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ABSTRAKT 
Tato diplomová práce se zabývá metodami pro výběr nejbližší R T P proxy k VolP klientům 

s použitím IP anycastu. R T P proxy servery jsou umístěny v síti Internetu a přeposílají 

R T P data pro VolP klienty za síťovými překladači adres(NAT). Bez zeměpisně rozmís

těných R T P proxy serverů a metod pro nalezení nejbližšího R T P proxy serveru by došlo 

ke zbytečnému poklesu kvality přenosu mediálních dat a velkému zpoždění. Tento doku

ment navrhuje 4 metody a jejich porovnání s podrobnějšími rozbory metod s využitím 

DNS resolvování a přímo SIP protokolu. Tento dokument také obsahuje měření cho

vání IP anycastu v porovnání mezi metrikami směrování a metrikami časovými. Nakonec 

dokumentu je také uvedena implemetace na SIP Express Router platformě. 

KLÍČOVÁ SLOVA 
SIP, Anycast, R T P proxy, IP směrování, NAT 

ABSTRACT 
This thesis is about using IP anycast-based methods for locating R T P proxy servers 

close to VoIP clients. The R T P proxy servers are hosts on the public Internet that relay 

R T P media between VoIP clients in a way that accomplishes traversal over Network 

Address Translators (NATs). Without geographically-dispersed R T P proxy servers and 

methods to find one in client's proximity, voice latency may be unbearably long and 

dramatically reduce perceived voice quality. This document proposes four methods their 

comparison with further design of DNS-based and SIP-based methods. It includes IP 

anycast measurements that provides an overview of IP anycast behaviour in terms of 

routing metrics and latency metrics. It also includes implementation on SIP Express 

Router platform. 
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GLOSSARY 
Affinity 

Tendency of subsequent packets of a "connection" to be delivered to the same target. 

Anycast 

Anycast is a network technique which allows a client to access the nearest host of a 
group of hosts that provide the same service. 

Autonomous System(AS) 

Autonomous System(AS) is a set of routers under a single technical administration, 
using an interior gateway protocol and common metrics to route packets within the 
AS, and using an exterior gateway protocol(IBGP) to route packets to other ASs. 

ICE (Interactive Connectivity Establishment) 

A Methodology for Network Address Translator (NAT) Traversal for Multimedia 
Session Establishment Protocols. 

N A T 

Network Address Translation 

Proximity 

Ability to find close-by members of the anycast group. 

R T P (Real-time Transport Protocol) 

RTP is designed to provide end-to-end network transport functions for applications 
transmitting real-time data, such as audio, video or simulation data over multicast 
or unicast network services. 

R T T (Round-Trip Time) 

SDP (Session Description Protocol) 

SDP is intended for describing multimedia sessions for the purposes of session an
nouncement, session invitation, and other forms of multimedia session initiation. 
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SIP (Session Initiation Protocol) 

IETF standard for session initiation in multi-purpose communication systems. 

S T U N (Simple Traversal of User Datagram Protocol (UDP) Through 
Network Address Translators (NATs)) 

S T U N is a lightweight protocol that allows applications to discover the presence and 
types of NATs and firewalls between them and the public Internet. 

T U R N (Traversal Using Relay NAT) 

T U R N is a protocol that allows for an element behind a NAT or firewall to receive 
incoming data over T C P or UDP. 

U A C (User Agent Client) 

A User Agent Client is a logical entity that creates a new request. 

U A S (User Agent Server) 

A User Agent Server is a logical entity that generates a response to a SIP request. 
The response accepts, rejects, or redirects the request. 

U A (User Agent) 

A User Agent acts as both a User Agent Client and User Agent Server. It is an end 
device in a SIP network. They originate SIP transactions turning to dialogs and 
media sessions. Alternatively, a user agent can be a gateway to another network, 
such as a Public Switched Telephone Network (PSTN) gateway. 

URI (Uniform Resource Identifier) 

VoIP (Voice over IP) 

The transmission of voice over data networks that use the Internet Protocol (IP). 
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INTRODUCTION 
This thesis is about using IP anycast-based methods for locating RTP proxy ser
vers close to VoIP clients. The RTP proxy servers are hosts on the public Internet 
that relay RTP media between VoIP clients in a way that accomplishes traversal 
over Network Address Translators (NATs). Without geographically-dispersed RTP 
proxy servers and methods to find one in client's proximity, voice latency may be 
unbearably long and dramatically reduce perceived voice quality. We are focusing 
on using IP anycast to find a reasonably close RTP proxy. IP anycast is Internet's 
capability to route IP packets from a source to one of multiple possible destinations. 
The destinations share the same IP address block and are advertised using a routing 
protocol. The choice of destination is made by routers using available routing tables. 
IP anycast is not a stable environment for stateful protocols(notably T C P ) , especi
ally "long lived" sessions. However, recent studies and measurements[5] showed that 
the use of IP anycast may be even deployed with stateful services when deployed 
carefully and there has already been an existing deployment such as CacheFly[16]. 
The major use of IP anycast today is by DNS root-servers since requests sent to 
DNS servers are on query/reply basis, in other words it is a stateless service that do 
not suffer from routing instabilities. 

As IPv4 address space suffers from shortage, NATs have significantly delayed this 
shortage but caused that almost anyone on the world is behind NAT. SIP (Session 
Initiation Protocol) as one of VoIP protocols and its deployment is not able to deal 
with SIP clients behind NAT on itself. There were introduced technologies handling 
this issue such as STUN, T U R N , ICE or in the worst case an RTP proxy - a server 
through which RTP packets are relayed. If such an RTP proxy is too far away 
from both SIP clients, resulting latency is going to impair perceived voice quality 
dramatically. It is thus important for global SIP deployments, to have a network of 
geographically dispersed RTP proxy servers and actually use those that are close to 
the clients. 

The focus of this work is anycast-based mechanisms for discovering an RTP proxy 
in SIP client's proximity. The mechanism shall satisfy the following criteria: it shall 
be easy to integrate with state-of-the-art SIP clients and servers, allow for fail-over on 
a geographically dispersed basis and be resilient against routing instabilities despite 
use of anycast. In particular dealing with routing instabilities is important as IP 
anycast tends to be sensitive to those. Delivery of subsequent packets to different 
anycast destinations can cause broken transactions on transport or application level 
if stateful. 

The rest of this work is structured as follows. In chapter 1, readers are introduced 
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to background technologies: SIP and IP anycast. In chapter 2, readers get famili
arized with related work done in the field. In chapter 3 we are reviewing several 
architectural options and their trade-offs. The options of our choice and their imple
mentation details are explained in chapter 4. Finally chapter 5 provides conclusion 
and notes about future work. 
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1 BACKGROUND TECHNOLOGIES 

1.1 SIP 
The protocol is used for creating, modifying, and terminating sessions with one or 
more participants. By sessions we understand a set of senders and receivers that 
communicate and the state kept in those senders and receivers during the commu
nication. Examples of a session can include Internet telephone calls, distribution of 
multimedia, multimedia conferences etc. For more about SIP see 2.1. 

SIP on itself is not capable to handle SIP clients behind NATs. There were 
introduced supporting technologies handling this issue such as STUN, T U R N , ICE 
or in the worst case simply RTP proxy. 

1.1.1 Supporting Technologies Dealing with NAT 

S T U N 

Simple Traversal of User Datagram Protocol (UDP) through Network Address Transla
tors (NAT) or STUN is defined in R F C 3489 [30]. It provides a lightweight protocol 
that allows User Agents to probe and discover the type of NAT that exist between 
the User Agent and the S T U N server on the public network. It also provides details 
of the external IP address/port combination used by the NAT device to represent 
the NATed U A on the public facing side of a NAT. On learning of such an external 
representation, a U A can use accordingly as the connection address in SDP to pro
vide NAT traversal. S T U N only works with Full Cone, Restricted Cone and Port 
Restricted Cone type NATs. S T U N does not work with Symmetric NATs as the 
technique used to probe for the external IP address/port representation. 

If SIP User Agents discover that it can traverse the NAT using S T U N then it 
will do so and such U A will look like a U A with the public IP to SIP proxy - special 
treatment or use of RTP proxy is not necessary. 

T U R N 

As mentioned above, S T U N protocol does not work for U D P traversal through a 
Symmetric NAT. Traversal Using Relay NAT (TURN) provides the solution for 
U D P and T C P traversal of symmetric NAT. T U R N is very similar to S T U N in 
both syntax and operation. It provides an external address at a T U R N server that 
will act as a relay and guarantee traffic will reach the associated private address. 
The full details of the T U R N specification are defined in [26]. A T U R N service will 
almost always provide media traffic to a SIP User Agent but it is recommended that 
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this method only be used as a last resort and not as a general technique for N A T 
traversal. This is because using T U R N has high performance costs when relaying 
media traffic and can lead to unwanted latency. 

ICE 

A lot of NAT traversal techniques have been introduced, but none of them works 
universally or are applicable to all real world scenarios. These techniques make use 
of Connection Oriented Media, STUN, T U R N , A L G and so on. A l l the techniques 
have been collected into one single document, which is called ICE. ICE (Interactive 
Connectivity Establishment) is a methodology for traversing NAT, but it is not 
a new protocol. It is a collection of all previously mentioned attempts to traverse 
NAT which work universally. The methodology is quite complex and requires mutual 
cooperation of all SIP entities involved in the communication. Refer to [27] for more 
details about ICE. 

R T P Proxy Servers 

RTP proxy servers are intermediate servers for media sessions established by SIP 
proxies. RTP proxy server is used as a last resort when no NAT technique is able 
with helping to traverse the media over NAT. Mostly, when symmetric NATs are 
involved. Using RTP proxy servers are similar to T U R N servers but the difference 
is that SIP clients have T U R N support and can ask for relaying RTP stream over 
T U R N server on its own whilst RTP proxy servers are controlled from SIP proxy. 
SIP proxies forcibly rewrites SDP bodies in SIP messages enforcing N A T compatible 
symmetric packet flows. 

RTP proxy servers introduce few drawbacks: 

• adds extra hop for media that cause higher voice latency in between SIP clients 
depending on geographic location of RTP proxy 

• may reduce perceived voice quality depending on network capacity and traffic 

RTP proxy servers may be co-located with SIP proxies or may run separately 
from SIP proxies managed using an RTP control protocol. If they run remotely there 
may be introduced some delay issues while establishing a call that may cause timing 
out of some transaction timers. 

1.1.2 Reference Network Organization 

A typical state-of-the-art SIP deployment is organized in a cluster consisting of the 
SIP servers, frequently referred to as home proxies (HPs), and load balancers (LBs). 
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The load balancers distribute SIP traffic over the home proxies and also manage 
their availability. Either the load balancers or home proxy servers implement N A T 
traversal. Such SIP clusters appear as a simple SIP proxy to outside network. The 
home proxy servers share in some way database with SIP-related data. 

In our architecture, we additionally put "fronting-elements" in front of existing 
SIP clusters(see Figure 1.1). The task of these fronting elements is discovery of the 
nearest RTP proxy using anycast and the RTP proxy functionality itself. A key 
design objective is to be able to put this distributed auto-discovered RTP network 
in front of existing SIP clusters without need for additional support in the cluster or 
client. As a side-effect the fronting-elements must also take over the NAT traversal 
role - this must be always done by the element closest to the clients unless it is fully 
transparent. We are leaving the more detailed definition of the fronting element 
to Chapter 3, in which we actually describe the NAT traversal details and several 
different designs of RTP proxy discovery. 

SIP cluster 

anycast 
fronting element 

incoming/outgoing 
SIP messages HP1 

anycast 
fronting element 

HP2 

Shared DB 

S 
HPx 

Fig. 1.1: SIP cluster 

We have deployed this network architecture with fronting elements located in 
Prague and Berlin. As part of getting those available to the Internet with propagated 
anycast IP address we measured the convergence time(time to take over the service 
when one anycast node fail). For more details about convergence time see Section 
1.2.3. 

1.2 Anycast 
Anycast is a network technique which allows a client to access the nearest host of a 
group of hosts that provide the same service. The nearest host is defined according 
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to the routing system's measure of distance. Usually, those hosts in the anycast 
group are replicas, able to provide the same service. To take an advantage of an 
anycast, servers are distributed topologically and geographically across the Internet. 
A n anycast deployment solely depends on the network, routers and routing protocols. 
More detailed description of anycast is in Chapter 2.4. 

We are examining several different uses of anycast for sake of discovery of RTP 
proxy. Anycast does not provide the best proximity in terms of latency but at 
least eliminate the worst case scenarios. It helps to select an RTP proxy as close 
as possible to one of SIP clients in session. A particular problem to deal with is 
anycast's sensitivity to routing instability. This problem is addressed in detail in 
Chapter 3. 

1.2.1 Pros and Cons of Anycast 

General pros and cons of anycast for selection an RTP proxy include: 

Pros: 

• locality/latency improvements by reducing network distance between client 
and RTP proxy servers (at least eliminating the worst case) 

• high availability - provides a service without outages 

• reduce list of geographically dispersed servers to a single distributed anycast 
address 

Cons: 

• IP anycast wastes the address space (the longest IP prefix is /24), even though 
one IP address used for running a service(see Section 2.4.3). This is because 
of B G P policy and route propagation in the Internet. 

• Anycast may break connection affinity (Ballani et al[5] measured that this 
issue is quite negligible) 

• IP anycast does not always offer the nearest anycast server (latency-based 
proximity). 

• B G P sometimes converges slowly (when a service became unavailable it may 
make the service unreachable for even minutes [17]). 

• Not suitable for "long lived" sessions if not handled carefully (keeping the T C P 
context) 
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1.2.2 Non-anycast Server Selection Alternatives 

Another techniques for server selection have been developed. Such as virtual co
ordinate systems, on-demand probing overlays and some kinds of application-layer 
anycasts(see Section 2.4.7). However, these techniques need co-operation on appli
cation layer. The advantage of IP anycast is that it can be transparently handled 
on IP layer. 

1.2.3 Convergence Measurements 

Methodology 

We wanted to find out how fast the convergence of our network setup is so we used 
planet-lab.org, a global research network, to measure latency of ICMP echo replies 
from anycast nodes in Prague and Berlin. We measured convergence time when one 
of B G P daemon stopped propagation of its route. The convergence time is expected 
not to be very high since Prague and Berlin are not so far from each other. Out of 
these measurements we are also able to derive the time of the service unavailability 
in case there is running an application server. 

On planet-lab hosts were installed two scripts. One of them measured ICMP echo 
replies in 8 seconds interval and the other one was collecting results from traceroute 
in 2 minutes interval to see what anycast node is used for a particular planet-lab 
host. 

Results 

1. Table of ICMP packet destination to anycast nodes measured from 142 planet-
lab hosts. 

Anycast node No . of hosts routed to the node 

Prague 103 

Berlin 39 

E 142 

Tab. 1.1: Destinations of planet-lab host ICMP requests 

2. Convergence time of ICMP packets originally destined to Prague and then 
re-routed to Berlin (see Figure 1.2) 
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1.2: Route convergence time to Berlin's anycast node 

Not-converged: 3 planet-lab hosts could not reach new destination. Interes
tingly, all 3 planet-lab hosts are situated in Italy. 

. Convergence time of ICMP packets originally destined to Berlin and then re
routed to Prague (see Figure 1.3) 

1.3: Route convergence time to Prague's anycast node 
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Conclusion about Measurements 

Most of planet-lab hosts directed ICMP packets to Prague node. It shows that in 
routing path prospective Prague anycast node is situated within an ISP (Internet 
Service Provider) on a back-bone that is more accesible in terms of routing metrics 
from the Internet. This does not always provide the best geographic location pro
ximity to a given anycast node though. In our case to find the nearest RTP proxy 
selected anycast node may not be the best to SIP client's location. ICMP packets 
from a lot of planet-lab hosts originally destined to Berlin did not register any service 
outage meaning that the convergence time was very fast for them. 

1.2.4 Latency Measurements 

Planet-lab network provides many nodes all around the world giving us a good image 
of routing in the Internet. The measuring of latency is ICMP echo based which give 
us a knowledge if our design proposals provide a good proximity for SIP clients 
which is our main goal. 

We measured following destinations (IP addresses): 

• anycast/Prague 

• anycast/Berlin 

• unicast/Prague 

• unicast/Berlin 

Methodology 

From each planet-lab host we measured latency of ICMP echo replies of each IP 
address and also "tracerouted" to see what anycast box was "selected" by the par
ticular planet-lab node. For better statistical results we collected 100 echo replies 
for each IP address destination where each planet-lab host produced RTT stats with 
min/avg/max values. Presented stats are for min value. For the average value there 
were nearly the same results (differs just in one planet-lab node). 

Stats 

We were interested if anycast nodes give the best proximity for SIP clients in com
parison to unicast IP address destinations. The stats show: 

• if anycast gave the best proximity by matching the unicast shortest-ping and 
anycast-ping 
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• time difference of anycast RTT against unicast RTT to the same place 

• time difference of anycast RTT against shortest-ping destination 

• difference of the same as both above in per-centage 

The full results are included in Appendix A . 

Does anycast ping destination match to shortest unicast ping? 

ICMP packets from 146 planet-lab nodes were routed to Prague anycast node and 
from 49 planet-lab nodes packets were routed to Berlin anycast node. 32.8%(64 
nodes) matched and 67.2%(131 nodes) did not match the measured latency of 
selected anycast destination and unicast ping to the same destination. Measured 
out of total 195 planet-lab nodes. As can be seen using anycast does not give the 
best proximity. This is caused by close geographic location of Prague and Berlin 
and not so much different routing path for packets from planet-lab nodes. Figure 
1.4 shows the results in graph. 

