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Abstract

Advanced protocols of the contemporary quantum information pro-
cessing rely on non-Gaussian operations such as the single photon
subtraction. The current level of technology permits only condi-
tional realizations of such operations, hindering their usefulness in
experimental practice. In this work we focus on improving the
success rate of these operations using an iterative approach based
on recycling the signal until the conditional operation succeeds.
We analyse the properties of the improved subtraction procedure
in two distinct scenarios. We apply the operation to superposed
coherent states to investigate the preservation of quantum super-
position and we employ the improved procedure in a basic quantum
entanglement distillation protocol to determine its possible practi-
cal impact.
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Abstrakt

Pokročilé protokoly soudobého kvantového zpracování informace
hojně využívají negausovské operace, jako je například odebrání
jednoho fotonu. Současná úroveň techniky umožňuje jen podmí-
něné realizace takových operací, což znesnadňuje jejich využití v
experimentální praxi. V této práci se zabýváme zlepšením pravdě-
podobnosti úspěchu těchto operací a využíváme iterativního pří-
stupu založeného na recyklaci signálu do té doby, než podmíněná
operace uspěje. Vlastnosti takto vylepšené procedury odebrání jed-
noho fotonu zkoumáme ve dvou odlišných situacích. Aplikací ope-
race na superpozici koherentních stavů ověřujeme zachování kvan-
tových superpozic a konečeně využítím takto vylepšené operace
v základním protokolu destilace kvantové provázanosti zkoumáme
její možné praktické dopady.

Klíčová slova

kvantová optika, spojité proměnné, Wignerovy funkce,
Gausovské stavy světla, odebrání jednoho fotonu,

adaptivní operace, destilace kvantové provázanosti,
koherentní kočičí stavy
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Introduction

Over the past few decades quantum optics witnessed a rapid development and se-
cured a well deserved position in many areas of the contemporary theoretical, ex-
perimental, and applied research, including but not limited to quantum information
theory, quantum communications, and quantum cryptography [1, 2, 3].

One of the most appealing aspects of light is its relative resilience to decoherence.
However, the very same property is one of its greatest weaknesses as it renders
most physical interactions nearly impossible. As a consequence, fields of light in
contemporary experiments may usually be manipulated only with linear optical
elements constituting a subset of the class of Gaussian operations.

The quantum optical realizations of various concepts of the continuous variable
information theory and quantum cryptography employ Gaussian states and conse-
quently rely on Gaussian operations, i.e., elements of linear optics and squeezing.
Unfortunately such states and operations are not applicable in some of the more
advanced concepts of quantum information theory, e.g., universal quantum compu-
tation and quantum entanglement distillation [4, 5, 6, 7, 8, 9, 10]. It was shown
that using only Gaussian states and Gaussian operations leaves no room for improve-
ment in entanglement distillation strategies [8, 9, 10]. Similarly universal quantum
computation requires at least cubic non-linear interactions [4, 5, 6].

A lot of effort was therefore devoted to circumventing these limitations. Methods
based on projective measurements on number states [11], single photon addition [12],
and single photon subtraction [12, 13, 14] were successfully implemented, yielding
strongly non-Gaussian states of light. Methods based on non-Gaussian operations
were devised for entanglement distillation as well, one in particular making use
of single photon subtraction [15]. The method was subsequently implemented in
experimental setting [16, 17, 18].

4



In our previous work [19] we focused our attention on the single photon subtraction
[13, 14] which was originally presented as a “degaussification” protocol, i.e., a feasible
approach to generating non-Gaussian states from pulses of squeezed light.

We proposed an improved version of the subtraction procedure with the intention of
enhancing its success rate along with improving its general performance. We anal-
ysed the effects of the improved procedure on squeezed vacuum states and conse-
quently demonstrated a significant improvement of performance and a considerable
increase in success probability compared to the original subtraction procedure.

In this work we extend our analysis to include a broader variety of scenarios. Firstly
we apply the subtraction procedure to superposed coherent states in order to deter-
mine how well the procedure conserves superpositions of pure states. Secondly we
analyse an adaptation of a basic entanglement distillation protocol [15] employing
the improved subtraction procedure on two mode squeezed vacuum states.

This document comprises five chapters. In the first chapter we introduce the math-
ematical formalism of continuous variable quantum optics and give a brief overview
of Gaussian states and operations used in later chapters. In the second chapter
we review the original and the improved subtraction procedures, and in the third
chapter we develop a suitable mathematical description. The preservation of super-
position is analysed using coherent cat states in the fourth chapter. The quantum
entanglement distillation procedure is analysed in the fifth chapter and finally we
close with a conclusion and outlooks, followed by a pair of appendices providing
detailed derivations of mathematical formulae used in the fifth chapter.
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Chapter I

Theoretical framework

A pair of distinct approaches is traditionally used in the quantum information theory.
The first technique exploits observables of discrete spectra such as polarization states
of single photons or excitation levels of individual atoms to encode information
in a digital manner. The second technique takes advantage of observables with
continuous spectra instead, including generalised position and momentum describing
oscillatory behaviour of electromagnetic waves.

The latter approach is commonly referred to as the quantum information theory
with continuous variables [4, 5, 6, 20, 21].

1 Continuous variables

An arbitrary quantum physical system is called a continuous variable system if the
dimension of the associated Hilbert state space is infinite [5, 6, 22].

A typical continuous variable system common in quantum optics is the quantised
electromagnetic field, which can be modelled as a collection of non-interacting har-
monic oscillators with different oscillation frequencies and polarizations [22, 23].
Each individual oscillator is usually referred to as a mode of the field [4, 5, 22, 23].

The mathematical structure of a single mode of the photonic field is identical to the
structure of a one dimensional harmonic oscillator [23, 24] and may be described
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using a pair of field operators satisfying the bosonic commutation relation

[â, â†] = 1 . (I.1)

The product of the field excitation creation â† and annihilation â operators makes
up the number operator

n̂ = â†â, (I.2)

which is used to define the number basis. The field operators lead to the generalised
quadrature operators

x̂ =
â+ â†√

2
, ıp̂ =

â− â†√
2

(I.3)

satisfying the commutation relation

[x̂, p̂] = ı . (I.4)

Multiple modes of the photon field are described in the very same fashion, each
mode characterized with a unique pair of field operators âf and â†f acting on the
mode [22, 23]. The field operators then satisfy the commutation relations

[âf , â
†
f ′ ] = δff ′

[âf , âf ′ ] = [â†f , â
†
f ′ ] = 0

∀ f, f ′ . (I.5)

The quadrature operators related to each mode are defined similarly as

x̂f =
âf + â†f√

2
, ıp̂f =

âf − â†f√
2

(I.6)

and give the standard commutation relations

[x̂f , p̂f ′ ] = δff ′ ı

[x̂f , x̂f ′ ] = [p̂f , p̂f ′ ] = 0
∀ f, f ′ . (I.7)

2 Wigner quasiprobability distribution functions

Phase space description is often used to characterize classical physical systems, the
associated distribution functions giving the probability of finding the system in a
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particular state. Unfortunately this powerful approach can not be directly tran-
scribed to quantum physical systems due to the uncertainty relations arising from
the fundamental exclusivity of the observable physical quantities used in character-
ization of quantum physical states.

This problem may be circumvented with generalised probability distributions relax-
ing some of the usual requirements such as regularity and positivity. One of the
possible generalisations is the Wigner quasiprobability distribution function [4, 5, 6,
22].

The Wigner function of a physical quantum state characterised by a hermitian den-
sity operator ϱ̂ is given by Wigner’s transformation formula

Wϱ̂ (x, p) = π−1

∫
exp (2ıpζ) ⟨x− ζ | ϱ̂ |x+ ζ⟩ dζ . (I.8)

The resulting quasiprobability distribution Wϱ̂ (x, p) is properly normalised∫∫
Wϱ̂ (x, p) dx dp = 1 , (I.9)

the marginal probability distributions of the phase space quadratures read

⟨x | ϱ̂ |x⟩ =
∫

Wϱ̂ (x, p) dp

⟨p | ϱ̂ | p⟩ =
∫

Wϱ̂ (x, p) dp .
(I.10)

The distribution associated with a physical state is regular and bounded

|Wϱ̂ (x, p)| ≤ π−1 ∀ (x, p) ∈ R2 . (I.11)

The Wigner function is real due to the hermicity of the density operator ϱ̂. An
overlap between two operators ϱ̂ and Π̂ is obtained using the overlap formula

Tr
[
ϱ̂Π̂
]
= 2π

∫∫
Wϱ̂(ξ)WΠ̂(ξ) d2ξ , (I.12)

where the operators are not necessarily physical, i.e., normalised or regular. The
transformation formula (I.8) may be extended to arbitrary multipartite operators.
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Consider now a χ-partite operator ϱ̂. Its Wigner function is obtained in the form of

Wϱ̂ (ξ) = π−χ

∫
exp (2ıp · ζ) ⟨x− ζ | ϱ̂ |x+ ζ⟩ dχζ , (I.13)

where the vector ξ of phase space coordinates reads

ξ = (x1, p1, . . . , xχ, pχ)
⊺ . (I.14)

The simple overlap formula (I.12) may be adapted to account for partial overlaps,
i.e., partial traces over some subsystem γ

Trγ
[
ϱ̂Π̂
]
= 2π

∫∫
Wϱ̂(ξ)WΠ̂(ξ) d2ξγ , (I.15)

where the vector ξγ comprises the phase space coordinates of the subsystem γ

ξγ = (xγ, pγ)
⊺ . (I.16)

3 Gaussian states

The common definition of a Gaussian state uses the concept of Wigner functions.
An arbitrary multipartite quantum state characterized by the density operator ϱ̂

is a Gaussian state if and only if the corresponding Wigner function is a Gaussian
distribution

Wϱ̂(ξ) =
1

(2π)χ
√

detσ
exp

(
−1

2
(ξ − µ)⊺σ−1(ξ − µ)

)
, (I.17)

where χ gives the number of modes of the system. Every Gaussian state is completely
characterized by its first two statistical moments, namely by its 2χ dimensional
vector of mean values µ and its real, invertible, symmetric, and positive definite
2χ× 2χ variance matrix [5, 6].
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4 Gaussian operations

Gaussian operations map the set of Gaussian states onto itself. The effective Hamil-
tonians of such operations are at most quadratic in the quadrature operators and the
Heisenberg equations essentially result in affine transformations of the quadrature
operators preserving the canonical commutation relations (I.7).

