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Abstract 

The rapid expansion of process mining tools based on machine learning has transformed the 
capacity to derive valuable insights from intricate business processes. Nonetheless, the effec­
tiveness of these tools heavily relies on the availability of high-quality training data, which 
often presents notable obstacles such as privacy restrictions, data scarcity, and data hetero­
geneity. This study investigates approaches to tackle the issue of data scarcity by suggesting 
the creation of synthetic training data through generative models. The proposed technique in­
tegrates a Generative Adversarial Network to explicitly capture the underlying distributional 
patterns of authentic process data. This strategy concentrates on generating new process in­
stances that closely mirror the intricate characteristics and attributes of the real data. To com­
prehensively evaluate the effectiveness of this method, a comparative study is conducted to 
assess the performance of a Long Short-Term Memory (LSTM) model in contrast to the sug­
gested Generative Adversarial Network (GAN) model, utilizing artificially generated process 
sequence data and authentic data. This comparative analysis is meticulously carried out on 
two widely used datasets in process mining: the BPI Challenge 2012 dataset and the Helpdesk 
dataset. 

The study involves the selection and preprocessing of authentic process event logs, the devel­
opment and training of a specialized G A N for generating process data, the assessment of the 
quality of synthetic data using statistical metrics through comprehensive experiments, and the 
examination of process workflow diagrams derived from both LSTM and GAN-generated data 
to evaluate their originality and accuracy. The results indicate that while the LSTM model ac­
curately reproduces the initial data structure, the G A N introduces more variability, providing 
a wider range of training scenarios. This highlights the potential of utilizing GAN-generated 
data as a training resource for process mining tools based on machine learning, potentially 
enhancing their effectiveness and reliability by exposing them to various and realistic process 
patterns. Subsequent research could investigate the application of this method to process min­
ing activities like analyzing customer journeys or detecting anomalies, exploring alternative 
generative models and evaluation techniques, and integrating domain-specific constraints and 
expert knowledge into the G A N framework to enhance the quality and usability of the gener­
ated data for advancements in process mining capabilities. 

v 





Contents 

Abstract v 

1 Introduction 1 
1.1 Motivation 1 
1.2 Objective 1 
1.3 Thesis Structure 2 

2 Background 3 
2.1 Process Mining and Event Logs 3 
2.2 Synthetic Data and Generation Techniques 5 
2.3 Synthetic Logs Generation Techniques 7 

2.3.1 Deep Learning Models 7 
2.3.2 Deep Generative Models 8 

2.4 Architectural Overview of GAN 10 
2.5 ML Based Process Mining Tools 13 

3 Related Work 15 

4 Methodology 18 
4.1 Dataset Exploration and Pre-Processing 18 

4.1.1 Helpdesk Dataset 18 
4.1.2 BPI Challenge 2012 Dataset 18 
4.1.3 Data Exploration and Pre-processing 20 
4.1.4 Exploratory Data Analysis 22 

4.2 Data Generation Process using LSTM and G A N Models 23 
4.2.1 Data Acquisition and Conversion 24 
4.2.2 Pattern Analysis and Feature Engineering 24 
4.2.3 Machine Learning - Model training for Synthetic data generation . . . 26 
4.2.4 Data Production and Feature Re-engineering 27 

4.3 Evaluation Methods 28 
4.3.1 Sequence Length Analysis 28 
4.3.2 Activity type Occurrence Distribution 28 
4.3.3 Sequence Variance using Sum of Pairwise Normalized Edit Distances . 28 
4.3.4 KL Divergence 29 
4.3.5 Unique Sequence Comparisons 29 
4.3.6 Process Flow Evaluation 30 

vii 



Contents 

5 Implementation 32 
5.1 LSTM Synthetic Sequence Generator 32 
5.2 GAN-based synthetic data generator 33 
5.3 Experimental Setup and Hardware Requirements 36 

6 Experiments 38 
6.1 Model Training Results 38 
6.2 Sequence Length Comparison 40 
6.3 Sequence Variance Analysis 41 
6.4 Kullback-Leibler (KL) divergence 42 
6.5 Activity Type Occurrence Comparison 42 
6.6 Unique Data Comparisons 43 
6.7 Process Flow Analysis 44 

7 Results and Discussions 47 

8 Conclusion and Future Work 49 

viii 



1 Introduction 

Process mining is essential for enhancing business processes by extracting insights from event 
logs that document the sequence of activities in a process. It serves as a link between data 
science and process management, utilizing event logs to discover, monitor, and enhance real-
world processes. In the dynamic realm of process mining, the capacity to analyze and enhance 
intricate processes heavily depends on the availability and quality of the underlying data. How­
ever, a significant challenge in this field is the restricted access to practical datasets that are 
comprehensive, diverse, and adhere to privacy laws.This shortage significantly impedes the 
advancement and validation of sophisticated process mining tools, especially those employing 
machine learning (ML) methodologies. 
Synthetic data generation emerges as a promising solution, enabling the creation of realistic 
and controlled event logs without these limitations. Synthetic data generation techniques have 
been extensively explored in areas like computer vision; however, their application in the do­
main of process mining signifies an emerging and rapidly growing area of study. Synthetic 
data generated not only improves the quality of training data but also provides a solution to 
data privacy concerns, effectively addressing the issues posed by data scarcity. 

1.1 Motivation 

The application of machine learning in process mining has led to a new era of insights and 
optimizations for companies and organizations. The foundational need for process mining is 
the vast amount of data that detail every step, decision, and action within a business process. 
However, despite the critical importance of data in this field, its acquisition poses significant 
challenges, ranging from privacy concerns to data scarcity, which present research endeavors 
to address. Unlike domains such as image processing or natural language understanding, which 
have benefited from large public datasets like ImageNet and GLUE, process mining lacks such 
expansive, standardized datasets. The scarcity of data presents a significant obstacle to con­
ducting process mining studies in various fields. Existing methodologies often do not capture 
the multifaceted nature of business processes and fail to adequately represent the variability 
and complexity inherent in real-world operations. 

1.2 Objective 

This thesis addresses the critical gap in the current landscape of process mining research by 
proposing an innovative approach to generate high-quality, realistic synthetic training data 
tailored for ML-based process mining tools. At its core, this study explores the creation of 
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1 Introduction 

synthetic datasets that not only accurately reflect the distribution patterns of actual process 
data, but also expand the training dataset with unique and diverse sequences. The fundamental 
strategy employed in this research involves the utilization of long-short-term memory (LSTM) 
networks and generative adversarial networks (GAN) using a transformer encoder as both a 
generator and a discriminator. 
The generated synthetic data is expected to have the same distributions as real data. In addition, 
the size of the process data can be increased to include novel process sequences, eventually 
adding more diversity to the original data set. The research question addressed in this work is 
"Can Generative Adversarial Networks and traditional LSTM models be used to generate synthetic 
process data, effectively and efficiently, while preserving the underlying distribution and patterns 
of the original data". 
The purpose of this thesis is to design, implement, and test a synthetic data generator based on 
Generative Adversarial Networks and LSTM. For a proof-of-concept, sample datasets are used 
to train the models of the proposed solution that subsequently will generate new synthetic 
data. The result is an analysis that compares both the LSTM and the GAN-based framework 
to conclude with the advantages and disadvantages of using Generative Adversarial Networks 
for Synthetic Data Generation. 

1.3 Thesis Structure 

This section outlines the organization of the chapters in this thesis. The background is covered 
in Chapter 2 providing a thorough description of the main concepts and technologies rele­
vant to this work, including Process Models, Synthetic data generation techniques using deep 
learning, and generative models such as LSTM, GAN, and VAE. Chapter 3 discusses previous 
related work in this thesis. Methodology is the main focus of Chapter 4, which also explores the 
technical details of Generative Adversarial Networks (GAN) and clarifies the steps involved in 
data collection and preprocessing. In Chapter 5, the implementation steps for the generation of 
synthetic data using LSTM and G A N are described. Chapter 6 investigates and compares the 
quality of the data generated by both models based on statistical similarity metrics followed 
by the analysis of the synthetic data generated using process workflow models. Chapter 7 sum­
marizes key findings and contributions and suggests potential avenues for future research in 
this innovative domain. In Chapter 8, the thesis provides its conclusions and outlines future 
research directions. 
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2 Background 

2.1 Process Mining and Event Logs 

Process mining is a family of techniques that allow users to interactively analyze data extracted 
from enterprise information systems to derive insights to improve one or more business pro­
cesses. Introduced by Wil van der Aalst[l] in the late 1990s, it has since evolved to become a 
key tool in understanding and improving business processes. At its core, process mining re­
volves around event logs, process models, and discovery algorithms. Event logs are sequences 
of events captured by IT systems; process models represent the expected flow of these events; 
and discovery algorithms are used to extract process-related information from the event logs. 
This synthesis provides unprecedented insights into the actual workings of business processes. 
Process mining tools extract business process execution data from an enterprise system and 
consolidate them into the form of an event log. 

Process mining can be broadly categorized into three types: 

• Discovery: Identify the actual processes by analyzing the event logs. 

• Conformance: Check if the real-life processes conform to the predefined models. 

• Enhancement: Enhancing existing process models based on insights gained from event 
logs. 

An event log is a hierarchically structured file with historical information about the execution 
of a business process generated by a process-oriented information system. Cases organize 
attribute values within an event log. A case contains a group of events that belong to the 
same business process execution. A n event is made up of properties or attributes. The typical 
attributes of an event are the name, timestamp, and resource of the activity. Depending on the 
granularity required in the event log and the type of process in which this event log will be 
used, other attributes can be included. In this direction, the sequence of events related to a case 
is known as a trace. Figure 2.1 illustrates an example of an event log. Event logs are typically 
used in the analysis of process-oriented systems and are central to the field of process mining. 
Each row in the log represents an event that has occurred within a system or process. In the 
following sections, Each characteristic will be thoroughly examined in the demonstration of 
the event log. 

Some useful concepts for understanding the basis of event logs in the context of process mining 
are discussed next. 
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Case 10 Jimestamp Activity 
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22 case9707 24 6 09 12:24 Man Registered 2nd lirie 2 
21 raseq?n? ?4 n rw 12:30 Mail offered 7nd line 2 

Everns 

Figure 2.1: Sample Event log file 

Definition 1. An event refers to a case, an activity, and a point in time. The event is charac­
terized by a set of attributes such as ID, timestamp, cost, and resource, among others. 

Definition 2. A trace can be seen as a case, i.e., a finite sequence of events z is the element of 
E*, such that each event appears only once. 

Definition 3. A n event log consists of a set of cases, and cases consist of events, such that 
each event appears, at most, once in the entire log. 

The events for a case are represented in the form of a trace, i.e., a sequence of unique events. 
Moreover, cases, such as events, can have attributes. The structure of an event log is made up 
of the following elements. 

