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Abstrakt 
Tato diplomová práce se zabývá tématikou konvexní optimalizace a to kon
krétně modifikacemi algoritmu A D M M , společně s problematikou proximál-
ních operátorů. Jedna z verzí A D M M je pak implementována v programovacím 
jazyce Julia s důrazem na obecnost a efektivnost této implementace, a dále 
aplikována na rozsáhlou úlohu z oblasti odpadového hospodářství. 

Summary 
This master's thesis concerns itself with the topic of convex optimization, 
specifically formulations of the A D M M algorithm, together with the area of 
proximal operators. One of these versions of A D M M is then implemented 
in the Julia programming languge with an emphasis on the reusability and 
efficiency of this implementation, and is further applied to a large model from 
the field of waste management. 

Klíčová slova 
konvexní optimalizace, proximální operátory, A D M M , jazyk Julia, odpadové 
hospodářství 

Keywords 
convex optimization, proximal operators, A D M M , the Julia language, waste 
management 
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Rozšířený abstrakt 

Teoretická část této práce se zabývá oblastí konvexní optimalizace. První 
kapitola zavádí základní pojmy, jako je konvexní množina a funkce a její opti-
malita. Společně s nimi jsou také představeny proximální operátory zavedené 
vzorcem 

prox A J (x 0 ) := argmin í / ( x ) + -A | |x - x 0 

(více v Definici 1.15), na které lze nahlížet jako na minimalizaci / v okolí 
nějakého bodu x 0. Jejich chování je dále ilustrováno na příkladu proximálního 
minimalizačního algoritmu. 

Druhá kapitola pak odvozuje konvexní optimalizační metodu, A D M M 
(Alternating Direction Method of Multipliers) (2.4) na základě jejích před
chůdců, duálního stoupání a metody rozšířeného Lagrangianu. Pro obecný 
optimalizační problém 

minimize /(x) + g(x), 

je metoda zavedena následovně 

x f c + 1 := proxA j.(zk — uk) 

z k + 1 := proxA 3 (x f c + 1 + ufc) 

ufc+l : = ufc + xfc+l _ z fc+l . 

(Pro podmínky a podrobnější vysvětlení viz (2.4)) Tato kapitola dále obsa
huje formulaci A D M M pro lineárně omezené problémy (2.8), která je později 
implementována a aplikována. Také je zmíněna možnost distribuované nebo 
paralelní modifikace pro pokročilé složené problémy, nazývaná block Splitting 
method (2.14). 

Výpočtová část se týká implemetace výše uvedené metody A D M M (2.8) 
a její aplikací. Metoda je ve třetí kapitole implementována v jazyku Julia, 
zaměřeného na numerické výpočty. Julia obsahuje nástoroje pro snadnou 
implemetaci dané metody s cílem široké použitelnosti a efektivnosti kódu. 
Metoda je také ilustrována na dvou malých příkladech, z nichž jeden je zob
razen níže (Obrázek 1). Jedná se o aplikaci na úlohu, kdy účelová funkce je 
paraboloid (znázorněn na obrázku šedě), avšak optimum hledáme pouze ve 
vyznačené oblasti (viz sekce 3.5). 



Obrázek 1: Trajektorie A D M M pro kvadratický problém (viz. sekce 3.5) 

Závěrečná (čtvrtá) kapitola je zaměřena na hlavní optimalizační problém 
této práce. Jedná se o velký multikriteriální model z oblasti odpadového hos
podářství, který je vyvíjen ve spolupráci s výzkumným týmem na Ústavu 
procesního inženýrství, FSI, V U T v Brně a vychází z jejich předchozí publi
kace (viz [15]). Problém se týká analýzy nakládání s kaly z čističek odpadních 
vod, kdy dostupná data představují síť na úrovni obcí s rozšířenou působností 
(ORP), avšak obsahují nesrovnalosti. Model se pak snaží tyto nesrovnalosti 
pomocí bilancí sítě a zavedení chybových proměnných srovnat. Protože pů
vodní definice modelu obsahovala víceznačné proměnné, vzniklé vlivem agre
gace dat pro jednotlivé uzly, musel být každý uzel nahrazen zjednodušenou 
"místní sítí" (Obrázek 2). Pro více informací viz sekce 4.2.1. Analýza běhu 
implementace modelu odhalila možná místa pro jeho zefektivnění, především 
lepší práce s "krokovým" parametrem p (viz Tabulka 4.1). Také závislost ře
šení jednotlivých kritérií na jejich relativní váze (viz Obrázek 4.2) poslouží 
jako základ pro další výzkum multikriteriální optimalizace, jelikož se často 
vyskytuje v reálných aplikacích. Výsledky samotného výpočtu pak budou 
použity v rámci dalších výzkumných projektů. 



Local cycle 

Obrázek 2: Diagram místní sítě pro agregovaný uzel (viz sekce 4.2.1). 
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Introduction 

The theoretical part of this thesis concerns itself with the area of convex 
optimization. First chapter introduces basic concepts, such as convex set 
and function and its optimality. Also the concept of proximal operators 
gets covered, with a simple demonstration of its behavior on the proximal 
minimization algorithm. 

Second chapter then builds up a convex optimization method, the al
ternating direction method of multipliers (ADMM) on its predecessors, the 
dual ascent and augmented Lagrangian methods. This chapter then features 
the formulation for linearly constrained problems, which is later being im
plemented and applied, and also mentions the possibility of distributed or 
parallelized modification for advanced composed problems, called the block 
splitting method. 

The computational part covers the aforementioned implementation and 
application of the linearly constrained A D M M . Third chapter focuses on the 
implementation itself, which aims for general reusability and efficiency of the 
computation. The method is also illustrated on two example problems. 

The final (fourth) chapter focuses on the main optimization problem of 
this thesis, a large multi-criteria waste management model that is being 
developed with cooperation from a research team situated at The Institute 
of Process Engineering, F M E , B U T , and is based on their previous work 
(see [15]). Together with the model definition are also being described the 
steps needed for the application of the A D M M implementation on it. The 
behavior of the finished computation is then discussed, together with options 
for further improvement. 

14 



Part I 

Theoretical part 
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Chapter 1 

Basic concepts 

This chapter covers some basic concepts and definitions connected with the 
area of convex optimization, which are commonly used throughout the text. 
It also introduces the notion of proximal operators, which are later used 
as a major part of the main subject of study for this thesis, the A D M M 
algorithm. 

1.1 Convex sets and functions 
Convex sets and functions are, as the name suggests, a cornerstone of the area 
of convex optimization. One of the reasons, why this area is so significant, 
is the fact, that convex functions hold a useful property in connection to 
their extremal points (as discussed in the next section). This then allows to 
simplify some processes aimed at obtaining these. 

Definition 1.1. [1] A set C is convex if the line segment between any two 
points from C also belongs to C, i.e., if Wx1,x2 £ C and VA e [0; 1] holds 
true 

Xx1 + (1 - \)x2 G C. 

The definition of convex set then can be in turn used to define a convex 
function by requiring its epigraph, geometrically the set of points "above" 
the graph of the function, to be also convex. 

Definition 1.2. [2] Let / : Rn —>RU {+oo; -oo}, then the set 

epi / := {(x,t)|x e R V e R,t >/(x)} 

is called the epigraph of / . 

16 



Definition 1.3. [2] A function / : Rn —> RU{+oo; — 0 0 } is said to be convex 
if epi / is convex. 

Note that the function / is defined for the whole of Rn and can take on 
extended values of i o o 1 . We can extend any real-valued convex function <p 
defined only for a subset C C Rn into this form with the use of a concept of 
indicator functions. 

Definition 1.4. [2, 3] Let C C Rn be a set, then its indicator function 
Ic •• Rn —>{0; + ° ° } is defined as 

/ c ( x ) 4 0 ' f o r x e C (i.i) 
C ' \+oo , f o r x ^ C . V ; 

The extension then can be done addition, i.e. /(x) = <^(x)+/c,(x), where 
ip •• C C Rn —> R. This process of extension is also tied to the notion of an 
effective domain of a convex function. [2] 

Definition 1.5. [2] Let / : Rn —> RU{+oo; — 0 0 } be convex, then its effective 
domain, denoted by dom/ is a set on which / is real-valued, i.e. 

dom/ = {x G Rn\f(x) < +00}. 

The original domain C of (p then can be viewed as an effective domain of 
the newly formed / . 

For purposes of further discussion about convex functions, as the extended 
values ± 0 0 allow for some "unwanted" corner cases, the following restrictions 
on the concept of a convex function will be introduced. 

Definition 1.6. [2] A convex function / is said to be proper if epi / is 

non-empty and contains no vertical lines, i.e if 

3x e Rn •• /(x) < +oc 

and 
Vx e Rn •• /(x) > - 0 0 . 

Definition 1.7. [3] A convex function / is said to be closed proper if / is 
proper and epi / is a closed set. 

lrThe introduction of extended values creates some edge cases such as terms 00 + 00. As 
these are more or less technicalities they will be omitted for brevity. For more information 
about these see [2]. 
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1.2 Optimality 
Finding the optimal point of a function is the main goal of optimization. This 
section will introduce basic definitions and theorems covering this process. 

Definition 1.8. [4] Let f • C C Rn —y [R, then we call x* e C a global 
minimum of / if 

/ (x) > f(x*); Vx e C. 

Definition 1.9. [4] Let f • C C Rn —y [R, then we call x* e C a local 
minimum of / if 

3iV e(x*) : / (x ) > f{x*); V x e i V £ n C . 

Following theorem highlights the importance of convex functions, as find
ing a local minimum of a function is usually easier, than finding the global 
one. 