The phase space coordinates (I.14) respective to the quadrature operators are trans-
formed in the same way, following the relation

ξ 7→ V ξ +∆ (I.18)

where V is a real 2χ×2χ symplectic matrix of the underlying linear transformation,
its symplectic property thereby ensuring the transformation respects the commu-
tation relations (I.7) [5, 6]. The 2χ dimensional vector ∆ represents of the affine
displacement.

The Wigner function of an arbitrary state ϱ̂ transforms counter to the respective
phase space transformation, i.e.,

Wϱ̂(ξ) 7→ Wϱ̂(V
−1(ξ −∆)) . (I.19)

The matrix V is invertible by the virtue of its symplecticity. In the case of a Gaussian
state, only the respective displacement vector and the variance matrix

µ 7→ V µ+∆ , σ 7→ V σV ⊺ (I.20)

are transformed. This conclusion can be achieved by reorganizing the quadratic
form within the exponential (I.17) in the chain of algebraic identities

(V −1(ξ −∆)− µ)⊺σ−1(V −1(ξ −∆)− µ) =

(ξ − (V µ+∆))⊺(V ⊺)−1σ−1V −1(ξ − (V µ+∆)) =

(ξ − (V µ+∆))⊺(V σV ⊺)−1(ξ − (V µ+∆))

(I.21)

with the aid of the matrix inverse product rule (AB)−1 = B−1A−1 and the inverse
transpose rule (A⊺)−1 = (A−1)⊺ in each step.
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5 Measurement

Quantum physical measurement process is usually described using the positive
operator valued measure formalism [5, 6]. The possible measurement outcomes f
are associated with positive Hermitian operators Π̂f satisfying the closure relation∑

f

Π̂f = 1̂ . (I.22)

A measurement with outcome Π̂f performed on a single mode γ of a larger system
characterized by the density operator ϱ̂ projects the state of the remaining parts of
the system onto the marginal density operator

ϱ̂′ = Trγ
[
Π̂f ϱ̂

] (
Tr
[
Π̂f ϱ̂

])−1

. (I.23)

It is normalized with the probability of actually measuring the outcome Π̂f ,

Pf = Tr
[
Π̂f ϱ̂

]
. (I.24)

The above relations may be adopted in the Wigner representation using the general
formula (I.15). Suppose the Wigner functions of the measured state Wϱ̂(ξ) and the
outcome element WΠ̂f

(ξ) are given by the relation (I.13). The Wigner function after
the measurement process reads

Wϱ̂′ (ξ
′) =

∫∫
Wϱ̂(ξ)WΠ̂f

(ξ) d2ξγ∫∫
· · ·
∫∫

Wϱ̂(ξ)WΠ̂f
(ξ) d2χξ

(I.25)

with the probability of the measurement outcome given by

Pf = 2π

∫∫
· · ·
∫∫

Wϱ̂(ξ)WΠ̂f
(ξ) d2χξ , (I.26)

where the vectors of the respective phase space variables comprise

ξ = (x1, p1, . . . , xχ, pχ)
⊺ ,

ξ′ = (x1, p1, . . . , xγ−1, pγ−1, xγ+1, pγ+1, . . . , xχ, pχ)
⊺ .

(I.27)
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6 Measures of quantum entanglement

In the decades following its inception [25], quantum entanglement has cemented
its important position in many areas of research, including quantum information
theory, quantum key distribution and quantum metrology. While the notion of
quantum entanglement is one of the fundamental properties of quantum objects
and one of the most essential resources in a myriad of applications, it is — unfor-
tunately — incredibly hard to determine whether a quantum system is entangled
or not. No entanglement criterion that would be both necessary and sufficient for a
general quantum system is known to this very day. Similarly the quantification of
entanglement proves to be equally challenging.

One of the most powerful tools presently available is the positive partial transpose
criterion [6, 26, 27] which gives the necessary condition for separability of general
multipartite quantum systems. Consequently the violation of the separability crite-
rion may be used to measure the strength of the entanglement present in the system.
The positive partial transpose condition was eventually derived for continuous vari-
able systems [27, 28].

In particular the entanglement of bipartite Gaussian systems may be rather straight-
forwardly quantified with the aid of the continuous variable version of the separa-
bility condition [27, 28]. The entanglement measure

Λ = max {0,− log ν−} , (I.28)

aptly christened Gaussian logarithmic negativity [27], is defined in terms of the
scalar symplectic invariants

∆ = detα + det β − 2 det γ ,

µ2 =
1

detσ ,

ν2
± = 4

(
∆±

√
∆2 − 4

µ2

) (I.29)
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of the 4× 4 variance matrix σ of the Gaussian state in consideration. The matrix

σ =

(
α γ

γ⊺ β

)
(I.30)

comprises four 2 × 2 blocks with the α and β corresponding to marginal variance
matrices of the individual modes and the matrix γ representing their correlations.
Furthermore the bipartite system is entangled for Λ > 0.

Another useful and quite straightforward entanglement measure is defined in the
spirit of the original entanglement paper [25]. The EPR correlations

Υ =
1

2
[var(x1 − x2) + var(p1 + p2)] (I.31)

of a bipartite state are defined [27] as the variance of the analogues of the relative
position and total momentum. The system in question is entangled for Υ < 1

2
. The

formula (I.31) rewritten in terms of the elements of the variance matrix (I.30) reads

Υ =
Trσ
2

+ cov(p1, p2)− cov(x1, x2) . (I.32)

7 Overview of Gaussian states and operations

In this section we provide a brief overview of the common active and passive Gaussian
operations and review several of the relevant Gaussian states and reproduce some
of their properties.

A Beam splitter

Beam splitters are common elements of linear optics. An ideal beam splitter is char-
acterised by a single parameter only — its transmittance rate. The transformation
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is linear, characterized solely by the orthogonal matrix

V (τ) =


√
τ ·

√
1− τ ·

·
√
τ

√
1− τ

−
√
1− τ ·

√
τ ·

· −
√
1− τ ·

√
τ

 (I.33)

with τ giving the intensity transmittance rate.

B Single mode squeezing

Gaussian operations include active optical elements such as the single mode squeezer
with 2× 2 transformation matrix

V (γ) =

(
exp γ ·
· exp−γ

)
. (I.34)

where γ gives the amplification parameter.

C Two mode squeezing

The two mode squeezing operation, also known as optical parametric amplification,
is an active transformation. As the name suggests, the operation acts on a pair of
modes, the transformation represented by a 4× 4 symplectic matrix

V (γ) =


cosh γ · sinh γ ·

· cosh γ · − sinh γ

sinh γ · cosh γ ·
· − sinh γ · cosh γ

 , (I.35)

where γ gives the amplification parameter.
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D Vacuum state

The state |0⟩ is associated with the zero eigenvalue of the number operator [22]. It
is only natural to expect the number of excitations to never reache negative values.
Speaking in mathematical terms we expect the condition

â |0⟩ = 0 (I.36)

to hold. This relation may be exploited to obtain the wave function f(x) of the vac-
uum state. Expressing the annihilation operator in terms of the canonical position
and momentum operators

â =
x̂+ ıp̂√

2
(I.37)

and multiplying the condition (I.36) with ⟨x| from the left we arrive to an ordinary
differential equation

⟨x | x̂+ ıp̂ | 0⟩ = 0

x ⟨x | 0⟩+ ∂

∂x
⟨x | 0⟩ = 0 .

(I.38)

The wave function f = ⟨x | 0⟩ is obtained by solving the differential equation and
enforcing the normalisation ⟨0 | 0⟩ = 1 in the exponential form

xf(x) + f ′(x) = 0

=⇒ f(x) =
1
4
√
π

exp
(
−1

2
x2

)
.

