
Technische Hochschule Deggendorf
Fakultät Angewandte Informatik

Studiengang Master Kunstliche Intelligenz und Data Science

G E N E R I E R U N G EINER SYNTHETISCHEN

TRAININGSDATENQUELLE FÜR M L - B A S I E R T E

P R O Z E S S - M I N I N G - T O O L S

G E N E R A T I N G A SYNTHETIC TRAINING DATA

SOURCE FOR ML -BASED PROCESS MINING TOOLS

Masterarbeit zur Erlangung des akademischen Grades:

Master of Science (M.Sc.)

an der Technischen Hochschule Deggendorf

Vorgelegt von:
Anjali Singh

Matrikelnummer: 12203896

Am: 1. March 2024

Prüfungsleitung:
Prof. Dr. Andreas Fischer

Ergänzende Prüfende:
Zineddine Bettouche

• T E C H N I S C H E I B^v
H O C H S C H U L E -{)
D E G G E N D O R F *S Erklärung

Name des Studierenden: Anjali Singh

Name des Betreuenden: Prof. Dr. Andreas Fischer

Thema der Abschlussarbeit:

Generierung einer synthetischen Trainingsdatenquelle für ML-basierte Prozess-Mining-Tools

1. Ich erkläre hiermit, dass ich die Abschlussarbeit gemäß § 35 Abs. 7 RaPO (Rahmenprüf­
ungsordnung für die Fachhochschulen in Bayern, BayRS 2210-4-1-4-1-WFK) selbständig
verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die
angegebenen Quellen oder Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate
als solche gekennzeichnet habe.

Deggendorf,
Datum Unterschrift des Studierenden

2. Ich bin damit einverstanden, dass die von mir angefertigte Abschlussarbeit über die Bib­
liothek der Hochschule einer breiteren Öffentlichkeit zugänglich gemacht wird:

O Nein

O Ja, nach Abschluss des Prüfungsverfahrens

O Ja, nach Ablauf einer Sperrfrist von .. Jahren.

Deggendorf,
Datum Unterschrift des Studierenden

Bei Einverständnis des Verfassenden vom Betreuenden auszufüllen:

Eine Aufnahme eines Exemplars der Abschlussarbeit in den Bestand der Bibliothek und die
Ausleihe des Exemplars wird:

O Befürwortet

O Nicht befürwortet

Deggendorf,
Datum Unterschrift des Betreuenden

Abstract

The rapid expansion of process mining tools based on machine learning has transformed the
capacity to derive valuable insights from intricate business processes. Nonetheless, the effec­
tiveness of these tools heavily relies on the availability of high-quality training data, which
often presents notable obstacles such as privacy restrictions, data scarcity, and data hetero­
geneity. This study investigates approaches to tackle the issue of data scarcity by suggesting
the creation of synthetic training data through generative models. The proposed technique in­
tegrates a Generative Adversarial Network to explicitly capture the underlying distributional
patterns of authentic process data. This strategy concentrates on generating new process in­
stances that closely mirror the intricate characteristics and attributes of the real data. To com­
prehensively evaluate the effectiveness of this method, a comparative study is conducted to
assess the performance of a Long Short-Term Memory (LSTM) model in contrast to the sug­
gested Generative Adversarial Network (GAN) model, utilizing artificially generated process
sequence data and authentic data. This comparative analysis is meticulously carried out on
two widely used datasets in process mining: the BPI Challenge 2012 dataset and the Helpdesk
dataset.

The study involves the selection and preprocessing of authentic process event logs, the devel­
opment and training of a specialized G A N for generating process data, the assessment of the
quality of synthetic data using statistical metrics through comprehensive experiments, and the
examination of process workflow diagrams derived from both LSTM and GAN-generated data
to evaluate their originality and accuracy. The results indicate that while the LSTM model ac­
curately reproduces the initial data structure, the G A N introduces more variability, providing
a wider range of training scenarios. This highlights the potential of utilizing GAN-generated
data as a training resource for process mining tools based on machine learning, potentially
enhancing their effectiveness and reliability by exposing them to various and realistic process
patterns. Subsequent research could investigate the application of this method to process min­
ing activities like analyzing customer journeys or detecting anomalies, exploring alternative
generative models and evaluation techniques, and integrating domain-specific constraints and
expert knowledge into the G A N framework to enhance the quality and usability of the gener­
ated data for advancements in process mining capabilities.

v

Contents

Abstract v

1 Introduction 1
1.1 Motivation 1
1.2 Objective 1
1.3 Thesis Structure 2

2 Background 3
2.1 Process Mining and Event Logs 3
2.2 Synthetic Data and Generation Techniques 5
2.3 Synthetic Logs Generation Techniques 7

2.3.1 Deep Learning Models 7
2.3.2 Deep Generative Models 8

2.4 Architectural Overview of GAN 10
2.5 ML Based Process Mining Tools 13

3 Related Work 15

4 Methodology 18
4.1 Dataset Exploration and Pre-Processing 18

4.1.1 Helpdesk Dataset 18
4.1.2 BPI Challenge 2012 Dataset 18
4.1.3 Data Exploration and Pre-processing 20
4.1.4 Exploratory Data Analysis 22

4.2 Data Generation Process using LSTM and G A N Models 23
4.2.1 Data Acquisition and Conversion 24
4.2.2 Pattern Analysis and Feature Engineering 24
4.2.3 Machine Learning - Model training for Synthetic data generation . . . 26
4.2.4 Data Production and Feature Re-engineering 27

4.3 Evaluation Methods 28
4.3.1 Sequence Length Analysis 28
4.3.2 Activity type Occurrence Distribution 28
4.3.3 Sequence Variance using Sum of Pairwise Normalized Edit Distances . 28
4.3.4 KL Divergence 29
4.3.5 Unique Sequence Comparisons 29
4.3.6 Process Flow Evaluation 30

vii

Contents

5 Implementation 32
5.1 LSTM Synthetic Sequence Generator 32
5.2 GAN-based synthetic data generator 33
5.3 Experimental Setup and Hardware Requirements 36

6 Experiments 38
6.1 Model Training Results 38
6.2 Sequence Length Comparison 40
6.3 Sequence Variance Analysis 41
6.4 Kullback-Leibler (KL) divergence 42
6.5 Activity Type Occurrence Comparison 42
6.6 Unique Data Comparisons 43
6.7 Process Flow Analysis 44

7 Results and Discussions 47

8 Conclusion and Future Work 49

viii

1 Introduction

Process mining is essential for enhancing business processes by extracting insights from event
logs that document the sequence of activities in a process. It serves as a link between data
science and process management, utilizing event logs to discover, monitor, and enhance real-
world processes. In the dynamic realm of process mining, the capacity to analyze and enhance
intricate processes heavily depends on the availability and quality of the underlying data. How­
ever, a significant challenge in this field is the restricted access to practical datasets that are
comprehensive, diverse, and adhere to privacy laws.This shortage significantly impedes the
advancement and validation of sophisticated process mining tools, especially those employing
machine learning (ML) methodologies.
Synthetic data generation emerges as a promising solution, enabling the creation of realistic
and controlled event logs without these limitations. Synthetic data generation techniques have
been extensively explored in areas like computer vision; however, their application in the do­
main of process mining signifies an emerging and rapidly growing area of study. Synthetic
data generated not only improves the quality of training data but also provides a solution to
data privacy concerns, effectively addressing the issues posed by data scarcity.

1.1 Motivation

The application of machine learning in process mining has led to a new era of insights and
optimizations for companies and organizations. The foundational need for process mining is
the vast amount of data that detail every step, decision, and action within a business process.
However, despite the critical importance of data in this field, its acquisition poses significant
challenges, ranging from privacy concerns to data scarcity, which present research endeavors
to address. Unlike domains such as image processing or natural language understanding, which
have benefited from large public datasets like ImageNet and GLUE, process mining lacks such
expansive, standardized datasets. The scarcity of data presents a significant obstacle to con­
ducting process mining studies in various fields. Existing methodologies often do not capture
the multifaceted nature of business processes and fail to adequately represent the variability
and complexity inherent in real-world operations.

1.2 Objective

This thesis addresses the critical gap in the current landscape of process mining research by
proposing an innovative approach to generate high-quality, realistic synthetic training data
tailored for ML-based process mining tools. At its core, this study explores the creation of

1

1 Introduction

synthetic datasets that not only accurately reflect the distribution patterns of actual process
data, but also expand the training dataset with unique and diverse sequences. The fundamental
strategy employed in this research involves the utilization of long-short-term memory (LSTM)
networks and generative adversarial networks (GAN) using a transformer encoder as both a
generator and a discriminator.
The generated synthetic data is expected to have the same distributions as real data. In addition,
the size of the process data can be increased to include novel process sequences, eventually
adding more diversity to the original data set. The research question addressed in this work is
"Can Generative Adversarial Networks and traditional LSTM models be used to generate synthetic
process data, effectively and efficiently, while preserving the underlying distribution and patterns
of the original data".
The purpose of this thesis is to design, implement, and test a synthetic data generator based on
Generative Adversarial Networks and LSTM. For a proof-of-concept, sample datasets are used
to train the models of the proposed solution that subsequently will generate new synthetic
data. The result is an analysis that compares both the LSTM and the GAN-based framework
to conclude with the advantages and disadvantages of using Generative Adversarial Networks
for Synthetic Data Generation.

1.3 Thesis Structure

This section outlines the organization of the chapters in this thesis. The background is covered
in Chapter 2 providing a thorough description of the main concepts and technologies rele­
vant to this work, including Process Models, Synthetic data generation techniques using deep
learning, and generative models such as LSTM, GAN, and VAE. Chapter 3 discusses previous
related work in this thesis. Methodology is the main focus of Chapter 4, which also explores the
technical details of Generative Adversarial Networks (GAN) and clarifies the steps involved in
data collection and preprocessing. In Chapter 5, the implementation steps for the generation of
synthetic data using LSTM and G A N are described. Chapter 6 investigates and compares the
quality of the data generated by both models based on statistical similarity metrics followed
by the analysis of the synthetic data generated using process workflow models. Chapter 7 sum­
marizes key findings and contributions and suggests potential avenues for future research in
this innovative domain. In Chapter 8, the thesis provides its conclusions and outlines future
research directions.

2

2 Background

2.1 Process Mining and Event Logs

Process mining is a family of techniques that allow users to interactively analyze data extracted
from enterprise information systems to derive insights to improve one or more business pro­
cesses. Introduced by Wil van der Aalst[l] in the late 1990s, it has since evolved to become a
key tool in understanding and improving business processes. At its core, process mining re­
volves around event logs, process models, and discovery algorithms. Event logs are sequences
of events captured by IT systems; process models represent the expected flow of these events;
and discovery algorithms are used to extract process-related information from the event logs.
This synthesis provides unprecedented insights into the actual workings of business processes.
Process mining tools extract business process execution data from an enterprise system and
consolidate them into the form of an event log.

Process mining can be broadly categorized into three types:

• Discovery: Identify the actual processes by analyzing the event logs.

• Conformance: Check if the real-life processes conform to the predefined models.

• Enhancement: Enhancing existing process models based on insights gained from event
logs.

An event log is a hierarchically structured file with historical information about the execution
of a business process generated by a process-oriented information system. Cases organize
attribute values within an event log. A case contains a group of events that belong to the
same business process execution. A n event is made up of properties or attributes. The typical
attributes of an event are the name, timestamp, and resource of the activity. Depending on the
granularity required in the event log and the type of process in which this event log will be
used, other attributes can be included. In this direction, the sequence of events related to a case
is known as a trace. Figure 2.1 illustrates an example of an event log. Event logs are typically
used in the analysis of process-oriented systems and are central to the field of process mining.
Each row in the log represents an event that has occurred within a system or process. In the
following sections, Each characteristic will be thoroughly examined in the demonstration of
the event log.

