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Introduction  

 

What is a paradox?    

‘The "paradox" is only a conflict between reality and your feeling of what reality "ought to 

be."’ - Richard Feynman.  

     Direct counterfactual communication is a concept that has intrigued physicists for years. 

The idea of exchanging information without the need for physical particles to travel between 

two parties is not only fascinating but also has the potential to revolutionize the field of 

communication [19], [20]. In recent years, researchers have explored the possibility of 

achieving direct counterfactual communication using a chained version of the Zeno effect 

[1]. By increasing the number of inner and outer Mach-Zehnder interferometer cycles and 

enhancing the transmissivity of the inner and outer beam splitters with each step, Alice and 

Bob can communicate without particles moving between them. 

Decoherence is the process by which a quantum system loses its coherence due to interacti-

ons with its environment, leading to information loss [18]. In the context of direct counter-

factual communication, decoherence can result in miscommunication or information loss 

when Alice and Bob attempt to communicate. 

In counterfactual communication we will see that the transmitter can send a physical particle 

to the reciever but transmits the informative message without this ever happening [1], [4]. 

So the reciever never recieves a physical particle which came from the transmitter, but it 

receives the information. 

To understant this protocol let us imagine a scenario in which Alice and Bob want to commu-

nicate and Bob wants to let Alice know of his choice between |O⟩ and |C⟩ (They represent 

whether Bob keeps the channel Open or Closed). So we will have 

                                            |𝑅⟩𝐴|C⟩𝐵
𝐴𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
→                   |C⟩𝐴|C⟩𝐵,                                       (1) 
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                                           |𝑅⟩𝐴|O⟩𝐵
𝐴𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
→                   |O⟩𝐴|O⟩𝐵,                                       (2) 

Here R stands for the result of the communication which is unknown for Alice before the 

communication. 

Bob could make any decision between |O⟩ and |C⟩, therefore, we can write the state in the 

form of superposition between two states as follows 

                                                              |𝜓⟩
𝐵
= 𝛼|C⟩𝐵 + 𝛽|O⟩𝐵,                                                      (3) 

where 𝛼 and 𝛽 are some coefficients that are used to show the separate probability of each 

two states occurring. Finally, we obtain  

                                 |𝑅⟩𝐴|𝜓⟩𝐵
𝐴𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
→                   𝛼|C⟩𝐴|C⟩𝐵 + 𝛽|O⟩𝐴|O⟩𝐵,                     (4) 

This communication is called counterfactual communication if no physical particles are ex-

changed between Alice and Bob. If a physical particle is present in the communication chan-

nel then our protocol is non-counterfactual. 

There are still several challenges that need to be addressed. Miscommunication or infor-

mation loss when Alice and Bob attempt to communicate are the main parts of our investi-

gation and the probability of miscommunication resulting from the unexpected clicking of a 

certain detector cannot be overlooked.  

In this context, the objective of this research is to investigate the feasibility of achieving 

direct counterfactual communication and the probability of error. Specifically, we aim to 

explore the extent to which the Zeno effect can be exploited to achieve information trans-

mission without particle movement and examine the influence of environmental factors on 

the probability of error. 

If successful, direct counterfactual communication could provide a new and secure method 

of transmitting information [19], [20].  

While the concept of direct counterfactual communication is fascinating, there are still many 

unanswered questions that need to be explored. This study provides valuable insights into 

the feasibility of achieving direct counterfactual communication and the probability of er-

rors, laying the groundwork for future research in this exciting and rapidly evolving field. 
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Chapter 1 

Basic Information and used Methods 

 

     In this chapter we are going to introduce all the concepts and methods that are necessary 

to tackle this paradox.  

In the present thesis, we shall provide a brief overview of the formulations employed. It is 

to be noted that there exist numerous variations of the postulates of quantum mechanics; 

however, for the sake of consistency, we shall adhere to the following formulations as out-

lined in references [17] and [4]. 

 To study single-photon systems, we can express the states by the following vectors  

                                               �̂�†𝑘  |00…000…0⟩ = |00…010…0⟩,                                      (1.1) 

Where k corresponds to a specific mode for a single photon and we use creation an 

annihilation operators �̂�† and �̂�, which are defined as 

      �̂�†|𝑛⟩ = √𝑛 + 1|𝑛 + 1⟩, 

                                                     �̂�|𝑛⟩ = √𝑛|𝑛 − 1⟩,                                                       (1.2) 

And we will use subscripts (�̂�𝑗) to assign these operators to specific modes. 

 The initial state of the photon will be represented by numerical vector throughout 

this thesis. Where the position of 1 corresponds to the mode. 

                                                                    |𝜓𝑖𝑛⟩ =

(

 
 
 
 

  

0
1
0
0
⋮
0
0

  

)

 
 
 
 

𝑚×1

,                                                  (1.3) 
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Figure 1.1: Rows correspond to possible paths of the photon 

 

 The beam splitters in our interferometers, can be expressed generally by |𝑟|
2
+

|𝑡|
2
= 1, where r and t represent the reflection and transmission coefficients, re-

spectively. As operation with �̂� = (�̂�†𝑘�̂�𝑧 − �̂�
†
𝑧�̂�𝑘), it acts on the state (1.2), where 

k and z correspond to a specific modes. 