(I.39)

The Wigner function of the vacuum state is obtained directly using the transforma-
tion formula (I.8). Setting ϱ̂ = |0⟩ ⟨0| we obtain the distribution in the form

W|0⟩(x, p) =
1

π
exp

(
−x2 − p2

)
. (I.40)

E Coherent state

Coherent states are defined [22] as the eigenstates of the annihilation operator

â |α⟩ = α |α⟩ , (I.41)
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with their respective eigenvalues equal to their amplitudes. Alternatively they may
be described as displaced vacuum (ground) states

D̂(α) |0⟩ = exp
(
αâ† − ᾱâ

)
|0⟩ = |α⟩ (I.42)

where the displacement α is equal to the desired amplitude of the coherent state.
The wave function of a coherent state may be obtained directly from the first defining
equation. Suppose the scaling of the complex amplitude

α =
x0 + ıp0√

2
(I.43)

matches the scaling of the annihilation operator which may be expressed in terms
of the canonical position and momentum operators

â =
x̂+ ıp̂√

2
. (I.44)

Multiplying the defining eigenvalue equation from left with ⟨x| and using the ex-
pression for the annihilation operator we obtain a differential equation

⟨x | â |α⟩ = ⟨x |α |α⟩⟨
x

∣∣∣∣ x̂+ ıp̂√
2

∣∣∣∣α⟩ =

⟨
x

∣∣∣∣ x0 + ıp0√
2

∣∣∣∣α⟩
x ⟨x |α⟩+ ∂

∂x
⟨x |α⟩ = (x0 + ıp0) ⟨x |α⟩ .

(I.45)

The wave function fα(x) = ⟨x |α⟩ is obtained by solving the differential equation
and enforcing the ⟨α |α⟩ = 1 normalisation condition in the form

xfα(x) + f ′
α(x) = (x0 + ıp0)fα(x)

f ′
α(x) = (−x+ x0 + ıp0)fα(x)

=⇒ fα(x) =
1
4
√
π

exp
(
−(x− x0)

2

2
+ ıp0x

)
.

(I.46)

16



The Wigner function of a coherent state is obtained directly using the transformation
formula (I.8). Setting ϱ̂ = |α⟩ ⟨α| we obtain the distribution in the form

W|α⟩(x, p) = (π
√
π)−1

∫
exp (2ıpζ) ⟨x− ζ |α⟩ ⟨α |x+ ζ⟩ dζ

= (π
√
π)−1

∫
exp (2ıpζ) fα(x− ζ)f̄α(x+ ζ) dζ

= (π
√
π)−1 exp

(
− [x− x0]

2) ∫ exp
(
2ı(p− p0)ζ

)
dζ

= (π)−1 exp
(
−(x− x0)

2 − (p− p0)
2
)

.

(I.47)

Alternatively the Wigner function may be obtained without any effort by displacing
the vacuum state as the second definition (I.42) of the coherent state suggests.
Taking the Wigner function of vacuum state and applying the phase space shift

x 7→ x+ x0 , p 7→ p+ p0 (I.48)

we readily obtain the Wigner function in the form of

W|α⟩(x, p) = W|0⟩(x− x0, p− p0)

= (π)−1 exp
(
−(x− x0)

2 − (p− p0)
2
) (I.49)

where the W|0⟩(x, p) denotes the Wigner function (I.40) of the vacuum state.

F Two-mode squeezed vacuum state

In the number basis the two mode squeezed vacuum state |Ψγ⟩ reads

|Ψγ⟩ = Ŝ(γ) |0⟩ |0⟩

= exp
(
γ̄â1â2 − γâ†1â

†
2

)
|0⟩ |0⟩

=
√
1− λ2

∞∑
f=0

λf |f⟩ |f⟩

(I.50)
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with the factor λ given as λ = tanh γ for real values of γ. The normalisation factor√
1− λ2 then equals sech γ, rendering the formula

|Ψγ⟩ =
1

cosh γ

∞∑
f=0

(tanh γ)f |f⟩ |f⟩ . (I.51)

Because the two-mode squeezing operation is Gaussian, the Wigner function of the
state is Gaussian and may obtained in a straightforward fashion by applying the
two mode squeezing operation (I.35) on a two mode vacuum state. The variance
matrix σ of the two-mode squeezed vacuum state therefore reads

σ = 2−1


cosh 2γ · sinh 2γ ·

· cosh 2γ · − sinh 2γ

sinh 2γ · cosh 2γ ·
· − sinh 2γ · cosh 2γ

 . (I.52)
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Chapter II

Improved subtraction procedure

In our previous work [19] we focused our attention on the single photon subtraction
[13, 14] and proposed an improved version of the subtraction procedure with the
intention of enhancing its success rate along with improving its general performance.
In this chapter we briefly review both the original and the improved subtraction
procedures and develop a general description in the Wigner representation.

1 Original subtraction procedure

In its original conception (depicted in the Figure II.1a) the subtraction procedure
transformed the signal mode by tapping off a fragment of light using a strongly
unbalanced beam splitter. The reflected fragment was then measured using an ideal
on-off detector and the procedure was considered successful if and only if the detector
clicked, i.e., the fragment of light was registered by the detector.

In order to model detectors of limited quantum efficiency a slight modification to
the scheme (cf. Figure II.1b) was made, namely a virtual beam splitter and a
virtual ancillary mode were added to account for the losses due to the inefficiencies.
The detailed description of the revised procedure may be formally divided into the
following four logical units.
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WS

W⋆WA

APD

BS

ζ

(a) Ideal detection

(1) (2) (3) (4)

S

A

L

WS

W⋆WA

WL

DM
APD

Π⋆

BS

ζ BS

η

(b) Realistic, inefficient detection

Figure II.1: The signal mode (S) interacts with an empty idler (A) on the primary beam
splitter of high transmittance ζ. A fragment of light is reflected into the
idler, which is then measured using an on-off detector. The subtraction is
considered successful if the detector clicks. The output Wigner function
W⋆ represents both possible outcomes.

The on-off detector used in the part (a) is an ideal avalanche photodiode
(APD). The inefficient APD in the part (b) is modelled using a virtual
beam splitter and a virtual ancillary mode (L). The virtual mode interacts
with the idler (A) on the virtual beam splitter with transmittance η equal
to the quantum efficiency of the APD. The virtual mode is discarded right
away, representing the losses due to the reduced efficiency.

(1) The input signal mode is prepared in an arbitrary state (WS), while both the
idler and the virtual mode are prepared in vacuum states (WA,WL). The
Wigner function of the joint state is factorized, obtained as a product of their
respective Wigner functions

WSAL(ξ) = WS(ξS)WA(ξA)WL(ξL) , (II.1)

with the vector of phase space coordinates given by the direct sum

ξ = ξS ⊕ ξA ⊕ ξL

= (xS, pS, xA, pA, xL, pL)
⊺ (II.2)

of the individual phase space coordinate pairs ξS = (xS, pS)
⊺, ξA = (xA, pA)

⊺

and ξL = (xL, pL)
⊺.

(2) The signal mode interacts with the idler mode on the (primary) beam splitter
of transmittance ζ ∈ (0, 1). The transmittance ratio affects the amount of light
reflected into the idler, which in turn affects the quality of the approximation
of the annihilation operator and consequently the probability of successful
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subtraction. Similarly the idler then interacts with the virtual mode on the
virtual beam splitter of transmittance η ∈ (0, 1), the virtual transmittance
ratio equal to the quantum efficiency of the realistic detector.

Both the interactions are Gaussian operations, each resulting in a linear trans-
formation (I.33) of the quadrature coordinates. Because a sequence of Gaus-
sian operations is a Gaussian operation itself, the effect of the interactions
may be described with a single transformation matrix

V (ζ, η) = [1⊕ V (η)] [V (ζ)⊕ 1] (II.3)

obtained as a properly padded product of the individual transformation ma-
trices, where 1 denotes a 2 × 2 identity matrix. The joint Wigner function
transforms accordingly into

W ′
SAL(ξ) = WSAL(V (ζ, η)−1ξ) (II.4)

following the relation (I.19) governing Gaussian operations.

(3) The virtual idler is discarded, representing the losses due to the detector in-
efficiency. This is equal to tracing the respective mode out, i.e., projecting it
onto the respective identity operator 1̂. With the aid of the formula (I.15) for
partial traces we readily obtain the marginal Wigner function

W ′
SA =

∫∫
W ′

SAL(ξ) d2ξL (II.5)

where the vector of phase space coordinates ξ reduces into

ξ = ξS ⊕ ξA

= (xS, pS, xA, pA)
⊺ .

(II.6)

It is worth remarking that the probability associated with the 1̂ projection
takes the intuitively expected value

P =

∫∫ ∫∫ ∫∫
W ′

SAL(ξ) d2ξS d2ξA d2ξL = 1 (II.7)

since W ′
SAL(ξ) describes a normalised physical state of the post-interaction
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system.

(4) The measurement of the idler determines whether the subtraction procedure
was successful. An ideal avalanche photodiode is utilized in the detection
process, its inefficiencies already contained within the W ′

SA state. The mea-
surement process is completely characterized with a pair of positive operator
measure elements. The negative outcome is associated with the projection on
the vacuum state, represented by the operator

Π̂◦ = |0⟩ ⟨0| , (II.8)

while the positive outcome (click) is associated with the operator

Π̂• = 1̂− |0⟩ ⟨0|
= 1̂− Π̂◦ .