Theorem 1.10. [4] Let / : C —y R be convex and C a convex set. If x* e Rn 

is a local minimum of / , then it is also its global minimum. 

It should be noted that minimizing a real-valued / over C C Rn is the 
same as minimizing its proper convex extension over Rn. [2] 

Theorem 1.10 guarantees, that for finding a global minimum of a convex 
function, we just need to search for a spot that does not improve in its 
neighborhood. Such a condition for optimality of a point can be expressed 
by the use of a concept of subdifferentials. 

Definition 1.11. [2, 4] A vector £ e Rn is called a subgradient of convex 
function / at x* G Rn if 

/ ( x ) > / ( x * ) + £ T ( x - x * ) ; Vx. 

Definition 1.12. [2, 4] The set of all subgradients of / at x is called the 
subdifferential of / at x, i.e. 

<9/(x) = {£ e R n | £ is a subgradient of / at x}. 

Naturally, if the function is differentiable, then the subgradients simply 
reduce to a gradient. 

Theorem 1.13. [2, 4] If / is convex and differentiable at x, then 9/(x) = 
( V / ( x ) } . 

These terms then allow us to formulate a general optimality condition for 
a convex function. 

Theorem 1.14. [2, 4] Let / : C—y R be convex, then x* belongs to its 
global minimum if and only if there exists a subgradient of / at x* equal to 
zero, i.e. 0 e 9/(x) . 

18 



1.3 Proximal operators 
Definition 1.15. [3] Let / : Rn—>R U { + 0 0 } be a closed proper convex 
function, then the proximal operator proxA , : Rn —> Rn of / with argument 
A > 0; A e R is defined as 

prox A J (x 0 ) := argmin (/(x) + ^A||x - x 0|||) (1.2) 

The proximal operator can be viewed as a minimization step of / in the 
vicinity of x 0. The ratio between minimization of / and "closeness" to x 0 is 
then controlled by the argument A. 

Following is a list of some properties of the proximal operator, which 
are later useful for deriving analytical formulas or closed-forms of concrete 
proximal operators. [3] 

• Separable sum: If / is separable across two variables, meaning that 
/(x, y) = v?(x) + V>(y), then 

prox A J (x 0 ,y 0 ) = (proxA^(x 0),proxA^(y 0)). (1.3) 

• Postcomposition: If /(x) = aip(~x.) + b; a > 0, then 

prox A J (x 0 ) = prox a A^(x 0). (1.4) 

• Affine addition: If /(x) = <p(x) + a T x + b, then 

prox A J (x 0 ) = proxA^(x 0 - Aa). (1.5) 

• Indicator function: If C e Rn is closed nonempty convex set, then 
the proximal operator of indicator function Ic reduces to Euclidian 
projection onto C: 

P r o x A / J x o ) = n c ( x o ) = argmin | |x-x 0 | | 2 . (1.6) 

1.3.1 Proximal minimization 
The fixed point of the proximal operator is the minimizer of / , i.e. 

proxA J-(X*) = x* 

if and only if x* minimizes / . This leads to a simple proximal minimization 
algorithm, which will be used to illustrate the behavior of proximal operators: 

x f c + 1 := proxA^.(xfc), 

19 



where k is the iteration counter. If / has a minimum, then xfc converges to 
one of the minimizers and /(xfc) to the optimal value (see [3]). When applied 
to the following explanatory problem 

minimize (a^ - 6) 2 + (x2 - 4) 2 + I{Xl>1} + I{x2>2} 

with starting point [0,0], the algorithm follows paths for different values of 
A as displayed in Figure 1.1. 

!>7 

1 1 

effective domain boundary 
• A = 1/16 
• X = 1/4 
• A = 2 

1 1 1 «!- 1 1 1 1 1 1 

0 1 2 3 4 5 6 

Figure 1.1: Proximal algorithm trajectories for different values of A. (objec
tive contours are in gray) 

As it is clear from the figure, the proximal operator projects steps ending 
outside of the effective domain of / onto its boundary. For small step size 
A = 1/16 the first step ends up being projected completely. For larger 
A = 1/4 is the step big enough to be projected only in the direction of x2 

and for A = 2 happens no projection at all. The next steps the algorithm 
takes then proceeds to the minimal point [6,4], however at different pace as 
dictated by A. 

20 



Chapter 2 

Alternating Direction Method 
of Multipliers 

The A D M M algorithm will be introduced in this chapter. Before that, two 
optimization methods will be briefly mentioned to serve as its precursors, 
namely the dual ascent method and the augmented Lagrangian method. Af
ter that, the modification of the algorithm for linearly constrained problems 
will be derived, to serve as a basis for the implementation in the following 
chapter. The block splitting version of A D M M is mentioned at the end of 
this chapter as an solution for models that needs to be split across multiple 
processes. 

2.1 Precursors 

2.1.1 Dual ascent and decomposition 
First, lets consider a general convex optimization problem with equality con
straints 

minimize /(x) 
s.t.: Cj(x) = 0; for i G I, (2.1) 

where / : Rn —> R is convex and ci •• Rn —> R; for i 6 I, are the equality 
constraints. The Lagrangian for (2.1) is then 

L(x ,y) = / (x)+y T c(x) 

and the associated dual problem is 

max inf L(x, y) 
y x 
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with dual variable y e K m . [5, 6] 
The dual ascent method steps for solving the dual problem can be de

scribed as 

xfc+i . _ argmin L(x, yfc) 
X 

y f c + 1 := y f c + a f cc(x f c), 

with ak > 0 as the step size and k as the iteration counter. The importance 
of this algorithm is in that it allows for a separability of problems, where 
otherwise separable objective is coupled by constrained variables, e.g. A x = 
b. In that case the primal update step can be carried out separately for each 
partition of / , i.e. the dual ascent method modifies to dual decomposition [6]: 

x ^ + 1 := argminLj(Xj, yfc) 

y f c + 1 := y f c + akc(x.k). 

For more information about decomposition see [7] and [8] and for its use in 
stochastic programming see [9]. 

2.1.2 Augmented Lagrangian 
Definition 2.1. Consider a modification of (2.1): 

minimize /(x) + — cf (x) 

s.t.: Cj(x) = 0; for i G / , (2.2) 

then the Lagrangian for this problem is called the augmented Lagrangian 
[4, 6] and is defined as 

L p(x,y) = /(x) + $ > i C i ( x ) + ! £ c ? ( x ) . (2.3) 
iee iee 

The problem then can be solved by the dual ascent method [4]: 

xfc+i . _ argminL (x, y ) 
X 

y f c + 1 y f c + pfcc(xfc). 

Note, that the use of the quadratic penalty term in the objective should 
in many cases lead to better convergence properties (for more information 
see [4]). 
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2.2 General algorithm 
Definition 2.2. Let / , g •• Rn —> R U { + 0 0 } be closed proper convex func
tions. Then, considering an optimization problem of the form 

minimize /(x) + g(x), 

we can formulate the alternating direction method of multipliers (ADMM) as 
follows: 

x f c + 1 := proxA j.(zk — uk) 

z k + 1 := proxA 3 (x f c + 1 + ufc) 

ufc+i : = ufc + xfc+i _ zfc+i ^2.4) 

where k is the iteration counter, A > 0, u, z e Rn are newly introduced 
variables (see (2.5) and the following steps) and prox is the proximal operator 
(see Definition 1.15). [3] 

The A D M M algorithm, sometimes called the Douglas-Rachford operator 
splitting is a convex optimization method with very general convergence con
ditions (see [6] §3.2). It aims to combine the decomposability of dual ascent 
and the convergence properties of the augmented Lagrangian. The objec
tive terms, which both may encode constraints, are handled separately and 
only by the use of their proximal operators. This means that A D M M is best 
suited for problems where proximal operators of / and g are evaluated easily 
(as is the case for many functions found in practical applications), however 
proximal of / + g is not. [3, 6, 10] 

The algorithm (2.4) can be derived in these following steps. Rewriting 
the original problem min x{/(x) + <7(x)}, with the introduction of new opti
mization variable z e Rn, as 

minimize /(x) + g(z) 
s.t.: x — z = 0, 

sometimes referred to as a consensus form because of the consensus constraint 
x — z = 0, then yields an augmented Lagrangian of a form 

L p(x, z, y) = /(x) + g(z) + y T(x - z) + |||x - zg. (2.5) 

By applying the dual ascent method, we obtain 

(x f c + 1 ,z f c + 1 ) — argmin L p (x, z, yfc) 
x,z 

yfc+1 ._ yfc _|_ p f c (x f c + 1 — Z f c + 1 ) 

23 



The optimization in the first step can be done separately (hence the term 
Alternating in the name of the method), similarly to a single pass of Gauss-
Seidel method: 

xfc+i .— argminL (x, z f c,y f c) 
X 

z f c + 1 :— argmin L p (x f c + 1 , z, yfc) 
z 

yfc+1 . _ yfc _|_ p f c ( ^ X f c + 1 — Z f c + 1 ) 

By substituting (2.5) and omitting constant terms, as these do not affect the 
minimization results, we obtain 

x f c + 1 := argmin (/(x) + y f c T x + —||x — zfc||§ J 
x V 2 / 

z f c + 1 := argmin (g(z) — y f c T z + ^||x f c + 1 — z|||^ 

yfc+1 . _ yfc _|_ p f c ( ^ X f c + 1 — Z f c + 1 ) 

and by including the linear terms into the norm we arrive at 

- k + 1 :— argmin (V(x) + ^||x — zfc + —yfcllî ) 

fc+1 := argmin (g{z) + ̂ ||x f c + 1 — z y f c||l) 

yfc+i : = yfc _j_ pfc(xfc+i _ z*+i). 