Some useful concepts for understanding the basis of event logs in the context of process mining
are discussed next.

3

2 Background

Case 10 Jimestamp Activity

Instances 1

Attributes

1 easelD Timestamp Medium Activity Service Line Urgency
-- 2 case97D0 20.9.09 il.'-t, Phone Registered 1st line 0

3 case9700 20.S.O9 11:50 phone Completed 1st Noe 0
4 case970i 23.9 09 12:23 Phone Registered 1st lloe 0

w . 5 case9701 23.9.09 12:27 Phone Completed 1st lioe 0
-- 6 casc97D5 20.10.09 14:21 Phone Registered Specialist 2

I 7 case97D5 20.10.09 16:48 Phone At specialist Specialist 2
e case9705 19.11.09 10:31 Phone Io progress Specialist 2

case9705 19.11.09 10:32 Phone Completed Specialist 2
10 case3939 15.10.09 11:48 Ma 1 Registered Specialist 2

1 ; 11 case3939 15 10 09 11:48 Mail Offered Specialist 2 1 ; 12 case3939 20 10.09 17:18 Mail In progress Specialist 2
13 case3939 20 10.09 17:19 Hall At specialist specialist 2
14 case3939 21 10.09 14:49 Mall To progress Specialist 2
IS case3939 21.10.09 14:49 Mall In progress Specialist 2
IS case3939 26.10.09 10: 17 Mall Io progress Specialist 2
17 case3939 26.10.09 10: 18 Mall Completed Specialist 2'

i IS case9704 20.10.09 14: 19 Mall Registered 1st hoe 0 i
19 case9704 20.10.09 14:24 Mall Completed 1st lioe 0
20 case9703 20.10.09 14:40 Phone Registered 1st lioe 0
21 case9703 20 10.09 14:58 Phone Completed 1st lioe 0
22 case9707 24 6 09 12:24 Man Registered 2nd lirie 2
21 raseq?n? ?4 n rw 12:30 Mail offered 7nd line 2

Everns

Figure 2.1: Sample Event log file

Definition 1. An event refers to a case, an activity, and a point in time. The event is charac­
terized by a set of attributes such as ID, timestamp, cost, and resource, among others.

Definition 2. A trace can be seen as a case, i.e., a finite sequence of events z is the element of
E*, such that each event appears only once.

Definition 3. A n event log consists of a set of cases, and cases consist of events, such that
each event appears, at most, once in the entire log.

The events for a case are represented in the form of a trace, i.e., a sequence of unique events.
Moreover, cases, such as events, can have attributes. The structure of an event log is made up
of the following elements.

• A n event log consists of cases.

• A case consists of events such that each event relates to precisely one case.

• Events within a case are ordered.

• Events can have attributes. Examples of typical attributes are activity name, time, costs,
and resources.

Definition 4. A Business process model is the graphical and analytic representation used
to capture the behavior of an organization's business processes. A business process model is
usually expressed through different graphic methods or notation languages, such as flowcharts,
UML, workflows, Petri nets, and BPMN, among others.

4

2.2 Synthetic Data and Generation Techniques

2.2 Synthetic Data and Generation Techniques

Real-world data has a long history in artificial intelligence (AI). Collecting, processing, or dis­
tributing real-world datasets is often associated with data collection costs, quality problems,
and privacy concerns. Synthetic data generation is the process of creating artificial data that
mimic the statistical patterns and properties of real-life data. Synthetic data is generated using
algorithms, models, or other techniques.

:• * v.

•t - • - •* 1* • ft _ft •
10 *

•10

•• *

Original data Synthetic data
The synthetic data retains the structure of the original data but is not the same

Figure 2.2: Synthetic Data vs Real Data

Synthetic data is randomly generated with the intent of hiding sensitive private information
and retaining statistical information on features of the original data. Synthetic data are broadly
classified into three categories:

• Fully Synthetic Data: Entirely artificial, this data type does not incorporate any ele­
ment from the original dataset. It involves estimating the distribution functions of fea­
tures in the original data and generating privacy-safe series based on these estimations.
Techniques such as bootstrapping are commonly used. Its strength lies in robust privacy
protection, though the data accuracy might be less reliable.

• Partially Synthetic Data: This approach involves substituting sensitive attributes in
the original data set with synthetic values, particularly for data points at high risk of
revealing private information. It is a method that seeks to balance data privacy with
fidelity to the original dataset. Techniques like multiple imputation and model-based
approaches are employed, which is also useful for addressing missing data issues.

• Hybrid Synthetic Data: Combining elements of both real and synthetic datasets, this
method involves pairing each random real data record with a closely related synthetic
one. The resultant hybrid data benefits from the advantages of both full and partial syn­
thesis, offering improved privacy and utility, but at the cost of increased memory and
processing requirements.

5

2 Background

In a report on synthetic data, Gartner predicted by 2030 most of the data used in AI will be
artificially generated by rules, statistical models, simulations, or other techniques. Figure 2.3
shows the trend for synthetic data to overshadow real data by 2030.

By 2030, Synthetic Data Will Completely Overshadow Real Data in AI Models

2020 2030 Time
sources: Gartner
750175.C

Gartner

Figure 2.3: Synthetic data will become the main form of data used in AI. Source: Gartner, "Mav­
erick Research: Forget About Your Real Data - Synthetic Data Is the Future of AI,"
Leinar Ramos, Jitendra Subramanyam, 24 June 2021 [Image Source / NVIDIA]

The three most popular approaches to generate synthetic data are discussed below:

1. Rule-Governed Synthetic Data Creation: This technique uses explicit guidelines,
constraints, and mathematical expressions to craft synthetic data that adhere to preestab-
lished patterns. It is especially effective for data with known structures or links, such as
the creation of synthetic time sequences or simulated sensor data.

2. Synthetic Data Generation through Statistical Modeling: This approach uses sta­
tistical models to produce artificial data. These models are trained on actual datasets
to assimilate the inherent patterns and distributions, allowing the creation of new data
instances that mirror the original data. Typical examples include the use of Gaussian
mixture models, autoencoders, and generative adversarial networks (GANs).

3. Combined Methodologies for Synthetic Data Generation: This strategy merges
rule-based and model-based techniques for synthetic data creation. By blending deter­
ministic rules with statistical models, combined methods offer the versatility to produce
varied and intricate data sets while upholding certain specific features and constraints.

In this work, G A N and LSTM networks will be used as primary methods for data synthesis.
This specialized approach will allow us to explore the ability to generate realistic and complex
data sets, tailored to enhance machine learning applications in process mining.

6

2.3 Synthetic Logs Generation Techniques

2.3 Synthetic Logs Generation Techniques

A diverse array of machine learning techniques have been employed to create artificial se­
quential event log data, increasing the availability of process data to train and evaluate process
mining algorithms. These techniques encompass a range of approaches including models like
recurrent neural networks (RNNs), the Transformer network, generative adversarial networks
(GANs), and others.

2.3.1 Deep Learning Models

Deep learning encompasses a broad range of machine learning algorithms that employ artificial
neural networks with multiple layers to learn intricate patterns from data. These models excel
at tasks like classification, regression, and anomaly detection, where the goal is to map the
input data to a corresponding output label or value. Deep learning has revolutionized various
fields, including computer vision, natural language processing, and speech recognition.

Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) are a type of deep learning architecture specifically de­
signed to handle sequential data. They excel at capturing long-range dependencies, meaning
that they can effectively model the relationships between events that are far apart in an event
log. This makes RNNs well-suited for generating realistic event sequences that reflect the in­
tricate patterns of real-world processes.

LSTM (Long Short-Term Memory)

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) architecture that
is specifically designed to overcome the vanishing gradient problem, which is a common issue
in RNNs that makes it difficult for them to learn long-range dependencies. LSTMs achieve this
by introducing a memory cell that can maintain its state over time, allowing it to capture long-
range dependencies between events in a sequence. Figure 2.4 shows the basic structure of the
LSTM network.

Figure 2.4: Structure of LSTM Network

7

2 Background

Gated Recurrent Unit (GRU)

Gated recurrent unit (GRU) is another type of RNN architecture that is similar to LSTM but has
a simpler structure. GRUs also introduce gating mechanisms to control the flow of information
through the network but do not have a separate memory cell like LSTMs. This makes GRUs
more computationally efficient than LSTMs, but they may not be as effective at capturing long-
range dependencies. Figure 2.5 shows the simple architecture of the GRU network.

Figure 2.5: GRU Basic Architecture

Transformers

The Transformer, introduced in 'Attention is A l l You Need" (Vaswani et al.)[2], has become
a cornerstone in Natural Language Processing (NLP). Its encoder-decoder design leverages
a self-attention mechanism, enabling parallel processing and better modeling of long-range
dependencies within the language. The encoder creates continuous high-dimensional repre­
sentations of input sequences for the decoder (see Figure 2.6). The decoder integrates these
representations with previous outputs to generate an output sequence, producing state-of-the-
art results for various NLP tasks.

2.3.2 Deep Generative Models

Deep generative models focus on generating new data instances that resemble the underlying
distribution of the training data. They aim to capture the statistical structure of the data and
produce samples that are indistinguishable from the real data points. This ability to generate re­
alistic data makes deep-generative models particularly useful for tasks like data augmentation,
synthetic data generation, and creative applications like art and music generation.

Variational Autoencoders

Variational autoencoder was proposed in 2013 by Diederik P. Kingma [3] and Max Welling at
Google and Qualcomm. VAE provides a probabilistic way of describing an observation in latent
space. Thus, rather than building an encoder that outputs a single value to describe each latent

8

2.3 Synthetic Logs Generation Techniques

Fcrv

1

•.ddANarr |

[.-!. M-v~)

Pc:;ili""[-I
Pncof lhg

t
Inputs

Output Probabilities
I I

t

I • i i

J=

Masked
Multi-Head
Arentior

Output
| bmbedding

Outputs
(shifted right)

Pof.ilionnl
Enccd tirj

Figure 2.6: Encoder-decoder structure of the Transformer architecture taken from "Attention
is all you need"

state attribute, the encoder is formulated to describe a probability distribution for each latent
attribute. It has many applications, such as data compression, synthetic data creation, etc. It
is different from an autoencoder in the sense that it provides a statistical way to describe the
samples of the dataset in latent space. Therefore, the encoder outputs a probability distribution
in the bottleneck layer instead of a single output value. However, VAEs also have limitations
such as smooth data generation, limited data distribution representation, and mode collapse.
Figure 2.7 shows the general architecture of VAE.

Figure 2.7: Variational Autoencoder

9

2 Background

Generative Adversarial Network

G A N can generate new data instances based on a given training dataset. This is achieved
through the interplay of two submodels: a generator and a discriminator. The generator creates
data fabricated from random input, while the discriminator attempts to distinguish real data
from its fabrications. Through a competitive process, these sub-models continuously improve
their performance over time. The intricate architecture of GANs will be explored in the next
section. Additionally, the focus of this thesis will be on the use of GANs to generate synthetic
event log data.

2.4 Architectural Overview of GAN

Generative Adversarial Networks (GANs) were developed in 2014 by Ian Goodfellow [4] and
his teammates. GANs have two main blocks that compete with each other and can capture,
copy, and analyze variations in a dataset. The two models are usually called Generator and
Discriminator(Figure 2.8). The generator network takes random input (typically noise) and
generates samples, such as images, text, sequences, or audio, that resemble the training data
it was trained on. The goal of the generator is to produce samples that are indistinguishable
from the real data.

Figure 2.8: Generative Adversarial Network Architecture

As training progresses, the generator becomes more adept at producing realistic samples, while
the discriminator becomes more skilled at differentiating between real and generated data.
Ideally, this process converges to a point where the generator is capable of generating high-
quality samples that are difficult for the discriminator to distinguish from real data.