(II.9)

The Wigner function respective to the negative outcome element reads

WΠ̂◦
(ξA) = π−1 exp

(
−x2

A − p2A
)

= π−1 exp (−ξ⊺AξA) .
(II.10)

The Wigner function WΠ̂◦
(ξA) is clearly Gaussian and properly normalised.

Similarly the Wigner function respective to the positive outcome reads

WΠ̂•
(ξA) = (2π)−1 − π−1 exp

(
−x2

A − p2A
)

= (2π)−1 − π−1 exp (−ξ⊺AξA) .
(II.11)

This Wigner function is not normalised as it no longer represents a physi-
cal state. The subtraction procedure is considered successful if the positive
detection outcome occurs. The probability of this detection event reads

P • = 2π

∫∫ ∫∫
W ′

SA(ξ)WΠ̂•
(ξA) d2ξA d2ξS . (II.12)

Consequently the Wigner function of the successfully subtracted state takes
the standard form (I.25), resulting in

W •(ξS) =

∫∫
W ′

SA(ξ)WΠ̂•
(ξA) d2ξA∫∫ ∫∫

W ′
SA(ξ)WΠ̂•

(ξA) d2ξA d2ξS
. (II.13)
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The converse detection outcome advertises the subtraction procedure was in-
deed unsuccessful. The probability is given as

P ◦ = 2π

∫∫ ∫∫
W ′

SA(ξ)WΠ̂◦
(ξA) d2ξA d2ξS , (II.14)

while the Wigner function of the unsuccessfully subtracted state reads

W ◦(ξS) =

∫∫
W ′

SA(ξ)WΠ̂◦
(ξA) d2ξA∫∫ ∫∫

W ′
SA(ξ)WΠ̂◦

(ξA) d2ξA d2ξS
. (II.15)

2 Improved subtraction procedure

In our previous work an improved version of the original subtraction procedure was
proposed with the intention of enhancing its success rate [19].

The central idea of the improved method lies in the way the unsuccessful subtraction
attempts are handled. In contrast with the original protocol, where the output
is simply discarded if the subtraction fails, we keep recycling the unsuccessfully
subtracted states until the procedure either succeeds or a reasonable, predetermined
number of attempts is eventually reached.

The basic outline of the improved subtraction procedure is presented in the Fig-
ure II.2. In the depicted iterative chain the first 1 . . . (f − 1) subtraction attempts
fail before ultimately succeeding in the final iteration f . The conditional probability

Pf = P ◦
1 · · ·P ◦

f−1P
•
f

= P ◦
1 · · ·P ◦

f−1(1− P ◦
f )

(II.16)

associated with the iterative chain represents the first (f − 1) failures followed by
the final success, the individual probabilities P ◦ and P • given by (II.14) and (II.12).
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(1)

WS

(2) (3 · · · f − 1) (f)

Pf & Wf

Figure II.2: When the subtraction procedure fails, the output is iteratively recycled until
the procedure finally succeeds.

In the presented case, the procedure succeeds in the fth attempt. The
conditional probability associated with this iterative chain is denoted Pf ,
the respective Wigner function of the output state Wf .

The number of subtraction attempts is not indefinite. The maximal number of
iteration steps, albeit arbitrary, reflects the properties of the signal state, the char-
acteristics of the subtraction procedure (detection efficiency, primary beam splitter
transmittance) and other constraints such as timing requirements.

The improved subtraction procedure either succeeds in any of the iterations under
consideration or it fails completely. Because the first successful iteration is not
known beforehand, we take all the possible iterative chains into account.

(1)

WS P1 & W1

(1)

WS

(2)

P2 & W2

...

(1)

WS

(2 · · ·N − 1) (N)

PN & WN

Figure II.3: Each line shows a single iterative chain where the subtraction succeeds in
different iteration. On the first line the subtraction succeeds in the 1st
attempt, on the second line in the 2nd one. A number of iterative steps in
the range of 3 . . . (N − 1) is omitted. Finally the iterative chain depicted on
the last line succeeds in the Nth attempt.
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This approach is outlined in the Figure II.3 where each line represents an iterative
chain where the subtraction succeeds in different iteration. Each of the iterative
chains is statistically independent. The overall probability of the improved subtrac-
tion procedure succeeding is therefore obtained in the additive form

QN =
N∑
f

Pf , (II.17)

where N represents the maximal number of subtraction attempts. The individual
probabilities Pf of the iterative chains are given by the formula (II.16). The overall
Wigner function emerges as a weighted average

WN(ξS) = Q−1
N

N∑
f

PfWf (ξS) (II.18)

over the entire statistical ensemble. In essence we have traded the eventual state
purity for the increased probability of success of the subtraction procedure.
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Chapter III

Improved mathematical
formulation

The previous chapter concentrated on a brief review of the original subtraction
protocol and on a proposal of an improvement aiming to increase the subtraction
probability at the expense of purity of the output state. The central idea of the
improvement was an iterative application of the original subtraction procedure and
an evaluation of the resulting statistical ensemble.

We derived a number of relations (II.12), (II.13), (II.14), (II.15), (II.17), and (II.18)
describing both the original and the improved subtraction procedures in a general
Wigner representation.

Our further analysis of the improved procedure relies heavily on Gaussian states,
rendering the use of fully general Wigner functions an unnecessary complication.
This is thoroughly addressed in this chapter, where we introduce a simpler descrip-
tion based on Wigner functions of Gaussian states and their linear combinations.
We also aim to provide an approach guaranteeing a fast, numerically stable solutions
in the numerical simulations used in chapters IV and V.

The mathematical framework is built incrementally in the following sections to suit
both the original and the improved subtraction procedures. We start with a descrip-
tion (section III.1) based solely on Gaussian Wigner functions and quickly discover
it is incomplete as it fails to cover the successfully subtracted states. We overcome
this issue by taking an alternative approach (section III.2) and show the class of
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states under our consideration forms a complete set in respect to both the original
and the improved subtraction procedures.

1 Keeping up with the Gaussians

In the spirit of the original procedure we start our investigation with Gaussian signal
states. We start with a single mode squeezed vacuum state and examine each part
of the original subtraction procedure depicted in the Figure II.1b.

(1) The first part of the procedure consists of preparation only. The product state
is Gaussian, the joint variance matrix

σ = σS ⊕ σA ⊕ σL (III.1)

is obtained in the form of a block-diagonal matrix as the modes do not interact
with each other at this time.

(2) In the second part the modes of the system interact with each other. The
interaction is Gaussian, resulting in a transformation of the phase space coor-
dinates (I.18). The interaction is completely characterized by the orthogonal
matrix (II.3). The joint Gaussian state is transformed accordingly, its variance
matrix mapped into

σSAL 7→ V (ζ, η)σSALV (ζ, η)⊺ (III.2)

as the relation (I.20) suggests.

(3) Nothing notable happens in the third part. The projection onto the identity
operator preserves the Gaussian nature of the state. The rows and columns
of the variance matrix (and the rows of the vector of mean values) pertaining
to the virtual mode are simply removed, yielding the marginal variance σSA.

(4) The negative outcome element (II.10) is clearly Gaussian as the projection
operator is identical to the density operator of vacuum state. The product of
the two Gaussian Wigner functions in the relation (II.15) reads

exp
(
−1

2
ξ⊺SAσ

−1
SAξSA

)
exp

(
−1

2
ξ⊺Aγ

−1
A ξA

)
(III.3)
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with the variance matrix of the vacuum projector Π̂◦ denoted γA. The inverse
matrix γ−1

A must be zero-padded to match the dimension of the σ−1
SA matrix in

order for them to be added together, giving an augmented variance matrix of
the product Gaussian state

σ =
(
σ−1
SA +

[
diag(0, 0)⊕ γ−1

A

])−1 . (III.4)

The overlap integral preserves the Gaussian nature of the output state, the
variance matrix σ is stripped of the rows and columns related to the ancillary
mode, yielding the resulting variance matrix σ◦.

The positive outcome element (II.11) is not Gaussian as it consists of two
operators. The first one, an identity operator, results in a behaviour formally
identical to the part (3) of this analysis. The other operator is equal to the
previously described negative outcome projector (II.10). The Wigner function
(II.13) of the output state is therefore a properly normalised weighted linear
combination of two Gaussian functions with variance matrices σSA and σ◦.

In conclusion a Gaussian signal state remains Gaussian if the subtraction proce-
dure fails. Conversely it becomes a linear combination of Gaussian functions if the
subtraction procedure succeeds.

2 Journey beyond Gaussian states

The improved subtraction procedure serves as a key element of the entanglement
distillation protocol described in chapter V. The protocol works with a two mode
squeezed vacuum state. In essence the subtraction procedure is repeatedly applied
on one of the entangled arms until it either succeeds or some arbitrary number of
attempts is reached. Once successful, the same process is repeated for the other
arm.

This mode of operation inevitably leads to a fundamental issue after the first suc-
cessful subtraction as the state is no longer Gaussian, yet the subtraction has to be
repeated for the other arm. The current description of the procedure is therefore
insufficient and has to be extended to support more general signal states.