Finally, by substituting u f c = ^yfc and A = - we obtain the general form of 
ADMM, the same as in (2.4) [3, 6], because 

P r o x A , v ( x ) ( x o ) = argmin (p(x) + ^A||x - x 0 | | |). 

2.3 Formulation for problems with linear con
straints 

The general ADMM algorithm (2.4) will be now transformed for general 
linearly constrained problem 

minimize <p(x) 
s.t.:Ax = b (2.6) 

x 

z 
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where <p is closed proper convex. The reason for doing this is that the model 
described in Chapter 4 can be transformed into this form, thus allowing the 
use of A D M M . First, the problem (2.6) needs to be modified into 

minimize /(z) + i " { j 4 x = y } ( z ) , (2.7) 

where z = (x, y) is a collective vector for the original variables x and newly 
introduced right-hand-side (RHS) variables y, /(z) = <p(x) + J | y = b | ( y ) is a 
new objective function with RHS variables y being constrained to the RHS 
vector b and I{Ax=y} *s the indicator function of the linear constraints, i.e. 
of the set {(x, y); A x = y}. 

Applying the general form algorithm (2.4) on the modified linearly con
strained problem (2.7) then results in A D M M formulation for problems with 
linear constraints (as I{Ax.=y}(z) represents #(x) from (2.4)): 

x f c + l / 2 ._ p r o x ^ ^(xfc _ xfc) 

y fc+V2 : = n { b } ( y f c - y f c ) 

( x f c + 1 , y f c + 1 ) := n A ( x f c + 1 / 2 + x

f c , y f c + 1 / 2 + yfc) 
x f c + l ._ x f c _|_ x f c + l / 2 _ x fc+l 

-fc+i : = ~k + yfc+i/2 _ yfc+i ^2.8) 

As the function / can be separated into <p(x) and 7{ y = bj .(y), using (1.3), its 
proximal operator is handled also separately. Because of (1.6), the proximal 
of indicator function is a simple projection onto vector b. Similarly, proximal 
of the second function is also a projection, in this case onto the graph of the 
linear operator A. As the variable vectors x and y do not overlap, the last 
(dual) update step can also be handled separately. [11] 

For example problems illustrating this formulation (2.8) of A D M M see 
section 3.3. 

2.3.1 Efficient graph projection 
The graph projection n j 4 (c , d) (with general arguments) from the third step 
of (2.8) is equivalent to solving a minimization problem with variables x 6 Rn 

and y 6 R m , 

• • • !„ „2 !„ JI.2 
minimize — ||x — c\\2 + — ||y — 

B.t . :Ax = y. (2.9) 
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By applying the K K T optimality conditions [4] with dual variable A, 

0 = ^V(||x + l|y dill) AV(y - Ax) 

0 = ( x - c , y - d ) + A ( A - l ) , 

we obtain the following system 

0 - n 
y = d 

w 
(2.10) 

By expressing A = y — d from the second equation and substituting it into 
the first one we obtain 

(IAT 0) y I =c + Ald. 

This allows to simplify (2.10) into 

I AT 

A -I 
c + Ad 

0 (2.11) 

This system can be then solved using block elimination. By expressing x = 
A~1y from the second equation and then substituting into the first one, 

A~xy + ATy =c + ATd 
y + AATy =Ac + AATd 

y =(I + AAT)~1(Ac + AATd), 

we obtain the following two-step solution (with x from the first equation for 
already computed y) 

y :=(/ + AAT)~1(Ac + AATd) 
x :=c + ATd - y. (2.12) 

Evaluation of the first step can be done via Cholesky factorization 1 + AAT — 
LLT. Because this factorization depends only on the constraint matrix A, it 
can be created only once and then reused in subsequent iterations, or even in 
other models with the same matrix A but with different objective functions1. 
[11] 

As it is done in Chapter 4, when dealing with a multi-criteria model. 
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2.4 A D M M Block splitting 
When facing problems with large datasets, the resulting matrix may be so big. 
that handling the model as a whole may be impractical or outright impossible. 
This can be solved by a problem partitioning, where each partition is handled 
by a separate process and each resulting block of the constraint matrix is 
required only locally. 

If the objective function <p from (2.6) is block separable, meaning 

N 

^(x) = 5^^.(xi), 
i=i 

we can divide the original problem (2.7) across M block rows and N block 
columns, with the introduction of new "local" variables • and for each 
block formulating an equivalent form 

N M M N 

minimize ^ t p f a ) + ^ / { y ^ b j ( y J + 'l-h.,*;., 
j—1 1=1 1=1 j=l 

N 

i=i 

This form then leads to a reformulation of (2.8) into the block splitting 
algorithm [11], 

fc+1/2 / h ~k\ 
X j : = p r o x A ^ ( x J - x J ) 

y-+1/2 : = I W ( y ? - y } ) 

{4f}f=i) ••= a v g ( x j + 1 + x j , { x f j 1 + 

( y " + 1 , { y ^ 1 } ^ ) == exch(yf + 1 + y*, {ykf + y ^ } f = 1 ) 
gfc+l : = g f c + z f c + l / 2 _ z f c + l ; ( 2 1 4 ) 

where the dual variables x and y from (2.8) are also partitioned and have 
their "block-local" counterparts and z is a vector of all x-, y i ; x^ •, • 
(similarly for z); where avg is an elementwise average (done on multiple 
vectors but denoted collectively in one line), setting the values of the output 
vector to the elementwise average of the input vector; exch is an exchange 
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operator[ll], defined for exch(c, {CJ}J=1) as 

, c - £ 3 - = l c i 
yij •= s + N + 1 

Y i ' C AT + 1 ' 

The avg (consensus) and exch (exchange) operators represent the projec
tions onto the constraints of (2.13). It should be noted that the graph pro
jection onto Ai j is done only with the "local" variables and thus can be 
parallelized. [11] 

As the model in Chapter 4 does not require the partitioning of A, the 
block splitting algorithm is mentioned only in the theoretical part of this 
thesis. It can, however, be employed on it in the future if the need arises. 
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Part II 

Computational part 
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Chapter 3 

Implementing the A D M M 
algorithm 

3.1 The Julia programming language 
As the implementation of the A D M M algorithm described in this chapter is 
written in the Julia programing language, this section will briefly describe the 
language itself and a few of its features, that are used in the implementation. 

Julia [13] is a high-level, high-performance, dynamic language supporting 
object-oriented and functional paradigms. While allowing for wide variety 
of applications, it is best-suited for numerical and scientific computations. 
Function calling and overloading adheres to the multiple dispatch scheme 
[12], meaning that method overloads are chosen based on the runtime (ie. 
dynamic) type of the call's arguments. The type system is also dynamic, 
meaning that types of variables and function arguments need not to be ex
plicitly declared in the code, however defining them may lead to shorter 
execution times as the compiler may produce a more lean bytecode. [13] 

The Julia language uses a just-in-time compiler (built around L L V M com
piler), that, roughly speaking, converts the source code into its abstract syn
tax tree (AST) representation [13], which is then compiled into the platform's 
native code, while optimizing the result at each step. This means that Ju
lia is not an interpreted language, but rather compiles the source code as 
needed. [12] 

The intermediate A S T representation of the code also allows for LISP-like 
macros, in Julia marked with the symbol These are functions, executed 
by the compiler itself, that take in an A S T of the input and return another 
AST, usually but not exclusively, a modification of the original. This result 
is then passed along the compiler's pipeline in place of the original macro 
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call. [12, 13] 

3.2 Main algorithm 
The following implementation of the A D M M algorithm was designed with 
generality and re-usability in mind. Proximal operator computations are del
egated to the user, thus allowing for more general problems. This also allows 
the user, in many cases, to simplify and speed-up the proximal computa
tion greatly, which cannot be done (or would be very difficult) by a general 
algorithm. This approach is later used to reduce the solving of underlying 
proximal operator minimization to a few lines of direct computation, e.g for 
the example problems (3.2) and (3.5) . 

3.2.1 Input arguments 
The function ADMM_LCP! 1 contains the implementation of the algorithm, 
specifically of its formulation for linearly constrained problems (2.8). It has 
multiple input arguments describing the model to be solved and precision 
parameters for the stopping criterion. 

@inbounds function ADMM_LCP!( 
x'::AbstractArray{<:Real,l}, # x': vector of variables 
A::AbstractArray{<:Real,2}, # A: constraint coefficients 

F, # F: cholesky factorization of (I+AA') 
b::AbstractArray{<:Real,1}, # b: RHS vector 
max_iter::Integer, # max_iter: maximum iteration count 
p::Real, # p: stopping criterion weight 
£abs::Real, # sabs: absolute error 
£ rel::Real, # srel: relative error 
prox!; 
) 

# prox: proximal operator 

The parameter x ' serves as so-called "input-output" argument for the model 
variables. The user is expected to allocate this vector beforehand and then 
retrieve the solution from it after the function returns. Matrix A represents 
the constraints matrix. Because only the : :AbstractArray type is being re
quired here, the sparse matrix implementation is also allowed, thus saving 
memory in the case of large models. F then contains the Cholesky factoriza
tion of matrix I + A-A1, which is later used for more efficient computation of 

1To adhere to the Julia language naming convention, the name of the function ends 
with an exclamation mark "!", as it modifies contents of one or more of its input ar
guments, namely the variables vector x'. See: https://docs.jul.ial.ang.Org/en/l.atest/ 
manual/style-guide/#Append- ! - to-names-of - functions-that-modify-their-arguments-1 
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projection onto the constraint matrix (see Section 2.3.1). Because this factor
ization depends only on constraints and can be reused with different objective 
functions, it is being requested here from the user to allow for caching, ie. to 
let the user compute it only once and save it, as this can be a time consuming 
operation. Because the sparse and non-sparse implementations do not have 
common supertype, the type of this parameter is left unspecified. Vector b 
is simply the right-hand-side counterpart to constraints matrix A. 