• A n event log consists of cases. 

• A case consists of events such that each event relates to precisely one case. 

• Events within a case are ordered. 

• Events can have attributes. Examples of typical attributes are activity name, time, costs, 
and resources. 

Definition 4. A Business process model is the graphical and analytic representation used 
to capture the behavior of an organization's business processes. A business process model is 
usually expressed through different graphic methods or notation languages, such as flowcharts, 
UML, workflows, Petri nets, and BPMN, among others. 
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2.2 Synthetic Data and Generation Techniques 

Real-world data has a long history in artificial intelligence (AI). Collecting, processing, or dis­
tributing real-world datasets is often associated with data collection costs, quality problems, 
and privacy concerns. Synthetic data generation is the process of creating artificial data that 
mimic the statistical patterns and properties of real-life data. Synthetic data is generated using 
algorithms, models, or other techniques. 

*:•* * v. 

•t - • - •* 1* • ft _ft • 
10 * 

•10 

•• * 

Original data Synthetic data 
The synthetic data retains the structure of the original data but is not the same 

Figure 2.2: Synthetic Data vs Real Data 

Synthetic data is randomly generated with the intent of hiding sensitive private information 
and retaining statistical information on features of the original data. Synthetic data are broadly 
classified into three categories: 

• Fully Synthetic Data: Entirely artificial, this data type does not incorporate any ele­
ment from the original dataset. It involves estimating the distribution functions of fea­
tures in the original data and generating privacy-safe series based on these estimations. 
Techniques such as bootstrapping are commonly used. Its strength lies in robust privacy 
protection, though the data accuracy might be less reliable. 

• Partially Synthetic Data: This approach involves substituting sensitive attributes in 
the original data set with synthetic values, particularly for data points at high risk of 
revealing private information. It is a method that seeks to balance data privacy with 
fidelity to the original dataset. Techniques like multiple imputation and model-based 
approaches are employed, which is also useful for addressing missing data issues. 

• Hybrid Synthetic Data: Combining elements of both real and synthetic datasets, this 
method involves pairing each random real data record with a closely related synthetic 
one. The resultant hybrid data benefits from the advantages of both full and partial syn­
thesis, offering improved privacy and utility, but at the cost of increased memory and 
processing requirements. 
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2 Background 

In a report on synthetic data, Gartner predicted by 2030 most of the data used in AI will be 
artificially generated by rules, statistical models, simulations, or other techniques. Figure 2.3 
shows the trend for synthetic data to overshadow real data by 2030. 

By 2030, Synthetic Data Will Completely Overshadow Real Data in AI Models 

2020 2030 Time 
sources: Gartner 
750175.C 

Gartner 

Figure 2.3: Synthetic data will become the main form of data used in AI. Source: Gartner, "Mav­
erick Research: Forget About Your Real Data - Synthetic Data Is the Future of AI," 
Leinar Ramos, Jitendra Subramanyam, 24 June 2021 [ Image Source / NVIDIA] 

The three most popular approaches to generate synthetic data are discussed below: 

1. Rule-Governed Synthetic Data Creation: This technique uses explicit guidelines, 
constraints, and mathematical expressions to craft synthetic data that adhere to preestab-
lished patterns. It is especially effective for data with known structures or links, such as 
the creation of synthetic time sequences or simulated sensor data. 

2. Synthetic Data Generation through Statistical Modeling: This approach uses sta­
tistical models to produce artificial data. These models are trained on actual datasets 
to assimilate the inherent patterns and distributions, allowing the creation of new data 
instances that mirror the original data. Typical examples include the use of Gaussian 
mixture models, autoencoders, and generative adversarial networks (GANs). 

3. Combined Methodologies for Synthetic Data Generation: This strategy merges 
rule-based and model-based techniques for synthetic data creation. By blending deter­
ministic rules with statistical models, combined methods offer the versatility to produce 
varied and intricate data sets while upholding certain specific features and constraints. 

In this work, G A N and LSTM networks will be used as primary methods for data synthesis. 
This specialized approach will allow us to explore the ability to generate realistic and complex 
data sets, tailored to enhance machine learning applications in process mining. 
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2.3 Synthetic Logs Generation Techniques 

A diverse array of machine learning techniques have been employed to create artificial se­
quential event log data, increasing the availability of process data to train and evaluate process 
mining algorithms. These techniques encompass a range of approaches including models like 
recurrent neural networks (RNNs), the Transformer network, generative adversarial networks 
(GANs), and others. 

2.3.1 Deep Learning Models 

Deep learning encompasses a broad range of machine learning algorithms that employ artificial 
neural networks with multiple layers to learn intricate patterns from data. These models excel 
at tasks like classification, regression, and anomaly detection, where the goal is to map the 
input data to a corresponding output label or value. Deep learning has revolutionized various 
fields, including computer vision, natural language processing, and speech recognition. 

Recurrent Neural Networks (RNNs) 

Recurrent neural networks (RNNs) are a type of deep learning architecture specifically de­
signed to handle sequential data. They excel at capturing long-range dependencies, meaning 
that they can effectively model the relationships between events that are far apart in an event 
log. This makes RNNs well-suited for generating realistic event sequences that reflect the in­
tricate patterns of real-world processes. 

LSTM (Long Short-Term Memory) 

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) architecture that 
is specifically designed to overcome the vanishing gradient problem, which is a common issue 
in RNNs that makes it difficult for them to learn long-range dependencies. LSTMs achieve this 
by introducing a memory cell that can maintain its state over time, allowing it to capture long-
range dependencies between events in a sequence. Figure 2.4 shows the basic structure of the 
LSTM network. 

Figure 2.4: Structure of LSTM Network 
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Gated Recurrent Unit (GRU) 

Gated recurrent unit (GRU) is another type of RNN architecture that is similar to LSTM but has 
a simpler structure. GRUs also introduce gating mechanisms to control the flow of information 
through the network but do not have a separate memory cell like LSTMs. This makes GRUs 
more computationally efficient than LSTMs, but they may not be as effective at capturing long-
range dependencies. Figure 2.5 shows the simple architecture of the GRU network. 

Figure 2.5: GRU Basic Architecture 

Transformers 

The Transformer, introduced in 'Attention is A l l You Need" (Vaswani et al.)[2], has become 
a cornerstone in Natural Language Processing (NLP). Its encoder-decoder design leverages 
a self-attention mechanism, enabling parallel processing and better modeling of long-range 
dependencies within the language. The encoder creates continuous high-dimensional repre­
sentations of input sequences for the decoder (see Figure 2.6). The decoder integrates these 
representations with previous outputs to generate an output sequence, producing state-of-the-
art results for various NLP tasks. 

2.3.2 Deep Generative Models 

Deep generative models focus on generating new data instances that resemble the underlying 
distribution of the training data. They aim to capture the statistical structure of the data and 
produce samples that are indistinguishable from the real data points. This ability to generate re­
alistic data makes deep-generative models particularly useful for tasks like data augmentation, 
synthetic data generation, and creative applications like art and music generation. 

Variational Autoencoders 

Variational autoencoder was proposed in 2013 by Diederik P. Kingma [3] and Max Welling at 
Google and Qualcomm. VAE provides a probabilistic way of describing an observation in latent 
space. Thus, rather than building an encoder that outputs a single value to describe each latent 
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Figure 2.6: Encoder-decoder structure of the Transformer architecture taken from "Attention 
is all you need" 

state attribute, the encoder is formulated to describe a probability distribution for each latent 
attribute. It has many applications, such as data compression, synthetic data creation, etc. It 
is different from an autoencoder in the sense that it provides a statistical way to describe the 
samples of the dataset in latent space. Therefore, the encoder outputs a probability distribution 
in the bottleneck layer instead of a single output value. However, VAEs also have limitations 
such as smooth data generation, limited data distribution representation, and mode collapse. 
Figure 2.7 shows the general architecture of VAE. 

Figure 2.7: Variational Autoencoder 
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Generative Adversarial Network 

G A N can generate new data instances based on a given training dataset. This is achieved 
through the interplay of two submodels: a generator and a discriminator. The generator creates 
data fabricated from random input, while the discriminator attempts to distinguish real data 
from its fabrications. Through a competitive process, these sub-models continuously improve 
their performance over time. The intricate architecture of GANs will be explored in the next 
section. Additionally, the focus of this thesis will be on the use of GANs to generate synthetic 
event log data. 

2.4 Architectural Overview of GAN 

Generative Adversarial Networks (GANs) were developed in 2014 by Ian Goodfellow [4] and 
his teammates. GANs have two main blocks that compete with each other and can capture, 
copy, and analyze variations in a dataset. The two models are usually called Generator and 
Discriminator(Figure 2.8). The generator network takes random input (typically noise) and 
generates samples, such as images, text, sequences, or audio, that resemble the training data 
it was trained on. The goal of the generator is to produce samples that are indistinguishable 
from the real data. 

Figure 2.8: Generative Adversarial Network Architecture 

As training progresses, the generator becomes more adept at producing realistic samples, while 
the discriminator becomes more skilled at differentiating between real and generated data. 
Ideally, this process converges to a point where the generator is capable of generating high-
quality samples that are difficult for the discriminator to distinguish from real data. 

The adversarial training implies that only one of the two networks will finally succeed. 

• Generator: This will succeed if the discriminator, acting as a binary classifier, achieves 
a 50 percent accuracy in classifying real and synthetic data. This is the accuracy of a 
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random guess and means that the generator has learned a data distribution that generates 
data that are indistinguishable from the discriminator. 

• Discriminator: This will succeed if it achieves 100 percent accuracy, being able to cor­
rectly classify between the real and the synthetic data generated by the generator. 

Generator Model 

A key element responsible for creating fresh, accurate data in a Generative Adversarial Net­
work (GAN) is the generator model. The generator takes random noise as input and converts it 
into complex data samples, such as text or images. The underlying distribution of the training 
data is captured by layers of learnable parameters in its design through training. The generator 
adjusts its output to produce samples that closely mimic real data, as it is being trained by us­
ing backpropagation to fine-tune its parameters(Figure 2.9). The generator's ability to generate 
high-quality, varied samples that can fool the discriminator is what makes it successful. 

Figure 2.9: Backpropogation in Generator Training 

Generator LOSS(JG) 

For generated samples, the generator minimizes the log likelihood that the discriminator is 
right. Due to this loss, the generator is incentivized to generate samples that the discriminator 
is likely to classify as real (logD(G(zj)) close to 1). 

JG = --Z?=1logD(G(zt)) m 
where 

• JG measures how well the generator fools the discriminator. 

• log D(G(zj)) represents the log probability that the discriminator is correct for generated 
samples. 