The adversarial training implies that only one of the two networks will finally succeed.

• Generator: This will succeed if the discriminator, acting as a binary classifier, achieves
a 50 percent accuracy in classifying real and synthetic data. This is the accuracy of a

10

2.4 Architectural Overview ofGAN

random guess and means that the generator has learned a data distribution that generates
data that are indistinguishable from the discriminator.

• Discriminator: This will succeed if it achieves 100 percent accuracy, being able to cor­
rectly classify between the real and the synthetic data generated by the generator.

Generator Model

A key element responsible for creating fresh, accurate data in a Generative Adversarial Net­
work (GAN) is the generator model. The generator takes random noise as input and converts it
into complex data samples, such as text or images. The underlying distribution of the training
data is captured by layers of learnable parameters in its design through training. The generator
adjusts its output to produce samples that closely mimic real data, as it is being trained by us­
ing backpropagation to fine-tune its parameters(Figure 2.9). The generator's ability to generate
high-quality, varied samples that can fool the discriminator is what makes it successful.

Figure 2.9: Backpropogation in Generator Training

Generator LOSS(JG)

For generated samples, the generator minimizes the log likelihood that the discriminator is
right. Due to this loss, the generator is incentivized to generate samples that the discriminator
is likely to classify as real (logD(G(zj)) close to 1).

JG = --Z?=1logD(G(zt)) m
where

• JG measures how well the generator fools the discriminator.

• log D(G(zj)) represents the log probability that the discriminator is correct for generated
samples.

• The generator aims to minimize this loss, encouraging the production of samples that
the discriminator classifies as real (log D(G(zj)) close to 1.

11

2 Background

Discriminator Model

An artificial neural network called a discriminator model is used in Generative Adversarial
Networks (GAN) to differentiate between generated and actual input. By evaluating input
samples and allocating the probability of authenticity, the discriminator functions as a binary
classifier. Over time, the discriminator learns to differentiate between the genuine data of
the dataset and the artificial samples created by the generator. This allows it to progressively
hone its parameters and increase its level of proficiency. Maximizing the discriminator's ability
to accurately identify generated samples as fraudulent and real samples as authentic is the
objective of the adversarial training procedure. The discriminator updates its weights through
backpropagation of the discriminator loss through the discriminator network(Figure 2.10). The
discriminator becomes increasingly discriminating as a result of the interaction between the
generator and the discriminator, helping the G A N to produce realistic synthetic data in general.

Backpropagation

Real images Sample Discriminator Real images Sample Discriminator u 3
tfi 3

a
c £ Generator Generator

an
d<

DC

Sample

Figure 2.10: Backpropogation in Discriminator Training

Discriminator LOSS(JD)

The discriminator reduces the negative log-likelihood of correctly classifying both produced
and real samples.

JD = — £ log (D (XI)) - - £ log (1 - £> (G (X i)))
in i=l III i=l

MinMax Loss

In a Generative Adversarial Network (GAN), the minimax loss formula is provided by:

mmmzxV(D, G) = Ex ~ pdata{x)[\ogD{x)} + Ez ~ pz{z)[\og{l - D(G(z)))}
G D

where

• G is the generator network and is D is the discriminator network

12

2.5 ML Based Process Mining Tools

• Actual data samples obtained from true data distribution pdata(x) are represented by x.

• Random noise sampled from previous distribution pz(z) (usually a normal or uniform
distribution) is represented by z.

• D (x) represents the probability that the discriminator will correctly identify the actual
data as real.

• D(G(z)) is the likelihood that the discriminator will identify generated data from the
generator as authentic.

2.5 ML Based Process Mining Tools

Gartner defines process mining tools as tools that are designed to discover, monitor, and im­
prove processes by extracting knowledge from events captured in information systems to con­
tinuously deliver visibility and insights. Process mining includes automated process discovery
(i.e., extracting process models from an event log), conformance checking (i.e., monitoring de­
viations by comparing model and log), social network/organizational mining, automated con­
struction of simulation models, model extension, model repair, case prediction, and history-
based recommendations. The magic quadrant for ML-based process mining tools from Gartner
is shown in Figure 2.11. Several tools leverage ML to provide predictive insights, automation,
and enhanced analytics. Here are some notable ML-based process mining tools:

• Celonis offers a comprehensive suite of machine learning-powered process and task
mining capabilities, providing analytics, customization tools, and automation features to
streamline business processes.

• Disco by Fluxicon is a user-friendly tool that provides detailed process analysis and
visualization, making it accessible to business users.

• EverFlow utilizes cutting-edge technologies in Big Data and Machine Learning to ana­
lyze large volumes of events, offering simple and intuitive design for process insights.

• LANA Process Mining by Lana Labs includes an algorithm that enables prediction of
future process behavior and automated compliance checks.

• MEHRWERK Process Mining (MPM) combines self-service process mining, visual an­
alytics, and associative analytics on the Qlik Sense BI platform.

• Minit features advanced process improvement functionalities such as hierarchical visu­
alization, simulation of "what-if" scenarios, and interactive dashboards.

• mylnvenio provides a comprehensive solution for process mining with functionalities
such as simulation, decision rule mining, task mining, and analysis of multistage business
processes.

• PAFnow by Process Analytics Factory is built on Microsoft Power BI, integrating process
mining with business intelligence capabilities.

13

2 Background

CHALLENGERS

I Cäonis

9 Software AG

0 SAPSgnavio

0'l EHRWEF*
0 ABBYY

* Apnwnore
Microsoft (Mnrt)^

Appan ILinj-tabs) Q 0 OPR Software

SweoLOOC* 0 GBiBircsOplb:

Pegasys ferns (Everflow)

1 %

NICHE PLAYERS VISIONARIES

COMPLETENESS OF VISION As of Januaiy 2023 © Gartner, Inc
Gartner

Figure 2.11: Magic Quadrant for ML based Process Mining Tools

• ProDiscovery from Puzzle Data offers a suite of widgets for process discovery statistical
analysis, and organizational charts, designed for Big Data processing.

• QPR ProcessAnalyzer offers advanced analytics to identify case clusters and root causes,
customizable dashboards, and process prediction.

• Signavio Process Intelligence is part of Signavio's Business Transformation Suite, facil­
itating seamless integration between mining, modeling, and automation.

• UiPath The mining process part of an end-to-end automation platform combines RPA
with AI and cloud technologies to enhance digital business operations.

The integration of synthetic data into these tools presents a forward-thinking approach, ad­
dressing challenges related to data scarcity, privacy constraints, and the need for comprehen­
sive testing environments. As summarized by the notable tools discussed, synthetic data not
only catalyze the refinement of process mining algorithms, but also fortifies the robustness
and scalability of these systems. It represents a strategic asset, ensuring that the development
of ML-based process mining tools continues to evolve, driven by efficiency, accuracy, and a
deepened understanding of the underlying process dynamics.

14

3 Related Work

In March 2017, a study in the paper "A Review Of Synthetic Data Generation Methods For Privacy-
Preserving Data Publishing" by Surendra et. al conducted a review of various methods for gen­
erating synthetic data. The findings of this paper suggest that a significant drawback of the
majority of the methods analyzed is their dependency on extensive user involvement and ex­
pertise. Many of the synthetic data generation techniques described necessitate the establish­
ment of a comprehensive set of rules and constraints before the generation process can begin.
Furthermore, these methods demand that users possess a thorough knowledge of the data's
domain.

In the process mining domain, collecting and sharing process data can be challenging due to
its intricate nature and the presence of sensitive information [5] The hidden Markov model has
been employed to expand process datasets by capturing the sequential relationships between
activities and generating artificial process data [6]. In 2019, Zisgenet al.[7] in their study, imple­
mented an advanced algorithmic approach to generate synthetic sensor event logs, improving
the efficiency of the process extraction. This algorithm skillfully mimicked the complexity and
variability of real-world operational data, creating authentic and varied event logs reflective
of typical business process anomalies. The efficacy of their method, demonstrated through
the nuanced and realistic nature of the produced logs, was pivotal in refining process mining
algorithms. The generated logs provided a robust testing ground, ensuring the precision and re­
liability of the algorithm. The findings underscored the value of such sophisticated simulation
techniques in augmenting process mining tools, particularly in their accuracy and adaptability
to real-world data dynamics.

As shown in the work by Sommers et al. (2021)[8] GNNs have also been used for process min­
ing tasks including process discovery and prediction. Although it does not directly address
synthetic data generation for process mining, it is relevant due to its exploration of advanced
process discovery techniques using GNNs. The paper provides insights into data preparation,
process representation, and modeling, indirectly impacting the quality of data used in pro­
cess mining. Although synthetic data generation is not its central theme, it contributes to the
broader field by introducing advanced methods that can inspire improvements in synthetic
data quality for process mining applications. Most of these approaches were not based on gen­
erative machine learning models, they were based on simpler algorithms for the development
of synthetic data generators.

In recent years, deep generative models like RNN-based models, the Transformer network, and
GANs have been used in the process mining domain for process event prediction[9][10][ll].
These models can also be used to generate process data. There have also been some studies

15

3 Related Work

focused on different types of synthetic data using Generative Adversarial Networks. To begin
with, Esteban et al.[12] experimented with replacing the multilayer perceptron in the original
G A N model with a Recurrent Neural Network (RNN) to generate real-valued time series med­
ical data in a conditional setting. In the same line and motivated by privacy concerns, Choi et
al.[13] proposed a new model called the Medical Generative Adversarial Network (medGAN)
to generate realistic synthetic patient records, including discrete high-dimensional variables,
through a combination of an auto-encoder and a GAN. There are some efforts in the direction
of generating privacy-preserving process data, as discussed in paper by Keyi Li et al. [14] using
traditional deep learning models. The paper by Yu et al.[15] claims that their Sequence Gen­
erative Adversarial Nets with Policy Gradient (SeqGAN) is the first work to extend GANs to
generate discrete tokens of data. A n approach that involves the use of reinforcement learning
techniques in the generator.

In summary, the context of the studies presented in this section suggests that the idea of gen­
erating synthetic data using deep generative models for the data specific to the process mining
domain requires more research and hence is the foundation of this thesis.

16

4 Methodology

This chapter covers a detailed overview of the event log data set, along with the exploratory
data analysis and the preprocessing steps required, ensuring the suitability of the data for our
study. Furthermore, the steps in the data generation process are defined that are utilized in this
thesis. In the last section, the evaluation methods used for the synthetic data are discussed in
detail.

4.1 Dataset Exploration and Pre-Processing

In this thesis, two datasets are used, namely BPI 2012 Loan applications and the helpdesk
dataset.

4.1.1 Helpdesk Dataset

This data set captures activities related to the help desk ticketing process of an Italian software
company. It has a total of 9 distinct activities, with each case beginning with the creation of a
new ticket within the ticketing management system and concluding upon issue resolution and
ticket closure. The data set comprises 3,804 process instances (or "cases") and 13,710 individual
events. The data set used is already in the anonymized version, with activity names being
replaced by their IDs [16]. Since the data is already preprocessed and encoded, the detailed
explanation of the BPI2012 dataset is given in the next subsection to get more information
about the Process mining data format and activities.