160 
140-

CD •o 100 o 
£ 80 
o 
Ö 6 ° -
z 

40 
20 
0 

146 

L 

113 

33 

Prague 

I Anycast selected 
• Match 
• No Match 

49 

Berl in 

31 

Fig. 1.4: Anycast ping compared to unicast shortest ping destinations 

The gap between latency of the shortest unicast ping and anycast ping 
(for not matched hosts) 

Following graph (Figure 1.5) shows that anycast in our scenario does not really give 
the best proximity. The conclusion about the graph is that anycast nodes should 
not be very close to each other to give better results. 
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Fig. 1.5: The gap between latency of the shortest unicast ping and anycast ping 

Unicast and anycast routes are different even for the same physical desti
nation 

• 46 planet-lab hosts measured that anycast RTT is lower than unicast RTT. 

• 44 planet-lab hosts measured that anycast RTT is higher than unicast RTT. 
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2 SIP AND A N Y C A S T IN DETAIL 

2.1 SIP 
SIP (Session Initiation Protocol) is application-layer control protocol which has been 
developed and designed within the IETF (Internet Engineering Task Force). The 
protocol has been designed with easy implementation, good scalability, and flexibility 
in mind. 

The specification is available in form of several RFCs and the most important 
one is RFC3261 [24] which contains the core protocol specification.The protocol is 
used for creating, modifying, and terminating sessions with one or more participants. 
By sessions we understand a set of senders and receivers that communicate and the 
state kept in those senders and receivers during the communication. Examples of a 
session can include Internet telephone calls, distribution of multimedia, multimedia 
conferences etc. 

However, SIP is the subject of numerous specifications that have been pro
duced by the IETF. It can be difficult to locate the right document, or even to 
determine the set of Request for Comments (RFC) about SIP. There is a speci
fication covering completely SIP at <https://datatracker.ietf.org/drafts/draft-ietf-
sip-hitchhikers-guide/>. This specification serves as a guide to the SIP R F C series. It 
lists the specifications under the SIP umbrella, briefly summarizes each, and groups 
them into categories. 

2.1.1 Protocol Structure 

Communication using SIP (often called as signalling) includes series of messages. 
SIP messages can be transported independently by the network usually over T C P , 
U D P or TLS. They are text based and the syntax and header fields are quite similar 
to H T T P . Each message consist of "first line", message header, and message body. 
The first line identifies type of the message. There are two types of messages -
requests and responses. Requests are usually used to initiate some action or inform 
the recipient with something (connection info etc.). Responses are used to confirm 
that a request was received and processed and contain the status of the processing. 

Following is a typical SIP request: 

INVITE sip:admin@iptel.org SIP/2.0 
Via:SIP/2.O/UDP 192.168.1.101:5060;rport;branch=z9hG4M9FF9B 
From: natuser <sip:nateduser@iptel.org>;tag=223549693 
To: <sip:adminOiptel.org> 
Contact: <sip:nateduser@192.168.1.101:5060> 
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Call-ID: 032BC0C9-C29E-4F23-9558-CDA469FFE75C0192.168.1.101 
CSeq: 7111 INVITE 
Max-Forwards: 70 
Content-Type: application/sdp 
User-Agent: X-Lite release 1103m 
Content-Length: 241 

v=0 
o=nateduser 4955765 4955765 IN IP4 192.168.1.101 
s=X-Lite 
c=IN IP4 192.168.1.101 
t=0 0 
m=audio 8000 RTP/AVP 0 8 97 101 
a=rtpmap:0 pcmu/8000 
a=rtpmap:8 pcma/8000 
a=rtpmap:97 speex/8000 
a=rtpmap:101 telephone-event/8000 
a=fmtp:101 0-15 

The first line says it is an INVITE message, which is used to establish a session. 
The URI(Uniform Resource Identifier) on the first line — s i p : adminOiptel. org is 
called Request URI and contains URI of intended next hop of the message. In this 
case it will be host i p t e l . org. 

A SIP request can contain one or more Via header fields which are used to record 
path of the request. They are later used to route SIP responses exactly the same 
way. This INVITE message contains just one Via header field which was created 
by the user agent that sent the request. From the Via field we can tell that the 
user agent is running on host 192.168.1.101 and port 5060. Branch parameter of Via 
header fields contains a transaction identifier. 

From and To header fields identify initiator (caller) and recipient (callee) of the 
invitation. From header field contains a tag parameter, which serves as a dialog 
identifier. 

Contact header field contains IP address and port where the sender is awaiting 
further requests sent by callee. 

Call-ID header field is a dialog identifier and its purpose is to identify messages 
belonging to the same call. Such messages have the same Call-ID identifier. CSeq is 
used to maintain order of requests. Because requests can be sent over an unreliable 
transport that can re-order messages, a sequence number must be present in the 
messages so that recipient can identify retransmissions and out of order requests. 
The Max-Forwards serves to limit the number of hops a request can transit on the 
way to its destination and protects from possible loops. Other header fields are 
self-explanatory. 

Message header is delimited from message body by an empty line. Message body 
of the INVITE request contains a description of the media type accepted by the 
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sender and encoded in SDP(Session Description Protocol). 

2.1.2 SIP Requests 

Above is described how an INVITE request looks like and mentioned that the request 
is used for invitation a callee to a session. 

Other important requests are: 

• A C K - This message acknowledges receipt of a final response to INVITE. 

• B Y E - Bye messages are used to tear down multimedia sessions. 

• C A N C E L - Cancel is used for cancelling not yet fully established session. 

• R E G I S T E R - Purpose of R E G I S T E R request is to let registrar know of current 
user's location. 

2.1.3 SIP Responses 

When a user agent or proxy server receives a request it send a reply. Each request 
must be replied except A C K requests which trigger no replies. 

A typical reply looks like this: 

SIP/2.0 200 Ok 
Via: SIP/2.0/UDP 192.168.1.50;branch=z9hG4bK9fbd.a095ba92.0 
Via: SIP/2.0/UDP 10.0.10.3:5060;received=192.168.1.100;rport=5060 
;branch=z9hG4bKB8DlCE9011C544AB90EA794B9C56D16E 
From: natuser <sip:nateduser@iptel.org>;tag=223549693 
To: <sip:adminOiptel.org>;tag=3280384206 
Contact: <sip:admin@192.168.1.101:5060> 
Record-Route: <sip:192.168.1.50;ftag=223549693;lr=on> 
Call-ID: 032BC0C9-C29E-4F23-9558-CDA469FFE75C010.0.10.3 
CSeq: 7112 INVITE 
Content-Type: application/sdp 
Server: X-Lite release 1103m 
Cont ent-Length: 0 

As can be seen, responses are very similar to requests, except for the first line. 
The first line of response contains protocol version (SIP/2.0), response code, and 
reason phrase. 

The reply code is an integer number from 100 to 699 and indicates type of the 
replies. There are 6 classes of replies. 
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2.1.4 User Agent 

User Agent (UA) is an Internet end-point that use SIP to find another end-point 
where negotiating session characteristics between each other. User Agents usually, 
but not necessarily, reside on a user's computer in form of an application - this is 
currently the most widely used approach, but user agents can be also cellular phones, 
P S T N gateways, PDAs, automated IVR systems and so on. 

User Agents are often referred to as User Agent Server (UAS) and User Agent 
Client (UAC). UAS and U A C are logical entities only, each user agent contains a 
U A C and UAS. U A C is the part of the user agent that sends requests and recei
ves responses. UAS is the part of the user agent that receives requests and sends 
responses. 

2.1.5 SIP Proxy 

SIP Proxy servers are very important entities in the SIP infrastructure. They perform 
routing of a session invitations according to callee's current location, authentication, 
accounting and many other important functions. 

2.1.6 SIP Registrar 

The registrar is a special SIP entity that receives registrations from User Agents, 
extracts information about their current location (IP address, port and username in 
this case) and stores the information into location database. 

2.1.7 Record Routing 

A l l requests sent within a dialog are by default sent directly from one User Agent to 
the other. Only requests outside a dialog traverse SIP proxies. This approach makes 
SIP network more scalable because only a small number of SIP messages hit the 
proxies. 

There are certain situations in which a SIP proxy need to stay on the path of 
all further messages. For example, proxies controlling NAT devices or proxies doing 
accounting need to stay on the path of B Y E requests. 

Mechanism by which a proxy can inform user agents that it wishes to stay on 
the path of all further messages is called record routing. Such a proxy would in
sert Record-Route header field into SIP messages which contains address of the 
proxy. Messages sent within a dialog will then traverse all SIP proxies that put a 
Record-Route header field into the message. 
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The recipient of the request receives a set of Record-Route header fields in the 
message. It must mirror all the Record-Route header fields into responses because 
the originator of the request also needs to know the set of proxies. 

2.2 RTP 

RTP (Real-time Transport Protocol) defines a standardized packet format for deli
vering audio and video over the Internet. This protocol can be used for media-on-
demand or for interactive services such as Internet telephony. It goes along with the 
RTP Control Protocol (RTCP) and it's built on top of the UDP[28]. 

When used with SIP signalling, parameters for RTP stream are negotiated 
through SDP documents. This way clients decide what media format will be figuring 
in a session. 

R T P streams and NATs 

There can be a number of RTP streams in a session. In the case where is a session 
between two User Agents, there are two RTP streams, one in each direction (sending 
and receiving RTP packets). If one of the User Agents involved in the session is with 
private IP address, that stream from the public U A towards the NAT will not be 
allowed to reach the U A on the inside of the NAT. Therefore the U A with public 
IP must send the packets to the source IP address and port of packets coming from 
the U A behind NAT. 

Following Figure 2.1 shows both way direction RTP streams and also points 
out required feature for successful NAT traversal - symmetric RTP. In short a User 
Agent receives and sends packets on the same port. Currently, most of UAs has been 
supporting this feature as default. 

RTP 

RTP 

Fig. 2.1: RTP streams - User Agents receive and send packets on the same 
port (symmetric RTP) 
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2.2.1 SDP Documents 

SDP(Session Description Protocol) is intended for describing multimedia sessions for 
the purposes of session announcement, session invitation, and other forms of mul
timedia session invitation. Within these SDP documents a SIP User Agent usually 
sends its IP address and port where RTP stream can be received. SDP document 
also includes a set of supported media codecs by the User Agent. 

SDP document generated by a User Agent include lines "c=" and "m=" with IP 
address and port where media can be received. 

For Example: 

c=IN IP4 147.229.213.156 
m=audio 8000 RTP/AVP 0 8 97 101 

2.3 NAT Traversal using a SIP Proxy with an 
RTP Proxy 

This section describes what must be changed at SIP proxy to make sure that SIP 
messages get delivered back to U A behind NAT and UAs establish two-directional 
media session. The key idea is making all traffic symmetric which is known to ac
commodate most of available NATs. Figure 2.2 shows possible scenario where one 
SIP client is behind NAT and RTP proxy is used for relaying media. 

SIP proxy 
Router/NAT 

RTP proxy 

Fig. 2.2: NAT traversal 

2.3.1 SIP Requests 

Via Header 

When a SIP proxy receives a request (e.g. REGISTER, INVITE), it examines the 
topmost Via header field value. If this Via header field value contains an "rport" 
parameter with no value, it must set the value of the parameter to the source port 
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of the R E G I S T E R request. This is analogous to the way in which a SIP proxy will 
insert the "received" parameter into the topmost Via header field value which is 
source IP address where a request came from. 

For example: 

IP address/port in Via header field received by SIP proxy. 

Via: SIP/2.0/UDP 192.168.1.101:5060; rport; branch=z9hG4bK9FF9B128 

SIP proxy add source IP address/port to received and rport parameters. 

Via:SIP/2.0/UDP 192.168.1.101:5060;rport=1024;received=l.2.3.4 
;branch=z9hG4bK9FF9B128 

Contact Header 

To keep a U A C routable from public network SIP proxy overwrites Contact header 
IP address/port to source IP address/port and saves it in user location databases 
for subsequent requests. 

Contact IP address is used for forming new SIP requests by SIP User Agents. 

For example: 

Original Contact address. 

Contact: <sip:admin@192.168.1.1:5060> 

Overwritten by SIP proxy to routable contact IP address/port from public network 
and saved in location database. 

Contact: <sip:adminOl.2.3.4:1024> 

2.3.2 SIP Responses 

Via Header 

SIP response created with "rport" and "received" parameters in the Via header 
and sent to IP address/port where IP address is "received" parameter and port is 
"rport" parameter. 

For UASs the response must be sent from the same address and port that the 
request was received on in order to traverse symmetric NATs. This is also called 
symmetric signalling extension. Refer to RFC3581[25] for more information. 
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Contact Header 

Contact header field is appended to the response, which will contain the current 
location of the U A . It is the same approach as it is done in SIP requests. 
Note: Contact header is appended to 2xx and 3xx responses only. 

2.3.3 SDP and NATs 

If SIP proxy detects that SIP request (e.g. INVITE) is received from U A behind 
NAT, media must be relayed. This is achieved by forcing the RTP media to traverse 
an RTP proxy. The SIP proxy server must then replace UA's private IP address in 
SDP payload with IP address of the RTP proxy. (Note that communication of the 
SIP proxy server with the RTP proxy is out of scope of this section.) 

The example shows particular lines in SDP payload: 

o=nateduser 4955765 4955765 IN IP4 192.168.1.101 

This line describes the sender of this SDP message and its IP address. This address 
has to be changed to RTP proxy server's IP address. 

c=IN IP4 192.168.1.101 

This line indicates the IP address where the U A will be ready to receive RTP packets. 
It also has to be changed by SIP proxy to RTP proxy address. 

m=audio 8000 RTP/AVP 0 8 97 101 

Eventually, UA's listening port number advertised in "m=" line must be replaced 
with RTP proxy server's. 
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2.4 Anycast 

2.4.1 Network-layer(IP) anycast 

IP Anycast is a network technique which allows a client to access the nearest host 
of a group of hosts that share the same anycast IP address, where the nearest host 
is defined according to the routing system's measure of distance. It is also referred 
as one-to-any communication where "any" means one host of the anycast group. 
Usually, those hosts in the anycast group are replicas, able to provide the same 
service. To take an advantage of an anycast, servers are distributed topologically 
and geographically across the Internet. A n IP anycast deployment solely depends 
on the network, routers and routing protocols. The scale of anycast deployment 
within the routing system can vary from a small network handled by Interior Ga
teway Protocol(IGP)[3], to Border Gateway Protocol(BGP)[2], handling requests 
from the global Internet. Figure 2.3 shows the basic idea of a network-layer(IP) 
anycast deployment. 

17.2.1.1 
17.2.1.1 

, — j . t Network domains 

Fig. 2.3: IP anycast mechanism 

Patridge et al[19] originally proposed the idea of anycast at the network-layer (IP). 
They defined that anycast is a stateless best effort delivery of an anycast datagram 
to at least one host, and preferably only one host. In RFC4786[1] J. Abley and K. 
Lindqvist cover the best current practices of using IP anycast or Kevin Miller [18] 
very well summarize deploying of IP anycast. 
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Ballani et al. [4] states that today deployment of IP anycast is quite limited to just 
query/reply services such as for DNS root servers[2], primarily to spread the load as 
a defence against DoS attacks. On the other hand Ballani et. al.[5] performed some 
measurements regarding proximity 1 and affinity2 and states that IP anycast is also 
a good candidate for using other services based on T C P or applications with long-
lived sessions(2.4.4). They found that IP anycast itself in global deployment provides 
good affinity The measurement states that 93.75% of the source-destination pairs 
never changed (probability of selecting the same anycast node). In other words, the 
probability that a two minute (or one hour) connection would experience a change 
is roughly 1 in 13000 (or 1 in 450). 

There has also been an existing deployment such as CacheFly[16] that uses any-
cast for their stateful service. 

Routing Schemes 

To make it clear here is just a short overview of communication ways in a network. 

• Unicast - the process of sending a packet from one host to an individual host. 

• Broadcast - the process of sending a packet from one host to all hosts in the 
network 

• Multicast - the process of sending a packet from one host to a selected group 
of hosts 

• Anaycast - the process of sending a packet from one host to an indivi-
dual(nearest) host out of group of hosts 

2.4.2 Common IP Anycast Deployments 

AS 112 project 

The anycasted AS 112 servers are used to draw in reverse DNS queries to and for 
the link local address space (RFC1918 addresses - 10.0.0.0/8, 172.16.0.0/12 and 
192.168.0.0/16). In other words they use anycasted sink-hole servers. 

DNS Root Servers 

Wide-scale deployment of DNS root servers. Anycasting of six of the thirteen root-
servers C, F, I, J, K and M root. It takes advantage of simple query/reply behaviour. 

1 ability to find close-by members of the anycast group. 
2tendency of subsequent packets of a "connection" to be delivered to the same target. 
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On local scale, IP anycast is used by operators to simplify and improve local 
DNS server availability. 

IPv4-to-IPv6 relays 

6to4 routers involve connecting v6 networks across v4 infrastructure. Anycast pro
vides an easy way for end sites to locate relays into the native IPv6 world by using 
globally known IPv4 anycast prefix for 6to4 routers. 

Rendezvous Discovery for IP Multicast 

IP multicast packets are routed to shared multicast Rendezvous points using IP 
anycast address. 

2.4.3 Routing Consideration 

Addressing in IP Anycast 

IP anycast address is an IP address which identifies a group of nodes (servers). This 
address is then assigned to each anycast node. IP anycast address must also be 
chosen from IP address space(prefix) that corresponding routes will be allowed to 
propagate within given routing system [1]. The length of prefix must be sufficiently 
short that it will not be discarded by commonly-deployed import policies in B G P 
speaking routers. 