• The generator aims to minimize this loss, encouraging the production of samples that 
the discriminator classifies as real (log D(G(zj)) close to 1. 
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Discriminator Model 

An artificial neural network called a discriminator model is used in Generative Adversarial 
Networks (GAN) to differentiate between generated and actual input. By evaluating input 
samples and allocating the probability of authenticity, the discriminator functions as a binary 
classifier. Over time, the discriminator learns to differentiate between the genuine data of 
the dataset and the artificial samples created by the generator. This allows it to progressively 
hone its parameters and increase its level of proficiency. Maximizing the discriminator's ability 
to accurately identify generated samples as fraudulent and real samples as authentic is the 
objective of the adversarial training procedure. The discriminator updates its weights through 
backpropagation of the discriminator loss through the discriminator network(Figure 2.10). The 
discriminator becomes increasingly discriminating as a result of the interaction between the 
generator and the discriminator, helping the G A N to produce realistic synthetic data in general. 

Backpropagation 

Real images Sample Discriminator Real images Sample Discriminator u 3 
tfi 3 

a 
c £ Generator Generator 

an
d<

 

DC 

Sample 

Figure 2.10: Backpropogation in Discriminator Training 

Discriminator LOSS(JD) 

The discriminator reduces the negative log-likelihood of correctly classifying both produced 
and real samples. 

JD = — £ log (D (XI)) - - £ log (1 - £> (G ( X i))) 
in i=l III i=l 

MinMax Loss 

In a Generative Adversarial Network (GAN), the minimax loss formula is provided by: 

mmmzxV(D, G) = Ex ~ pdata{x)[\ogD{x)} + Ez ~ pz{z)[\og{l - D(G(z)))} 
G D 

where 

• G is the generator network and is D is the discriminator network 
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2.5 ML Based Process Mining Tools 

• Actual data samples obtained from true data distribution pdata(x) are represented by x. 

• Random noise sampled from previous distribution pz(z) (usually a normal or uniform 
distribution) is represented by z. 

• D (x) represents the probability that the discriminator will correctly identify the actual 
data as real. 

• D(G(z)) is the likelihood that the discriminator will identify generated data from the 
generator as authentic. 

2.5 ML Based Process Mining Tools 

Gartner defines process mining tools as tools that are designed to discover, monitor, and im­
prove processes by extracting knowledge from events captured in information systems to con­
tinuously deliver visibility and insights. Process mining includes automated process discovery 
(i.e., extracting process models from an event log), conformance checking (i.e., monitoring de­
viations by comparing model and log), social network/organizational mining, automated con­
struction of simulation models, model extension, model repair, case prediction, and history-
based recommendations. The magic quadrant for ML-based process mining tools from Gartner 
is shown in Figure 2.11. Several tools leverage ML to provide predictive insights, automation, 
and enhanced analytics. Here are some notable ML-based process mining tools: 

• Celonis offers a comprehensive suite of machine learning-powered process and task 
mining capabilities, providing analytics, customization tools, and automation features to 
streamline business processes. 

• Disco by Fluxicon is a user-friendly tool that provides detailed process analysis and 
visualization, making it accessible to business users. 

• EverFlow utilizes cutting-edge technologies in Big Data and Machine Learning to ana­
lyze large volumes of events, offering simple and intuitive design for process insights. 

• LANA Process Mining by Lana Labs includes an algorithm that enables prediction of 
future process behavior and automated compliance checks. 

• MEHRWERK Process Mining (MPM) combines self-service process mining, visual an­
alytics, and associative analytics on the Qlik Sense BI platform. 

• Minit features advanced process improvement functionalities such as hierarchical visu­
alization, simulation of "what-if" scenarios, and interactive dashboards. 

• mylnvenio provides a comprehensive solution for process mining with functionalities 
such as simulation, decision rule mining, task mining, and analysis of multistage business 
processes. 

• PAFnow by Process Analytics Factory is built on Microsoft Power BI, integrating process 
mining with business intelligence capabilities. 
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2 Background 
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Figure 2.11: Magic Quadrant for ML based Process Mining Tools 

• ProDiscovery from Puzzle Data offers a suite of widgets for process discovery statistical 
analysis, and organizational charts, designed for Big Data processing. 

• QPR ProcessAnalyzer offers advanced analytics to identify case clusters and root causes, 
customizable dashboards, and process prediction. 

• Signavio Process Intelligence is part of Signavio's Business Transformation Suite, facil­
itating seamless integration between mining, modeling, and automation. 

• UiPath The mining process part of an end-to-end automation platform combines RPA 
with AI and cloud technologies to enhance digital business operations. 

The integration of synthetic data into these tools presents a forward-thinking approach, ad­
dressing challenges related to data scarcity, privacy constraints, and the need for comprehen­
sive testing environments. As summarized by the notable tools discussed, synthetic data not 
only catalyze the refinement of process mining algorithms, but also fortifies the robustness 
and scalability of these systems. It represents a strategic asset, ensuring that the development 
of ML-based process mining tools continues to evolve, driven by efficiency, accuracy, and a 
deepened understanding of the underlying process dynamics. 
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3 Related Work 

In March 2017, a study in the paper "A Review Of Synthetic Data Generation Methods For Privacy-
Preserving Data Publishing" by Surendra et. al conducted a review of various methods for gen­
erating synthetic data. The findings of this paper suggest that a significant drawback of the 
majority of the methods analyzed is their dependency on extensive user involvement and ex­
pertise. Many of the synthetic data generation techniques described necessitate the establish­
ment of a comprehensive set of rules and constraints before the generation process can begin. 
Furthermore, these methods demand that users possess a thorough knowledge of the data's 
domain. 

In the process mining domain, collecting and sharing process data can be challenging due to 
its intricate nature and the presence of sensitive information [5] The hidden Markov model has 
been employed to expand process datasets by capturing the sequential relationships between 
activities and generating artificial process data [6]. In 2019, Zisgenet al.[7] in their study, imple­
mented an advanced algorithmic approach to generate synthetic sensor event logs, improving 
the efficiency of the process extraction. This algorithm skillfully mimicked the complexity and 
variability of real-world operational data, creating authentic and varied event logs reflective 
of typical business process anomalies. The efficacy of their method, demonstrated through 
the nuanced and realistic nature of the produced logs, was pivotal in refining process mining 
algorithms. The generated logs provided a robust testing ground, ensuring the precision and re­
liability of the algorithm. The findings underscored the value of such sophisticated simulation 
techniques in augmenting process mining tools, particularly in their accuracy and adaptability 
to real-world data dynamics. 

As shown in the work by Sommers et al. (2021)[8] GNNs have also been used for process min­
ing tasks including process discovery and prediction. Although it does not directly address 
synthetic data generation for process mining, it is relevant due to its exploration of advanced 
process discovery techniques using GNNs. The paper provides insights into data preparation, 
process representation, and modeling, indirectly impacting the quality of data used in pro­
cess mining. Although synthetic data generation is not its central theme, it contributes to the 
broader field by introducing advanced methods that can inspire improvements in synthetic 
data quality for process mining applications. Most of these approaches were not based on gen­
erative machine learning models, they were based on simpler algorithms for the development 
of synthetic data generators. 

In recent years, deep generative models like RNN-based models, the Transformer network, and 
GANs have been used in the process mining domain for process event prediction[9][10][ll]. 
These models can also be used to generate process data. There have also been some studies 
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3 Related Work 

focused on different types of synthetic data using Generative Adversarial Networks. To begin 
with, Esteban et al.[12] experimented with replacing the multilayer perceptron in the original 
G A N model with a Recurrent Neural Network (RNN) to generate real-valued time series med­
ical data in a conditional setting. In the same line and motivated by privacy concerns, Choi et 
al.[13] proposed a new model called the Medical Generative Adversarial Network (medGAN) 
to generate realistic synthetic patient records, including discrete high-dimensional variables, 
through a combination of an auto-encoder and a GAN. There are some efforts in the direction 
of generating privacy-preserving process data, as discussed in paper by Keyi Li et al. [14] using 
traditional deep learning models. The paper by Yu et al.[15] claims that their Sequence Gen­
erative Adversarial Nets with Policy Gradient (SeqGAN) is the first work to extend GANs to 
generate discrete tokens of data. A n approach that involves the use of reinforcement learning 
techniques in the generator. 

In summary, the context of the studies presented in this section suggests that the idea of gen­
erating synthetic data using deep generative models for the data specific to the process mining 
domain requires more research and hence is the foundation of this thesis. 
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4 Methodology 

This chapter covers a detailed overview of the event log data set, along with the exploratory 
data analysis and the preprocessing steps required, ensuring the suitability of the data for our 
study. Furthermore, the steps in the data generation process are defined that are utilized in this 
thesis. In the last section, the evaluation methods used for the synthetic data are discussed in 
detail. 

4.1 Dataset Exploration and Pre-Processing 

In this thesis, two datasets are used, namely BPI 2012 Loan applications and the helpdesk 
dataset. 

4.1.1 Helpdesk Dataset 

This data set captures activities related to the help desk ticketing process of an Italian software 
company. It has a total of 9 distinct activities, with each case beginning with the creation of a 
new ticket within the ticketing management system and concluding upon issue resolution and 
ticket closure. The data set comprises 3,804 process instances (or "cases") and 13,710 individual 
events. The data set used is already in the anonymized version, with activity names being 
replaced by their IDs [16]. Since the data is already preprocessed and encoded, the detailed 
explanation of the BPI2012 dataset is given in the next subsection to get more information 
about the Process mining data format and activities. 

4.1.2 BPI Challenge 2012 Dataset 

The BPI 2012 dataset represents a series of loan applications within a Dutch financial institute, 
starting with the submission by a customer for a loan and ending in the rejection, cancellation, 
or acceptance of the loan. Figure 4.1 shows the sample event log from the BPI 2012 dataset. 

org:resDurce lifecycle:transi1ion concept: name time:timestamp case: REG DATE case:concept:name case:AMOUNT REQ 

D 112 COMPLETE A_SUBMITTED 2011 -09-30 22:38:44.546000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000 

1 112 COMPLETE A_PARTLYSU EMITTED 2011 -09-30 22:38:44.880000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000 

: 112 COMPLETE A PREACCEPTED 2011 -09-30 22:39:37.906000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 2c:c: 

3 112 SCHEDULE W_Comple ters r i aarwraag 2011 -09-30 22:39:38.875000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000 

4 N a N START W C o m p l e t e r e n aarwraag 2011 -10-01 09:36:46437000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000 

5 10862 COMPLETE A ACCEPTED 2011 -10-01 09:42:43.308000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000 

6 10862 COMPLETE O.SELECTED 2011 -10-01 09:45:09.243000+00:00 2011-09-30 22:38:44.546000+00:00 173688 20000 

Figure 4.1: Sample Event Log from the BPI 2012 Dataset 
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4.1 Dataset Exploration and Pre-Processing 

In the dataset, there are 13087 different cases of loan applications in the timeframe between 
October 2011 and March 2012. These 13087 cases lead to the entry of 262,200 different events, of 
which 164,505 signify the completion of an activity, while the other entries signify the schedul­
ing of the start of the activities[17]. A typical event log gives an organized list of different case 
instances for a particular type of process. In the BPI2012 dataset, all distinct case instances can 
be identified with the 'Case ID' identifier. Each row in the data set can then be interpreted as 
an individual event that takes place in any of these case instances. Each distinct event has an 
associated Activity Name' label such as A_SUBMITTED, A_DECLINED, etc. A n event log will 
also store the timestamp at which a particular event occurs, which is denoted by the 'Com­
plete Timestamp'. For our research, the Case ID and Activity attributes are the only necessary 
attributes among others, as our interest is primarily on the dependencies of the activities. 