 The evolution of a closed quantum state is a unitary process. The evolution is 

described by the time-dependent Schrödinger equation: 𝑖ℏ𝜕𝑡|𝜓⟩ = �̂�|𝜓⟩ , where �̂� 

is the Hamiltonian operator of the system and 𝜕𝑡 is the partial time-derivative. Solu-

tion of this equation leads to : |𝜓, 𝑡⟩ = �̂�|𝜓, 0⟩,  where �̂� = 𝑒−𝑖�̂�𝑡. 

 The phases of the matrix elements are adjustable as long as they satisfy the unitary 

property, �̂�⟊�̂� = 1. 

 We can define the output wave function after going through 𝑛  beam splitter by 

|𝜓𝑜𝑢𝑡⟩ = �̂�𝑛  … �̂�2 �̂�1 |𝜓𝑖𝑛⟩ . 
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Chapter 2 

Quantum Zeno Effect 

 

 

     The quantum Zeno effect, also known as the quantum Zeno paradox, is a quantum me-

chanical phenomenon that describes the behavior of an unstable particle that is being con-

tinuously observed. The effect is named after the Greek philosopher Zeno of Elea, who pos-

tulated that an arrow in flight could never reach its target because an infinite number of 

observations would need to occur in order to measure its position, thus preventing it from 

ever moving. 

In the quantum mechanical context, the Zeno effect is a consequence of the wave-particle 

duality, which states that particles can exhibit both wave-like and particle-like behavior. 

When a particle is observed, its wave function collapses into a definite position, effectively 

freezing its motion. If a particle is observed continuously, its wave function will remain 

collapsed, and it will not change its position [17]. 

  

The effect was initially proposed by Misra and Sudarshan [2] through the decay of an unsta-

ble state. To demonstrate the fundamental characteristics of the quantum Zeno effect, we 

shall begin with a straightforward model: We have a certain observable �̂� of a system 𝒮 that 

is being observed repeatedly and the initial state of which is the n-th eigenstate  |𝜓𝑛⟩  of �̂�. 

We will treat the repeated measurements as a limiting scenario of discrete measurements 

separated by very small time intervals τ . We know that between two measurements (in the 

interval τ ) the evolution of 𝒮  is governed by the Schrödinger equation 𝑖ℏ𝜕𝑡|𝜓⟩ = �̂�|𝜓⟩ 

where �̂� is the Hamiltonian operator of the system and 𝜕𝑡 is the partial time-derivative. 
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     This evolution causes 𝒮 with some probability to have a transition from the eigenstate 

|𝜓𝑛⟩  to some other state. The first interval begins at t = 0, and for sufficiently small times τ 

we may expand the Schrödinger equation into a power series, arriving, before the first mea-

surement, 

                                             |𝜓(𝜏)⟩ ≃ [ 1 +
�̂�𝜏

𝑖ℏ
+
1

2
(
�̂�𝜏

𝑖ℏ
)

2

+ . . . ] |𝜓𝑛⟩,                                 (2.1) 

�̂� is the Hamiltonian of the evolution. The probability that the system is still in the n-th 

eigenstate, which means that no transition has occurred is given by 

𝑃𝑛𝑛 = |⟨𝜓𝑛|𝜓(𝜏)⟩|
2 ≃ |1 +

𝜏

𝑖ℏ
⟨𝜓𝑛|�̂�|𝜓𝑛⟩ −

𝜏2

2ℏ2
⟨𝜓𝑛|�̂�

2|𝜓𝑛⟩|

2

 

                               ≃ 1 −
𝜏2

ℏ2
[⟨𝜓𝑛|�̂�

2|𝜓𝑛⟩ − ⟨𝜓𝑛|�̂�|𝜓𝑛⟩
2
],                                                    (2.2) 

until the second order in τ . The quantity in square brackets is the variance of the energy in 

the initial state |𝜓𝑛⟩ , we can rewrite the whole expression 

                                                                  𝑃𝑛𝑛 = 1 −
𝜏2

ℏ2
(Δ𝐸)2,                                                    (2.3) 

We can repeat the same procedure j times. At the end we will obtain 

                                                 𝑃𝑛𝑛  (𝑗𝜏) = 𝑃𝑛𝑛
𝑗(𝜏) = [1 −

𝜏2

ℏ2
(Δ𝐸)2]

𝑗

,                                 (2.4) 

where 𝑗𝜏 is the total time for the 𝑗 steps.  

For very small τ . In the limit of vanishing τ relative to (
Δ𝐸

ℏ
) , the probability that no transition 

happens is  

                                                                          𝑃𝑛𝑛(𝑗𝜏) = 1,                                                           (2.5) 

So basically the system is “frozen” in the initial state |𝜓𝑛⟩. In conclusion, when any obser-

vable with discrete spectrum is continuously monitored with infinite accuracy, the system is 

“forced” to remain in the initial state. [17] 

Just to make it easier to understand how this effect is used in the counterfactual protocol, we 

will use an example. Let us consider a quantum state consisting of a single qubit. The qubit 
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starts at |0⟩, and at every single step we are going to rotate it toward |1⟩ by 𝜗 = 𝜋 2𝑁⁄ . After 

one rotation, we will have  

                                                                 |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩,                                                        (2.6) 

Where 𝛼 = cos 𝜗 and 𝛽 = sin 𝜗. After second step we will get 

                                                     |𝜓⟩ = cos(2𝜗) |0⟩ + sin(2𝜗) |1⟩,                                          (2.7) 

And finally after N steps we obtain 

                                                     |𝜓⟩ = cos(𝑁𝜗) |0⟩ + sin(𝑁𝜗) |1⟩,                                        (2.8) 

Then the final state after N steps is goin to be |1⟩.  