4.1.2 BPI Challenge 2012 Dataset

The BPI 2012 dataset represents a series of loan applications within a Dutch financial institute,
starting with the submission by a customer for a loan and ending in the rejection, cancellation,
or acceptance of the loan. Figure 4.1 shows the sample event log from the BPI 2012 dataset.

org:resDurce lifecycle:transi1ion concept: name time:timestamp case: REG DATE case:concept:name case:AMOUNT REQ

D 112 COMPLETE A_SUBMITTED 2011 -09-30 22:38:44.546000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000

1 112 COMPLETE A_PARTLYSU EMITTED 2011 -09-30 22:38:44.880000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000

: 112 COMPLETE A PREACCEPTED 2011 -09-30 22:39:37.906000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 2c:c:

3 112 SCHEDULE W_Comple ters r i aarwraag 2011 -09-30 22:39:38.875000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000

4 N a N START W C o m p l e t e r e n aarwraag 2011 -10-01 09:36:46437000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000

5 10862 COMPLETE A ACCEPTED 2011 -10-01 09:42:43.308000+00:00 2011 -09-30 22:38:44.546000+00:00 173688 20000

6 10862 COMPLETE O.SELECTED 2011 -10-01 09:45:09.243000+00:00 2011-09-30 22:38:44.546000+00:00 173688 20000

Figure 4.1: Sample Event Log from the BPI 2012 Dataset

18

4.1 Dataset Exploration and Pre-Processing

In the dataset, there are 13087 different cases of loan applications in the timeframe between
October 2011 and March 2012. These 13087 cases lead to the entry of 262,200 different events, of
which 164,505 signify the completion of an activity, while the other entries signify the schedul­
ing of the start of the activities[17]. A typical event log gives an organized list of different case
instances for a particular type of process. In the BPI2012 dataset, all distinct case instances can
be identified with the 'Case ID' identifier. Each row in the data set can then be interpreted as
an individual event that takes place in any of these case instances. Each distinct event has an
associated Activity Name' label such as A_SUBMITTED, A_DECLINED, etc. A n event log will
also store the timestamp at which a particular event occurs, which is denoted by the 'Com­
plete Timestamp'. For our research, the Case ID and Activity attributes are the only necessary
attributes among others, as our interest is primarily on the dependencies of the activities.

Key Columns in BPI 20T2 Dataset

In our analysis of the BPI 2012 dataset, key statistical insights were derived for the columns
Case ID, Concept Name, and Timestamp (Figure 4.2), offering a deeper understanding of
the process flow:

Case Id A c t i v i t y N a m e C o m p l e t e T i m e s t a m p

173688 A SUBMITTED 2011 -09-30 22:38:44.546000+00:00

173688 A_ PARTLYSUBMITTED 2011 -09-30 22:38:44.880000+00:00

173688 A_PREACCEPTED 2011 -09-30 22:39:37.906000+00:00

173688 W_Comple te ren aanvraag 2011 -09-30 22:39:38.875000+00:00

173691 A_SUBMITTED 2011 -10-01 06:08:58.256000+00:00

173691 A PARTLYSUBMITTED 2011 -10-01 06:09:02.195000+00:00

173691 A P R E A C C E P T E D 2011 -10-01 06:09:56.648000+00:00

173691 W Comple te ren aanvraag 2011 -10-01 06:09:59.578000+00:00

173694 A S U B M I T T E D 2011 -10-01 06:10:30.287000+00:00

173694 A_ PARTLYSUBMITTED 2011 -10-01 06:10:30.591000+00:00

173697 A_SUBMITTED 2011 -10-01 06:11:08.866000+00:00

173697 A_ PARTLYSUBMITTED 2011 -10-01 06:11:09.035000+00:00

173694 A P R E A C C E P T E D 2011 -10-01 06:11:13.026000+00:00

173694 W Comple te ren aanvraag 2011 -10-01 06:11:13.390000+00:00

Figure 4.2: Entries in the event logs with Case ID, Concept Name, and Timestamp columns

1. Case ID: Serves as a unique identifier for each process instance (e.g., a loan application).
It is crucial for grouping events related to the same process, allowing an end-to-end view
of each instance. The data set contains 13,087 unique case IDs.

2. Concept Name: Represents the specific activities or steps within the process. This col­
umn is key for identifying and analyzing the various stages and actions in the process
flow. There are a total of 36 unique activities captured in the data set. The start activity
is A_SUBMITTED', occurring 13087 times, while AJDECLINED' is the end activity with
3429 occurrences.

19

4 Methodology

3. Timestamp: Indicates when each event occurred. Essential for time-based analysis, it
helps in understanding the duration and sequencing of process steps and in identifying
delays or bottlenecks.

Relevance to the Research

The BPI 2012 dataset is of significant relevance to the study on synthetic data generation for
process mining, underscored by the following considerations:

1. Depth and Diversity: Provides a comprehensive log of real-world financial processes,
offering a rich canvas to model synthetic data with a diverse range of process variations
and event types.

2. Benchmark Standard: Its role as a reference within the process mining community
ensures compatibility and comparability with a wide range of existing studies, enriching
the continuity and context of research efforts.

3. Data Quality: The granularity and detail within the dataset present an opportunity to
create high-fidelity synthetic data, which is essential for rigorous process mining analy­
sis.

4. Ethical Research: Data anonymization addresses privacy concerns, meeting the ethical
standards necessary for responsible research practices.

5. Educational Resource: Beyond research, the data set serves as an excellent learning
tool for process extraction techniques, benefiting educational initiatives.

6. Community Adoption: Widespread use by the research community provides a sup­
portive backdrop for problem-solving and innovation in process mining methodologies.

4.1.3 Data Exploration and Pre-processing

This section begins with Exploratory Data Analysis (EDA) and Preprocessing of the BPI Chal­
lenge 2012 dataset, laying the groundwork for accurate and insightful analysis. The generative
models will be trained on these preprocessed data, aiming to create synthetic datasets.

Introduction to PM4Py Library

PM4Py is a Python library tailored for process mining, a field focusing on the analysis of busi­
ness processes based on event logs. It encompasses a wide array of functionalities catering to
various aspects of process mining.

1. Process Discovery: Creating process models from raw event logs (Figure 4.3). Using
algorithms such as Alpha Miner, PM4Py can discover the underlying process model,
revealing the sequence of activities and their relationships.

20

4.1 Dataset Exploration and Pre-Processing

Figure 4.3: A Petri net from Alpha Miner showing business process event frequencies for BPI
Dataset using PM4py library

2. Conformance Checking: Comparison of event logs with existing process models to iden­
tify deviations.

3. Model Enhancement: Enhancing process models using data derived from actual process
execution.

4. Decision Point Analysis: Investigating decision points within processes.

5. Performance and Bottleneck Analysis: Identify and analyze process performance issues
and bottlenecks.

In this thesis, PM4Py is particularly used to convert data from XES format, the standard in
process mining, to CSV. This conversion is a crucial step in preparing the data for analysis
using Python-based tools such as Pandas. For the evaluation of the synthetic data workflow,
PM4py is again used to create process models.

The PM4Py library extends its functionality to the generation of process models like Petri nets,
which are crucial for visualizing and analyzing business process flows. These models are pivotal
in process discovery, a key aspect of process mining focused on deriving models from event
log data. Algorithms such as Alpha Miner are instrumental in this regard, translating logs into
a set of relationships that inform the creation of Petri nets. These nets serve as a valuable tool
in both understanding potential business behaviors and in conformance checking—ensuring
adherence to expected process flows, particularly when assessing synthetic data's alignment
with real-world processes. Petri nets themselves are a blend of graphical and mathematical
modeling, representing the concurrent elements of systems through places (conditions) and
transitions (events), thereby providing a comprehensive view of a process's dynamics.

21

4 Methodology

4.1.4 Exploratory Data Analysis

This exploratory data analysis begins with an investigation of the activity counts within the
BPI 2012 dataset. The aim is to identify which activities are most prevalent and which are less
common, as this information can highlight routine processes as well as pinpoint bottlenecks or
rare, but critical, events. By visualizing the activity frequencies as shown in the accompanying
bar chart, we can start to discern patterns and irregularities that may warrant a deeper dive to
understand the underlying process behavior and efficiency.

Frequency of Activities in Event Logs

As shown in figure 4.4, few activities stand out "WXompleteren aanvraag", "WJSTabellen of-
fertes" and "W_Nabellen incomplete dossiers" and have a lot of actions.The high frequency of
activities beginning with "W_" in the BPI 2012 dataset bar chart likely indicates routine work
tasks or steps central to the business process. They might represent repeated actions within
cases, reflecting standard operational procedures. Alternatively, their prevalence could point
to potential bottlenecks where tasks tend to accumulate. The activity occurrence is also used
as an evaluation measure of the synthetic data in this research.

Activity Count
W C o m p l e t e r e n aanvraag

W N a b e l l e n offerees
W_Nabel len incomplete doss iers

W_Val ideren aanvraag
W_Afhande len leads

A_SUBMITTED
A_PARTLY5UBMITTED

A_DECLINED
A_PREACCEPTED

• CREATED
>. 0_SENT
% 0 SELECTED
fj A ACCEPTED
< AF INAL I ZED

O CANCELLED
0_SENT_BACK
A_CANCELLED

A_KEGISTERED
A_ACTIVATE D
A_APPROVED
0_ACCEPTED
0_DECLINED

W Beoorde len f raude
W W i j z i g e n cont rac tgegevens

Figure 4.4: Frequency of Activities in Event Logs for BPI 2012 Dataset

Boundary Activities Analysis

An analysis of boundary activities is performed on process instances, as shown in Figure 4.5.
The process log commences with a uniform initial activity across all instances, denoted as
A.SUBMITTED'. This activity is the inception point for the process, occurring 13,087 times,
which indicates that every case within the log begins with this step.
The consistent appearance of A_SUBMITTED' as the start activity suggests a standardized
process entry across the dataset. The terminal activities within the event log are more var­
ied, reflecting the multiple potential endpoints of a process instance. The dataset exhibits

22

4.2 Data Generation Process using LSTM and GANModels

S t a r t A c t i v i t i e s : {'A_SUBMITTED': 13987}
End A c t i v i t i e s :

{'W_Valideren aanvraag': 2747j
'W_Wijzigen contractgegevens ' : 4,
'A_DECLINED': 3429,
'W_Completeren aanvraag': 1939,
'A_CANCELLED': 655,
'W_Nabellen i n c o m p l e t e d o s s i e r s ' : 452,
'W_Afhandelen l e a d s ' : 2234,
'W_Nabellen o f f e r t e s ' : 1299,
'W_Beoordelen f r a u d e ' : 57,
•0_CANCELLED': 279,
'A_REGISTERED': 1}

Figure 4.5: Boundary Activity Analysis

A_DECLINED' as the most frequent concluding activity with 3,429 instances, followed by
'W.Valideren aanvraag' with 2,747 instances, and 'WXompleteren aanvraag' with 1,939 in­
stances.

Analysis of Process Sequence Variants

Detailed information on the variants is shown in Table 4.1. Of 13087 cases in logs, 3429
of them (i.e. 26%) are in 1 variant. The variants A_SUBMITTED, AJARTLYSUBMITTED,
A_DECLINED' emerged as the most frequent, with a count of 3429. This sequence suggests a
high occurrence of processes being submitted, partially submitted, and then declined. Other no­
table variants include A_SUBMITTED, AJARTLYSUBMITTED, WJ\.fhandelen leads, W_Afhandelen
leads, A_DECLINED, W_Afhandelen leads' with a count of 1872, and a more complex sequence
A_SUBMITTED, AJARTLYSUBMITTED, W_Afhandelen leads, WJ\ihandelen leads, W_Afhandelen
leads, W_Afhandelen leads, AJDECLINED, W_Aihandelen leads' recorded 271 times. These
variants highlight a series of lead-handling activities interspersed with submissions and de­
clinations. Sequences leading to A_PREACCEPTED' and A . C A N C E L L E D ' stages were also
observed, though less frequently. Variants ending in A X A N C E L L E D ' suggest processes that
started but were not completed, a critical aspect for process efficiency analysis.

