective Prague anycast node is situated within an ISP (Internet
Service Provider) on a back-bone that is more accesible in terms of routing metrics
from the Internet. This does not always provide the best geographic location pro
ximity to a given anycast node though. In our case to find the nearest RTP proxy
selected anycast node may not be the best to SIP client's location. ICMP packets
from a lot of planet-lab hosts originally destined to Berlin did not register any service
outage meaning that the convergence time was very fast for them.

1.2.4 Latency Measurements

Planet-lab network provides many nodes all around the world giving us a good image
of routing in the Internet. The measuring of latency is ICMP echo based which give
us a knowledge if our design proposals provide a good proximity for SIP clients
which is our main goal.

We measured following destinations (IP addresses):

• anycast/Prague

• anycast/Berlin

• unicast/Prague

• unicast/Berlin

Methodology

From each planet-lab host we measured latency of ICMP echo replies of each IP
address and also "tracerouted" to see what anycast box was "selected" by the par
ticular planet-lab node. For better statistical results we collected 100 echo replies
for each IP address destination where each planet-lab host produced RTT stats with
min/avg/max values. Presented stats are for min value. For the average value there
were nearly the same results (differs just in one planet-lab node).

Stats

We were interested if anycast nodes give the best proximity for SIP clients in com
parison to unicast IP address destinations. The stats show:

• if anycast gave the best proximity by matching the unicast shortest-ping and
anycast-ping

20

• time difference of anycast RTT against unicast RTT to the same place

• time difference of anycast RTT against shortest-ping destination

• difference of the same as both above in per-centage

The full results are included in Appendix A .

Does anycast ping destination match to shortest unicast ping?

ICMP packets from 146 planet-lab nodes were routed to Prague anycast node and
from 49 planet-lab nodes packets were routed to Berlin anycast node. 32.8%(64
nodes) matched and 67.2%(131 nodes) did not match the measured latency of
selected anycast destination and unicast ping to the same destination. Measured
out of total 195 planet-lab nodes. As can be seen using anycast does not give the
best proximity. This is caused by close geographic location of Prague and Berlin
and not so much different routing path for packets from planet-lab nodes. Figure
1.4 shows the results in graph.

160
140-

CD •o 100 o
£ 80
o
Ö 6 ° -
z

40
20
0

146

L

113

33

Prague

I Anycast selected
• Match
• No Match

49

Berl in

31

Fig. 1.4: Anycast ping compared to unicast shortest ping destinations

The gap between latency of the shortest unicast ping and anycast ping
(for not matched hosts)

Following graph (Figure 1.5) shows that anycast in our scenario does not really give
the best proximity. The conclusion about the graph is that anycast nodes should
not be very close to each other to give better results.

21

35 -
33 -
30 -
28 -
25 -

3 2 3 -
E 2 0 -
c

H—

O
d

18

15 -

13

10 -

6 •
<2

29

20

2-5 5-10 10-20 20-50

Latency gap [%]

14

50<

Fig. 1.5: The gap between latency of the shortest unicast ping and anycast ping

Unicast and anycast routes are different even for the same physical desti
nation

• 46 planet-lab hosts measured that anycast RTT is lower than unicast RTT.

• 44 planet-lab hosts measured that anycast RTT is higher than unicast RTT.

22

2 SIP AND A N Y C A S T IN DETAIL

2.1 SIP
SIP (Session Initiation Protocol) is application-layer control protocol which has been
developed and designed within the IETF (Internet Engineering Task Force). The
protocol has been designed with easy implementation, good scalability, and flexibility
in mind.

The specification is available in form of several RFCs and the most important
one is RFC3261 [24] which contains the core protocol specification.The protocol is
used for creating, modifying, and terminating sessions with one or more participants.
By sessions we understand a set of senders and receivers that communicate and the
state kept in those senders and receivers during the communication. Examples of a
session can include Internet telephone calls, distribution of multimedia, multimedia
conferences etc.

However, SIP is the subject of numerous specifications that have been pro
duced by the IETF. It can be difficult to locate the right document, or even to
determine the set of Request for Comments (RFC) about SIP. There is a speci
fication covering completely SIP at <https://datatracker.ietf.org/drafts/draft-ietf-
sip-hitchhikers-guide/>. This specification serves as a guide to the SIP R F C series. It
lists the specifications under the SIP umbrella, briefly summarizes each, and groups
them into categories.

2.1.1 Protocol Structure

Communication using SIP (often called as signalling) includes series of messages.
SIP messages can be transported independently by the network usually over T C P ,
U D P or TLS. They are text based and the syntax and header fields are quite similar
to H T T P . Each message consist of "first line", message header, and message body.
The first line identifies type of the message. There are two types of messages -
requests and responses. Requests are usually used to initiate some action or inform
the recipient with something (connection info etc.). Responses are used to confirm
that a request was received and processed and contain the status of the processing.

Following is a typical SIP request:

INVITE sip:admin@iptel.org SIP/2.0
Via:SIP/2.O/UDP 192.168.1.101:5060;rport;branch=z9hG4M9FF9B
From: natuser <sip:nateduser@iptel.org>;tag=223549693
To: <sip:adminOiptel.org>
Contact: <sip:nateduser@192.168.1.101:5060>

23

http://datatracker.ietf.org/drafts/draft-ietf-sip-hitchhikers-guide/
http://datatracker.ietf.org/drafts/draft-ietf-sip-hitchhikers-guide/
mailto:admin@iptel.org

Call-ID: 032BC0C9-C29E-4F23-9558-CDA469FFE75C0192.168.1.101
CSeq: 7111 INVITE
Max-Forwards: 70
Content-Type: application/sdp
User-Agent: X-Lite release 1103m
Content-Length: 241

v=0
o=nateduser 4955765 4955765 IN IP4 192.168.1.101
s=X-Lite
c=IN IP4 192.168.1.101
t=0 0
m=audio 8000 RTP/AVP 0 8 97 101
a=rtpmap:0 pcmu/8000
a=rtpmap:8 pcma/8000
a=rtpmap:97 speex/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

The first line says it is an INVITE message, which is used to establish a session.
The URI(Uniform Resource Identifier) on the first line — s i p : adminOiptel. org is
called Request URI and contains URI of intended next hop of the message. In this
case it will be host i p t e l . org.

A SIP request can contain one or more Via header fields which are used to record
path of the request. They are later used to route SIP responses exactly the same
way. This INVITE message contains just one Via header field which was created
by the user agent that sent the request. From the Via field we can tell that the
user agent is running on host 192.168.1.101 and port 5060. Branch parameter of Via
header fields contains a transaction identifier.

From and To header fields identify initiator (caller) and recipient (callee) of the
invitation. From header field contains a tag parameter, which serves as a dialog
identifier.

Contact header field contains IP address and port where the sender is awaiting
further requests sent by callee.

Call-ID header field is a dialog identifier and its purpose is to identify messages
belonging to the same call. Such messages have the same Call-ID identifier. CSeq is
used to maintain order of requests. Because requests can be sent over an unreliable
transport that can re-order messages, a sequence number must be present in the
messages so that recipient can identify retransmissions and out of order requests.
The Max-Forwards serves to limit the number of hops a request can transit on the
way to its destination and protects from possible loops. Other header fields are
self-explanatory.

Message header is delimited from message body by an empty line. Message body
of the INVITE request contains a description of the media type accepted by the

24

sender and encoded in SDP(Session Description Protocol).

2.1.2 SIP Requests

Above is described how an INVITE request looks like and mentioned that the request
is used for invitation a callee to a session.

Other important requests are:

• A C K - This message acknowledges receipt of a final response to INVITE.

• B Y E - Bye messages are used to tear down multimedia sessions.

• C A N C E L - Cancel is used for cancelling not yet fully established session.

• R E G I S T E R - Purpose of R E G I S T E R request is to let registrar know of current
user's location.

2.1.3 SIP Responses

When a user agent or proxy server receives a request it send a reply. Each request
must be replied except A C K requests which trigger no replies.

A typical reply looks like this:

SIP/2.0 200 Ok
Via: SIP/2.0/UDP 192.168.1.50;branch=z9hG4bK9fbd.a095ba92.0
Via: SIP/2.0/UDP 10.0.10.3:5060;received=192.168.1.100;rport=5060
;branch=z9hG4bKB8DlCE9011C544AB90EA794B9C56D16E
From: natuser <sip:nateduser@iptel.org>;tag=223549693
To: <sip:adminOiptel.org>;tag=3280384206
Contact: <sip:admin@192.168.1.101:5060>
Record-Route: <sip:192.168.1.50;ftag=223549693;lr=on>
Call-ID: 032BC0C9-C29E-4F23-9558-CDA469FFE75C010.0.10.3
CSeq: 7112 INVITE
Content-Type: application/sdp
Server: X-Lite release 1103m
Cont ent-Length: 0

As can be seen, responses are very similar to requests, except for the first line.
The first line of response contains protocol version (SIP/2.0), response code, and
reason phrase.

The reply code is an integer number from 100 to 699 and indicates type of the
replies. There are 6 classes of replies.

25

2.1.4 User Agent

User Agent (UA) is an Internet end-point that use SIP to find another end-point
where negotiating session characteristics between each other. User Agents usually,
but not necessarily, reside on a user's computer in form of an application - this is
currently the most widely used approach, but user agents can be also cellular phones,
P S T N gateways, PDAs, automated IVR systems and so on.

User Agents are often referred to as User Agent Server (UAS) and User Agent
Client (UAC). UAS and U A C are logical entities only, each user agent contains a
U A C and UAS. U A C is the part of the user agent that sends requests and recei
ves responses. UAS is the part of the user agent that receives requests and sends
responses.

2.1.5 SIP Proxy

SIP Proxy servers are very important entities in the SIP infrastructure. They perform
routing of a session invitations according to callee's current location, authentication,
accounting and many other important functions.

2.1.6 SIP Registrar

The registrar is a special SIP entity that receives registrations from User Agents,
extracts information about their current location (IP address, port and username in
this case) and stores the information into location database.

2.1.7 Record Routing

A l l requests sent within a dialog are by default sent directly from one User Agent to
the other. Only requests outside a dialog traverse SIP proxies. This approach makes
SIP network more scalable because only a small number of SIP messages hit the
proxies.

There are certain situations in which a SIP proxy need to stay on the path of
all further messages. For example, proxies controlling NAT devices or proxies doing
accounting need to stay on the path of B Y E requests.

Mechanism by which a proxy can inform user agents that it wishes to stay on
the path of all further messages is called record routing. Such a proxy would in
sert Record-Route header field into SIP messages which contains address of the
proxy. Messages sent within a dialog will then traverse all SIP proxies that put a
Record-Route header field into the message.

26

The recipient of the request receives a set of Record-Route header fields in the
message. It must mirror all the Record-Route header fields into responses because
the originator of the request also needs to know the set of proxies.

2.2 RTP

RTP (Real-time Transport Protocol) defines a standardized packet format for deli
vering audio and video over the Internet. This protocol can be used for media-on-
demand or for interactive services such as Internet telephony. It goes along with the
RTP Control Protocol (RTCP) and it's built on top of the UDP[28].

When used with SIP signalling, parameters for RTP stream are negotiated
through SDP documents. This way clients decide what media format will be figuring
in a session.

R T P streams and NATs

There can be a number of RTP streams in a session. In the case where is a session
between two User Agents, there are two RTP streams, one in each direction (sending
and receiving RTP packets). If one of the User Agents involved in the session is with
private IP address, that stream from the public U A towards the NAT will not be
allowed to reach the U A on the inside of the NAT. Therefore the U A with public
IP must send the packets to the source IP address and port of packets coming from
the U A behind NAT.

Following Figure 2.1 shows both way direction RTP streams and also points
out required feature for successful NAT traversal - symmetric RTP. In short a User
Agent receives and sends packets on the same port. Currently, most of UAs has been
supporting this feature as default.

RTP

RTP

Fig. 2.1: RTP streams - User Agents receive and send packets on the same
port (symmetric RTP)

27

2.2.1 SDP Documents

SDP(Session Description Protocol) is intended for describing multimedia sessions for
the purposes of session announcement, session invitation, and other forms of mul
timedia session invitation. Within these SDP documents a SIP User Agent usually
sends its IP address and port where RTP stream can be received. SDP document
also includes a set of supported media codecs by the User Agent.

SDP document generated by a User Agent include lines "c=" and "m=" with IP
address and port where media can be received.

For Example:

c=IN IP4 147.229.213.156
m=audio 8000 RTP/AVP 0 8 97 101

2.3 NAT Traversal using a SIP Proxy with an
RTP Proxy

This section describes what must be changed at SIP proxy to make sure that SIP
messages get delivered back to U A behind NAT and UAs establish two-directional
media session. The key idea is making all traffic symmetric which is known to ac
commodate most of available NATs. Figure 2.2 shows possible scenario where one
SIP client is behind NAT and RTP proxy is used for relaying media.

SIP proxy
Router/NAT

RTP proxy

Fig. 2.2: NAT traversal

2.3.1 SIP Requests

Via Header

When a SIP proxy receives a request (e.g. REGISTER, INVITE), it examines the
topmost Via header field value. If this Via header field value contains an "rport"
parameter with no value, it must set the value of the parameter to the source port

28

of the R E G I S T E R request. This is analogous to the way in which a SIP proxy will
insert the "received" parameter into the topmost Via header field value which is
source IP address where a request came from.

For example:

IP address/port in Via header field received by SIP proxy.

Via: SIP/2.0/UDP 192.168.1.101:5060; rport; branch=z9hG4bK9FF9B128

SIP proxy add source IP address/port to received and rport parameters.

Via:SIP/2.0/UDP 192.168.1.101:5060;rport=1024;received=l.2.3.4
;branch=z9hG4bK9FF9B128

Contact Header

To keep a U A C routable from public network SIP proxy overwrites Contact header
IP address/port to source IP address/port and saves it in user location databases
for subsequent requests.

Contact IP address is used for forming new SIP requests by SIP User Agents.

For example:

Original Contact address.

Contact: <sip:admin@192.168.1.1:5060>

Overwritten by SIP proxy to routable contact IP address/port from public network
and saved in location database.

Contact: <sip:adminOl.2.3.4:1024>

2.3.2 SIP Responses

Via Header

SIP response created with "rport" and "received" parameters in the Via header
and sent to IP address/port where IP address is "received" parameter and port is
"rport" parameter.

For UASs the response must be sent from the same address and port that the
request was received on in order to traverse symmetric NATs. This is also called
symmetric signalling extension. Refer to RFC3581[25] for more information.

29

Contact Header

Contact header field is appended to the response, which will contain the current
location of the U A . It is the same approach as it is done in SIP requests.
Note: Contact header is appended to 2xx and 3xx responses only.

2.3.3 SDP and NATs

If SIP proxy detects that SIP request (e.g. INVITE) is received from U A behind
NAT, media must be relayed. This is achieved by forcing the RTP media to traverse
an RTP proxy. The SIP proxy server must then replace UA's private IP address in
SDP payload with IP address of the RTP proxy. (Note that communication of the
SIP proxy server with the RTP proxy is out of scope of this section.)

The example shows particular lines in SDP payload:

o=nateduser 4955765 4955765 IN IP4 192.168.1.101

This line describes the sender of this SDP message and its IP address. This address
has to be changed to RTP proxy server's IP address.

c=IN IP4 192.168.1.101

This line indicates the IP address where the U A will be ready to receive RTP packets.
It also has to be changed by SIP proxy to RTP proxy address.

m=audio 8000 RTP/AVP 0 8 97 101

Eventually, UA's listening port number advertised in "m=" line must be replaced
with RTP proxy server's.

30

2.4 Anycast

2.4.1 Network-layer(IP) anycast

IP Anycast is a network technique which allows a client to access the nearest host
of a group of hosts that share the same anycast IP address, where the nearest host
is defined according to the routing system's measure of distance. It is also referred
as one-to-any communication where "any" means one host of the anycast group.
Usually, those hosts in the anycast group are replicas, able to provide the same
service. To take an advantage of an anycast, servers are distributed topologically
and geographically across the Internet. A n IP anycast deployment solely depends
on the network, routers and routing protocols. The scale of anycast deployment
within the routing system can vary from a small network handled by Interior Ga
teway Protocol(IGP)[3], to Border Gateway Protocol(BGP)[2], handling requests
from the global Internet. Figure 2.3 shows the basic idea of a network-layer(IP)
anycast deployment.