For an IPv4 numbering and deployment across the Internet the IP address is 
given by an address space where the minimum RIR(Regional Internet Registry) 
allocation size is 24 bits. It means that reachability of a service with anycast address 
would be in /24 subnet (24-bit prefix) for example 112.54.8.0/24. The disadvantage 
is that it uses the address space inefficiently 

An anycasted service deployed within a private network[22] can use locally-
unused address and that address might be reached by 32-bit host route. This also 
apply for deploying anycast within area under single administration such as an au
tonomous system. The anycast service is within IGP has no inherent restrictions on 
the length of prefix as stated in [1]. 

In IPv6 network IP anycast addresses are not scoped differently from unicast 
addresses. However, IPv6 Anycast is beyond the scope of this document. 
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Route Advertising 

Members of an anycast group have to indicate to the routers that they wish to receive 
anycast packets. One approach is to have the anycast host run a routing protocol 
and be able to advertise its anycast address to other routers in a network. Section 
2.4.5 describe network configuration for intra-domain and inter-domain routing. 

Service Management 

Although each anycast host is intended to be reached by a particular community of 
clients via anycast address, there is also a requirement to be able to reach individual 
hosts in a predictable fashion for the purposes of systems administration, and so 
that service performance can be monitored. For this reason each host has a unique, 
unicast management IP address associated with it. 

2.4.4 UDP, T C P transports and Anycast 

It is important to remember that routing in the Internet is stateless. A n anycast 
network has no obligation to deliver two successive packets sent to the same anycast 
host. This might happen when a client is topologically in the middle of two anycast 
hosts with equal-cost paths. 

U D P 

Since U D P transport is connectionless and anycasting is a stateless service, U D P 
can treat anycast addresses like regular IP addresses. A U D P datagram sent to an 
anycast address is just like a unicast U D P datagram from the perspective of U D P 
and its application. 

Some services have very short transaction times, and may even be carried out 
using a single packet request and a single packet reply (e.g. DNS transactions over 
U D P transport). Here is no problem with Anycast. 

Some services have long transaction times and need to exchange more datagram 
in between client and anycast host. This problem is discussed in Ballani's et al. 
paper[5] as connection affinity and concludes that packet delivery to different host 
is negligible. 

T C P 

TCP ' s use of anycasting is less straightforward because T C P is stateful. It is hard 
to envision how one would maintain T C P state with an anycast server when two 
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successive T C P segments sent to the anycast server might be delivered to completely 
different hosts. 

Engel et al[12] propose a solution for this problem. This proposal is based on 
minor modification of T C P / I P stack at the host part where the anycast service 
is running. It does not require any modifications to routers and routing protocols. 
These modifications are limited to changes at the IP layer of the recipient of the T C P 
connection, making this scheme suitable to a client/server environment. Especially, 
it focuses on T C P transport protocol stateful connections since they tend to cause 
problems in anycast routing as described in [19]. The basic idea is to pin the end-
host to which the first packet of the flow has been sent. The author states that it is 
very similar to route pinning in the context of QoS routing. The pinning is done by 
inserting a loose source route option in all subsequent packets from the same T C P 
flow. 

2.4.5 Network Configuration 

To deploy an anycast service there are two ways to set the anycast hosts up. Using 
either intra-domain routing or inter-domain routing configurations. 

Intra-domain configuration 

If the anycasted service is entirely within one routing domain (AS) or multiple intra-
domain locations(more ASs but bound with an IGP protocol), only intra-domain 
consideration is needed. Routers need to be configured to deliver traffic to anycast 
servers either with static routes on first-hop router as shown in figure 2.4 or setting 
up dynamic routing by running a routing daemon on anycast hosts using for instance 
Zebra/Quagga. See figure 2.5. Static routes provides simple configuration but does 
not respond to server failure quickly. On the other hand it provides the ability to 
relocate servers without outage. Whilst in dynamic routes the anycast host is route 
originator and when the host is down the route is automatically withdrawn from 
routing system. Intra-domain anycast approach is described in [3]. 

Inter-domain Configuration 

Setting up inter-domain routing for anycast is more difficult because this configu
ration needs its own AS, ISP independent IP prefix (see 2.4.3 and able to adver
tise the service anycast supernet. In this prospect Intra-domain routing must be 
correctly configured such as anycast servers can be IBGP peered and can use IGP 
redistribution. It must be able to withdraw routes when service is unavailable. Some 
deployments distinguish "global" nodes from "local" nodes[2] where global nodes 
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Fig. 2.4: Static IGP routes 

^10.5.0.1/32 connectecT 

Fig. 2.5: Dynamic IGP routes 

are announced to Internet routing system without restriction and local nodes add 
"no-export" B G P community attribute (2.5 to limit the clients that will use the 
node. For instance F-root DNS servers are using this approach. See section 2.4.5 for 
more details. Figure 2.6 shows advertisement of anycast address to the upstream 
ISP. 

Global Nodes 

In conjunction with an anycast service distribution across the global Internet, Global 
Nodes provides service to clients anywhere in the network. To be able to reach the 
service globally, B G P routers propagate reachability information, without restriction 
2.5, by advertising routes covering the anycast service addresses for global transit 
to one or more ISPs. 

More than one Global Node can exist for a single service which is commonly 
used (see Section 2.4.2 for reasons of redundancy and load-balancing. 
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17.2.1.1 
Network domains 

17.2.1.1 

17.2.1.0/24 

'17.2.1.0/24 

BGP advertisment 

Fig. 2.6: B G P prefix advertisement 

Local Nodes 

On the other hand, it is sometimes desirable to deploy an anycast node which only 
provides services to a local catchment of autonomous systems, and which is purposely 
not available to the entire Internet. These nodes are referred to as Local Nodes. For 
instance a Local Node may be appropriate in regions with good internal connectivity 
but unreliable, congested or expensive access to the rest of the Internet. 

Local Nodes advertise covering routes for anycast service addresses in a restricted 
way of propagation. This might be done using B G P community attribute such as 
no_export (covered more in Section 2.5.1) or nopeer[15] or by arranging with peers 
to apply a conventional "peering" import policy instead of a "transit" import policy, 
or some suitable combination of measures. 

2.4.6 IP Anycast and its Characteristics 

Ballani et al. [5] focused on measurements of IP Anycast despite previous studies 
did not report clear measurements and conclusions on IP Anycast performance such 
as failover, load distribution, proximity and affinity Their measurements were ac
complished on four existing IP Anycast deployments including two anycasted DNS 
root-servers and their own small scale IP Anycast service where they could test fai
lure scenarios. The purpose of this study is to provide information on suitability of 
IP Anycast for stateful services. 

Ballani's measurements states that current deployments such as J-root servers, 
does not offer good latency-based proximity. They found that approximately 40% 
of measured clients are directed to a root-server that is more than 100 msec farther 
away from the closest server and concluded that inter-domain routing metrics have 
an even more severe impact on the selection of paths to anycast destinations. The 
proposal is to ensure that an ISP, that provides transit to an anycast server, has 
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global presence and is (geographically) well covered by such servers improves the 
latency-based proximity offered by the anycast deployment. Basically, those me
asurements were compared between latencies of the unicast address and anycast 
address of tested server probed by clients. The unicast address is also usually used 
as management and monitoring access to servers. 

IP Anycast is also affected by delayed routing convergence therefore clients using 
anycast service may experience slow failover. A failover may be caused by outage of 
anycasted service or B G P stability issues (see section 2.5.3. The already mentioned 
proposal addresses this by reducing the scope of routing convergence that follows a 
server failure and therefore may ensure fast failover for clients. The study shows a 
slow failover when anycast servers run in different ISP networks. 

Their study concludes that IP Anycast offers good affinity to all clients with 
the exception of a small fraction that explicitly load balance traffic across multiple 
upstream ISPs. That means IP Anycast does not interact poorly with inter-domain 
routing and therefore should not significantly impact stateful services. 

They also measured and load balanced servers by AS_PATH prepending which 
resulted in allowing for coarse-grained control over the distribution of client load 
across the deployment. AS_PATH prepending performs B G P speaker(on the anycast 
server) by adding its AS number more times in AS_PATH attribute which makes 
the anycasted server farther from clients. 

2.4.7 Application-layer Anycast 

Application-layer anycast is based on server or application metrics, such as available 
capacity, measured RTT(Round-trip time), number of active connections. However, 
application-layer anycast depends on an external entity that probes the location 
of clients, monitors the location and the status of servers in anycast group. Usu
ally, it does not involve any change in clients but involves an overlay on existing 
routing infrastructure. Ballani et al[5] describes it as follows. One way of providing 
application-layer anycast is mapping high-level names, such as a DNS name, into 
one server of anycast group, returning the selected server's IP address to the cli
ent. Such an approach offer a number of advantages over IP anycast: it is easier to 
deploy, offers fine-grained control over the load on the servers and can provide very 
fast failover to clients. These advantages have led to the widespread adoption of 
application-layer anycast as a service discovery possibility. For example, commercial 
CDNs(Content Delivery Networks) use DNS-based redirection (in combination with 
URL-rewriting) to direct clients to an appropriate server. 

Since application-layer anycast brings a lot of advantages it is not useful for 
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all protocols/applications. The fact that IP anycast operates at the network layer 
implies that it is only form of anycast that can be used by low-level protocols for 
example the use of anycast in IPv4-to-IPv6 relays. Ballani et al states that operating 
at the network layer gives IP Anycast a "ground level" resilience not easily achieved 
by application-layer anycast - for example, using DNS-based redirection to achieve 
resilience across a group of web servers requires first that the DNS servers themselves 
be available. It is this that makes IP Anycast particularly well suited for replicating 
critical infrastructures such as the DNS. 

There are several projects using application-layer anycast approach such as 
OASIS(Anycast for Any Service)[13], Cisco DistributedDirector[10] and Application 
Layer Anycasting[7]. The up-to-date project and used by several services is OASIS 
which is further described in following section 2.4.7. 

OASISrAnycast for Any Service 

Global anycast faces several requirements. 

• must be fast and accurate 

• must minimize probing to reduce risk of abuse complaints 

• must scale to many services and provide high availability 

• must integrate seamlessly with unmodified client applications 

OASIS (Overlay-based Anycast Service Infrastructure) [13], a global distributed 
anycast system, addresses these challenges which allows legacy clients to find nearby 
or unloaded replicas for distributed services. Two main features distinguish OASIS 
from prior systems. First, OASIS allows multiple application service to share the any-
cast service. Second, OASIS avoids on-demand probing when clients initiate requests. 
This is because OASIS maintains locality information (an application independent 
way) by mapping portions of the Internet in advance (based on IP prefixes) to the 
geographic coordinates of the nearest known landmark. 

OASIS, a shared locality-aware server selection infrastructure, allows a service 
to register a list of servers for later optimal selection which is also the primary 
approach. However, selection also bases on liveness and load of a individual server 
in a distributed service. OASIS can, for example, be used for locating IP anycast 
proxies [6], or it can select distributed S M T P servers in large email services. 

Before introducing OASIS some other techniques have been used so far such as 
virtual coordinate systems (e.g. Vivaldi) and on-demand probing overlays. While on-
demand probing potentially offers greater accuracy, it has several drawbacks. First, 
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probing adds latency and second, performing several probes to clients might trigger 
intrusion-detection alerts, resulting in abuse complaints. 

OASIS eliminates on-demand probing(when clients make anycast requests) by 
probing (in OASIS -> clients direction) in the background. OASIS uses techniques 
which practically measure the entire Internet in advance. By leveraging the locality 
of the IP prefixes[14], OASIS probes only each prefix, not each client. In practice, 
IP prefixes from B G P dumps are used as starting point. OASIS is implemented at 
each service replica and thus delegates measurements to them. Service replica is a 
one copy of serving server in a distributed network. 

To share OASIS across services and to make background probing feasible, OASIS 
requires stable network coordinates 3 for maintaining locality information. However, 
virtual coordinates tend to drift over time so instead, OASIS stores the geographic 
coordinates of the replica closest to each prefix it maps. 

OASIS is publicly deployed on PlanetLab(http://www.planet-lab.org/) and has 
already been adopted by a number of services such as CoralCDN, O C A L A , OpenDHT 
and more. The full list can be found at OASIS project page http://oasis.coralcdn.org/. 

As a service selection algorithm it uses a DNS redirector that performs server 
selection upon hostname lookups, thus supporting a wide range of unmodified client 
applications(almost every network application firstly does DNS lookup before pro
ceeding with other tasks). However, OASIS also provide H T T P and R P C interface 
for locality estimation. 

System and design overview 

The OASIS architecture combines reliable core nodes that implement anycast with 
a larger number of replicas belonging to different services that assist in network 
measurement. Firstly, every replica knows its geographic coordinates before any 
network measurement. Then, OASIS estimates the geographic coordinates of every 
netblock on the Internet (OASIS as a shared infrastructure spread measurement costs 
over many hosts). OASIS re-probe every physical location quite infrequently since 
IP prefixes rarely change [23]. 

The system consists of a network core nodes that help clients select appropriate 
replicas of various services as shown in Figure 2.7. A l l services employ the same core 
nodes. Replicas also run OASIS-specific code, both to report their own load and 
liveness information to the core, and to assist the core with network measurements. 
Clients need not to run any special code to use OASIS, because the core nodes 

3Network coordinates provide a scalable way to estimate latencies among large numbers of hosts 
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provide DNS or H T T P based redirection. For example, an OASIS nameserver calls 
its core node with client resolver's IP address and a service name extracted from the 
requested domain name (e.g. coralcdn.nyuld.net indicates service coralcdn). 

Fig. 2.7: OASIS system overview 
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2.5 BGP - Border Gateway Protocol 
The Border Gateway Protocol (BGP), specifically BGP-4, is defined in R F C 4271 [21]. 
In this section are some citations taken from [11] and [33]. B G P provides loop-free 
inter-domain routing between autonomous systems. A n autonomous system(AS) is a 
set of routers that operate under the same administration and routing policy. B G P 
is often used within the networks of Internet service providers (ISP). B G P is an 
exterior routing protocol(EGP) which use a path-vector routing protocol. 

Routers that belong to the same AS and exchange B G P updates are said to 
be running internal B G P (IBGP), and routers that belong to different ASs and 
exchange B G P updates are said to be running external B G P (EBGP). Figure 2.8 
shows a network that demonstrates the difference between E B G P and IBGP. 

Note that this section covers just necessary information about B G P to under
stand anycast and is explained on a cisco router. The rest is beyond the scope of 
this document. 

Fig. 2.8: E B G P , IBGP, and Multiple ASs 

Before the routing system exchanges information with an external AS, B G P 
ensures that networks within the AS are reachable. This is done by a combination 
of internal B G P peering among routers within the AS and by redistributing B G P 
routing information to Interior Gateway Protocols (IGP) that run within the AS, 
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such as Open Shortest Path First (OSPF), Intermediate System-to-Intermediate 
System (IS-IS) and Routing Information Protocol (RIP). 

B G P uses the Transmission Control Protocol (TCP) as its transport protocol 
(specifically port 179). Any two routers that have opened a T C P connection to 
each other for the purpose of exchanging routing information are known as peers or 
neighbours. In figure 2.8, routers A and B are B G P peers, as are routers B and C, 
and routers C and D. The routing information consists of a series of AS numbers 
that describe the full path to the destination network. B G P uses this information to 
construct a loop-free map of ASs. Note that within an AS, B G P peers do not have 
to be directly connected. 

B G P peers initially exchange their full B G P routing tables when the T C P con
nection between peers is first established. When changes to the routing table are 
detected, the B G P routers send to their peers only those routes that have chan
ged. B G P routers do not send periodic routing updates, and B G P routing updates 
advertise only the optimal path to a destination network. 

2.5.1 BGP Attributes 

Routes learned via B G P have associated properties that are used to determine the 
best route to a destination when multiple paths exist to a particular destination. 
These properties are referred to as B G P attributes, and an understanding of how 
B G P attributes influence route selection is required for the design of robust networks. 
This section describes the attributes that B G P uses in the route selection process: 

• Weight 

• Local Preference(LOCAL_PREF) 

• Multi-exit discriminator (MULTI_EXIT_DISC) 

• ORIGIN 

• AS _PATH 

• N E X T _ H O P 

• Community 

Weight Attribute 

Weight is a Cisco-defined attribute that is local to a router. The weight attribute is 
not advertised to peering routers. If the router learns about more than one route to 
the same destination, the route with the highest weight will be preferred. 
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Local Preference 

Local Preference(LOCAL_PREF) shall be included in all U P D A T E messages that a 
given B G P speaker sends to other internal peers. A B G P speaker shall calculate the 
degree of preference for each external route based on the locally-configured policy, 
and include the degree of preference when advertising a route to its internal peers. 
The higher degree of preference must be preferred. A B G P speaker uses the degree 
of preference learned via L O C A L _ P R E F in its Decision Process. 

Multi-exit discriminator 

The Multi-exit discriminator(MULTI_EXIT_DISC) is intended to be used on exter
nal (inter-AS) links to discriminate among multiple exit or entry points to the same 
neighbouring AS. 

ORIGIN 

ORIGIN specifies the origin of the routing update. When B G P has multiple routes, 
it uses the ORIGIN as one factor in determining the preferred route. It specifies one 
of the following origins: 

• IGP — The route is interior to the originating AS. This value is set when the 
network router configuration command is used to inject the route into B G P . 

• E G P - - The route is learned via the Exterior Border Gateway Protocol 
(EBGP). 

• Incomplete — The origin of the route is unknown or learned in some other 
way. A n origin of incomplete occurs when a route is redistributed into B G P . 

AS _PATH 

This attribute identifies the autonomous systems through which routing information 
carried in B G P U P D A T E message has passed. 

N E X T _ H O P 

The NEXT_HOP is an attribute that defines the IP address of the router that should 
be used as the next hop to the destinations listed in the U P D A T E message. 
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Community Attribute 

Community attribute is an extension of BGP-4 protocol[8]. Community attribute 
provides a way of grouping destinations, called communities, to which routing deci
sions (such as acceptance, preference, and redistribution) can be applied. Predefined 
community attributes are: 

• no-export — Do not advertise this route to E B G P peers. 