4.2 Data Generation Process using LSTM and GAN Models

The overall data generation process in the thesis by both models is designed to be executed in 5
steps (Figure 4.6). The input is the XES file, which is the start file for the event logs containing
event details. The output is a collection of synthetic event sequences, where each sequence
represents the possible order of events that a process can take.

23

4 Methodology

Variant
A_SUBMITTED, A_PARTLYSUBMITTED, A_DECLINED
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads,
A_DECLINED, WJUhandelen leads
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads,
WJVfhandelen leads, W_Afhandelen leads, A_DECLINED, W_Afhandelen leads
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads,
A_PREACCEPTED, W_Completeren aanvraag, W_Afhandelen leads, W_Completeren aan-
vraag, A_DECLINED, W_Completeren aanvraag
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aanvraag,
W_Completeren aanvraag, A_DECLINED, WXompleteren aanvraag
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aanvraag,
WXompleteren aanvraag, A X A N C E L L E D , WXompleteren aanvraag
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads,
A_PREACCEPTED, WXompleteren aanvraag, W_Afhandelen leads, WXompleteren
aanvraag, WXompleteren aanvraag, WXompleteren aanvraag, A_DECLINED,
WXompleteren aanvraag
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aan-
vraag, WXompleteren aanvraag, WXompleteren aanvraag, WXompleteren aanvraag,
AJDECLINED, WXompleteren aanvraag
A_SUBMITTED, A_PARTLYSUBMITTED, A_PREACCEPTED, WXompleteren aan-
vraag, WXompleteren aanvraag, WXompleteren aanvraag, WXompleteren aanvraag,
A X A N C E L L E D , WXompleteren aanvraag
A_SUBMITTED, A_PARTLYSUBMITTED, W_Afhandelen leads, W_Afhandelen leads,
A_PREACCEPTED, WXompleteren aanvraag, W_Afhandelen leads, WXompleteren aan­
vraag, WXompleteren aanvraag, WXompleteren aanvraag, WXompleteren aanvraag,
WXompleteren aanvraag, A_DECLINED, WXompleteren aanvraag

Table 4.1: Most frequent sequence Variants in BPI 2012 Dataset

4.2.1 Data Acquisition and Conversion

The first stage involves sourcing data from the renowned Business Process Intelligence Chal­
lenge (BPI) 2012 dataset. This data set, originally in the XES (extensible Event Stream) format,
which is a standard format for process mining, is converted to the CSV (Comma Separated
Values) format for better analysis.

4.2.2 Pattern Analysis and Feature Engineering

The main idea behind this step is to detect the correlations in the data set and encode and
process the data set so that it can be understood and best processed by any machine learning
or statistical model.

24

4.2 Data Generation Process using LSTM and GANModels

Data Format and
Data Transformation

Input Dataset
(xes f i le)

Real Data Pa t te rn Ana l ys i s
A n d

Feature Eng ineer ing

Real Transform ed Data
(xes to csv. Trace encoding,

Process Sequence generation)

M a c h i n e Lea rn ing

Da ta P r o d u c t i o n Fea ture
Re-engineer ing

S y n t h e t i c D a t a

Figure 4.6: Data Generation Process

Chronological Sequence Generation

Following conversion, the next critical step is to generate sequences for each case ID using the
timestamp column. This process involved organizing the events of each case in a chronologi­
cally coherent sequence that reflected the actual flow of activities within the business process.
By aligning these events according to their timestamps, the temporal integrity of the process
flow is maintained, which is a vital aspect of accurate process mining.

Threshold Selection for Sequences

To facilitate the generation of synthetic data that accurately reflect the complexity and vari­
ability of sequences of real-world processes, it is imperative to establish meaningful thresholds.
These thresholds serve as benchmarks for categorizing the sequences according to their length,
which is a proxy for their complexity. The histogram of the sequence lengths in Figure 4.7 pro­
vides the empirical basis for determining these thresholds. Upon analysis of the histogram:

• Initial Observations: The data are heavily skewed towards shorter sequence lengths,
with a pronounced peak at the lower end of the sequence-length spectrum. This indicates
a predominance of simpler process sequences within the data set.

• Tail Analysis: A noticeable long tail extends towards the higher sequence lengths, sug­
gesting the presence of more complex and less frequent process variants.

Using these observations, the threshold values are determined. For the experiments, the thresh­
old of 25 is taken. Situated slightly above the median sequence length of 11, it captures the most
frequently occurring sequence lengths. This threshold ensures that the synthetic data repre­
sent the bulk of the process instances. In applying these thresholds, the aim is to ensure that

25

4 Methodology

Histogram of Sequence Lengths

0 25 50 75 100 125 150

Figure 4.7: Histogram of Sequence length for Bench-marking for BPI 2012 Dataset

the generative models are exposed to a wide range of process sequences during training. This
approach is designed to produce a synthetic data set that is not just a replication of the most
frequent sequences, but is inclusive of the diversity inherent in real-world process flows.

Index-based Encoding for Machine Learning Readiness

With machine learning as the cornerstone of synthetic data generation, preparing the data
set for algorithm compatibility is essential. The activity names are translated into integers,
and it is more than just a data transformation technique. For instance, the event sequence
['A_SUBMITTED', 'A_PARTLYSUBMITTED', 'WJVfhandelen leads', 'WJVfhandelen leads', '
A_DECLINED', 'W_Afhandelen leads'] is converted to [10, 7, 18, 18, 5]. It is a critical step in
rendering the data suitable for machine learning models, particularly those that are sensitive
to non-numerical data. This encoding not only makes the dataset machine learning ready, but
can also be used as an anonymization method to hide private information. It also significantly
improves the efficiency of the computations, a crucial factor when working with complex gen­
erative models.

4.2.3 Machine Learning - Model training for Synthetic data generation

The Machine learning part consists of the model training step where the model is created and
trained with either a sample of real data or random noise based on its architecture. In this thesis,
as discussed above, the LSTM and G A N model with Transformer encoder-based generator and
discriminator are compared for the process sequence generator parameters.

26

4.2 Data Generation Process using LSTM and GANModels

LSTM as generative Model

LSTMs are explicitly designed to overcome the limitations of traditional RNNs in learning
long-term dependencies, making them exceptionally good at capturing complex patterns over
lengthy sequences. They can generate a wide variety of sequence types, including text, time se­
ries data, and event logs, making them versatile tools for synthetic data generation in different
domains.

• Learning Phase: Initially, the LSTM model is trained on a dataset that contains real
sequences. During this phase, the model learns the underlying patterns, structures, and
dependencies within the data. This includes learning the probability distribution of the
sequence elements and their temporal dependencies.

• Generation Phase: Once the model is adequately trained, it generates new sequences.
Generation typically starts with a seed (an initial sequence or part of a sequence), and the
model predicts the subsequent elements one at a time based on the learned distribution.
The output of each step can be fed back into the model as input to generate the next step,
continuing until a sequence of the desired length is produced.

Transformer Encoder based GAN Architecture

• Architecture Setup: In this setup, both the generator and discriminator are built upon
Transformer architectures. The Transformer's encoder component is utilized in both
models to handle sequential input data effectively. The generator learns to produce se­
quences that resemble the training data, while the discriminator learns to distinguish
between real data from the training set and fake data produced by the generator.

• Training Phase: During training, the generator receives a random noise vector and
transforms it into a sequence. The discriminator then evaluates sequences from both the
generator and the real dataset, learning to classify them as real or fake. This adversarial
process continues iteratively, with the generator improving its ability to produce realistic
sequences and the discriminator enhancing its ability to detect synthetic ones. The use of
Transformer encoders allows both models to better handle the complexities of sequence
data, leveraging attention mechanisms to capture long-range dependencies within the
data.

4.2.4 Data Production and Feature Re-engineering

Once the models are trained and in a productive state, it is possible to generate new synthetic
sequences for the defined data set. The input for generation of sequences is given based on the
model type, and depending on the number of sequences to be generated, the data are generated
by models in the index encoded sequences format. A l l the transformations performed in the
step feature engineering can be reversed here to have the same format as the input data to
make it usable for analysis and evaluation purposes such as creating workflow diagrams, and
more.

27

4 Methodology

4.3 Evaluation Methods

4.3.1 Sequence Length Analysis

To determine whether the length variation found in the real process sequences is accurately
reflected by the synthetic sequences. This evaluation involves comparing the lengths of the
sequences generated by both models based on the comparison of the sequence length proba­
bility distribution with a real dataset. This assessment is crucial for understanding whether the
generated sequences follow the sequence-length distribution present in the real data.

4.3.2 Activity type Occurrence Distribution

For each unique activity type, the frequency of occurrence within the sequences of the synthetic
and real data sets is calculated. The goal is to measure how closely the distribution of activity
types in the synthetic dataset (Sa) matches the distribution in the real dataset (Xa).

4.3.3 Sequence Variance using Sum of Pairwise Normalized Edit Distances

Sequence variance refers to the diversity or spread of process sequences in a data set. The
sum of Pairwise Normalized Edit Distance (SPE) is a metric used to measure the heterogeneity
or diversity of a set of sequences. It provides a way to quantify this variance by looking at
how different each sequence is from every other sequence in the data set. The sum of Pairwise
Normalized Edit Distance can be calculated using the following steps:

To quantify the internal diversity of the authentic and generated data set, the sum of pair-
wise normalized edit distances (SPE) is used. This statistical metric is critical for assessing the
variance within a collection of sequences and providing information on the heterogeneity of
the data set. The SPE is particularly adept at encapsulating the spread of the sequences, which
is essential for ensuring that the synthetic data mirrors the complexity and variability inherent
in real-world data. The SPE is computed by following a two-step process.

1. Edit Distance (ED): The ED is employed to measure how dissimilar two sequences are
by counting the minimum number of operations needed to transform one sequence into
the other. Operations considered include insertions, deletions, and substitutions. The
edit distance in question used here is the Levenshtein distance, which accounts for these
types of operation.

2. Normalization: To normalize the impact of the sequence length on our variance mea­
sure, divide the edit distance by the combined length of the two sequences in compari­
son. This normalization accounts for the possibility that longer sequences naturally have
a larger edit distance, not necessarily indicative of greater diversity.

The SPE is then calculated using the formula:

1
AT2

N N ED(sj, Sj)
SPE E E (length(si) + length(sj))

(4.1)
i=lj=i+\

where:

28

4.3 Evaluation Methods

• iV is the total number of sequences in the dataset.

• Si and Sj are individual sequences of the data set.

• ED(si, Sj) is the edit distance (Levenshtein distance) between the sequences Si and Sj.

• length(si) and length(sj) are the lengths of the sequences Si and Sj, respectively.

The SPE gives an overall indication of diversity within the dataset. A lower SPE value would
suggest that the sequences are quite similar to each other, indicating low variance. A higher
SPE value would indicate that there is a wide range of differences between the sequences,
suggesting a high variance. High variance is often desirable in synthetic datasets because it
implies that the synthetic data encompasses a wide range of possible scenarios, which can be
essential for robust machine learning.

4.3.4 KL Divergence

KL Divergence, or Kullback-Leibler Divergence, is a measure of information theory that quan­
tifies how much one probability distribution diverges from a second expected probability distri­
bution. It is often used in various fields, including statistics, data science, and machine learning,
to measure the difference or similarity between two distributions. When comparing real (ob­
served) and synthetic (model-generated) sequences, KL Divergence can help assess how well
the synthetic data represents the real data.

• P is the probability distribution derived from the real data.

• Q is the probability distribution derived from the synthetic data.

• X is the set of all events (or unique elements in your sequences).

The result of the KL Divergence is a non-negative value where a result of 0 indicates that the
two distributions are identical (in the context of the information contained in the distributions).
Higher values indicate a greater divergence.