We have to, at least, consider signal states that may be expressed as weighted linear
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combinations of Gaussian functions

WS(ξS) =
∑
f

γfGσf
(ξS) (III.5)

with the weights γf ∈ R adding up to unity to preserve the normalisation of the
Wigner function. The individual Gaussian function Gσ(ξ) is defined as

Gσ(ξ) =
1

(2π)χ
√

detσ
exp

(
−1

2
ξ⊺σ−1ξ

)
, (III.6)

where χ represents the number of modes in the signal state.

Unfortunately this decomposition is not suitable for the Wigner functions (II.10)
and (II.11) of the negative and positive detection outcomes. Furthermore this de-
composition requires a large amount of inversion operations, making it unsuitable
due to reduced numerical stability and increased computational complexity.

A Gaussian kernel decomposition

While the approach outlined in (III.5) is a good idea in general, it can not describe
the Wigner functions of the detection outcomes. A slightly broader class of Wigner
functions is therefore required.

Consider a generalisation of the Gaussian decomposition (III.5) where the Wigner
function decomposes into a linear combination

W (ξ) =
∑
f

γfKΘf
(ξ) (III.7)

of weighted Gaussian kernels KΘ(ξ) defined by the relation

KΘ(ξ) = exp
(
−1

2
ξ⊺Θξ

)
, (III.8)

where the characteristic matrix Θ is symmetrical and not necessarily regular.
The matrix characterizes each Gaussian kernel completely. Gaussian functions and
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Gaussian kernels are closely related. In fact the following identity

Gσ(ξ) =
1

(2π)χ
√

detσ
Kσ−1(ξ) ∀Gσ(ξ) (III.9)

holds for every Gaussian function as the inverse of the variance matrix exists. The
converse relation does not hold in general, i.e., not every Gaussian kernel has a
Gaussian function counterpart.

This is actually quite beneficial to our use case because it allows us to express
certain singular Wigner functions in terms of Gaussian kernels. Consider the Wigner
function of the identity operator

W
1̂
(x, p) = π−1

∫
exp(2ıpζ) ⟨x− p |x+ p⟩ dζ

= π−1

∫
exp(2ıpζ) δ(2ζ) dζ

= (2π)−1

(III.10)

obtained using the general definition (I.8). Clearly this Wigner function does not
represent a physical state. It is not Gaussian, however, it may be easily represented
using the decomposition formula (III.7) with a single kernel, its respective weight
and the singular characteristic matrix reading

γ = (2π)−1 , Θ = diag(0, 0) . (III.11)

We may also easily express both the relations (II.10) and (II.11) in these terms. The
weight and the regular characteristic matrix of (II.10) are easily obtained as

γ◦ = π−1 , Θ◦ = diag(2, 2) , (III.12)

while the weights and characteristic matrices of the positive outcome (II.11) read

γ•
1 =(2π)−1 , Θ•

1 = diag(0, 0) ,
γ•
2 =− π−1 , Θ•

2 = diag(2, 2) .
(III.13)
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B Original subtraction procedure revisited

Equipped with these observations we follow the white rabbit down the hole. Once
again we are going to follow the path we took in the previous section and examine
the effects each part of the subtraction procedure has on the class of states in our
consideration. We are going to develop the necessary mathematical formulae on our
journey through the original subtraction procedure depicted in the Figure II.1b.

(1) The states are prepared in the first part of the procedure. The joint state

WSAL(ξ) = WS(ξS)WA(ξA)WL(ξL) (III.14)

is obtained as a product of the individual Wigner functions characterising the
signal, the idler and the virtual ancillary modes. Assuming that the signal
mode is characterized by the relation (III.7), the joint Wigner function reads

WSAL(ξ) =
∑
f

γfKΘf
(ξ) (III.15)

with the weights γf obtained as a product of the individual weights

γf = γS
f γ

AγL

= γS
f π

−2 .
(III.16)

The joint characteristic matrix written in the form of direct matrix sum

Θf = ΘS
f ⊕ΘA ⊕ΘL = ΘS

f ⊕ diag(2, 2)⊕ diag(2, 2) . (III.17)

(2) In the second part the modes of the system interact with each other. The
interaction is Gaussian, the transformation completely characterized by the
orthogonal matrix (II.3).

The joint Wigner function transforms according to the formula (I.19) into

WSAL(V (ζ, η)−1ξ) =
∑
f

γfKΘf
(V (ζ, η)−1ξ) , (III.18)

where the effect of the phase space transformation propagates down to the in-
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dividual Gaussian kernels. The exponential argument of an arbitrary Gaussian
kernel KΘ(ξ) defined in (III.8) transforms into

(V −1ξ)⊺Θ(V −1) = ξ⊺(V −1)⊺ΘV −1ξ

= ξ⊺VΘV ⊺ξ
(III.19)

assuming the transformation matrix V is orthogonal. This shows that the
characteristic matrix Θ transforms in the same way a variance matrix would,

Θ 7→ VΘV ⊺ . (III.20)

The joint Wigner function (III.18) therefore undergoes the transformation on
the level of individual characteristic matrices of the Gaussian kernels

W ′
SAL(ξ) =

∑
f

γfKV (ζ,η)ΘfV (ζ,η)⊺(ξ)

=
∑
f

γfKΘ′
f
(ξ) ,

(III.21)

where each characteristic matrix transforms according to (III.20) into

Θ′
f = V (ζ, η)ΘfV (ζ, η)⊺ . (III.22)

However, the transformation matrix V characterizing the Gaussian operation
is not orthogonal in general, it is merely symplectic. In the general case the
transformation of the characteristic matrix is governed by the relation

Θ 7→ (V −1)⊺ΘV −1 , (III.23)

where the inverse of the transformation matrix V is no longer necessarily
equal to its transposition. In the following, the simple relation (III.20) holds
as only the beam splitter interactions (I.33) are involved. For instance neither
transformation matrix of the active Gaussian operations (I.34) nor (I.35) is
orthogonal as both involve scaling of the phase space.

(3) The state (III.21) is essentially projected onto the identity operator associated
with the virtual ancillary mode.
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In a general case we would be looking at the product of two Wigner functions

Wϱ̂(ξ)WΠ̂(ξ) =
∑
f

∑
f ′

γfϑf ′KΘf
(ξ)KΩf ′

(ξ)

=
∑
f

∑
f ′

γfϑf ′KΞff ′
(ξ) ,

(III.24)

where the product of two Gaussian kernels KΘf
(ξ) and KΩf ′

(ξ) reads

KΘf
(ξ)KΩf ′

(ξ) = exp (−ξ⊺Θfξ) exp (−ξ⊺Ωf ′ξ)

= exp (−ξ⊺(Θf + Ωf ′)ξ)

= exp (−ξ⊺Ξff ′ξ)

= KΞff ′
(ξ) .

(III.25)

Here the Wigner function (III.11) of the identity operator consists of a single,
constant element γ = (2π)−1 only. The partial trace integral (I.15) therefore
boils down to the expression

WSA(ξ) =

∫∫
W ′

SAL(ξ) d2ξL =
∑
f

γf

∫∫
KΘ′

f
(ξ) d2ξL , (III.26)

that is into a sum of planar integrals of the individual Gaussian kernels KΘ′
f
(ξ)

over the virtual ancillary mode (d2ξL).

We are going to derive the formulae describing integral transformations such
as the one recently introduced in (III.26). We start our derivation with a
single dimensional integral over an arbitrary one dimensional subspace of the
phase space and then move to planar, two dimensional subspaces. Consider
a particular Gaussian kernel KΘ(ξ) and suppose the integration is performed
over the f th phase space variable, that is over the ξf∫

KΘ(ξ) dξf =

∫
exp

(
−1

2
ξ⊺Θξ

)
dξf . (III.27)

The integration preserves the exponential nature of the kernel, the integral
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transformation reading

∫
exp

(
−1

2
ξ⊺Θξ

)
dξf 7→

√
2π

Θff

exp
(
−1

2
ξ⊺Θ′ξ

)
, (III.28)

where the integration induces a non-linear transformation Θ 7→ Θ′ of the
characteristic matrix

Θ′
ij = Θij −

ΘifΘfj

Θff

∀ (i, j) . (III.29)

It also produces a multiplicative factor proportional to the diagonal element
Θff respective to the integration variable. These results follow from the chain∫

exp
(
−1

2
ξ⊺Θξ

)
dξf =

∫
exp

(
−1

2

∑
i

∑
j

ξiΘijξj

)
dξf =

∫
exp

(
−1

2
Θffξ

2
f − ξf

∑
i ̸=f

ξiΘif −
1

2

∑
i ̸=f

∑
j ̸=f

ξiΘijξj

)
dξf =

exp
(
−1

2

∑
i ̸=f

∑
j ̸=f

ξiΘijξj

)∫
exp

(
−1

2
Θffξ

2
f − ξf

∑
i ̸=f

ξiΘif

)
dξf =

√
2π

Θff

exp

−1

2

∑
i ̸=f

∑
j ̸=f

ξiΘijξj +
1

2

[∑
i ̸=f

ξiΘif

]2 =

√
2π

Θff

exp
(
−1

2

∑
i ̸=f

∑
j ̸=f

ξi

[
Θij −

ΘifΘfj

Θff

]
ξj

)

(III.30)

of identities employing the Gaussian integral formulae and the symmetry of
the characteristic matrix Θ.