Key Columns in BPI 20T2 Dataset 

In our analysis of the BPI 2012 dataset, key statistical insights were derived for the columns 
Case ID, Concept Name, and Timestamp (Figure 4.2), offering a deeper understanding of 
the process flow: 

Case Id A c t i v i t y N a m e C o m p l e t e T i m e s t a m p 

173688 A SUBMITTED 2011 -09-30 22:38:44.546000+00:00 

173688 A_ PARTLYSUBMITTED 2011 -09-30 22:38:44.880000+00:00 

173688 A_PREACCEPTED 2011 -09-30 22:39:37.906000+00:00 

173688 W_Comple te ren aanvraag 2011 -09-30 22:39:38.875000+00:00 

173691 A_SUBMITTED 2011 -10-01 06:08:58.256000+00:00 

173691 A PARTLYSUBMITTED 2011 -10-01 06:09:02.195000+00:00 

173691 A P R E A C C E P T E D 2011 -10-01 06:09:56.648000+00:00 

173691 W Comple te ren aanvraag 2011 -10-01 06:09:59.578000+00:00 

173694 A S U B M I T T E D 2011 -10-01 06:10:30.287000+00:00 

173694 A_ PARTLYSUBMITTED 2011 -10-01 06:10:30.591000+00:00 

173697 A_SUBMITTED 2011 -10-01 06:11:08.866000+00:00 

173697 A_ PARTLYSUBMITTED 2011 -10-01 06:11:09.035000+00:00 

173694 A P R E A C C E P T E D 2011 -10-01 06:11:13.026000+00:00 

173694 W Comple te ren aanvraag 2011 -10-01 06:11:13.390000+00:00 

Figure 4.2: Entries in the event logs with Case ID, Concept Name, and Timestamp columns 

1. Case ID: Serves as a unique identifier for each process instance (e.g., a loan application). 
It is crucial for grouping events related to the same process, allowing an end-to-end view 
of each instance. The data set contains 13,087 unique case IDs. 

2. Concept Name: Represents the specific activities or steps within the process. This col­
umn is key for identifying and analyzing the various stages and actions in the process 
flow. There are a total of 36 unique activities captured in the data set. The start activity 
is A_SUBMITTED', occurring 13087 times, while AJDECLINED' is the end activity with 
3429 occurrences. 
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4 Methodology 

3. Timestamp: Indicates when each event occurred. Essential for time-based analysis, it 
helps in understanding the duration and sequencing of process steps and in identifying 
delays or bottlenecks. 

Relevance to the Research 

The BPI 2012 dataset is of significant relevance to the study on synthetic data generation for 
process mining, underscored by the following considerations: 

1. Depth and Diversity: Provides a comprehensive log of real-world financial processes, 
offering a rich canvas to model synthetic data with a diverse range of process variations 
and event types. 

2. Benchmark Standard: Its role as a reference within the process mining community 
ensures compatibility and comparability with a wide range of existing studies, enriching 
the continuity and context of research efforts. 

3. Data Quality: The granularity and detail within the dataset present an opportunity to 
create high-fidelity synthetic data, which is essential for rigorous process mining analy­
sis. 

4. Ethical Research: Data anonymization addresses privacy concerns, meeting the ethical 
standards necessary for responsible research practices. 

5. Educational Resource: Beyond research, the data set serves as an excellent learning 
tool for process extraction techniques, benefiting educational initiatives. 

6. Community Adoption: Widespread use by the research community provides a sup­
portive backdrop for problem-solving and innovation in process mining methodologies. 

4.1.3 Data Exploration and Pre-processing 

This section begins with Exploratory Data Analysis (EDA) and Preprocessing of the BPI Chal­
lenge 2012 dataset, laying the groundwork for accurate and insightful analysis. The generative 
models will be trained on these preprocessed data, aiming to create synthetic datasets. 

Introduction to PM4Py Library 

PM4Py is a Python library tailored for process mining, a field focusing on the analysis of busi­
ness processes based on event logs. It encompasses a wide array of functionalities catering to 
various aspects of process mining. 

1. Process Discovery: Creating process models from raw event logs (Figure 4.3). Using 
algorithms such as Alpha Miner, PM4Py can discover the underlying process model, 
revealing the sequence of activities and their relationships. 
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4.1 Dataset Exploration and Pre-Processing 

Figure 4.3: A Petri net from Alpha Miner showing business process event frequencies for BPI 
Dataset using PM4py library 

2. Conformance Checking: Comparison of event logs with existing process models to iden­
tify deviations. 

3. Model Enhancement: Enhancing process models using data derived from actual process 
execution. 

4. Decision Point Analysis: Investigating decision points within processes. 

5. Performance and Bottleneck Analysis: Identify and analyze process performance issues 
and bottlenecks. 

In this thesis, PM4Py is particularly used to convert data from XES format, the standard in 
process mining, to CSV. This conversion is a crucial step in preparing the data for analysis 
using Python-based tools such as Pandas. For the evaluation of the synthetic data workflow, 
PM4py is again used to create process models. 

The PM4Py library extends its functionality to the generation of process models like Petri nets, 
which are crucial for visualizing and analyzing business process flows. These models are pivotal 
in process discovery, a key aspect of process mining focused on deriving models from event 
log data. Algorithms such as Alpha Miner are instrumental in this regard, translating logs into 
a set of relationships that inform the creation of Petri nets. These nets serve as a valuable tool 
in both understanding potential business behaviors and in conformance checking—ensuring 
adherence to expected process flows, particularly when assessing synthetic data's alignment 
with real-world processes. Petri nets themselves are a blend of graphical and mathematical 
modeling, representing the concurrent elements of systems through places (conditions) and 
transitions (events), thereby providing a comprehensive view of a process's dynamics. 
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4 Methodology 

4.1.4 Exploratory Data Analysis 

This exploratory data analysis begins with an investigation of the activity counts within the 
BPI 2012 dataset. The aim is to identify which activities are most prevalent and which are less 
common, as this information can highlight routine processes as well as pinpoint bottlenecks or 
rare, but critical, events. By visualizing the activity frequencies as shown in the accompanying 
bar chart, we can start to discern patterns and irregularities that may warrant a deeper dive to 
understand the underlying process behavior and efficiency. 

Frequency of Activities in Event Logs 

As shown in figure 4.4, few activities stand out "WXompleteren aanvraag", "WJSTabellen of-
fertes" and "W_Nabellen incomplete dossiers" and have a lot of actions.The high frequency of 
activities beginning with "W_" in the BPI 2012 dataset bar chart likely indicates routine work 
tasks or steps central to the business process. They might represent repeated actions within 
cases, reflecting standard operational procedures. Alternatively, their prevalence could point 
to potential bottlenecks where tasks tend to accumulate. The activity occurrence is also used 
as an evaluation measure of the synthetic data in this research. 

Activity Count 
W C o m p l e t e r e n aanvraag 

W N a b e l l e n offerees 
W_Nabel len incomplete doss iers 

W_Val ideren aanvraag 
W_Afhande len leads 

A_SUBMITTED 
A_PARTLY5UBMITTED 

A_DECLINED 
A_PREACCEPTED 

• CREATED 
>. 0_SENT 
% 0 SELECTED 
fj A ACCEPTED 
< AF INAL I ZED 

O CANCELLED 
0_SENT_BACK 
A_CANCELLED 

A_KEGISTERED 
A_ACTIVATE D 
A_APPROVED 
0_ACCEPTED 
0_DECLINED 

W Beoorde len f raude 
W W i j z i g e n cont rac tgegevens 

Figure 4.4: Frequency of Activities in Event Logs for BPI 2012 Dataset 

Boundary Activities Analysis 

An analysis of boundary activities is performed on process instances, as shown in Figure 4.5. 
The process log commences with a uniform initial activity across all instances, denoted as 
A.SUBMITTED'. This activity is the inception point for the process, occurring 13,087 times, 
which indicates that every case within the log begins with this step. 
The consistent appearance of A_SUBMITTED' as the start activity suggests a standardized 
process entry across the dataset. The terminal activities within the event log are more var­
ied, reflecting the multiple potential endpoints of a process instance. The dataset exhibits 
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4.2 Data Generation Process using LSTM and GANModels 

S t a r t A c t i v i t i e s : {'A_SUBMITTED': 13987} 
End A c t i v i t i e s : 

{'W_Valideren aanvraag': 2747j 
'W_Wijzigen contractgegevens ' : 4, 
'A_DECLINED': 3429, 
'W_Completeren aanvraag': 1939, 
'A_CANCELLED': 655, 
'W_Nabellen i n c o m p l e t e d o s s i e r s ' : 452, 
'W_Afhandelen l e a d s ' : 2234, 
'W_Nabellen o f f e r t e s ' : 1299, 
'W_Beoordelen f r a u d e ' : 57, 
•0_CANCELLED': 279, 
'A_REGISTERED': 1} 

Figure 4.5: Boundary Activity Analysis 

A_DECLINED' as the most frequent concluding activity with 3,429 instances, followed by 
'W.Valideren aanvraag' with 2,747 instances, and 'WXompleteren aanvraag' with 1,939 in­
stances. 

Analysis of Process Sequence Variants 

Detailed information on the variants is shown in Table 4.1. Of 13087 cases in logs, 3429 
of them (i.e. 26%) are in 1 variant. The variants A_SUBMITTED, AJARTLYSUBMITTED, 
A_DECLINED' emerged as the most frequent, with a count of 3429. This sequence suggests a 
high occurrence of processes being submitted, partially submitted, and then declined. Other no­
table variants include A_SUBMITTED, AJARTLYSUBMITTED, WJ\.fhandelen leads, W_Afhandelen 
leads, A_DECLINED, W_Afhandelen leads' with a count of 1872, and a more complex sequence 
A_SUBMITTED, AJARTLYSUBMITTED, W_Afhandelen leads, WJ\ihandelen leads, W_Afhandelen 
leads, W_Afhandelen leads, AJDECLINED, W_Aihandelen leads' recorded 271 times. These 
variants highlight a series of lead-handling activities interspersed with submissions and de­
clinations. Sequences leading to A_PREACCEPTED' and A . C A N C E L L E D ' stages were also 
observed, though less frequently. Variants ending in A X A N C E L L E D ' suggest processes that 
started but were not completed, a critical aspect for process efficiency analysis. 