• no-advertise — Do not advertise this route to any peer. 

• internet — Advertise this route to the Internet community; all routers in the 
network belong to it. 

Figure 2.9 shows the no-export community. AS 1 advertises 172.16.1.0 to AS 2 
with the community attribute no-export. AS 2 will propagate the route throughout 
AS 2 but will not send this route to AS 3 or any other external AS. This way is 
configured a Local Node in IP anycast as described in section 2.4.5. 

Fig. 2.9: B G P no-export Community Attribute 

2.5.2 BGP Path Selection 

B G P could possibly receive multiple advertisements for the same route from multiple 
sources. B G P selects only one path as the best path. When the path is selected, 
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B G P puts the selected path in the IP routing table and propagates the path to its 
peers. B G P uses the following criteria, in the order presented, to select a path for a 
destination: 

• If the path specifies a next hop that is inaccessible, drop the update. 

• Prefer the path with the largest weight. 

• If the weights are the same, prefer the path with the largest local preference. 

• If the local preferences are the same, prefer the path that was originated by 
B G P running on this router. 

• If no route was originated, prefer the route that has the shortest AS.path. 

• If all paths have the same AS.path length, prefer the path with the lowest 
origin type (where IGP is lower than E G P , and E G P is lower than incomplete). 

• If the origin codes are the same, prefer the path with the lowest M E D attribute. 

• If the paths have the same M E D , prefer the external path over the internal 
path. 

• If the paths are still the same, prefer the path through the closest IGP nei
ghbour. 

• Prefer the path with the lowest IP address, as specified by the B G P router ID. 

2.5.3 BGP routing stability 
B G P routing changes happen for a variety of reasons[23]. The exchange of update 
messages depends on having an active B G P session between a pair of routers. De
vice failures or reconfiguration may trigger the closing of the B G P session, forcing 
each router to withdraw the routes learned from its neighbour. After re-establishing 
the session, the routers exchange their routing information again. Each router ap
plies local policies to select the best route for each prefix and to decide whether 
to advertise this route to the neighbour. Changes in these policies can trigger new 
advertisements. A group of ASs may have conflicting policies that lead to repe
ated advertising and withdrawing of routes. In addition, intra-domain routing or 
topology changes may cause some routers to select new B G P routes and advertise 
them to neighbouring ASs. B G P routing changes can cause performance problems. 
A single event, such as a link failure, can trigger a long sequence of updates as the 
routers explore alternate paths. During this convergence period, the packets headed 
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toward the destination prefix may be caught in forwarding loops. Exchanging and 
processing the update messages also consumes bandwidth and C P U resources on 
the B G P speaking routers in the network. In addition, the new advertisements from 
neighbouring ASs may change the paths that traffic takes through the network. This 
can cause congestion on certain links in the AS. Frequent changes in the adverti
sements from other domains make it difficult for operators to engineer the flow of 
traffic through an AS. For example, a B G P routing change may cause traffic to a 
particular destination prefix to leave the AS through a different egress point. If B G P 
routing changes affect a large portion of the traffic, past information about B G P 
updates would not be a good basis for future operations decisions. 
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3 SOLUTION SPACE 
In this chapter, we are reviewing several anycast-based methods for discovery of 
an RTP proxy server. The key objective of all the method is to avoid use of RTP 
proxy servers that are too distant from a call party. In the first section we set several 
evaluation criteria. In the next section we suggest four different methods to solve 
the proximity problem. We conclude with a comparison of all the methods based on 
the criteria set in previous sections. 

3.1 Evaluation Criteria 

Easy of Integration 

This means what must be done about to make a proposed method working and how 
difficult is to deploy it. 

"Proxy" Effect 

A "middlebox" between client and anycast server that leads to the middlebox being 
used for discovery instead of the client. 

SIP Interoperability 

It is a behaviour and cooperation of all SIP entities in the SIP communication. If 
one of the SIP entity does not support a required feature it is not possible to use the 
feature. A n anycast solution must be as SIP interoperable as possible and should 
not break any standards and policy issues. 

Resilience against Routing Instabilities 

It is important to keep the system resilient against changes in routing. That means 
that the fronting elements must be as stateless as possible. I.e., the elements shall 
minimize its transport-layer and application-layer context to either stateless or at 
least short-lived transactions. 

Integration Overhead 

If RTP proxies are not co-located with SIP proxies then they must be controlled 
by SIP proxy servers remotely. This introduces additional concerns: latency and 
security. This particularly applies to methods that concentrate SIP servers in a 
single place, from which multiple geographically-dispersed RTP proxy servers are 
controlled. RTP control is a specific source of complexity. 
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Failure- reactiveness 

Time for a SIP client to switch over if a fronting-element fails. 

3.1.1 Network Constraints 
When designing the "fronting element", the following constraints have to be kept in 
mind: 

• For the anycast proximity service to take effect, the anycast service (which is 
not the RTP proxy itself!) must be co-located with the RTP proxy. 

• Scope shall be easily extended to one-way RTP servers such as SEMS(SIP 
Express Media Server). 

• Anycast can unlikely deliver the best proximity but importantly it avoids 
reliably the worst-case. 

• NAT traversal has to be accomplished by fronting element's SIP proxy un
less the fronting-element is completely SIP-unaware. (see the IP-tunnel-based 
method later) 

3.2 Anycast-based Methods for Finding the Clo
sest RTP Servers 

We are suggesting several proxy-discover anycast-based methods, that differ in how 
they are integrated in the whole system. 

• Anycasting geographically spread DNS servers 

• Anycasting SIP Proxy Servers 

• Anycasting SIP tunnels 

• Anycast "bootstrap" redirect service 

In the following sections will be described upsides and downsides of mentioned 
methods in architectural detail and made comparison among them. 
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3.3 Anycasting Geographically Spread DNS Ser
vers 

The DNS-based method, used also similar way in OASIS [13] features application-
independence and high resilience against routing instabilities. It relies on geogra
phically dispersed DNS servers responsible for the serving domain. The IP address 
returned by the DNS server is used to associate client with that particular region 
and to find the appropriate RTP proxy. In this scenario, the RTP proxy and SIP 
proxy (fronting element) are co-located with this DNS server. The RTP proxy and 
SIP proxy servers listen on unicast address, whereas the DNS server uses anycast. 
Clients before sending SIP messages perform a DNS lookup which is usually han
dled by provider's DNS resolver. DNS resolver recursively finds the closest anycast 
DNS server which returns unicast IP address and used for sending SIP messages. 
After SIP client sends SIP messages to resolved unicast IP address and anycast IP 
address does not play any other role(until DNS re-lookup given by T T L parameter). 
The path of these SIP messages must be remembered for use by subsequent SIP 
traffic. Otherwise, it could hit a different fronting element without appropriate T C P 
context, or with a different IP address that would not be accepted by symmetric 
NATs. 

The scenario and the call flow are shown in 3.1 and 3.2. 

3.3.1 Call Flows 
This call flow shows how fronting elements(SIP proxies) are involved in the SIP 
traffic. For simplicity there are no SIP user authorizations included. 

DNS Lookup 

1. Before U A l sends any request it performs a DNS lookup. The lookup is done 
usually by provider's DNS resolver that recursively finds the closest anycast 
DNS server. 

2. This anycast DNS server returns a unicast IP address particular for the region. 
Actually, this unicast IP address is associated with SIP fronting element and 
RTP proxy where is also residing the DNS server. 

R E G I S T E R 

U A l sends R E G I S T E R message to unicast IP address of the nearest SIP proxy 
#1 (fronting element). The SIP proxy #1 changes the Contact header field to 

50 



Fig. 3.1: Anycasting DNS servers 

remember the path of the message. SIP proxy #1 sends the request to SIP 
cluster which stores the Contact of U A l in location DB. For details about 
path processing see Section 4.3 - remember the path. 

INVITE 

3. U A l wants to setup a call with UA2. U A l sends INVITE to unicast IP address 
of the SIP proxy #1. 

4. SIP proxy #1 changes the Contact header - remember the path(see 4.3) and 
sends it to SIP cluster. The message is also record routed to stay in the same 
path for B Y E requests. If the message came from behind it does NAT traversal 
procedure as described in Section 2.3 and mark the message that the NAT 
traversal was done here. RTP binding is allocated and SDP changed. 

5. SIP cluster look up Contact of UA2 and replace the Request URI and send to 
the host part of the Request URI which is SIP proxy #2. 

6. As SIP proxy #2 receives INVITE it parses the Request URI, uses the infor
mation stored in it and sends the INVITE to UA2. 

51 



7. UA2 replies 200 O K towards SIP proxy #2 based on top most Via header of 
INVITE. 

8. SIP proxy #2 changes the Contact header in the 200 O K reply(remember the 
path) and sends it to SIP cluster. 

9. SIP cluster forwards it to SIP proxy #1. 

10. SIP proxy #1 changes the Contact header of 200 O K and sends it to U A l . 

11. A media flows between U A l and UA2 based on INVITEs and 200OKs SDP 
bodies. 

B Y E 

12. Similarly as with INVITE the processing is done with B Y E . 
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Fig. 3.2: Anycasting DNS servers - call flow 
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3.4 Anycasting SIP Proxy Servers 
In this alternative, it is the SIP proxy server in the fronting element that listen on 
anycast address for discovery purposes. RTP proxies are co-located with each anycast 
SIP proxy. The SIP proxy does NAT traversal handling and also Contact mangling 
to remember the path for future requests. The SIP proxy shall stay as stateless as 
possible to guarantee minimum impact of routing instabilities. This is however not 
entirely possibly. On the transport layer, use of T C P breaks this requirement. On 
the SIP layer, the proxy can be stateless. Importantly, all the anycast SIP proxy 
servers must produce the same transaction id (branch Via parameter) otherwise 
down-stream SIP cluster will not match requests belonging to the same transactions 
during routing instabilities. 

3.4.1 Call Flows 

R E G I S T E R 

1. UAs register with SIP cluster through their closest SIP proxy server. Once a 
SIP proxy receives R E G I S T E R message it fixes Contact header (as described 
in Path processing section 4.3) by adding unicast IP address of the proxy to 
the host field of SIP URI and encoding source IP address of received message 
into the Contact header. 

2. The SIP proxy forwards the message to SIP cluster where it saves the fixed 
Contact in location DB and returns a response 200 O K to the U A l back 
through the SIP proxy server. 

INVITE 

3. U A l sends INVITE to SIP proxy anycast address. As the message is received 
the SIP proxy #1 fixes the Contact header(Path processing). If the request 
comes from behind NAT the SIP proxy mangles SIP message. RTP binding 
is allocated and SDP changed as described in section N A T traversal 2.3. The 
request is also record routed and forwarded to SIP cluster but from unicast 
address of that SIP proxy. 

4. Once the INVITE is received at SIP cluster it looks up contact of UA2 in 
location DB, replace the Request URI and forwards the message to unicast IP 
address of SIP proxy #2. 

5. As SIP proxy #2 receives INVITE it strips down the Request URI and for
wards the message to UA2 from anycast IP address. 
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6. UA2 replies with 200 O K and sends the message back to SIP proxy ^ 2 . If the 
reply comes from U A behind NAT then applies appropriate N A T mangling to 
this reply. 

7. SIP cluster forwards message based on top most Via header to SIP proxy #1 
and finally SIP proxy #1 towards UA1 from anycast address as source IP 
address. SIP proxy $T might apply any NAT traversal mangling if the UA2 
was marked as behind NAT. 

B Y E 

8. B Y E requests are processed similar way as INVITEs. As earlier was introdu
ced record routing this transaction will go through the same path as it was 
record-routed by INVITE transaction. (UAl->proxy-l->SIP cluster->proxy-
2->UA2) 

(3) INVITE 

UA 2 
C (5) INVITE SIP 

proxy 2 
UA 2 (6) 200 OK any 

SIP 
proxy 2 

UA 2 
SIP 

proxy 2 

any ... anycast IP address 
uni ... unicast IP address 

RTP 
proxy 

uni 200 OK 

Fig. 3.3: Anycasting SIP proxy scenario 

3.4.2 T C P Persistent Connection Issue 

The key problematic part of anycasting SIP proxy servers is routing instability issues. 
In case a SIP client uses T C P transport for sending SIP messages it needs to create 
a T C P connection with a SIP proxy server. The connection must be kept persistent 
because of reachability of this client. In case a re-routing occurs the connection is 
lost and T C P A C K is not able to reach the SIP proxy. Figure 3.5 shows the impact. 
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Fig. 3.4: Anycasting SIP proxy call flow 
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3.5 Anycasting SIP Tunnels 
This concept is based on IP tunnels. There will be more tunnel entrances at geogra
phically dispersed anycast nodes with RTP proxies listening on unicast IP address. 
SIP messages are tunneled through a tunnel to SIP proxy where the tunnel is termi
nated which produces IP packets as if they came directly from a U A . SIP proxy runs 
on anycast address too. Packets before entering the tunnel are somehow marked(ToS 
field) with the ID of RTP proxy running at this end-point and encapsulated to this 
tunnel. Packets get de-capsulated at the end of the tunnel and the mark of is used 
for matching against RTP proxy list with their unicast IP addresses and used for 
further NAT traversal processing. 

listens on 
anycast IP 

& unicast IP 

listens on 
anycast IP 

& unicast IP 

RTP proxy2 

5) 200 OK 

UA 2 

Fig. 3.6: Anycasting SIP tunnels 

3.5.1 Call Flows 

R E G I S T E R 

1. UA1 sends R E G I S T E R to anycast IP address that gets forwarded to SIP 
cluster via tunnel. 

2. SIP server replies with 200 O K directly to U A l . 
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INVITE 

3. UA1 sends INVITE to anycast IP address. A V P N tunnel is listening on this 
address that forwards the INVITE to the SIP cluster. The tunneled packets are 
marked with an ID of RTP proxy running on that node. At the end of tunnel 
( V P N server) the INVITE gets de-capsulated and delivered to SIP cluster 
listening also at anycast IP address. Packet marking is used in the cluster to 
identify which RTP proxy to control. 

4. SIP cluster record-routes the INVITE and sends it directly to UA2. 

5. UA2 replies with 200 OK. The message can go through different anycast tunnel 
but always gets delivered to the same SIP cluster where the call was initiated. 

6. SIP cluster matches the transaction and replace IP addresses in SDP body with 
unicast IP address of RTP proxy $T as marked at the beginning of transaction 
and sends to U A l directly. 
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Fig. 3.7: Anycasting SIP tunnels - call flow 
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3.6 Anycast "bootstrap" Redirect Service 
This concept is based on selecting RTP proxy during SIP redirection. The SIP cluster 
redirects an initial INVITE to anycast SIP proxy with co-located RTP proxy. This 
proxy redirects the INVITE back to the cluster with location information in it. The 
SIP cluster uses the location information to steer the proper RTP proxy and passes 
the request on. Note that RTP proxies are controlled remotely from SIP cluster that 
causes additional complexity and call setup delay. 

anycast 
SIP proxy 

RTP proxy 

UA 1 
1st INVITE - redirect 

• 

3rd INVITE 

2nd INVITE - redirect 

anycast 
SIP proxy 

RTP proxy 

INVITE 

Fig. 3.8: Anycast "bootstrap" redirect service 

3.6.1 Call Flows 

R E G I S T E R 

There is no change to common SIP setup with R E G I S T E R requests. 

1. UA1 sends R E G I S T E R to unicast IP address of SIP cluster where the U A l s 
Contact is saved in location DB. In case the U A is behind NAT the SIP cluster 
also save that the U A is behind NAT. 

INVITE 

2. UA1 sends INVITE to SIP cluster that checks if U A l is behind NAT. If so, 
then it checks if combinations Client-IP, RTPproxy IP is in cache (location DB 
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in memory), if the cache is empty then SIP cluster redirects to Anycast SIP 
proxy. 

3. Anycast SIP proxy receives INVITE and redirects it back to SIP cluster. The 
redirection URI in Contact HF stores a URI parameter with unicast IP address 
of co-located RTP proxy. 

4. UA1 sends INVITE to SIP cluster with parameter including IP address of 
RTPproxy as URI param in Contact, SIP cluster parse the parameter and 
store in local cache Client-IP, RTPproxy IP. 

5. SIP cluster use the IP address in Contact for selecting RTP proxy and sub
sequently used for relaying media. The message is record-routed to stay in 
path for B Y E s and forwards it to UA2. 

6. UA2 replies with 200 OK, the message reaches the SIP cluster and the INVITE 
transaction is matched with the IP address of RTP proxy used when the call 
was initiated. 

B Y E 

7. UA2 sends B Y E towards SIP cluster that tests if the U A is behind NAT. It 
should unforce RTP proxy based on earlier selection RTP proxy. 
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Anycast 
SIP proxy 

UA 1 SIP cluster + RTP proxy UA 2 

HI REGISTER ^ 

^ 200 OK 

| T | INVITE 

302 Moved Temp. 

ACK ^ 

| 3 | INVITE 

302 Moved Temp. 

ACK 

H"| INVITE ^ 
IZ] INVITE 

^ 100 Trying 
IZ] INVITE 

^ 100 Trying 
180 Ringing 

^ 180 Ringing 
180 Ringing 

^ 180 Ringing 
200 OK [1] 

^ 200 OK 
200 OK [1] 

^ 200 OK 

ACK 
ACK ^ 

ACK 

^ BYE 

ACK 

^ BYE 

media stream 

BYE [T ] 
^ BYE 

200 OK 
200 OK ^ 

200 OK 200 OK 

3.9: Anycast "bootstrap" redirect service call flow 
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3.7 Evaluation of Methods 
Anycasting DNS Servers 

Upside: This method is simple to integrate at the system level and SIP messages are 
simply sent to unicast IP address returned from DNS lookup. It is resilient 
against routing instabilities as the anycast traffic is limited to a short-lived 
UDP-based DNS transaction. RTP proxy servers are co-located with SIP proxy 
servers and no remote control is needed. 