Following parameters are used to control the precision and running time 
of the algorithm. As a hard stop, the m a x _ i t e r value specifies maximum 
allowed number of iterations the program will perform. Parameters sabs, 
ere\ and p are used for the precision based stopping criterion. The value p 
is also used as the argument for the proximal operators. 

Lastly the p rox ! argument is a user-defined function responsible for eval
uation of the proximal operator of the objective function. The function p rox ! 
is expected to be in this general form: 

function prox!(p,x,xO) 

# Evaluation of the proximal operator, with xG being the input 
# and with x being overwritten with the result of the computation. 
return 

end 

The parameter p is being passed for convenience and has the same value as 
the one from the main function's argument list. 

3.2.2 Initialization and main loop 
In order to reduce the number of memory allocations and thus the garbage 
collector running time, all of the variables are created only once and then 
changed in place. This also holds true for some intermediate results, so the 
amount of newly allocated arrays is as small as possible. Most of the variables 
are initialized with a value of zero, with the exception of vector y ' , which is 
created as a copy of the RHS vector b, and matrix AAt, which is a cached 
result of A • AT. This initialization block is omitted in the source code being 
presented. 

41 k = 1 

42 while k <= max_iter 

43 # primal update 
44 prox! (p, x', x - x ) 

45 

46 # projection onto constraints 
47 @. C = X ' + X 

48 @. d = y' + y 
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49 y .= F \ (A*c .+ AAt*d) 
50 x.=c.+A'*(d.-y) 
51 
52 # dual update 
53 @. x = c - x 
54 @. y = d - y 
55 
56 # stopping criterion 
57 z' [xr] .= x'; z' [yr] .= y' 
58 z[xr] .= x ; z [ y r ] .= y 
59 2 [xr] .= x ; 2 [yr] .= y 
60 e p r i = Vn * £abs + £rel * max(norm(z'), norm(z)) 
61 edual = Vn * sabs + ere\ * norm(p*2 ) 
62 res = norm(z' - z) 
63 res_dual = norm( - p * ( z - z _ l a s t ) ) 
64 
65 i f (res <= e p r i ) && (res_dual <= Edual) 
66 break 
67 end 
68 
69 z _ l a s t . = z 

70 k += 1 
n end 
72 
73 return k, x , y 
74 end 

The first part of the loop updates the primal variable x ' (equiv. to x f c + 1 / 2 ) . 
employing the provided proximal operator p r o x ! . Because the other primal 
variable y ' (equiv. to y f c + 1 / 2 ) would be just updated with the values of b and 
it is not being changed anywhere else, this step is skipped completely. The 
second part performs the projection onto the constraint matrix, using the 
backsolve " \" operator with the provided Cholesky factorization of (I + A • 
AT). Lastly the dual variables are updated, using the intermediate variables 
c and d from the previous step. The stopping criterion (as described in [11] 
and [6]) is then checked and if both residuals are small enough, the loop 
terminates. The function then returns the number of iterations k and both 
dual vectors2. 

3.2.3 Code optimization techniques 
A big problem when dealing with computations on vectors is a memory al
location and subsequent garbage collection. For example, when two vectors 

2the first primal vector x' is already available to the user and y' is always equal to b, 
so they need not to be returned 
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are being added, the result needs to be stored in a third, newly allocated 
array. It is clear, how this can quickly grow out of hands when there are 
many vector operations being performed, such as in the implementation in 
this chapter. In such cases a good practice in Julia is to use the vectorized 
operations denoted by e.g. x .+ y o r a b s . ( x ) . These operations are then 
applied on each member of the vector separately, and moreover, if there are 
more of these in one expression, they all get fused together and evaluated in 
one single loop. This means that there are no intermediate array allocations 
needed. Vectorized assignment, i.e. x .= y, writes the right hand side y into 
the target vector x member by member, rather then reassigning the variable 
x to reference y instead. This allows to preallocate the space needed for the 
results. Because attaching a dot to every operation in an expression is cum
bersome and results in a less readable code, the macro @. exists, converting 
each operation found in its input into their vectorized version. 

The other thing, that results in unnecessary array allocation, is accessing 
only a portion of the array, e.q. x [ l :5 ] . This results in a new array being 
created, that is a copy of the requested part. For this occasion, Julia offers 
a macro called @views, which converts these "slice" expressions into "views", 
that simply just hold a reference to the original array, resulting in no data 
copied. This macro is used e.g. in implementations of the proximal operator 
formulas in section 3.3, as within these, each block of variables from the 
common variable vector needs to be handled separately. 

Lastly, when working with arrays with known dimensions, a macro called 
@inbounds can be applied to an expression or a whole function. This then 
means, that when accessing arrays by an index, the value of the index is 
not checked to be within the array's bounds. This of course speeds up array 
operations, but needs to be used carefully, as out of bounds indexes may lead 
to crashes or data corruption. [14] 

3.3 Example problems 
In this section, the aforementioned A D M M implementation will be applied 
to two simple optimization problems. Both problems feature the same linear 
constraints, but differ in objective functions. The constraints, defined by 
inequalities 

x x + 3x 2 < 10 ^ 

> o 
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create a convex polygon as the feasible set of the problem. They are set up 
in such a way that the polygon does not include the starting point (0, 0) 

In order to use the A D M M algorithm, the constraints (3.1) are trans
formed into equalities by introducing slack variables x3, x4 and x5. The 
non-negativity constraints are encoded into the objective in the form of in
dicator function I(x>o}, resulting in the following model 

minimize z(x) + i j x > 0 j ( x ) 

x1+3x2+x4: — 10 

3.3.1 Linear objective function 
In the first example, a linear function with the added indicator for the non-
negativity constraints serves as the objective: 

zx (x) = -xx - 2x2 + 7 { x> 0 }(x). (3.2) 

The proximal operator for the function as a whole need not to be derived. 
Splitting the function across individual variables and using (1.3) allows us to 
create and evaluate proximal operators only for the respective scalar terms. 
For the slack variables, the only term in zx is the indicator I^x>0j. The 
proximal operator then reduces to simple projection (see (1.6)) onto positive 
reals: 

prox^^ ^ (x0) — max{0; x0}. (3.3) 

For the original variables, included in terms with form of <fii(x) — cx+I^x>0j, 
the afline addition property (1.5) can be used: 

prox (xn) — prox , (xn—pc). 

Then, by substituting into (3.3), we obtain 

P r o x

P , V l ( xo) = max{0; x0 - pc}. (3.4) 

The operators (3.3) and (3.4) can then be encoded for the algorithm like 
in this code snippet: 
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function proxl!(p,x,xO) 
x [ l ] = max(0, xO[l] + p) 
x[2] = max(0, x0[2] + 2p) 
@. x[3 :5] = max(0, @view x0[3:5]) 
return 

end 

Running the algorithm, with parameters p=l/2, eabs=le-6 and erel=le-4, 
converges after 80 iterations, arriving at the inexact solution (x1,x2) — 
(2.49741,2.50103) (exact solution being (2.5,2.5)). The algorithm trajec
tory is shown in Figure 3.1 on the next page. It can be observed that the 
algorithm first takes big steps approximately along the gradient of the ob
jective and then in decreasing manner oscillates along the optimum point, 
almost parallel to the gradient. It should be noted, that A D M M is being 
applied to the linear problem only to serve as an example and that it is not 
the ideal method for this class of problems. 

3.3.2 Quadratic objective function 
In the second example, quadratic terms are used instead of the linear ones 

z2(x) = (Xl - 6) 2 + (x2 - A)2 + 7 { x>0 }(x), (3.5) 

representing a paraboloid centered at the point (4, 6). Following the same 
strategy as in the previous example, the proximal operator needs to be de
rived only for scalar terms with individual variables. Slack variables are again 
only present in the indicator function, allowing for the usage of (3.3). 

The original variables are included in terms of the form 

<p2(x) = (x + b)2 +I[x>0}. 

Following Definition 1.15 for proximal operators, we obtain 

P r o x » u>Sxo) = argmin ((a; + b)2 + I{x>0}(x) + ^-\\x - x0\\2). 