Strictly speaking the integral map (III.28) is valid only in combination with
the relation (III.29) as the integration variable ξf remains on the right side of
the integral mapping. This could pose a formal issue, however, the elements
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of the characteristic matrix pertaining to the integration variables cancel out
by the virtue of the relation (III.29)

Θ′
if = Θif −

ΘifΘff

Θff

= Θif −Θif = 0 ∀i (III.31)

effectively removing the integration variable ξf from the right hand side.

The planar integral is acquired with some effort using the relation (III.29)
twice. Assuming the integration is performed over the variables ξf and ξf ′ ,
the integral transformation formula reads∫∫

exp
(
−1

2
ξ⊺Θξ

)
dξf dξf ′ 7→ 2π√

Θ′
f ′f ′Θff

exp
(
−1

2
ξ⊺Θ′′ξ

)
, (III.32)

which may be further improved. After a little algebraic endeavour we obtain
the numerator of the multiplicative factor in the relation (III.32) as

ΘffΘ
′
f ′f ′ = ΘffΘf ′f ′ −Θff ′Θf ′f (III.33)

and a slightly more convoluted formulation of the matrix transformation

Θ′′
ij =Θij −

ΘifΘfj

Θff

− Θff

ΘffΘf ′f ′ −Θff ′Θgf

×(
Θif ′ − ΘifΘff ′

Θff

)(
Θf ′j −

Θf ′fΘfj

Θff

) ∀ (i, j) . (III.34)

With some additional effort we may come to the conclusion we are already
familiar with: the rows and columns corresponding to ξf and ξf ′ cancel out.

The planar integrals we are interested in are performed over phase space vari-
ables related to specific modes of the system. For instance the planar integral
in (III.26) relates to the virtual ancillary mode, i.e., to the vector ξL = (xL, pL)

⊺

of phase space variables.

In conclusion, the planar integral transformation of a general Gaussian kernel
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KΘ(ξ) over the χth mode of the system simply reads∫∫
exp

(
−1

2
ξ⊺Θξ

)
d2ξχ 7→ 2π√

det⌊Θ⌉χ
exp

(
−1

2
ξ⊺Θ′′ξ

)
, (III.35)

with Θ′′ defined by the relation (III.34), where the symbol ⌊Θ⌉χ denotes the
2× 2 submatrix respective to the χth mode.

The formula (III.35) applied onto the expression (III.26) therefore yields

WSA(ξ) =
∑
f

γf
2π

det⌊Θ′
f⌉L

KΘ′′
f
(ξ) =

∑
f

γ′′
fKΘ′′

f
(ξ) (III.36)

with the Θ′′
f obtained using (III.34) and the associated γ′′

f factors reading

γ′′
f = γf

2π

det⌊Θ′
f⌉L

. (III.37)

(4) The idler is measured in the final part of the subtraction procedure. For-
tunately we have already collected all the necessary formulae. We use the
product formula (III.24) and the overlap relation (III.35) to our advantage for
both the positive and the negative outcomes in the detection processes.

We have already performed a rather similar derivation in the previous stage
with the virtual ancillary mode where we have projected onto the identity
operator (III.11).

In essence the measurement process results in a projection of the state ei-
ther onto the positive (III.13) or the negative (III.12) outcome elements in
the measured mode. Consequently the weights in the resulting linear com-
bination change and the output state must be renormalised as the original
transformation relations (II.13) and (II.15) suggest.

In our further treatment of the detection process we introduce an abstract ver-
sion of the relations (II.13), (II.12), (II.15), and (II.14) governing the probabil-
ity and the resulting Wigner function respective to the positive and negative
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outcomes

W⋆(ξS) =

∫∫
W ′

SA(ξ)WΠ̂⋆(ξ) d2ξA∫∫ ∫∫
W ′

SA(ξ)WΠ̂⋆(ξ) d2ξA d2ξS
,

P⋆ = (2π)

∫∫ ∫∫
W ′

SA(ξ)WΠ̂⋆(ξ) d2ξA d2ξS

(III.38)

where the symbols ⋆ ∈ {•, ◦} represent both the negative and positive detec-
tion outcomes. In the following paragraphs we presume the Wigner functions
of the detection outcomes decompose into

WΠ̂⋆(ξ) =
∑
f ′

γ⋆
f ′KΘ⋆

f ′
(ξ) (III.39)

with the concrete characteristic matrices Θ⋆
f ′ and weights γ⋆

f ′ given by the
relations (III.12) and (III.13).

Starting with the probability formula P⋆ and following the intermediate Wigner
function (III.36) from the previous step we observe

P⋆ = 2π

∫∫ ∫∫ ∑
f

∑
f ′

γ′′
fγ

⋆
f ′KΘ′′

f
(ξ)KΘ⋆

f ′
(ξ) d2ξA d2ξS

= 2π
∑
f

∑
f ′

γ′′
fγ

⋆
f ′

∫∫
KΞff ′

(ξ) d2ξA d2ξS

= (2π)3
∑
f

∑
f ′

γ′′
fγ

⋆
f ′√

detΞff ′

(III.40)

with the aid of the relation (III.24) giving the joint characteristic matrices

Ξff ′ = Θ′′
f +Θ⋆

f ′ (III.41)

and the integral formula (III.35) used in the last step. The Wigner function
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W⋆(ξ) is obtained in a similar fashion

W⋆(ξS) =

∫∫ ∑
f

∑
f ′

γ′′
fγ

⋆
f ′KΘ′′

f
(ξ)KΘ⋆

f ′
(ξ) d2ξA∫∫ ∫∫ ∑

f

∑
f ′

γ′′
fγ

⋆
f ′KΘ′′

f
(ξ)KΘ⋆

f ′
(ξ) d2ξA d2ξS

=

∑
f

∑
f ′

γ′′
fγ

⋆
f ′

∫∫
KΞff ′

(ξ) d2ξA∑
f

∑
f ′

γ′′
fγ

⋆
f ′

∫∫ ∫∫
KΞff ′

(ξ) d2ξA d2ξS

= (2π)−1

∑
f

∑
f ′

γ′′
f γ

⋆
f ′√

det⌊Ξff ′⌉A
KΞ′

ff ′
(ξS)

∑
f

∑
f ′

γ′′
f γ

⋆
f ′√

detΞff ′

.

(III.42)

The relations (III.40) and (III.42) apply to both the positive (•) and the
negative (◦) outcomes.

C Embracing displaced states

So far we have described the subtraction procedure in terms of linear combinations
of Gaussian kernels. This description permits subtraction from multiple modes of
a multipartite system. Unfortunately no matter how versatile this decomposition
seems to be so far, it does not cover displaced states. This lack of compatibility
follows the initial presumption of zero vectors of mean values.

The inclusion of displaced states essentially boils down to three problems. First we
must extend the description of linear transformations (induced by Gaussian oper-
ations). Second the product of two displaced Gaussian kernels must be found and
finally, the integral transformation has to be taken into account.

The problem with linear transformations was addressed in (III.20) and (III.23).
Under the assumption of orthogonal transformations the characteristic matrix of a
Gaussian kernel transforms the same way the regular variance matrix would. The
same applies to the vector of mean values, the transformations reading

Θ 7→ VΘV ⊺ , µ 7→ V µ . (III.43)
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In order to address the second problem, consider a displaced Gaussian kernel

KµΘ(ξ) = exp
(
−1

2
(ξ − µ)⊺Θ(ξ − µ)

)
, (III.44)

where the vector of mean values µ defines the displacement and Θ denotes the
respective characteristic matrix. Suppose there is a product

KµΘ(ξ)KνΩ(ξ) (III.45)

of two Gaussian kernels (III.44), the first one characterized by the (µ,Θ) pair and
the other one by the pair (ν,Ω). We are going to show that the product relation

KµΘ(ξ)KνΩ(ξ) = exp
(
−1

2
ζ

)
KδΞ(ξ) (III.46)

holds for all Gaussian kernels satisfying that at least one of the matrices is invertible.
The Gaussian kernel and the factor on the right hand side of (III.46) comprise

Ξ = Θ+ Ω

∆ = Θµ+ Ων

δ = Ξ−1∆

ζ = µ⊺Θµ+ ν⊺Ων −∆⊺Ξ−1∆ .