17.2.1.1
17.2.1.1

, — j . t Network domains

Fig. 2.3: IP anycast mechanism

Patridge et al[19] originally proposed the idea of anycast at the network-layer (IP).
They defined that anycast is a stateless best effort delivery of an anycast datagram
to at least one host, and preferably only one host. In RFC4786[1] J. Abley and K.
Lindqvist cover the best current practices of using IP anycast or Kevin Miller [18]
very well summarize deploying of IP anycast.

31

Ballani et al. [4] states that today deployment of IP anycast is quite limited to just
query/reply services such as for DNS root servers[2], primarily to spread the load as
a defence against DoS attacks. On the other hand Ballani et. al.[5] performed some
measurements regarding proximity 1 and affinity2 and states that IP anycast is also
a good candidate for using other services based on T C P or applications with long-
lived sessions(2.4.4). They found that IP anycast itself in global deployment provides
good affinity The measurement states that 93.75% of the source-destination pairs
never changed (probability of selecting the same anycast node). In other words, the
probability that a two minute (or one hour) connection would experience a change
is roughly 1 in 13000 (or 1 in 450).

There has also been an existing deployment such as CacheFly[16] that uses any-
cast for their stateful service.

Routing Schemes

To make it clear here is just a short overview of communication ways in a network.

• Unicast - the process of sending a packet from one host to an individual host.

• Broadcast - the process of sending a packet from one host to all hosts in the
network

• Multicast - the process of sending a packet from one host to a selected group
of hosts

• Anaycast - the process of sending a packet from one host to an indivi-
dual(nearest) host out of group of hosts

2.4.2 Common IP Anycast Deployments

AS 112 project

The anycasted AS 112 servers are used to draw in reverse DNS queries to and for
the link local address space (RFC1918 addresses - 10.0.0.0/8, 172.16.0.0/12 and
192.168.0.0/16). In other words they use anycasted sink-hole servers.

DNS Root Servers

Wide-scale deployment of DNS root servers. Anycasting of six of the thirteen root-
servers C, F, I, J, K and M root. It takes advantage of simple query/reply behaviour.

1 ability to find close-by members of the anycast group.
2tendency of subsequent packets of a "connection" to be delivered to the same target.

32

On local scale, IP anycast is used by operators to simplify and improve local
DNS server availability.

IPv4-to-IPv6 relays

6to4 routers involve connecting v6 networks across v4 infrastructure. Anycast pro
vides an easy way for end sites to locate relays into the native IPv6 world by using
globally known IPv4 anycast prefix for 6to4 routers.

Rendezvous Discovery for IP Multicast

IP multicast packets are routed to shared multicast Rendezvous points using IP
anycast address.

2.4.3 Routing Consideration

Addressing in IP Anycast

IP anycast address is an IP address which identifies a group of nodes (servers). This
address is then assigned to each anycast node. IP anycast address must also be
chosen from IP address space(prefix) that corresponding routes will be allowed to
propagate within given routing system [1]. The length of prefix must be sufficiently
short that it will not be discarded by commonly-deployed import policies in B G P
speaking routers.

For an IPv4 numbering and deployment across the Internet the IP address is
given by an address space where the minimum RIR(Regional Internet Registry)
allocation size is 24 bits. It means that reachability of a service with anycast address
would be in /24 subnet (24-bit prefix) for example 112.54.8.0/24. The disadvantage
is that it uses the address space inefficiently

An anycasted service deployed within a private network[22] can use locally-
unused address and that address might be reached by 32-bit host route. This also
apply for deploying anycast within area under single administration such as an au
tonomous system. The anycast service is within IGP has no inherent restrictions on
the length of prefix as stated in [1].

In IPv6 network IP anycast addresses are not scoped differently from unicast
addresses. However, IPv6 Anycast is beyond the scope of this document.

33

Route Advertising

Members of an anycast group have to indicate to the routers that they wish to receive
anycast packets. One approach is to have the anycast host run a routing protocol
and be able to advertise its anycast address to other routers in a network. Section
2.4.5 describe network configuration for intra-domain and inter-domain routing.

Service Management

Although each anycast host is intended to be reached by a particular community of
clients via anycast address, there is also a requirement to be able to reach individual
hosts in a predictable fashion for the purposes of systems administration, and so
that service performance can be monitored. For this reason each host has a unique,
unicast management IP address associated with it.

2.4.4 UDP, T C P transports and Anycast

It is important to remember that routing in the Internet is stateless. A n anycast
network has no obligation to deliver two successive packets sent to the same anycast
host. This might happen when a client is topologically in the middle of two anycast
hosts with equal-cost paths.

U D P

Since U D P transport is connectionless and anycasting is a stateless service, U D P
can treat anycast addresses like regular IP addresses. A U D P datagram sent to an
anycast address is just like a unicast U D P datagram from the perspective of U D P
and its application.

Some services have very short transaction times, and may even be carried out
using a single packet request and a single packet reply (e.g. DNS transactions over
U D P transport). Here is no problem with Anycast.

Some services have long transaction times and need to exchange more datagram
in between client and anycast host. This problem is discussed in Ballani's et al.
paper[5] as connection affinity and concludes that packet delivery to different host
is negligible.

T C P

TCP ' s use of anycasting is less straightforward because T C P is stateful. It is hard
to envision how one would maintain T C P state with an anycast server when two

34

successive T C P segments sent to the anycast server might be delivered to completely
different hosts.

Engel et al[12] propose a solution for this problem. This proposal is based on
minor modification of T C P / I P stack at the host part where the anycast service
is running. It does not require any modifications to routers and routing protocols.
These modifications are limited to changes at the IP layer of the recipient of the T C P
connection, making this scheme suitable to a client/server environment. Especially,
it focuses on T C P transport protocol stateful connections since they tend to cause
problems in anycast routing as described in [19]. The basic idea is to pin the end-
host to which the first packet of the flow has been sent. The author states that it is
very similar to route pinning in the context of QoS routing. The pinning is done by
inserting a loose source route option in all subsequent packets from the same T C P
flow.

2.4.5 Network Configuration

To deploy an anycast service there are two ways to set the anycast hosts up. Using
either intra-domain routing or inter-domain routing configurations.

Intra-domain configuration

If the anycasted service is entirely within one routing domain (AS) or multiple intra-
domain locations(more ASs but bound with an IGP protocol), only intra-domain
consideration is needed. Routers need to be configured to deliver traffic to anycast
servers either with static routes on first-hop router as shown in figure 2.4 or setting
up dynamic routing by running a routing daemon on anycast hosts using for instance
Zebra/Quagga. See figure 2.5. Static routes provides simple configuration but does
not respond to server failure quickly. On the other hand it provides the ability to
relocate servers without outage. Whilst in dynamic routes the anycast host is route
originator and when the host is down the route is automatically withdrawn from
routing system. Intra-domain anycast approach is described in [3].

Inter-domain Configuration

Setting up inter-domain routing for anycast is more difficult because this configu
ration needs its own AS, ISP independent IP prefix (see 2.4.3 and able to adver
tise the service anycast supernet. In this prospect Intra-domain routing must be
correctly configured such as anycast servers can be IBGP peered and can use IGP
redistribution. It must be able to withdraw routes when service is unavailable. Some
deployments distinguish "global" nodes from "local" nodes[2] where global nodes

35

Fig. 2.4: Static IGP routes

^10.5.0.1/32 connectecT

Fig. 2.5: Dynamic IGP routes

are announced to Internet routing system without restriction and local nodes add
"no-export" B G P community attribute (2.5 to limit the clients that will use the
node. For instance F-root DNS servers are using this approach. See section 2.4.5 for
more details. Figure 2.6 shows advertisement of anycast address to the upstream
ISP.

Global Nodes

In conjunction with an anycast service distribution across the global Internet, Global
Nodes provides service to clients anywhere in the network. To be able to reach the
service globally, B G P routers propagate reachability information, without restriction
2.5, by advertising routes covering the anycast service addresses for global transit
to one or more ISPs.

More than one Global Node can exist for a single service which is commonly
used (see Section 2.4.2 for reasons of redundancy and load-balancing.

36

17.2.1.1
Network domains

17.2.1.1

17.2.1.0/24

'17.2.1.0/24

BGP advertisment

Fig. 2.6: B G P prefix advertisement

Local Nodes

On the other hand, it is sometimes desirable to deploy an anycast node which only
provides services to a local catchment of autonomous systems, and which is purposely
not available to the entire Internet. These nodes are referred to as Local Nodes. For
instance a Local Node may be appropriate in regions with good internal connectivity
but unreliable, congested or expensive access to the rest of the Internet.

Local Nodes advertise covering routes for anycast service addresses in a restricted
way of propagation. This might be done using B G P community attribute such as
no_export (covered more in Section 2.5.1) or nopeer[15] or by arranging with peers
to apply a conventional "peering" import policy instead of a "transit" import policy,
or some suitable combination of measures.

2.4.6 IP Anycast and its Characteristics

Ballani et al. [5] focused on measurements of IP Anycast despite previous studies
did not report clear measurements and conclusions on IP Anycast performance such
as failover, load distribution, proximity and affinity Their measurements were ac
complished on four existing IP Anycast deployments including two anycasted DNS
root-servers and their own small scale IP Anycast service where they could test fai
lure scenarios. The purpose of this study is to provide information on suitability of
IP Anycast for stateful services.

Ballani's measurements states that current deployments such as J-root servers,
does not offer good latency-based proximity. They found that approximately 40%
of measured clients are directed to a root-server that is more than 100 msec farther
away from the closest server and concluded that inter-domain routing metrics have
an even more severe impact on the selection of paths to anycast destinations. The
proposal is to ensure that an ISP, that provides transit to an anycast server, has

37

global presence and is (geographically) well covered by such servers improves the
latency-based proximity offered by the anycast deployment. Basically, those me
asurements were compared between latencies of the unicast address and anycast
address of tested server probed by clients. The unicast address is also usually used
as management and monitoring access to servers.

IP Anycast is also affected by delayed routing convergence therefore clients using
anycast service may experience slow failover. A failover may be caused by outage of
anycasted service or B G P stability issues (see section 2.5.3. The already mentioned
proposal addresses this by reducing the scope of routing convergence that follows a
server failure and therefore may ensure fast failover for clients. The study shows a
slow failover when anycast servers run in different ISP networks.

Their study concludes that IP Anycast offers good affinity to all clients with
the exception of a small fraction that explicitly load balance traffic across multiple
upstream ISPs. That means IP Anycast does not interact poorly with inter-domain
routing and therefore should not significantly impact stateful services.

They also measured and load balanced servers by AS_PATH prepending which
resulted in allowing for coarse-grained control over the distribution of client load
across the deployment. AS_PATH prepending performs B G P speaker(on the anycast
server) by adding its AS number more times in AS_PATH attribute which makes
the anycasted server farther from clients.

2.4.7 Application-layer Anycast

Application-layer anycast is based on server or application metrics, such as available
capacity, measured RTT(Round-trip time), number of active connections. However,
application-layer anycast depends on an external entity that probes the location
of clients, monitors the location and the status of servers in anycast group. Usu
ally, it does not involve any change in clients but involves an overlay on existing
routing infrastructure. Ballani et al[5] describes it as follows. One way of providing
application-layer anycast is mapping high-level names, such as a DNS name, into
one server of anycast group, returning the selected server's IP address to the cli
ent. Such an approach offer a number of advantages over IP anycast: it is easier to
deploy, offers fine-grained control over the load on the servers and can provide very
fast failover to clients. These advantages have led to the widespread adoption of
application-layer anycast as a service discovery possibility. For example, commercial
CDNs(Content Delivery Networks) use DNS-based redirection (in combination with
URL-rewriting) to direct clients to an appropriate server.

Since application-layer anycast brings a lot of advantages it is not useful for

38

all protocols/applications. The fact that IP anycast operates at the network layer
implies that it is only form of anycast that can be used by low-level protocols for
example the use of anycast in IPv4-to-IPv6 relays. Ballani et al states that operating
at the network layer gives IP Anycast a "ground level" resilience not easily achieved
by application-layer anycast - for example, using DNS-based redirection to achieve
resilience across a group of web servers requires first that the DNS servers themselves
be available. It is this that makes IP Anycast particularly well suited for replicating
critical infrastructures such as the DNS.

There are several projects using application-layer anycast approach such as
OASIS(Anycast for Any Service)[13], Cisco DistributedDirector[10] and Application
Layer Anycasting[7]. The up-to-date project and used by several services is OASIS
which is further described in following section 2.4.7.

OASISrAnycast for Any Service

Global anycast faces several requirements.

• must be fast and accurate

• must minimize probing to reduce risk of abuse complaints

• must scale to many services and provide high availability

• must integrate seamlessly with unmodified client applications

OASIS (Overlay-based Anycast Service Infrastructure) [13], a global distributed
anycast system, addresses these challenges which allows legacy clients to find nearby
or unloaded replicas for distributed services. Two main features distinguish OASIS
from prior systems. First, OASIS allows multiple application service to share the any-
cast service. Second, OASIS avoids on-demand probing when clients initiate requests.
This is because OASIS maintains locality information (an application independent
way) by mapping portions of the Internet in advance (based on IP prefixes) to the
geographic coordinates of the nearest known landmark.

OASIS, a shared locality-aware server selection infrastructure, allows a service
to register a list of servers for later optimal selection which is also the primary
approach. However, selection also bases on liveness and load of a individual server
in a distributed service. OASIS can, for example, be used for locating IP anycast
proxies [6], or it can select distributed S M T P servers in large email services.

Before introducing OASIS some other techniques have been used so far such as
virtual coordinate systems (e.g. Vivaldi) and on-demand probing overlays. While on-
demand probing potentially offers greater accuracy, it has several drawbacks. First,

39

probing adds latency and second, performing several probes to clients might trigger
intrusion-detection alerts, resulting in abuse complaints.

OASIS eliminates on-demand probing(when clients make anycast requests) by
probing (in OASIS -> clients direction) in the background. OASIS uses techniques
which practically measure the entire Internet in advance. By leveraging the locality
of the IP prefixes[14], OASIS probes only each prefix, not each client. In practice,
IP prefixes from B G P dumps are used as starting point. OASIS is implemented at
each service replica and thus delegates measurements to them. Service replica is a
one copy of serving server in a distributed network.

To share OASIS across services and to make background probing feasible, OASIS
requires stable network coordinates 3 for maintaining locality information. However,
virtual coordinates tend to drift over time so instead, OASIS stores the geographic
coordinates of the replica closest to each prefix it maps.

OASIS is publicly deployed on PlanetLab(http://www.planet-lab.org/) and has
already been adopted by a number of services such as CoralCDN, O C A L A , OpenDHT
and more. The full list can be found at OASIS project page http://oasis.coralcdn.org/.

As a service selection algorithm it uses a DNS redirector that performs server
selection upon hostname lookups, thus supporting a wide range of unmodified client
applications(almost every network application firstly does DNS lookup before pro
ceeding with other tasks). However, OASIS also provide H T T P and R P C interface
for locality estimation.

System and design overview

The OASIS architecture combines reliable core nodes that implement anycast with
a larger number of replicas belonging to different services that assist in network
measurement. Firstly, every replica knows its geographic coordinates before any
network measurement. Then, OASIS estimates the geographic coordinates of every
netblock on the Internet (OASIS as a shared infrastructure spread measurement costs
over many hosts). OASIS re-probe every physical location quite infrequently since
IP prefixes rarely change [23].

The system consists of a network core nodes that help clients select appropriate
replicas of various services as shown in Figure 2.7. A l l services employ the same core
nodes. Replicas also run OASIS-specific code, both to report their own load and
liveness information to the core, and to assist the core with network measurements.
Clients need not to run any special code to use OASIS, because the core nodes

3Network coordinates provide a scalable way to estimate latencies among large numbers of hosts

40

http://www.planet-lab.org/
http://oasis.coralcdn.org/

provide DNS or H T T P based redirection. For example, an OASIS nameserver calls
its core node with client resolver's IP address and a service name extracted from the
requested domain name (e.g. coralcdn.nyuld.net indicates service coralcdn).

Fig. 2.7: OASIS system overview

41

http://coralcdn.nyuld.net

2.5 BGP - Border Gateway Protocol
The Border Gateway Protocol (BGP), specifically BGP-4, is defined in R F C 4271 [21].
In this section are some citations taken from [11] and [33]. B G P provides loop-free
inter-domain routing between autonomous systems. A n autonomous system(AS) is a
set of routers that operate under the same administration and routing policy. B G P
is often used within the networks of Internet service providers (ISP). B G P is an
exterior routing protocol(EGP) which use a path-vector routing protocol.