Now if we decide to measure the state after each rotation, we will get different results. For 

example after the first rotation, we measure |0⟩ with very high probability, but this measure-

ment will collapse the state back to |0⟩. Due to the fact that [cos2 (
𝜋

2𝑁
)]
𝑁

≃ [1 − (
𝜋

2𝑁
)
2

]
𝑁

, 

we see that after each measurement we are left with |0⟩.  

In conclusion, the Quantum Zeno Effect claimes that making continuous measurments will 

delay the transition of a state to another by repeatedly collapsing the qubit back to the origi-

nal state. 
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Chapter 3 

Interaction-free measurement 

 

In this chapter we will analyze a experimental set up which takes us one step further at com-

prehending counterfactual communication, by introducing the interaction-free measurement. 

  

3.1 The Mach-Zehnder interferometer 

      The Mach-Zender interferometer [12], which we will be examining, is comprised of two 

50:50 beam splitters, two mirrors, and two detectors, as depicted in figure 3.1. To begin with, 

we will provide a description of this setup using classical optics. Essentially, the input light 

beam is partially reflected and partially transmitted by the beam splitters. 

      The source emits a beam of light that is divided into two segments, the upper and lower, 

by the first beam splitter. These segments are reflected by the mirrors and then reunited at 

the second beam splitter, which directs them to detectors D1 and D2. In order to generate a 

relative phase difference 𝜑 between the two constituent light beams, we introduce a phase 

shifter into the upper path At the second beam splitter the two beams interfere and such 

interference can be destructive if 𝜑 = 𝜋 or constructive if  𝜑 = 0 (or a multiple of 2π). The 

transmission and reflection coefficients t and r of the beam splitters can vary between 0 and 

1, with the condition 𝑟2  + 𝑡2  =  1. All the devices in this setup are linear. And the output 

is proportional to the input. [10], [12], [17]. 
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Figure 3.1: The Mach-Zehnder interferometer optical set up with a phase shifter 

 

 

3.2 The Elitzur–Vaidman Bomb (EVB) 

      Elitzur and Vaidman proposed interaction-free measurements as a means of locating in-

finitely delicate objects without causing harm to them. Our objective is to ascertain whether 

a Bomb (B) is situated in the upper path [3], [15] as shown in figure 3.2. The Mach-Zehnder 

interferometer serves as the foundation for the EV method. Symmetric beam splitters, BS1 

and BS2, are employed in this method. If the phase difference 𝜑 is zero beyond BS2, con-

structive interference ensures that all photons are detected by detector D1, while D2 remains 

unresponsive due to destructive interference. Only one photon is present in the interferome-

ter at any given time. Let us suppose that B is present in path. Then, we have three possible 

outcomes of the experiment:  

1. No detector clicks  

2. D1 clicks  

3. D2 clicks 

There are three possible outcomes in this scenario. In the first scenario, with a 50% proba-

bility, the photon is absorbed by the Bomb and subsequently triggers an explosion. In the 
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second scenario, which has a 25% probability of occurrence, the photon arrives at detector 

D1 (it could have also arrived at D1 if the Bomb was not present, with a probability of 1). 

The third scenario has a probability of 25% corresponding to click of D2. If we conduct this 

test and detector D2 registers a click, we deduce that the Bomb is located in the upper path 

without any interaction with it. Detector D2 will only click if one of the arms is obstructed 

by the Bomb.  

 

Figure 3.2: The Mach-Zehnder interferometer optical set up with a phase shifter and a Bomb 

 

A new notation can be introduced here also as an alternative method to determine which 

detector will click in this situation. 

When a photon passes through the MZI, it can be viewed as a quantum system with two 

states. If we select a basis where the upper path represents the photon's state, then it can be 

denoted as |↑⟩ = (
1
0
) and the state of the photon in the lower path is denoted by |↓⟩ = (

0
1
). 

And we arbitrarily denote the initial state of the photon emitted from the source as |𝐼⟩ = (
1
0
). 

The state of the photon propagating towards detector D1 as path state is |D1⟩ = (
0
1
) and the 

state of the photon propagating towards detector D2 as the path state is |D2⟩ = (
1
0
). 
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The matrix representations of the quantum mechanical operators that correspond to beam-

splitter 1 (𝑈1), beam-splitter 2 (𝑈2), Bomb (B) in the upper path and a phase shifter in the 

upper path (𝑈𝜑) when the basis vectors are chosen in the order |↑⟩, |↓⟩ are:  

𝑈1 =
1

√2
(
−1 1
1 1

) , 𝑈2 =
1

√2
(
1 1
1 −1

),  

                                                    𝐵 = (
0 0
0 1

) , 𝑈𝜑 = (
𝑒𝑖𝜑 0
0 1

),                                    (3.2.1) 

If 𝜑 = 0 then the phase shifter is simply the unitary matrix and has no effect. To see the 

probability of detectors clicking when bomb is/is not in the channel we use the following 

method by taking the final state of the photon as |F⟩ : 