4.3.5 Unique Sequence Comparisons

To assess how well the synthetic data (generated by the model) mirrors the real-world data, the
comparison of unique sequences is crucial. When unique sequences are compared, the diver­
sity and authenticity of the generated data can be evaluated, thereby validating and refining
the model performance. It is also important to ensure that synthetic sequences are not mere
replicas of real sequences, but are, instead, diverse and representative. Analysis of unique se­
quences can lead to the identification of novel patterns, structures, or functions that were not
evident in the real data alone.

(4.2)

where:

29

4 Methodology

4.3.6 Process Flow Evaluation

The evaluation of synthetic data for process mining must extend beyond statistical similarity
and encompass the functional similarity of the process flows. It is imperative to confirm that
the synthetic data not only statistically resembles the real data but also preserves the underly­
ing process flows and structures. The PM4Py library, a state-of-the-art process mining toolkit
implemented in Python, is used to plot the process models using the Heuristic Miner process
discovery algorithm.

The direct comparison of process models from real and synthetic data offers insightful per­
spectives on the utility of the generated data. A high degree of similarity in visualization and
low alignment costs in conformance checking reinforce the validity of synthetic data for use in
process mining applications. On the contrary, significant deviations suggest areas where the
data generation model may require further tuning to more accurately capture the nuances of
real process flows.

30

5 Implementation
In this chapter, the implementation details related to the research, focusing on two methods:
Long Short-Term Memory (LSTM) networks and then a more advanced method using G A N is
discussed. The analysis of the results, with a comparison between the performance of GAN
and LSTM models, is discussed in the next chapter.

5.1 LSTM Synthetic Sequence Generator

This approach is used for comparison purposes, in which the traditional LSTM model is used for
the event log sequence generation. This choice is motivated by the LSTM's ability to learn and
retain information across longer periods, effectively modeling the temporal nature of process
event logs. For the list of parameters and variables involved in the definition and training of the
model, please refer to Table 5.1. For more information on LSTMs, please refer to the original
paper[18].

Input

LSTM

Dense

Output

Figure 5.1: LSTM as Generative Model

Event sequences are represented as integer indices, which are first transformed into continuous
vector embeddings. These embeddings feed into the LSTM layer, where hidden states capture
the context and dependencies between events. At each step, the model predicts the probability
of the next event of each sequence based on the current hidden state and the learned patterns.

Training involves feeding actual process event logs into the model. Over time, the model learns

32

5.2 GAN-based synthetic data generator

typical event sequences and transitions, updating its internal parameters to minimize predic­
tion errors. This process attempts to replicate the statistical properties of the training data,
resulting in synthetic logs that resemble the real ones but avoid direct copying. The early
stopping mechanism is also used to terminate training if the validation loss does not show im­
provement over a certain number of epochs. The model was meticulously configured with a
set of hyperparameters optimized for sequence generation tasks.

The model's architecture is designed with an embedding dimension of 4, catering to the com­
pact vocabulary size of 23 unique tokens for the BPI2012 dataset, and a hidden layer dimension
of 16, which provides a balance between capturing the nuances of the input data and maintain­
ing computational efficiency The training was carried out with each sequence standardized
to a maximum length based on the length of the sequence tokens to ensure uniform process­
ing. The training process utilized a batch size of 64 over 200 epochs, employing a learning rate
of 0.01 to guide the optimization process toward effective model convergence. Execution on
a CUDA-enabled GPU for accelerated computation was strategically chosen to foster robust
learning and generalization capabilities of the LSTM generator, thereby enhancing its perfor­
mance on the designated sequence generation tasks.

Variable Value
Neural network architecture
Hidden layers
Activation function
Number of neurons
Optimizer
Batch size
Number of training epochs
Learning rate
Device for computation

LSTM
1 fully connected
LogSoftmax
16
Adam optimizer
64
200
0.01
CPU/GPU

Table 5.1: Variables and parameters related to the definition and training of LSTM Model. Any
parameter not listed in this table was left as default.

5.2 GAN-based synthetic data generator

This thesis primarily employs Generative Adversarial Networks (GANs) as its foundation. The
implementation deviates from the traditional G A N architecture, as the data generation is ac­
complished through the integration of a transformer's encoder and the architecture of a GAN.
In contrast to LSTM which generates sequences incrementally from a single initial token, trans­
formers can process an entire random sequence as input all at once. The Transformer network
uses the positional encoding technique to inform the relative positions of the tokens. The
transformer leverages its multihead self-attention mechanism to effectively capture long-range
dependencies within data. Concurrently, the G A N architecture improves the accuracy of the
synthesized sequences produced, particularly in scenarios where the available data is limited.

33

5 Implementation

•
r a n d o m Input
Sequence Z

Sequence Length I

Genera ted Fake
Sequences G(Z)

Activity
Divergence Loss

Discr iminator
la* la*

Rea l Sequences X

Sequence length I

Figure 5.2: Architecture diagram for G A N for generating process data. The random input se­
quences and actual sequences undergo preprocessing to ensure they are of equal
length. The discriminator is taught to differentiate between the real and generated
sequences. The generator is fine-tuned using losses calculated by the discriminator
and activity divergence.

Model Definition

The first step to train Generative Adversarial Networks is to define the generator and discrimi­
nator models. The way these models are designed for the implementation of this thesis slightly
differs in various aspects from the way they are commonly defined. The main reason is that
most G A N implementations are designed to generate images, while the focus here is the se­
quence event generation; second, an auxiliary loss function is used for the activity distribution
divergence to better train the G A N model. The implementation of Transformer Encoder and
G A N is based on Pytorch learning documents [19] [20]. Figure 5.2 describes the basic architec­
ture diagram for the Process Data generation using GAN.

The generator initializes by taking a random sequence as input. It then embeds this sequence
into a continuous vector representation inspired by word embedding techniques commonly
used in Natural Language Processing (NLP). Subsequently, the embedded sequence is fed into
the self-attention mechanism of the Transformer architecture, enabling the model to analyze
the positional and relational dependencies within the sequence. Finally, the output of the trans­
former generates a categorical vector, representing the probability distribution over activity
classes. A n argmax operation is applied to this vector, resulting in a one-hot encoded repre­
sentation of the generated sequence.

To prevent mode collapse potentially arising from learning rate discrepancies between the gen­
erator and discriminator during adversarial training, the Transformer encoder-based discrim­
inator is utilized. By identifying the first end token in generated sequences and padding sub­
sequent tokens, the discriminator effectively processes sequences of one-hot encoded vectors

34

5.2 GAN-based synthetic data generator

(both generated and authentic) and outputs a binary classification indicating their authenticity.
For the list of parameters and variables involved in the definition and training of the model,
please refer to Table 5.2.

Variable
Dropout rate
Batch size
Generator/Discriminator ratio
Learning rate (generator)
Learning rate (discriminator)
Total epochs
Optimizer
Loss Function
Device for computation

Value
01
128
2 (k value)
0.0001
0.0001
800
Adam Optimizer
Binary Cross-Entropy Loss
CPU/GPU

Table 5.2: Parameters for the G A N model

Learning Objectives

In a dynamic interplay, the generator and discriminator were iteratively optimized to estab­
lish an equilibrium. The discriminator evaluated the generated sequences, providing feedback
to the generator. The generator was designed to enhance its performance by maximizing this
evaluation score. The generator's last layer outputs sequences of vectors v, where each di­
mension of v represents the probability of a specific token being generated in that position.
During forward propagation, argmax is applied on v to create a sequence in one-hot encod­
ing. This sequence is then input to the discriminator. However, since the argmax operation is
not differentiable, it cannot pass gradients back during backpropagation. To address this, the
model uses the straight-through Gumbel-Softmax mechanism, a differentiable sampling op­
eration that allows the discriminator to score the generated sequences and pass the gradient
back to the generator. Compared to RNNs, random input and adversarial training in G A N help
reduce exposure bias. The activity distribution divergence (MSE) is added as an auxiliary loss
to the generator. The divergence in each training batch is fed to the generator.

Adversarial Training

During the initial stages of adversarial training, the discriminator might quickly reach conver­
gence if the generator produces sequences that are not plausible. As a result, could potentially
reject all sequences generated by Generator, leading to ineffective training. To manage the
speed of optimization and prevent rapid convergence, a training strategy is employed. This
strategy involves optimizing the generator for a certain number of epochs, specifically two
epochs in this study, followed by a single epoch of optimization for the discriminator. The
generator and discriminator iteratively strive to reach an equilibrium. The discriminator acts

35

like a critic and evaluates the process sequences generated by the generator along with assign­
ing a scalar score. The generator aims to maximize this score to produce sequences that are
indistinguishable from real data.

Gumbel Softmax Mechanism

Gumbel-Softmax is a technique used in generative models to approximate discrete distributions
with continuous ones. This allows the gradients of the model to be backpropagated through
the discrete sampling process, which is essential for training the model using stochastic gradi­
ent descent (SGD).In this model, the Gumbel-Softmax distribution is used to approximate the
discrete distribution over activities that are used to generate process sequences. This allows
the model to be trained using SGD and produce more realistic and diverse process sequences.
This technique is used to handle the discrete backpropagation from the discriminator. [21]

Loss Functions

In a Generative Adversarial Network, the error between the output of the discriminator and
the real labels is determined using the binary cross-entropy loss. This loss ensures that the
discriminator provides a clear signal to the generator about the quality of the synthetic data,
hence guiding the generator to produce more realistic data. Before the actual adversarial train­
ing begins, to improve the generator's performance in the G A N architecture, an activity loss
is introduced during a pre-training phase. This loss assesses the discrepancy between the fre­
quency distributions of generated and real sequence tokens. The evaluation of the results is
based on the evaluation methods discussed in the methodology section.

5.3 Experimental Setup and Hardware Requirements

The experimental framework for this research was primarily supported by a robust cloud com­
puting infrastructure. The bulk of the experiments, including data preprocessing and visualiza­
tion tasks, were executed on a Google Colab Pro cloud platform. This environment was chosen
due to its balance of computational power and accessibility, which is detailed in Table 5.3.

Specification Value
Cloud Platform
Processor
Memory Size
GPU
Languages

Google Colab Pro
2.00 Cores, 1 vCPU
16 GB
NVIDIA Tesla PI00
Python 3.11.0

Table 5.3: Specifications of the test system used to train LSTM and G A N models and run all the
experiments, including data preprocessing and visualization.

The software implemented is written in Python 3.11.0 with the Python libraries mentioned in

5.3 Experimental Setup and Hardware Requirements

table 5.4.

Package Name Version Purpose
PyTorch 1.8.1 ML framework and N N library
Pandas 1.1.5 Data manipulation and analysis
NumPy 1.19.5 Numerical computations
Matplotlib 3.3.4 Data visualization
Python 3.11.0 Programming language

Table 5.4: Software packages and libraries used for the experimental setup.

37

6 Experiments

In the thesis, a series of experiments have been conducted to compare the synthetic data gener­
ated using Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks
(GANs). This chapter reveals the results of the experiments. To allow a clear comparison, Fig­
ure 6.1 presents a statistical analysis of the real data used in the LSTM and G A N models for the
Helpdesk and BPI 2012 datasets. This analysis includes key metrics like the number of cases,
vocabulary size, and mean and standard deviation of sequence lengths. In this section, there

Vocab Size: 2 3

Mean: 3.60
Std Dev: +1.19

• Std Dev: -1.19

10 12 14
Sequence Length

Figure 6.1: Summary of the characteristics of the BPI 2012 (left) and Helpdesk (right) dataset

will be a discussion on the comprehensive analysis of the synthetic data generated based on
the metrics discussed in the methodology section. LSTM and G A N models will be compared
and analyzed for the BPI 2012 and helpdesk datasets. For the evaluation of each model, 500
synthetic sequences were generated and compared for both data sets.