The result of this operator can never be negative, because then the indicator 
term and the whole expression would attain the value of +oo. Because 
otherwise for non-negative x the indicator term returns 0, the expression can 
be simplified into 

prox (xQ) — max{0; argmin ((# + b)2 + —\\x — ^olll)}-
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By simplifying the optimality condition for the inner expression 

0 = v((x + b)2 + ^-\\x-x0\\fj 

X X Q 

2p 

0 = 2(x + b) + '7 " 

x0 — 2pb 
x — 2p + l ' 

we obtain the formula for the proximal operator 

2pbX P r o x

P , y 2 ( x o ) = max JO; X° - P- }. (3.6) 

Similarly to the previous example, the operators (3.3) and (3.6) are en
coded as follows: 

function proxl!(p,x,xO) 
x [ l ] = max(0, (xO[l] + 12p)/(2p + 1)) 
x[2] = max(0, (x0[2] + 8p)/(2p + 1)) 
@. x[3:5] = max(0, @view x0[3:5]) 
return 

end 

Running the algorithm, with the same parameters p=l/2, eabs=le-6 and 
erel=le-4, converges after 64 iterations, arriving at the inexact solution 
(x1,x2) — (3.50068,1.49961) (exact solution being (3.5,1.5)). The algo
rithm trajectory is shown below in Figure 3.2. As in the previous example, 
the algorithm takes a few big steps along the objective's gradient, but then 
converges in a spiral pattern to the optimal point, rather then oscillating 
along one line. 
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Figure 3.2: A D M M trajectory for the quadratic example problem, (objective 
contours are in gray) 
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Chapter 4 

Case study 

4.1 Introduction 
The case study in this thesis has been done in cooperation with the research 
team based at Institute of Process Engineering, Faculty of Mechanical En
gineering, B U T . It is an analysis of the production and treatment of waste 
sludge from waste water treatment plants in The Czech Republic. The avail
able dataset represents a transportation network at the municipal level of 
ORPs 1 , that pose as individual nodes with recorded amounts of produced 
and treated sludge, with multiple options for the treatment. The flow along 
edges of this graph is then reported two times for each edge, from the side of 
each respective sender and receiver. Because this is a real dataset, it is not 
safe from errors. The flow amounts are not always equal to each other, as 
they may seem to be at first glance. Also the total sum of produced sludge 
is not the same as the sum over all of the treatment options. 

For further analysis of this dataset, a mathematical programming model 
has been devised, aimed at providing a best estimate of the real flow and 
treatment values. Furthermore, the resulting estimate contains an informa
tion about a distribution of the sludge from each entry point in the network, 
an information that is not present in the original dataset. This proposed 
model is then solved for the dataset by the A D M M algorithm implementa
tion described in Chapter 3. 

Similar model has been already used by the aforementioned research team 
for the analysis of a dataset covering the energy recovery of a bulky waste in 
The Czech Republic (for more info about the paper see [15]). The objective 

1 O R P is an abbreviation of a term for a municipal unit in The Czech Republic, one level 
above individual towns. It usually represents a group of villages, individual middle-sized 
cities or, for large cities, their districts. Because this term does not have an equivalent in 
English, it will be referenced in the text by its original abbreviation. 
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function was linearized by the introduction of auxiliary variables and then 
solved using the G A M S solver. However, the model was solved only on the 
level of larger regions due to memory limitations. Applying A D M M allows 
the objective to stay non-linear, thus reducing the number of variables needed 
and also decreases the number of constraints, as the model inequalities can 
be encoded via the use of indicator functions in the objective. Also if the 
model needs to be applied to a large dataset, that requires the memory to be 
split across multiple devices, the block splitting form (2.14) of A D M M can 
be employed. The addition of the local network (see section 4.2.1) is also an 
improvement on the previous model. 

4.2 Model description 
First lets introduce a few sets needed for description of the model. The 277 
ORPs, i.e the nodes of the network, form the set / . Variables connected to 
these are usually denoted with an index i, but when it is necessary, an index 
o is used. This facilitates the distinction between a waste origin node o and 
a local node i. The 1070 reported connections, i.e. the edges, create set J 
and, for brevity, the symbol J(i) represents a set containing only the cycle 
(i, i) for node i. Set L then represents all of the available treatment options, 
i.e.: material recovery, energy recovery, export, alteration and option called 
"others". As the recorded flows contain two values for each edge, these are 
divided into two scenarios, marked with a — index for the outflow values and 
a + index for the inflow. 

The following is a list of symbols and equations forming the model def
inition. A l l of the variables are assumed to be from the set of real numbers R. 

Input data 

recorded flow on the edge j for given scenario (+ or -) 

Af • incidence matrix for given scenario (+ or -) 

pi recorded production in the node i 

ti i recorded amount of sludge treated in the node i by the method / 

dj length of the edge j 

Parameters 

aa weight of each producer (used for stability analysis) 
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/3 weight between the two objective functions 

W weight of penalization 

8i 0 index equality indicator (1 for % = o, 0 otherwise) 

Wa weight of the edge j (in interval from 0 to 1) 

a threshold for the zero penalization 

zl, z\ optima of the two objective functions 

Variables 

Tj error in the recorded production 

error in the recorded flow for given scenario (+ or -) 

Xa 0 amount of flow originally from the node o going through the edge j 

tflQ amount of sludge treated directly in the node i 

tc^ amount of sludge treated after local transportation at the node i 

x\%l amount of flow going directly through the node i 

tfa l amount of sludge treated in the node i by the method /, originating 
from the node o 

Objective functions 

jeJ iel 

Z2 J2 Yl d J a o x j , o + w j 2 \ r i - aPi i ( 4 - 2 ) 
jeJ oel iel 

+ ^ 7Y 2 (4-3) 
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Constraints 

$i,o(Pi + Ti) + E AhxJ,o = E Aljxo,o + + *%o Vt, o G J (4.4) 

P o + r 0 = D C + ** r) V o e / (4.5) 

•'7 + €j - E E - l ' , r ' 7 . . . V ^ e J ( 4 - 6 ) 

X 
J J 

iel oel 

SiM++ e Ahxi,o = <o + tj> + E x,,o v*> ° e 7 (4-
jeJ\J(i) jeJ(i) 

o + E *i,o - C = E v*. 0 e 7 (4-9) 
ieJ(i) ieJ\J(») 

= D C + V i e J (4.10) 
ZeL oe/ 

E*?o,«=*i,« V i e / ; V / e L (4.11) 
oe/ 

E C = C + S V t , o 6 J (4.12) 
ZeL 

x " + e - > 0 V j 6 J (4.13) 

x+ + e+ > 0 V j e J (4.14) 

P; + T; > 0 Vie I (4.15) 

*;,o, <o , C> *?0,J. < o > 0 V i , o e I; Vj e J ; VZ e L (4.16) 
The model has, as mentioned above, two optimum criteria that are de

scribed by the equations (4.1) and (4.2). The first criterion z1 (4.1) tries to 
minimize the weighted sum of absolute errors from the estimate. The weight 
parameter is defined V j e J as follows: 

'M, i£xj-xf = 0 

W = J xj + x+ . (4.17) 
1 — Vr5 otherwise. 

2\Xj - 4 | 
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The second criterion z2 (4.2) penalizes long-distance transportation by 
which it tries to simulate economic considerations of actors in the network. 
These two criteria are then combined together, with weight (3, in the objective 
function z3 (4.3) of the whole model. Because the values of the criteria are 
not comparable, these need to be in a normalized form. This is done by 
solving the model with only one of the criteria as the objective function and 
then dividing the criteria terms by their respective separate objective values, 
denoted by z\ and z\. Finally, the model can be then solved for the third 
time, now with the whole objective function. 

The first group of constraints (4.4) is a balance equation for each individ
ual node. The total amount of produced and imported sludge must be the 
same as export and treatment. Constraints (4.5) then represent a balance for 
each producer, meaning that the sludge being produced in a node gets fully 
processed. The possible errors in reported production data is represented 
by the variable ri. The treatment data amounts are considered as trustful, 
meaning that there is no error variable being associated with them. Relation
ships between the estimated flow and its differences from the known values 
are described by equalities (4.6) and (4.7), for scenarios — and + respectively. 

Equations (4.8), (4.9) and (4.10) describe the local network of each node 
that arises from the data being aggregated (see 4.2.1 below). The distri
bution of produced amounts between the known levels of different means 
of treatment is represented by the variable tfQ t and equalities (4.11) and 
(4.12). Finally the inequalities (4.13), (4.14), (4.15) and (4.16) are simply 
enforcing non-negativity for all of the estimated production, treatment and 
flow amounts. 

4.2.1 Local networks and aggregation 
It is highly impractical, when working with networks on such a large scale, 
to model every single node and edge in the system. This means, such as is in 
this case, that the data is available only in a more coarse aggregated version, 
where nodes represent whole local networks of individual producers, trans
shipment facilities and treatment plants. When the flow in this more detailed 
network passes through multiple of these nodes, that are being aggregated 
into one singular node, it gets then represented by a cycle, because the ori
gin and target nodes become identical. These arising cycles are, however, 
ambiguous on their own. In order to make sense of them, the flow passing 
through each respective aggregated node and a potential cycle needs to be 
divided among multiple variables. It needs to be differentiated between a sce
nario where the flow passes through several internal points of the node (flow 
X(iti) on the cycle or when it only "bounces" in one place, introducing 
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new variable xfir. Moreover the treatment plants can accept the sludge after 
a chain of local transportations (t^yc) or be serviced directly from outside 
[tfir). These relations then create simplified versions of the local networks 
in each node of the aggregated version (see Figure 4.1) and are represented 
in the model by constraints (4.8), (4.9) and (4.10). 

Local cycle 

Figure 4.1: Local network diagram for aggregated node i. 

4.3 Model transformation for the A D M M al
gorithm 

In order to apply the A D M M algorithm, the model needs to be in the general 
form 

minimize /(x) 
s.t.: A x = b 

x e Rn, 

where / : Rn —> R U { + 0 0 } is closed proper convex. The model that is being 
described in 4.2 almost conforms to this form, with the exception of several 
non-negativity inequalities. However, because the objective function / can 
take on extended value of + 0 0 , these inequalities can be encoded by the use 
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of indicator functions. A model of form 

minimize /o( x ) 
s.t.: A x = b 

X > c 

can be then transformed into 

minimize f0 (x) + / { x > c } (x) 

s.t.: A x = b 
x e Rn, 

where J | x > c | ( x ) represents a piecewise sum of indicator functions for each 
individual inequality 

n 

-f{x>c}(x) = /^{x^cA^i)-

In this form, the transformed model is then ready for the A D M M algorithm: 

minimize z + Ix 

s.t.: A x = b 
x e Rn, 

where Ix is the indicator function for all of the inequalities present in the 
original model 

1X = I{e->-x-} + !{€+>-x+} + 1{r>-p} + ^{cc^O} ^ ^ 

+ J | t d i r - > 0 } + I{tcy°>o} " I " I{xdir>o}-> 

x is a vector of all of the model variables, A is the coefficient matrix for all 
of the equality constraints and b is a vector of their right-hand-side. 

