
T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

EFFICIENT IMPLEMENTATION OF ADVANCED
OPTIMIZATION ALGORITHMS
POKROČILÉ OPTIMALIZAČNÍ ALGORITMY A JEJICH EFEKTIVNÍ IMPLEMENTACE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Jaroslav Talpa
AUTOR PRÁCE

SUPERVISOR RNDr. Pavel Popela, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Specification Master's Thesis

Department:
Student:
Study programme
Study branch:
Supervisor:
Academic year:

Be. Jaroslav Talpa
Applied Sciences in Engineering
Mathematical Engineering
RNDr. Pavel Popela, Ph.D.
2019/20

Institute of Mathematics

Pursuant to Act no. 111/1998 concerning universities and the BUT study and examination rules, you
have been assigned the following topic by the institute director Master's Thesis:

Efficient Implementation of Advanced Optimization Algorithms

Concise characteristic of the task:

Student will study research area of composed optimization problems. He will focus on modern
decomposit ion approaches and utilization of recent optimization solvers as building stones of
advanced composed optimization algorithms. The emphasis will be put on the development of
advanced algorithms and their efficient software implementation. He will also study theoretical
properties and transformations of models from the viewpoint of solvability. The student's participation
on research projects (e.g., SPIL, TIRSM etc.] will be welcome with involvement of supervisors
specialists .Dr. Ing. Somplakand Ing. V. Nevrly.

Goals Master's Thesis:

1. The overview written on composed optimization programs.
2. Utilization of modelling tools and solvers for mathematical programming.
3. Research on properties and transformations of selected mathematical programs for the chosen
application area.
4. Design and development of advanced algorithms.
5. Efficient algorithms' implementation.
6. Test computations for real-world engineering application.

Recommended bibl iography:

BAZARAA, M. S., SHERALI, H. D. a SHETTY, C. M. Nonlinear programming: theory and algorithms.
2nd ed. New York: John Wiley & Sons. ISBN 0471599735. 1993.

BIRGE, J. R. a LOUVEAUX, F. Introduction to Stochastic Programming. Springer Verlag, 1997. ISBN:
978-1-4614-0236-7.

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

BOYD, S. a VANDENBERGHE, L. Convex Optimization. Cambridge: Cambridge University Press,
2004. ISBN 978-0-521-83378-3.

KALL, P. a WALLACE, S. W. Stochastic Programming. New York: John Wiley & Sons, 1993. ISBN

978-0471951582.

PARDALOS, P. M. a RESENDE, M. G. C. (eds.). Handbook of applied optimization. Oxford: Oxford

University Press, 2002. ISBN 0195125940.

RUSZCZYNSKI, A. et al. Handbooks in Operations Research and Management Science, vol. 10:
Stochastic Programming. Amsterdam: Elsevier, 2003. ISBN 978-0-444-50854-6.

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2019/20

In Brno,

L. S.

prof. RNDr. Josef Šlapal, CSc.
Director of the Institute

doc. Ing. Jaroslav Katolický, Ph.D.
FME dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Zadání diplomové práce
Ústav: Ústav matematiky

Bc. Jaroslav Talpa
Aplikované vědy v inženýrství
Matematické inženýrství
RNDr. Pavel Popela, Ph.D.
2019/20

Student:
Studijní program
Studijní obor:
Vedoucí práce:
Akademický rok:

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studi jním
a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Pokročilé optimalizační algoritmy a jejich efektivní implementace

Stručná charakterist ika problematiky úkolu:

Student se seznámí s problematikou řešení složitých optimalizačních úloh. Zaměří se na moderní
dekompoziční přístupy a využití existujících optimalizačních řešičů, jako stavebních kamenů
pokročilých optimalizačních algoritmů. Důraz bude kladen na vývoj pokročilých algoritmů a jejich
efektivní softwarové implementace. Student se z pohledu řešitelnosti uvažovaných úloh bude také
zabývat studiem vlastností optimalizačních modelů a jejich vhodnými transformacemi. Předpokládá se
zapojení studenta do řešení optimalizačních úloh vybraných výzkumných projektů (SPIL, TIRSM aj.)
za účasti konzultantů specialistů: Dr. Ing. R. Šompláka a Ing. V. Nevrlého.

Cíle diplomové práce:

1. Studium problematiky složitých optimalizačních úloh.
2. Studium a osvojení využívání implementací řešičů matematického programování.
3. Studium vlastností a transformací vybraných modelů matematického programování pro zvolenou
třídu aplikačních úloh.
4. Návrh a vývoj pokročilých algoritmů pro studované modely.
5. Efektivní implementace algoritmů kombinující řešiče matematického programování včetně testování
možností paralelizace.

6. Testovací výpočty, případná aplikace na vybraný inženýrský problém.

Seznam doporučené literatury:

BAZARAA, M. S., SHERALI, H. D. a SHETTY, C. M. Nonlinear programming: theory and algorithms.
2nd ed. New York: John Wiley & Sons. ISBN 0471599735. 1993.

Fakulta strojního inženýrství, Vysoké učení technické v Brně / Technická 2896/2 / 616 69 / Brno

BIRGE, J. R. a LOUVEAUX, F. Introduction to Stochastic Programming. Springer Verlag, 1997. ISBN:
978-1-4614-0236-7.

BOYD, S. a VANDENBERGHE, L. Convex Optimization. Cambridge: Cambridge University Press,
2004. ISBN 978-0-521-83378-3.

KALL, P. a WALLACE, S. W. Stochastic Programming. New York: John Wiley & Sons, 1993. ISBN
978-0471951582.

PARDALOS, P. M. a RESENDE, M. G. C. (eds.). Handbook of applied optimization. Oxford: Oxford
University Press, 2002. ISBN 0195125940.

RUSZCZYNSKI, A. et al. Handbooks in Operations Research and Management Science, vol. 10:
Stochastic Programming. Amsterdam: Elsevier, 2003. ISBN 978-0-444-50854-6.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2019/20

V Brně, dne

L. S.

prof. RNDr. Josef Šlapal, CSc.
ředitel ústavu

doc. Ing. Jaroslav Katolický, Ph.D.
děkan fakulty

Fakulta strojního inženýrství, Vysoké učení technické v Brně / Technická 2896/2 / 616 69 / Brno

Abstrakt
Tato diplomová práce se zabývá tématikou konvexní optimalizace a to kon­
krétně modifikacemi algoritmu A D M M , společně s problematikou proximál-
ních operátorů. Jedna z verzí A D M M je pak implementována v programovacím
jazyce Julia s důrazem na obecnost a efektivnost této implementace, a dále
aplikována na rozsáhlou úlohu z oblasti odpadového hospodářství.

Summary
This master's thesis concerns itself with the topic of convex optimization,
specifically formulations of the A D M M algorithm, together with the area of
proximal operators. One of these versions of A D M M is then implemented
in the Julia programming languge with an emphasis on the reusability and
efficiency of this implementation, and is further applied to a large model from
the field of waste management.

Klíčová slova
konvexní optimalizace, proximální operátory, A D M M , jazyk Julia, odpadové
hospodářství

Keywords
convex optimization, proximal operators, A D M M , the Julia language, waste
management

T A L P A , J.Pokročilé optimalizační algoritmy a jejich efektivní implementace.
Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2020.
63 s. Vedoucí RNDr. Pavel Popela, Ph.D.

Rozšířený abstrakt

Teoretická část této práce se zabývá oblastí konvexní optimalizace. První
kapitola zavádí základní pojmy, jako je konvexní množina a funkce a její opti-
malita. Společně s nimi jsou také představeny proximální operátory zavedené
vzorcem

prox A J (x 0) := argmin í / (x) + -A | |x - x 0

(více v Definici 1.15), na které lze nahlížet jako na minimalizaci / v okolí
nějakého bodu x 0. Jejich chování je dále ilustrováno na příkladu proximálního
minimalizačního algoritmu.

Druhá kapitola pak odvozuje konvexní optimalizační metodu, A D M M
(Alternating Direction Method of Multipliers) (2.4) na základě jejích před­
chůdců, duálního stoupání a metody rozšířeného Lagrangianu. Pro obecný
optimalizační problém

minimize /(x) + g(x),

je metoda zavedena následovně

x f c + 1 := proxA j.(zk — uk)

z k + 1 := proxA 3 (x f c + 1 + ufc)

ufc+l : = ufc + xfc+l _ z fc+l .

(Pro podmínky a podrobnější vysvětlení viz (2.4)) Tato kapitola dále obsa­
huje formulaci A D M M pro lineárně omezené problémy (2.8), která je později
implementována a aplikována. Také je zmíněna možnost distribuované nebo
paralelní modifikace pro pokročilé složené problémy, nazývaná block Splitting
method (2.14).

Výpočtová část se týká implemetace výše uvedené metody A D M M (2.8)
a její aplikací. Metoda je ve třetí kapitole implementována v jazyku Julia,
zaměřeného na numerické výpočty. Julia obsahuje nástoroje pro snadnou
implemetaci dané metody s cílem široké použitelnosti a efektivnosti kódu.
Metoda je také ilustrována na dvou malých příkladech, z nichž jeden je zob­
razen níže (Obrázek 1). Jedná se o aplikaci na úlohu, kdy účelová funkce je
paraboloid (znázorněn na obrázku šedě), avšak optimum hledáme pouze ve
vyznačené oblasti (viz sekce 3.5).

Obrázek 1: Trajektorie A D M M pro kvadratický problém (viz. sekce 3.5)

Závěrečná (čtvrtá) kapitola je zaměřena na hlavní optimalizační problém
této práce. Jedná se o velký multikriteriální model z oblasti odpadového hos­
podářství, který je vyvíjen ve spolupráci s výzkumným týmem na Ústavu
procesního inženýrství, FSI, V U T v Brně a vychází z jejich předchozí publi­
kace (viz [15]). Problém se týká analýzy nakládání s kaly z čističek odpadních
vod, kdy dostupná data představují síť na úrovni obcí s rozšířenou působností
(ORP), avšak obsahují nesrovnalosti. Model se pak snaží tyto nesrovnalosti
pomocí bilancí sítě a zavedení chybových proměnných srovnat. Protože pů­
vodní definice modelu obsahovala víceznačné proměnné, vzniklé vlivem agre­
gace dat pro jednotlivé uzly, musel být každý uzel nahrazen zjednodušenou
"místní sítí" (Obrázek 2). Pro více informací viz sekce 4.2.1. Analýza běhu
implementace modelu odhalila možná místa pro jeho zefektivnění, především
lepší práce s "krokovým" parametrem p (viz Tabulka 4.1). Také závislost ře­
šení jednotlivých kritérií na jejich relativní váze (viz Obrázek 4.2) poslouží
jako základ pro další výzkum multikriteriální optimalizace, jelikož se často
vyskytuje v reálných aplikacích. Výsledky samotného výpočtu pak budou
použity v rámci dalších výzkumných projektů.