4.2 Data Generation Process using LSTM and GAN Models 

The overall data generation process in the thesis by both models is designed to be executed in 5 
steps (Figure 4.6). The input is the XES file, which is the start file for the event logs containing 
event details. The output is a collection of synthetic event sequences, where each sequence 
represents the possible order of events that a process can take. 
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Variant 
A_SUBMITTED, A_PARTLYSUBMITTED, A_DECLINED 
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads, 
A_DECLINED, WJUhandelen leads 
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads, 
WJVfhandelen leads, W_Afhandelen leads, A_DECLINED, W_Afhandelen leads 
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads, 
A_PREACCEPTED, W_Completeren aanvraag, W_Afhandelen leads, W_Completeren aan-
vraag, A_DECLINED, W_Completeren aanvraag 
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aanvraag, 
W_Completeren aanvraag, A_DECLINED, WXompleteren aanvraag 
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aanvraag, 
WXompleteren aanvraag, A X A N C E L L E D , WXompleteren aanvraag 
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads, 
A_PREACCEPTED, WXompleteren aanvraag, W_Afhandelen leads, WXompleteren 
aanvraag, WXompleteren aanvraag, WXompleteren aanvraag, A_DECLINED, 
WXompleteren aanvraag 
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aan-
vraag, WXompleteren aanvraag, WXompleteren aanvraag, WXompleteren aanvraag, 
AJDECLINED, WXompleteren aanvraag 
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aan-
vraag, WXompleteren aanvraag, WXompleteren aanvraag, WXompleteren aanvraag, 
A X A N C E L L E D , WXompleteren aanvraag 
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads, 
A_PREACCEPTED, WXompleteren aanvraag, W_Afhandelen leads, WXompleteren aan­
vraag, WXompleteren aanvraag, WXompleteren aanvraag, WXompleteren aanvraag, 
WXompleteren aanvraag, A_DECLINED, WXompleteren aanvraag 

Table 4.1: Most frequent sequence Variants in BPI 2012 Dataset 

4.2.1 Data Acquisition and Conversion 

The first stage involves sourcing data from the renowned Business Process Intelligence Chal­
lenge (BPI) 2012 dataset. This data set, originally in the XES (extensible Event Stream) format, 
which is a standard format for process mining, is converted to the CSV (Comma Separated 
Values) format for better analysis. 

4.2.2 Pattern Analysis and Feature Engineering 

The main idea behind this step is to detect the correlations in the data set and encode and 
process the data set so that it can be understood and best processed by any machine learning 
or statistical model. 
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Data Format and 
Data Transformation 

Input Dataset 
(xes f i le) 

Real Data Pa t te rn Ana l ys i s 
A n d 
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( xes to csv. Trace encoding, 

Process Sequence generation) 

M a c h i n e Lea rn ing 

Da ta P r o d u c t i o n Fea ture 
Re-engineer ing 

S y n t h e t i c D a t a 

Figure 4.6: Data Generation Process 

Chronological Sequence Generation 

Following conversion, the next critical step is to generate sequences for each case ID using the 
timestamp column. This process involved organizing the events of each case in a chronologi­
cally coherent sequence that reflected the actual flow of activities within the business process. 
By aligning these events according to their timestamps, the temporal integrity of the process 
flow is maintained, which is a vital aspect of accurate process mining. 

Threshold Selection for Sequences 

To facilitate the generation of synthetic data that accurately reflect the complexity and vari­
ability of sequences of real-world processes, it is imperative to establish meaningful thresholds. 
These thresholds serve as benchmarks for categorizing the sequences according to their length, 
which is a proxy for their complexity. The histogram of the sequence lengths in Figure 4.7 pro­
vides the empirical basis for determining these thresholds. Upon analysis of the histogram: 

• Initial Observations: The data are heavily skewed towards shorter sequence lengths, 
with a pronounced peak at the lower end of the sequence-length spectrum. This indicates 
a predominance of simpler process sequences within the data set. 

• Tail Analysis: A noticeable long tail extends towards the higher sequence lengths, sug­
gesting the presence of more complex and less frequent process variants. 

Using these observations, the threshold values are determined. For the experiments, the thresh­
old of 25 is taken. Situated slightly above the median sequence length of 11, it captures the most 
frequently occurring sequence lengths. This threshold ensures that the synthetic data repre­
sent the bulk of the process instances. In applying these thresholds, the aim is to ensure that 

25 



4 Methodology 

Histogram of Sequence Lengths 

0 25 50 75 100 125 150 

Figure 4.7: Histogram of Sequence length for Bench-marking for BPI 2012 Dataset 

the generative models are exposed to a wide range of process sequences during training. This 
approach is designed to produce a synthetic data set that is not just a replication of the most 
frequent sequences, but is inclusive of the diversity inherent in real-world process flows. 

Index-based Encoding for Machine Learning Readiness 

With machine learning as the cornerstone of synthetic data generation, preparing the data 
set for algorithm compatibility is essential. The activity names are translated into integers, 
and it is more than just a data transformation technique. For instance, the event sequence 
['A_SUBMITTED', 'A_PARTLYSUBMITTED', 'WJVfhandelen leads', 'WJVfhandelen leads', ' 
A_DECLINED', 'W_Afhandelen leads'] is converted to [10, 7, 18, 18, 5]. It is a critical step in 
rendering the data suitable for machine learning models, particularly those that are sensitive 
to non-numerical data. This encoding not only makes the dataset machine learning ready, but 
can also be used as an anonymization method to hide private information. It also significantly 
improves the efficiency of the computations, a crucial factor when working with complex gen­
erative models. 

4.2.3 Machine Learning - Model training for Synthetic data generation 

The Machine learning part consists of the model training step where the model is created and 
trained with either a sample of real data or random noise based on its architecture. In this thesis, 
as discussed above, the LSTM and G A N model with Transformer encoder-based generator and 
discriminator are compared for the process sequence generator parameters. 
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4.2 Data Generation Process using LSTM and GANModels 

LSTM as generative Model 

LSTMs are explicitly designed to overcome the limitations of traditional RNNs in learning 
long-term dependencies, making them exceptionally good at capturing complex patterns over 
lengthy sequences. They can generate a wide variety of sequence types, including text, time se­
ries data, and event logs, making them versatile tools for synthetic data generation in different 
domains. 

• Learning Phase: Initially, the LSTM model is trained on a dataset that contains real 
sequences. During this phase, the model learns the underlying patterns, structures, and 
dependencies within the data. This includes learning the probability distribution of the 
sequence elements and their temporal dependencies. 

• Generation Phase: Once the model is adequately trained, it generates new sequences. 
Generation typically starts with a seed (an initial sequence or part of a sequence), and the 
model predicts the subsequent elements one at a time based on the learned distribution. 
The output of each step can be fed back into the model as input to generate the next step, 
continuing until a sequence of the desired length is produced. 

Transformer Encoder based GAN Architecture 

• Architecture Setup: In this setup, both the generator and discriminator are built upon 
Transformer architectures. The Transformer's encoder component is utilized in both 
models to handle sequential input data effectively. The generator learns to produce se­
quences that resemble the training data, while the discriminator learns to distinguish 
between real data from the training set and fake data produced by the generator. 

• Training Phase: During training, the generator receives a random noise vector and 
transforms it into a sequence. The discriminator then evaluates sequences from both the 
generator and the real dataset, learning to classify them as real or fake. This adversarial 
process continues iteratively, with the generator improving its ability to produce realistic 
sequences and the discriminator enhancing its ability to detect synthetic ones. The use of 
Transformer encoders allows both models to better handle the complexities of sequence 
data, leveraging attention mechanisms to capture long-range dependencies within the 
data. 

4.2.4 Data Production and Feature Re-engineering 

Once the models are trained and in a productive state, it is possible to generate new synthetic 
sequences for the defined data set. The input for generation of sequences is given based on the 
model type, and depending on the number of sequences to be generated, the data are generated 
by models in the index encoded sequences format. A l l the transformations performed in the 
step feature engineering can be reversed here to have the same format as the input data to 
make it usable for analysis and evaluation purposes such as creating workflow diagrams, and 
more. 
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4.3 Evaluation Methods 

4.3.1 Sequence Length Analysis 

To determine whether the length variation found in the real process sequences is accurately 
reflected by the synthetic sequences. This evaluation involves comparing the lengths of the 
sequences generated by both models based on the comparison of the sequence length proba­
bility distribution with a real dataset. This assessment is crucial for understanding whether the 
generated sequences follow the sequence-length distribution present in the real data. 

4.3.2 Activity type Occurrence Distribution 

For each unique activity type, the frequency of occurrence within the sequences of the synthetic 
and real data sets is calculated. The goal is to measure how closely the distribution of activity 
types in the synthetic dataset (Sa) matches the distribution in the real dataset (Xa). 

4.3.3 Sequence Variance using Sum of Pairwise Normalized Edit Distances 

Sequence variance refers to the diversity or spread of process sequences in a data set. The 
sum of Pairwise Normalized Edit Distance (SPE) is a metric used to measure the heterogeneity 
or diversity of a set of sequences. It provides a way to quantify this variance by looking at 
how different each sequence is from every other sequence in the data set. The sum of Pairwise 
Normalized Edit Distance can be calculated using the following steps: 

To quantify the internal diversity of the authentic and generated data set, the sum of pair-
wise normalized edit distances (SPE) is used. This statistical metric is critical for assessing the 
variance within a collection of sequences and providing information on the heterogeneity of 
the data set. The SPE is particularly adept at encapsulating the spread of the sequences, which 
is essential for ensuring that the synthetic data mirrors the complexity and variability inherent 
in real-world data. The SPE is computed by following a two-step process. 

1. Edit Distance (ED): The ED is employed to measure how dissimilar two sequences are 
by counting the minimum number of operations needed to transform one sequence into 
the other. Operations considered include insertions, deletions, and substitutions. The 
edit distance in question used here is the Levenshtein distance, which accounts for these 
types of operation. 

2. Normalization: To normalize the impact of the sequence length on our variance mea­
sure, divide the edit distance by the combined length of the two sequences in compari­
son. This normalization accounts for the possibility that longer sequences naturally have 
a larger edit distance, not necessarily indicative of greater diversity. 

The SPE is then calculated using the formula: 

1 
AT2 

N N ED(sj, Sj) 
SPE E E (length(si) + length(sj)) 

(4.1) 
i=lj=i+\ 

where: 
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4.3 Evaluation Methods 

• iV is the total number of sequences in the dataset. 

• Si and Sj are individual sequences of the data set. 

• ED(si, Sj) is the edit distance (Levenshtein distance) between the sequences Si and Sj. 