Routers that belong to the same AS and exchange B G P updates are said to
be running internal B G P (IBGP), and routers that belong to different ASs and
exchange B G P updates are said to be running external B G P (EBGP). Figure 2.8
shows a network that demonstrates the difference between E B G P and IBGP.

Note that this section covers just necessary information about B G P to under
stand anycast and is explained on a cisco router. The rest is beyond the scope of
this document.

Fig. 2.8: E B G P , IBGP, and Multiple ASs

Before the routing system exchanges information with an external AS, B G P
ensures that networks within the AS are reachable. This is done by a combination
of internal B G P peering among routers within the AS and by redistributing B G P
routing information to Interior Gateway Protocols (IGP) that run within the AS,

42

such as Open Shortest Path First (OSPF), Intermediate System-to-Intermediate
System (IS-IS) and Routing Information Protocol (RIP).

B G P uses the Transmission Control Protocol (TCP) as its transport protocol
(specifically port 179). Any two routers that have opened a T C P connection to
each other for the purpose of exchanging routing information are known as peers or
neighbours. In figure 2.8, routers A and B are B G P peers, as are routers B and C,
and routers C and D. The routing information consists of a series of AS numbers
that describe the full path to the destination network. B G P uses this information to
construct a loop-free map of ASs. Note that within an AS, B G P peers do not have
to be directly connected.

B G P peers initially exchange their full B G P routing tables when the T C P con
nection between peers is first established. When changes to the routing table are
detected, the B G P routers send to their peers only those routes that have chan
ged. B G P routers do not send periodic routing updates, and B G P routing updates
advertise only the optimal path to a destination network.

2.5.1 BGP Attributes

Routes learned via B G P have associated properties that are used to determine the
best route to a destination when multiple paths exist to a particular destination.
These properties are referred to as B G P attributes, and an understanding of how
B G P attributes influence route selection is required for the design of robust networks.
This section describes the attributes that B G P uses in the route selection process:

• Weight

• Local Preference(LOCAL_PREF)

• Multi-exit discriminator (MULTI_EXIT_DISC)

• ORIGIN

• AS _PATH

• N E X T _ H O P

• Community

Weight Attribute

Weight is a Cisco-defined attribute that is local to a router. The weight attribute is
not advertised to peering routers. If the router learns about more than one route to
the same destination, the route with the highest weight will be preferred.

43

Local Preference

Local Preference(LOCAL_PREF) shall be included in all U P D A T E messages that a
given B G P speaker sends to other internal peers. A B G P speaker shall calculate the
degree of preference for each external route based on the locally-configured policy,
and include the degree of preference when advertising a route to its internal peers.
The higher degree of preference must be preferred. A B G P speaker uses the degree
of preference learned via L O C A L _ P R E F in its Decision Process.

Multi-exit discriminator

The Multi-exit discriminator(MULTI_EXIT_DISC) is intended to be used on exter
nal (inter-AS) links to discriminate among multiple exit or entry points to the same
neighbouring AS.

ORIGIN

ORIGIN specifies the origin of the routing update. When B G P has multiple routes,
it uses the ORIGIN as one factor in determining the preferred route. It specifies one
of the following origins:

• IGP — The route is interior to the originating AS. This value is set when the
network router configuration command is used to inject the route into B G P .

• E G P - - The route is learned via the Exterior Border Gateway Protocol
(EBGP).

• Incomplete — The origin of the route is unknown or learned in some other
way. A n origin of incomplete occurs when a route is redistributed into B G P .

AS _PATH

This attribute identifies the autonomous systems through which routing information
carried in B G P U P D A T E message has passed.

N E X T _ H O P

The NEXT_HOP is an attribute that defines the IP address of the router that should
be used as the next hop to the destinations listed in the U P D A T E message.

44

Community Attribute

Community attribute is an extension of BGP-4 protocol[8]. Community attribute
provides a way of grouping destinations, called communities, to which routing deci
sions (such as acceptance, preference, and redistribution) can be applied. Predefined
community attributes are:

• no-export — Do not advertise this route to E B G P peers.

• no-advertise — Do not advertise this route to any peer.

• internet — Advertise this route to the Internet community; all routers in the
network belong to it.

Figure 2.9 shows the no-export community. AS 1 advertises 172.16.1.0 to AS 2
with the community attribute no-export. AS 2 will propagate the route throughout
AS 2 but will not send this route to AS 3 or any other external AS. This way is
configured a Local Node in IP anycast as described in section 2.4.5.

Fig. 2.9: B G P no-export Community Attribute

2.5.2 BGP Path Selection

B G P could possibly receive multiple advertisements for the same route from multiple
sources. B G P selects only one path as the best path. When the path is selected,

45

B G P puts the selected path in the IP routing table and propagates the path to its
peers. B G P uses the following criteria, in the order presented, to select a path for a
destination:

• If the path specifies a next hop that is inaccessible, drop the update.

• Prefer the path with the largest weight.

• If the weights are the same, prefer the path with the largest local preference.

• If the local preferences are the same, prefer the path that was originated by
B G P running on this router.

• If no route was originated, prefer the route that has the shortest AS.path.

• If all paths have the same AS.path length, prefer the path with the lowest
origin type (where IGP is lower than E G P , and E G P is lower than incomplete).

• If the origin codes are the same, prefer the path with the lowest M E D attribute.

• If the paths have the same M E D , prefer the external path over the internal
path.

• If the paths are still the same, prefer the path through the closest IGP nei
ghbour.

• Prefer the path with the lowest IP address, as specified by the B G P router ID.

2.5.3 BGP routing stability
B G P routing changes happen for a variety of reasons[23]. The exchange of update
messages depends on having an active B G P session between a pair of routers. De
vice failures or reconfiguration may trigger the closing of the B G P session, forcing
each router to withdraw the routes learned from its neighbour. After re-establishing
the session, the routers exchange their routing information again. Each router ap
plies local policies to select the best route for each prefix and to decide whether
to advertise this route to the neighbour. Changes in these policies can trigger new
advertisements. A group of ASs may have conflicting policies that lead to repe
ated advertising and withdrawing of routes. In addition, intra-domain routing or
topology changes may cause some routers to select new B G P routes and advertise
them to neighbouring ASs. B G P routing changes can cause performance problems.
A single event, such as a link failure, can trigger a long sequence of updates as the
routers explore alternate paths. During this convergence period, the packets headed

46

toward the destination prefix may be caught in forwarding loops. Exchanging and
processing the update messages also consumes bandwidth and C P U resources on
the B G P speaking routers in the network. In addition, the new advertisements from
neighbouring ASs may change the paths that traffic takes through the network. This
can cause congestion on certain links in the AS. Frequent changes in the adverti
sements from other domains make it difficult for operators to engineer the flow of
traffic through an AS. For example, a B G P routing change may cause traffic to a
particular destination prefix to leave the AS through a different egress point. If B G P
routing changes affect a large portion of the traffic, past information about B G P
updates would not be a good basis for future operations decisions.

47

3 SOLUTION SPACE
In this chapter, we are reviewing several anycast-based methods for discovery of
an RTP proxy server. The key objective of all the method is to avoid use of RTP
proxy servers that are too distant from a call party. In the first section we set several
evaluation criteria. In the next section we suggest four different methods to solve
the proximity problem. We conclude with a comparison of all the methods based on
the criteria set in previous sections.

3.1 Evaluation Criteria

Easy of Integration

This means what must be done about to make a proposed method working and how
difficult is to deploy it.

"Proxy" Effect

A "middlebox" between client and anycast server that leads to the middlebox being
used for discovery instead of the client.

SIP Interoperability

It is a behaviour and cooperation of all SIP entities in the SIP communication. If
one of the SIP entity does not support a required feature it is not possible to use the
feature. A n anycast solution must be as SIP interoperable as possible and should
not break any standards and policy issues.

Resilience against Routing Instabilities

It is important to keep the system resilient against changes in routing. That means
that the fronting elements must be as stateless as possible. I.e., the elements shall
minimize its transport-layer and application-layer context to either stateless or at
least short-lived transactions.

Integration Overhead

If RTP proxies are not co-located with SIP proxies then they must be controlled
by SIP proxy servers remotely. This introduces additional concerns: latency and
security. This particularly applies to methods that concentrate SIP servers in a
single place, from which multiple geographically-dispersed RTP proxy servers are
controlled. RTP control is a specific source of complexity.

48

Failure- reactiveness

Time for a SIP client to switch over if a fronting-element fails.

3.1.1 Network Constraints
When designing the "fronting element", the following constraints have to be kept in
mind:

• For the anycast proximity service to take effect, the anycast service (which is
not the RTP proxy itself!) must be co-located with the RTP proxy.

• Scope shall be easily extended to one-way RTP servers such as SEMS(SIP
Express Media Server).

• Anycast can unlikely deliver the best proximity but importantly it avoids
reliably the worst-case.

• NAT traversal has to be accomplished by fronting element's SIP proxy un
less the fronting-element is completely SIP-unaware. (see the IP-tunnel-based
method later)

3.2 Anycast-based Methods for Finding the Clo
sest RTP Servers

We are suggesting several proxy-discover anycast-based methods, that differ in how
they are integrated in the whole system.

• Anycasting geographically spread DNS servers

• Anycasting SIP Proxy Servers

• Anycasting SIP tunnels

• Anycast "bootstrap" redirect service

In the following sections will be described upsides and downsides of mentioned
methods in architectural detail and made comparison among them.

49

3.3 Anycasting Geographically Spread DNS Ser
vers

The DNS-based method, used also similar way in OASIS [13] features application-
independence and high resilience against routing instabilities. It relies on geogra
phically dispersed DNS servers responsible for the serving domain. The IP address
returned by the DNS server is used to associate client with that particular region
and to find the appropriate RTP proxy. In this scenario, the RTP proxy and SIP
proxy (fronting element) are co-located with this DNS server. The RTP proxy and
SIP proxy servers listen on unicast address, whereas the DNS server uses anycast.
Clients before sending SIP messages perform a DNS lookup which is usually han
dled by provider's DNS resolver. DNS resolver recursively finds the closest anycast
DNS server which returns unicast IP address and used for sending SIP messages.
After SIP client sends SIP messages to resolved unicast IP address and anycast IP
address does not play any other role(until DNS re-lookup given by T T L parameter).
The path of these SIP messages must be remembered for use by subsequent SIP
traffic. Otherwise, it could hit a different fronting element without appropriate T C P
context, or with a different IP address that would not be accepted by symmetric
NATs.

The scenario and the call flow are shown in 3.1 and 3.2.

3.3.1 Call Flows
This call flow shows how fronting elements(SIP proxies) are involved in the SIP
traffic. For simplicity there are no SIP user authorizations included.

DNS Lookup

1. Before U A l sends any request it performs a DNS lookup. The lookup is done
usually by provider's DNS resolver that recursively finds the closest anycast
DNS server.

2. This anycast DNS server returns a unicast IP address particular for the region.
Actually, this unicast IP address is associated with SIP fronting element and
RTP proxy where is also residing the DNS server.

R E G I S T E R

U A l sends R E G I S T E R message to unicast IP address of the nearest SIP proxy
#1 (fronting element). The SIP proxy #1 changes the Contact header field to

50

Fig. 3.1: Anycasting DNS servers

remember the path of the message. SIP proxy #1 sends the request to SIP
cluster which stores the Contact of U A l in location DB. For details about
path processing see Section 4.3 - remember the path.

INVITE

3. U A l wants to setup a call with UA2. U A l sends INVITE to unicast IP address
of the SIP proxy #1.

4. SIP proxy #1 changes the Contact header - remember the path(see 4.3) and
sends it to SIP cluster. The message is also record routed to stay in the same
path for B Y E requests. If the message came from behind it does NAT traversal
procedure as described in Section 2.3 and mark the message that the NAT
traversal was done here. RTP binding is allocated and SDP changed.

5. SIP cluster look up Contact of UA2 and replace the Request URI and send to
the host part of the Request URI which is SIP proxy #2.

6. As SIP proxy #2 receives INVITE it parses the Request URI, uses the infor
mation stored in it and sends the INVITE to UA2.

51

7. UA2 replies 200 O K towards SIP proxy #2 based on top most Via header of
INVITE.

8. SIP proxy #2 changes the Contact header in the 200 O K reply(remember the
path) and sends it to SIP cluster.

9. SIP cluster forwards it to SIP proxy #1.

10. SIP proxy #1 changes the Contact header of 200 O K and sends it to U A l .

11. A media flows between U A l and UA2 based on INVITEs and 200OKs SDP
bodies.

B Y E

12. Similarly as with INVITE the processing is done with B Y E .

UA l ,

fronting
element #1

SIP proxy
+ RTP proxy SIP cluster

fronting
element #2

SIP proxy
+ RTP proxy ,UA 2

<—
REGISTER

200 OK
INVITE

100 Trying w

180 Ringing
^ —

200 OK [To]

ACK

BYE

200 OK

REGISTER ^

nn INVITE ^

w
^ 200 OK

nn INVITE ^

^

rn INVITE ^ nn INVITE ^
^ 100 Trying

_ — ^

100 Trying

^ 180 Ringing

A
^ 180 Ringing

^ 180 Ringing
^ 200 OK |_8j

^ 200 OK [9]
^ 200 OK |_8j

^ 200 OK [9]

ACK ACK ACK

BYE

— P\
| l l | media stream

BYE .

. 200 OK
^

^ 200 OK < _

[^ D N S rep - uni IP

INVITE
100 Trying

180 Ringing

200 OK PI

ACK

BYE
200 OK

Fig. 3.2: Anycasting DNS servers - call flow

52

3.4 Anycasting SIP Proxy Servers
In this alternative, it is the SIP proxy server in the fronting element that listen on
anycast address for discovery purposes. RTP proxies are co-located with each anycast
SIP proxy. The SIP proxy does NAT traversal handling and also Contact mangling
to remember the path for future requests. The SIP proxy shall stay as stateless as
possible to guarantee minimum impact of routing instabilities. This is however not
entirely possibly. On the transport layer, use of T C P breaks this requirement. On
the SIP layer, the proxy can be stateless. Importantly, all the anycast SIP proxy
servers must produce the same transaction id (branch Via parameter) otherwise
down-stream SIP cluster will not match requests belonging to the same transactions
during routing instabilities.

3.4.1 Call Flows

R E G I S T E R

1. UAs register with SIP cluster through their closest SIP proxy server. Once a
SIP proxy receives R E G I S T E R message it fixes Contact header (as described
in Path processing section 4.3) by adding unicast IP address of the proxy to
the host field of SIP URI and encoding source IP address of received message
into the Contact header.

2. The SIP proxy forwards the message to SIP cluster where it saves the fixed
Contact in location DB and returns a response 200 O K to the U A l back
through the SIP proxy server.

INVITE

3. U A l sends INVITE to SIP proxy anycast address. As the message is received
the SIP proxy #1 fixes the Contact header(Path processing). If the request
comes from behind NAT the SIP proxy mangles SIP message. RTP binding
is allocated and SDP changed as described in section N A T traversal 2.3. The
request is also record routed and forwarded to SIP cluster but from unicast
address of that SIP proxy.

4. Once the INVITE is received at SIP cluster it looks up contact of UA2 in
location DB, replace the Request URI and forwards the message to unicast IP
address of SIP proxy #2.

5. As SIP proxy #2 receives INVITE it strips down the Request URI and for
wards the message to UA2 from anycast IP address.

53

6. UA2 replies with 200 O K and sends the message back to SIP proxy ^ 2 . If the
reply comes from U A behind NAT then applies appropriate N A T mangling to
this reply.

7. SIP cluster forwards message based on top most Via header to SIP proxy #1
and finally SIP proxy #1 towards UA1 from anycast address as source IP
address. SIP proxy $T might apply any NAT traversal mangling if the UA2
was marked as behind NAT.

B Y E

8. B Y E requests are processed similar way as INVITEs. As earlier was introdu
ced record routing this transaction will go through the same path as it was
record-routed by INVITE transaction. (UAl->proxy-l->SIP cluster->proxy-
2->UA2)

(3) INVITE

UA 2
C (5) INVITE SIP

proxy 2
UA 2 (6) 200 OK any

SIP
proxy 2

UA 2
SIP

proxy 2

any ... anycast IP address
uni ... unicast IP address

RTP
proxy

uni 200 OK

Fig. 3.3: Anycasting SIP proxy scenario

3.4.2 T C P Persistent Connection Issue

The key problematic part of anycasting SIP proxy servers is routing instability issues.
In case a SIP client uses T C P transport for sending SIP messages it needs to create
a T C P connection with a SIP proxy server. The connection must be kept persistent
because of reachability of this client. In case a re-routing occurs the connection is
lost and T C P A C K is not able to reach the SIP proxy. Figure 3.5 shows the impact.