Local cycle

Obrázek 2: Diagram místní sítě pro agregovaný uzel (viz sekce 4.2.1).

I declare that I have written this master's thesis on the topic Efficient Im­
plementation of Advanced Optimization Algorithms independently under the
supervision of RNDr. Pavel Popela, Ph.D., using the literature and sources
listed in the bibliography.

Be. Jaroslav Talpa

I would like to thank my supervisor, RNDr. Pavel Popela, Ph.D., for
valuable comments and advice on the content of this thesis, as well as my
colleagues, Ing. Vlastimil Nevrly and Ing. Radovan Somplak, Ph.D. from
the Institute of Process Engineering, F M E , B U T , for providing me with
resources and for cooperation on the case study that is the final result of the
computational part of this thesis.

Be. Jaroslav Talpa

Contents

Introduction 14

I Theoretical part 15

1 Basic concepts 16
1.1 Convex sets and functions 16
1.2 Optimality 18
1.3 Proximal operators 19

1.3.1 Proximal minimization 19

2 Alternating Direction Method of Multipliers 21
2.1 Precursors 21

2.1.1 Dual ascent and decomposition 21
2.1.2 Augmented Lagrangian 22

2.2 General algorithm 23
2.3 Formulation for problems with linear constraints 24

2.3.1 Efficient graph projection 25
2.4 A D M M Block splitting 27

II Computational part 29

3 Implementing the A D M M algorithm 30
3.1 The Julia programming language 30
3.2 Main algorithm 31

3.2.1 Input arguments 31
3.2.2 Initialization and main loop 32
3.2.3 Code optimization techniques 33

3.3 Example problems 34
3.3.1 Linear objective function 35

12

3.3.2 Quadratic objective function 36

4 Case study 40
4.1 Introduction 40
4.2 Model description 41

4.2.1 Local networks and aggregation 44
4.3 Model transformation for the A D M M algorithm 45

4.3.1 Simplifying the proximal operators 46
4.4 Applying A D M M 49

4.4.1 Preparation 49
4.4.2 Execution 51
4.4.3 Weight of the criteria 52

4.5 Heuristic for variable t° 53

Conclusion 56

Bibliography 57

A Source code and resources 59

13

Introduction

The theoretical part of this thesis concerns itself with the area of convex
optimization. First chapter introduces basic concepts, such as convex set
and function and its optimality. Also the concept of proximal operators
gets covered, with a simple demonstration of its behavior on the proximal
minimization algorithm.

Second chapter then builds up a convex optimization method, the al­
ternating direction method of multipliers (ADMM) on its predecessors, the
dual ascent and augmented Lagrangian methods. This chapter then features
the formulation for linearly constrained problems, which is later being im­
plemented and applied, and also mentions the possibility of distributed or
parallelized modification for advanced composed problems, called the block
splitting method.

The computational part covers the aforementioned implementation and
application of the linearly constrained A D M M . Third chapter focuses on the
implementation itself, which aims for general reusability and efficiency of the
computation. The method is also illustrated on two example problems.

The final (fourth) chapter focuses on the main optimization problem of
this thesis, a large multi-criteria waste management model that is being
developed with cooperation from a research team situated at The Institute
of Process Engineering, F M E , B U T , and is based on their previous work
(see [15]). Together with the model definition are also being described the
steps needed for the application of the A D M M implementation on it. The
behavior of the finished computation is then discussed, together with options
for further improvement.

14

Part I

Theoretical part

15

Chapter 1

Basic concepts

This chapter covers some basic concepts and definitions connected with the
area of convex optimization, which are commonly used throughout the text.
It also introduces the notion of proximal operators, which are later used
as a major part of the main subject of study for this thesis, the A D M M
algorithm.

1.1 Convex sets and functions
Convex sets and functions are, as the name suggests, a cornerstone of the area
of convex optimization. One of the reasons, why this area is so significant,
is the fact, that convex functions hold a useful property in connection to
their extremal points (as discussed in the next section). This then allows to
simplify some processes aimed at obtaining these.

Definition 1.1. [1] A set C is convex if the line segment between any two
points from C also belongs to C, i.e., if Wx1,x2 £ C and VA e [0; 1] holds
true

Xx1 + (1 - \)x2 G C.

The definition of convex set then can be in turn used to define a convex
function by requiring its epigraph, geometrically the set of points "above"
the graph of the function, to be also convex.

Definition 1.2. [2] Let / : Rn —>RU {+oo; -oo}, then the set

epi / := {(x,t)|x e R V e R,t >/(x)}

is called the epigraph of / .

16

Definition 1.3. [2] A function / : Rn —> RU{+oo; — 0 0 } is said to be convex
if epi / is convex.

Note that the function / is defined for the whole of Rn and can take on
extended values of i o o 1 . We can extend any real-valued convex function <p
defined only for a subset C C Rn into this form with the use of a concept of
indicator functions.

Definition 1.4. [2, 3] Let C C Rn be a set, then its indicator function
Ic •• Rn —>{0; + ° ° } is defined as

/ c (x) 4 0 ' f o r x e C (i.i)
C ' \+oo , f o r x ^ C . V ;

The extension then can be done addition, i.e. /(x) = <^(x)+/c,(x), where
ip •• C C Rn —> R. This process of extension is also tied to the notion of an
effective domain of a convex function. [2]

Definition 1.5. [2] Let / : Rn —> RU{+oo; — 0 0 } be convex, then its effective
domain, denoted by dom/ is a set on which / is real-valued, i.e.

dom/ = {x G Rn\f(x) < +00}.

The original domain C of (p then can be viewed as an effective domain of
the newly formed / .

For purposes of further discussion about convex functions, as the extended
values ± 0 0 allow for some "unwanted" corner cases, the following restrictions
on the concept of a convex function will be introduced.

Definition 1.6. [2] A convex function / is said to be proper if epi / is

non-empty and contains no vertical lines, i.e if

3x e Rn •• /(x) < +oc

and
Vx e Rn •• /(x) > - 0 0 .

Definition 1.7. [3] A convex function / is said to be closed proper if / is
proper and epi / is a closed set.

lrThe introduction of extended values creates some edge cases such as terms 00 + 00. As
these are more or less technicalities they will be omitted for brevity. For more information
about these see [2].

17

1.2 Optimality
Finding the optimal point of a function is the main goal of optimization. This
section will introduce basic definitions and theorems covering this process.

Definition 1.8. [4] Let f • C C Rn —y [R, then we call x* e C a global
minimum of / if

/ (x) > f(x*); Vx e C.

Definition 1.9. [4] Let f • C C Rn —y [R, then we call x* e C a local
minimum of / if

3iV e(x*) : / (x) > f{x*); V x e i V £ n C .

Following theorem highlights the importance of convex functions, as find­
ing a local minimum of a function is usually easier, than finding the global
one.

Theorem 1.10. [4] Let / : C —y R be convex and C a convex set. If x* e Rn

is a local minimum of / , then it is also its global minimum.

It should be noted that minimizing a real-valued / over C C Rn is the
same as minimizing its proper convex extension over Rn. [2]

Theorem 1.10 guarantees, that for finding a global minimum of a convex
function, we just need to search for a spot that does not improve in its
neighborhood. Such a condition for optimality of a point can be expressed
by the use of a concept of subdifferentials.

Definition 1.11. [2, 4] A vector £ e Rn is called a subgradient of convex
function / at x* G Rn if

/ (x) > / (x *) + £ T (x - x *) ; Vx.

Definition 1.12. [2, 4] The set of all subgradients of / at x is called the
subdifferential of / at x, i.e.

<9/(x) = {£ e R n | £ is a subgradient of / at x}.

Naturally, if the function is differentiable, then the subgradients simply
reduce to a gradient.

Theorem 1.13. [2, 4] If / is convex and differentiable at x, then 9/(x) =
(V / (x) } .

These terms then allow us to formulate a general optimality condition for
a convex function.

Theorem 1.14. [2, 4] Let / : C—y R be convex, then x* belongs to its
global minimum if and only if there exists a subgradient of / at x* equal to
zero, i.e. 0 e 9/(x) .

18

1.3 Proximal operators
Definition 1.15. [3] Let / : Rn—>R U { + 0 0 } be a closed proper convex
function, then the proximal operator proxA , : Rn —> Rn of / with argument
A > 0; A e R is defined as

prox A J (x 0) := argmin (/(x) + ^A||x - x 0|||) (1.2)

The proximal operator can be viewed as a minimization step of / in the
vicinity of x 0. The ratio between minimization of / and "closeness" to x 0 is
then controlled by the argument A.

Following is a list of some properties of the proximal operator, which
are later useful for deriving analytical formulas or closed-forms of concrete
proximal operators. [3]

• Separable sum: If / is separable across two variables, meaning that
/(x, y) = v?(x) + V>(y), then

prox A J (x 0 ,y 0) = (proxA^(x 0),proxA^(y 0)). (1.3)

• Postcomposition: If /(x) = aip(~x.) + b; a > 0, then

prox A J (x 0) = prox a A^(x 0). (1.4)

• Affine addition: If /(x) = <p(x) + a T x + b, then

prox A J (x 0) = proxA^(x 0 - Aa). (1.5)

• Indicator function: If C e Rn is closed nonempty convex set, then
the proximal operator of indicator function Ic reduces to Euclidian
projection onto C:

P r o x A / J x o) = n c (x o) = argmin | |x-x 0 | | 2 . (1.6)

1.3.1 Proximal minimization
The fixed point of the proximal operator is the minimizer of / , i.e.

proxA J-(X*) = x*

if and only if x* minimizes / . This leads to a simple proximal minimization
algorithm, which will be used to illustrate the behavior of proximal operators:

x f c + 1 := proxA^.(xfc),

19

where k is the iteration counter. If / has a minimum, then xfc converges to
one of the minimizers and /(xfc) to the optimal value (see [3]). When applied
to the following explanatory problem

minimize (a^ - 6) 2 + (x2 - 4) 2 + I{Xl>1} + I{x2>2}

with starting point [0,0], the algorithm follows paths for different values of
A as displayed in Figure 1.1.