                                         PD1 = |⟨D1|F⟩|
2  =  |⟨D1|𝑈2𝑈𝜑𝐵𝑈1|𝐼⟩|

2
=
1

4
 ,                          (3.2.2) 

                                         PD2 =  |⟨D2|F⟩|
2  =  |⟨D2|𝑈2𝑈𝜑𝐵𝑈1|𝐼⟩|

2
=
1

4
 ,                        (3.2.3) 

                                           PD1 = |⟨D1|F⟩|
2  =  |⟨D1|𝑈2𝑈𝜑𝑈1|𝐼⟩|

2
= 1,                             (3.2.4) 

                                           PD2 =  |⟨D2|F⟩|
2  =  |⟨D2|𝑈2𝑈𝜑𝑈1|𝐼⟩|

2
= 0,                           (3.2.5) 

 

As shown in Figure 3.3, if our set up consists of a series of N interferometers, with N being 

large, then we get better results. The reflectivity |𝑟|2 of each of the N BSs is chosen to be 

cos2(𝜋 2𝑁⁄ ) and the relative phases between corresponding paths in the upper and lower 

halves to be zero. [16] 

The outcome is that the amplitude of the particle transfers from the lower to the upper halves 

of the interferometers. 

Upon the conclusion of all 𝑁 cycles, the photon will exit via the upper outlet. Subsequently, 

we install a sequence of Bombs in the top portion of the equipment, which hinders the inter-

ference. At each beam splitter, there is a very small probability that the photon takes the 

upper path and triggers a Bomb, and a large probability cos2(𝜋 2𝑁⁄ ) ≃ 1 −
𝜋2

4𝑁2
  that it con-

tinues to travel on the lower path. The final probabilities of the detectors clicking after N 

cycles are 
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      PD2 =  |⟨D2|F⟩|
2  =  |⟨D2|[𝑈2𝑈𝜑𝐵𝑈1]

𝑁
|𝐼⟩|

2

= (cos2(𝜋 2𝑁⁄ ))
𝑁
≃ (1 −

𝜋2

4𝑁2
)

𝑁

 

                   ≃ 1                                                                                                                              (3.2.6) 

                                      PD1 = |⟨D1|F⟩|
2  =  |⟨D1|[𝑈2𝑈𝜑𝑈1]

𝑁
|𝐼⟩|

2

= 1,                            (3.2.7) 

 

 

Figure 3.3: (1) The set up consists of a series of N interferometers. (2) Inserted N Bombs 

 

This tells us the probability that we can detect the presence of the Bomb without intera-

cting with it which for large N is almost equal to 1. The probability that the photon will be 

absorbed by the Bomb is very low and is given by 1 − 𝑃. 
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Chapter 4 

Counterfactual Quantum Communication 

(CQC) 

 

      In this chapter, we will explore the counterfactual quantum communication protocol, 

which allows Alice and Bob to communicate without using any physical particle. By incre-

asing the number of cycles, the transmissivity of the beam splitters also increases. By levera-

ging the bomb principle and creating a specific setup, we can attain counterfactual commu-

nication. 

 

4.1 CQC setup with open channel 

      Initially, we introduce the protocol proposed by Salih [1]. We will proceed with a situ-

ation where Bob keeps his end of the channel unobstructed. This will facilitate the setup for 

the photon particle. Our setup will include a sequence of 𝑁 interferometers, as illustrated in 

chapter 3. 

Alice initiates the process by transmitting a photon in the input state of |10⟩. The alteration 

of the state that occurs at the beam splitters is outlined as follows 

                                                    |10⟩ → cos(𝜃) |10⟩ + sin(𝜃) |01⟩,                                     (4.1.1) 

And 

                                                    |01⟩ → cos(𝜃) |01⟩ − sin(𝜃) |10⟩,                                     (4.1.2) 

Where cos 𝜃 = √𝑅 with R being the reflectivity of the BS and 𝜃 = 𝜋 2𝑁⁄ .  



 

14 

 

By leaving his end of the channel unobstructed, Bob enables Alice's photon to propagate 

coherently. After n cycles, the photon's state can be expressed as 

                                                    |10⟩ → cos(𝑛𝜃) |10⟩ + sin(𝑛𝜃) |01⟩,                                (4.1.3) 

Thus, at the end of N cycles (n = N), the final state is |01⟩ and the detector D2 clicks. In this 

scenario when Bob keeps the channel open, the photon’s final state is |01⟩. 

 

Figure 4.1: A series of N interferometers, while Bob switches ON/OFF the Block 

 

 

 

Figure 4.2: Fully counterfactual communication, while Bob switches ON/OFF the Block 

 

      Salih suggested a protocol that will lead not only to direct communication between Alice 

and Bob but is also counterfactual. Using the chained version of the quantum Zeno effect, 
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as shown in figure 4.2 The signal photon passes through M  big cycles separated by 𝐵𝑆𝑀s  

with 𝜃𝑀 =
𝜋
2𝑀⁄  . For the mth cycle (𝑚 ≤ 𝑀), there are N beam splitters 𝐵𝑆𝑁s  with 𝜃𝑁 =

𝜋
2𝑁⁄ . 