6.1 Model Training Results

To understand the performance of the G A N model, the plot for the discriminator loss is shown
in Figure 6.2. This plot illustrates the trend of discriminator loss during the training of the GAN
model aimed at generating synthetic process activity sequences.
Initially, a spike in the discriminator loss is observed, suggesting a period of uncertainty or less
effective discrimination between real and synthetic sequences. As training proceeds, a down­
ward trend in the discriminator loss is noticeable, implying an improvement in the discrimina­
tor's performance. This is indicative of the adversarial training process, where the discrimina­
tor and the generator iteratively improve in response to each other's progress. A decline in the

38

6.1 Model Training Results

1.4

1.2

1.0

3

0.8

0.6

0 50 100 150 200 250 300 350 400
Epoch

Figure 6.2: Discriminator loss over epochs for BPI 2012 Dataset

0.025-

0.020

0.015-

0.010-

0.005 -

0.000- , , , , ,
0 50 100 150 200

epochs

Figure 6.3: Training and Validation Loss for LSTM Model for BPI 2012 Dataset

loss value typically conveys that the discriminator is becoming more proficient at identifying
real data as opposed to synthetic data produced by the generator.

Figure 6.3 displays the training progression of an LSTM network, with both training and vali­
dation loss depicted over 200 epochs. Initially, there is a steep decline in loss, indicating rapid
learning from the sequential data. Losses quickly converge and remain tightly coupled, sug­
gesting an effective generalization without signs of overfitting. As training progresses, the

39

6 Experiments

loss values plateau near zero, which points to the LSTM's capability to capture and predict the
patterns in the dataset with high accuracy.

6.2 Sequence Length Comparison

Evaluation of sequential data is not as intuitive as image data. Synthetic images are usually
evaluated on the basis of the authenticity of the resolution, which is easy to observe. The aim
here is to generate synthetic process data that follow the underlying distribution of the real-
world process. In a sequence-length comparison to assess the fidelity of synthetic sequences,
this analysis compared the probability distribution of the sequence lengths across both datasets.
Figure 6.4 and Figure 6.5 show a bar plot comparing the sequences of Real, LSTM, and GAN
for the helpdesk and BPI 2012 datasets respectively.

Sequence Length

Figure 6.4: Comparison of Probability Distribution of Sequence Length of Real and Synthetic
data for Helpdesk Dataset(Sequence Length=13)

In the analysis of LSTM-generated sequences, the outcomes closely align with the real data for
both datasets, particularly with shorter sequences, capturing the distribution of the real data
effectively. However, when the performance of G A N is assessed against both the BPI2012 and
the helpdesk datasets, it reveals a marginally lower similarity to real data compared to LSTM,
but it exhibits a greater diversity in sequence lengths. This diversity suggests the ability of
G A N to create new sequences. A n example of such a sequence is where the GAN-generated
sequence incorporated the additional repetitive steps not found in the original data[22].

For instance, a real sequence detailed as ' A SUBMITTED A PARTLYSUBMITTED A
PREACCEPTED -> W Completeren aanvraag -> W Completeren aanvraag -> A DECLINED
—> W Completeren aanvraag" in BPI2012 dataset is expanded in the GAN-generated sequence
to include more "W Completeren aanvraag" steps, leading to a sequence like "A SUBMITTED

A PARTLYSUBMITTED A PREACCEPTED W Completeren aanvraag (x4) A DE­
CLINED —> W Completeren aanvraag", which is also a valid sequence. This process showcases
GAN's strength in generating new, plausible patterns by repeating specific steps and introduc­
ing sequences not originally present in the dataset. The novelty of the generated data needs

40

6.3 Sequence Variance Analysis

Sequence Length

Figure 6.5: Comparison of the Probability Distribution of Sequence Length of Real and Syn­
thetic data for BPI 2012 Dataset(Sequence Length =25)

to be observed with further experiments to understand the usability of these data to train the
ML-based process mining tools.

6.3 Sequence Variance Analysis

Sequence variance is calculated using the sum of the pairwise normalized Edit distance (SPE).
It is calculated between all pairs of activity sequences for both real and synthetic data using
the Levenshtein distance, also called the edit distance. In the analysis (Table 6.1), the LSTM-
generated process sequences exhibited variance scores closer to authentic data (0.204 for BPI
and 0.156 for Helpdesk) compared to those generated by the G A N model (0.231 for BPI and
0.183 for Helpdesk).

Data Source BPI2012 Helpdesk

Authentic 0.196 0.165
LSTM 0.204 0.156
G A N 0.231 0.183

Table 6.1: Comparison of Sequence variance of Synthetic and Authentic Data.

LSTM model demonstrated a capability to replicate the variance of authentic data, suggesting
their effectiveness in capturing the sequential dependencies typical of process sequences. This
was particularly evident in the Helpdesk dataset, where the LSTM variance was slightly lower
than that of the authentic data. The G A N model, although it generates higher variance scores
than the LSTM model and the authentic data, indicates the ability to explore a wider range of
process variations. Although this did not meet the initial goal of closely mimicking authentic
data variance, it underscores GANs' potential to enrich process mining analyses by provid­
ing diverse data coverage, ensuring that the generated sequences reflect the variety of actual
process variations.

41

6 Experiments

6.4 Kullback-Leibler (KL) divergence

The KL divergence values indicate how the probability distribution of the synthetic data (gener­
ated by the models) diverges from the actual (authentic) data distribution in the given datasets.

Model BPI2012 Helpdesk

LSTM 2.62 0.80
G A N 3.03 2.76

Table 6.2: Comparison of KL Divergence of Synthetic and Authentic Data

When the probability distribution of the complete sequences of real and synthetic data is com­
pared, LSTM generated sequences show lower KL divergence values (2.62 for BPI2012 and 0.80
for Helpdesk), indicating that its synthetic data is closer to the actual data, particularly for the
Helpdesk dataset. This suggests that LSTM is effective in capturing temporal patterns in the
processing of data. Synthetic data generated from GAN(3.03 for BPI2012 and 2.76 for Helpdesk)
has a higher KL divergence that showcases its effectiveness in balancing the need for similarity
with the need for differences. Although a low KL divergence is desirable to ensure that the syn­
thetic data are representative of the real data, a nonzero divergence is expected and beneficial.
G A N is known for its ability to generate diverse and novel data samples. This capability can be
particularly beneficial in process mining for exploring a wider range of process variations and
enhancing model robustness against overfitting. The diversity in G A N results can be crucial
for stress testing process mining algorithms or for augmenting datasets where the actual data
is limited or lacks variability.

6.5 Activity Type Occurrence Comparison

In this experiment, to understand the distribution of activity type in the data set, a comparison
is made between the probability distribution of all activities and the activities generated from
the models. For the BPI 2012 Dataset (Figure 6.6), it can be observed that for certain activities,
the LSTM and G A N Synthetic datasets closely match the Real dataset's probabilities, while
for others, there are discrepancies. For GAN, Activities, such as "WXompleteren aanvraag"
and "W_Afhandelen leads" and "A_PREACCEPTED" have been represented with a higher fre­
quency compared to the real dataset and the LSTM synthetic dataset. When comparing the
start activity "A_SUBMITTED" for the BPI 2012 dataset, which is common for all sequences,
both the LSTM and G A N synthetic datasets replicate this start activity with close probabili­
ties of the real dataset, suggesting that the models effectively capture the initiation patterns of
the process. Other activities show notable differences in the probability of activities between
the real and synthetic datasets, which could be due to the synthetic models not capturing all
the complexities of the data or due to intentional variations introduced in the synthetic data
generation process. Both the LSTM and G A N models demonstrate proficiency in replicating
rarer activities found within the real dataset, a crucial capability to ensure complete process
representation. For the helpdesk data set, both models showed activity similarity to the real

42

6.6 Unique Data Comparisons

data. This could be due to the shorter sequence length and the small vocab size of 9.

W C o m p l e t e r e n a a n v r a a g

W A f h a n d e l e n l eads

A_PAr\TLYSLIB MITTED

A_SUBMITTED

A_DECL INED

W _ N a b e l l e n o f f e r t es

A P R E A C C E P T E D

A _ C A N C E L L E D

A _ A C C E P T E D

0_CREATED

0_SENT

A F INALIZED

O S E L E C T E D

W _ V a l i d e r e n a a n v r a a g

0 _ C A N C E L L E D

W _ B e o o r d e l e n f r a u d e

• SENT B A C K

O DECL INED

A A C T I V A T E D

O A C C E P T E D

A_REG ISTERED -

A _ A P P R O V E D

W_Wi j z igen c o n t r a c t g e g e v e n s

Real
LSTM Synthetic
GAN Synthetic

c cc 0.10 0.15
Probab i l i t y of O c c u r r e n c e

Figure 6.6: BPI 2012 Dataset Activity Type Occurrence

6.6 Unique Data Comparisons

This section analyzes the uniqueness of sequences generated by LSTM and G A N models. Table
6.3 summarizes the comparisons of unique sequences. Each row represents a model, and each
column shows the number of sequences for a specific category within a data set.

• Real: Sequences present in the original dataset only.

• Overlap: Sequences found in both original and synthetic datasets.

• Synthetic: Sequences unique to the synthetic dataset and model

The LSTM model appears to be more conservative in generating synthetic sequences, with a
higher overlap and fewer generated unique sequences. This could mean that LSTM is better at
capturing and replicating the existing patterns in the data without introducing as much novel
variability.

43

6 Experiments

Model Unique Sequences Helpdesk BPI2012

Real 45 64

LSTM Overlap 29 33
Synthetic 28 59

G A N Overlap 26 31
Synthetic 255 169

Table 6.3: Comparison of Unique Sequences generated by LSTM and G A N on Helpdesk and
BPI2012 Datasets (Sample Size =500

G A N model demonstrates a substantial number of generated Unique Sequences—255 for Help-
desk and 169 for BPI2012 suggests that while it may be creating many novel sequences, these
sequences are likely to contain subsequences or patterns that are derived from the original
dataset. The GAN's ability to generate such a large volume of unique sequences while still
maintaining a reasonable overlap with the original data (26 for Helpdesk and 31 for BPI2012)
indicates that it is not just inventing random sequences, but rather it is recombining elements
of the original data in new ways. Visual Inspects and Domain Specific Validity Checks can be
applied to assess the validity of the generated sequences, to help differentiate them from noisy
data.

6.7 Process Flow Analysis

This section presents a detailed analysis of process flow diagrams derived from a real data set
and synthetic data generated using Long Short-Term Memory (LSTM) and Generative Adver­
sarial Networks (GAN) models. The BPI 2012 dataset served as the foundation for this com­
parative study due to the availability of the activity names compared to the Helpdesk dataset
which was anonymized, with an emphasis on structural integrity, data distribution, and model
fidelity in reproducing complex process flows.

The synthetic data generated by LSTM and G A N models were first assessed for structural con­
gruence with the original process flow. Although both models preserved the main pathways,
such as A_SUBMITTED' to A_ACCEPTED', certain discrepancies were observed. The LSTM
model introduced fewer deviations, suggesting a more conservative approach in sequence gen­
eration. In contrast, the G A N model demonstrated a tendency to explore a broader range of
state transitions, occasionally introducing novel paths not present in the original data. Upon
examination of the data distribution within the flows, the LSTM-generated diagram closely
mirrored the original data's quantities at each step. However, the G A N model exhibited a
marked variance, particularly in the bottleneck stages. These differences were hypothesized to
arise from the GAN's mode of operation, which focuses on generating new data points rather
than replicating the statistical properties of the input data. However, both models success­
fully replicated common patterns within the process flow, such as the frequent transition from

44

'A_PARTLYSUBMITTED' to 'A_PREACCEPTED'. In terms of model fidelity, the LSTM model
displayed superior performance in replicating the complexity and variability of the original
process flow. The G A N model, though less accurate, offered valuable information on alterna­
tive process pathways and outcomes.