!>7

1 1

effective domain boundary
• A = 1/16
• X = 1/4
• A = 2

1 1 1 «!- 1 1 1 1 1 1

0 1 2 3 4 5 6

Figure 1.1: Proximal algorithm trajectories for different values of A. (objec­
tive contours are in gray)

As it is clear from the figure, the proximal operator projects steps ending
outside of the effective domain of / onto its boundary. For small step size
A = 1/16 the first step ends up being projected completely. For larger
A = 1/4 is the step big enough to be projected only in the direction of x2

and for A = 2 happens no projection at all. The next steps the algorithm
takes then proceeds to the minimal point [6,4], however at different pace as
dictated by A.

20

Chapter 2

Alternating Direction Method
of Multipliers

The A D M M algorithm will be introduced in this chapter. Before that, two
optimization methods will be briefly mentioned to serve as its precursors,
namely the dual ascent method and the augmented Lagrangian method. Af­
ter that, the modification of the algorithm for linearly constrained problems
will be derived, to serve as a basis for the implementation in the following
chapter. The block splitting version of A D M M is mentioned at the end of
this chapter as an solution for models that needs to be split across multiple
processes.

2.1 Precursors

2.1.1 Dual ascent and decomposition
First, lets consider a general convex optimization problem with equality con­
straints

minimize /(x)
s.t.: Cj(x) = 0; for i G I, (2.1)

where / : Rn —> R is convex and ci •• Rn —> R; for i 6 I, are the equality
constraints. The Lagrangian for (2.1) is then

L(x ,y) = / (x)+y T c(x)

and the associated dual problem is

max inf L(x, y)
y x

21

with dual variable y e K m . [5, 6]
The dual ascent method steps for solving the dual problem can be de­

scribed as

xfc+i . _ argmin L(x, yfc)
X

y f c + 1 := y f c + a f cc(x f c),

with ak > 0 as the step size and k as the iteration counter. The importance
of this algorithm is in that it allows for a separability of problems, where
otherwise separable objective is coupled by constrained variables, e.g. A x =
b. In that case the primal update step can be carried out separately for each
partition of / , i.e. the dual ascent method modifies to dual decomposition [6]:

x ^ + 1 := argminLj(Xj, yfc)

y f c + 1 := y f c + akc(x.k).

For more information about decomposition see [7] and [8] and for its use in
stochastic programming see [9].

2.1.2 Augmented Lagrangian
Definition 2.1. Consider a modification of (2.1):

minimize /(x) + — cf (x)

s.t.: Cj(x) = 0; for i G / , (2.2)

then the Lagrangian for this problem is called the augmented Lagrangian
[4, 6] and is defined as

L p(x,y) = /(x) + $ > i C i (x) + ! £ c ? (x) . (2.3)
iee iee

The problem then can be solved by the dual ascent method [4]:

xfc+i . _ argminL (x, y)
X

y f c + 1 y f c + pfcc(xfc).

Note, that the use of the quadratic penalty term in the objective should
in many cases lead to better convergence properties (for more information
see [4]).

22

2.2 General algorithm
Definition 2.2. Let / , g •• Rn —> R U { + 0 0 } be closed proper convex func­
tions. Then, considering an optimization problem of the form

minimize /(x) + g(x),

we can formulate the alternating direction method of multipliers (ADMM) as
follows:

x f c + 1 := proxA j.(zk — uk)

z k + 1 := proxA 3 (x f c + 1 + ufc)

ufc+i : = ufc + xfc+i _ zfc+i ^2.4)

where k is the iteration counter, A > 0, u, z e Rn are newly introduced
variables (see (2.5) and the following steps) and prox is the proximal operator
(see Definition 1.15). [3]

The A D M M algorithm, sometimes called the Douglas-Rachford operator
splitting is a convex optimization method with very general convergence con­
ditions (see [6] §3.2). It aims to combine the decomposability of dual ascent
and the convergence properties of the augmented Lagrangian. The objec­
tive terms, which both may encode constraints, are handled separately and
only by the use of their proximal operators. This means that A D M M is best
suited for problems where proximal operators of / and g are evaluated easily
(as is the case for many functions found in practical applications), however
proximal of / + g is not. [3, 6, 10]

The algorithm (2.4) can be derived in these following steps. Rewriting
the original problem min x{/(x) + <7(x)}, with the introduction of new opti­
mization variable z e Rn, as

minimize /(x) + g(z)
s.t.: x — z = 0,

sometimes referred to as a consensus form because of the consensus constraint
x — z = 0, then yields an augmented Lagrangian of a form

L p(x, z, y) = /(x) + g(z) + y T(x - z) + |||x - zg. (2.5)

By applying the dual ascent method, we obtain

(x f c + 1 ,z f c + 1) — argmin L p (x, z, yfc)
x,z

yfc+1 ._ yfc _|_ p f c (x f c + 1 — Z f c + 1)

23

The optimization in the first step can be done separately (hence the term
Alternating in the name of the method), similarly to a single pass of Gauss-
Seidel method:

xfc+i .— argminL (x, z f c,y f c)
X

z f c + 1 :— argmin L p (x f c + 1 , z, yfc)
z

yfc+1 . _ yfc _|_ p f c (^ X f c + 1 — Z f c + 1)

By substituting (2.5) and omitting constant terms, as these do not affect the
minimization results, we obtain

x f c + 1 := argmin (/(x) + y f c T x + —||x — zfc||§ J
x V 2 /

z f c + 1 := argmin (g(z) — y f c T z + ^||x f c + 1 — z|||^

yfc+1 . _ yfc _|_ p f c (^ X f c + 1 — Z f c + 1)

and by including the linear terms into the norm we arrive at

- k + 1 :— argmin (V(x) + ^||x — zfc + —yfcllî)

fc+1 := argmin (g{z) + ̂ ||x f c + 1 — z y f c||l)

yfc+i : = yfc _j_ pfc(xfc+i _ z*+i).

Finally, by substituting u f c = ^yfc and A = - we obtain the general form of
ADMM, the same as in (2.4) [3, 6], because

P r o x A , v (x) (x o) = argmin (p(x) + ^A||x - x 0 | | |).

2.3 Formulation for problems with linear con­
straints

The general ADMM algorithm (2.4) will be now transformed for general
linearly constrained problem

minimize <p(x)
s.t.:Ax = b (2.6)

x

z

24

where <p is closed proper convex. The reason for doing this is that the model
described in Chapter 4 can be transformed into this form, thus allowing the
use of A D M M . First, the problem (2.6) needs to be modified into

minimize /(z) + i " { j 4 x = y } (z) , (2.7)

where z = (x, y) is a collective vector for the original variables x and newly
introduced right-hand-side (RHS) variables y, /(z) = <p(x) + J | y = b | (y) is a
new objective function with RHS variables y being constrained to the RHS
vector b and I{Ax=y} *s the indicator function of the linear constraints, i.e.
of the set {(x, y); A x = y}.

Applying the general form algorithm (2.4) on the modified linearly con­
strained problem (2.7) then results in A D M M formulation for problems with
linear constraints (as I{Ax.=y}(z) represents #(x) from (2.4)):

x f c + l / 2 ._ p r o x ^ ^(xfc _ xfc)

y fc+V2 : = n { b } (y f c - y f c)

(x f c + 1 , y f c + 1) := n A (x f c + 1 / 2 + x

f c , y f c + 1 / 2 + yfc)
x f c + l ._ x f c _|_ x f c + l / 2 _ x fc+l

-fc+i : = ~k + yfc+i/2 _ yfc+i ^2.8)

As the function / can be separated into <p(x) and 7{ y = bj .(y), using (1.3), its
proximal operator is handled also separately. Because of (1.6), the proximal
of indicator function is a simple projection onto vector b. Similarly, proximal
of the second function is also a projection, in this case onto the graph of the
linear operator A. As the variable vectors x and y do not overlap, the last
(dual) update step can also be handled separately. [11]

For example problems illustrating this formulation (2.8) of A D M M see
section 3.3.

2.3.1 Efficient graph projection
The graph projection n j 4 (c , d) (with general arguments) from the third step
of (2.8) is equivalent to solving a minimization problem with variables x 6 Rn

and y 6 R m ,

• • • !„ „2 !„ JI.2
minimize — ||x — c\\2 + — ||y —

B.t . :Ax = y. (2.9)

25

By applying the K K T optimality conditions [4] with dual variable A,

0 = ^V(||x + l|y dill) AV(y - Ax)

0 = (x - c , y - d) + A (A - l) ,

we obtain the following system

0 - n
y = d

w
(2.10)

By expressing A = y — d from the second equation and substituting it into
the first one we obtain

(IAT 0) y I =c + Ald.

This allows to simplify (2.10) into

I AT

A -I
c + Ad

0 (2.11)

This system can be then solved using block elimination. By expressing x =
A~1y from the second equation and then substituting into the first one,

A~xy + ATy =c + ATd
y + AATy =Ac + AATd

y =(I + AAT)~1(Ac + AATd),

we obtain the following two-step solution (with x from the first equation for
already computed y)

y :=(/ + AAT)~1(Ac + AATd)
x :=c + ATd - y. (2.12)

Evaluation of the first step can be done via Cholesky factorization 1 + AAT —
LLT. Because this factorization depends only on the constraint matrix A, it
can be created only once and then reused in subsequent iterations, or even in
other models with the same matrix A but with different objective functions1.
[11]

As it is done in Chapter 4, when dealing with a multi-criteria model.