In Figure 4.1, Alice sends a solitary photon, with all unused ports in the vacuum state. As a 

result of beam splitter transformations, we will have three photon states |𝑖, 𝑗, 𝑘⟩  where |𝑖⟩, 

|𝑗⟩, and |𝑘⟩  correspond to the photon states at different sides of the chains as shown in figure 

4.2, respectively. So if Bob passes Alice’s photon, for the m-th cycle, we obtain 

                                 |010⟩ → cos(𝑛𝜃𝑁) |010⟩ + sin(𝑛𝜃𝑁) |001⟩
𝑛=𝑁
→  |001⟩,                   (4.1.4) 

 

The initial state of the total system is |100⟩. When Bob does not block the channel (logic 0). 

After the m-th cycle, the resulting photon state is 

                      |100⟩ → 𝑐𝑜𝑠𝑚−1𝜃𝑀 (cos(𝜃𝑀) |100⟩ + sin(𝜃𝑀) |010⟩)
𝑚=𝑀
→   |100⟩,         (4.1.5) 

 

After M  big cycles and N small cycles, detector D1 clicks. A click at the detector D1 ensures 

counterfactuality as any photon in the transmission channel would lead to a click at one of 

the detectors after the transmission channel.  

The probability of a click at D1 is obtained by collecting all the contributions that are reflec-

ted from all the beam splitters 𝐵𝑆𝑀s and is given by 

                                                                        𝑃1 = cos
2𝑀𝜃𝑀 ,                                                    (4.1.6) 

We can aproach the calculations of the probability of a certain detector clicking using the 

following equations and matrices to understand how exactly quantum states change, which 

shows the effects of all the beam splitters and blocks and mirrors on the initial state of our 

photon. The following equation are what we used in our Python/Matlab codes to create our 

figurs and results.  

We will start by introducing the matrix representation of beam splitters in which each basis 

represents the evolution of a certain mode. We start with the outer beam splitters 
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                                        𝑈𝑀𝑛 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 𝑡𝑛 ⋯ 𝑟𝑛 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ −𝑟𝑛 ⋯ 𝑡𝑛 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                       (4.1.7) 

Where n is the number of the outer cycles and 𝑚 = 𝑛 + 3 is the dimension of the matrices 

(number 3 represents the number of initial measurable modes starting with one cycle and 

everytime we move on to the next cycle we add the new measurable mode. Although this 

pattern will change in the following chapters)  with |𝑟|
2
+ |𝑡|

2
= 1, where 𝑟 = sin(𝜃) and 

𝑡 = cos(𝜃) represent the reflection and transmission coefficients, respectively. And also if 

the elements of the matix is represented by  𝑈𝑀𝑛𝑖𝑗
 and  𝑖, 𝑗 ∈ ℕ  then we have 𝑈𝑀𝑛22 = 𝑡𝑛 , 

𝑈𝑀𝑛23 = 𝑟𝑛, 𝑈𝑀𝑛32 = −𝑟𝑛 and 𝑈𝑀𝑛33 = 𝑡𝑛 . And the matric representaion of the inner beam 

splitters is  

                                          𝑈𝑁𝑙 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 𝑡𝑙 ⋯ 𝑟𝑙 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ −𝑟𝑙 ⋯ 𝑡𝑙 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                       (4.1.8) 

Where l is the number of the inner beam splitters. And also if the elements of the matix is 

represented by  𝑈𝑁𝑙𝑖𝑗
 and  𝑖, 𝑗 ∈ ℕ  then we have 𝑈𝑁𝑙33 = 𝑡𝑙  , 𝑈𝑁𝑙3,𝑛+3 = 𝑟𝑙, 𝑈𝑁𝑙𝑛+3,3 = −𝑟𝑙 

and 𝑈𝑁𝑙𝑛+3,𝑛+3 = 𝑡𝑙  . And using the matric representaion of the Block (Bomb),  

                                              𝐵𝑛 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 1 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                          (4.1.9) 

where based on the number of outer beam splitters, it will block a certain quantum state. And 

also if the elements of the matix is represented by  𝐵𝑛𝑖𝑗  and  𝑖, 𝑗 ∈ ℕ   then we have 

𝐵𝑛𝑛+3,𝑛+3 = 0  and  𝐵𝑛1,𝑛+3 = 1 .  



 

17 

 

Now to calculate the probabilities of the detectors clicking as shown in figure 4.5, we will 

use the following equation and equation (1.3) by following 𝑚 = 𝑛 + 3 to calculate the final 

state of the photon. 

                                                  |𝜓𝑜𝑢𝑡⟩ = 𝑈𝑀𝑛𝑈𝑁𝑙 …𝑈𝑁2𝑈𝑁1𝑈𝑀1|𝜓𝑖𝑛⟩,                               (4.1.10) 

 
Figure 4.3: Counterfactual setup with open channel (Logic 0) 

 

 

4.2 CQC setup with blocked channel 

      Again we start with Salih’s approach. If  Bob blocks the photon in the scenario with 

series of N interferometers [1], the photonic state after n cycles is 

                                  |10⟩ → 𝑐𝑜𝑠𝑛−1𝜃 (cos(𝜃) |10⟩ + sin(𝜃) |01⟩) ≈ |10⟩,                    (4.2.1) 

where we assumed N to be large and cos𝑁 ≈ 1 . Here the square of the overall factor 

(cos2(𝑛−1)𝜃) represents the probability of having the state |10⟩ after 𝑛 −  1 cycles. In this 

case the photon is reflected and the detector D1 clicks as shown in figure 4.1.  