54

UA 1 SIP proxy 1

m REGISTER

SIP cluster SIP proxy 2 UA 2

200 OK

m INVITE

100 Trying

180 Ringing

200 OK

ACK

m BYE

200 OK

IT ! REGISTER

200 OK

INVITE

100 Trying

180 Ringing

200 OK

ACK

BYE

200 OK

HI INVITE

100 Trying

180 Ringing

200 OK

ACK

media stream

BYE

200 OK

PH INVITE

100 Trying

180 Ringing

200 OK | T |

ACK

BYE
200 OK

Fig. 3.4: Anycasting SIP proxy call flow

UA 1
INVITE

SIP
proxy 1

UA 1 any
SIP

proxy 1

INVITE

RTP
proxy

INVITE
UA 2

INVITE
SIP

proxy 2
UA 2 any SIP

proxy 2

J ^ T C P ACK RTP
lost TCP X proxy

connection

INVITE

any ... anycast IP address
uni ... unicast IP address

Fig. 3.5: Broken T C P persistency

55

3.5 Anycasting SIP Tunnels
This concept is based on IP tunnels. There will be more tunnel entrances at geogra
phically dispersed anycast nodes with RTP proxies listening on unicast IP address.
SIP messages are tunneled through a tunnel to SIP proxy where the tunnel is termi
nated which produces IP packets as if they came directly from a U A . SIP proxy runs
on anycast address too. Packets before entering the tunnel are somehow marked(ToS
field) with the ID of RTP proxy running at this end-point and encapsulated to this
tunnel. Packets get de-capsulated at the end of the tunnel and the mark of is used
for matching against RTP proxy list with their unicast IP addresses and used for
further NAT traversal processing.

listens on
anycast IP

& unicast IP

listens on
anycast IP

& unicast IP

RTP proxy2

5) 200 OK

UA 2

Fig. 3.6: Anycasting SIP tunnels

3.5.1 Call Flows

R E G I S T E R

1. UA1 sends R E G I S T E R to anycast IP address that gets forwarded to SIP
cluster via tunnel.

2. SIP server replies with 200 O K directly to U A l .

56

INVITE

3. UA1 sends INVITE to anycast IP address. A V P N tunnel is listening on this
address that forwards the INVITE to the SIP cluster. The tunneled packets are
marked with an ID of RTP proxy running on that node. At the end of tunnel
(V P N server) the INVITE gets de-capsulated and delivered to SIP cluster
listening also at anycast IP address. Packet marking is used in the cluster to
identify which RTP proxy to control.

4. SIP cluster record-routes the INVITE and sends it directly to UA2.

5. UA2 replies with 200 OK. The message can go through different anycast tunnel
but always gets delivered to the same SIP cluster where the call was initiated.

6. SIP cluster matches the transaction and replace IP addresses in SDP body with
unicast IP address of RTP proxy $T as marked at the beginning of transaction
and sends to U A l directly.

57

Anycast SIP cluster Anycast
VPN client #1 with anycast addr VPN client #2

U A 1 + RTP proxy and VPN server + RTP proxy UA 2

P I REGISTER ^ REGISTER

[4] INVITE

H

200 OK [J]

[4] INVITE

ITI INVITE
INVITE

[4] INVITE
J ^

100 Trying [4] INVITE

180 Ringing

[4] INVITE

180 Ringing

100 Trying ^ 100 Trying

180 Ringing

<*H f
180 Ringing

180 Ringing

180 Ringing ^ ^ ̂
 200 OK DO ^ 200 OK GO

200 OK
^ 200 OK DO ^ 200 OK GO +\ ^

ACK ^

ACK
ACK

4 •
BYE ^

H ACK

4 •
BYE ^ BYE

media stream

BYE

^
-1 ^

media stream

BYE

^

200 OK
200 OK

4 1 1

•
^ 200 OK

^ • ^ i i

J - ^ - - encapsulated SIP message

Fig. 3.7: Anycasting SIP tunnels - call flow

58

3.6 Anycast "bootstrap" Redirect Service
This concept is based on selecting RTP proxy during SIP redirection. The SIP cluster
redirects an initial INVITE to anycast SIP proxy with co-located RTP proxy. This
proxy redirects the INVITE back to the cluster with location information in it. The
SIP cluster uses the location information to steer the proper RTP proxy and passes
the request on. Note that RTP proxies are controlled remotely from SIP cluster that
causes additional complexity and call setup delay.

anycast
SIP proxy

RTP proxy

UA 1
1st INVITE - redirect

•

3rd INVITE

2nd INVITE - redirect

anycast
SIP proxy

RTP proxy

INVITE

Fig. 3.8: Anycast "bootstrap" redirect service

3.6.1 Call Flows

R E G I S T E R

There is no change to common SIP setup with R E G I S T E R requests.

1. UA1 sends R E G I S T E R to unicast IP address of SIP cluster where the U A l s
Contact is saved in location DB. In case the U A is behind NAT the SIP cluster
also save that the U A is behind NAT.

INVITE

2. UA1 sends INVITE to SIP cluster that checks if U A l is behind NAT. If so,
then it checks if combinations Client-IP, RTPproxy IP is in cache (location DB

59

in memory), if the cache is empty then SIP cluster redirects to Anycast SIP
proxy.

3. Anycast SIP proxy receives INVITE and redirects it back to SIP cluster. The
redirection URI in Contact HF stores a URI parameter with unicast IP address
of co-located RTP proxy.

4. UA1 sends INVITE to SIP cluster with parameter including IP address of
RTPproxy as URI param in Contact, SIP cluster parse the parameter and
store in local cache Client-IP, RTPproxy IP.

5. SIP cluster use the IP address in Contact for selecting RTP proxy and sub
sequently used for relaying media. The message is record-routed to stay in
path for B Y E s and forwards it to UA2.

6. UA2 replies with 200 OK, the message reaches the SIP cluster and the INVITE
transaction is matched with the IP address of RTP proxy used when the call
was initiated.

B Y E

7. UA2 sends B Y E towards SIP cluster that tests if the U A is behind NAT. It
should unforce RTP proxy based on earlier selection RTP proxy.

60

Anycast
SIP proxy

UA 1 SIP cluster + RTP proxy UA 2

HI REGISTER ^

^ 200 OK

| T | INVITE

302 Moved Temp.

ACK ^

| 3 | INVITE

302 Moved Temp.

ACK

H"| INVITE ^
IZ] INVITE

^ 100 Trying
IZ] INVITE

^ 100 Trying
180 Ringing

^ 180 Ringing
180 Ringing

^ 180 Ringing
200 OK [1]

^ 200 OK
200 OK [1]

^ 200 OK

ACK
ACK ^

ACK

^ BYE

ACK

^ BYE

media stream

BYE [T]
^ BYE

200 OK
200 OK ^

200 OK 200 OK

3.9: Anycast "bootstrap" redirect service call flow

61

3.7 Evaluation of Methods
Anycasting DNS Servers

Upside: This method is simple to integrate at the system level and SIP messages are
simply sent to unicast IP address returned from DNS lookup. It is resilient
against routing instabilities as the anycast traffic is limited to a short-lived
UDP-based DNS transaction. RTP proxy servers are co-located with SIP proxy
servers and no remote control is needed.

Downside: Failure reactiveness is low for practical reasons. DNS resolvers in SIP clients
and DNS proxy servers are known to cache DNS information for quite long
time. If an anycast site fails and stops advertising its route, poor DNS clients
will keep using an unavailable IP address. Also, the proximity measurement
may be impaired if a client uses a DNS resolver that is not located in its
proximity.

Anycasting SIP Proxy Servers

Upside: RTP proxy servers are co-located with SIP proxy servers and no remote control
is needed.

Downside: Most sensitive against routing instabilities 3.1.

Anycast "bootstrap" Redirect Server

Upside: Easy to integrate at SIP level only. Resilient against routing instability.

Downside: INVITE-redirect brings too high uncertainty due to possible interoperability
and policy issues - to many SIP clients are known not to support redirection
due to poor implementation or for policy reasons (3xx to +1-900- ban). Call
setup latency increases. Controlling remotely RTP proxies that cause additio
nal complexity and call setup delay.

Anycast SIP Tunnels

Upside: Resilient against routing stability issues. No need to do anything at SIP level.

Downside: Dealing with remote RTP proxy servers.

62

3.8 Summary and Comparison of Methods

M e t h o d Anycas t ing D N S
servers

Anycas t ing S IP
proxy servers

Anycas t "boot
strap" redirect
server

Anycas t S IP tun
nels

Easy of inte
grat ion

Path processing
and NAT handling

Path processing
and NAT handling

Remote R T P proxy
control

Remote R T P proxy
control and Diff-
serv processing

"proxy" effect measuring DNS re-
solvers

measuring the out
bound SIP proxy

measuring the out
bound SIP proxy

measuring the out
bound SIP proxy

Ant ic ipa ted inte-
rop level

no problems (any-
cast only on DNS)

no problems (all
managed on server
side)

UA needs to have
enabled and functi
onal redirect sup
port, policy issues

Resilience aga
inst rout ing
instabilit ies

good, routing chan
ges have no impact
on DNS processing.

problematic, using
anycast IP addres
ses for SIP signal
ling

good - boot-strap
transaction is
short-lived

good - it does not
matter which IP
tunnel is used

Fai lure reactive-
ness

can be low with
mis-implemented
DNS clients and
DNS proxy servers

depends on how
fast B G P re-routing
is

depends on how
fast B G P re-routing
is

depends on how
fast B G P re-routing
is

Tab. 3.1: Comparison of methods using IP anycast to find the nearest RTP proxy

3.9 Conclusion about Methods
We have chosen the DNS-based method and SIP-based method for further observati
ons. The primary reason is they are simple to deploy. They do not require sophis
ticated integration (as would be the case with tunneling, marking and remote RTP
control) and are not going to suffer from interoperability issues (as the SIP boot
strap method would). The key remaining concerns are low failure reactiveness for
the DNS-based method and low resilience against routing instabilities for the SIP-
based method. In the long-term, it may be beneficial to include the tunnel-based
method in future observations. Overcoming the integration effort can be rewarded
by both good failure reactiveness and resilience against routing instabilities.

63

4 DESIGN OF T H E FRONTING E L E M E N T

4.1 DNS-based Fronting Element
Each fronting element consists of DNS server, SIP proxy and RTP proxy. The DNS
server listens on anycast IP address for DNS queries and in response returns unicast
IP address of co-located SIP proxy and RTP proxy. The returned unicast IP address
is always from the closest DNS server in routing metrics(the way anycast works).
This way SIP client forwards SIP messages to returned unicast IP address where
the RTP proxy is co-located.

The SIP proxy should remain as stateless as possible. For TCP-based traffic and
traffic from behind NAT it must remain stateful however. This SIP proxy does N A T
traversal and uses co-located RTP proxy if necessary. If SIP traffic is TCP-based the
SIP proxy must use the same T C P connection initiated by SIP client's R E G I S T E R
request. We talk about T C P context which is described in Section 4.2.2 and which
is more significant for SIP-based anycast proxy. We need to remember the path
through this SIP proxy as described in Section 4.3. The same applies for traffic
coming from behind NAT. Also, if the SIP proxy remains stateful the SIP traffic
must be record routed.

4.1.1 SIP call flow in detail for DNS-based method

Firstly, SIP client performs DNS lookup. It receives a reply from DNS resolver with
unicast IP address of the closest fronting SIP proxy. For simplicity there are no SIP
authorizations and auxiliary replies included. SIP messages include just important
header fields for explanation the process. This call flow shows how path processing
is done(for more details see Section 4.3). Figure 4.1 shows possible scenario which
is followed by detailed SIP message description.

1. The U A l constructs an INVITE message and sends it to the unicast IP address
of fronting SIP proxy. The SIP client is behind NAT as can be seen private IP
addresses appearing in the message.

Direction 147.229.214.225:50900 -> 213.192.59.77:50600

INVITE sip:UA2@siptel.org SIP/2.0

Via: SIP/2.0/UDP 192.168.1.100:5090;rport;branch=z9hG4Mdxrbqiko
To: <sip:UA2@siptel.org>
From: "UAl siptel" <sip:UAl@siptel.org>;tag=etazs
Contact: <sip:UA10192.168.1.100:5090>

2. The fronting SIP proxy receives INVITE and checks if the message came from
behind NAT. Basing on this check the SIP proxy creates new Contact SIP URI

64

mailto:UA2@siptel.org
mailto:UA2@siptel.org

U A 1
192.168.1.100:5090/

147.229.214.225:5090

fronting
element
SIP proxy

+ RTP proxy
213.192.59.77:5060 SIP cluster

213.192.59.75:5060

U A 2
192.168.1.101:5080/

147.229.214.225:5080

INVITE

200 O K

PH A C K

HI INVITE ^
^ INVITE Q]

M l INVITE
200 O K \J]

PH 200 O K ^

I

^ 200 OKQ]

I

A C K ^

I

^ A C K

I
[l 0 | A C K

I
1

4.1: DNS-based scenario - referential call flow

where in the username part includes, except the username, a mark that the
SIP client is behind NAT, source IP address and port of the packet, private IP
address and port of the SIP client. Host part includes the unicast IP address of
this fronting element. It is the address where replies will be expected. Once this
Contact header is mangled, then SIP proxy record route, marks the message
that RTP proxy used at this server the message and sends it to SIP cluster.

Direction 213.192.59.77:50600 -> 213.192.59.75:50600

INVITE sip:UA2@siptel.org SIP/2.0
Record-Route: <sip:213.192.59.77;lr=on>
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4M93ad.f50d8a83.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKdxrbqiko
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*0

213.192.59.77>
P-Behind-NAT: Yes
P-RTP-Proxy: YES

. Once the SIP cluster receives INVITE it looks up the contact of UA2 in lo
cation database. This contact inserts in Request URI header. SIP cluster also
finds that fronting SIP proxy already applied RTP proxy which says that no
other RTP proxy should be used. INVITE is sent to IP address stated in
Request URI. In this case it is the same fronting SIP proxy as for U A l .

65

mailto:UA2@siptel.org
mailto:UA2@siptel.org

Direction 213.192.59.75:50600 -> 213.192.59.77:50600

INVITE sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0
213.192.59.77 SIP/2.0
Record-Route: <sip:213.192.59.75;lr=on>
Record-Route: <sip:213.192.59.77;lr=on>
Via: SIP/2.0/UDP 213.192.59.75;branch=z9hG4M63ad. Ia75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*0
213.192.59.77>
P-Behind-NAT: Yes
P-RTP-Proxy: YES

4. As fronting SIP proxy receives the message it decodes the Request URI header.
From decoded information uses the public IP address of UA2 and sends it
there.

Direction 213.192.59.77:5060 0 -> 147.229.214.225:5080 0

INVITE sip:UA2@192.168.1.101:5080 SIP/2.0
Record-Route: <sip:213.192.59.77;lr=on>
Record-Route: <sip:213.192.59.75;lr=on>
Record-Route: <sip:213.192.59.77;lr=on>
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK63ad.1130cb05.0
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.Ia75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225

rport=5090;branch=z9hG4bKpcbtblbi
To: <sip:UA2@siptel.org>
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*0
213.192.59.77>
P-RTP-Proxy: YES

5. Once UA2 receives INVITE, the UA2 inserts its own Contact header to 200
O K reply and sends it back to fronting SIP proxy.