26

2.4 A D M M Block splitting
When facing problems with large datasets, the resulting matrix may be so big.
that handling the model as a whole may be impractical or outright impossible.
This can be solved by a problem partitioning, where each partition is handled
by a separate process and each resulting block of the constraint matrix is
required only locally.

If the objective function <p from (2.6) is block separable, meaning

N

^(x) = 5^^.(xi),
i=i

we can divide the original problem (2.7) across M block rows and N block
columns, with the introduction of new "local" variables • and for each
block formulating an equivalent form

N M M N

minimize ^ t p f a) + ^ / { y ^ b j (y J + 'l-h.,*;.,
j—1 1=1 1=1 j=l

N

i=i

This form then leads to a reformulation of (2.8) into the block splitting
algorithm [11],

fc+1/2 / h ~k\
X j : = p r o x A ^ (x J - x J)

y-+1/2 : = I W (y ? - y })

{4f}f=i) ••= a v g (x j + 1 + x j , { x f j 1 +

(y " + 1 , { y ^ 1 } ^) == exch(yf + 1 + y*, {ykf + y ^ } f = 1)
gfc+l : = g f c + z f c + l / 2 _ z f c + l ; (2 1 4)

where the dual variables x and y from (2.8) are also partitioned and have
their "block-local" counterparts and z is a vector of all x-, y i ; x^ •, •
(similarly for z); where avg is an elementwise average (done on multiple
vectors but denoted collectively in one line), setting the values of the output
vector to the elementwise average of the input vector; exch is an exchange

27

operator[ll], defined for exch(c, {CJ}J=1) as

, c - £ 3 - = l c i
yij •= s + N + 1

Y i ' C AT + 1 '

The avg (consensus) and exch (exchange) operators represent the projec­
tions onto the constraints of (2.13). It should be noted that the graph pro­
jection onto Ai j is done only with the "local" variables and thus can be
parallelized. [11]

As the model in Chapter 4 does not require the partitioning of A, the
block splitting algorithm is mentioned only in the theoretical part of this
thesis. It can, however, be employed on it in the future if the need arises.

28

Part II

Computational part

29

Chapter 3

Implementing the A D M M
algorithm

3.1 The Julia programming language
As the implementation of the A D M M algorithm described in this chapter is
written in the Julia programing language, this section will briefly describe the
language itself and a few of its features, that are used in the implementation.

Julia [13] is a high-level, high-performance, dynamic language supporting
object-oriented and functional paradigms. While allowing for wide variety
of applications, it is best-suited for numerical and scientific computations.
Function calling and overloading adheres to the multiple dispatch scheme
[12], meaning that method overloads are chosen based on the runtime (ie.
dynamic) type of the call's arguments. The type system is also dynamic,
meaning that types of variables and function arguments need not to be ex­
plicitly declared in the code, however defining them may lead to shorter
execution times as the compiler may produce a more lean bytecode. [13]

The Julia language uses a just-in-time compiler (built around L L V M com­
piler), that, roughly speaking, converts the source code into its abstract syn­
tax tree (AST) representation [13], which is then compiled into the platform's
native code, while optimizing the result at each step. This means that Ju­
lia is not an interpreted language, but rather compiles the source code as
needed. [12]

The intermediate A S T representation of the code also allows for LISP-like
macros, in Julia marked with the symbol These are functions, executed
by the compiler itself, that take in an A S T of the input and return another
AST, usually but not exclusively, a modification of the original. This result
is then passed along the compiler's pipeline in place of the original macro

30

call. [12, 13]

3.2 Main algorithm
The following implementation of the A D M M algorithm was designed with
generality and re-usability in mind. Proximal operator computations are del­
egated to the user, thus allowing for more general problems. This also allows
the user, in many cases, to simplify and speed-up the proximal computa­
tion greatly, which cannot be done (or would be very difficult) by a general
algorithm. This approach is later used to reduce the solving of underlying
proximal operator minimization to a few lines of direct computation, e.g for
the example problems (3.2) and (3.5) .

3.2.1 Input arguments
The function ADMM_LCP! 1 contains the implementation of the algorithm,
specifically of its formulation for linearly constrained problems (2.8). It has
multiple input arguments describing the model to be solved and precision
parameters for the stopping criterion.

@inbounds function ADMM_LCP!(
x'::AbstractArray{<:Real,l}, # x': vector of variables
A::AbstractArray{<:Real,2}, # A: constraint coefficients

F, # F: cholesky factorization of (I+AA')
b::AbstractArray{<:Real,1}, # b: RHS vector
max_iter::Integer, # max_iter: maximum iteration count
p::Real, # p: stopping criterion weight
£abs::Real, # sabs: absolute error
£ rel::Real, # srel: relative error
prox!;
)

prox: proximal operator

The parameter x ' serves as so-called "input-output" argument for the model
variables. The user is expected to allocate this vector beforehand and then
retrieve the solution from it after the function returns. Matrix A represents
the constraints matrix. Because only the : :AbstractArray type is being re­
quired here, the sparse matrix implementation is also allowed, thus saving
memory in the case of large models. F then contains the Cholesky factoriza­
tion of matrix I + A-A1, which is later used for more efficient computation of

1To adhere to the Julia language naming convention, the name of the function ends
with an exclamation mark "!", as it modifies contents of one or more of its input ar­
guments, namely the variables vector x'. See: https://docs.jul.ial.ang.Org/en/l.atest/
manual/style-guide/#Append- ! - to-names-of - functions-that-modify-their-arguments-1

31

https://docs.jul.ial.ang.Org/en/l.atest/

projection onto the constraint matrix (see Section 2.3.1). Because this factor­
ization depends only on constraints and can be reused with different objective
functions, it is being requested here from the user to allow for caching, ie. to
let the user compute it only once and save it, as this can be a time consuming
operation. Because the sparse and non-sparse implementations do not have
common supertype, the type of this parameter is left unspecified. Vector b
is simply the right-hand-side counterpart to constraints matrix A.

Following parameters are used to control the precision and running time
of the algorithm. As a hard stop, the m a x _ i t e r value specifies maximum
allowed number of iterations the program will perform. Parameters sabs,
ere\ and p are used for the precision based stopping criterion. The value p
is also used as the argument for the proximal operators.

Lastly the p rox ! argument is a user-defined function responsible for eval­
uation of the proximal operator of the objective function. The function p rox !
is expected to be in this general form:

function prox!(p,x,xO)

Evaluation of the proximal operator, with xG being the input
and with x being overwritten with the result of the computation.
return

end

The parameter p is being passed for convenience and has the same value as
the one from the main function's argument list.

3.2.2 Initialization and main loop
In order to reduce the number of memory allocations and thus the garbage
collector running time, all of the variables are created only once and then
changed in place. This also holds true for some intermediate results, so the
amount of newly allocated arrays is as small as possible. Most of the variables
are initialized with a value of zero, with the exception of vector y ' , which is
created as a copy of the RHS vector b, and matrix AAt, which is a cached
result of A • AT. This initialization block is omitted in the source code being
presented.

41 k = 1

42 while k <= max_iter

43 # primal update
44 prox! (p, x', x - x)

45

46 # projection onto constraints
47 @. C = X ' + X

48 @. d = y' + y

32

49 y .= F \ (A*c .+ AAt*d)
50 x.=c.+A'*(d.-y)
51
52 # dual update
53 @. x = c - x
54 @. y = d - y
55
56 # stopping criterion
57 z' [xr] .= x'; z' [yr] .= y'
58 z[xr] .= x ; z [y r] .= y
59 2 [xr] .= x ; 2 [yr] .= y
60 e p r i = Vn * £abs + £rel * max(norm(z'), norm(z))
61 edual = Vn * sabs + ere\ * norm(p*2)
62 res = norm(z' - z)
63 res_dual = norm(- p * (z - z _ l a s t))
64
65 i f (res <= e p r i) && (res_dual <= Edual)
66 break
67 end
68
69 z _ l a s t . = z

70 k += 1
n end
72
73 return k, x , y
74 end

The first part of the loop updates the primal variable x ' (equiv. to x f c + 1 / 2) .
employing the provided proximal operator p r o x ! . Because the other primal
variable y ' (equiv. to y f c + 1 / 2) would be just updated with the values of b and
it is not being changed anywhere else, this step is skipped completely. The
second part performs the projection onto the constraint matrix, using the
backsolve " \" operator with the provided Cholesky factorization of (I + A •
AT). Lastly the dual variables are updated, using the intermediate variables
c and d from the previous step. The stopping criterion (as described in [11]
and [6]) is then checked and if both residuals are small enough, the loop
terminates. The function then returns the number of iterations k and both
dual vectors2.

3.2.3 Code optimization techniques
A big problem when dealing with computations on vectors is a memory al­
location and subsequent garbage collection. For example, when two vectors

2the first primal vector x' is already available to the user and y' is always equal to b,
so they need not to be returned

3 3

are being added, the result needs to be stored in a third, newly allocated
array. It is clear, how this can quickly grow out of hands when there are
many vector operations being performed, such as in the implementation in
this chapter. In such cases a good practice in Julia is to use the vectorized
operations denoted by e.g. x .+ y o r a b s . (x) . These operations are then
applied on each member of the vector separately, and moreover, if there are
more of these in one expression, they all get fused together and evaluated in
one single loop. This means that there are no intermediate array allocations
needed. Vectorized assignment, i.e. x .= y, writes the right hand side y into
the target vector x member by member, rather then reassigning the variable
x to reference y instead. This allows to preallocate the space needed for the
results. Because attaching a dot to every operation in an expression is cum­
bersome and results in a less readable code, the macro @. exists, converting
each operation found in its input into their vectorized version.

The other thing, that results in unnecessary array allocation, is accessing
only a portion of the array, e.q. x [l :5] . This results in a new array being
created, that is a copy of the requested part. For this occasion, Julia offers
a macro called @views, which converts these "slice" expressions into "views",
that simply just hold a reference to the original array, resulting in no data
copied. This macro is used e.g. in implementations of the proximal operator
formulas in section 3.3, as within these, each block of variables from the
common variable vector needs to be handled separately.