• length(si) and length(sj) are the lengths of the sequences Si and Sj, respectively. 

The SPE gives an overall indication of diversity within the dataset. A lower SPE value would 
suggest that the sequences are quite similar to each other, indicating low variance. A higher 
SPE value would indicate that there is a wide range of differences between the sequences, 
suggesting a high variance. High variance is often desirable in synthetic datasets because it 
implies that the synthetic data encompasses a wide range of possible scenarios, which can be 
essential for robust machine learning. 

4.3.4 KL Divergence 

KL Divergence, or Kullback-Leibler Divergence, is a measure of information theory that quan­
tifies how much one probability distribution diverges from a second expected probability distri­
bution. It is often used in various fields, including statistics, data science, and machine learning, 
to measure the difference or similarity between two distributions. When comparing real (ob­
served) and synthetic (model-generated) sequences, KL Divergence can help assess how well 
the synthetic data represents the real data. 

• P is the probability distribution derived from the real data. 

• Q is the probability distribution derived from the synthetic data. 

• X is the set of all events (or unique elements in your sequences). 

The result of the KL Divergence is a non-negative value where a result of 0 indicates that the 
two distributions are identical (in the context of the information contained in the distributions). 
Higher values indicate a greater divergence. 

4.3.5 Unique Sequence Comparisons 

To assess how well the synthetic data (generated by the model) mirrors the real-world data, the 
comparison of unique sequences is crucial. When unique sequences are compared, the diver­
sity and authenticity of the generated data can be evaluated, thereby validating and refining 
the model performance. It is also important to ensure that synthetic sequences are not mere 
replicas of real sequences, but are, instead, diverse and representative. Analysis of unique se­
quences can lead to the identification of novel patterns, structures, or functions that were not 
evident in the real data alone. 

(4.2) 

where: 
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4.3.6 Process Flow Evaluation 

The evaluation of synthetic data for process mining must extend beyond statistical similarity 
and encompass the functional similarity of the process flows. It is imperative to confirm that 
the synthetic data not only statistically resembles the real data but also preserves the underly­
ing process flows and structures. The PM4Py library, a state-of-the-art process mining toolkit 
implemented in Python, is used to plot the process models using the Heuristic Miner process 
discovery algorithm. 

The direct comparison of process models from real and synthetic data offers insightful per­
spectives on the utility of the generated data. A high degree of similarity in visualization and 
low alignment costs in conformance checking reinforce the validity of synthetic data for use in 
process mining applications. On the contrary, significant deviations suggest areas where the 
data generation model may require further tuning to more accurately capture the nuances of 
real process flows. 
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5 Implementation 
In this chapter, the implementation details related to the research, focusing on two methods: 
Long Short-Term Memory (LSTM) networks and then a more advanced method using G A N is 
discussed. The analysis of the results, with a comparison between the performance of GAN 
and LSTM models, is discussed in the next chapter. 

5.1 LSTM Synthetic Sequence Generator 

This approach is used for comparison purposes, in which the traditional LSTM model is used for 
the event log sequence generation. This choice is motivated by the LSTM's ability to learn and 
retain information across longer periods, effectively modeling the temporal nature of process 
event logs. For the list of parameters and variables involved in the definition and training of the 
model, please refer to Table 5.1. For more information on LSTMs, please refer to the original 
paper[18]. 

Input 

LSTM 

Dense 

Output 

Figure 5.1: LSTM as Generative Model 

Event sequences are represented as integer indices, which are first transformed into continuous 
vector embeddings. These embeddings feed into the LSTM layer, where hidden states capture 
the context and dependencies between events. At each step, the model predicts the probability 
of the next event of each sequence based on the current hidden state and the learned patterns. 

Training involves feeding actual process event logs into the model. Over time, the model learns 
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5.2 GAN-based synthetic data generator 

typical event sequences and transitions, updating its internal parameters to minimize predic­
tion errors. This process attempts to replicate the statistical properties of the training data, 
resulting in synthetic logs that resemble the real ones but avoid direct copying. The early 
stopping mechanism is also used to terminate training if the validation loss does not show im­
provement over a certain number of epochs. The model was meticulously configured with a 
set of hyperparameters optimized for sequence generation tasks. 

The model's architecture is designed with an embedding dimension of 4, catering to the com­
pact vocabulary size of 23 unique tokens for the BPI2012 dataset, and a hidden layer dimension 
of 16, which provides a balance between capturing the nuances of the input data and maintain­
ing computational efficiency The training was carried out with each sequence standardized 
to a maximum length based on the length of the sequence tokens to ensure uniform process­
ing. The training process utilized a batch size of 64 over 200 epochs, employing a learning rate 
of 0.01 to guide the optimization process toward effective model convergence. Execution on 
a CUDA-enabled GPU for accelerated computation was strategically chosen to foster robust 
learning and generalization capabilities of the LSTM generator, thereby enhancing its perfor­
mance on the designated sequence generation tasks. 

Variable Value 
Neural network architecture 
Hidden layers 
Activation function 
Number of neurons 
Optimizer 
Batch size 
Number of training epochs 
Learning rate 
Device for computation 

LSTM 
1 fully connected 
LogSoftmax 
16 
Adam optimizer 
64 
200 
0.01 
CPU/GPU 

Table 5.1: Variables and parameters related to the definition and training of LSTM Model. Any 
parameter not listed in this table was left as default. 

5.2 GAN-based synthetic data generator 

This thesis primarily employs Generative Adversarial Networks (GANs) as its foundation. The 
implementation deviates from the traditional G A N architecture, as the data generation is ac­
complished through the integration of a transformer's encoder and the architecture of a GAN. 
In contrast to LSTM which generates sequences incrementally from a single initial token, trans­
formers can process an entire random sequence as input all at once. The Transformer network 
uses the positional encoding technique to inform the relative positions of the tokens. The 
transformer leverages its multihead self-attention mechanism to effectively capture long-range 
dependencies within data. Concurrently, the G A N architecture improves the accuracy of the 
synthesized sequences produced, particularly in scenarios where the available data is limited. 
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•
r a n d o m Input 
Sequence Z 

Sequence Length I 

Genera ted Fake 
Sequences G(Z) 

Activity 
Divergence Loss 

Discr iminator 
la* la* 

Rea l Sequences X 

Sequence length I 

Figure 5.2: Architecture diagram for G A N for generating process data. The random input se­
quences and actual sequences undergo preprocessing to ensure they are of equal 
length. The discriminator is taught to differentiate between the real and generated 
sequences. The generator is fine-tuned using losses calculated by the discriminator 
and activity divergence. 

Model Definition 

The first step to train Generative Adversarial Networks is to define the generator and discrimi­
nator models. The way these models are designed for the implementation of this thesis slightly 
differs in various aspects from the way they are commonly defined. The main reason is that 
most G A N implementations are designed to generate images, while the focus here is the se­
quence event generation; second, an auxiliary loss function is used for the activity distribution 
divergence to better train the G A N model. The implementation of Transformer Encoder and 
G A N is based on Pytorch learning documents [19] [20]. Figure 5.2 describes the basic architec­
ture diagram for the Process Data generation using GAN. 

The generator initializes by taking a random sequence as input. It then embeds this sequence 
into a continuous vector representation inspired by word embedding techniques commonly 
used in Natural Language Processing (NLP). Subsequently, the embedded sequence is fed into 
the self-attention mechanism of the Transformer architecture, enabling the model to analyze 
the positional and relational dependencies within the sequence. Finally, the output of the trans­
former generates a categorical vector, representing the probability distribution over activity 
classes. A n argmax operation is applied to this vector, resulting in a one-hot encoded repre­
sentation of the generated sequence. 

To prevent mode collapse potentially arising from learning rate discrepancies between the gen­
erator and discriminator during adversarial training, the Transformer encoder-based discrim­
inator is utilized. By identifying the first end token in generated sequences and padding sub­
sequent tokens, the discriminator effectively processes sequences of one-hot encoded vectors 
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(both generated and authentic) and outputs a binary classification indicating their authenticity. 
For the list of parameters and variables involved in the definition and training of the model, 
please refer to Table 5.2. 

Variable 
Dropout rate 
Batch size 
Generator/Discriminator ratio 
Learning rate (generator) 
Learning rate (discriminator) 
Total epochs 
Optimizer 
Loss Function 
Device for computation 

Value 
01 
128 
2 (k value) 
0.0001 
0.0001 
800 
Adam Optimizer 
Binary Cross-Entropy Loss 
CPU/GPU 

Table 5.2: Parameters for the G A N model 

Learning Objectives 

In a dynamic interplay, the generator and discriminator were iteratively optimized to estab­
lish an equilibrium. The discriminator evaluated the generated sequences, providing feedback 
to the generator. The generator was designed to enhance its performance by maximizing this 
evaluation score. The generator's last layer outputs sequences of vectors v, where each di­
mension of v represents the probability of a specific token being generated in that position. 
During forward propagation, argmax is applied on v to create a sequence in one-hot encod­
ing. This sequence is then input to the discriminator. However, since the argmax operation is 
not differentiable, it cannot pass gradients back during backpropagation. To address this, the 
model uses the straight-through Gumbel-Softmax mechanism, a differentiable sampling op­
eration that allows the discriminator to score the generated sequences and pass the gradient 
back to the generator. Compared to RNNs, random input and adversarial training in G A N help 
reduce exposure bias. The activity distribution divergence (MSE) is added as an auxiliary loss 
to the generator. The divergence in each training batch is fed to the generator. 

Adversarial Training 

During the initial stages of adversarial training, the discriminator might quickly reach conver­
gence if the generator produces sequences that are not plausible. As a result, could potentially 
reject all sequences generated by Generator, leading to ineffective training. To manage the 
speed of optimization and prevent rapid convergence, a training strategy is employed. This 
strategy involves optimizing the generator for a certain number of epochs, specifically two 
epochs in this study, followed by a single epoch of optimization for the discriminator. The 
generator and discriminator iteratively strive to reach an equilibrium. The discriminator acts 
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like a critic and evaluates the process sequences generated by the generator along with assign­
ing a scalar score. The generator aims to maximize this score to produce sequences that are 
indistinguishable from real data. 

Gumbel Softmax Mechanism 

Gumbel-Softmax is a technique used in generative models to approximate discrete distributions 
with continuous ones. This allows the gradients of the model to be backpropagated through 
the discrete sampling process, which is essential for training the model using stochastic gradi­
ent descent (SGD).In this model, the Gumbel-Softmax distribution is used to approximate the 
discrete distribution over activities that are used to generate process sequences. This allows 
the model to be trained using SGD and produce more realistic and diverse process sequences. 
This technique is used to handle the discrete backpropagation from the discriminator. [21] 

Loss Functions 

In a Generative Adversarial Network, the error between the output of the discriminator and 
the real labels is determined using the binary cross-entropy loss. This loss ensures that the 
discriminator provides a clear signal to the generator about the quality of the synthetic data, 
hence guiding the generator to produce more realistic data. Before the actual adversarial train­
ing begins, to improve the generator's performance in the G A N architecture, an activity loss 
is introduced during a pre-training phase. This loss assesses the discrepancy between the fre­
quency distributions of generated and real sequence tokens. The evaluation of the results is 
based on the evaluation methods discussed in the methodology section. 