Direction 147.229.214.225:5080 0 -> 213.192.59.77:50600

SIP/2.0 200 OK

Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK63ad.1130cb05.0
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.Ia75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs
Contact: <sip:UA20192.168.1.101:5080>

6. Fronting SIP proxy encode the Contact header the same way as for INVITE
above and sends it to SIP cluster.

66

mailto:UA2@siptel.org
mailto:UA2@siptel.org

Direction 213.192.59.77:50600 -> 213.192.59.75:50600

SIP/2.0 200 OK
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.Ia75a823.0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA20siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0

213.192.59.77>

7. SIP cluster simply forwards the message back to fronting SIP proxy as based
on Via header.

Direction 213.192.59.75:50600 -> 213.192.59.77:50600

SIP/2.0 200 OK

Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKpcbtblbi
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA20siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0

213.192.59.77>

8. Fronting SIP proxy forwards the reply to UA1.

Direction 213.192.59.77:5060 0 -> 147.229.214.225:5090 0

SIP/2.0 200 OK

Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;
rport=5090;branch=z9hG4bKpcbtblbi

Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,
<sip:213.192.59.77;lr=on>

To: <sip:UA20siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0

213.192.59.77>
P-RTP-Proxy: YES

9. UA1 sends A C K towards UA2 through all SIP proxies stated in Route header.
In Request URI is the full path UA2 SIP U R L

Direction 147.229.214.225:5090 0 -> 213.192.59.77:50600

ACK sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0
213.192.59.77 SIP/2.0

Via: SIP/2.0/UDP 192.168.1.100:5090;rport;branch=z9hG4bKhyynxpop
Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>,

<sip:213.192.59.77;lr=on>
To: <sip:UA20siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs

67

10. The SIP cluster is skipped and this A C K is produced by fronting SIP proxy.
It shows that the Request URI is decoded and from decoded information uses
the public IP address and port of UA2 and sends it there.

Direction 213.192.59.77:5060 0 -> 147.229.214.225:5080 0

ACK sip:UA2@192.168.1.101:5080 SIP/2.0
Record-Route: <sip:213.192.59.75;lr=on>
Via: SIP/2.0/UDP 213.192.59.77;branch=0
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=0
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=0
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225;

rport=5090;branch=z9hG4bKhyynxpop
To: <sip:UA2@siptel.org>;tag=shfxe
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs

4.1.2 Technical Issues with DNS-based Method

DNS-based method is resilient against re-routing which is a feature we need. However,
the best SIP proxy selection in SIP client proximity is dependent on periodic DNS
lookups. Firstly, it depends on ISP's DNS resolver which usually caches DNS re
cords and the T T L value is usually not low enough for refreshing the unicast IP
address of the closest SIP proxy in case of B G P re-routing. Secondly, DNS clients
are frequently mis-implemented and do DNS lookup just at boot time. Figure 4.2
shows the process.

This method results in possibly not the best SIP proxy selection but at least
it avoids selecting very far SIP proxies. In case of failure, the service might be
unavailable until new DNS lookup which might take some time.

SIP phone ISP

r
cache

SIP client DNS resolver

1 ^ c a c h e ^ ^

DNS resolver
recursive

j DNS lookup

Fig. 4.2: DNS lookup

4.2 SIP-based Fronting Element
Here is described the SIP-based method with SIP proxy listening on anycast IP
address as part of fronting element. The path processing(see 4.3) is the same as for

68

DNS-based method but the fronting SIP proxy deals with two IP addresses(anycast
and unicast IP address). This method is more error-prone against routing instability
issues and SIP messages must be handled carefully. For the best result, the fronting
element must be SIP-wise as stateless as possible to guarantee minimum impact of
routing instabilities. The proxy remains stateful TCP-wise but it may and actually
should remain a SIP-wise stateless machine(UDP-based traffic less affected). For
this purpose a path through this proxy must be remembered because each SIP
client might register through different anycast SIP proxy. This way we also loose
transparency of the SIP traffic because we deal with multiple anycast SIP proxies.

4.2.1 INVITE and C A N C E L / A C K

The C A N C E L request, as the name implies, is used for cancelling a previous request
sent by a client. A C A N C E L request should be only used for pending calls as stated
in RFC3261 [24] section 9.1. Further, if a C A N C E L request is sent it is part of the
INVITE transaction and Via header of this C A N C E L is matched 4.2.1 against INVI-
TEs top most Via header at the first SIP proxy which is in our case the fronting SIP
proxy. In case of routing instability, cancelling pending calls might cause following
issue: C A N C E L is forwarded through a different fronting SIP proxy than the ini
tial INVITE and is not recognized as related by the downstream SIP cluster. Then
the SIP cluster replies "481 Transaction leg does not exist". In this case for U D P
based SIP traffic the branch parameter should be generated statelessly as described
in 4.2.1. However, we can not match this transaction. Sent-by value is used as part
of the matching process because there could be accidental or malicious duplication
of branch parameters from different clients. The reason is that the transaction id is
formed by branch and sent-by, where sent-by is different for both fronting-elements
(if it was identical using anycast, we would loose guarantee that replies to requests
will get back to the same SIP proxy). This is a failure scenario where we can not do
nothing about.

Matching Requests to Server Transactions

When a request is received from the network by the stateful proxy, it is matched to
an existing transaction. This is accomplished in the following manner.

The branch parameter in the topmost Via header field of the request is exa
mined. If it is present and begins with the magic cookie "z9hG4bK", the request
was generated by a client transaction compliant to this specification. Therefore, the
branch parameter will be unique across all transactions sent by that client. The
request matches a transaction if:

69

1. the branch parameter in the request is equal to the one in the top Via header
field of the request that created the transaction, and

2. the sent-by value in the top Via of the request is equal to the one in the request
that created the transaction, and

3. the method of the request matches the one that created the transaction, except
for A C K , where the method of the request that created the transaction is
INVITE.

This matching rule applies to both INVITE and non-INVITE transactions alike.
A l l above is taken from RFC3261, Section 17.2.3. See more in [24].

Stateless Generating Branch Parameter

In case of re-routing in time window between sending INVITE and C A N C E L / A C K
we need to be able to deliver C A N C E L / A C K without breaking the SIP transaction.
Fronting elements must generate branch parameter the same way for all messages to
match transactions stateless anycast environment. For instance by inserting a fixed
string in branch parameter of the Via header inserted by this fronting element.

4.2.2 Technical Issues with SIP-based Fronting Element

T C P context

RFC3261[24] says: "For reliable transports, the response is normally sent on the
connection on which the request was received. Therefore, the client transport MUST
be prepared to receive the response on the same connection used to send the request."

The first time, the T C P connection is opened by REGISTERing of a SIP client.
For the subsequent SIP traffic the SIP client and SIP proxy must use the same T C P
connection. If a routing instability occurs this connection will be lost. This means
that SIP proxy should remain SIP-wise as stateless as possible that we can deal with
U D P traffic and not break the consistency of SIP dialogs.

SIP client may open a new connection with a different anycast SIP proxy in
case of re-routing. In case of opening a new connection in the middle of dialog, SIP
messages will get lost because transactions would not match.

T C P call flow - R E G I S T E R

1. First U A l open a new T C P connection with fronting SIP proxy.

70

2. Then the U A l sends R E G I S T E R over T C P connection to fronting SIP proxy
which forwards it through U D P transport to SIP cluster.

3. SIP cluster sends reply back through fronting SIP proxy. This proxy forwards
the reply through existing T C P connection.

Once a SIP client registers with SIP cluster the same T C P connection must be used
for upcoming SIP transactions.

TCP transport UDP transport
U A 1 Fronting Element SIP cluster

TCP SYN/ACK
—•

TCP ACK

m REGISTER

TCP ACK

200 OK

TCP ACK —•

REGISTER

200 OK HI

Fig. 4.3: REGISTERing over T C P

Transaction Issues

Another problem is that the failure window for the SIP protocol is fairly large. For
example, if a client registers via anycasted SIP proxy, there may be up to one hour
(default re-registration period in RFC3261) until an incoming message comes in.
If in this period re-routing happens (which is not entirely unlikely since the time
window is R E A L L Y long), failures may occur. T C P connection will fail for sure, as
the SIP proxy if it occurs to be stateful. The T C P issue may be improved by forcing
keep-alives to detect issues early (which has to be done due to NATs anyhow),
and relying clients to re-register. Even for UDP, there may be one minute between
INVITE and C A N C E L / A C K , still fairly long time window.

4.3 PATH Processing

This subsection describes ways how to remember path of SIP messages. We need to
guarantee that incoming requests for a SIP client will go through the same SIP server

71

through which the SIP client registered. The reason is for SIP clients behind N A T
and for clients using T C P transport for their communication. If we do not remember
the path, replies may be destined to the client with different source IP address and
port and the delivery fails. There are SIP standards for path remembering. However,
the standards require support in end-devices, implementation of which is still quite
rare. See the following subsections to find out how these extensions work. The last
paragraph of this section "Proprietary path remembering" mentions an alternative
solution which does not require compliant clients at the price of possible message
integrity violation.

Path Extension(RFC3327)

This RFC3327 standard describes an extension for remembering the path of SIP
requests. The Path extension header field allows accumulating and transmitting
the list of proxies between U A l and R E G I S T R A R . Intermediate nodes such as
SIP p roxy^ l (see Figure 4.4)may statefully retain Path information if needed by
operational policy. This mechanism is in many ways similar to the operation of
Record-Route in dialog-initiating requests. The routing established by the Path
header field mechanism applies only to requests transiting or originating in the home
domain. However, this approach must be implemented at both sides. SIP client and
SIP proxy. For more details about Path extension see [31].

UA 1 Path: <sip:sipl.example.com;lr>

SIP proxy #1 SIP proxy #2

/

SIP Registrar

Path: <sip:sip2.example.com;lr>,<sip:sipl.example.com;lr>

Fig. 4.4: Path extension header field

Service Route Extension

The "Service-Route" is a SIP extension header field (RFC 3608 [32]), which can
contain a route vector that will direct requests through a specific sequence of proxies.
A registrar uses a Service-Route header field to inform a SIP client of a service
route that, if used by the SIP client, will provide services from a proxy or set of
proxies associated with that registrar. The Service-Route header field is included by
a registrar in the response to a R E G I S T E R request.

Then SIP clients include a Route header field in an initial request to force that
request to visit and potentially be serviced by one or more proxies. Using such a

72

route (called a "service route" or "preloaded route") allows a SIP client to request
services from a specific home proxy or network of proxies.

UA 1 REGISTER
200 OK SIP proxy 1

INVITE

Route:SIP proxy 1; SIP proxy 2
INVITE

UA 2

REGISTER

200 OK
SIP Registrar

Service-Route: SIP proxy 1; SIP proxy 2

INVITE
SIP proxy 2

Fig. 4.5: Service-route header field (simplified)

This approach must also be implemented at both sides. SIP client and SIP regis
trar which is not we are looking for because of interoperability issues. In our anycast
scenarios this would work as a kind of bootstrap solution (using firstly anycast add
ress and then unicast address).

Proprietary Path Remembering

This proprietary solution of path remembering involves Contact mangling on fron
ting element. The new Contact header must include the information where the SIP
message came from and the unicast IP address of this fronting element. A l l this
information is encoded as new Contact SIP U R L Finally, the message is forwarded
to SIP cluster 1.1.2. At SIP cluster this format of Contact is stored in user location
DB. The following example and Figure 4.6 shows the way of path remembering. The
downside of this approach is that modification of the Contact header-field conflicts
with possible use of Message Integrity Check in R F C 4474[20]. Mostly, these MICs
as described in the R F C 4474 are not implemented nowadays.

The format of Contact before R E G I S T E R enters fronting element(see 3.3 for the
scenario).

Contact: "Test" <sip:test@192.168.1.100:5060>;transport=udp"

The format of Contact when R E G I S T E R is leaving fronting element where the
address field of SIP URI is 213.192.59.76 the unicast IP address of fronting element,
and the username field consists 147.229.214.225:5090 public IP address and port
where the request came from and 192.168.1.100:5090 is private IP address and port
of the SIP client behind NAT. The "_NAT_" mark is for requests that came from
behind NAT. It is used for recognition once the Contact is decoded.

73

UA l Contact header mangling

REGISTER fronting REGISTER/mangled
SIP cluster element SIP cluster

Fig. 4.6: Proprietary Contact mangling

Contact: "Test" <sip:_NAT_*test**192.168.1.100*5090**147.229.214.225*5090*0
213.192.59.76>

4.4 Implementation Details

For deploying our own anycast network we requested RIPE(Regional Internet Re
gistry) for assigning IP address block 91.199.168.1/24 and AS(autonomous system)
number - AS44592. We installed two anycast nodes, in Prague and Berlin. These
nodes are fronting elements as mentioned in Chapter 4. They are forwarding all SIP
traffic to iptel.org's SIP cluster. These nodes have assigned two unicast IP addresses
and the shared anycast IP address. At each node is running DNS server(named)
listening on anycast IP address and two instances of SER(SIP Express Router) for
testing both DNS-based and SIP-based methods. One SER is configured to handle
unicast-way SIP traffic which is bound with DNS server. In Appendix B . l is SER
configuration for DNS-based scenario. The latter listens on anycast and the other
unicast IP address for incoming and outgoing SIP traffic(see Appendix B.2 for the
configuration).

SIP Express Router

SER (SIP Express Router) is a high-performance, configurable, free SIP server.
It can act as SIP registrar, proxy or redirect server. SER is a modular based and
features for example an application-server interface, presence support, SMS gateway,
RADIUS/syslog accounting and authorization, server status monitoring, etc. SER's
configuration script is very powerful tool parsing SIP messages at low level. SER's
configuration ability meets the needs of a whole range of scenarios including small-
office use, enterprise P B X replacements and carrier services. SER is being developed
by a team at iptel.org based in Prague and Berlin. The developer's page can be found
at <http://iptel.org>.

DNS server setup

In a DNS registrar(not important which one) we registered our DNS servers ns.siptel.org
with IP address 91.199.168.1 and ns3.siptel.org with IP address 91.199.168.3. At the

74

http://iptel.org
http://iptel.org
http://ns.siptel.org
http://ns3.siptel.org

both fronting elements are running DNS server which replies to requests sent to these
anycast IP addresses. DNS servers returns unicast IP address depending on location
of DNS resolver. It always chooses the closest DNS server in routing metrics. This
way SIP client forwards SIP messages to returned unicast IP address where is also
co-located RTP proxy.

B G P daemon

Each anycast node runs B G P daemon propagating 91.199.168.0/24 route to the
upstream Internet Service Provider (ISP). From the ISP the route propagates further
to the Internet.

75

5 CONCLUSION
Our anycast fronting elements in Prague and Berlin were tested and measured on
ICMP echo reply basis from planet-lab hosts. Because the anycast locations are
very close to each other the route convergence time was quite short. Re-routing
from Prague to Berlin took for most of planet-lab hosts between 10 and 20 seconds.
Interestingly, the other way from Berlin to Prague it took less than 10 seconds for
most of planet-lab hosts. In other terms this would be an outage of the service if
one of the anycast nodes fails. We also compared latency between shortest unicast
IP address destination against anycast IP address destination. It shows that anycast
does not provide the best proximity for SIP clients in 131 cases measured out of 195
planet-lab hosts. The reason is that our anycast nodes are very close to each other
and the routing path from planet-lab hosts is not very different. We also found out
that unicast and anycast routes are different even for the same physical destination.
We can conclude and proof that anycast metrics are not latency metrics, as verified
in our measurements but at least would eliminate the worst case scenarios in global
deployment.

We proposed four IP anycast-based methods for locating an RTP proxy close to
SIP clients. We decided to choose for further observations the DNS-based method
and the SIP-based method because they were easy to deploy. DNS-based method is
resilient against re-routing, however due to frequently mis-implemented DNS clients
and proxy servers it can fail to react to changes timely and is subject to possible
proximity impairment. SIP-based method suffers from low resilience against routing
instabilities. These issues are covered in design chapter making our fronting elements
as stateless as possible and remaining stateful for TCP-based SIP traffic and SIP
traffic from SIP clients behind NAT.

We implemented DNS-based and SIP-based method at our anycast fronting ele
ments using SIP Express Router. Our configuration worked and provided good pro
ximity at coarse scale but not so much on finer scale. We did not thoroughly test it
because of problematic configuration for routing in instability scenarios and lack of
time for complete measurements. There are scenarios we are not able to solve such
as SIP-based method using T C P transport because of loosing connection in instable
scenario. We also found out that even for UDP is not easy to get smooth switch over
to different SIP proxy because of matching transaction ID at SIP cluster constructed
from branch and sent-by parameter at fronting elements. Sent-by is always different
because it is unicast IP address.

Each method we have been proposing has some drawbacks (see comparison in
Section 3.8). Also we had too few anycast nodes to validate the really important

76

coarse scenarios finding that anycast provides a good proximity.

5.1 Future Work

Proposed designs of methods mentioned in this thesis should be thoroughly tested,
tuned and measured. There are still some withstanding U D P and more complex
T C P issues especially for anycast SIP proxy servers and its behaviour in routing
instability scenarios we are facing to and need to solve.