It should be noted, that because the solution for variable t° is ambiguous 
in the original model, the variable, together with its constraints (4.11) and 
(4.12), is being omitted from the transformed model and is later solved with 
a different heuristic approach in Section 4.5. 

4.3.1 Simplifying the proximal operators 
The usage of the A D M M algorithm requires to evaluate the proximal op
erator of the objective function in each iteration. This can be in general a 

4 6 



time consuming operation, however in our case the proximal operator can 
be greatly simplified. Because all of the three objective functions z1, z2, 
and z3 can be split under addition into terms containing only a single vari
able (even after adding the indicator function Ix from previous section), the 
proximal operator can be evaluated variable-wise (see (1.3)), thus allowing 
for transformation into simpler scalar formulas. 

The split terms from all of the objective functions then appear in these 
three scalar forms: 

<Pind(x) = 1{x>a} (4-19) 

<Plin(x) = c x + I{x>a} ( 4 2 ° ) 
<Pabs^)=^-b\+I{x>a}- ( 4 - 2 l ) 

Deriving a formula for the proximal of (4.19) is straightforward, as the proxi
mal operator of an indicator function is equivalent to the (Euclidian) projec
tion onto the set being indicated, in this case a ray (see (1.6)). Values below 
the point a get projected onto it, the rest stays the same: 

prox (x0) = max{a;x 0 }. (4.22) 

Proximal operator for the second function (4.20) can be, applying (1.5), 
transformed into 

prox (xn) — prox (xn — pc) 

and after the substitution of 4.22, we obtain 

p r o x

P ^ H „ ^ = m a x ( a ; xo - P°}- (4-23) 

The formula for the third proximal operator for function (4.21) will be 
derived from the definition: 

1 
P r o x « . « , M = argmin (c\x -b\+ I{x>a}(x) + — \\x - x0g] 

First, if x would be < a, then the value of the indicator function would be 
+oo, overpowering the other terms and reducing the operator into a simple 
projection, similar to (4.22): 

prox (xQ) — max{a; argmin (c\x — b\ + — \\x — ^o l l l ) } -
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The general optimality condition of the inner expression is 

0 e V(^-||a; ~ XQWD + d(c\x - b\) 2p 
0 e x — x0 + cp d\x — b\. 

If x ^ b, then the subgradient d\x — b\ — sga(x — b) and by substituting 
x — x — b and x0 — x0 — b we obtain 

0 = x — x0 + cp sgn(x) 
x — x0 — cpsga(x). (4.24) 

Now 

and 

x < 0 =>- x0 + cp < 0 
x0 < —cp 

x > 0 =>- x0 — cp < 0 
x0 > cp, 

meaning that | x 0 | > cp and sgn(x) = sgn(x 0). By substituting the latter 
into (4.24) we obtain 

x — x0 — cpsga(x0); for \x0\ > cp. (4-25) 

In the case of x — b (ie. x — 0), the subgradient d\x — b\ is equal to the 
interval [—1; 1], resulting in 

0 G cp[—1; 1] + b- xQ 

x0 G [~cp;cp] \x0\< cp, 

meaning that 
x — 0; for \x0\ < cp. (4.26) 

The combination of (4.25) and (4.26) 

0, for | x 0 | < cp 
x0 — cpsgn(x 0), for | x 0 | > cp 

can be merged, by using sgn(x0) • | x 0 | = x0, into 

x — sgn(x0) • max{0; \x0 \ — cp} 

and by substituting back for x and x0 we get the closed form of the optimum 

x — b + sga(x0 — b) • max{0; \x0 — b\ — cp}. 

The closed form of the whole proximal operator is then 

prox (xQ) — max{a; b + sga(x0 — b) • max{0; \x0 — b\ — cp}}. (4.27) 
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4.4 Applying A D M M 

4.4.1 Preparation 
The implementation of the A D M M algorithm that is being used (described 
in Chapter 3) requires mainly three things. Linear constraints of the whole 
model described by a single matrix A, accompanied by its RHS vector b, 
Cholesky factorization of matrix (I + A • AT) and proximal operator of the 
objective function. The following is a description of the process leading to 
obtaining these. 

The dataset for the model contains all the input values (x^, Af-, pi, tit, 
dj) and the weights WA are also already known and pre-calculated. These 
values together are enough for creation of the constraint matrix A. Because 
the variables of the model are represented by a multi-indexed vectors, they 
need to be first "unwrapped" and joined together in a single vector. The 
library CatViews allowed to streamline this process greatly. When provided 
with a list of lenghts of the individual vectors, it allocates and returns a 
single vector with a combined length of these, together with views refer
encing individual parts in it and also with their index ranges. The matrix 
A , together with the vector b is then populated in blocks for each group of 
constraints and for each variable vector (referenced by the generated index 
ranges). Because most of the variables appear inside a sum that does not 
sum all of the indices, the resulting pattern of coefficients in these blocks is 
usually very sparse. Also some of the blocks are left empty all-together, as 
not all of the variables appear in all of the constraints. This means that the 
sparse storage implementation for the matrix is ideal. The resulting matrix 
has 157181 rows (constraints) by 399844 columns (variables) and a sparsity 
ratio of about 0.003%. Creating the factorization object then simply requires 
the use of function cholesky, which works on both sparse and dense matrices. 

Because of the derived formulas (4.22), (4.23) and (4.27), implementing 
the proximal operators is quite straightforward. The only problem stems from 
the "control" parameters a and (3, as they appear in the objective functions 
and also in-turn in their proximal operators. Values of these are not known 
beforehand as we may want to tweak them in the following computations. 
Moreover the multi-criterial objective function z3 needs the optimum values 
z\ and z\ of the respective criteria. To overcome this obstacle a partial ap
plication approach is used. A sort of "creation" function gets defined, which 
when provided with values of these parameters, in-turn returns another func
tion implementing the proximal operator itself, with the parameters already 
set. For example, the "creator" function for z3 is implemented as follows 
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function make_prox_z3(kl,k2,ad) 
kl2W = (kl+k2)*W 
klw = k l .* w 
k2ad = k2.*ad 
return (p,x,x0) -> @views begin 

proxi|)abs! ( x [ v r n g [ l ] ] , p, -p, ap, kl2W, xO[vrng[l]]) 
proxi|)abs! (x[vrng[2]], p, -x_a, 0, klw, x0[vrng[2]]) 
proxi|)abs! (x[vrng[3]], p, -x_b, 0, klw, x0[vrng[3]]) 
proxi|)lin! (x[vrng[4]], p, 0, k2ad, x0[vrng[4]]) 
proxi|)ind! (x[vrng[5]], 0, x0[vrng[5]]) 
proxi|)ind! (x[vrng[6]], 0, x0[vrng[6]]) 
proxi|)ind! (x[vrng[7]], 0, x0[vrng[7]]) 

end 
end 

The array vrng used in the snippet simply stores ranges of the individual 
variable vectors in the concatenated vector x. 

The returned anonymous inner function is a closure, meaning that it 
captures all of the variables defined in the outer function and also all of the 
surrounding data variables, which are omitted in the snippet, meaning that 
they are still available even if they fall out of scope. The individual proximal 
operators in it are implemented accordingly to their derived formulas. 

function prox<|)abs! (x,p,a,b,c,x0) 
@. x = max(a, b + sign(x0 - b) * max(0, abs(x0 - b) - p*c)) 

end 

function proxi|)lin! (x,p,a,c,x0) 
@. x = max(a, xO - p*c) 

end 

function proxi|)ind! (x,a,x0) 
@. x = max(a, xO) 

end 

The input parameters k l and k2 respectively are later being defined as 

z2 
serving as the weights for both criteria. These were originally left unsealed, 
but because z\ and z\ reach high values and j3 e [0; 1], the resulting multipli
ers were too small. This led to numerical floating-point errors, thus requiring 
a scaling by an appropriate factor. As this just represents multiplying the 
objective function by a constant, the optimal solution stays unchanged. 
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4.4.2 Execution 
With all of the model data prepared, the model was ready to be solved. First 
for the two criteria objectives, yielding the values z* and z\. These were then 
in turn used for the final computation, optimizing the whole objective z3 with 
the weight parameter j3 set at 0.5, representing both criteria equally. The 
precision parameters were set as eret — 10~4 and eabs — 10~8 and upper 
bound on iterations was set to 650000. The parameter p was found for 
each objective function by the golden ratio algorithm on model with highly 
aggregated data (six node graph) in order to minimize the running time. 
As the relation between p and the running time is in general not convex, 
the local optimization found only a good estimate, rather then the optimal 
value2. Table 4.1 then displays execution details for these computations. 

Table 4.1: Execution details for each objective function of the model 

There seems to be a big disproportion in the execution time for each 
objective function. Objective z3 finishes after the smallest time out of the 
three, even though it encompasses both of the criteria. Their execution times 
also differ by a lot, also considering that zx reaches the iteration limit and 
is forced to stop. These discrepancies may be linked to the choice of the 
parameter p and its selection should be a basis for further study. 