5.3 Experimental Setup and Hardware Requirements 

The experimental framework for this research was primarily supported by a robust cloud com­
puting infrastructure. The bulk of the experiments, including data preprocessing and visualiza­
tion tasks, were executed on a Google Colab Pro cloud platform. This environment was chosen 
due to its balance of computational power and accessibility, which is detailed in Table 5.3. 

Specification Value 
Cloud Platform 
Processor 
Memory Size 
GPU 
Languages 

Google Colab Pro 
2.00 Cores, 1 vCPU 
16 GB 
NVIDIA Tesla PI00 
Python 3.11.0 

Table 5.3: Specifications of the test system used to train LSTM and G A N models and run all the 
experiments, including data preprocessing and visualization. 

The software implemented is written in Python 3.11.0 with the Python libraries mentioned in 



5.3 Experimental Setup and Hardware Requirements 

table 5.4. 

Package Name Version Purpose 
PyTorch 1.8.1 ML framework and N N library 
Pandas 1.1.5 Data manipulation and analysis 
NumPy 1.19.5 Numerical computations 
Matplotlib 3.3.4 Data visualization 
Python 3.11.0 Programming language 

Table 5.4: Software packages and libraries used for the experimental setup. 
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6 Experiments 

In the thesis, a series of experiments have been conducted to compare the synthetic data gener­
ated using Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks 
(GANs). This chapter reveals the results of the experiments. To allow a clear comparison, Fig­
ure 6.1 presents a statistical analysis of the real data used in the LSTM and G A N models for the 
Helpdesk and BPI 2012 datasets. This analysis includes key metrics like the number of cases, 
vocabulary size, and mean and standard deviation of sequence lengths. In this section, there 

Vocab Size: 2 3 

Mean: 3.60 
Std Dev: +1.19 

• Std Dev: -1.19 

10 12 14 
Sequence Length 

Figure 6.1: Summary of the characteristics of the BPI 2012 (left) and Helpdesk (right) dataset 

will be a discussion on the comprehensive analysis of the synthetic data generated based on 
the metrics discussed in the methodology section. LSTM and G A N models will be compared 
and analyzed for the BPI 2012 and helpdesk datasets. For the evaluation of each model, 500 
synthetic sequences were generated and compared for both data sets. 

6.1 Model Training Results 

To understand the performance of the G A N model, the plot for the discriminator loss is shown 
in Figure 6.2. This plot illustrates the trend of discriminator loss during the training of the GAN 
model aimed at generating synthetic process activity sequences. 
Initially, a spike in the discriminator loss is observed, suggesting a period of uncertainty or less 
effective discrimination between real and synthetic sequences. As training proceeds, a down­
ward trend in the discriminator loss is noticeable, implying an improvement in the discrimina­
tor's performance. This is indicative of the adversarial training process, where the discrimina­
tor and the generator iteratively improve in response to each other's progress. A decline in the 
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Figure 6.2: Discriminator loss over epochs for BPI 2012 Dataset 
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Figure 6.3: Training and Validation Loss for LSTM Model for BPI 2012 Dataset 

loss value typically conveys that the discriminator is becoming more proficient at identifying 
real data as opposed to synthetic data produced by the generator. 

Figure 6.3 displays the training progression of an LSTM network, with both training and vali­
dation loss depicted over 200 epochs. Initially, there is a steep decline in loss, indicating rapid 
learning from the sequential data. Losses quickly converge and remain tightly coupled, sug­
gesting an effective generalization without signs of overfitting. As training progresses, the 
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loss values plateau near zero, which points to the LSTM's capability to capture and predict the 
patterns in the dataset with high accuracy. 

6.2 Sequence Length Comparison 

Evaluation of sequential data is not as intuitive as image data. Synthetic images are usually 
evaluated on the basis of the authenticity of the resolution, which is easy to observe. The aim 
here is to generate synthetic process data that follow the underlying distribution of the real-
world process. In a sequence-length comparison to assess the fidelity of synthetic sequences, 
this analysis compared the probability distribution of the sequence lengths across both datasets. 
Figure 6.4 and Figure 6.5 show a bar plot comparing the sequences of Real, LSTM, and GAN 
for the helpdesk and BPI 2012 datasets respectively. 

Sequence Length 

Figure 6.4: Comparison of Probability Distribution of Sequence Length of Real and Synthetic 
data for Helpdesk Dataset(Sequence Length=13) 

In the analysis of LSTM-generated sequences, the outcomes closely align with the real data for 
both datasets, particularly with shorter sequences, capturing the distribution of the real data 
effectively. However, when the performance of G A N is assessed against both the BPI2012 and 
the helpdesk datasets, it reveals a marginally lower similarity to real data compared to LSTM, 
but it exhibits a greater diversity in sequence lengths. This diversity suggests the ability of 
G A N to create new sequences. A n example of such a sequence is where the GAN-generated 
sequence incorporated the additional repetitive steps not found in the original data[22]. 

For instance, a real sequence detailed as ' A SUBMITTED A PARTLYSUBMITTED A 
PREACCEPTED -> W Completeren aanvraag -> W Completeren aanvraag -> A DECLINED 
—> W Completeren aanvraag" in BPI2012 dataset is expanded in the GAN-generated sequence 
to include more "W Completeren aanvraag" steps, leading to a sequence like "A SUBMITTED 

A PARTLYSUBMITTED A PREACCEPTED W Completeren aanvraag (x4) A DE­
CLINED —> W Completeren aanvraag", which is also a valid sequence. This process showcases 
GAN's strength in generating new, plausible patterns by repeating specific steps and introduc­
ing sequences not originally present in the dataset. The novelty of the generated data needs 

40 



6.3 Sequence Variance Analysis 

Sequence Length 

Figure 6.5: Comparison of the Probability Distribution of Sequence Length of Real and Syn­
thetic data for BPI 2012 Dataset(Sequence Length =25) 

to be observed with further experiments to understand the usability of these data to train the 
ML-based process mining tools. 

6.3 Sequence Variance Analysis 

Sequence variance is calculated using the sum of the pairwise normalized Edit distance (SPE). 
It is calculated between all pairs of activity sequences for both real and synthetic data using 
the Levenshtein distance, also called the edit distance. In the analysis (Table 6.1), the LSTM-
generated process sequences exhibited variance scores closer to authentic data (0.204 for BPI 
and 0.156 for Helpdesk) compared to those generated by the G A N model (0.231 for BPI and 
0.183 for Helpdesk). 

Data Source BPI2012 Helpdesk 

Authentic 0.196 0.165 
LSTM 0.204 0.156 
G A N 0.231 0.183 

Table 6.1: Comparison of Sequence variance of Synthetic and Authentic Data. 

LSTM model demonstrated a capability to replicate the variance of authentic data, suggesting 
their effectiveness in capturing the sequential dependencies typical of process sequences. This 
was particularly evident in the Helpdesk dataset, where the LSTM variance was slightly lower 
than that of the authentic data. The G A N model, although it generates higher variance scores 
than the LSTM model and the authentic data, indicates the ability to explore a wider range of 
process variations. Although this did not meet the initial goal of closely mimicking authentic 
data variance, it underscores GANs' potential to enrich process mining analyses by provid­
ing diverse data coverage, ensuring that the generated sequences reflect the variety of actual 
process variations. 
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6.4 Kullback-Leibler (KL) divergence 

The KL divergence values indicate how the probability distribution of the synthetic data (gener­
ated by the models) diverges from the actual (authentic) data distribution in the given datasets. 

Model BPI2012 Helpdesk 

LSTM 2.62 0.80 
G A N 3.03 2.76 

Table 6.2: Comparison of KL Divergence of Synthetic and Authentic Data 

When the probability distribution of the complete sequences of real and synthetic data is com­
pared, LSTM generated sequences show lower KL divergence values (2.62 for BPI2012 and 0.80 
for Helpdesk), indicating that its synthetic data is closer to the actual data, particularly for the 
Helpdesk dataset. This suggests that LSTM is effective in capturing temporal patterns in the 
processing of data. Synthetic data generated from GAN(3.03 for BPI2012 and 2.76 for Helpdesk) 
has a higher KL divergence that showcases its effectiveness in balancing the need for similarity 
with the need for differences. Although a low KL divergence is desirable to ensure that the syn­
thetic data are representative of the real data, a nonzero divergence is expected and beneficial. 
G A N is known for its ability to generate diverse and novel data samples. This capability can be 
particularly beneficial in process mining for exploring a wider range of process variations and 
enhancing model robustness against overfitting. The diversity in G A N results can be crucial 
for stress testing process mining algorithms or for augmenting datasets where the actual data 
is limited or lacks variability. 

6.5 Activity Type Occurrence Comparison 

In this experiment, to understand the distribution of activity type in the data set, a comparison 
is made between the probability distribution of all activities and the activities generated from 
the models. For the BPI 2012 Dataset (Figure 6.6), it can be observed that for certain activities, 
the LSTM and G A N Synthetic datasets closely match the Real dataset's probabilities, while 
for others, there are discrepancies. For GAN, Activities, such as "WXompleteren aanvraag" 
and "W_Afhandelen leads" and "A_PREACCEPTED" have been represented with a higher fre­
quency compared to the real dataset and the LSTM synthetic dataset. When comparing the 
start activity "A_SUBMITTED" for the BPI 2012 dataset, which is common for all sequences, 
both the LSTM and G A N synthetic datasets replicate this start activity with close probabili­
ties of the real dataset, suggesting that the models effectively capture the initiation patterns of 
the process. Other activities show notable differences in the probability of activities between 
the real and synthetic datasets, which could be due to the synthetic models not capturing all 
the complexities of the data or due to intentional variations introduced in the synthetic data 
generation process. Both the LSTM and G A N models demonstrate proficiency in replicating 
rarer activities found within the real dataset, a crucial capability to ensure complete process 
representation. For the helpdesk data set, both models showed activity similarity to the real 
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data. This could be due to the shorter sequence length and the small vocab size of 9. 