We have not described the design of the IP-tunnels based method but it is a
good candidate for dealing with routing instability issues. There is no need to do
anything at SIP level but on the other side we must deal with remote RTP proxy
servers. This introduces additional concerns: latency and security. We need to do
further analysis of using the remote RTP proxy control protocol.

We need to do field measurements with an established global SIP user basis. This
will provide us with better view of locating RTP proxy for each method once we will
have more globally dispersed anycast nodes. Prague and Berlin locations are only
good as a functionality test but do not deliver a significant latency improvement.
We need to test how the SIP anycast setup will behave in failure scenarios such as
stopping the B G P route propagation and seeing what happens as the SIP traffic
converges to another anycast node.

Another work which needs to be done is a geo-failover. This means we need SIP
service with good latency and availability at different locations on the world. But we
need to solve two problems. One of them are geo-distributed RTP proxy servers and
the other one are geo-distributed SIP proxy servers. Anycast SIP proxy servers have
this feature build-in. The other methods will need further inspection and testing.

We need to test against some live populations and seeing the actual latency
savings. Also we need to remeasure with more better dispersed anycast nodes.

77

BIBLIOGRAPHY
[1] Abley J., Lindqvist K . , Operation of Any cast Services, R F C 4786, December

2006 <http://www.ietf.org/rfc/rfc4786.txt>

[2] Abley J., Hierarchical Any cast for Global Service Distribution, ISC Technical
Note ISC-TN-2003-1, <http://www.isc.org/tn/isc-tn-2003-l.html>

[3] Abley J., A Software Approach to Distributing Requests for DNS Service using
GNU Zebra, ISC BIND 9 and FreeBSD, ISC Technical Note ISC-TN-2004-1,
March 2004, <http://www.isc.org/pubs/tn/isc-tn-2004-l.html>

[4] Ballani H. , Francis P., Towards a Deployable IP Anycast Service, Proc. of First
Workshop on Real, Large Distributed Systems (WORLDS'04) San Francisco,
California, Dec 2004.

[5] Ballani H. , Francis P., Ratnasamy S., A Measurement-based Deployment Pro
posal for IP Anycast, Proc. of Internet Measurement Conference(IMC06) Rio
de Janeiro, Brazil, Oct 2006.

[6] Ballani H. , Francis P., Towards a global IP anycast service, S I G C O M M , 2005.

[7] Bhattacharjee S., Ammar M . H. , Zegura Viren Shah E . W., Fei Z., Application-
Layer Anycasting, I N F O C O M (3), pages 1388-1396, 1997.

[8] Chandra R., Traina P., BGP Communities Attribute, RFC1997, August 1996,
<http://www.ietf.org/rfc/rfcl997.txt>

[9] Chen, Lim, Katz, Overton, On the stability of nework distance estimation, SIG-
METRICS Perf. Eval. Rev., 2002

[10] Cisco™ Distributed Director, <http://www.cisco.com>

[11] Doyle J., Carroll J. D., Routing TCP/IP, Volume II (CCIE Professional Develo
pment), Publisher: Cisco Press, Apri l 2001, 976 pages, ISBN 978-1-57870-089-9

[12] Engel R., Peris V. , Saha D., Basturk E., Haas R., Using IP Anycast For
Load Distribution And Server Location, In Proc. Third Global Internet Mini-
Conference, November 1998.

[13] Freedman M . , Lakshminarayanan K . , Mazieres D., OASIS: Anycast for Any
Service, In NSDI, 2006.

[14] Freedman M . J., Vutukuru M.,Feamster N . , Balakrishnan H. , Geographic loca
lity of IP prefixes, In IMC, October 2005.

78

http://www.ietf.org/rfc/rfc4786.txt
http://www.isc.org/tn/isc-tn-2003-l.html
http://www.isc.org/pubs/tn/isc-tn-2004-l.html
http://www.ietf.org/rfc/rfcl997.txt
http://www.cisco.com

[15] Huston, G., NOPEER Community for Border Gateway Protocol (BGP) Route
Scope Control, R F C 3765, Apri l 2004.

[16] Levine M . , Lyon B. , Underwood T., Operational experience with TCP and
Anycast - Cachefly, NANOG37, June 2006, <http://www.nanog.org/mtg-
0606/pdf/matt.levine.pdf>.

[17] Mao Z., Govindan R., Varghese G., Katz R., "Route Flap Dampening exacer
bates Internet routing convergence", SIGCOMM'02, June 2002.

[18] Miller K . , Deploying IP Anycast, Carnegie Mellon Network Group, N A N O G
29, October 2003 <http://www.net.cmu.edu/pres/anycast/anycast.pdf>

[19] Partridge C , Mendez T., Milliken W., Host Anycasting Service, R F C 1546,
November 1993. <http://www.ietf.org/rfc/rfcl546.txt>

[20] Peterson J., Jennings C , Enhancements for Authenticated Identity
Management in the Session Initiation Protocol (SIP), August 2006,
<http://www.ietf.org/rfc/rfc4474.txt>

[21] Rekhter Y . , L i T., Hares S., A Border Gateway Protocol 4 (BGP-4), R F C 4271,
January 2006, <http://www.ietf.org/rfc/rfc4271.txt>

[22] Rekhter Y . , Moskowitz B. , Karrenberg D., Groot G. J., Lear E., Add
ress Allocation for Private Internets,'BGP 5, R F C 1918, February 1996,
<http://www.ietf.org/rfc/rfcl918.txt>

[23] Rexford J., Wang J., Xiao Z., Zhang Y . , BGP Routing Stability of Popular
Destinations, In IMW, Nov. 2002.

[24] Rosenberg J., Schulzrinne H. , Camarillo G., Johnston A. , Peterson J., Sparks
R., Handley M . and E. Schooler, SIP: Session Initiation Protocol, R F C 3261,
June 2002. <http://www.ietf.org/rfc/rfc3261.txt>.

[25] Rosenberg J., and Schulzrinne H. , An Extension to the Session Ini
tiation Protocol (SIP) for Symmetric Response Routing, August 2003
<http://www.ietf.org/rfc/rfc3581.txt>.

[26] Rosenberg J., Mahy R., and Huitema C , Traversal Using Relay NAT (TURN),
Sseptember 2005, <http://www.tools.ietf.org/html/draft-rosenberg-midcom-
turn-08>.

79

http://www.nanog.org/mtg-0606/pdf/matt.levine.pdf
http://www.nanog.org/mtg-0606/pdf/matt.levine.pdf
http://www.net.cmu.edu/pres/anycast/anycast.pdf
http://www.ietf.org/rfc/rfcl546.txt
http://www.ietf.org/rfc/rfc4474.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfcl918.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3581.txt
http://www.tools.ietf.org/html/draft-rosenberg-midcom-?turn-08
http://www.tools.ietf.org/html/draft-rosenberg-midcom-?turn-08

[27] Rosenberg J., Interactive Connectivity Establishment (ICE): A Methodology
for Network Address Translator (NAT) Traversal for Multimedia Session Es
tablishment Protocols, October 2007, <http://tools.ietf.org/html/draft-ietf-
mmusic-ice-19>.

[28] Schulzrinne H. , Casner S., Frederick R., Jacobson V., RTP: A Trans
port Protocol for Real-Time Applications, R F C 1889, January 1996.
<http://www.ietf.org/rfc/rfcl889.txt>.

[29] Yu S., Zhou W. , Wu Y . , Research on Network Anycast, Fifth International Con
ference on Algorithms and Architectures for Parallel Processing (ICA3PP'02),
page 154, October 2002.

[30] Weinberger J., Huitema C , and Mahy R., STUN - Simple Traversal of User Da
tagram Protocol (UDP)Through Network Address Translators(NATs), March
2003 <http://www.ietf.org/rfc/rfc3489.txt>.

[31] Willis D., Hoeneisen B. , Session Initiation Protocol (SIP) Extension
Header Field for Registering Non-Adjacent Contacts, December 2002,
<http: / / www.ietf.org/rfc/rfc3327.txt>

[32] Willis D., Hoeneisen B. , Session Initiation Protocol (SIP) Extension Hea
der Field for Service Route Discovery During Registration, October 2003,
<http: / / www.ietf.org/rfc/rfc3608.txt>

[33] Cisco documentation - Border Gateway Protocol (BGP), October 2006,
<http: / / www. cisco. com / univercd/cc/td/doc/cisintwk/ito.doc / index.htm>

80

http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://tools.ietf.org/html/draft-ietf-mmusic-ice-19
http://www.ietf.org/rfc/rfcl889.txt
http://www.ietf.org/rfc/rfc3489.txt
http://www.ietf.org/
http://www.ietf.org/

LIST OF APPENDICIES

A Anycast Measurements 82
A. l Latency of ICMP replies of Prague and Berlin Anycast Nodes 82

B SER Configurations 85
B. l SER Config for Anycast DNS-based Method 85
B.2 SER Config for Anycast SIP-based Method 89

81

A A N Y C A S T MEASUREMENTS

A . l Latency of ICMP replies of Prague and Ber
lin Anycast Nodes

Prague anycast node

Hint:

PRG - Prague, TXL - Berlin
A2Uloc - difference of anycast/prague to unicast/prague
A2Usho - difference of anycast to shortest unicast ping
Match - i f the shortest ping matches the anycast selection

Any PRG TXL A2Uloc A2Uloc A2Usho A2Usho Select Match Host
[ms] [ms] [ms] [ms] [•/.] [ms] [•/.] anycast

21 21 19 0.0 0.2 1.3 6.6 Prague No 146-179.surfsnel.dsl.internl.net
114 113 110 1.1 1.0 4.8 4.4 Prague No 75-130-96-12.static.oxfr.ma.charter.com
122 122 116 -0.3 -0.2 5.6 4.8 Prague No bob.cc.vt.edu
186 208 178 -21.5 -12.0 8.2 4.6 Prague No deimos.cecalc.ula.ve
114 109 108 4.7 4.3 5.8 5.4 Prague No earth.cs.brown.edu
308 307 297 1.0 0.3 10.8 3.6 Prague No eve.ee.ntu.edu.tw
190 190 182 0.1 0.0 8.6 4.7 Prague No grouse.hpl.hp.com
150 150 131 -0.3 -0.2 19.3 14.7 Prague No kc-sce-plabl.umkc.edu
159 141 131 18.1 13.7 27.9 21.1 Prague No kupll.ittc.ku.edu
114 113 113 0.9 0.8 1.1 1.0 Prague No lefthand.eecs.harvard.edu
41 38 41 3.7 8.9 3.7 9.7 Prague Yes IsirextpcOl.epf1.ch
197 198 180 -0.3 -0.2 17.5 9.7 Prague No nodel.lbnl.nodes.planet-lab.org
168 169 156 -0.8 -0.5 12.0 7.7 Prague No node1.planetlab.uprr.pr
50 50 42 -0.0 -0.1 7.9 18.8 Prague No onelab3.warsaw.rd.tp.pi
109 109 101 0.2 0.2 7.9 7.8 Prague No orbpll.rutgers.edu
39 40 45 -1.2 -2.7 -1.2 -3.0 Prague Yes peeramide.irisa.fr
109 112 125 -3.3 -2.6 -3.3 -2.9 Prague Yes pepper.planetlab.cs.umd.edu
57 63 69 -6.3 -9.0 -6.3 -9.9 Prague Yes pll.grid.kiae.ru

294 294 281 0.7 0.2 13.2 4.7 Prague No pll-higashi.ics.es.osaka-u.ac.jp
54 44 38 10.0 26.1 16.6 43.3 Prague No pl-1.hip.fi

292 292 281 -0.6 -0.2 10.8 3.8 Prague No pll.planetlab.ics.tut.ac.jp
325 325 323 -0.3 -0.1 1.9 0.6 Prague No pllsnu.koren21.net
140 140 174 0.0 0.0 0.0 0.0 Prague Yes pll.ucs.indiana.edu
16 16 39 0.0 0.1 0.0 0.3 Prague Yes plabl-c703.uibk.ac.at

161 172 133 -11.4 -8.5 27.3 20.4 Prague No plabl.eece.ksu.edu
185 184 168 0.9 0.5 17.3 10.3 Prague No plabl.engr.sjsu.edu
12 12 35 0.1 0.2 0.1 0.6 Prague Yes plabl-itec.uni-klu.ac.at

118 117 103 1.0 1.0 15.3 14.8 Prague No plabl.nec-labs.com
21 21 31 0.1 0.2 0.1 0.3 Prague Yes planck227.test.ibbt.be
122 122 116 0.1 0.1 6.3 5.4 Prague No planet02.esc.ncsu.edu
296 297 286 -1.4 -0.5 10.3 3.6 Prague No planetO.jaist.ac.jp
179 180 167 -1.0 -0.6 12.2 7.3 Prague No planetl.berkeley.intel-research.net
40 40 30 0.0 0.0 10.4 34.6 Prague No planet1.colbud.hu
114 115 104 -0.9 -0.8 10.2 9.8 Prague No planetl.cs.rochester.edu
180 180 173 -0.1 -0.0 6.7 3.9 Prague No planet1.cs.ucsb.edu
111 112 101 -1.5 -1.5 10.1 10.0 Prague No planetl.ecse.rpi.edu
107 106 95 0.5 0.5 11.7 12.2 Prague No planetl.scs.cs.nyu.edu
123 123 113 -0.2 -0.2 10.4 9.2 Prague No planet2.pittsburgh.intel-research.net
128 127 141 0.6 0.4 0.6 0.5 Prague Yes planet.cc.gt.atl.ga.us
174 179 165 -5.4 -3.2 8.9 5.4 Prague No planetdevOl.fm.intel.com
110 110 99 -0.0 -0.0 11.0 11.1 Prague No planetlab-01.bu.edu
39 31 40 8.1 19.9 8.1 25.7 Prague Yes planetlabOl.ends.unibe.ch
185 182 172 2.8 1.6 12.3 7.1 Prague No planetlabOl.cs.Washington.edu
171 170 156 1.6 1.0 15.6 10.0 Prague No planetlab-01.ece.uprm.edu
32 32 26 -0.3 -1.0 6.3 24.0 Prague No planetlabOl.ethz.ch
119 119 114 -0.5 -0.4 4.9 4.3 Prague No planetlabOl.sys.Virginia.edu
181 180 176 0.5 0.3 4.9 2.8 Prague No planetlab-la.ics.uci.edu
7 7 30 -0.3 -1.0 -0.3 -4.1 Prague Yes planetlabl.ani.univie.ac.at

165 165 155 -0.2 -0.1 10.3 6.6 Prague No planetlabl.arizona-gigapop.net
1 1 21 -0.3 -1.3 -0.3 -19.5 Prague Yes planetlabl.cesnet.cz

48 48 32 0.1 0.4 16.3 50.3 Prague No planetlabl.ci.pwr.wroc.pl
121 121 121 0.4 0.4 0.4 0.4 Prague Yes planetlabl.cis.upenn.edu
162 163 141 -0.8 -0.6 21.1 14.9 Prague No planetlabl.citadel.edu
132 129 117 2.7 2.3 14.9 12.7 Prague No planetlab-1.emel.cs.emu.edu
111 112 106 -0.8 -0.8 4.6 4.3 Prague No planetlabl.ends.jhu.edu
110 111 113 -0.2 -0.2 -0.2 -0.2 Prague Yes planetlabl.csail.mit.edu
159 160 151 -1.3 -0.9 7.6 5.0 Prague No planetlabl.cs.Colorado.edu
106 106 95 0.0 0.0 11.6 12.2 Prague No planetlabl.cs.Columbia, edu
119 122 109 -2.5 -2.3 10.7 9.8 Prague No planetlabl.cs.Cornell.edu
143 143 137 -0.3 -0.2 6.0 4.4 Prague No planetlabl.cse.msu.edu
146 146 181 0.0 0.0 0.0 0.0 Prague Yes planetlabl.cse.nd.edu
131 134 122 -2.5 -2.1 9.7 8.0 Prague No planetlab-1.cse.ohio-state.edu
32 32 26 -0.1 -0.3 5.7 21.5 Prague No planetlabl.csg.uzh.ch
82 82 71 -0.0 -0.0 10.3 14.4 Prague No planetlabl.cslab.ece.ntua.gr
140 140 170 -0.0 -0.0 -0.0 -0.0 Prague Yes planetlabl.cs.purdue.edu

82

http://ittc.ku.edu
http://irisa.fr
http://ac.jp
http://intel-research.net
http://colbud.hu
http://intel-research.net
http://arizona-gigapop.net
http://wroc.pl