Lastly, when working with arrays with known dimensions, a macro called
@inbounds can be applied to an expression or a whole function. This then
means, that when accessing arrays by an index, the value of the index is
not checked to be within the array's bounds. This of course speeds up array
operations, but needs to be used carefully, as out of bounds indexes may lead
to crashes or data corruption. [14]

3.3 Example problems
In this section, the aforementioned A D M M implementation will be applied
to two simple optimization problems. Both problems feature the same linear
constraints, but differ in objective functions. The constraints, defined by
inequalities

x x + 3x 2 < 10 ^

> o

34

create a convex polygon as the feasible set of the problem. They are set up
in such a way that the polygon does not include the starting point (0, 0)

In order to use the A D M M algorithm, the constraints (3.1) are trans­
formed into equalities by introducing slack variables x3, x4 and x5. The
non-negativity constraints are encoded into the objective in the form of in­
dicator function I(x>o}, resulting in the following model

minimize z(x) + i j x > 0 j (x)

x1+3x2+x4: — 10

3.3.1 Linear objective function
In the first example, a linear function with the added indicator for the non-
negativity constraints serves as the objective:

zx (x) = -xx - 2x2 + 7 { x> 0 }(x). (3.2)

The proximal operator for the function as a whole need not to be derived.
Splitting the function across individual variables and using (1.3) allows us to
create and evaluate proximal operators only for the respective scalar terms.
For the slack variables, the only term in zx is the indicator I^x>0j. The
proximal operator then reduces to simple projection (see (1.6)) onto positive
reals:

prox^^ ^ (x0) — max{0; x0}. (3.3)

For the original variables, included in terms with form of <fii(x) — cx+I^x>0j,
the afline addition property (1.5) can be used:

prox (xn) — prox , (xn—pc).

Then, by substituting into (3.3), we obtain

P r o x

P , V l (xo) = max{0; x0 - pc}. (3.4)

The operators (3.3) and (3.4) can then be encoded for the algorithm like
in this code snippet:

35

function proxl!(p,x,xO)
x [l] = max(0, xO[l] + p)
x[2] = max(0, x0[2] + 2p)
@. x[3 :5] = max(0, @view x0[3:5])
return

end

Running the algorithm, with parameters p=l/2, eabs=le-6 and erel=le-4,
converges after 80 iterations, arriving at the inexact solution (x1,x2) —
(2.49741,2.50103) (exact solution being (2.5,2.5)). The algorithm trajec­
tory is shown in Figure 3.1 on the next page. It can be observed that the
algorithm first takes big steps approximately along the gradient of the ob­
jective and then in decreasing manner oscillates along the optimum point,
almost parallel to the gradient. It should be noted, that A D M M is being
applied to the linear problem only to serve as an example and that it is not
the ideal method for this class of problems.

3.3.2 Quadratic objective function
In the second example, quadratic terms are used instead of the linear ones

z2(x) = (Xl - 6) 2 + (x2 - A)2 + 7 { x>0 }(x), (3.5)

representing a paraboloid centered at the point (4, 6). Following the same
strategy as in the previous example, the proximal operator needs to be de­
rived only for scalar terms with individual variables. Slack variables are again
only present in the indicator function, allowing for the usage of (3.3).

The original variables are included in terms of the form

<p2(x) = (x + b)2 +I[x>0}.

Following Definition 1.15 for proximal operators, we obtain

P r o x » u>Sxo) = argmin ((a; + b)2 + I{x>0}(x) + ^-\\x - x0\\2).

The result of this operator can never be negative, because then the indicator
term and the whole expression would attain the value of +oo. Because
otherwise for non-negative x the indicator term returns 0, the expression can
be simplified into

prox (xQ) — max{0; argmin ((# + b)2 + —\\x — ^olll)}-

36

By simplifying the optimality condition for the inner expression

0 = v((x + b)2 + ^-\\x-x0\\fj

X X Q

2p

0 = 2(x + b) + '7 "

x0 — 2pb
x — 2p + l '

we obtain the formula for the proximal operator

2pbX P r o x

P , y 2 (x o) = max JO; X° - P- }. (3.6)

Similarly to the previous example, the operators (3.3) and (3.6) are en­
coded as follows:

function proxl!(p,x,xO)
x [l] = max(0, (xO[l] + 12p)/(2p + 1))
x[2] = max(0, (x0[2] + 8p)/(2p + 1))
@. x[3:5] = max(0, @view x0[3:5])
return

end

Running the algorithm, with the same parameters p=l/2, eabs=le-6 and
erel=le-4, converges after 64 iterations, arriving at the inexact solution
(x1,x2) — (3.50068,1.49961) (exact solution being (3.5,1.5)). The algo­
rithm trajectory is shown below in Figure 3.2. As in the previous example,
the algorithm takes a few big steps along the objective's gradient, but then
converges in a spiral pattern to the optimal point, rather then oscillating
along one line.

38

Figure 3.2: A D M M trajectory for the quadratic example problem, (objective
contours are in gray)

39

Chapter 4

Case study

4.1 Introduction
The case study in this thesis has been done in cooperation with the research
team based at Institute of Process Engineering, Faculty of Mechanical En­
gineering, B U T . It is an analysis of the production and treatment of waste
sludge from waste water treatment plants in The Czech Republic. The avail­
able dataset represents a transportation network at the municipal level of
ORPs 1 , that pose as individual nodes with recorded amounts of produced
and treated sludge, with multiple options for the treatment. The flow along
edges of this graph is then reported two times for each edge, from the side of
each respective sender and receiver. Because this is a real dataset, it is not
safe from errors. The flow amounts are not always equal to each other, as
they may seem to be at first glance. Also the total sum of produced sludge
is not the same as the sum over all of the treatment options.

For further analysis of this dataset, a mathematical programming model
has been devised, aimed at providing a best estimate of the real flow and
treatment values. Furthermore, the resulting estimate contains an informa­
tion about a distribution of the sludge from each entry point in the network,
an information that is not present in the original dataset. This proposed
model is then solved for the dataset by the A D M M algorithm implementa­
tion described in Chapter 3.

Similar model has been already used by the aforementioned research team
for the analysis of a dataset covering the energy recovery of a bulky waste in
The Czech Republic (for more info about the paper see [15]). The objective

1 O R P is an abbreviation of a term for a municipal unit in The Czech Republic, one level
above individual towns. It usually represents a group of villages, individual middle-sized
cities or, for large cities, their districts. Because this term does not have an equivalent in
English, it will be referenced in the text by its original abbreviation.

40

function was linearized by the introduction of auxiliary variables and then
solved using the G A M S solver. However, the model was solved only on the
level of larger regions due to memory limitations. Applying A D M M allows
the objective to stay non-linear, thus reducing the number of variables needed
and also decreases the number of constraints, as the model inequalities can
be encoded via the use of indicator functions in the objective. Also if the
model needs to be applied to a large dataset, that requires the memory to be
split across multiple devices, the block splitting form (2.14) of A D M M can
be employed. The addition of the local network (see section 4.2.1) is also an
improvement on the previous model.

4.2 Model description
First lets introduce a few sets needed for description of the model. The 277
ORPs, i.e the nodes of the network, form the set / . Variables connected to
these are usually denoted with an index i, but when it is necessary, an index
o is used. This facilitates the distinction between a waste origin node o and
a local node i. The 1070 reported connections, i.e. the edges, create set J
and, for brevity, the symbol J(i) represents a set containing only the cycle
(i, i) for node i. Set L then represents all of the available treatment options,
i.e.: material recovery, energy recovery, export, alteration and option called
"others". As the recorded flows contain two values for each edge, these are
divided into two scenarios, marked with a — index for the outflow values and
a + index for the inflow.

The following is a list of symbols and equations forming the model def­
inition. A l l of the variables are assumed to be from the set of real numbers R.

Input data

recorded flow on the edge j for given scenario (+ or -)

Af • incidence matrix for given scenario (+ or -)

pi recorded production in the node i

ti i recorded amount of sludge treated in the node i by the method /

dj length of the edge j

Parameters

aa weight of each producer (used for stability analysis)

41

/3 weight between the two objective functions

W weight of penalization

8i 0 index equality indicator (1 for % = o, 0 otherwise)

Wa weight of the edge j (in interval from 0 to 1)

a threshold for the zero penalization

zl, z\ optima of the two objective functions

Variables

Tj error in the recorded production

error in the recorded flow for given scenario (+ or -)

Xa 0 amount of flow originally from the node o going through the edge j

tflQ amount of sludge treated directly in the node i

tc^ amount of sludge treated after local transportation at the node i

x\%l amount of flow going directly through the node i

tfa l amount of sludge treated in the node i by the method /, originating
from the node o

Objective functions

jeJ iel

Z2 J2 Yl d J a o x j , o + w j 2 \ r i - aPi i (4 - 2)
jeJ oel iel

+ ^ 7Y 2 (4-3)

42

Constraints

$i,o(Pi + Ti) + E AhxJ,o = E Aljxo,o + + *%o Vt, o G J (4.4)

P o + r 0 = D C + ** r) V o e / (4.5)

•'7 + €j - E E - l ' , r ' 7 . . . V ^ e J (4 - 6)

X
J J

iel oel

SiM++ e Ahxi,o = <o + tj> + E x,,o v*> ° e 7 (4-
jeJ\J(i) jeJ(i)

o + E *i,o - C = E v*. 0 e 7 (4-9)
ieJ(i) ieJ\J(»)

= D C + V i e J (4.10)
ZeL oe/

E*?o,«=*i,« V i e / ; V / e L (4.11)
oe/

E C = C + S V t , o 6 J (4.12)
ZeL

x " + e - > 0 V j 6 J (4.13)

x+ + e+ > 0 V j e J (4.14)

P; + T; > 0 Vie I (4.15)

*;,o, <o , C> *?0,J. < o > 0 V i , o e I; Vj e J ; VZ e L (4.16)
The model has, as mentioned above, two optimum criteria that are de­

scribed by the equations (4.1) and (4.2). The first criterion z1 (4.1) tries to
minimize the weighted sum of absolute errors from the estimate. The weight
parameter is defined V j e J as follows:

'M, i£xj-xf = 0

W = J xj + x+ . (4.17)
1 — Vr5 otherwise.