(III.47)

We may therefore extend the product relation (III.24) to account for more gen-
eral Wigner functions decomposing into these generalised Gaussian kernels. Their
product then reads

Wϱ̂(ξ)WΠ̂(ξ) =
∑
f

∑
f ′

γfϑf ′KµfΘf
(ξ)Kνf ′Ωf ′

(ξ)

=
∑
f

∑
f ′

γfϑf ′ exp
(
−1

2
ζff ′

)
Kδff ′Ξff ′

(ξ)
(III.48)

with the ff ′ components obtained using the relations (III.46) and (III.47). The
expressions in (III.47) become clear if we expand the left hand side of (III.46). The
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product of the two Gaussian kernels gives a sum of their respective quadratic forms,

(ξ − µ)⊺Θ(ξ − µ) + (ξ − ν)⊺Ω(ξ − ν) =

ξ⊺Θξ − ξ⊺Θµ− µ⊺Θξ + µ⊺Θµ+ ξ⊺Ωξ − ξ⊺Ων − ν⊺Ωξ + ν⊺Ων =

ξ⊺ (Θ + Ω)︸ ︷︷ ︸
Ξ

ξ − 2ξ⊺ (Θµ+ Ωµ)︸ ︷︷ ︸
∆

+µ⊺Θµ+ ν⊺Ων .
(III.49)

Where we have exploited that the matrices Θ and Ω are symmetrical. Consider an
arbitrary Gaussian kernel characterized by (δ,Ξ) with symmetrical Ξ. The expansion
of its quadratic form

(ξ − δ)⊺Ξ(ξ − δ) = ξ⊺Ξξ − ξ⊺Ξδ − δ⊺Ξξ + δ⊺Ξδ

= ξ⊺Ξξ − 2ξ⊺(Ξδ) + δ⊺Ξδ
(III.50)

may be compared to right hand side of (III.49). We may notice the striking simi-
larities in the second terms of both expressions, yielding

ξ⊺∆ = ξ⊺(Ξδ) =⇒ ∆ = Ξδ

=⇒ δ = Ξ−1∆ .
(III.51)

It is therefore possible to express the right hand side of (III.49) using a single
quadratic expression and a constant additive factor

ξ⊺Ξξ − 2ξ⊺∆+ µ⊺Θµ+ ν⊺Ων =

(ξ − δ)⊺Ξ(ξ − δ) + µ⊺Θµ+ ν⊺Ων − δ⊺Ξδ︸ ︷︷ ︸
ζ

. (III.52)

This result allows us to reuse some of the old tricks in our hat and resolve the third
problem. The integral induced transformation (III.27) of the kernel product (III.46)
becomes rather straightforward

exp
(
−1

2
ζ

)∫
KδΞ(ξ) dξf , (III.53)

where the substitution τ = ξ−δ gives the well known integral transformation (III.28)

∫
KΞ (τ) dτf 7→

√
2π

Ξff

KΞ′ (τ) . (III.54)
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This integral map has to be treated the same way as the one obtained earlier in
(III.28) to resolve the potential formal issues. The transformed Gaussian kernel
(III.46) accompanied by the all the multiplicative factors reads

exp
(
−1

2
ζ

)
KδΞ′(τ)

√
2π

Ξff

(III.55)

with the inverse substitution τ = ξ − δ putting δ back into the play, yielding the

exp
(
−1

2
ζ

)∫
KδΞ (ξ) dξf 7→ exp

(
−1

2
ζ

)√
2π

Ξff

KδΞ′ (ξ) , (III.56)

implying the vector of mean values δ is invariant in respect to the integral trans-
formation. This method may be effortlessly repeated again to obtain the planar
integral (III.35) over the χth mode

exp
(
−1

2
ζ

)∫
KδΞ (ξ) d2ξχ 7→ exp

(
−1

2
ζ

)
2π√

det⌊Θ⌉χ
KδΞ′ (ξ) (III.57)

with the transformed characteristic matrix Ξ defined by the relation (III.34) and
the symbol ⌊Θ⌉χ denoting the 2× 2 submatrix respective to the χth mode.

We have therefore obtained a decomposition of a Wigner function into general Gaus-
sian kernels defined by (III.44)

W (ξ) =
∑
f

γfKµfΘf
(ξ) . (III.58)

In this general formulation the subtraction procedure outlined in the subsection III.2.B
requires only some minor changes in each part of the procedure.

(1) The non-zero vectors µS
f of mean values of the signal state have to be taken

into account, the joint vector

µf = µS
f ⊕ (0, 0)⊺ ⊕ (0, 0)⊺ (III.59)

given by the direct matrix product of the individual vectors. The equivalent

41



to the Wigner function (III.15) reads

WSAL(ξ) =
∑
f

γfKµfΘf
(ξ) , (III.60)

where the γf factors and Θf matrices follow the relations accompanying (III.15).

(2) The analogue of the transformed Wigner function (III.21) reads

W ′
SAL(ξ) =

∑
f

γfKµ′
fΘ

′
f
(ξ) (III.61)

with the joint vector of mean values transformed by the interaction into

µf 7→ µ′
f = V µf . (III.62)

(3) The components of the product state now obey the relation (III.46) instead of
the formula (III.25). The marginal Wigner function (III.36) therefore becomes

WSA(ξ) =
∑
f

γf
2π

det⌊Θ′
f⌉L

Kµ′
fΘ

′′
f
(ξ) =

∑
f

γ′′
fKµ′

fΘ
′′
f
(ξ) (III.63)

where the cumulative factors γ′′
f comprise

γ′′
f = γf

2π

det⌊Θ′
f⌉L

. (III.64)

(4) The relation (III.42) describing the resulting state now incorporates the vector
of mean values as well, the product of the underlying Gaussian kernels now
obeys the relation (III.46), the final Wigner function consequently reads

W⋆(ξS) = (2π)−1

∑
f

∑
f ′

γ′′
f γ

⋆
f ′√

det⌊Ξff ′⌉A
exp

(
−1

2
ζff ′
)
Kδff ′Ξ

′
ff ′

(ξS)

∑
f

∑
f ′

γ′′
f γ

⋆
f ′√

detΞff ′
exp

(
−1

2
ζff ′
) (III.65)

with the factors γ′′
f coming from (III.64) and γ⋆

f ′ from (III.39). The joint
characteristic matrices Ξff , the joint vectors of mean values δff ′ and the ad-
ditional factors exp

(
−1

2
ζff ′
)

are governed by the product relation (III.46),
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starting with the individual matrices and vectors of (III.63) and (III.39). Fur-
thermore the characteristic matrices Ξ′

ff ′ result from the subsequent planar
integral (III.57).

Consequently the probability relation associated with (III.65) reads

P⋆ = (2π)3
∑
f

∑
f ′

γ′′
fγ

⋆
f ′√

detΞff ′
exp

(
−1

2
ζff ′

)
. (III.66)

3 Improved subtraction procedure revisited

In the previous sections we demonstrated the insufficiency of a description based
solely on Gaussian Wigner functions and introduced an approach aiming to resolve
its shortcomings without straying too far from the Gaussian nature of the descrip-
tion. We focused on the analysis of the original subtraction procedure, a building
block of the improved version of the protocol.

Our efforts bore fruit and we developed a decomposition (III.58) of a Wigner function
into general Gaussian kernels defined by the relation (III.44) and most importantly
demonstrated the effects of the original subtraction protocol on this class of states.
It is clear from the formulae (III.58) and (III.65) that the set of states described
by Wigner functions that may be decomposed into arbitrarily displaced Gaussian
kernels (III.58) is closed in respect to the original subtraction procedure.

The Wigner function (II.18) describing the state after the successful execution of
the improved subtraction procedure is a weighted linear combination of Wigner
functions, which are in essence given by repeated application of the formula (III.65)
as each Wf (ξ) in (II.18) describes an individual chain (cf. Figure II.3) of the original
subtraction procedures.

In each iterative chain the original subtraction procedure is repeated until it finally
succeeds (cf. Figure II.2) and the respective Wigner function Wf (ξ) of the resulting
state is given by the general relation (III.65) where ⋆ = • denotes a successful
subtraction. The elements of the intermediate input state (III.58) in this final it-
eration f are given by the very same relation (III.65) with ⋆ = ◦ standing for an
unsuccessful subtraction attempt in the preceding iteration (f − 1). The elements
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in each prior iteration (f − 1) . . . 1 are obtained in the same fashion.

The Wigner functions Wf (ξ) describing the iterative chains can be decomposed into
(III.58) again and the set of Wigner functions (III.58) is therefore closed in respect
to the chain of subtraction attempts and consequently so is the improved subtraction
procedure (II.18).
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Chapter IV

Superposed coherent states

Quantum superposition is one of the fundamental principles of quantum physics and
consequently states in quantum superposition play a vital role in many applications
including the quantum information theory. It is therefore only appropriate to explore
how well the improved subtraction procedure preserves quantum superpositions.
We make use of superposed coherent (Schrödinger cat) states in our subsequent
investigation of the subtraction procedure due to their relative fragility.

The Schrödinger cat states in quantum optics are defined as coherent superpositions
of two coherent states with opposite phases [29], their definition permitting two
distinct types of such states in general

|Ψ±⟩ =
|α⟩ ± |−α⟩

2± 2 exp(−2|α|2)
. (IV.1)

The |Ψ+⟩ is called the even cat state as it only comprises even number states,
while the odd cat state |Ψ−⟩ is composed solely of odd number states.

The transition between the two cat states |Ψ+⟩ and |Ψ−⟩ may be facilitated using the
annihilation operator â. This may be immediately seen from the definition (I.41) of a
coherent state. The improved subtraction procedure is essentially an approximation
of the annihilation operator and the ideal transition relation |Ψ±⟩ ⇌ |Ψ∓⟩ may be
therefore exploited to quantify the preservation of quantum superpositions.