The Mach-Zehnder arrangement illustrated in figure 4.3 facilitates counterfactual commu-

nication. However, it is important to note that the protocol's counterfactuality is only partial. 

If Bob chooses not to block the channel, the counterfactual nature of the communication will 

be lost.  
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In the new protocol if Bob blocks the channel (logic 1), we have (for the m-th cycle) 

                      |010⟩ → cos𝑛−1𝜃𝑁 (cos(𝜃𝑁) |010⟩ + sin(𝜃𝑁) |001⟩)
𝑛=𝑁
→  |010⟩,            (4.2.2) 

where we assume 𝑁 ≫  1. After the m-th cycle, the photon state is 

                               |100⟩ → cos(𝑚𝜃𝑀) |100⟩ + sin(𝑚𝜃𝑀) |010⟩
𝑚=𝑀
→   |010⟩,                (4.2.3) 

Here also the signal photon passes through M big cycles separated by 𝐵𝑆𝑀s with 𝜃𝑀 =

𝜋
2𝑀⁄  . For the mth cycle (𝑚 ≤ 𝑀), there are N beam splitters 𝐵𝑆𝑁s  with 𝜃𝑁 =

𝜋
2𝑁⁄ . 

Thus after M big cycles and N small cycles, detector D2 clicks as shown in figure 4.4. Again 

counterfactuality is ensured by a click at D2 as any photon in the transmission channel would 

be absorbed by the blocking device and would not be available for detection at D2.  

But the method we used in this thesis for our calculations using matrices (1.3), (4.1.7), (4.1.8) 

and (4.1.9) is 

                                             |𝜓𝑜𝑢𝑡⟩ = 𝑈𝑀𝑛𝑈𝑁𝑙𝐵𝑛…𝑈𝑁2𝐵1𝑈𝑁1𝑈𝑀1|𝜓𝑖𝑛⟩,                             (4.2.4) 

 

 

 

  

Figure 4.4: Counterfactual setup with closed channel (Logic 1) 
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And as for the probabilities of the detection of the photon , whether Bob is blocking the 

channel or not, we have the following figure 

 

Figure 4.5: The success probability of the (a) logical 1 process and (b) logical 0 
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Chapter 5 

Decoherence and Information loss 

       

      In this particular chapter, the primary focus will be on the analysis of information loss 

which occurs as a result of coupling the system with additional beam splitters that are in-

serted into the transmission channel. However, before delving into the crux of the matter, it 

is essential to discuss the concept of decoherence. In simple terms, decoherence refers to the 

transition that takes place from quantum to classical. The notion of decoherence came about 

as a solution to the interpretation problem in quantum mechanics. It provides a mechanism 

to impose an effective classicality on quantum systems. 

In quantum information, decoherence plays a critical role in two aspects. The role of meas-

urement is to convert quantum states and quantum correlations into classical, definite out-

comes. Decoherence results in the environment-induced superselection (einselection) that 

validates the existence of preferred pointer states. Consequently, it enables the effective es-

tablishment of a boundary between the quantum and classical in simple terms, which does 

not require the appeal of the "collapse of the wave packet." The formal tool that quantum 

theory provides for this occasion is the density matrix, which can be employed to describe 

the probability distribution over alternative outcomes. [18] 

Within this chapter, we shall utilize beam splitters as a mechanism for the representation of 

losses. The phenomena of loss can be attributed to several factors, including absorption, 

scattering, and other similar occurrences. 
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5.1 Error of information loss 

      The subsequent subchapter will delve into the analysis of the photon loss probability, 

which serves as a crucial metric in assessing the effectiveness and reliability of a communi-

cation system. This analysis provides insights into the likelihood of photons carrying valua-

ble information being lost or absorbed during transmission, thereby impacting the overall 

efficiency and success of the communication process. 

Photon loss probability refers to the possibility that the photons carrying the critical infor-

mation may not reach their intended destination, leading to a loss of data. This phenomenon 

can occur due to various factors, such as the quality of the transmission channel, external 

interference, and the use of specific components, such as beam splitters, that may cause pho-

ton absorption or loss. 

It is essential to understand the significance of photon loss probability and its implications 

on the overall effectiveness of the communication system. High photon loss probability can 

lead to an increase in errors and data loss, resulting in the need for retransmission or 

resending of information, thereby leading to a decrease in the efficiency of the system. Ad-

ditionally, high photon loss probability can impact the security of the communication sys-

tem, making it vulnerable to potential attacks and breaches. 

Therefore, the analysis of photon loss probability plays a vital role in evaluating the effi-

ciency and reliability of a communication system, allowing for the identification of potential 

weaknesses and areas of improvement. By understanding the factors that contribute to pho-

ton loss probability and implementing measures to mitigate them, it is possible to enhance 

the effectiveness and reliability of communication systems. 