153 153 148
180 180 175
181 181 175
132 132 136
112 110 98
189 188 207
15 15 14
140 138 132
185 185 188
187 187 175
130 130 131
157 157 154
139 138 133
187 187 206

3691 3656 2756
62 62 60
289 278 274
4 4 25

185 185 153
45 45 37
44 44 32
311 314 320
44 49 28
282 282 270
299 301 292
35 35 23
32 32 26
57 57 55
112 112 108
53 53 44
43 38 26
45 45 51
269 269 245
53 53 48
34 45 30
185 186 174
358 357 335
35 35 22
320 309 296
107 107 95
357 299 209
191 191 201
72 72 48
57 58 56
72 71 62
40 40 30
34 34 43

403 413 396
135 138 129
183 183 178
276 273 204
39 39 40
154 165 152
67 67 62
151 151 141
139 140 137
110 111 101
41 41 28
29 30 18
349 357 342
127 127 118
82 82 79
138 137 141
147 146 143
333 329 260
129 128 119
165 167 162
48 38 32
57 57 49
32 32 39
188 188 197
111 112 99
177 177 165
787 821 531
295 294 284
165 166 169
178 177 194
133 133 120
81 81 71
40 41 46
140 140 131

-0.5 -0.3 4.4
-0.4 -0.2 5.0
-0.5 -0.3 6.1
-0.6 -0.4 -0.6
2.2 2.2 13.8
1.4 0.7 1.4
-0.0 -0.3 1.4
1.6 1.2 8.2
-0.6 -0.3 -0.6
-0.6 -0.4 12.0
0.0 0.0 0.0
-0.6 -0.4 2.5
1.7 1.3 6.8
0.1 0.1 0.1
35.3 1.3 935.4
-0.0 -0.1 2.5
10.5 3.8 15.5
-0.1 -0.3 -0.1
0.0 0.0 31.7
-0.4 -1.0 8.4
-0.1 -0.2 11.9
-2.9 -0.9 -2.9
-4.4 -15.4 16.1
0.5 0.2 12.4
-2.1 -0.7 6.9
-0.0 -0.2 12.6
0.0 0.0 6.6
0.2 0.4 2.1
-0.8 -0.7 3.1
0.0 0.0 8.8
4.6 17.0 16.6
0.1 0.2 0.1
0.0 0.0 24.1
-0.1 -0.3 4.9
-10.5 -35.0 4.7
-0.8 -0.5 11.7
1.2 0.3 23.3
-0.3 -1.2 12.8
10.8 3.7 24.2
0.4 0.4 12.2
58.0 27.8 148.7
-0.1 -0.1 -0.1
0.0 0.0 23.9
-0.1 -0.2 1.7
0.6 0.9 9.2
-0.0 -0.0 10.7
0.1 0.2 0.1
-10.4 -2.6 6.8
-2.5 -2.0 6.7
0.0 0.0 4.9
2.7 1.3 72.1
-0.1 -0.2 -0.1
-11.3 -7.4 2.0
-0.0 -0.1 4.9
0.3 0.2 9.7
-0.6 -0.4 2.6
-0.5 -0.5 9.4
-0.0 -0.2 13.1
-0.3 -1.5 11.7
-7.4 -2.2 7.4
0.1 0.1 9.5
-0.2 -0.3 3.3
1.1 0.8 1.1
1.4 0.9 3.9
4.6 1.8 73.4
1.1 0.9 10.3
-2.2 -1.4 3.3
10.2 31.8 16.3
0.0 0.0 7.9
0.1 0.3 0.1
-0.2 -0.1 -0.2
-0.9 -0.9 11.5
-0.1 -0.0 12.4
-34.0 -6.4 256.1
1.1 0.4 10.7
-0.6 -0.4 -0.6
0.2 0.1 0.2
0.1 0.1 12.7
0.1 0.2 9.8
-0.4 -0.9 -0.4
-0.2 -0.1 9.0

2.9 Prague No
2.9 Prague No
3.5 Prague No
-0.4 Prague Yes
14.0 Prague No
0.8 Prague Yes
9.6 Prague No
6.2 Prague No
-0.3 Prague Yes
6.8 Prague No
0.0 Prague Yes
1.6 Prague No
5.1 Prague No
0.1 Prague Yes
33.9 Prague No
4.2 Prague No
5.7 Prague No
-1.5 Prague Yes
20.6 Prague No
22.7 Prague No
36.7 Prague No
-0.9 Prague Yes
56.1 Prague No
4.6 Prague No
2.4 Prague No
54.5 Prague No
25.1 Prague No
3.8 Prague No
2.9 Prague No
19.7 Prague No
61.7 Prague No
0.2 Prague Yes
9.8 Prague No
10.1 Prague No
15.6 Prague No
6.7 Prague No
7.0 Prague No
56.0 Prague No
8.2 Prague No
12.8 Prague No
71.1 Prague No
-0.1 Prague Yes
49.3 Prague No
3.1 Prague No
14.6 Prague No
35.2 Prague No
0.3 Prague Yes
1.7 Prague No
5.2 Prague No
2.7 Prague No
35.3 Prague No
-0.2 Prague Yes
1.3 Prague No
7.9 Prague No
6.8 Prague No
1.9 Prague No
9.3 Prague No
46.5 Prague No
64.7 Prague No
2.2 Prague No
8.1 Prague No
4.1 Prague No
0.8 Prague Yes
2.7 Prague No
28.2 Prague No
8.6 Prague No
2.1 Prague No
50.6 Prague No
16.0 Prague No
0.4 Prague Yes
-0.1 Prague Yes
11.5 Prague No
7.5 Prague No
48.2 Prague No
3.8 Prague No
-0.4 Prague Yes
0.1 Prague Yes
10.5 Prague No
13.7 Prague No
-1.0 Prague Yes
6.9 Prague No

planetlabl.csres.utexas.edu
planetlabl.cs.ucla.edu
planet-labl.cs.ucr.edu
planetlabl.cs.uiuc.edu
planetlabl.cs.umass.edu
planetlabl.cs.uoregon.edu
planetlabl.cs.vu.nl
planetlabl.dtc.umn.edu
planetlabl.eas.asu.edu
planetlabl.ece.ucdavis.edu
planetlabl.eecs.northwestern, edu
planetlabl.eecs.ucf.edu
planetlabl.eecs.umich.edu
planetlabl.een.orst.edu
planetlabl.eurecom.fr
planetlabl.fct.ualg.pt
planetlab-1.fing.edu.uy
planetlabl.fit.vutbr.cz
planetlabl.flux.Utah.edu
pl a n e t l a b l . f r i . u n i - l j . s i
p l a n e t l a b l . h i i t . f i
planetlabl.icu.ac.kr
planetlabl.ifi.uio.no
planetlabl.iii.u-tokyo.ac.jp
planetlabl.iitb.ac.in
planetlab-1.imperial.ac.uk
planetlabl.inf.ethz.ch
planetlab-1.iscte.pt
planetlabl.isi.jhu.edu
planetlabl.it.uc3m.es
planetlab-1.it.uu.se
planetlabllannion.elibel.tm.fr
planetlabl.larc.usp.br
planetlabl.Is.fi.upm.es
planetlab-1.man.poznan.pi
planetlabl.millennium.berkeley.edu
planetlabl.netmedia.gist.ac.kr
planetlabl.nrl.dcs.qmul.ac.uk
planetlabl.ntu.nodes.planet-lab.org
planetlabl.poly.edu
planetlabl.pop-mg.rnp.br
planetlabl.postel.org
planetlabl.science.unitn.it
planetlab-1.tagus.ist.utl.pt
planetlabl.tlm.unavarra.es
planetlabl.tmit.bme.hu
planetlab-1.tssg.org

planetlabl.ucb-dsl.nodes.planet-lab.org
planetlabl.uc.edu
planetlabl.ucsd.edu
planet-labl.ufabc.edu.br
planetlabl.unineuchatel.ch
planetlab-1.unk.edu
planetlabl.upc.es
planetlabl.uta.edu
planetlab-1.vuse.vanderbilt.edu
planetlabl.Williams.edu
planetlabl.xeno.cl.cam.ac.uk
planetlab-2.amst.nodes.planet-lab.org
planetlab2.comp.nus.edu.sg
planetlab2.cs.pitt.edu
planetlab2.cs.uoi.gr
planetlab2.cs.wise.edu
planetlab-2.ece.iastate.edu
planetlab2.pop-rs.rnp.br
planetlab-2.rml.ryerson.ca
planetlab2.utep.edu
planetlab3.mini.pw.edu.pl
planetlab3.piotrkow.rd.tp.pl
planetlab-europe-01.ipv6.Iip6.fr
planetlabnode-1.docomolabs-usa.com
planetlabone.ccs.neu.edu
planetslugl.cse.ucsc.edu
plnodeOl.cs.mu.oz.au
publ-s.ane.cmc.osaka-u.ac.jp
ricepl-1.cs.rice.edu
s anf ranci s co.planetlab.pch.net
scratchy.cs.uga.edu
Stella.planetlab.ntua.gr
sv01-h010.utt.fr
vnl.cs.wustl.edu

83

http://vu.nl
http://eurecom.fr
http://ualg.pt
http://ing.edu
http://iii.u-tokyo.ac.jp
http://iscte.pt
http://tm.fr
http://usp.br
http://ac.uk
http://rnp.br
http://utl.pt
http://edu.br
http://ac.uk
http://edu.pl
http://tp.pl
http://cs.mu.oz.au
http://cmc.osaka-u.ac.jp
http://sv01-h010.utt.fr

Berlin anycast node

Hint:
PRG - Prague, TXL - Berlin
A2Uloc - difference of anycast/berlin to unicast/berlin
A2Usho - difference of anycast to shortest unicast ping
Match - i f the shortest ping matches the anycast selection

Host

aladdin.planetlab.extranet.uni-passau.de
chronos.disy.inf.uni-konstanz.de
cs-planetlabl.cs.surrey.sfu.ca
edi.tkn.tu-berlin.de
freedom.ri.uni-tuebingen.de
host1.planetlab.informatik.tu-darmstadt.de
irabonnie.iralab.uni-karlsruhe.de
mtuplanetlabl.cs.mtu.edu
pll.csl.utoronto.ca
pll.cs.utk.edu
plab-1.sinp.msu.ru
plab201.wiai.uni-bamberg.de
plane-lab-pbl.uni-paderborn.de
planetOl.hhi.fraunhofer.de
planet1.inf.tu-dresden.de
planet1.13s.uni-hannover.de
planet1.Ottawa.canet4.nodes.planet-lab.org
planet1.scs.Stanford.edu
planet2.prakinf.tu-ilmenau.de
planetlabOl.erin.utoronto.ca
planetlab-01.kyushu.jgn2.jp
planetlab01.mpi-sws.mpg.de
planetlab-01.naist.jp
planetlabO.dojima.wide.ad.jp
planetlabO.otemachi.wide.ad.jp
planetlabl.cs.dartmouth.edu
planetlabl.csee.usf.edu
planetlab-1.cs.princeton.edu
planetlab-1.cs.uh.edu
planetlabl.eecs.wsu.edu
planetlabl.exp-math.uni-essen.de
planetlabl.fern.tu-ilmenau.de
planetlab-1.fokus.fraunhofer.de
planetlabl.georgetown.edu
planetlabl.informatik.uni-goettingen.de
planetlabl.informatik.uni-kl.de
planetlabl.informatik.uni-wuerzburg.de
planetlabl.itwm.fhg.de
planetlabl.lkn.ei.tum.de
planetlabl.sfc.wide.ad.jp
planetlabl.win.trlabs.ca
planetlabl.wiwi.hu-berlin.de
planetlab2.eecs.jacobs-university.de
planetlab2.ie.cuhk.edu.hk
planetlab2.informatik.uni-erlangen.de
planetlab2.mnlab.ct i.depaul.edu
planetvsl.informatik.uni-stuttgart.de
plgmu2.it e.gmu.edu
serverl.planetlab.iit-tech.net

ICMP packets from 146 planet-lab nodes were routed to Prague anycast node
and from 49 planet-lab nodes packets were routed to Berlin anycast node.

32.8'/,(64 nodes) matched and 67.2'/,(131 nodes) did not match the measured latency of selected
anycast destination and unicast ping to the same destination.
Measured out of total 195 planet-lab nodes.

Any PRG TXL A2Uloc A2Uloc A2Usho A2Usho Select Mat<
[ms] [ms] [ms] [ms] [•/.] [ms] [•/.] anycast

26 22 26 0.1 0.4 4.3 19.5 Berlin No
28 36 27 0.2 0.5 0.2 0.5 Berlin Yes

165 184 165 0.6 0.4 0.6 0.4 Berlin Yes
18 24 18 0.1 0.7 0.1 0.7 Berlin Yes
23 31 23 0.3 1.4 0.3 1.4 Berlin Yes
19 27 19 -0.3 -1.7 -0.3 -1.7 Berlin Yes
21 29 20 0.5 2.4 0.5 2.4 Berlin Yes

133 140 131 1.7 1.3 1.7 1.3 Berlin Yes
119 130 119 -0.0 -0.0 -0.0 -0.0 Berlin Yes
141 129 145 -4.3 -2.9 11.6 8.9 Berlin No
64 55 64 -0.0 -0.0 9.7 17.6 Berlin No
18 15 18 0.0 0.1 2.9 18.8 Berlin No
22 24 23 -0.3 -1.2 -0.3 -1.2 Berlin Yes
18 24 18 0.0 0.1 0.0 0.1 Berlin Yes
18 20 18 0.0 0.1 0.0 0.1 Berlin Yes
19 21 19 -0.2 -0.9 -0.2 -0.9 Berlin Yes

132 133 131 1.1 0.9 1.1 0.9 Berlin Yes
165 168 167 -2.6 -1.5 -2.6 -1.5 Berlin Yes
20 15 20 0.2 0.8 5.9 39.4 Berlin No

122 131 122 -0.0 -0.0 -0.0 -0.0 Berlin Yes
298 303 292 5.7 2.0 5.7 2.0 Berlin Yes
21 12 22 -0.1 -0.5 9.3 73.9 Berlin No

279 293 279 -0.1 -0.0 -0.1 -0.0 Berlin Yes
276 287 276 -0.0 -0.0 -0.0 -0.0 Berlin Yes
269 280 269 -0.1 -0.0 -0.1 -0.0 Berlin Yes
133 118 127 6.0 4.8 15.0 12.7 Berlin No
145 134 139 6.0 4.3 11.3 8.4 Berlin No
110 118 111 -1.2 -1.1 -1.2 -1.1 Berlin Yes
165 168 170 -5.3 -3.1 -3.7 -2.2 Berlin No
189 198 189 0.0 0.0 0.0 0.0 Berlin Yes
25 15 25 0.0 0.1 9.8 62.1 Berlin No
20 15 20 -0.1 -0.6 5.7 37.7 Berlin No
19 24 19 0.0 0.2 0.0 0.2 Berlin Yes

131 110 125 6.3 5.0 20.7 18.7 Berlin No
21 22 21 0.2 0.8 0.2 0.8 Berlin Yes
23 13 23 -0.1 -0.2 9.6 69.8 Berlin No
23 14 23 0.1 0.4 9.4 67.2 Berlin No
23 13 23 0.1 0.5 9.6 69.3 Berlin No
26 16 26 0.0 0.2 9.4 56.4 Berlin No

269 282 269 0.0 0.0 0.0 0.0 Berlin Yes
135 137 136 -1.0 -0.8 -1.0 -0.8 Berlin Yes
19 25 4 15.2 324.4 15.2 324.4 Berlin Yes
23 24 23 -0.1 -0.6 -0.1 -0.6 Berlin Yes

279 351 346 -67.7 -19.5 -67.7 -19.5 Berlin Yes
18 12 18 0.1 0.3 5.8 45.2 Berlin No

119 128 128 -8.8 -6.8 -8.5 -6.7 Berlin No
23 30 24 -0.8 -3.5 -0.8 -3.5 Berlin Yes

104 114 108 -4.0 -3.6 -4.0 -3.6 Berlin Yes
123 128 117 5.9 5.0 5.9 5.0 Berlin Yes

84

http://freedom.ri.uni-tuebingen.de
http://cs.mtu.edu
http://cs.utk.edu
http://sinp.msu.ru
http://plab201.wiai.uni-bamberg.de
http://planetlab01.mpi-sws.mpg.de
http://informatik.uni-wuerzburg.de
http://itwm.fhg.de
http://tum.de
http://jacobs-university.de
http://iit-tech.net