W C o m p l e t e r e n a a n v r a a g 

W A f h a n d e l e n l eads 

A_PAr\TLYSLIB MITTED 

A_SUBMITTED 

A_DECL INED 

W _ N a b e l l e n o f f e r t es 

A P R E A C C E P T E D 

A _ C A N C E L L E D 

A _ A C C E P T E D 

0_CREATED 

0_SENT 

A F INALIZED 

O S E L E C T E D 

W _ V a l i d e r e n a a n v r a a g 

0 _ C A N C E L L E D 

W _ B e o o r d e l e n f r a u d e 

• SENT B A C K 

O DECL INED 

A A C T I V A T E D 

O A C C E P T E D 

A_REG ISTERED -

A _ A P P R O V E D 

W_Wi j z igen c o n t r a c t g e g e v e n s 

Real 
LSTM Synthetic 
GAN Synthetic 

c cc 0.10 0.15 
Probab i l i t y of O c c u r r e n c e 

Figure 6.6: BPI 2012 Dataset Activity Type Occurrence 

6.6 Unique Data Comparisons 

This section analyzes the uniqueness of sequences generated by LSTM and G A N models. Table 
6.3 summarizes the comparisons of unique sequences. Each row represents a model, and each 
column shows the number of sequences for a specific category within a data set. 

• Real: Sequences present in the original dataset only. 

• Overlap: Sequences found in both original and synthetic datasets. 

• Synthetic: Sequences unique to the synthetic dataset and model 

The LSTM model appears to be more conservative in generating synthetic sequences, with a 
higher overlap and fewer generated unique sequences. This could mean that LSTM is better at 
capturing and replicating the existing patterns in the data without introducing as much novel 
variability. 
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Model Unique Sequences Helpdesk BPI2012 

Real 45 64 

LSTM Overlap 29 33 
Synthetic 28 59 

G A N Overlap 26 31 
Synthetic 255 169 

Table 6.3: Comparison of Unique Sequences generated by LSTM and G A N on Helpdesk and 
BPI2012 Datasets (Sample Size =500 

G A N model demonstrates a substantial number of generated Unique Sequences—255 for Help-
desk and 169 for BPI2012 suggests that while it may be creating many novel sequences, these 
sequences are likely to contain subsequences or patterns that are derived from the original 
dataset. The GAN's ability to generate such a large volume of unique sequences while still 
maintaining a reasonable overlap with the original data (26 for Helpdesk and 31 for BPI2012) 
indicates that it is not just inventing random sequences, but rather it is recombining elements 
of the original data in new ways. Visual Inspects and Domain Specific Validity Checks can be 
applied to assess the validity of the generated sequences, to help differentiate them from noisy 
data. 

6.7 Process Flow Analysis 

This section presents a detailed analysis of process flow diagrams derived from a real data set 
and synthetic data generated using Long Short-Term Memory (LSTM) and Generative Adver­
sarial Networks (GAN) models. The BPI 2012 dataset served as the foundation for this com­
parative study due to the availability of the activity names compared to the Helpdesk dataset 
which was anonymized, with an emphasis on structural integrity, data distribution, and model 
fidelity in reproducing complex process flows. 

The synthetic data generated by LSTM and G A N models were first assessed for structural con­
gruence with the original process flow. Although both models preserved the main pathways, 
such as A_SUBMITTED' to A_ACCEPTED', certain discrepancies were observed. The LSTM 
model introduced fewer deviations, suggesting a more conservative approach in sequence gen­
eration. In contrast, the G A N model demonstrated a tendency to explore a broader range of 
state transitions, occasionally introducing novel paths not present in the original data. Upon 
examination of the data distribution within the flows, the LSTM-generated diagram closely 
mirrored the original data's quantities at each step. However, the G A N model exhibited a 
marked variance, particularly in the bottleneck stages. These differences were hypothesized to 
arise from the GAN's mode of operation, which focuses on generating new data points rather 
than replicating the statistical properties of the input data. However, both models success­
fully replicated common patterns within the process flow, such as the frequent transition from 
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'A_PARTLYSUBMITTED' to 'A_PREACCEPTED'. In terms of model fidelity, the LSTM model 
displayed superior performance in replicating the complexity and variability of the original 
process flow. The G A N model, though less accurate, offered valuable information on alterna­
tive process pathways and outcomes. 



6 Experiments 



7 Results and Discussions 

Throughout the study, a detailed comparison was conducted between the efficiencies of Long 
Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), aimed 
specifically at synthesizing process log data for two most popular process mining datasets 
namely Helpdesk and BPI 2012. This analytical exercise spanned a broad spectrum of evalua­
tive criteria, including the fidelity of data replication, the assessment of activity frequencies and 
sequence length, variance in sequence patterns, and the examination of unique sequence gen­
eration. Additionally, process flow diagrams were employed to provide a visual representation 
and deeper understanding of the pathways inherent in the generated process logs, facilitating 
a comprehensive grasp of the procedural dynamics. 

The experiments show that, both LSTM and G A N models were capable of replicating com­
mon patterns within the process flow. However, the traditional LSTM model displayed high 
fidelity in replicating the original dataset's patterns, particularly adept at maintaining the se­
quence lengths and activity types closely matching the original data for both the Helpdesk and 
BPI2012 datasets. Due to its high data fidelity, LSTM models are more immediately applica­
ble for training purposes where replicating exact sequences is necessary. They can work for 
situations requiring high accuracy and consistency with the original process behaviors. The 
G A N model with a transformer-encoder-based architecture demonstrates a unique strength to 
generate previously unseen sequences that extend beyond the patterns and structures present 
in the training datasets. G A N while slightly less accurate in replicating the exact sequence 
patterns of the original data, introduces a higher degree of novelty and variability. This is ben­
eficial for generating diverse datasets that can simulate a wider range of scenarios, including 
rare events not covered in the training data. 

For sequence length comparison, the LSTM-generated sequences aligned closely with real data 
for both datasets, particularly for shorter sequences. However, G A N displayed a slightly lower 
similarity to real data but exhibited greater diversity in sequence lengths, suggesting their ca­
pability to generate new, plausible sequences. Regarding sequence variance, LSTM-generated 
process sequences exhibited variance scores closer to the authentic data, especially in the sim­
pler Helpdesk dataset. GANs, while generating higher variance scores, indicate their ability to 
explore a broader range of process variations, which could enrich process mining analyses by 
providing diverse data coverage. The LSTM model showed lower KL divergence values (2.62 for 
BPI2012 and 0.80 for Helpdesk), indicating that its synthetic data is closer to the actual data dis­
tribution, particularly for the Helpdesk dataset. This underscores the effectiveness of LSTM's 
in capturing temporal patterns in process mining data. GAN-generated data had higher KL 
divergence values (3.03 for BPI2012 and 2.76 for Helpdesk), showcasing its effectiveness at bal­
ancing the need for similarity with the introduction of differences. This characteristic of GANs 
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can be particularly beneficial for exploring a wider range of process variations and enhancing 
model robustness. 

Through the process flow diagram, both models were assessed for structural congruence with 
the original process flow. The LSTM model introduced fewer deviations, suggesting a more 
conservative approach to sequence generation. The G A N model demonstrated a broader range 
of state transitions and occasionally novel paths, offering valuable insights into alternative 
process pathways. 

In conclusion, while LSTM models offer high precision and fidelity to the original data, making 
them ideal for applications requiring exact data replication, G A N models stand out for their 
ability to generate diverse and novel data, pushing the envelope on what process mining al­
gorithms can recognize and analyze. The choice between LSTM and G A N would, therefore, 
depend on the specific needs of the process mining task, whether it prioritizes accuracy and 
consistency or diversity and the exploration of new process variations. 



8 Conclusion and Future Work 

In conclusion, this thesis has explored an in-depth exploration of synthetic data generation for 
process mining, focusing on the comparison and application of LSTM and G A N models. The 
suggested approach, learns deep representations of process data to create a generative model, 
allowing the production of synthetic data useful for training Machine learning-based process 
mining tools. By integrating advanced computational techniques and rigorous methodolog­
ical approaches, this thesis not only responds to the identified gaps from prior studies but 
also pushes forward the understanding and application of synthetic data generation in process 
mining. While the research has demonstrated the potential of these models to replicate and 
innovate process data, it is acknowledged that the study was conducted on relatively small 
datasets due to data availability and computational limitations. The constraints on dataset size 
were instrumental in ensuring a manageable computational load and focused analysis, yet they 
also posed restrictions on the generalizability of the findings. Despite these constraints, the re­
search demonstrated the effectiveness of advanced generative models, including LSTM and 
GAN, in synthesizing process data that maintains the essential characteristics of real datasets. 
The nuanced comparison of LSTM and G A N models within this thesis serves as a significant 
contribution to the field, offering guidance on model selection based on specific requirements 
for fidelity, diversity, and innovation in data generation. 

The detailed experimentation and analysis have illustrated that LSTM models are particularly 
effective in replicating the precise structure and sequence of the original data, which is cru­
cial for applications demanding high fidelity and reliability. These models have shown their 
strength in maintaining consistency across sequence lengths and activity frequencies, closely 
mirroring the actual data from the Helpdesk and BPI 2012 datasets. This precision supports 
LSTM's suitability for training scenarios where the exact replication of data sequences is vital. 
Conversely, the G A N model utilizing transformer-encoder architectures with customized ac­
tivity loss functions for process data, have demonstrated their effectiveness in generating novel 
and diverse data. While they may not match the exactness of sequence replication found in the 
LSTM model, they excel in producing a variety of plausible sequence lengths and introducing 
novel sequences. This capability is invaluable for expanding the scope of process mining by 
simulating scenarios that may not be present in the training datasets and for enhancing the 
existing datasets, thus providing a broader perspective for analysis and decision-making. 

Expanding upon the achievements of this thesis, future research can unfold in multiple direc­
tions, all aimed at enriching the utility and application of synthetic data in process mining. To 
validate and generalize the findings, applying the generative models to a diverse and complex 
set of datasets spanning various industries and process types is crucial. This broader scope will 
reveal the models' adaptability and robustness, providing deeper insights into their scalability 
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8 Conclusion and Future Work 

and effectiveness. Involving domain experts to critically assess the generated data's realism and 
relevance can significantly guide iterative model improvements. Such qualitative assessments 
ensure the synthetic data adheres to statistical quality metrics and resonates with practical, 
domain-specific considerations. While this thesis focused on LSTM and GAN, exploring other 
deep generative models, like Variational Autoencoders (VAEs), holds the potential to unlock 
new avenues in synthetic data generation. Models like VAEs might offer unique strengths in 
capturing and replicating complex process dynamics. 

Developing nuanced evaluation metrics that incorporate both quantitative and qualitative di­
mensions is essential. Future work could aim to refine these evaluation frameworks, providing 
a comprehensive view of the synthetic data's fidelity and applicability. Finally, integrating the 
generated data with existing process mining tools and workflows can offer valuable insights 
into its operational value. This practical understanding will reveal how synthetic data can en­
hance process mining analyses, tool development, and ultimately, business process optimiza­
tion. By addressing these future directions, subsequent research can build on the foundation 
of this thesis, pushing the boundaries of synthetic data's potential and promoting a deeper 
integration of these innovative methodologies within the process mining domain. 
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