2\Xj - 4 |

43

The second criterion z2 (4.2) penalizes long-distance transportation by
which it tries to simulate economic considerations of actors in the network.
These two criteria are then combined together, with weight (3, in the objective
function z3 (4.3) of the whole model. Because the values of the criteria are
not comparable, these need to be in a normalized form. This is done by
solving the model with only one of the criteria as the objective function and
then dividing the criteria terms by their respective separate objective values,
denoted by z\ and z\. Finally, the model can be then solved for the third
time, now with the whole objective function.

The first group of constraints (4.4) is a balance equation for each individ­
ual node. The total amount of produced and imported sludge must be the
same as export and treatment. Constraints (4.5) then represent a balance for
each producer, meaning that the sludge being produced in a node gets fully
processed. The possible errors in reported production data is represented
by the variable ri. The treatment data amounts are considered as trustful,
meaning that there is no error variable being associated with them. Relation­
ships between the estimated flow and its differences from the known values
are described by equalities (4.6) and (4.7), for scenarios — and + respectively.

Equations (4.8), (4.9) and (4.10) describe the local network of each node
that arises from the data being aggregated (see 4.2.1 below). The distri­
bution of produced amounts between the known levels of different means
of treatment is represented by the variable tfQ t and equalities (4.11) and
(4.12). Finally the inequalities (4.13), (4.14), (4.15) and (4.16) are simply
enforcing non-negativity for all of the estimated production, treatment and
flow amounts.

4.2.1 Local networks and aggregation
It is highly impractical, when working with networks on such a large scale,
to model every single node and edge in the system. This means, such as is in
this case, that the data is available only in a more coarse aggregated version,
where nodes represent whole local networks of individual producers, trans­
shipment facilities and treatment plants. When the flow in this more detailed
network passes through multiple of these nodes, that are being aggregated
into one singular node, it gets then represented by a cycle, because the ori­
gin and target nodes become identical. These arising cycles are, however,
ambiguous on their own. In order to make sense of them, the flow passing
through each respective aggregated node and a potential cycle needs to be
divided among multiple variables. It needs to be differentiated between a sce­
nario where the flow passes through several internal points of the node (flow
X(iti) on the cycle or when it only "bounces" in one place, introducing

44

new variable xfir. Moreover the treatment plants can accept the sludge after
a chain of local transportations (t^yc) or be serviced directly from outside
[tfir). These relations then create simplified versions of the local networks
in each node of the aggregated version (see Figure 4.1) and are represented
in the model by constraints (4.8), (4.9) and (4.10).

Local cycle

Figure 4.1: Local network diagram for aggregated node i.

4.3 Model transformation for the A D M M al­
gorithm

In order to apply the A D M M algorithm, the model needs to be in the general
form

minimize /(x)
s.t.: A x = b

x e Rn,

where / : Rn —> R U { + 0 0 } is closed proper convex. The model that is being
described in 4.2 almost conforms to this form, with the exception of several
non-negativity inequalities. However, because the objective function / can
take on extended value of + 0 0 , these inequalities can be encoded by the use

45

of indicator functions. A model of form

minimize /o(x)
s.t.: A x = b

X > c

can be then transformed into

minimize f0 (x) + / { x > c } (x)

s.t.: A x = b
x e Rn,

where J | x > c | (x) represents a piecewise sum of indicator functions for each
individual inequality

n

-f{x>c}(x) = /^{x^cA^i)-

In this form, the transformed model is then ready for the A D M M algorithm:

minimize z + Ix

s.t.: A x = b
x e Rn,

where Ix is the indicator function for all of the inequalities present in the
original model

1X = I{e->-x-} + !{€+>-x+} + 1{r>-p} + ^{cc^O} ^ ^

+ J | t d i r - > 0 } + I{tcy°>o} " I " I{xdir>o}->

x is a vector of all of the model variables, A is the coefficient matrix for all
of the equality constraints and b is a vector of their right-hand-side.

It should be noted, that because the solution for variable t° is ambiguous
in the original model, the variable, together with its constraints (4.11) and
(4.12), is being omitted from the transformed model and is later solved with
a different heuristic approach in Section 4.5.

4.3.1 Simplifying the proximal operators
The usage of the A D M M algorithm requires to evaluate the proximal op­
erator of the objective function in each iteration. This can be in general a

4 6

time consuming operation, however in our case the proximal operator can
be greatly simplified. Because all of the three objective functions z1, z2,
and z3 can be split under addition into terms containing only a single vari­
able (even after adding the indicator function Ix from previous section), the
proximal operator can be evaluated variable-wise (see (1.3)), thus allowing
for transformation into simpler scalar formulas.

The split terms from all of the objective functions then appear in these
three scalar forms:

<Pind(x) = 1{x>a} (4-19)

<Plin(x) = c x + I{x>a} (4 2 °)
<Pabs^)=^-b\+I{x>a}- (4 - 2 l)

Deriving a formula for the proximal of (4.19) is straightforward, as the proxi­
mal operator of an indicator function is equivalent to the (Euclidian) projec­
tion onto the set being indicated, in this case a ray (see (1.6)). Values below
the point a get projected onto it, the rest stays the same:

prox (x0) = max{a;x 0 }. (4.22)

Proximal operator for the second function (4.20) can be, applying (1.5),
transformed into

prox (xn) — prox (xn — pc)

and after the substitution of 4.22, we obtain

p r o x

P ^ H „ ^ = m a x (a ; xo - P°}- (4-23)

The formula for the third proximal operator for function (4.21) will be
derived from the definition:

1
P r o x « . « , M = argmin (c\x -b\+ I{x>a}(x) + — \\x - x0g]

First, if x would be < a, then the value of the indicator function would be
+oo, overpowering the other terms and reducing the operator into a simple
projection, similar to (4.22):

prox (xQ) — max{a; argmin (c\x — b\ + — \\x — ^o l l l) } -

47

The general optimality condition of the inner expression is

0 e V(^-||a; ~ XQWD + d(c\x - b\) 2p
0 e x — x0 + cp d\x — b\.

If x ^ b, then the subgradient d\x — b\ — sga(x — b) and by substituting
x — x — b and x0 — x0 — b we obtain

0 = x — x0 + cp sgn(x)
x — x0 — cpsga(x). (4.24)

Now

and

x < 0 =>- x0 + cp < 0
x0 < —cp

x > 0 =>- x0 — cp < 0
x0 > cp,

meaning that | x 0 | > cp and sgn(x) = sgn(x 0). By substituting the latter
into (4.24) we obtain

x — x0 — cpsga(x0); for \x0\ > cp. (4-25)

In the case of x — b (ie. x — 0), the subgradient d\x — b\ is equal to the
interval [—1; 1], resulting in

0 G cp[—1; 1] + b- xQ

x0 G [~cp;cp] \x0\< cp,

meaning that
x — 0; for \x0\ < cp. (4.26)

The combination of (4.25) and (4.26)

0, for | x 0 | < cp
x0 — cpsgn(x 0), for | x 0 | > cp

can be merged, by using sgn(x0) • | x 0 | = x0, into

x — sgn(x0) • max{0; \x0 \ — cp}

and by substituting back for x and x0 we get the closed form of the optimum

x — b + sga(x0 — b) • max{0; \x0 — b\ — cp}.

The closed form of the whole proximal operator is then

prox (xQ) — max{a; b + sga(x0 — b) • max{0; \x0 — b\ — cp}}. (4.27)

48

x

4.4 Applying A D M M

4.4.1 Preparation
The implementation of the A D M M algorithm that is being used (described
in Chapter 3) requires mainly three things. Linear constraints of the whole
model described by a single matrix A, accompanied by its RHS vector b,
Cholesky factorization of matrix (I + A • AT) and proximal operator of the
objective function. The following is a description of the process leading to
obtaining these.

The dataset for the model contains all the input values (x^, Af-, pi, tit,
dj) and the weights WA are also already known and pre-calculated. These
values together are enough for creation of the constraint matrix A. Because
the variables of the model are represented by a multi-indexed vectors, they
need to be first "unwrapped" and joined together in a single vector. The
library CatViews allowed to streamline this process greatly. When provided
with a list of lenghts of the individual vectors, it allocates and returns a
single vector with a combined length of these, together with views refer­
encing individual parts in it and also with their index ranges. The matrix
A , together with the vector b is then populated in blocks for each group of
constraints and for each variable vector (referenced by the generated index
ranges). Because most of the variables appear inside a sum that does not
sum all of the indices, the resulting pattern of coefficients in these blocks is
usually very sparse. Also some of the blocks are left empty all-together, as
not all of the variables appear in all of the constraints. This means that the
sparse storage implementation for the matrix is ideal. The resulting matrix
has 157181 rows (constraints) by 399844 columns (variables) and a sparsity
ratio of about 0.003%. Creating the factorization object then simply requires
the use of function cholesky, which works on both sparse and dense matrices.

Because of the derived formulas (4.22), (4.23) and (4.27), implementing
the proximal operators is quite straightforward. The only problem stems from
the "control" parameters a and (3, as they appear in the objective functions
and also in-turn in their proximal operators. Values of these are not known
beforehand as we may want to tweak them in the following computations.
Moreover the multi-criterial objective function z3 needs the optimum values
z\ and z\ of the respective criteria. To overcome this obstacle a partial ap­
plication approach is used. A sort of "creation" function gets defined, which
when provided with values of these parameters, in-turn returns another func­
tion implementing the proximal operator itself, with the parameters already
set. For example, the "creator" function for z3 is implemented as follows

49

function make_prox_z3(kl,k2,ad)
kl2W = (kl+k2)*W
klw = k l .* w
k2ad = k2.*ad
return (p,x,x0) -> @views begin

proxi|)abs! (x [v r n g [l]] , p, -p, ap, kl2W, xO[vrng[l]])
proxi|)abs! (x[vrng[2]], p, -x_a, 0, klw, x0[vrng[2]])
proxi|)abs! (x[vrng[3]], p, -x_b, 0, klw, x0[vrng[3]])
proxi|)lin! (x[vrng[4]], p, 0, k2ad, x0[vrng[4]])
proxi|)ind! (x[vrng[5]], 0, x0[vrng[5]])
proxi|)ind! (x[vrng[6]], 0, x0[vrng[6]])
proxi|)ind! (x[vrng[7]], 0, x0[vrng[7]])

end
end

The array vrng used in the snippet simply stores ranges of the individual
variable vectors in the concatenated vector x.