 

      First we study Information loss with blocked channel. Now we will add extra beam split-

ters to the setup as shown in figure 5.1 and 5.2. These extra beam splitters are place in the 

transmission channel. Our goal for doing this is to analyze the rate of information loss of the 

protocol. 
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Figure 5.1: Added extra beam splitters to the CQC setup with (Blocked/Open) channel 

 

First we will start by introducing the matric representation of the outer beam splitters again 

                                    𝑈𝑀𝑛 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 𝑡𝑛 ⋯ 𝑟𝑛 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ −𝑟𝑛 ⋯ 𝑡𝑛 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                           (5.1.1) 

Where n is the number of the outer cycles and  𝑚 = (𝑙 × 𝑛) + (𝑛 − 1) + 3 is the dimension 

of the matrices with |𝑟|
2
+ |𝑡|

2
= 1, where 𝑟 = sin(𝜃) and 𝑡 = cos(𝜃) represent the re-

flection and transmission coefficients, respectively. And also if the elements of the matix is 

represented by  𝑈𝑀𝑛𝑖𝑗
 and  𝑖, 𝑗 ∈ ℕ  then we have 𝑈𝑀𝑛22 = 𝑡𝑛 , 𝑈𝑀𝑛23 = 𝑟𝑛 , 𝑈𝑀𝑛32 = −𝑟𝑛 

and 𝑈𝑀𝑛33 = 𝑡𝑛 .  And the matric representaion of the inner beam splitters is  

                                      𝑈𝑁𝑙 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 𝑡𝑙 ⋯ 𝑟𝑙 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ −𝑟𝑙 ⋯ 𝑡𝑙 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                           (5.1.2) 

Where l is the number of the inner cycles per outer cycle. And also if the elements of the 

matix is represented by  𝑈𝑁𝑙𝑖𝑗
 and  𝑖, 𝑗 ∈ ℕ  then we have 𝑈𝑁𝑙33 = 𝑡𝑙 ,    𝑈𝑁𝑙3,𝑞 = 𝑟𝑙, 𝑈𝑁𝑙𝑞,3 =



 

23 

 

−𝑟𝑙 and 𝑈𝑁𝑙𝑞𝑞 = 𝑡𝑙   where 𝑞 = ((𝑙 + 1) × 𝑛 − (𝑙 + 1)) + 4 which we use to find the de-

sired matrix element here. And using the matric representaion of the Block (Bomb)  

                                          𝐵𝑛 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 1 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                              (5.1.3) 

Where based on the number of outer beam splitters, it will block a certain quantum state. 

And also if the elements of the matix is represented by  𝐵𝑛𝑖𝑗 and  𝑖, 𝑗 ∈ ℕ  then we have 

𝐵𝑛𝑛+3,𝑛+3 = 0  and  𝐵𝑛1,𝑛+3 = 1 . And the matric representation of the extra beam splitters is 

                                        𝑈𝐸 =

(

 
 
 
 

  

1 ⋯ 0 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 𝜂 ⋯ 𝛿 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ −𝛿 ⋯ 𝜂 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
0 ⋯ 0 ⋯ 0 ⋯ 1

  

)

 
 
 
 

𝑚×𝑚

,                            (5.1.4) 

Where |𝜂|
2
+ |𝛿|

2
= 1 , and 𝛿 and 𝜂 represent the reflection and transmission coefficients. 

And also if the elements of the matix is represented by  𝑈𝐸𝑛𝑖𝑗
 and  𝑖, 𝑗 ∈ ℕ  then we have 

𝑈𝐸𝑞𝑞 = 𝜂 , 𝑈𝐸𝑞,𝑞+𝑙 = 𝛿,  𝑈𝐸𝑞+𝑙,𝑞 = −𝛿  and  𝑈𝐸𝑞+𝑙,𝑞+𝑙 = 𝜂 .  

Now to calculate the probabilities of the detectors clicking as shown in figure 5.2 and we 

will see the dependance between the detector D1 and D2 and 𝜂 and 𝛿, we will use the fol-

lowing equation to calculate the final state of the photon with the initial state |𝜓𝑖𝑛⟩ (1.3). 

 

                                      |𝜓𝑜𝑢𝑡⟩ = 𝑈𝑀𝑛𝑈𝑁𝑙𝐵𝑛𝑈𝐸𝑠 …𝑈𝑁2𝐵1𝑈𝐸1𝑈𝑁1𝑈𝑀1|𝜓𝑖𝑛⟩,                       (5.1.5) 
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Figure 5.2: Analysis of the losses with closed channel (Logic 1), where 𝑞 =

((𝑙 + 1) × 𝑛 − (𝑙 + 1)) + 3  

 

      In the case of information loss with open channel also shown in figure 5.3 and using the 

same matrices that were introduced in the privious sub chapter we can calculate the proba-

bilities of the detectors clicking as shown in figure 5.4 when the channel is open and we will 

see the dependance between the detector D1 and D2 and 𝜂 and 𝛿, we will use the following 

equation to calculate the final state of the photon. 

                                           |𝜓𝑜𝑢𝑡⟩ = 𝑈𝑀𝑛𝑈𝑁𝑙𝑈𝐸𝑠 …𝑈𝑁2𝑈𝐸1𝑈𝑁1𝑈𝑀1|𝜓𝑖𝑛⟩,                           (5.1.6) 

 

Figure 5.3: Analysis of the losses with open channel (Logic 0), where 𝑞 = ((𝑙 + 1) × 𝑛 −

(𝑙 + 1)) + 3 
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Figure 5.4: Change in photon detection for D1 and D2 as 𝜂 changes for M = 100 and N = 

3500. 
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Figure 5.5: Change in photonloss probability as 𝜂 changes for different values of M and N. 