Downside: Failure reactiveness is low for practical reasons. DNS resolvers in SIP clients 
and DNS proxy servers are known to cache DNS information for quite long 
time. If an anycast site fails and stops advertising its route, poor DNS clients 
will keep using an unavailable IP address. Also, the proximity measurement 
may be impaired if a client uses a DNS resolver that is not located in its 
proximity. 

Anycasting SIP Proxy Servers 

Upside: RTP proxy servers are co-located with SIP proxy servers and no remote control 
is needed. 

Downside: Most sensitive against routing instabilities 3.1. 

Anycast "bootstrap" Redirect Server 

Upside: Easy to integrate at SIP level only. Resilient against routing instability. 

Downside: INVITE-redirect brings too high uncertainty due to possible interoperability 
and policy issues - to many SIP clients are known not to support redirection 
due to poor implementation or for policy reasons (3xx to +1-900- ban). Call 
setup latency increases. Controlling remotely RTP proxies that cause additio
nal complexity and call setup delay. 

Anycast SIP Tunnels 

Upside: Resilient against routing stability issues. No need to do anything at SIP level. 

Downside: Dealing with remote RTP proxy servers. 

62 



3.8 Summary and Comparison of Methods 

M e t h o d Anycas t ing D N S 
servers 

Anycas t ing S IP 
proxy servers 

Anycas t "boot
strap" redirect 
server 

Anycas t S IP tun
nels 

Easy of inte
grat ion 

Path processing 
and NAT handling 

Path processing 
and NAT handling 

Remote R T P proxy 
control 

Remote R T P proxy 
control and Diff-
serv processing 

"proxy" effect measuring DNS re-
solvers 

measuring the out
bound SIP proxy 

measuring the out
bound SIP proxy 

measuring the out
bound SIP proxy 

Ant ic ipa ted inte-
rop level 

no problems (any-
cast only on DNS) 

no problems (all 
managed on server 
side) 

UA needs to have 
enabled and functi
onal redirect sup
port, policy issues 

Resilience aga
inst rout ing 
instabilit ies 

good, routing chan
ges have no impact 
on DNS processing. 

problematic, using 
anycast IP addres
ses for SIP signal
ling 

good - boot-strap 
transaction is 
short-lived 

good - it does not 
matter which IP 
tunnel is used 

Fai lure reactive-
ness 

can be low with 
mis-implemented 
DNS clients and 
DNS proxy servers 

depends on how 
fast B G P re-routing 
is 

depends on how 
fast B G P re-routing 
is 

depends on how 
fast B G P re-routing 
is 

Tab. 3.1: Comparison of methods using IP anycast to find the nearest RTP proxy 

3.9 Conclusion about Methods 
We have chosen the DNS-based method and SIP-based method for further observati
ons. The primary reason is they are simple to deploy. They do not require sophis
ticated integration (as would be the case with tunneling, marking and remote RTP 
control) and are not going to suffer from interoperability issues (as the SIP boot
strap method would). The key remaining concerns are low failure reactiveness for 
the DNS-based method and low resilience against routing instabilities for the SIP-
based method. In the long-term, it may be beneficial to include the tunnel-based 
method in future observations. Overcoming the integration effort can be rewarded 
by both good failure reactiveness and resilience against routing instabilities. 
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4 DESIGN OF T H E FRONTING E L E M E N T 

4.1 DNS-based Fronting Element 
Each fronting element consists of DNS server, SIP proxy and RTP proxy. The DNS 
server listens on anycast IP address for DNS queries and in response returns unicast 
IP address of co-located SIP proxy and RTP proxy. The returned unicast IP address 
is always from the closest DNS server in routing metrics(the way anycast works). 
This way SIP client forwards SIP messages to returned unicast IP address where 
the RTP proxy is co-located. 

The SIP proxy should remain as stateless as possible. For TCP-based traffic and 
traffic from behind NAT it must remain stateful however. This SIP proxy does N A T 
traversal and uses co-located RTP proxy if necessary. If SIP traffic is TCP-based the 
SIP proxy must use the same T C P connection initiated by SIP client's R E G I S T E R 
request. We talk about T C P context which is described in Section 4.2.2 and which 
is more significant for SIP-based anycast proxy. We need to remember the path 
through this SIP proxy as described in Section 4.3. The same applies for traffic 
coming from behind NAT. Also, if the SIP proxy remains stateful the SIP traffic 
must be record routed. 

4.1.1 SIP call flow in detail for DNS-based method 

Firstly, SIP client performs DNS lookup. It receives a reply from DNS resolver with 
unicast IP address of the closest fronting SIP proxy. For simplicity there are no SIP 
authorizations and auxiliary replies included. SIP messages include just important 
header fields for explanation the process. This call flow shows how path processing 
is done(for more details see Section 4.3). Figure 4.1 shows possible scenario which 
is followed by detailed SIP message description. 

1. The U A l constructs an INVITE message and sends it to the unicast IP address 
of fronting SIP proxy. The SIP client is behind NAT as can be seen private IP 
addresses appearing in the message. 

Direction 147.229.214.225:50900 -> 213.192.59.77:50600 

INVITE sip:UA2@siptel.org SIP/2.0 

Via: SIP/2.0/UDP 192.168.1.100:5090;rport;branch=z9hG4Mdxrbqiko 
To: <sip:UA2@siptel.org> 
From: "UAl siptel" <sip:UAl@siptel.org>;tag=etazs 
Contact: <sip:UA10192.168.1.100:5090> 

2. The fronting SIP proxy receives INVITE and checks if the message came from 
behind NAT. Basing on this check the SIP proxy creates new Contact SIP URI 
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U A 1 
192.168.1.100:5090/ 

147.229.214.225:5090 

fronting 
element 
SIP proxy 

+ RTP proxy 
213.192.59.77:5060 SIP cluster 

213.192.59.75:5060 

U A 2 
192.168.1.101:5080/ 

147.229.214.225:5080 

INVITE 

200 O K 

PH A C K 

HI INVITE ^ 
^ INVITE Q] 

M l INVITE 
200 O K \J] 

PH 200 O K ^ 

I 

^ 200 OKQ] 

I 

A C K ^ 

I 

^ A C K 

I 
[ l 0 | A C K 

I 
1 

4.1: DNS-based scenario - referential call flow 

where in the username part includes, except the username, a mark that the 
SIP client is behind NAT, source IP address and port of the packet, private IP 
address and port of the SIP client. Host part includes the unicast IP address of 
this fronting element. It is the address where replies will be expected. Once this 
Contact header is mangled, then SIP proxy record route, marks the message 
that RTP proxy used at this server the message and sends it to SIP cluster. 

Direction 213.192.59.77:50600 -> 213.192.59.75:50600 

INVITE sip:UA2@siptel.org SIP/2.0 
Record-Route: <sip:213.192.59.77;lr=on> 
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4M93ad.f50d8a83.0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 

rport=5090;branch=z9hG4bKdxrbqiko 
To: <sip:UA2@siptel.org> 
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs 
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*0 

213.192.59.77> 
P-Behind-NAT: Yes 
P-RTP-Proxy: YES 

. Once the SIP cluster receives INVITE it looks up the contact of UA2 in lo
cation database. This contact inserts in Request URI header. SIP cluster also 
finds that fronting SIP proxy already applied RTP proxy which says that no 
other RTP proxy should be used. INVITE is sent to IP address stated in 
Request URI. In this case it is the same fronting SIP proxy as for U A l . 
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Direction 213.192.59.75:50600 -> 213.192.59.77:50600 

INVITE sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0 
213.192.59.77 SIP/2.0 
Record-Route: <sip:213.192.59.75;lr=on> 
Record-Route: <sip:213.192.59.77;lr=on> 
Via: SIP/2.0/UDP 213.192.59.75;branch=z9hG4M63ad. Ia75a823.0 
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 

rport=5090;branch=z9hG4bKpcbtblbi 
To: <sip:UA2@siptel.org> 
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs 
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*0 
213.192.59.77> 
P-Behind-NAT: Yes 
P-RTP-Proxy: YES 

4. As fronting SIP proxy receives the message it decodes the Request URI header. 
From decoded information uses the public IP address of UA2 and sends it 
there. 

Direction 213.192.59.77:5060 0 -> 147.229.214.225:5080 0 

INVITE sip:UA2@192.168.1.101:5080 SIP/2.0 
Record-Route: <sip:213.192.59.77;lr=on> 
Record-Route: <sip:213.192.59.75;lr=on> 
Record-Route: <sip:213.192.59.77;lr=on> 
Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK63ad.1130cb05.0 
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.Ia75a823.0 
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225 

rport=5090;branch=z9hG4bKpcbtblbi 
To: <sip:UA2@siptel.org> 
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs 
Contact: <sip:_NAT_*UA1**192.168.1.100*5090**147.229.214.225*5090*0 
213.192.59.77> 
P-RTP-Proxy: YES 

5. Once UA2 receives INVITE, the UA2 inserts its own Contact header to 200 
O K reply and sends it back to fronting SIP proxy. 

Direction 147.229.214.225:5080 0 -> 213.192.59.77:50600 

SIP/2.0 200 OK 

Via: SIP/2.0/UDP 213.192.59.77;branch=z9hG4bK63ad.1130cb05.0 
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.Ia75a823.0 
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 

rport=5090;branch=z9hG4bKpcbtblbi 
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>, 

<sip:213.192.59.77;lr=on> 
To: <sip:UA2@siptel.org>;tag=shfxe 
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs 
Contact: <sip:UA20192.168.1.101:5080> 

6. Fronting SIP proxy encode the Contact header the same way as for INVITE 
above and sends it to SIP cluster. 
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Direction 213.192.59.77:50600 -> 213.192.59.75:50600 

SIP/2.0 200 OK 
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=z9hG4bK63ad.Ia75a823.0 
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 

rport=5090;branch=z9hG4bKpcbtblbi 
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>, 

<sip:213.192.59.77;lr=on> 
To: <sip:UA20siptel.org>;tag=shfxe 
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs 
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0 

213.192.59.77> 

7. SIP cluster simply forwards the message back to fronting SIP proxy as based 
on Via header. 

Direction 213.192.59.75:50600 -> 213.192.59.77:50600 

SIP/2.0 200 OK 

Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=z9hG4bK63ad.0130cb05.0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 

rport=5090;branch=z9hG4bKpcbtblbi 
Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>, 

<sip:213.192.59.77;lr=on> 
To: <sip:UA20siptel.org>;tag=shfxe 
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs 
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0 

213.192.59.77> 

8. Fronting SIP proxy forwards the reply to UA1. 

Direction 213.192.59.77:5060 0 -> 147.229.214.225:5090 0 

SIP/2.0 200 OK 

Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 
rport=5090;branch=z9hG4bKpcbtblbi 

Record-Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>, 
<sip:213.192.59.77;lr=on> 

To: <sip:UA20siptel.org>;tag=shfxe 
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs 
Contact: <sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0 

213.192.59.77> 
P-RTP-Proxy: YES 

9. UA1 sends A C K towards UA2 through all SIP proxies stated in Route header. 
In Request URI is the full path UA2 SIP U R L 

Direction 147.229.214.225:5090 0 -> 213.192.59.77:50600 

ACK sip:_NAT_*UA2**192.168.1.101*5080**147.229.214.225*5080*0 
213.192.59.77 SIP/2.0 

Via: SIP/2.0/UDP 192.168.1.100:5090;rport;branch=z9hG4bKhyynxpop 
Route: <sip:213.192.59.77;lr=on>,<sip:213.192.59.75;lr=on>, 

<sip:213.192.59.77;lr=on> 
To: <sip:UA20siptel.org>;tag=shfxe 
From: "UA1 siptel" <sip:UA10siptel.org>;tag=etazs 
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10. The SIP cluster is skipped and this A C K is produced by fronting SIP proxy. 
It shows that the Request URI is decoded and from decoded information uses 
the public IP address and port of UA2 and sends it there. 

Direction 213.192.59.77:5060 0 -> 147.229.214.225:5080 0 

ACK sip:UA2@192.168.1.101:5080 SIP/2.0 
Record-Route: <sip:213.192.59.75;lr=on> 
Via: SIP/2.0/UDP 213.192.59.77;branch=0 
Via: SIP/2.0/UDP 213.192.59.75;rport=5060;branch=0 
Via: SIP/2.0/UDP 213.192.59.77;rport=5060;branch=0 
Via: SIP/2.0/UDP 192.168.1.100:5090;received=147.229.214.225; 

rport=5090;branch=z9hG4bKhyynxpop 
To: <sip:UA2@siptel.org>;tag=shfxe 
From: "UA1 siptel" <sip:UAl@siptel.org>;tag=etazs 

4.1.2 Technical Issues with DNS-based Method 

DNS-based method is resilient against re-routing which is a feature we need. However, 
the best SIP proxy selection in SIP client proximity is dependent on periodic DNS 
lookups. Firstly, it depends on ISP's DNS resolver which usually caches DNS re
cords and the T T L value is usually not low enough for refreshing the unicast IP 
address of the closest SIP proxy in case of B G P re-routing. Secondly, DNS clients 
are frequently mis-implemented and do DNS lookup just at boot time. Figure 4.2 
shows the process. 

This method results in possibly not the best SIP proxy selection but at least 
it avoids selecting very far SIP proxies. In case of failure, the service might be 
unavailable until new DNS lookup which might take some time. 

SIP phone ISP 

r 
cache 

SIP client DNS resolver 

1 ^ c a c h e ^ ^ 

DNS resolver 
recursive 

j DNS lookup 

Fig. 4.2: DNS lookup 

4.2 SIP-based Fronting Element 
Here is described the SIP-based method with SIP proxy listening on anycast IP 
address as part of fronting element. The path processing(see 4.3) is the same as for 
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DNS-based method but the fronting SIP proxy deals with two IP addresses(anycast 
and unicast IP address). This method is more error-prone against routing instability 
issues and SIP messages must be handled carefully. For the best result, the fronting 
element must be SIP-wise as stateless as possible to guarantee minimum impact of 
routing instabilities. The proxy remains stateful TCP-wise but it may and actually 
should remain a SIP-wise stateless machine(UDP-based traffic less affected). For 
this purpose a path through this proxy must be remembered because each SIP 
client might register through different anycast SIP proxy. This way we also loose 
transparency of the SIP traffic because we deal with multiple anycast SIP proxies. 

4.2.1 INVITE and C A N C E L / A C K 

The C A N C E L request, as the name implies, is used for cancelling a previous request 
sent by a client. A C A N C E L request should be only used for pending calls as stated 
in RFC3261 [24] section 9.1. Further, if a C A N C E L request is sent it is part of the 
INVITE transaction and Via header of this C A N C E L is matched 4.2.1 against INVI-
TEs top most Via header at the first SIP proxy which is in our case the fronting SIP 
proxy. In case of routing instability, cancelling pending calls might cause following 
issue: C A N C E L is forwarded through a different fronting SIP proxy than the ini
tial INVITE and is not recognized as related by the downstream SIP cluster. Then 
the SIP cluster replies "481 Transaction leg does not exist". In this case for U D P 
based SIP traffic the branch parameter should be generated statelessly as described 
in 4.2.1. However, we can not match this transaction. Sent-by value is used as part 
of the matching process because there could be accidental or malicious duplication 
of branch parameters from different clients. The reason is that the transaction id is 
formed by branch and sent-by, where sent-by is different for both fronting-elements 
(if it was identical using anycast, we would loose guarantee that replies to requests 
will get back to the same SIP proxy). This is a failure scenario where we can not do 
nothing about. 

Matching Requests to Server Transactions 

When a request is received from the network by the stateful proxy, it is matched to 
an existing transaction. This is accomplished in the following manner. 

The branch parameter in the topmost Via header field of the request is exa
mined. If it is present and begins with the magic cookie "z9hG4bK", the request 
was generated by a client transaction compliant to this specification. Therefore, the 
branch parameter will be unique across all transactions sent by that client. The 
request matches a transaction if: 
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1. the branch parameter in the request is equal to the one in the top Via header 
field of the request that created the transaction, and 

2. the sent-by value in the top Via of the request is equal to the one in the request 
that created the transaction, and 

3. the method of the request matches the one that created the transaction, except 
for A C K , where the method of the request that created the transaction is 
INVITE. 

This matching rule applies to both INVITE and non-INVITE transactions alike. 
A l l above is taken from RFC3261, Section 17.2.3. See more in [24]. 

Stateless Generating Branch Parameter 

In case of re-routing in time window between sending INVITE and C A N C E L / A C K 
we need to be able to deliver C A N C E L / A C K without breaking the SIP transaction. 
Fronting elements must generate branch parameter the same way for all messages to 
match transactions stateless anycast environment. For instance by inserting a fixed 
string in branch parameter of the Via header inserted by this fronting element. 

4.2.2 Technical Issues with SIP-based Fronting Element 

T C P context 

RFC3261[24] says: "For reliable transports, the response is normally sent on the 
connection on which the request was received. Therefore, the client transport MUST 
be prepared to receive the response on the same connection used to send the request." 

The first time, the T C P connection is opened by REGISTERing of a SIP client. 
For the subsequent SIP traffic the SIP client and SIP proxy must use the same T C P 
connection. If a routing instability occurs this connection will be lost. This means 
that SIP proxy should remain SIP-wise as stateless as possible that we can deal with 
U D P traffic and not break the consistency of SIP dialogs. 