The returned anonymous inner function is a closure, meaning that it
captures all of the variables defined in the outer function and also all of the
surrounding data variables, which are omitted in the snippet, meaning that
they are still available even if they fall out of scope. The individual proximal
operators in it are implemented accordingly to their derived formulas.

function prox<|)abs! (x,p,a,b,c,x0)
@. x = max(a, b + sign(x0 - b) * max(0, abs(x0 - b) - p*c))

end

function proxi|)lin! (x,p,a,c,x0)
@. x = max(a, xO - p*c)

end

function proxi|)ind! (x,a,x0)
@. x = max(a, xO)

end

The input parameters k l and k2 respectively are later being defined as

z2
serving as the weights for both criteria. These were originally left unsealed,
but because z\ and z\ reach high values and j3 e [0; 1], the resulting multipli­
ers were too small. This led to numerical floating-point errors, thus requiring
a scaling by an appropriate factor. As this just represents multiplying the
objective function by a constant, the optimal solution stays unchanged.

50

4.4.2 Execution
With all of the model data prepared, the model was ready to be solved. First
for the two criteria objectives, yielding the values z* and z\. These were then
in turn used for the final computation, optimizing the whole objective z3 with
the weight parameter j3 set at 0.5, representing both criteria equally. The
precision parameters were set as eret — 10~4 and eabs — 10~8 and upper
bound on iterations was set to 650000. The parameter p was found for
each objective function by the golden ratio algorithm on model with highly
aggregated data (six node graph) in order to minimize the running time.
As the relation between p and the running time is in general not convex,
the local optimization found only a good estimate, rather then the optimal
value2. Table 4.1 then displays execution details for these computations.

Table 4.1: Execution details for each objective function of the model

There seems to be a big disproportion in the execution time for each
objective function. Objective z3 finishes after the smallest time out of the
three, even though it encompasses both of the criteria. Their execution times
also differ by a lot, also considering that zx reaches the iteration limit and
is forced to stop. These discrepancies may be linked to the choice of the
parameter p and its selection should be a basis for further study.

To inspect the convergence rate of the algorithm, the values of both primal
and dual residues for z3 were recorded as shown in Table 4.2. It is quite
clear that most of the improvement was achieved in the beginning of the
computation, however the change for higher iterations was still deemed large
enough to warrant the use of the chosen precision values. The expressions
for calculating the primal and dual residues can be found in [6] and [11].

2It should be also noted that there is no guarantee for these p values to be performing
well on the main model.

iteration count exec, time [h] parameter p

1. criterion zx

2. criterion z2

whole model z3

650000 75.24 718.79
156486 18.30 97.94
27431 3.07 1.75

51

iteration primal residuum dual residuum

1 12534.3 123353.47
500 299.52 289.32
1000 167.26 126.42
2000 85.77 76.43
4000 50.42 39.01
8000 24.83 12.44
16000 16.53 3.31
27432 9.13 2.58

Table 4.2: A D M M convergence for z3

4.4.3 Weight of the criteria
The weight j3 between the two criteria was set ambivalently as 0.5. However,
observing its impact on the results may be a good starting point for a further
research. In order to measure this impact, the objective z3 was repeatedly
solved with different values of (3 ranging from 0 to 1 with 0.05 step increments.
Values of the individual criteria were calculated from the result for each of
these steps and are, together with the value of z3, displayed in Figure 4.2

For values of j3 equal to zero, or one, the objective z3 is equal to the
normalized z2, or z1 respectively. Because of the normalization, the result
should always be equal to one in these points, as we are dividing the same
values. As it is clear from the picture, the other objective then becomes
grossly unsatisfied, reaching multiples of its optimal value3.

Because the objective z3 is always a trade-off between the two criteria, its
value is also in the interval between them, as seen in the figure. Now because
both normalized zx and mentioned before, attaining on one end
large values and are equal to one on the other, they must be equal to each
other somewhere in the middle. Now, because z3 is always between those
two values, it must be in this cross equal to them too, as it has nowhere else
to go (as is also evident from the figure). This crossing point, at least in this
case, does not occur at the value j3 — 0.5, hinting at the possibility, that the
first objective z1 is somehow inherently harder to satisfy than the other one.

It should be noted, that as multi-criteria optimization is not in the scope
of this thesis, these assumptions presented above are not based on proper
mathematical foundations and are presented as-is. They will, however, serve
as a base for further research, as real-life optimization applications often
incorporate multiple criteria to be satisfied.

3The value for z1 that is being cut off in the figure is almost 5200

52

Figure 4.2: Relation between z3 and normalized z1 and z2 for different values
of /3

4.5 Heuristic for variable t °
In the previous computations, as mentioned before, the variable tfQ l was
not included and omitted. The reason for this is that tfQ l is without an
additional information ambiguous in the context of the proposed model. On
one hand, the sum X ^ o 6 / ^ ? o i *s known as it is equal to the dataset value tiX

representing the treatment method / in node i together for all origin nodes
o, providing the distinction between different treatment methods. On the
other hand, the distinction between different origins is handled by t°y^ + tf1^,
which is again equal to X ^ 6 L tf0 t, however now the information about the
different methods is lost. As it is quite clear, connecting these two sides by
the variable tfa l can be done in infinitely many ways, as there is no inherent
reason present in the model, why an origin node should be connected to a
particular treatment option.

In order to assign some meaningful values to tfQ t a following reasoning
was decided upon. The treatment options were ranked by their perceived
cost and rareness, as transporting the sludge further is usually connected

5 3

with more rare and costly operations, whereas the most common option
is usually applied in the vicinity of the waste water treatment plant. This
means, that flow originating from the farthest node should be assigned to the
highest rated treatment options and only after it is "depleted" then the next
farthest node gets assigned to the best options left and so on. This heuristic
approach can then be viewed as a continuous knapsack problem (see [16])
with multiple knapsacks being filled in a predefined sequence. As with the
original problem, a greedy approach is sufficient to reach the optimal solution.
Following is the implementation of this approach in the Julia language.

tL: type-sorted treatment #
L_order = [2, 3, 6, 1, 5, 4]
L_perm = sortperm(L_order)
tL = t[:,L_perm]

tO: distance-sorted treatment #
tO = tC .+ tD
0_perm = [s o r t p e r m (d i s t [i , :] ; rev = true) for i = l : n l]
0_order = [sortperm(0_perm[i]; rev = true) for i = l : n l]
for i = l : n l

t O [i , :] .= tO[i,0_perm[i]]
end

The data parameter ti z is represented by t L and similarly tO represents
the origin side t^+tf1^. As these variables are not indexed in the "preferred"
order, they need to be sorted first. However, because these orderings need
to be reversed in the end, a permutation for each of these is created by the
use of s o r t perm holding a mapping from the ordered indices to the unordered
original. Ordering for treatment options L_order is of course the same across
the network, whereas the distance-to-origin ordering 0_order is different for
each node i.

tOL = zeros(nI, nO, nl_); tOr = copy(tO); t l _ r = copy(tL)
for i = l : n l , o = l:nO, 1 = l: n l _

o_res = t O r [i , o]
l _ r e s = t l _ r [i , " l]
i f l _ r e s >= o_res

t L r [i , l] -= o_res
t O r [i , o] = 0

tOL[i,0_perm[i] [o] ,L_perm["l]] = o_res
else

t O r [i , o] -= l _ r e s
t l _ r [i , " l] = 0
tOL[i,0_perm[i] [o] ,L_perm["l]] = l _ r e s

end
end

54

The information about the currently "unassigned" amounts is kept in
variables tOr and t l_r , which are initiated with the full values of to and t L
and then subtracted from as needed. The heuristic is run sequentially across
all of the nodes, iterating over the origin nodes and treatment options, which
are now sorted in the preferred way. The unassigned amounts are compared
for each origin-treatment pair (o, I), with the smaller one being set to 0 and
fully assigned to the bigger, which is then adjusted by this same amount. This
value is also recorded in the variable tOL (representing tfol). As it is being
accessed by the use of the previously created permutation vectors L_perm and
0_perm it is already in the original indexing. After the loop returns, all of
the amounts had been assigned and the heuristic is done.

As this heuristic is rather simplistic, a more sophisticated approach may
be in order. However that would probably require additional information
about the system which may serve as a basis for further research of this
topic.

55

Conclusions

At first, we may conclude that all of the goals of this thesis were met. The
theoretical part overviews the area of convex optimization together with the
more advanced topic of proximal operators, which are gaining in popular­
ity lately. These are then used in order to introduce alternating direction
method of multipliers a modern convex optimization method, together with
its modification suited for the real-world problem that is also being covered.
The possibility of this method to be used in a distributed fashion is also
mentioned.

The concrete A D M M formulation is successfully implemented in the Julia
programing language, as it is designed for technical and numerical computa­
tion and provides suitable tools for their efficient implementation, which are
being taken advantage of. This implementation is then successfully tested
and used on the large multi-criterial waste management model that is de­
veloped together with a research team based at The Institute of Process
Engineering, F M E , B U T , and based on their previous work (see [15]). The
end summary of the computation process reveals potential for further im­
provement of the implementation, as the largely different execution times of
individual criteria may be shortened by more precise adjustments of the step
parameter p. A quick analysis of the criteria weight also uncovers interest­
ing results and will lead to a further research, as multi-criterial models are
common in applied optimization.

The results will be used by the project Computer Simulations for Effective
Low-Emission Energy funded as project No. CZ.02.1.01 /0.0/0.0/16026/0008392
and by the project 470 Sustainable Process Integration Laboratory SPIL,
funded as project No. CZ.02.1.01/0.0/0.0/15 003/0000456, both by the
Czech Republic Operational Programme Research and Development, Ed­
ucation, Priority 1: Strengthening capacity for quality research.