To inspect the convergence rate of the algorithm, the values of both primal 
and dual residues for z3 were recorded as shown in Table 4.2. It is quite 
clear that most of the improvement was achieved in the beginning of the 
computation, however the change for higher iterations was still deemed large 
enough to warrant the use of the chosen precision values. The expressions 
for calculating the primal and dual residues can be found in [6] and [11]. 

2It should be also noted that there is no guarantee for these p values to be performing 
well on the main model. 

iteration count exec, time [h] parameter p 

1. criterion zx 

2. criterion z2 

whole model z3 

650000 75.24 718.79 
156486 18.30 97.94 
27431 3.07 1.75 
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iteration primal residuum dual residuum 

1 12534.3 123353.47 
500 299.52 289.32 
1000 167.26 126.42 
2000 85.77 76.43 
4000 50.42 39.01 
8000 24.83 12.44 
16000 16.53 3.31 
27432 9.13 2.58 

Table 4.2: A D M M convergence for z3 

4.4.3 Weight of the criteria 
The weight j3 between the two criteria was set ambivalently as 0.5. However, 
observing its impact on the results may be a good starting point for a further 
research. In order to measure this impact, the objective z3 was repeatedly 
solved with different values of (3 ranging from 0 to 1 with 0.05 step increments. 
Values of the individual criteria were calculated from the result for each of 
these steps and are, together with the value of z3, displayed in Figure 4.2 

For values of j3 equal to zero, or one, the objective z3 is equal to the 
normalized z2, or z1 respectively. Because of the normalization, the result 
should always be equal to one in these points, as we are dividing the same 
values. As it is clear from the picture, the other objective then becomes 
grossly unsatisfied, reaching multiples of its optimal value3. 

Because the objective z3 is always a trade-off between the two criteria, its 
value is also in the interval between them, as seen in the figure. Now because 
both normalized zx and mentioned before, attaining on one end 
large values and are equal to one on the other, they must be equal to each 
other somewhere in the middle. Now, because z3 is always between those 
two values, it must be in this cross equal to them too, as it has nowhere else 
to go (as is also evident from the figure). This crossing point, at least in this 
case, does not occur at the value j3 — 0.5, hinting at the possibility, that the 
first objective z1 is somehow inherently harder to satisfy than the other one. 

It should be noted, that as multi-criteria optimization is not in the scope 
of this thesis, these assumptions presented above are not based on proper 
mathematical foundations and are presented as-is. They will, however, serve 
as a base for further research, as real-life optimization applications often 
incorporate multiple criteria to be satisfied. 

3The value for z1 that is being cut off in the figure is almost 5200 
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Figure 4.2: Relation between z3 and normalized z1 and z2 for different values 
of /3 

4.5 Heuristic for variable t ° 
In the previous computations, as mentioned before, the variable tfQ l was 
not included and omitted. The reason for this is that tfQ l is without an 
additional information ambiguous in the context of the proposed model. On 
one hand, the sum X ^ o 6 / ^ ? o i *s known as it is equal to the dataset value tiX 

representing the treatment method / in node i together for all origin nodes 
o, providing the distinction between different treatment methods. On the 
other hand, the distinction between different origins is handled by t°y^ + tf1^, 
which is again equal to X ^ 6 L tf0 t, however now the information about the 
different methods is lost. As it is quite clear, connecting these two sides by 
the variable tfa l can be done in infinitely many ways, as there is no inherent 
reason present in the model, why an origin node should be connected to a 
particular treatment option. 

In order to assign some meaningful values to tfQ t a following reasoning 
was decided upon. The treatment options were ranked by their perceived 
cost and rareness, as transporting the sludge further is usually connected 
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with more rare and costly operations, whereas the most common option 
is usually applied in the vicinity of the waste water treatment plant. This 
means, that flow originating from the farthest node should be assigned to the 
highest rated treatment options and only after it is "depleted" then the next 
farthest node gets assigned to the best options left and so on. This heuristic 
approach can then be viewed as a continuous knapsack problem (see [16]) 
with multiple knapsacks being filled in a predefined sequence. As with the 
original problem, a greedy approach is sufficient to reach the optimal solution. 
Following is the implementation of this approach in the Julia language. 

# tL: type-sorted treatment # 
L_order = [2, 3, 6, 1, 5, 4] 
L_perm = sortperm(L_order) 
tL = t[:,L_perm] 

# tO: distance-sorted treatment # 
tO = tC .+ tD 
0_perm = [ s o r t p e r m ( d i s t [ i , : ] ; rev = true) for i = l : n l ] 
0_order = [sortperm(0_perm[i]; rev = true) for i = l : n l ] 
for i = l : n l 

t O [ i , :] .= tO[i,0_perm[i]] 
end 

The data parameter ti z is represented by t L and similarly tO represents 
the origin side t^+tf1^. As these variables are not indexed in the "preferred" 
order, they need to be sorted first. However, because these orderings need 
to be reversed in the end, a permutation for each of these is created by the 
use of s o r t perm holding a mapping from the ordered indices to the unordered 
original. Ordering for treatment options L_order is of course the same across 
the network, whereas the distance-to-origin ordering 0_order is different for 
each node i. 

tOL = zeros(nI, nO, nl_); tOr = copy(tO); t l _ r = copy(tL) 
for i = l : n l , o = l:nO, 1 = l: n l _ 

o_res = t O r [ i , o ] 
l _ r e s = t l _ r [ i , " l ] 
i f l _ r e s >= o_res 

t L r [ i , l ] -= o_res 
t O r [ i , o ] = 0 

tOL[i,0_perm[i] [o] ,L_perm["l] ] = o_res 
else 

t O r [ i , o ] -= l _ r e s 
t l _ r [ i , " l ] = 0 
tOL[i,0_perm[i] [o] ,L_perm["l] ] = l _ r e s 

end 
end 
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The information about the currently "unassigned" amounts is kept in 
variables tOr and t l_r , which are initiated with the full values of to and t L 
and then subtracted from as needed. The heuristic is run sequentially across 
all of the nodes, iterating over the origin nodes and treatment options, which 
are now sorted in the preferred way. The unassigned amounts are compared 
for each origin-treatment pair (o, I), with the smaller one being set to 0 and 
fully assigned to the bigger, which is then adjusted by this same amount. This 
value is also recorded in the variable tOL (representing tfol). As it is being 
accessed by the use of the previously created permutation vectors L_perm and 
0_perm it is already in the original indexing. After the loop returns, all of 
the amounts had been assigned and the heuristic is done. 

As this heuristic is rather simplistic, a more sophisticated approach may 
be in order. However that would probably require additional information 
about the system which may serve as a basis for further research of this 
topic. 
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Conclusions 

At first, we may conclude that all of the goals of this thesis were met. The 
theoretical part overviews the area of convex optimization together with the 
more advanced topic of proximal operators, which are gaining in popular
ity lately. These are then used in order to introduce alternating direction 
method of multipliers a modern convex optimization method, together with 
its modification suited for the real-world problem that is also being covered. 
The possibility of this method to be used in a distributed fashion is also 
mentioned. 

The concrete A D M M formulation is successfully implemented in the Julia 
programing language, as it is designed for technical and numerical computa
tion and provides suitable tools for their efficient implementation, which are 
being taken advantage of. This implementation is then successfully tested 
and used on the large multi-criterial waste management model that is de
veloped together with a research team based at The Institute of Process 
Engineering, F M E , B U T , and based on their previous work (see [15]). The 
end summary of the computation process reveals potential for further im
provement of the implementation, as the largely different execution times of 
individual criteria may be shortened by more precise adjustments of the step 
parameter p. A quick analysis of the criteria weight also uncovers interest
ing results and will lead to a further research, as multi-criterial models are 
common in applied optimization. 

The results will be used by the project Computer Simulations for Effective 
Low-Emission Energy funded as project No. CZ.02.1.01 /0.0/0.0/16026/0008392 
and by the project 470 Sustainable Process Integration Laboratory SPIL, 
funded as project No. CZ.02.1.01/0.0/0.0/15 003/0000456, both by the 
Czech Republic Operational Programme Research and Development, Ed
ucation, Priority 1: Strengthening capacity for quality research. 

56 



Bibliography 

[1] Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization. 
Cambridge: Cambridge University Press, 2004. 

[2] Rockafellar, R. Tyrrell. Convex Analysis. Princeton, NJ : Princeton Uni
versity Press. 1970. 

[3] N . Parikh and S. Boyd, "Proximal Algorithms", Foundations and Trends 
in Optimization, vol. 1, no. 3, pp. 123-231, 2014. 

[4] M . S. Bazaraa, H. D. Sherali, and C. M . Shetty, Nonlinear programming: 
theory and algorithms, 3rd ed. Hoboken: John Wiley, 2006. 

[5] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New York: 
Springer, 2006. 

[6] S. Boyd, N . Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed 
Optimization and Statistical Learning via the Alternating Direction 
Method of Multipliers", Foundations and Trends in Machine Learning, 
vol. 3, no. 1, pp. 1-122. 

[7] A . P. Ruszczyňski and A . Shapiro, Stochastic programming. Boston: E l 
sevier, 2003. 

[8] J. R. Birge and F. Louveaux, Introduction to stochastic programming, 
2nd ed. New York: Springer, 2011. 

[9] P. Kai l and S. W. Wallace, Stochastic programming. New York: Wiley, 
1994. 

[10] P. M . Pardalos and M . G. C. Resende, Handbook of applied optimization. 
New York, N Y . : Oxford University Press, 2001. 

[11] N . Parikh and S. Boyd, "Block Splitting for Distributed Optimization", 
Mathematical Programming Computation, vol. 6, no. 1, pp. 77-102, 2014. 