6 Experiments

7 Results and Discussions

Throughout the study, a detailed comparison was conducted between the efficiencies of Long
Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), aimed
specifically at synthesizing process log data for two most popular process mining datasets
namely Helpdesk and BPI 2012. This analytical exercise spanned a broad spectrum of evalua­
tive criteria, including the fidelity of data replication, the assessment of activity frequencies and
sequence length, variance in sequence patterns, and the examination of unique sequence gen­
eration. Additionally, process flow diagrams were employed to provide a visual representation
and deeper understanding of the pathways inherent in the generated process logs, facilitating
a comprehensive grasp of the procedural dynamics.

The experiments show that, both LSTM and G A N models were capable of replicating com­
mon patterns within the process flow. However, the traditional LSTM model displayed high
fidelity in replicating the original dataset's patterns, particularly adept at maintaining the se­
quence lengths and activity types closely matching the original data for both the Helpdesk and
BPI2012 datasets. Due to its high data fidelity, LSTM models are more immediately applica­
ble for training purposes where replicating exact sequences is necessary. They can work for
situations requiring high accuracy and consistency with the original process behaviors. The
G A N model with a transformer-encoder-based architecture demonstrates a unique strength to
generate previously unseen sequences that extend beyond the patterns and structures present
in the training datasets. G A N while slightly less accurate in replicating the exact sequence
patterns of the original data, introduces a higher degree of novelty and variability. This is ben­
eficial for generating diverse datasets that can simulate a wider range of scenarios, including
rare events not covered in the training data.

For sequence length comparison, the LSTM-generated sequences aligned closely with real data
for both datasets, particularly for shorter sequences. However, G A N displayed a slightly lower
similarity to real data but exhibited greater diversity in sequence lengths, suggesting their ca­
pability to generate new, plausible sequences. Regarding sequence variance, LSTM-generated
process sequences exhibited variance scores closer to the authentic data, especially in the sim­
pler Helpdesk dataset. GANs, while generating higher variance scores, indicate their ability to
explore a broader range of process variations, which could enrich process mining analyses by
providing diverse data coverage. The LSTM model showed lower KL divergence values (2.62 for
BPI2012 and 0.80 for Helpdesk), indicating that its synthetic data is closer to the actual data dis­
tribution, particularly for the Helpdesk dataset. This underscores the effectiveness of LSTM's
in capturing temporal patterns in process mining data. GAN-generated data had higher KL
divergence values (3.03 for BPI2012 and 2.76 for Helpdesk), showcasing its effectiveness at bal­
ancing the need for similarity with the introduction of differences. This characteristic of GANs

47

can be particularly beneficial for exploring a wider range of process variations and enhancing
model robustness.

Through the process flow diagram, both models were assessed for structural congruence with
the original process flow. The LSTM model introduced fewer deviations, suggesting a more
conservative approach to sequence generation. The G A N model demonstrated a broader range
of state transitions and occasionally novel paths, offering valuable insights into alternative
process pathways.

In conclusion, while LSTM models offer high precision and fidelity to the original data, making
them ideal for applications requiring exact data replication, G A N models stand out for their
ability to generate diverse and novel data, pushing the envelope on what process mining al­
gorithms can recognize and analyze. The choice between LSTM and G A N would, therefore,
depend on the specific needs of the process mining task, whether it prioritizes accuracy and
consistency or diversity and the exploration of new process variations.

8 Conclusion and Future Work

In conclusion, this thesis has explored an in-depth exploration of synthetic data generation for
process mining, focusing on the comparison and application of LSTM and G A N models. The
suggested approach, learns deep representations of process data to create a generative model,
allowing the production of synthetic data useful for training Machine learning-based process
mining tools. By integrating advanced computational techniques and rigorous methodolog­
ical approaches, this thesis not only responds to the identified gaps from prior studies but
also pushes forward the understanding and application of synthetic data generation in process
mining. While the research has demonstrated the potential of these models to replicate and
innovate process data, it is acknowledged that the study was conducted on relatively small
datasets due to data availability and computational limitations. The constraints on dataset size
were instrumental in ensuring a manageable computational load and focused analysis, yet they
also posed restrictions on the generalizability of the findings. Despite these constraints, the re­
search demonstrated the effectiveness of advanced generative models, including LSTM and
GAN, in synthesizing process data that maintains the essential characteristics of real datasets.
The nuanced comparison of LSTM and G A N models within this thesis serves as a significant
contribution to the field, offering guidance on model selection based on specific requirements
for fidelity, diversity, and innovation in data generation.

The detailed experimentation and analysis have illustrated that LSTM models are particularly
effective in replicating the precise structure and sequence of the original data, which is cru­
cial for applications demanding high fidelity and reliability. These models have shown their
strength in maintaining consistency across sequence lengths and activity frequencies, closely
mirroring the actual data from the Helpdesk and BPI 2012 datasets. This precision supports
LSTM's suitability for training scenarios where the exact replication of data sequences is vital.
Conversely, the G A N model utilizing transformer-encoder architectures with customized ac­
tivity loss functions for process data, have demonstrated their effectiveness in generating novel
and diverse data. While they may not match the exactness of sequence replication found in the
LSTM model, they excel in producing a variety of plausible sequence lengths and introducing
novel sequences. This capability is invaluable for expanding the scope of process mining by
simulating scenarios that may not be present in the training datasets and for enhancing the
existing datasets, thus providing a broader perspective for analysis and decision-making.

Expanding upon the achievements of this thesis, future research can unfold in multiple direc­
tions, all aimed at enriching the utility and application of synthetic data in process mining. To
validate and generalize the findings, applying the generative models to a diverse and complex
set of datasets spanning various industries and process types is crucial. This broader scope will
reveal the models' adaptability and robustness, providing deeper insights into their scalability

49

8 Conclusion and Future Work

and effectiveness. Involving domain experts to critically assess the generated data's realism and
relevance can significantly guide iterative model improvements. Such qualitative assessments
ensure the synthetic data adheres to statistical quality metrics and resonates with practical,
domain-specific considerations. While this thesis focused on LSTM and GAN, exploring other
deep generative models, like Variational Autoencoders (VAEs), holds the potential to unlock
new avenues in synthetic data generation. Models like VAEs might offer unique strengths in
capturing and replicating complex process dynamics.

Developing nuanced evaluation metrics that incorporate both quantitative and qualitative di­
mensions is essential. Future work could aim to refine these evaluation frameworks, providing
a comprehensive view of the synthetic data's fidelity and applicability. Finally, integrating the
generated data with existing process mining tools and workflows can offer valuable insights
into its operational value. This practical understanding will reveal how synthetic data can en­
hance process mining analyses, tool development, and ultimately, business process optimiza­
tion. By addressing these future directions, subsequent research can build on the foundation
of this thesis, pushing the boundaries of synthetic data's potential and promoting a deeper
integration of these innovative methodologies within the process mining domain.

50

Bibliography

[1] W. van der Aalst, "Process mining: Overview and opportunities," ACM Trans. Manage. Inf.
Syst., vol. 3, no. 2, jul 2012. [Online]. Available: https://doi.org/10.1145/2229156.2229157

[2] A. Vaswani, N . Shazeer, N . Parmar, J. Uszkoreit, L. Jones, A. N . Gomez, L. Kaiser, and
I. Polosukhin, 'Attention is all you need," 2023.

[3] D. P. Kingma and M . Welling, ' A n introduction to variational autoencoders," Foundations
and Trends® in Machine Learning, vol. 12, no. 4, p. 307-392, 2019. [Online]. Available:
http://dx.doi.org/10.1561/2200000056

[4] I. J. Goodfellow, J. Pouget-Abadie, M . Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, "Generative adversarial networks," 2014.

[5] W. M . Van Der Aalst, H. A. Reijers, A. J. Weijters, B. F. van Dongen, A. A. De Medeiros,
M . Song, and H. Verbeek, "Business process mining: A n industrial application," Informa­
tion systems, vol. 32, no. 5, pp. 713-732, 2007.

[6] S. Yang, Y. Zhou, Y. Guo, R. A. Farneth, I. Marsic, and B. S. Randall, "Semi-synthetic trauma
resuscitation process data generator," in 2017 IEEE International Conference on Healthcare
Informatics (ICHI). IEEE, 2017, pp. 573-573.

[7] Y. Zisgen, D. Janssen, and A. Koschmider, "Generating synthetic sensor event logs for
process mining," in International Conference on Advanced Information Systems Engineering.
Springer, 2022, pp. 130-137.

[8] D. Sommers, V. Menkovski, and D. Fahland, "Process discovery using graph neural net­
works," in 2021 3rd International Conference on Process Mining (ICPM). IEEE, 2021, pp.
40-47.

[9] Z. A. Bukhsh, A. Saeed, and R. M . Dijkman, "Processtransformer: Predictive business
process monitoring with transformer network," arXivpreprint arXiv.2104.00721, 2021.

[10] D. A. Neu, J. Lahann, andP. Fettke, "A systematic literature review on state-of-the-art deep
learning methods for process prediction," Artificial Intelligence Review, pp. 1-27, 2022.

[11] F. Taymouri, M . L. Rosa, S. Erfani, Z. D. Bozorgi, and I. Verenich, "Predictive business
process monitoring via generative adversarial nets: the case of next event prediction,"
in Business Process Management: 18th International Conference, BPM 2020, Seville, Spain,
September 13-18, 2020, Proceedings 18. Springer, 2020, pp. 237-256.

51

https://doi.org/10.1145/2229156.2229157
http://dx.doi.org/10.1561/2200000056

Bibliography

[12] C. Esteban, S. L. Hyland, and G. Ratsch, "Real-valued (medical) time series generation
with recurrent conditional gans," arXivpreprint arXiv.1706.02633, 2017.

[13] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, "Generating multi-label
discrete patient records using generative adversarial networks," in Machine learning for
healthcare conference. PMLR, 2017, pp. 286-305.

[14] K. Li , S. Yang, T. M . Sullivan, R. S. Burd, and I. Marsic, "Generating privacy-preserving
process data with deep generative models," 2022.

[15] L. Yu, W. Zhang, J. Wang, and Y. Yu, "Seqgan: Sequence generative adversarial nets with
policy gradient," in Proceedings of the AAAI conference on artificial intelligence, vol. 31,
no. 1, 2017.

[16] I. Verenich, "Helpdesk," 2016.

[17] B. van Dongen, "Bpi challenge 2012," 2012. [Online]. Available: https://data.4tu.nl/
articles/dataset/BPI_Challenge_2012/12689204/l

[18] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent
neural networks on sequence modeling," arXiv preprint arXiv.1412.3555, 2014.

[19] "Pytorch." [Online]. Available: https://pytorch.org/docs/stable/_modules/torch/nn/
modules/transformer.html#TransformerEncoder.forward

[20] "Pytorch." [Online]. Available: https://pytorch.org/tutorials/beginner/dcgan_faces_
tutorial.html

[21] "Pytorch." [Online]. Available: https://pytorch.Org/docs/stable/functional.html#torch.nn.
functional.gumbeLsoftmax

[22] P. Lam, H. Ahn, and K. Kim, "Discovering redo-activities and performers' involvements
from xes- formatted workflow process enactment event logs," KSII Transactions on Internet
and Information Systems, vol. 13, pp. 4108-4122, 08 2019.

52

https://data.4tu.nl/
https://pytorch.org/docs/stable/_modules/torch/nn/
https://pytorch.org/tutorials/beginner/dcgan_faces_
https://pytorch.Org/docs/stable/functional.html%23torch.nn