SIP client may open a new connection with a different anycast SIP proxy in 
case of re-routing. In case of opening a new connection in the middle of dialog, SIP 
messages will get lost because transactions would not match. 

T C P call flow - R E G I S T E R 

1. First U A l open a new T C P connection with fronting SIP proxy. 
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2. Then the U A l sends R E G I S T E R over T C P connection to fronting SIP proxy 
which forwards it through U D P transport to SIP cluster. 

3. SIP cluster sends reply back through fronting SIP proxy. This proxy forwards 
the reply through existing T C P connection. 

Once a SIP client registers with SIP cluster the same T C P connection must be used 
for upcoming SIP transactions. 

TCP transport UDP transport 
U A 1 Fronting Element SIP cluster 

TCP SYN/ACK 
—• 

TCP ACK 

m REGISTER 

TCP ACK 

200 OK 

TCP ACK —• 

REGISTER 

200 OK HI 

Fig. 4.3: REGISTERing over T C P 

Transaction Issues 

Another problem is that the failure window for the SIP protocol is fairly large. For 
example, if a client registers via anycasted SIP proxy, there may be up to one hour 
(default re-registration period in RFC3261) until an incoming message comes in. 
If in this period re-routing happens (which is not entirely unlikely since the time 
window is R E A L L Y long), failures may occur. T C P connection will fail for sure, as 
the SIP proxy if it occurs to be stateful. The T C P issue may be improved by forcing 
keep-alives to detect issues early (which has to be done due to NATs anyhow), 
and relying clients to re-register. Even for UDP, there may be one minute between 
INVITE and C A N C E L / A C K , still fairly long time window. 

4.3 PATH Processing 

This subsection describes ways how to remember path of SIP messages. We need to 
guarantee that incoming requests for a SIP client will go through the same SIP server 
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through which the SIP client registered. The reason is for SIP clients behind N A T 
and for clients using T C P transport for their communication. If we do not remember 
the path, replies may be destined to the client with different source IP address and 
port and the delivery fails. There are SIP standards for path remembering. However, 
the standards require support in end-devices, implementation of which is still quite 
rare. See the following subsections to find out how these extensions work. The last 
paragraph of this section "Proprietary path remembering" mentions an alternative 
solution which does not require compliant clients at the price of possible message 
integrity violation. 

Path Extension(RFC3327) 

This RFC3327 standard describes an extension for remembering the path of SIP 
requests. The Path extension header field allows accumulating and transmitting 
the list of proxies between U A l and R E G I S T R A R . Intermediate nodes such as 
SIP p roxy^ l (see Figure 4.4)may statefully retain Path information if needed by 
operational policy. This mechanism is in many ways similar to the operation of 
Record-Route in dialog-initiating requests. The routing established by the Path 
header field mechanism applies only to requests transiting or originating in the home 
domain. However, this approach must be implemented at both sides. SIP client and 
SIP proxy. For more details about Path extension see [31]. 

UA 1 Path: <sip:sipl.example.com;lr> 

SIP proxy #1 SIP proxy #2 

/ 

SIP Registrar 

Path: <sip:sip2.example.com;lr>,<sip:sipl.example.com;lr> 

Fig. 4.4: Path extension header field 

Service Route Extension 

The "Service-Route" is a SIP extension header field (RFC 3608 [32]), which can 
contain a route vector that will direct requests through a specific sequence of proxies. 
A registrar uses a Service-Route header field to inform a SIP client of a service 
route that, if used by the SIP client, will provide services from a proxy or set of 
proxies associated with that registrar. The Service-Route header field is included by 
a registrar in the response to a R E G I S T E R request. 

Then SIP clients include a Route header field in an initial request to force that 
request to visit and potentially be serviced by one or more proxies. Using such a 
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route (called a "service route" or "preloaded route") allows a SIP client to request 
services from a specific home proxy or network of proxies. 

UA 1 REGISTER 
200 OK SIP proxy 1 

INVITE 

Route:SIP proxy 1; SIP proxy 2 
INVITE 

UA 2 

REGISTER 

200 OK 
SIP Registrar 

Service-Route: SIP proxy 1; SIP proxy 2 

INVITE 
SIP proxy 2 

Fig. 4.5: Service-route header field (simplified) 

This approach must also be implemented at both sides. SIP client and SIP regis
trar which is not we are looking for because of interoperability issues. In our anycast 
scenarios this would work as a kind of bootstrap solution (using firstly anycast add
ress and then unicast address). 

Proprietary Path Remembering 

This proprietary solution of path remembering involves Contact mangling on fron
ting element. The new Contact header must include the information where the SIP 
message came from and the unicast IP address of this fronting element. A l l this 
information is encoded as new Contact SIP U R L Finally, the message is forwarded 
to SIP cluster 1.1.2. At SIP cluster this format of Contact is stored in user location 
DB. The following example and Figure 4.6 shows the way of path remembering. The 
downside of this approach is that modification of the Contact header-field conflicts 
with possible use of Message Integrity Check in R F C 4474[20]. Mostly, these MICs 
as described in the R F C 4474 are not implemented nowadays. 

The format of Contact before R E G I S T E R enters fronting element(see 3.3 for the 
scenario). 

Contact: "Test" <sip:test@192.168.1.100:5060>;transport=udp" 

The format of Contact when R E G I S T E R is leaving fronting element where the 
address field of SIP URI is 213.192.59.76 the unicast IP address of fronting element, 
and the username field consists 147.229.214.225:5090 public IP address and port 
where the request came from and 192.168.1.100:5090 is private IP address and port 
of the SIP client behind NAT. The "_NAT_" mark is for requests that came from 
behind NAT. It is used for recognition once the Contact is decoded. 
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UA l Contact header mangling 

REGISTER fronting REGISTER/mangled 
SIP cluster element SIP cluster 

Fig. 4.6: Proprietary Contact mangling 

Contact: "Test" <sip:_NAT_*test**192.168.1.100*5090**147.229.214.225*5090*0 
213.192.59.76> 

4.4 Implementation Details 

For deploying our own anycast network we requested RIPE(Regional Internet Re
gistry) for assigning IP address block 91.199.168.1/24 and AS(autonomous system) 
number - AS44592. We installed two anycast nodes, in Prague and Berlin. These 
nodes are fronting elements as mentioned in Chapter 4. They are forwarding all SIP 
traffic to iptel.org's SIP cluster. These nodes have assigned two unicast IP addresses 
and the shared anycast IP address. At each node is running DNS server(named) 
listening on anycast IP address and two instances of SER(SIP Express Router) for 
testing both DNS-based and SIP-based methods. One SER is configured to handle 
unicast-way SIP traffic which is bound with DNS server. In Appendix B . l is SER 
configuration for DNS-based scenario. The latter listens on anycast and the other 
unicast IP address for incoming and outgoing SIP traffic(see Appendix B.2 for the 
configuration). 

SIP Express Router 

SER (SIP Express Router) is a high-performance, configurable, free SIP server. 
It can act as SIP registrar, proxy or redirect server. SER is a modular based and 
features for example an application-server interface, presence support, SMS gateway, 
RADIUS/syslog accounting and authorization, server status monitoring, etc. SER's 
configuration script is very powerful tool parsing SIP messages at low level. SER's 
configuration ability meets the needs of a whole range of scenarios including small-
office use, enterprise P B X replacements and carrier services. SER is being developed 
by a team at iptel.org based in Prague and Berlin. The developer's page can be found 
at <http://iptel.org>. 

DNS server setup 

In a DNS registrar(not important which one) we registered our DNS servers ns.siptel.org 
with IP address 91.199.168.1 and ns3.siptel.org with IP address 91.199.168.3. At the 
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both fronting elements are running DNS server which replies to requests sent to these 
anycast IP addresses. DNS servers returns unicast IP address depending on location 
of DNS resolver. It always chooses the closest DNS server in routing metrics. This 
way SIP client forwards SIP messages to returned unicast IP address where is also 
co-located RTP proxy. 

B G P daemon 

Each anycast node runs B G P daemon propagating 91.199.168.0/24 route to the 
upstream Internet Service Provider (ISP). From the ISP the route propagates further 
to the Internet. 
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5 CONCLUSION 
Our anycast fronting elements in Prague and Berlin were tested and measured on 
ICMP echo reply basis from planet-lab hosts. Because the anycast locations are 
very close to each other the route convergence time was quite short. Re-routing 
from Prague to Berlin took for most of planet-lab hosts between 10 and 20 seconds. 
Interestingly, the other way from Berlin to Prague it took less than 10 seconds for 
most of planet-lab hosts. In other terms this would be an outage of the service if 
one of the anycast nodes fails. We also compared latency between shortest unicast 
IP address destination against anycast IP address destination. It shows that anycast 
does not provide the best proximity for SIP clients in 131 cases measured out of 195 
planet-lab hosts. The reason is that our anycast nodes are very close to each other 
and the routing path from planet-lab hosts is not very different. We also found out 
that unicast and anycast routes are different even for the same physical destination. 
We can conclude and proof that anycast metrics are not latency metrics, as verified 
in our measurements but at least would eliminate the worst case scenarios in global 
deployment. 

We proposed four IP anycast-based methods for locating an RTP proxy close to 
SIP clients. We decided to choose for further observations the DNS-based method 
and the SIP-based method because they were easy to deploy. DNS-based method is 
resilient against re-routing, however due to frequently mis-implemented DNS clients 
and proxy servers it can fail to react to changes timely and is subject to possible 
proximity impairment. SIP-based method suffers from low resilience against routing 
instabilities. These issues are covered in design chapter making our fronting elements 
as stateless as possible and remaining stateful for TCP-based SIP traffic and SIP 
traffic from SIP clients behind NAT. 

We implemented DNS-based and SIP-based method at our anycast fronting ele
ments using SIP Express Router. Our configuration worked and provided good pro
ximity at coarse scale but not so much on finer scale. We did not thoroughly test it 
because of problematic configuration for routing in instability scenarios and lack of 
time for complete measurements. There are scenarios we are not able to solve such 
as SIP-based method using T C P transport because of loosing connection in instable 
scenario. We also found out that even for UDP is not easy to get smooth switch over 
to different SIP proxy because of matching transaction ID at SIP cluster constructed 
from branch and sent-by parameter at fronting elements. Sent-by is always different 
because it is unicast IP address. 

Each method we have been proposing has some drawbacks (see comparison in 
Section 3.8). Also we had too few anycast nodes to validate the really important 
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coarse scenarios finding that anycast provides a good proximity. 

5.1 Future Work 

Proposed designs of methods mentioned in this thesis should be thoroughly tested, 
tuned and measured. There are still some withstanding U D P and more complex 
T C P issues especially for anycast SIP proxy servers and its behaviour in routing 
instability scenarios we are facing to and need to solve. 

We have not described the design of the IP-tunnels based method but it is a 
good candidate for dealing with routing instability issues. There is no need to do 
anything at SIP level but on the other side we must deal with remote RTP proxy 
servers. This introduces additional concerns: latency and security. We need to do 
further analysis of using the remote RTP proxy control protocol. 

We need to do field measurements with an established global SIP user basis. This 
will provide us with better view of locating RTP proxy for each method once we will 
have more globally dispersed anycast nodes. Prague and Berlin locations are only 
good as a functionality test but do not deliver a significant latency improvement. 
We need to test how the SIP anycast setup will behave in failure scenarios such as 
stopping the B G P route propagation and seeing what happens as the SIP traffic 
converges to another anycast node. 

Another work which needs to be done is a geo-failover. This means we need SIP 
service with good latency and availability at different locations on the world. But we 
need to solve two problems. One of them are geo-distributed RTP proxy servers and 
the other one are geo-distributed SIP proxy servers. Anycast SIP proxy servers have 
this feature build-in. The other methods will need further inspection and testing. 

We need to test against some live populations and seeing the actual latency 
savings. Also we need to remeasure with more better dispersed anycast nodes. 
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A A N Y C A S T MEASUREMENTS 

A . l Latency of ICMP replies of Prague and Ber
lin Anycast Nodes 

Prague anycast node 

Hint: 

PRG - Prague, TXL - Berlin 
A2Uloc - difference of anycast/prague to unicast/prague 
A2Usho - difference of anycast to shortest unicast ping 
Match - i f the shortest ping matches the anycast selection 

Any PRG TXL A2Uloc A2Uloc A2Usho A2Usho Select Match Host 
[ms] [ms] [ms] [ms] [•/.] [ms] [•/.] anycast 

21 21 19 0.0 0.2 1.3 6.6 Prague No 146-179.surfsnel.dsl.internl.net 
114 113 110 1.1 1.0 4.8 4.4 Prague No 75-130-96-12.static.oxfr.ma.charter.com 
122 122 116 -0.3 -0.2 5.6 4.8 Prague No bob.cc.vt.edu 
186 208 178 -21.5 -12.0 8.2 4.6 Prague No deimos.cecalc.ula.ve 
114 109 108 4.7 4.3 5.8 5.4 Prague No earth.cs.brown.edu 
308 307 297 1.0 0.3 10.8 3.6 Prague No eve.ee.ntu.edu.tw 
190 190 182 0.1 0.0 8.6 4.7 Prague No grouse.hpl.hp.com 
150 150 131 -0.3 -0.2 19.3 14.7 Prague No kc-sce-plabl.umkc.edu 
159 141 131 18.1 13.7 27.9 21.1 Prague No kupll.ittc.ku.edu 
114 113 113 0.9 0.8 1.1 1.0 Prague No lefthand.eecs.harvard.edu 
41 38 41 3.7 8.9 3.7 9.7 Prague Yes IsirextpcOl.epf1.ch 
197 198 180 -0.3 -0.2 17.5 9.7 Prague No nodel.lbnl.nodes.planet-lab.org 
168 169 156 -0.8 -0.5 12.0 7.7 Prague No node1.planetlab.uprr.pr 
50 50 42 -0.0 -0.1 7.9 18.8 Prague No onelab3.warsaw.rd.tp.pi 
109 109 101 0.2 0.2 7.9 7.8 Prague No orbpll.rutgers.edu 
39 40 45 -1.2 -2.7 -1.2 -3.0 Prague Yes peeramide.irisa.fr 
109 112 125 -3.3 -2.6 -3.3 -2.9 Prague Yes pepper.planetlab.cs.umd.edu 
57 63 69 -6.3 -9.0 -6.3 -9.9 Prague Yes pll.grid.kiae.ru 

294 294 281 0.7 0.2 13.2 4.7 Prague No pll-higashi.ics.es.osaka-u.ac.jp 
54 44 38 10.0 26.1 16.6 43.3 Prague No pl-1.hip.fi 

292 292 281 -0.6 -0.2 10.8 3.8 Prague No pll.planetlab.ics.tut.ac.jp 
325 325 323 -0.3 -0.1 1.9 0.6 Prague No pllsnu.koren21.net 
140 140 174 0.0 0.0 0.0 0.0 Prague Yes pll.ucs.indiana.edu 
16 16 39 0.0 0.1 0.0 0.3 Prague Yes plabl-c703.uibk.ac.at 

161 172 133 -11.4 -8.5 27.3 20.4 Prague No plabl.eece.ksu.edu 
185 184 168 0.9 0.5 17.3 10.3 Prague No plabl.engr.sjsu.edu 
12 12 35 0.1 0.2 0.1 0.6 Prague Yes plabl-itec.uni-klu.ac.at 

118 117 103 1.0 1.0 15.3 14.8 Prague No plabl.nec-labs.com 
21 21 31 0.1 0.2 0.1 0.3 Prague Yes planck227.test.ibbt.be 
122 122 116 0.1 0.1 6.3 5.4 Prague No planet02.esc.ncsu.edu 
296 297 286 -1.4 -0.5 10.3 3.6 Prague No planetO.jaist.ac.jp 
179 180 167 -1.0 -0.6 12.2 7.3 Prague No planetl.berkeley.intel-research.net 
40 40 30 0.0 0.0 10.4 34.6 Prague No planet1.colbud.hu 
114 115 104 -0.9 -0.8 10.2 9.8 Prague No planetl.cs.rochester.edu 
180 180 173 -0.1 -0.0 6.7 3.9 Prague No planet1.cs.ucsb.edu 
111 112 101 -1.5 -1.5 10.1 10.0 Prague No planetl.ecse.rpi.edu 
107 106 95 0.5 0.5 11.7 12.2 Prague No planetl.scs.cs.nyu.edu 
123 123 113 -0.2 -0.2 10.4 9.2 Prague No planet2.pittsburgh.intel-research.net 
128 127 141 0.6 0.4 0.6 0.5 Prague Yes planet.cc.gt.atl.ga.us 
174 179 165 -5.4 -3.2 8.9 5.4 Prague No planetdevOl.fm.intel.com 
110 110 99 -0.0 -0.0 11.0 11.1 Prague No planetlab-01.bu.edu 
39 31 40 8.1 19.9 8.1 25.7 Prague Yes planetlabOl.ends.unibe.ch 
185 182 172 2.8 1.6 12.3 7.1 Prague No planetlabOl.cs.Washington.edu 
171 170 156 1.6 1.0 15.6 10.0 Prague No planetlab-01.ece.uprm.edu 
32 32 26 -0.3 -1.0 6.3 24.0 Prague No planetlabOl.ethz.ch 
119 119 114 -0.5 -0.4 4.9 4.3 Prague No planetlabOl.sys.Virginia.edu 
181 180 176 0.5 0.3 4.9 2.8 Prague No planetlab-la.ics.uci.edu 
7 7 30 -0.3 -1.0 -0.3 -4.1 Prague Yes planetlabl.ani.univie.ac.at 

165 165 155 -0.2 -0.1 10.3 6.6 Prague No planetlabl.arizona-gigapop.net 
1 1 21 -0.3 -1.3 -0.3 -19.5 Prague Yes planetlabl.cesnet.cz 