 

The information presented in Figure 5.5 is of great significance in understanding the behav-

ior of the communication channel in relation to the probability of photon loss. The graph 

illustrates the probability of photons being lost during transmission based on the value of 𝜂. 

As we can see by increasing the number of cycles, we might even have higher probability of 

photon loss.  

{

M = 10 , N = 100 → 𝜂 < 0.03 
M = 100 , N = 3500 → 𝜂 < 0.54

M = 5000 , N = 100000 → 𝜂 < 0.31
 

are the most tolerable 𝜂 for the communication with approximately 10% and less chance of 

photon loss.   

When 𝜂 is equal to 1, the communication channel experiences no loss, and the transmission 

of photons carrying information occurs without any errors or data loss. On the other hand, 

when 𝜂 approaches 0, the entire channel effectively acts as a bomb or block for the outer 
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interferometer, leading to a complete halt in the transmission process. In this scenario, there 

is no loss of photons since no data is being transmitted through the channel. 

It is essential to consider the factors that contribute to photon loss probability and implement 

measures to mitigate them to ensure the smooth and secure transmission of information. 

Factors such as the quality of the transmission channel, external interference, and the use of 

specific components can significantly impact the probability of photon loss.  

 

 

 

5.2 Error of miscommunication 

      The results of the analysis of the miscommunication probability are of great significance 

in evaluating the reliability and effectiveness of communication systems. Miscommunica-

tion probability refers to the likelihood of receiving a message different from what was orig-

inally sent. The analysis of miscommunication probability can help in assessing the impact 

of factors and transmission errors on the accuracy and reliability of the communication sys-

tem. 

In this sub chapter, using the same equations introduced at the beginning of this chapter, we 

will present the results of the analysis of miscommunication probability, which will show 

the odds of Alice receiving a message different from what Bob has sent.  

To calculate the probability of the miscommunication error we take the average of the nor-

malized probabilities of wrong detectors clicking. As we know the information content is 

equal to entropy. So, the used equation means that we are assuming equal probabilities of 

zeros and ones which means that we are assuming maximal entropy of the message.   
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Figure 5.6: Change in Miscommuncation probability as 𝜂 changes for different values of M 

and N. 

 

Here as shown in Figure 5.6 the average probability of miscommunication in communication 

systems across different ranges of values for 𝜂. As shown in the figure 5.6,  

 

{

M = 10 , N = 100 → 𝜂 > 0.95 
M = 100 , N = 3500 → 𝜂 > 0.96

M = 5000 , N = 100000 → 𝜂 > 0.97
 

 

are the most tolerable 𝜂 for the communication with approximately 5% and less chance of 

miscommunication.  As we can also see, by increasing the number of cycles we do not ne-

cessarily get better results. 
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Figure 5.7: The average probability of the the miscommunication on logarithmic scale as N 

and M change for 𝜂 = 1. 

 

 
Figure 5.7 is a significant graphical representation that provides valuable insights into the 

average probability of miscommunication in communication systems. This graph is displa-

yed on a logarithmic scale, which helps to highlight the variations in miscommunication 

probability across different ranges of values for N and M. As shown when the number of 

inner and outer cycles increases equally, this probability approaches zero. And with that we 

see the effects of decoherence on the protocol. 
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Conclusion 

    

      Throughout the preceding chapters, we have seen that direct counterfactual communica-

tion can be achieved by utilizing a chained version of the Zeno effect. By increasing the 

number of inner and outer Mach-Zehnder interferometer cycles, as well as enhancing the 

transmissivity of the inner and outer beam splitters with each step, Alice and Bob can ex-

change information without the need for physical particles to travel between them [1]-[3], 

[9], [11]. However, our error analysis has revealed that when Alice and Bob attempt to com-

municate, miscommunication or information loss is inevitable due to decoherence, which 

occurs with a certain probability. 

Our results show that the probability of information loss is highest when the transmissivity 

of the added extra beam splitters (𝜂) is close to 0.9, and this probability is approximately 0.6 

and the information loss is lowest for 𝜂 = 1. And 𝜂 = 0 has no photon loss and no informa-

tion transfer. Even when the number of inner and outer cycles is significantly altered, these 

probabilities will only slightly change. 

Despite the fact that Bob and Alice have established communication, there is still a possibil-

ity that the message Bob sends to Alice will not be received correctly for different values of 

𝜂 , resulting in miscommunication. The probability of miscommunication resulting from the 

unexpected clicking of a certain detector cannot be overlooked. However, as the number of 

inner and outer cycles increases equally, this probability approaches zero, depending on the 

value of 𝜂. 

Also, part of our future investigation lies in finding out what actually is in the channel, if not 

the particle. The concept of information transmission without the need for particles remains 

an open question that has been explored in various ways, including the many-worlds theory 

[5], [8], and the notion that a locally conserved, massless current of modular angular mo-

mentum, 𝐿𝑧 mod 2ℏ, carries the one bit of information between two parties [7], [14], among 
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others. Further investigation is required to fully understand how information can travel be-

tween two parties independently of particles. 

In conclusion, while our analysis has shed light on the potential of direct counterfactual 

communication, there is still much to be explored and discovered. The study of information 

transmission without the need for particles is a fascinating and rapidly evolving field, with 

numerous exciting avenues for future research. 
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