B SER CONFIGURATIONS

B . l SER Coring for Anycast DNS-based Method
global configuration parameters

adjust debug level, useful values are 0 (shut up) or >5 (very verbose)
debug=3
memdbg=100

check_via=no
dns=no
rev_dns=no

listen="213.192.59.77"

module loading

loadmodule "si"
loadmodule "rr"
loadmodule "maxfwd"
loadmodule "nathelper"
loadmodule "textops"
loadmodule "ctl"
loadmodule "uri"
loadmodule "tm"
loadmodule "mangier"

optional listen addresses, if no one is specified,
ctl will listen on unixs:/tmp/ser_ctl
modparamC'ctl", "binrpc", "unix:/tmp/ser_ctl_unicast") # default
unix sockets and fifo creation parameters
modparamC'ctl", "mode", 0660) # permissions
#modparam("ctl", "group", "ser")

#: — rr params —
#: add value to ;lr param to make some broken UAs happy
modparamC'rr", "enable_full_lr", 1)

#: don't add fromtags to RR, it helps keep the messages smaller
modparamC'rr", "append_fromtag", 0)

#advanced options

dns_retr_time=l
dns_retr_no=l
dns_servers_no=l
dns_use_search_list=no

use_dns_cache=on
use_dns_failover=on

use_dst_blacklist=on
dst_blacklist_mem=10
dst_blacklist_expire=300
dst_blacklist_gc_interval=120

tcp_connection_lifetime=3600
tcp_max_connections=1024 # 1024 connections
tcp_send_timeout=5
tcp_connect_timeout=l
tcp_buf_write=l
tcp_fd_cache=l
tcp_conn_wq_max=65536
t cp_wq_max=10240000
t cp_delayed_ack=1
tcp_linger2=10
tcp_keepalive=yes
tcp_keepidle=30
tcp_keepintvl=5
tcp_keepcnt=4

flags F_NAT, F_FWD_IPTEL, F_RELAY_ANYCAST, F_0RIG_RTPPR0XY,
F_MANGLE_C0NTACT_N0NNAT_REPLY;

route{

#: initial sanity checks — messages with
#: max_forwards==0, or excessively long requests
if (!mf_process_maxfwd_header("10")) {

sl_send_reply("483","Too Many Hops");
break;

};

85

i f (msg:len >= 2048) {
sl_send_reply("513", "Message too big");
break;

};

force_rport();
force_tcp_alias();

/* RR disabled, interferes badly with contact rewriting/uri fixing */
#: we record-route a l l messages — to make sure that
#: subsequent messages w i l l go through our proxy; that's
#: particularly good i f upstream and downstream entities
#: use different transport protocol
#: we don't record route REGISTERS, messages within
#: a dialog (pointless).

i f (!method=="REGISTER" kk !has_totag())
i f (proto==udp)

record_route_preset("213.192.59.77");
else i f (proto==tcp)

record_route_preset("213.192.59.77;transport=tcp");
else{

sl_send_reply("500", "Unsupported protocol");
drop;

}
#record_route();

#: P-Hint and P-Behind-NAT are used by us, don't allow i t before
remove_hf("P-Hint");
remove_hf("P-Behind-NAT");

set source ip used for sending
i f (src_ip==213.192.59.75){

i f i t comes from i p t e l use anycast
#force_send_socket(91.199.168.1);
route(R_FIX_URI); # f i x possible mangled uris

}else{
else use normal ip (i t should be forwarded back to iptel)
#force_send_socket(217.9.54.30);
append_hf("P-iptel-fwd: yes\r\n");
setflag(F_FWD_IPTEL);
i f NAT, mangle contacts (we want subseq. messages to go
through us, so this should be applied both to normal contact
updating request and to REGISTERS)
i f (isflagset(F_NAT) I I nat_uac_test("19")){

setflag(F_NAT);
}
mangle a l l the contacts due to possible firewalls

i f (!search('"(Contact Im)[\t]*:.*sips?:[">[:cntr1:]@]*_RCVDINAT_'))
{

only i f not already fixed
i f (isflagset(F_NAT)){

encode_contact("_NAT_", "213.192.59.77");
append_hf("P-Behind-NAT: Yes\r\n");

}else{
encode_contact("_RCVD_", "213.192.59.77");
append_hf("P-Contact-Mangled: Yes\r\n");

}
i f (method=="REGISTER"){

resetflag(F_NAT);
t_on_reply("R_UNMANGLE_CONTACT_REPLY");

}
}

/* RR interferes with the contact rewriting/uri fixing
(loose_route() sees a myself uri and thinks a s t r i c t router needs fixing..)

*/

#: subsequent messages withing a dialog should take the
#: path determined by record-routing
i f (loose_route()) {

i f (!has_totag()){
sl_send_reply("404", "Preloaded routes forbidden");
break;

}
resetflag(F_FWD_IPTEL); # obey rr

route(R_FWD); # forward

onreply_route[R_RTPPROXY_REPLY]{
i f (status=- "(183)I 2[0-9][0-9]"){

i f (!is_present_hf("P-RTP-Proxy")){
force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");

route(R_MANGLE_CONTACT_REPLY);

86

}
}

onreply_route[R_MANGLE_CONTACT_REPLY]{
i f (status=~ "(18 [0-9]) I 2 [0-9] [0-9]"){

i f ((src_ip!=213.192.59.75) kk
!search('"(Contact Im)[\t]*:.*sips?:[">[:cntrl:]S]*_(RCVDI NAT)_')){

i f (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))
encode_contact("_RCVD_", "213.192.59.77");

else
encode_contact("_NAT_", "213.192.59.77"):

}

onreply_route[R_UNMANGLE_CONTACT_REPLY]{
decode_contact_header();

}

failure_route[R_RTPPROXY_FAILURE]{
i f (isflagset(F_0RIG_RTPPR0XY))

unforce_rtp_proxy();

route[R_FWD]{
i f (isflagset(F_NAT))

route(R_RTPPR0XY);
else i f (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))

t_on_reply("R_MANGLE_CONTACT_REPLY");
i f (isflagset(F_RELAY_ANYCAST))

route(R_RELAY_ANYCAST);
else i f (isflagset(F_FWD_IPTEL))

route(R_FWD_IPTEL);
else{

#forward(uri:host, uri:port);
t_relay();

route[R_RELAY_ANYCAST] {
t_relay();

route[R_FWD_IPTEL]
{

t_relay("sip01.iptel.org", "5060");

route[R_FIX_URI]
i

i f (uri==myself){
i f (uri=~"_NAT_"H

setflag(FJJAT);
i f (!decode_contact()){

sl_reply("500", "decode u r i failed");
drop;

}
appendjif("P-uri-decoded: NAT\r\n");

>else i f (uri=~"_RCVD_"M
setflag(F_MANGLE_CONTACT_NONNAT_REPLY);
i f (!decode_contact()){

sl_reply("500", "decode u r i failed");
drop;

}
append_hf("P-uri-decoded: non-NAT\r\n");

>else{
sl_reply("500", "local uris not allowed");
drop;

setflag(F_RELAY_ANYCAST);
}else{

append_hf("P-iptel-fwd: failover\r\n");
setflag(F_FWD_IPTEL);

route[R_RTPPRDXY]{
don't RTP proxy i f somebody already did i t before us
i f (!is_present_hf("P-RTP-Proxy")){

i f (method=="BYE"I Imethod=="CANCEL")

87

http://iptel.org

unforce_rtp_proxy();
else i f (method=="INVITE"){

force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");
setflag(F_ORIG_RTPPROXY);
t_on_failure("R_RTPPROXY_FAILURE");
t_on_reply("R_RTPPROXY_REPLY");

}else{
i f RTP PROXIED by someone else, we s t i l l want to
catch the reply to f i x the contact
i f (method=="INVITE")

t_on_reply("R_MANGLE_CONTACT_REPLY");

88

B.2 SER Config for Anycast SIP-based Method
global configuration parameters

adjust debug le v e l , useful values are 0 (shut up) or >5 (very verbose)
debug=3
memdbg=100

check_via=no
dns=no
rev_dns=no

listen="91.199.168.1"
listen="213.192.59.76"

module loading

loadmodule " s i "
loadmodule "rr"
loadmodule "maxfwd"
loadmodule "nathelper"
loadmodule "textops"
loadmodule " c t l "
loadmodule "uri"
loadmodule "tm"
loadmodule "mangier"

optional l i s t e n addresses, i f no one is specified,
c t l w i l l l i s t e n on unixs:/tmp/ser_ctl
modparamC'ctl", "binrpc", "unix:/tmp/ser_ctl") # default
unix sockets and f i f o creation parameters

modparamC'ctl", "mode", 0660) # permissions

#: — rr params —

#: add value to ; l r param to make some broken UAs happy
modparamC'rr" , "enable_f u l l _ l r ", 1)
#: don't add fromtags to RR, i t helps keep the messages smaller
modparamC'rr", "append_fromtag", 0)

#: — nathelper params —
#modparam("nathelper", "rtpproxy_disable", 1)

#advanced options

#mlock_pages=yes
#shm_force_alloc=yes
#real_time=7

dns_retr_time=l
dns_retr_no=l
dns_servers_no=l
dns_use_search_list=no

use_dns_cache=on
use_dns_failover=on

use_dst_blacklist=on
dst_blacklist_mem=10
dst_blacklist_expire=300
dst_blacklist_gc_interval=120

tcp_connection_lifetime=3600
tcp_max_connections=1024 # 1024 connections
tcp_send_timeout=5
tcp_connect_timeout=l
tcp_buf_write=l
tcp_fd_cache=l
tcp_conn_wq_max=65536
t cp_wq_max=10240000
t cp_delayed_ack=1
tcp_linger2=10
tcp_keepalive=yes
tcp_keepidle=30
tcp_keepintvl=5
tcp_keepcnt=4

syn_branch=0 # we want to generate the same branch for the same request at
different boxes, to account for anycast routing changes

mid-transaction

flags F_NAT, F_FWD_IPTEL, F_RELAY_ANYCAST, F_0RIG_RTPPR0XY,
F_MANGLE_C0NTACT_N0NNAT_REPLY;

route{

89

#: i n i t i a l sanity checks — messages with
#: max_forwards==0, or excessively long requests
i f (!mf_process_maxfwd_header("10")) {

sl_send_reply("483","Too Many Hops");
break;

};
i f (msg:len >= 2048) {

sl_send_reply("513", "Message too big");
break;

};

force_rport();
force_tcp_alias();

/* RR disabled, interferes badly with contac rewriting/uri fixing */
#: we record-route a l l messages — to make sure that
#: subsequent messages w i l l go through our proxy; that's
#: particularly good i f upstream and downstream entities
#: use different transport protocol
#: we don't record route REGISTERS, messages within
#: a dialog (pointless).

i f (!method=="REGISTER" kk !has_totag())
i f (proto==udp)

record_route_preset("213.192.59.76");
else i f (proto==tcp)

record_route_preset("213.192.59.76;transport=tcp");
else{

sl_send_reply("500", "Unsupported protocol");
drop;

}

#: P-Hint and P-Behind-NAT are used by us, don't allow i t before
remove_hf("P-Hint");
remove_hf("P-Behind-NAT");

set source ip used for sending
i f (src_ip==213.192.59.75){

i f i t comes from i p t e l use anycast
force_send_socket(91.199.168.1);
route(R_FIX_URI); # f i x possible mangled uris

}else{
else use normal ip (i t should be forwarded back to iptel)
force_send_socket(213.192.59.76);
append_hf("P-iptel-fwd: yes\r\n");
setflag(F_FWD_IPTEL);
i f NAT, mangle contacts (we want subseq. messages to go
through us, so this should be applied both to normal contact
updating request and to REGISTERS)
i f (isflagset(F_NAT) I I nat_uac_test("19")){

setflag(F_NAT);
}
mangle a l l the contacts due to possible firewalls

i f (!search('"(Contact Im)[\t]*:.*sips?:[">[:cntr1:]@]*_RCVDINAT_'))
{

only i f not already fixed
i f (isflagset(F_NAT)){

encode_contact("_NAT_", "213.192.59.76");
append_hf("P-Behind-NAT: Yes\r\n");

}else{
encode_contact("_RCVD_", "213.192.59.76");
append_hf("P-Contact-Mangled: Yes\r\n");

}
i f (method=="REGISTER"){

resetflag(F_NAT);
t_on_reply("R_UNMANGLE_CONTACT_REPLY");

}
}

}
/* RR interferes with the contact rewriting/uri fixing

(loose_route() sees a myself uri and thinks a s t r i c t router needs fixing..)
*/

#: subsequent messages withing a dialog should take the
#: path determined by record-routing
i f (loose_route()) {

i f (!has_totag()){
sl_send_reply("404", "Preloaded routes forbidden");
break;

}

resetflag(F_FWD_IPTEL); # obey rr

route(R_FWD); # forward

onreply_route[R_RTPPROXY_REPLY]{
i f (status=- "(183)I 2[0-9][0-9]"){

90

i f (! is_present_hf ("P-RTP-Proxy
11

)) {
force_rtp_proxy("r");
append_hf("P-RTP-Proxy: YES\r\n");

route(R_MANGLE_CDNTACT_REPLY);

onreply.route[R_MANGLE_CONTACT_REPLY]{
i f (status=- " (18[0-9])|2[0-9] [0-9]"){

i f ((src_ip!=213.192.59.75) kk
!search((Contact Im)[\t] *:.*sips?:[">[:cntrl:]@]*_(RCVDI NAT)_')){

i f (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY))
encode_contact("_RCVD_", "213.192.59.76");

else
encode_contact("_NAT_", "213.192.59.76");

}

onreply_route[R_UNHANGLE_CONTACT_REPLY] {
decode_contact_header();

}

failure.route[R_RTPPRdXY_FAILURE]{
i f (isflagset(F_0RIG_RTPPR0XY))

unforce_rtp_proxy();

route [R_F¥D]{
i f (isflagset(F_NAT))

route(R_RTPPRDXY);
else i f (isflagset(F_HANGLE_CDNTACT_NONNAT_REPLY))

t_on_reply("R_MANGLE_CONTACT_REPLY");
i f (isflagset(F_RELAY_ANYCAST))

route(R_RELAY_ANYCAST);
else i f (isflagset(F_FWD_IPTEL))

route(R_FWD_IPTEL);
else{

#forward(uri:host, uri:port);
t_relay();

route[R_RELAY_ANYCAST]
{

NOTE: force_send_socket doesn't work w/ stateless forward,
(the forwarded replies w i l l come from the forced socket
instead of the original socket on which the msg was recvd)
#forward(uri:host, uri:port);
#force_send_socket(91.199.168.1);
t_relay();

route[R_FWD_IPTEL]
{

see above NOTE
#forward(sip01.iptel.org, 5060);
#force_send_socket(213.192.59.76);
t_relay("sip01.iptel.org", "5060");

route[R_FIX_URI]
{

i f (uri==myself){
i f (uri=-"_NAT_"H

setflag(F_NAT);
i f (!decode_contact()){

sl_reply("500", "decode u r i failed");
drop;

}
appendjif("P-uri-decoded: NAT\r\n");

}else i f (uri=-"_RC¥D_"){
setflag(F_MANGLE_C0NTACT_N0NNAT_REPLY);
i f (!decode_contact()){

sl_reply("500", "decode u r i failed");
drop;

append_hf("P-uri-decoded: non-NAT\r\n");
}else{

sl_reply("500", "local uris not allowed");

91

drop;
}
setflag(F_RELAY_ANYCAST);

append_hf("P-iptel-fwd: failover\r\n");
setflag(F_FWD_IPTEL);

route[R_RTPPRDXY]{
don't RTP proxy i f somebody already did i t before us
i f (!is_present_hf("P-RTP-Proxy")){

i f (method=="BYE"I Imethod=="CANCEL")
unforce_rtp_proxy();

else i f (method=="INVITE"M
force_rtp_proxy("r");
appendjif("P-RTP-Proxy: YES\r\n");
setflag(F_ORIG_RTPPROXY);
t_on_failure("R_RTPPROXY_FAILURE");
t_on_reply("R_RTPPROXY_REPLY");

}
}else{

i f RTP PROXIED by someone else, we s t i l l want
catch the reply to f i x the contact
i f (method=="INVITE")

t_on_reply("R_MANGLE_CONTACT_REPLY");

92