48 48 32 0.1 0.4 16.3 50.3 Prague No planetlabl.ci.pwr.wroc.pl 
121 121 121 0.4 0.4 0.4 0.4 Prague Yes planetlabl.cis.upenn.edu 
162 163 141 -0.8 -0.6 21.1 14.9 Prague No planetlabl.citadel.edu 
132 129 117 2.7 2.3 14.9 12.7 Prague No planetlab-1.emel.cs.emu.edu 
111 112 106 -0.8 -0.8 4.6 4.3 Prague No planetlabl.ends.jhu.edu 
110 111 113 -0.2 -0.2 -0.2 -0.2 Prague Yes planetlabl.csail.mit.edu 
159 160 151 -1.3 -0.9 7.6 5.0 Prague No planetlabl.cs.Colorado.edu 
106 106 95 0.0 0.0 11.6 12.2 Prague No planetlabl.cs.Columbia, edu 
119 122 109 -2.5 -2.3 10.7 9.8 Prague No planetlabl.cs.Cornell.edu 
143 143 137 -0.3 -0.2 6.0 4.4 Prague No planetlabl.cse.msu.edu 
146 146 181 0.0 0.0 0.0 0.0 Prague Yes planetlabl.cse.nd.edu 
131 134 122 -2.5 -2.1 9.7 8.0 Prague No planetlab-1.cse.ohio-state.edu 
32 32 26 -0.1 -0.3 5.7 21.5 Prague No planetlabl.csg.uzh.ch 
82 82 71 -0.0 -0.0 10.3 14.4 Prague No planetlabl.cslab.ece.ntua.gr 
140 140 170 -0.0 -0.0 -0.0 -0.0 Prague Yes planetlabl.cs.purdue.edu 
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153 153 148 
180 180 175 
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34 45 30 
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147 146 143 
333 329 260 
129 128 119 
165 167 162 
48 38 32 
57 57 49 
32 32 39 
188 188 197 
111 112 99 
177 177 165 
787 821 531 
295 294 284 
165 166 169 
178 177 194 
133 133 120 
81 81 71 
40 41 46 
140 140 131 

-0.5 -0.3 4.4 
-0.4 -0.2 5.0 
-0.5 -0.3 6.1 
-0.6 -0.4 -0.6 
2.2 2.2 13.8 
1.4 0.7 1.4 
-0.0 -0.3 1.4 
1.6 1.2 8.2 
-0.6 -0.3 -0.6 
-0.6 -0.4 12.0 
0.0 0.0 0.0 
-0.6 -0.4 2.5 
1.7 1.3 6.8 
0.1 0.1 0.1 
35.3 1.3 935.4 
-0.0 -0.1 2.5 
10.5 3.8 15.5 
-0.1 -0.3 -0.1 
0.0 0.0 31.7 
-0.4 -1.0 8.4 
-0.1 -0.2 11.9 
-2.9 -0.9 -2.9 
-4.4 -15.4 16.1 
0.5 0.2 12.4 
-2.1 -0.7 6.9 
-0.0 -0.2 12.6 
0.0 0.0 6.6 
0.2 0.4 2.1 
-0.8 -0.7 3.1 
0.0 0.0 8.8 
4.6 17.0 16.6 
0.1 0.2 0.1 
0.0 0.0 24.1 
-0.1 -0.3 4.9 
-10.5 -35.0 4.7 
-0.8 -0.5 11.7 
1.2 0.3 23.3 
-0.3 -1.2 12.8 
10.8 3.7 24.2 
0.4 0.4 12.2 
58.0 27.8 148.7 
-0.1 -0.1 -0.1 
0.0 0.0 23.9 
-0.1 -0.2 1.7 
0.6 0.9 9.2 
-0.0 -0.0 10.7 
0.1 0.2 0.1 
-10.4 -2.6 6.8 
-2.5 -2.0 6.7 
0.0 0.0 4.9 
2.7 1.3 72.1 
-0.1 -0.2 -0.1 
-11.3 -7.4 2.0 
-0.0 -0.1 4.9 
0.3 0.2 9.7 
-0.6 -0.4 2.6 
-0.5 -0.5 9.4 
-0.0 -0.2 13.1 
-0.3 -1.5 11.7 
-7.4 -2.2 7.4 
0.1 0.1 9.5 
-0.2 -0.3 3.3 
1.1 0.8 1.1 
1.4 0.9 3.9 
4.6 1.8 73.4 
1.1 0.9 10.3 
-2.2 -1.4 3.3 
10.2 31.8 16.3 
0.0 0.0 7.9 
0.1 0.3 0.1 
-0.2 -0.1 -0.2 
-0.9 -0.9 11.5 
-0.1 -0.0 12.4 
-34.0 -6.4 256.1 
1.1 0.4 10.7 
-0.6 -0.4 -0.6 
0.2 0.1 0.2 
0.1 0.1 12.7 
0.1 0.2 9.8 
-0.4 -0.9 -0.4 
-0.2 -0.1 9.0 

2.9 Prague No 
2.9 Prague No 
3.5 Prague No 
-0.4 Prague Yes 
14.0 Prague No 
0.8 Prague Yes 
9.6 Prague No 
6.2 Prague No 
-0.3 Prague Yes 
6.8 Prague No 
0.0 Prague Yes 
1.6 Prague No 
5.1 Prague No 
0.1 Prague Yes 
33.9 Prague No 
4.2 Prague No 
5.7 Prague No 
-1.5 Prague Yes 
20.6 Prague No 
22.7 Prague No 
36.7 Prague No 
-0.9 Prague Yes 
56.1 Prague No 
4.6 Prague No 
2.4 Prague No 
54.5 Prague No 
25.1 Prague No 
3.8 Prague No 
2.9 Prague No 
19.7 Prague No 
61.7 Prague No 
0.2 Prague Yes 
9.8 Prague No 
10.1 Prague No 
15.6 Prague No 
6.7 Prague No 
7.0 Prague No 
56.0 Prague No 
8.2 Prague No 
12.8 Prague No 
71.1 Prague No 
-0.1 Prague Yes 
49.3 Prague No 
3.1 Prague No 
14.6 Prague No 
35.2 Prague No 
0.3 Prague Yes 
1.7 Prague No 
5.2 Prague No 
2.7 Prague No 
35.3 Prague No 
-0.2 Prague Yes 
1.3 Prague No 
7.9 Prague No 
6.8 Prague No 
1.9 Prague No 
9.3 Prague No 
46.5 Prague No 
64.7 Prague No 
2.2 Prague No 
8.1 Prague No 
4.1 Prague No 
0.8 Prague Yes 
2.7 Prague No 
28.2 Prague No 
8.6 Prague No 
2.1 Prague No 
50.6 Prague No 
16.0 Prague No 
0.4 Prague Yes 
-0.1 Prague Yes 
11.5 Prague No 
7.5 Prague No 
48.2 Prague No 
3.8 Prague No 
-0.4 Prague Yes 
0.1 Prague Yes 
10.5 Prague No 
13.7 Prague No 
-1.0 Prague Yes 
6.9 Prague No 

planetlabl.csres.utexas.edu 
planetlabl.cs.ucla.edu 
planet-labl.cs.ucr.edu 
planetlabl.cs.uiuc.edu 
planetlabl.cs.umass.edu 
planetlabl.cs.uoregon.edu 
planetlabl.cs.vu.nl 
planetlabl.dtc.umn.edu 
planetlabl.eas.asu.edu 
planetlabl.ece.ucdavis.edu 
planetlabl.eecs.northwestern, edu 
planetlabl.eecs.ucf.edu 
planetlabl.eecs.umich.edu 
planetlabl.een.orst.edu 
planetlabl.eurecom.fr 
planetlabl.fct.ualg.pt 
planetlab-1.fing.edu.uy 
planetlabl.fit.vutbr.cz 
planetlabl.flux.Utah.edu 
pl a n e t l a b l . f r i . u n i - l j . s i 
p l a n e t l a b l . h i i t . f i 
planetlabl.icu.ac.kr 
planetlabl.ifi.uio.no 
planetlabl.iii.u-tokyo.ac.jp 
planetlabl.iitb.ac.in 
planetlab-1.imperial.ac.uk 
planetlabl.inf.ethz.ch 
planetlab-1.iscte.pt 
planetlabl.isi.jhu.edu 
planetlabl.it.uc3m.es 
planetlab-1.it.uu.se 
planetlabllannion.elibel.tm.fr 
planetlabl.larc.usp.br 
planetlabl.Is.fi.upm.es 
planetlab-1.man.poznan.pi 
planetlabl.millennium.berkeley.edu 
planetlabl.netmedia.gist.ac.kr 
planetlabl.nrl.dcs.qmul.ac.uk 
planetlabl.ntu.nodes.planet-lab.org 
planetlabl.poly.edu 
planetlabl.pop-mg.rnp.br 
planetlabl.postel.org 
planetlabl.science.unitn.it 
planetlab-1.tagus.ist.utl.pt 
planetlabl.tlm.unavarra.es 
planetlabl.tmit.bme.hu 
planetlab-1.tssg.org 

planetlabl.ucb-dsl.nodes.planet-lab.org 
planetlabl.uc.edu 
planetlabl.ucsd.edu 
planet-labl.ufabc.edu.br 
planetlabl.unineuchatel.ch 
planetlab-1.unk.edu 
planetlabl.upc.es 
planetlabl.uta.edu 
planetlab-1.vuse.vanderbilt.edu 
planetlabl.Williams.edu 
planetlabl.xeno.cl.cam.ac.uk 
planetlab-2.amst.nodes.planet-lab.org 
planetlab2.comp.nus.edu.sg 
planetlab2.cs.pitt.edu 
planetlab2.cs.uoi.gr 
planetlab2.cs.wise.edu 
planetlab-2.ece.iastate.edu 
planetlab2.pop-rs.rnp.br 
planetlab-2.rml.ryerson.ca 
planetlab2.utep.edu 
planetlab3.mini.pw.edu.pl 
planetlab3.piotrkow.rd.tp.pl 
planetlab-europe-01.ipv6.Iip6.fr 
planetlabnode-1.docomolabs-usa.com 
planetlabone.ccs.neu.edu 
planetslugl.cse.ucsc.edu 
plnodeOl.cs.mu.oz.au 
publ-s.ane.cmc.osaka-u.ac.jp 
ricepl-1.cs.rice.edu 
s anf ranci s co.planetlab.pch.net 
scratchy.cs.uga.edu 
Stella.planetlab.ntua.gr 
sv01-h010.utt.fr 
vnl.cs.wustl.edu 
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Berlin anycast node 

Hint: 
PRG - Prague, TXL - Berlin 
A2Uloc - difference of anycast/berlin to unicast/berlin 
A2Usho - difference of anycast to shortest unicast ping 
Match - i f the shortest ping matches the anycast selection 

Host 

aladdin.planetlab.extranet.uni-passau.de 
chronos.disy.inf.uni-konstanz.de 
cs-planetlabl.cs.surrey.sfu.ca 
edi.tkn.tu-berlin.de 
freedom.ri.uni-tuebingen.de 
host1.planetlab.informatik.tu-darmstadt.de 
irabonnie.iralab.uni-karlsruhe.de 
mtuplanetlabl.cs.mtu.edu 
pll.csl.utoronto.ca 
pll.cs.utk.edu 
plab-1.sinp.msu.ru  
plab201.wiai.uni-bamberg.de 
plane-lab-pbl.uni-paderborn.de 
planetOl.hhi.fraunhofer.de 
planet1.inf.tu-dresden.de 
planet1.13s.uni-hannover.de 
planet1.Ottawa.canet4.nodes.planet-lab.org 
planet1.scs.Stanford.edu 
planet2.prakinf.tu-ilmenau.de 
planetlabOl.erin.utoronto.ca 
planetlab-01.kyushu.jgn2.jp 
planetlab01.mpi-sws.mpg.de 
planetlab-01.naist.jp 
planetlabO.dojima.wide.ad.jp 
planetlabO.otemachi.wide.ad.jp 
planetlabl.cs.dartmouth.edu 
planetlabl.csee.usf.edu 
planetlab-1.cs.princeton.edu 
planetlab-1.cs.uh.edu 
planetlabl.eecs.wsu.edu 
planetlabl.exp-math.uni-essen.de 
planetlabl.fern.tu-ilmenau.de 
planetlab-1.fokus.fraunhofer.de 
planetlabl.georgetown.edu 
planetlabl.informatik.uni-goettingen.de 
planetlabl.informatik.uni-kl.de 
planetlabl.informatik.uni-wuerzburg.de 
planetlabl.itwm.fhg.de 
planetlabl.lkn.ei.tum.de 
planetlabl.sfc.wide.ad.jp 
planetlabl.win.trlabs.ca 
planetlabl.wiwi.hu-berlin.de 
planetlab2.eecs.jacobs-university.de 
planetlab2.ie.cuhk.edu.hk 
planetlab2.informatik.uni-erlangen.de 
planetlab2.mnlab.ct i.depaul.edu 
planetvsl.informatik.uni-stuttgart.de 
plgmu2.it e.gmu.edu 
serverl.planetlab.iit-tech.net 

ICMP packets from 146 planet-lab nodes were routed to Prague anycast node 
and from 49 planet-lab nodes packets were routed to Berlin anycast node. 

32.8'/,(64 nodes) matched and 67.2'/,(131 nodes) did not match the measured latency of selected 
anycast destination and unicast ping to the same destination. 
Measured out of total 195 planet-lab nodes. 

Any PRG TXL A2Uloc A2Uloc A2Usho A2Usho Select Mat< 
[ms] [ms] [ms] [ms] [•/.] [ms] [•/.] anycast 

26 22 26 0.1 0.4 4.3 19.5 Berlin No 
28 36 27 0.2 0.5 0.2 0.5 Berlin Yes 

165 184 165 0.6 0.4 0.6 0.4 Berlin Yes 
18 24 18 0.1 0.7 0.1 0.7 Berlin Yes 
23 31 23 0.3 1.4 0.3 1.4 Berlin Yes 
19 27 19 -0.3 -1.7 -0.3 -1.7 Berlin Yes 
21 29 20 0.5 2.4 0.5 2.4 Berlin Yes 

133 140 131 1.7 1.3 1.7 1.3 Berlin Yes 
119 130 119 -0.0 -0.0 -0.0 -0.0 Berlin Yes 
141 129 145 -4.3 -2.9 11.6 8.9 Berlin No 
64 55 64 -0.0 -0.0 9.7 17.6 Berlin No 
18 15 18 0.0 0.1 2.9 18.8 Berlin No 
22 24 23 -0.3 -1.2 -0.3 -1.2 Berlin Yes 
18 24 18 0.0 0.1 0.0 0.1 Berlin Yes 
18 20 18 0.0 0.1 0.0 0.1 Berlin Yes 
19 21 19 -0.2 -0.9 -0.2 -0.9 Berlin Yes 

132 133 131 1.1 0.9 1.1 0.9 Berlin Yes 
165 168 167 -2.6 -1.5 -2.6 -1.5 Berlin Yes 
20 15 20 0.2 0.8 5.9 39.4 Berlin No 

122 131 122 -0.0 -0.0 -0.0 -0.0 Berlin Yes 
298 303 292 5.7 2.0 5.7 2.0 Berlin Yes 
21 12 22 -0.1 -0.5 9.3 73.9 Berlin No 

279 293 279 -0.1 -0.0 -0.1 -0.0 Berlin Yes 
276 287 276 -0.0 -0.0 -0.0 -0.0 Berlin Yes 
269 280 269 -0.1 -0.0 -0.1 -0.0 Berlin Yes 
133 118 127 6.0 4.8 15.0 12.7 Berlin No 
145 134 139 6.0 4.3 11.3 8.4 Berlin No 
110 118 111 -1.2 -1.1 -1.2 -1.1 Berlin Yes 
165 168 170 -5.3 -3.1 -3.7 -2.2 Berlin No 
189 198 189 0.0 0.0 0.0 0.0 Berlin Yes 
25 15 25 0.0 0.1 9.8 62.1 Berlin No 
20 15 20 -0.1 -0.6 5.7 37.7 Berlin No 
19 24 19 0.0 0.2 0.0 0.2 Berlin Yes 

131 110 125 6.3 5.0 20.7 18.7 Berlin No 
21 22 21 0.2 0.8 0.2 0.8 Berlin Yes 
23 13 23 -0.1 -0.2 9.6 69.8 Berlin No 
23 14 23 0.1 0.4 9.4 67.2 Berlin No 
23 13 23 0.1 0.5 9.6 69.3 Berlin No 
26 16 26 0.0 0.2 9.4 56.4 Berlin No 

269 282 269 0.0 0.0 0.0 0.0 Berlin Yes 
135 137 136 -1.0 -0.8 -1.0 -0.8 Berlin Yes 
19 25 4 15.2 324.4 15.2 324.4 Berlin Yes 
23 24 23 -0.1 -0.6 -0.1 -0.6 Berlin Yes 

279 351 346 -67.7 -19.5 -67.7 -19.5 Berlin Yes 
18 12 18 0.1 0.3 5.8 45.2 Berlin No 

119 128 128 -8.8 -6.8 -8.5 -6.7 Berlin No 
23 30 24 -0.8 -3.5 -0.8 -3.5 Berlin Yes 

104 114 108 -4.0 -3.6 -4.0 -3.6 Berlin Yes 
123 128 117 5.9 5.0 5.9 5.0 Berlin Yes 
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B SER CONFIGURATIONS 

B . l SER Coring for Anycast DNS-based Method 
# global configuration parameters 

# adjust debug level, useful values are 0 (shut up) or >5 (very verbose) 
debug=3 
memdbg=100 

check_via=no 
dns=no 
rev_dns=no 

listen="213.192.59.77" 