57 



[12] The Julia Project, 2020. The Julia Language Documentation. Available 
at: https://docs.julialang.org/en/vl/ [Accessed June 25, 2020]. 

[13] J. Bezanson, A . Edelman, S. Karpinsky, and V . B. Shah, "Julia: A 
fresh approach to numerical computing", SIAM review, vol. 59, no. 1, 
pp. 65-98, 2017. 

[14] The Julia Project, 2020. Performance Tips. The Julia Language 
Documentation. Available at: https://docs.julialang.org/en/vl/man-
ual/performance-tips/index.html [Accessed June 25, 2020]. 

[15] R. Somplak, V . Nevrly, V . Smejkalova, Z. Smidova, and M . Pavlas, 
"Bulky waste for energy recovery: Analysis of spatial distribution", En
ergy, vol. 181, pp. 827-839, 2019. 

[16] M . T. Goodrich and R. Tamassia, "The Fractional Knapsack Problem", 
in Algorithm Design: Foundations, Analysis, and Internet Examples, 
John Wiley & Sons, 2002, pp. 259-260. 

58 

https://docs.julialang.org/en/vl/
https://docs.julialang.org/en/vl/man-


Appendix A 

Source code and resources 

This appendix displays some selected source files from the computational 
part of this thesis. The whole project is also included in the attached archive 
file. The folder 'data' contains the input data for the model as well as julia 
binary data files (*. j Id) for cached intermediate steps or raw results. Folder 
'results' then contains the results in a tabular csv form. 

A D M M _ L C P _ s i m p l e . j l 

Contains the main A D M M algorithm as described in Chapter 3. The files 
ADMM_LCP. j I and ADMM_LCP_X. j I contain a slightly modified version with code 
for benchmarking and additional information. Lastly, ADMM_examples. j l con
tains code responsible for the two examples in Chapter 3 and P r o x _ a l g . j l 
creates Figure 1.1. 

1 @inbounds function ADMM_LCP!( 
2 x': :AbstractArray{<:Real, 1}, # x': vector of variables 
3 A::AbstractArray{<:Real,2}, # A: constraint coefficients 
4 F, # F: cholesky factorization of (I+AA') 
5 b::AbstractArray{<:Real,1}, # b: RHS vector 
6 max_iter::Integer, # max_iter: maximum iteration count 
7 p::Real, # p: stopping criterion weight 
8 £abs::Real, # sabs: absolute error 
9 £rel: :Real, # srel: relative error 

10 prox!; # prox: proximal operator 
11 ) 
12 
13 # sizes 
14 M = "length(b) 
is N = "length(x') 
16 ©assert (M,N) == size(A) 
17 
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is # variables 
19 x = zeros(N) 
20 x = zeros(N) 
21 

22 y = zeros(M) 
23 y' = copy(b) 
24 y zeros (M) 
25 

26 # projection 
27 AAt = A*A' 
28 c = zeros(N) 
29 d = zeros(M) 
30 

31 # stopping criterion 
32 n = M+N 
33 xr = 1:N 
34 yr = N+l:n 
35 

36 z = zeros (M+N) 
37 z' = zeros(M+N) 
38 z = zeros(M+N) 
39 z _ l a s t = zeros(M+N) 
40 

41 k = 1 
42 while k <= max_iter 
43 # primal update 
44 prox! (p, x', x - x ) 
45 0. y' = b 
46 

47 # projection onto constraints 
48 @ . C = X' + X 

49 @ . d = y' + y 
so y .= F\(A*c .+ AAt*d) 
si x.= c.+ A'*(d.-y) 
52 

53 # dual update 
54 @. x = c - x 
55 @. y = d - y 
56 

57 # stopping criterion 
58 z' [xr] .= x'; z' [yr] .= y' 
59 z [ x r ] .= x ; z [ y r ] . = y 
60 z [xr] . = x ; z [yr] . = y 
61 e p r i = Vn * eabs + e r e l * max(norm(z'), norm(z)) 
62 Edual = Vn * Eabs + erel * norm(p*z ) 
63 res = norm(z' - z) 
64 res_dual = norm(-p*(z-z_last)) 
65 
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66 i f ( r e s <= e p r i ) && ( r e s _ d u a l <= E d u a l ) 

67 break 
68 end 
69 

70 z _ l a s t . = z 

71 k += 1 
72 end 
73 

74 return k, x , y 
75 end 
76 

77 function ADMM_factorization(A::AbstractArray{<:Real,2}) 
78 return cho"lesky(I + A*A') 
79 end 

M F l o w _ A D M M . j l 

The main file of the computation. The input data file can be created from 
the excel sheets using MFlow_data.jl and the model itself is handled by 
MFlow_model. j l . The results, together with the results from MFlow_tOL. j l 
are converted to the tabular files by Kaly_excel. j l . 

1 using LinearAlgebra, SparseArrays 
2 using JLD 
3 include("MFlowjnodel. j l " ) 
4 include)"ADMM_LCP.jl") 
5 
6 @T.oad " d a t a / k a l y . j l d " 
7 const data = ( s e t l , s e t J , setL, d, p, w, x_a, x_b, t , A_a, A_b, a, W) 
s const v, (T, e_a, e_b, x, xD, tC, tD), var_beg, var_end = MFlow_variables(nI, 

^ nJ, nL, nO) 
9 

io @load "data/opt_rho.jld" 
n const e_abs = le-8 
12 const e _ r e l = le-4 
13 const max_iter = 650_000 
14 

15 (make_prox_zl, make_prox_z2, make_prox_z3) = 
16 MFlow_make_prox(data.. .) 
17 

18 ( z l , z2, z3) = 
19 MFlow_objective(data. . .) 
20 

21 const M, N = size(A) 
22 const F = ADMM_factorization(A) 
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23 

24 print"Ln( "=== Z l ===") 
25 p r o x _ z l ! = make_prox_zl() 
26 f i U ! ( v , 0) 
27 @time z l _ i t e r , = ADMM_LCP!(v, A, F, b, max_iter, p i , e_abs, e _ r e l , p r o x _ z l ! ; 

<4 echo = true) 
28 z l _ r e s = z l ( x , e_a, e_b) 
29 @show z l _ i t e r 
30 @show z l _ r e s 
31 

32 const a = Vector{Float64}(undef, nO) 
33 f i l l ! (a, 1) 
34 ad = vec( [a[o]*d[j ] for j = l : n J , o=l:nO]) 
35 

36 println("=== Z2 ===") 
37 f i l l ! ( v , 0) 
38 prox_z2! = make_prox_z2(ad) 
39 (atime z 2 _ i t e r , = ADMM_LCP!(v, A, F, b, max_iter, p2, e_abs, e _ r e l , prox_z2!; 

<4 echo = true) 
40 z2_res = Z 2 ( T , X, a) 
41 @show z 2 _ i t e r 
42 @show z2_res 
43 

44 println("=== Z3 ===") 
45 k l = B/zl_res * le8 
46 k2 = (l- B ) / z 2 _ r e s * le8 
47 prox_z3! = make_prox_z3(kl,k2,ad) 
48 f i l l ! ( V , 0) 

49 @time z 3 _ i t e r , vd, yd = ADMM_LCP!(v, A, F, b, max_iter, p3, e_abs, e _ r e l , 
<4 prox_z3!; echo = true) 

so z3_res = Z 3 ( T , e_a, e_b, x, a, B, z l _ r e s , z2_res) 
51 @show z 3 _ i t e r 
52 @show z3_res 
53 

54 @save " d a t a / k a l y _ r e s . j l d " v T e_a e_b x xD tC tD 

MFlow_tOL.j l 

Contains the heuristic algorithm from Section 4.5. 

1 using LinearAlgebra 
2 using JLD 
3 

4 include("MFlowjnodel.jl") 
5 @load " d a t a / k a l y . j l d " 
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6 @load " d a t a / k a l y _ r e s . j l d " 
7 @load " d a t a / k a l y _ d i s t . j l d " 
8 

9 v', (T, e_a, e_b, x, xD, tC, tD), var_beg, var_end = MFlow_variables(nI, nJ, 
c+ nL, nO) 

10 v' .= v 
11 

12 # tL: type-sorted treatment # 
13 L_order = [2, 3, 6, 1, 5, 4] 
14 L_perm = sortperm(L_order) 
i s tL = t [:, L_perm] 
16 

17 # tO: distance-sorted treatment # 
i s tO = tC .+ tD 
19 0_perm = [ s o r t p e r m ( d i s t [ i , : ]; rev = true) for i = l : n l ] 
20 O_order = [sortperm(0_perm[i]; rev = true) for i = l : n l ] 
21 for i = l : n l 
22 t O [ i , : ] .= tO[i,0_perm[i] ] 
23 end 
24 

25 # "product" knapsack # 
26 tOL = zeros(nI, nO, nL) 
27 tOr = copy(tO) 
28 t L r = copy(tL) 
29 for i = l : n l , o = l:nO, l = l:nL 
30 o_res = t O r [ i , o ] 
31 l _ r e s = t L r [ i , l ] 
32 

33 i f l _ r e s >= o_res 
34 t L r [ i , l ] -= o_res 
35 t O r [ i , o ] = O 
36 tOL[i,0_perm[i] [o] ,L_perm[l]] = o_res 
37 else 
38 t O r [ i , o ] -= l _ r e s 
39 t L r [ i , l ] = O 
40 tOL[i,0_perm[i] [o] ,L_perm[l]] = l _ r e s 
41 end 
42 end 
43 

44 @save "data/kaly_tOL.jld" tOL 
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