56

Bibliography

[1] Boyd, Stephen P., and Lieven Vandenberghe. Convex optimization.
Cambridge: Cambridge University Press, 2004.

[2] Rockafellar, R. Tyrrell. Convex Analysis. Princeton, NJ : Princeton Uni­
versity Press. 1970.

[3] N . Parikh and S. Boyd, "Proximal Algorithms", Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123-231, 2014.

[4] M . S. Bazaraa, H. D. Sherali, and C. M . Shetty, Nonlinear programming:
theory and algorithms, 3rd ed. Hoboken: John Wiley, 2006.

[5] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New York:
Springer, 2006.

[6] S. Boyd, N . Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers", Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1-122.

[7] A . P. Ruszczyňski and A . Shapiro, Stochastic programming. Boston: E l ­
sevier, 2003.

[8] J. R. Birge and F. Louveaux, Introduction to stochastic programming,
2nd ed. New York: Springer, 2011.

[9] P. Kai l and S. W. Wallace, Stochastic programming. New York: Wiley,
1994.

[10] P. M . Pardalos and M . G. C. Resende, Handbook of applied optimization.
New York, N Y . : Oxford University Press, 2001.

[11] N . Parikh and S. Boyd, "Block Splitting for Distributed Optimization",
Mathematical Programming Computation, vol. 6, no. 1, pp. 77-102, 2014.

57

[12] The Julia Project, 2020. The Julia Language Documentation. Available
at: https://docs.julialang.org/en/vl/ [Accessed June 25, 2020].

[13] J. Bezanson, A . Edelman, S. Karpinsky, and V . B. Shah, "Julia: A
fresh approach to numerical computing", SIAM review, vol. 59, no. 1,
pp. 65-98, 2017.

[14] The Julia Project, 2020. Performance Tips. The Julia Language
Documentation. Available at: https://docs.julialang.org/en/vl/man-
ual/performance-tips/index.html [Accessed June 25, 2020].

[15] R. Somplak, V . Nevrly, V . Smejkalova, Z. Smidova, and M . Pavlas,
"Bulky waste for energy recovery: Analysis of spatial distribution", En­
ergy, vol. 181, pp. 827-839, 2019.

[16] M . T. Goodrich and R. Tamassia, "The Fractional Knapsack Problem",
in Algorithm Design: Foundations, Analysis, and Internet Examples,
John Wiley & Sons, 2002, pp. 259-260.

58

https://docs.julialang.org/en/vl/
https://docs.julialang.org/en/vl/man-

Appendix A

Source code and resources

This appendix displays some selected source files from the computational
part of this thesis. The whole project is also included in the attached archive
file. The folder 'data' contains the input data for the model as well as julia
binary data files (*. j Id) for cached intermediate steps or raw results. Folder
'results' then contains the results in a tabular csv form.

A D M M _ L C P _ s i m p l e . j l

Contains the main A D M M algorithm as described in Chapter 3. The files
ADMM_LCP. j I and ADMM_LCP_X. j I contain a slightly modified version with code
for benchmarking and additional information. Lastly, ADMM_examples. j l con­
tains code responsible for the two examples in Chapter 3 and P r o x _ a l g . j l
creates Figure 1.1.

1 @inbounds function ADMM_LCP!(
2 x': :AbstractArray{<:Real, 1}, # x': vector of variables
3 A::AbstractArray{<:Real,2}, # A: constraint coefficients
4 F, # F: cholesky factorization of (I+AA')
5 b::AbstractArray{<:Real,1}, # b: RHS vector
6 max_iter::Integer, # max_iter: maximum iteration count
7 p::Real, # p: stopping criterion weight
8 £abs::Real, # sabs: absolute error
9 £rel: :Real, # srel: relative error

10 prox!; # prox: proximal operator
11)
12
13 # sizes
14 M = "length(b)
is N = "length(x')
16 ©assert (M,N) == size(A)
17

59

is # variables
19 x = zeros(N)
20 x = zeros(N)
21

22 y = zeros(M)
23 y' = copy(b)
24 y zeros (M)
25

26 # projection
27 AAt = A*A'
28 c = zeros(N)
29 d = zeros(M)
30

31 # stopping criterion
32 n = M+N
33 xr = 1:N
34 yr = N+l:n
35

36 z = zeros (M+N)
37 z' = zeros(M+N)
38 z = zeros(M+N)
39 z _ l a s t = zeros(M+N)
40

41 k = 1
42 while k <= max_iter
43 # primal update
44 prox! (p, x', x - x)
45 0. y' = b
46

47 # projection onto constraints
48 @ . C = X' + X

49 @ . d = y' + y
so y .= F\(A*c .+ AAt*d)
si x.= c.+ A'*(d.-y)
52

53 # dual update
54 @. x = c - x
55 @. y = d - y
56

57 # stopping criterion
58 z' [xr] .= x'; z' [yr] .= y'
59 z [x r] .= x ; z [y r] . = y
60 z [xr] . = x ; z [yr] . = y
61 e p r i = Vn * eabs + e r e l * max(norm(z'), norm(z))
62 Edual = Vn * Eabs + erel * norm(p*z)
63 res = norm(z' - z)
64 res_dual = norm(-p*(z-z_last))
65

60

66 i f (r e s <= e p r i) && (r e s _ d u a l <= E d u a l)

67 break
68 end
69

70 z _ l a s t . = z

71 k += 1
72 end
73

74 return k, x , y
75 end
76

77 function ADMM_factorization(A::AbstractArray{<:Real,2})
78 return cho"lesky(I + A*A')
79 end

M F l o w _ A D M M . j l

The main file of the computation. The input data file can be created from
the excel sheets using MFlow_data.jl and the model itself is handled by
MFlow_model. j l . The results, together with the results from MFlow_tOL. j l
are converted to the tabular files by Kaly_excel. j l .

1 using LinearAlgebra, SparseArrays
2 using JLD
3 include("MFlowjnodel. j l ")
4 include)"ADMM_LCP.jl")
5
6 @T.oad " d a t a / k a l y . j l d "
7 const data = (s e t l , s e t J , setL, d, p, w, x_a, x_b, t , A_a, A_b, a, W)
s const v, (T, e_a, e_b, x, xD, tC, tD), var_beg, var_end = MFlow_variables(nI,

^ nJ, nL, nO)
9

io @load "data/opt_rho.jld"
n const e_abs = le-8
12 const e _ r e l = le-4
13 const max_iter = 650_000
14

15 (make_prox_zl, make_prox_z2, make_prox_z3) =
16 MFlow_make_prox(data.. .)
17

18 (z l , z2, z3) =
19 MFlow_objective(data. . .)
20

21 const M, N = size(A)
22 const F = ADMM_factorization(A)

61

23

24 print"Ln("=== Z l ===")
25 p r o x _ z l ! = make_prox_zl()
26 f i U ! (v , 0)
27 @time z l _ i t e r , = ADMM_LCP!(v, A, F, b, max_iter, p i , e_abs, e _ r e l , p r o x _ z l ! ;

<4 echo = true)
28 z l _ r e s = z l (x , e_a, e_b)
29 @show z l _ i t e r
30 @show z l _ r e s
31

32 const a = Vector{Float64}(undef, nO)
33 f i l l ! (a, 1)
34 ad = vec([a[o]*d[j] for j = l : n J , o=l:nO])
35

36 println("=== Z2 ===")
37 f i l l ! (v , 0)
38 prox_z2! = make_prox_z2(ad)
39 (atime z 2 _ i t e r , = ADMM_LCP!(v, A, F, b, max_iter, p2, e_abs, e _ r e l , prox_z2!;

<4 echo = true)
40 z2_res = Z 2 (T , X, a)
41 @show z 2 _ i t e r
42 @show z2_res
43

44 println("=== Z3 ===")
45 k l = B/zl_res * le8
46 k2 = (l- B) / z 2 _ r e s * le8
47 prox_z3! = make_prox_z3(kl,k2,ad)
48 f i l l ! (V , 0)

49 @time z 3 _ i t e r , vd, yd = ADMM_LCP!(v, A, F, b, max_iter, p3, e_abs, e _ r e l ,
<4 prox_z3!; echo = true)

so z3_res = Z 3 (T , e_a, e_b, x, a, B, z l _ r e s , z2_res)
51 @show z 3 _ i t e r
52 @show z3_res
53

54 @save " d a t a / k a l y _ r e s . j l d " v T e_a e_b x xD tC tD

MFlow_tOL.j l

Contains the heuristic algorithm from Section 4.5.

1 using LinearAlgebra
2 using JLD
3

4 include("MFlowjnodel.jl")
5 @load " d a t a / k a l y . j l d "

62

6 @load " d a t a / k a l y _ r e s . j l d "
7 @load " d a t a / k a l y _ d i s t . j l d "
8

9 v', (T, e_a, e_b, x, xD, tC, tD), var_beg, var_end = MFlow_variables(nI, nJ,
c+ nL, nO)

10 v' .= v
11

12 # tL: type-sorted treatment #
13 L_order = [2, 3, 6, 1, 5, 4]
14 L_perm = sortperm(L_order)
i s tL = t [:, L_perm]
16

17 # tO: distance-sorted treatment #
i s tO = tC .+ tD
19 0_perm = [s o r t p e r m (d i s t [i , :]; rev = true) for i = l : n l]
20 O_order = [sortperm(0_perm[i]; rev = true) for i = l : n l]
21 for i = l : n l
22 t O [i , :] .= tO[i,0_perm[i]]
23 end
24

25 # "product" knapsack #
26 tOL = zeros(nI, nO, nL)
27 tOr = copy(tO)
28 t L r = copy(tL)
29 for i = l : n l , o = l:nO, l = l:nL
30 o_res = t O r [i , o]
31 l _ r e s = t L r [i , l]
32

33 i f l _ r e s >= o_res
34 t L r [i , l] -= o_res
35 t O r [i , o] = O
36 tOL[i,0_perm[i] [o] ,L_perm[l]] = o_res
37 else
38 t O r [i , o] -= l _ r e s
39 t L r [i , l] = O
40 tOL[i,0_perm[i] [o] ,L_perm[l]] = l _ r e s
41 end
42 end
43

44 @save "data/kaly_tOL.jld" tOL

6 3