# module loading 

loadmodule "si" 
loadmodule "rr" 
loadmodule "maxfwd" 
loadmodule "nathelper" 
loadmodule "textops" 
loadmodule "ctl" 
loadmodule "uri" 
loadmodule "tm" 
loadmodule "mangier" 

# optional listen addresses, if no one is specified, 
# ctl will listen on unixs:/tmp/ser_ctl 
modparamC'ctl", "binrpc", "unix:/tmp/ser_ctl_unicast") # default 
# unix sockets and fifo creation parameters 
modparamC'ctl", "mode", 0660) # permissions 
#modparam("ctl", "group", "ser") 

#: — rr params — 
#: add value to ;lr param to make some broken UAs happy 
modparamC'rr", "enable_full_lr", 1) 

#: don't add fromtags to RR, it helps keep the messages smaller 
modparamC'rr", "append_fromtag", 0) 

#advanced options 

dns_retr_time=l 
dns_retr_no=l 
dns_servers_no=l 
dns_use_search_list=no 

use_dns_cache=on 
use_dns_failover=on 

use_dst_blacklist=on 
dst_blacklist_mem=10 
dst_blacklist_expire=300 
dst_blacklist_gc_interval=120 

tcp_connection_lifetime=3600 
tcp_max_connections=1024 # 1024 connections 
tcp_send_timeout=5 
tcp_connect_timeout=l 
tcp_buf_write=l 
tcp_fd_cache=l 
tcp_conn_wq_max=65536 
t cp_wq_max=10240000 
t cp_delayed_ack=1 
tcp_linger2=10 
tcp_keepalive=yes 
tcp_keepidle=30 
tcp_keepintvl=5 
tcp_keepcnt=4 

flags F_NAT, F_FWD_IPTEL, F_RELAY_ANYCAST, F_0RIG_RTPPR0XY, 
F_MANGLE_C0NTACT_N0NNAT_REPLY; 

route{ 

#: initial sanity checks — messages with 
#: max_forwards==0, or excessively long requests 
if (!mf_process_maxfwd_header("10")) { 

sl_send_reply("483","Too Many Hops"); 
break; 

}; 
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i f (msg:len >= 2048 ) { 
sl_send_reply("513", "Message too big"); 
break; 

}; 

force_rport(); 
force_tcp_alias(); 

/* RR disabled, interferes badly with contact rewriting/uri fixing */ 
#: we record-route a l l messages — to make sure that 
#: subsequent messages w i l l go through our proxy; that's 
#: particularly good i f upstream and downstream entities 
#: use different transport protocol 
#: we don't record route REGISTERS, messages within 
#: a dialog (pointless). 

i f (!method=="REGISTER" kk !has_totag()) 
i f (proto==udp) 

record_route_preset("213.192.59.77"); 
else i f (proto==tcp) 

record_route_preset("213.192.59.77;transport=tcp"); 
else{ 

sl_send_reply("500", "Unsupported protocol"); 
drop; 

} 
#record_route(); 

#: P-Hint and P-Behind-NAT are used by us, don't allow i t before 
remove_hf("P-Hint"); 
remove_hf("P-Behind-NAT"); 

# set source ip used for sending 
i f (src_ip==213.192.59.75){ 

# i f i t comes from i p t e l use anycast 
#force_send_socket(91.199.168.1); 
route(R_FIX_URI); # f i x possible mangled uris 

}else{ 
# else use normal ip ( i t should be forwarded back to iptel) 
#force_send_socket(217.9.54.30); 
append_hf("P-iptel-fwd: yes\r\n"); 
setflag(F_FWD_IPTEL); 
# i f NAT, mangle contacts (we want subseq. messages to go 
# through us, so this should be applied both to normal contact 
# updating request and to REGISTERS) 
i f (isflagset(F_NAT) I I nat_uac_test("19")){ 

setflag(F_NAT); 
} 
# mangle a l l the contacts due to possible firewalls 

i f (!search('"(Contact Im)[ \t]*:.*sips?:[">[:cntr1:]@]*_RCVDINAT_')) 
{ 

# only i f not already fixed 
i f (isflagset(F_NAT)){ 

encode_contact("_NAT_", "213.192.59.77"); 
append_hf("P-Behind-NAT: Yes\r\n"); 

}else{ 
encode_contact("_RCVD_", "213.192.59.77"); 
append_hf("P-Contact-Mangled: Yes\r\n"); 

} 
i f (method=="REGISTER"){ 

resetflag(F_NAT); 
t_on_reply("R_UNMANGLE_CONTACT_REPLY"); 

} 
} 

/* RR interferes with the contact rewriting/uri fixing 
(loose_route() sees a myself uri and thinks a s t r i c t router needs fixing..) 

*/ 

#: subsequent messages withing a dialog should take the 
#: path determined by record-routing 
i f (loose_route()) { 

i f (!has_totag()){ 
sl_send_reply("404", "Preloaded routes forbidden"); 
break; 

} 
resetflag(F_FWD_IPTEL); # obey rr 

route(R_FWD); # forward 

onreply_route[R_RTPPROXY_REPLY]{ 
i f (status=- "(183)I 2[0-9][0-9]" ){ 

i f (!is_present_hf("P-RTP-Proxy")){ 
force_rtp_proxy("r"); 
append_hf("P-RTP-Proxy: YES\r\n"); 

route(R_MANGLE_CONTACT_REPLY); 
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} 
} 

onreply_route[R_MANGLE_CONTACT_REPLY]{ 
i f (status=~ "(18 [0-9]) I 2 [0-9] [0-9]" ){ 

i f ((src_ip!=213.192.59.75) kk 
!search('"(Contact Im)[ \t]*:.*sips?:[">[:cntrl:]S]*_(RCVDI NAT)_')){ 

i f (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY)) 
encode_contact("_RCVD_", "213.192.59.77"); 

else 
encode_contact("_NAT_", "213.192.59.77"): 

} 

onreply_route[R_UNMANGLE_CONTACT_REPLY]{ 
decode_contact_header(); 

} 

failure_route[R_RTPPROXY_FAILURE]{ 
i f (isflagset(F_0RIG_RTPPR0XY)) 

unforce_rtp_proxy(); 

route[R_FWD]{ 
i f (isflagset(F_NAT)) 

route(R_RTPPR0XY); 
else i f (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY)) 

t_on_reply("R_MANGLE_CONTACT_REPLY"); 
i f (isflagset(F_RELAY_ANYCAST)) 

route(R_RELAY_ANYCAST); 
else i f (isflagset(F_FWD_IPTEL)) 

route(R_FWD_IPTEL); 
else{ 

#forward(uri:host, uri:port); 
t_relay(); 

route[R_RELAY_ANYCAST] { 
t_relay(); 

route[R_FWD_IPTEL] 
{ 

t_relay("sip01.iptel.org", "5060"); 

route[R_FIX_URI] 
i 

i f (uri==myself){ 
i f (uri=~"_NAT_"H 

setflag(FJJAT); 
i f (!decode_contact()){ 

sl_reply("500", "decode u r i failed"); 
drop; 

} 
appendjif("P-uri-decoded: NAT\r\n"); 

>else i f (uri=~"_RCVD_"M 
setflag(F_MANGLE_CONTACT_NONNAT_REPLY); 
i f (!decode_contact()){ 

sl_reply("500", "decode u r i failed"); 
drop; 

} 
append_hf("P-uri-decoded: non-NAT\r\n"); 

>else{ 
sl_reply("500", "local uris not allowed"); 
drop; 

setflag(F_RELAY_ANYCAST); 
}else{ 

append_hf("P-iptel-fwd: failover\r\n"); 
setflag(F_FWD_IPTEL); 

route[R_RTPPRDXY]{ 
# don't RTP proxy i f somebody already did i t before us 
i f (!is_present_hf("P-RTP-Proxy")){ 

i f (method=="BYE"I Imethod=="CANCEL") 
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unforce_rtp_proxy(); 
else i f (method=="INVITE"){ 

force_rtp_proxy("r"); 
append_hf("P-RTP-Proxy: YES\r\n"); 
setflag(F_ORIG_RTPPROXY); 
t_on_failure("R_RTPPROXY_FAILURE"); 
t_on_reply("R_RTPPROXY_REPLY"); 

}else{ 
# i f RTP PROXIED by someone else, we s t i l l want to 
# catch the reply to f i x the contact 
i f (method=="INVITE") 

t_on_reply("R_MANGLE_CONTACT_REPLY"); 
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B.2 SER Config for Anycast SIP-based Method 
# global configuration parameters 

# adjust debug le v e l , useful values are 0 (shut up) or >5 (very verbose) 
debug=3 
memdbg=100 

check_via=no 
dns=no 
rev_dns=no 

listen="91.199.168.1" 
listen="213.192.59.76" 

# module loading 

loadmodule " s i " 
loadmodule "rr" 
loadmodule "maxfwd" 
loadmodule "nathelper" 
loadmodule "textops" 
loadmodule " c t l " 
loadmodule "uri" 
loadmodule "tm" 
loadmodule "mangier" 

# optional l i s t e n addresses, i f no one is specified, 
# c t l w i l l l i s t e n on unixs:/tmp/ser_ctl 
modparamC'ctl", "binrpc", "unix:/tmp/ser_ctl") # default 
# unix sockets and f i f o creation parameters 

modparamC'ctl", "mode", 0660) # permissions 

#: — rr params — 

#: add value to ; l r param to make some broken UAs happy 
modparamC'rr" , "enable_f u l l _ l r ", 1) 
#: don't add fromtags to RR, i t helps keep the messages smaller 
modparamC'rr", "append_fromtag", 0) 

#: — nathelper params — 
#modparam("nathelper", "rtpproxy_disable", 1) 

#advanced options 

#mlock_pages=yes 
#shm_force_alloc=yes 
#real_time=7 

dns_retr_time=l 
dns_retr_no=l 
dns_servers_no=l 
dns_use_search_list=no 

use_dns_cache=on 
use_dns_failover=on 

use_dst_blacklist=on 
dst_blacklist_mem=10 
dst_blacklist_expire=300 
dst_blacklist_gc_interval=120 

tcp_connection_lifetime=3600 
tcp_max_connections=1024 # 1024 connections 
tcp_send_timeout=5 
tcp_connect_timeout=l 
tcp_buf_write=l 
tcp_fd_cache=l 
tcp_conn_wq_max=65536 
t cp_wq_max=10240000 
t cp_delayed_ack=1 
tcp_linger2=10 
tcp_keepalive=yes 
tcp_keepidle=30 
tcp_keepintvl=5 
tcp_keepcnt=4 

syn_branch=0 # we want to generate the same branch for the same request at 
# different boxes, to account for anycast routing changes 

# mid-transaction 

flags F_NAT, F_FWD_IPTEL, F_RELAY_ANYCAST, F_0RIG_RTPPR0XY, 
F_MANGLE_C0NTACT_N0NNAT_REPLY; 

route{ 
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#: i n i t i a l sanity checks — messages with 
#: max_forwards==0, or excessively long requests 
i f (!mf_process_maxfwd_header("10")) { 

sl_send_reply("483","Too Many Hops"); 
break; 

}; 
i f (msg:len >= 2048 ) { 

sl_send_reply("513", "Message too big"); 
break; 

}; 

force_rport(); 
force_tcp_alias(); 

/* RR disabled, interferes badly with contac rewriting/uri fixing */ 
#: we record-route a l l messages — to make sure that 
#: subsequent messages w i l l go through our proxy; that's 
#: particularly good i f upstream and downstream entities 
#: use different transport protocol 
#: we don't record route REGISTERS, messages within 
#: a dialog (pointless). 

i f (!method=="REGISTER" kk !has_totag()) 
i f (proto==udp) 

record_route_preset("213.192.59.76"); 
else i f (proto==tcp) 

record_route_preset("213.192.59.76;transport=tcp"); 
else{ 

sl_send_reply("500", "Unsupported protocol"); 
drop; 

} 

#: P-Hint and P-Behind-NAT are used by us, don't allow i t before 
remove_hf("P-Hint"); 
remove_hf("P-Behind-NAT"); 

# set source ip used for sending 
i f (src_ip==213.192.59.75){ 

# i f i t comes from i p t e l use anycast 
force_send_socket(91.199.168.1); 
route(R_FIX_URI); # f i x possible mangled uris 

}else{ 
# else use normal ip ( i t should be forwarded back to iptel) 
force_send_socket(213.192.59.76); 
append_hf("P-iptel-fwd: yes\r\n"); 
setflag(F_FWD_IPTEL); 
# i f NAT, mangle contacts (we want subseq. messages to go 
# through us, so this should be applied both to normal contact 
# updating request and to REGISTERS) 
i f (isflagset(F_NAT) I I nat_uac_test("19")){ 

setflag(F_NAT); 
} 
# mangle a l l the contacts due to possible firewalls 

i f (!search('"(Contact Im)[ \t]*:.*sips?:[">[:cntr1:]@]*_RCVDINAT_')) 
{ 

# only i f not already fixed 
i f (isflagset(F_NAT)){ 

encode_contact("_NAT_", "213.192.59.76"); 
append_hf("P-Behind-NAT: Yes\r\n"); 

}else{ 
encode_contact("_RCVD_", "213.192.59.76"); 
append_hf("P-Contact-Mangled: Yes\r\n"); 

} 
i f (method=="REGISTER"){ 

resetflag(F_NAT); 
t_on_reply("R_UNMANGLE_CONTACT_REPLY"); 

} 
} 

} 
/* RR interferes with the contact rewriting/uri fixing 

(loose_route() sees a myself uri and thinks a s t r i c t router needs fixing..) 
*/ 

#: subsequent messages withing a dialog should take the 
#: path determined by record-routing 
i f (loose_route()) { 

i f (!has_totag()){ 
sl_send_reply("404", "Preloaded routes forbidden"); 
break; 

} 

resetflag(F_FWD_IPTEL); # obey rr 

route(R_FWD); # forward 

onreply_route[R_RTPPROXY_REPLY]{ 
i f (status=- "(183)I 2[0-9][0-9]" ){ 
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i f (! is_present_hf ("P-RTP-Proxy
11

)) { 
force_rtp_proxy("r"); 
append_hf("P-RTP-Proxy: YES\r\n"); 

route(R_MANGLE_CDNTACT_REPLY); 

onreply.route[R_MANGLE_CONTACT_REPLY]{ 
i f (status=- " (18[0-9])|2[0-9] [0-9]" ){ 

i f ((src_ip!=213.192.59.75) kk 
!search((Contact Im)[ \t] *:.*sips?:[">[:cntrl:]@]*_(RCVDI NAT)_')){ 

i f (isflagset(F_MANGLE_CONTACT_NONNAT_REPLY)) 
encode_contact("_RCVD_", "213.192.59.76"); 

else 
encode_contact("_NAT_", "213.192.59.76"); 

} 

onreply_route[R_UNHANGLE_CONTACT_REPLY] { 
decode_contact_header(); 

} 

failure.route[R_RTPPRdXY_FAILURE]{ 
i f (isflagset(F_0RIG_RTPPR0XY)) 

unforce_rtp_proxy(); 

route [R_F¥D]{ 
i f (isflagset(F_NAT)) 

route(R_RTPPRDXY); 
else i f (isflagset(F_HANGLE_CDNTACT_NONNAT_REPLY)) 

t_on_reply("R_MANGLE_CONTACT_REPLY"); 
i f (isflagset(F_RELAY_ANYCAST)) 

route(R_RELAY_ANYCAST); 
else i f (isflagset(F_FWD_IPTEL)) 

route(R_FWD_IPTEL); 
else{ 

#forward(uri:host, uri:port); 
t_relay(); 

route[R_RELAY_ANYCAST] 
{ 

# NOTE: force_send_socket doesn't work w/ stateless forward, 
# (the forwarded replies w i l l come from the forced socket 
# instead of the original socket on which the msg was recvd) 
#forward(uri:host, uri:port); 
#force_send_socket(91.199.168.1); 
t_relay(); 

route[R_FWD_IPTEL] 
{ 

# see above NOTE 
#forward(sip01.iptel.org, 5060); 
#force_send_socket(213.192.59.76); 
t_relay("sip01.iptel.org", "5060"); 

route[R_FIX_URI] 
{ 

i f (uri==myself){ 
i f (uri=-"_NAT_"H 

setflag(F_NAT); 
i f (!decode_contact()){ 

sl_reply("500", "decode u r i failed"); 
drop; 

} 
appendjif("P-uri-decoded: NAT\r\n"); 

}else i f (uri=-"_RC¥D_"){ 
setflag(F_MANGLE_C0NTACT_N0NNAT_REPLY); 
i f (!decode_contact()){ 

sl_reply("500", "decode u r i failed"); 
drop; 

append_hf("P-uri-decoded: non-NAT\r\n"); 
}else{ 

sl_reply("500", "local uris not allowed"); 
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drop; 
} 
setflag(F_RELAY_ANYCAST); 

append_hf("P-iptel-fwd: failover\r\n"); 
setflag(F_FWD_IPTEL); 

route[R_RTPPRDXY]{ 
# don't RTP proxy i f somebody already did i t before us 
i f (!is_present_hf("P-RTP-Proxy")){ 

i f (method=="BYE"I Imethod=="CANCEL") 
unforce_rtp_proxy(); 

else i f (method=="INVITE"M 
force_rtp_proxy("r"); 
appendjif("P-RTP-Proxy: YES\r\n"); 
setflag(F_ORIG_RTPPROXY); 
t_on_failure("R_RTPPROXY_FAILURE"); 
t_on_reply("R_RTPPROXY_REPLY"); 

} 
}else{ 

# i f RTP PROXIED by someone else, we s t i l l want 
# catch the reply to f i x the contact 
i f (method=="INVITE") 

t_on_reply("R_MANGLE_CONTACT_REPLY"); 
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