Suppose the subtraction procedure is applied to one of the cat states. In the ideal
case the transformed state should be identical to the other cat state. The difference
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between the expected and the acquired states can be measured in the usual way using
fidelity [20, 22]. Suppose the Wigner function of the expected state reads W±(x, p)

and the acquired state is described with W (x, p). The fidelity of the process reads

F± = 2π

∫∫
W (x, p)W±(x, p) dx dp . (IV.2)

In the following paragraphs we are going to derive the Wigner functions W±(x, p)

of both the coherent cat states (IV.1) in a formulation compatible with the decom-
position developed in the chapter III and analyse the fidelity of the transformation
W+(x, p) → W−(x, p) facilitated by the improved subtraction procedure (chapter II).

1 Coherent cat states in phase space
representation

We are interested in the Wigner functions W±(x, p) respective to both the even and
odd cat states |Ψ±⟩. Starting with the transformation formula (I.8) we obtain

W±(x, p) = π−1

∫
exp(2ıpζ) ⟨x− ζ |Ψ±⟩ ⟨Ψ± |x+ ζ⟩ dζ

=
π−1

2± 2 exp(−2|α|2)
×∫

exp(2ıpζ)
(
⟨x− ζ |α⟩ ± ⟨x− ζ | −α⟩

)
×(

⟨α |x+ ζ⟩ ± ⟨−α |x+ ζ⟩
)

dζ

=
π−1

2± 2 exp(−2|α|2)
×∫

exp(2ıpζ)
(
fα(x− ζ)± f−α(x− ζ)

)
×(

f̄α(x+ ζ)± f̄−α(x+ ζ)

)
dζ ,

(IV.3)
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where the f±α(x ± ζ) = ⟨x± ζ | ±α⟩ wave functions and their complex conjugates
follow the defining relation (I.46). The expansion of the product reads

W±(x, p) =
π−1

2± 2 exp(−2|α|2)
×

(
∫

exp(2ıpζ) fα(x− ζ)f̄α(x− ζ)︸ ︷︷ ︸
1

dζ±

∫
exp(2ıpζ) fα(x− ζ)f̄−α(x+ ζ)︸ ︷︷ ︸

2

dζ±

∫
exp(2ıpζ) f−α(x− ζ)f̄α(x+ ζ)︸ ︷︷ ︸

3

dζ+

∫
exp(2ıpζ) f−α(x− ζ)f̄−α(x+ ζ)︸ ︷︷ ︸

4

dζ
)

(IV.4)

with the individual (numbered) elements of the product comprising the wave func-
tions (I.46). After some algebra the elements are obtained in the form

1 =
1√
π

exp
[
−(x− x0)

2
]

exp
[
−ζ2 − 2ıp0ζ

]
2 =

1√
π

exp
[
−(x− ıp0)

2
]

exp
[
−(ζ + x0)

2
]

exp
[
−p20

]
3 =

1√
π

exp
[
−(x+ ıp0)

2
]

exp
[
−(ζ − x0)

2
]

exp
[
−p20

]
4 =

1√
π

exp
[
−(x+ x0)

2
]

exp
[
−ζ2 + 2ıp0ζ

]
,

(IV.5)
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their subsequent integral transformations inevitably yielding the components∫
exp(2ıpζ) 1 dζ = exp

[
−(x− x0)

2 − (p− p0)
2
]

∫
exp(2ıpζ) 2 dζ = exp

[
−(x− ıp0)

2 − (p+ ıx0)
2
]

exp
[
−2|α|2

]
∫

exp(2ıpζ) 3 dζ = exp
[
−(x+ ıp0)

2 − (p− ıx0)
2
]

exp
[
−2|α|2

]
∫

exp(2ıpζ) 4 dζ = exp
[
−(x+ x0)

2 − (p+ p0)
2
]

(IV.6)

of the respective Wigner functions of both the even and odd cat states

W±(x, p) =
π−1

2± 2 exp(−2|α|2)
×
{

exp
[
−(x− x0)

2 − (p− p0)
2
]
±

exp
[
−(x− ıp0)

2 − (p+ ıx0)
2
]

exp
[
−2|α|2

]
±

exp
[
−(x+ ıp0)

2 − (p− ıx0)
2
]

exp
[
−2|α|2

]
+

exp
[
−(x+ x0)

2 − (p+ p0)
2
]}

.

(IV.7)

The Wigner functions (IV.7) seem to be ill defined as their ranges appear to be
complex. Fortunately the two complex components add up in a way that eliminates
their complex nature, yielding a modulated harmonic interference pattern [30].

Furthermore the Wigner functions (IV.7) may be directly decomposed into a set of
four Gaussian kernels with different weights and different displacement vectors

γS
1 = γ , µS

1 = (x0, p0)
⊺ , ΘS

1 = Θ

γS
2 = ± exp

[
−2|α|2

]
γ , µS

2 = (ıp0,−ıx0)
⊺ , ΘS

2 = Θ

γS
3 = ± exp

[
−2|α|2

]
γ , µS

3 = (−ıp0, ıx0)
⊺ , ΘS

3 = Θ

γS
4 = γ , µS

4 = (−x0,−p0)
⊺ , ΘS

4 = Θ

(IV.8)

where the common factor γ and the common characteristic matrix Θ read

γ =
π−1

2± 2 exp(−2|α|2)
, Θ = diag(2, 2) . (IV.9)
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2 Quantification of superposition preservation

The preservation of quantum superpositions by the improved subtraction procedure
is quantified using the fidelity of the transition

W+(x, p) → W−(x, p) . (IV.10)

We start with the signal Wigner function WS(x, p) = W+(x, p) decomposed into

WS(x, p) = W+(x, p) =
4∑

f=1

γS
f KµS

f Θ
S
f
(x, p) (IV.11)

with γS
f , µS

f and ΘS
f given by the values (IV.8). This Wigner function is then

transformed by the improved subtraction procedure into (II.18). The result may be
decomposed into (III.58), the final linear combination reading

WN(x, p) =
8×N∑
f

γfKµfΘf (x, p) . (IV.12)

where N denotes the maximal number of iterations under consideration. The
fidelity (IV.2) of the transition is then given by the overlap integral

FN = 2π

∫∫
WN(x, p)W−(x, p) dx dp (IV.13)

which may be evaluated in a straightforward fashion with the aid of the product
formula (III.48) and the integral formulae (III.56), and (III.35).

The fidelity is computed numerically for the signal state W+(x, p). The computa-
tion is evaluated for different settings of the improved procedure, i.e., for different
numbers N of iterations, different transmittances ζ and detection efficiencies η.

The implicit mapping between the overall success probability Q (II.17) and the
fidelity F (IV.2) of the transition W+(x, p) → W−(x, p) is shown in the Figure IV.1.
The curves are obtained by varying the transmittance ζ and plotting the respective
values of probability and fidelity. Each curve is associated with a different number
of iterations N and detection efficiency η.
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Figure IV.1: The overall probability — fidelity mappings are obtained for the subtrac-
tion procedure employing an ideal avalanche photodiode (efficiency η ≡ 1,
on the left) and a realistic, inefficient photodiode (η ≡ 0.64, on the right).
Both the plots are computed for the transition between coherent cat states
with complex amplitudes (I.43) given as α± = ± 3√

2
.

The higher fidelities of the W+(x, p) → W−(x, p) transition are obtained
with negligible probabilities for the original procedure (N = 1) which is,
in comparison, clearly outperformed by the improved procedure (N ≥ 2).

Consider for example the ideal case (on left). Fixing the fidelity F ≈ 0.92,
the respective probabilities read QN=1 ≈ 0.15 and QN=100 ≈ 0.92, the lat-
ter probability roughly six times larger. A similar comparison can be made
for the realistic case.

The improved subtraction procedure outperforms the original subtraction protocol
in terms of the transition fidelity, i.e., in terms of preservation of quantum super-
position of coherent states. The performance of the improved procedure increases
with the maximal number of iterations (subtraction attempts) in consideration as
can be immediately seen from the Figure IV.1. The first few iterations are most
significant in both the ideal and the inefficient detection regimes. The inefficiency
of the detection negatively impacts the attainable fidelity of the transition. This
can be suppressed but not surpassed with a higher number of subtraction attempts,
ultimately making an efficient (η → 1) detection a necessary requirement.
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Chapter V

Entanglement distillation

The notion of quantum entanglement [25] was originally introduced long before the
advent of the quantum information theory and quantum cryptography (quantum
key distribution). It is now a crucial ingredient of both [4, 6, 20, 21, 31, 32]. En-
tangled states are susceptible to decoherence, resulting in decay and eventual loss
of their entanglement [33, 34]. This fragility is a particularly significant obstacle in
quantum communication utilizing lossy channels over long distances [35, 36]. The
decay of entanglement may be suppressed with entanglement purification strate-
gies employing local operations and classical communication to increase the mutual
entanglement using either single or multiple copies of the insufficiently entangled
states [4, 6, 37]. It was proven that it is fundamentally impossible to distil entangle-
ment from any number of copies of a bipartite Gaussian state using only Gaussian
operations and classical communication [8, 9, 10]. Since the quantum optical real-
izations of concepts of the continuous variable information theory such as quantum
teleportation [38, 39] and quantum key distribution [32, 40, 41, 42] utilize Gaus-
sian operations and Gaussian two mode squeezed states, the search for alternative
methods of entanglement distillation becomes necessary.

One such method in particular exploits subtraction of a single photon [15]. The
method in question was originally introduced as a technique of conditionally im-
proving the continuous variable teleportation and was subsequently implemented
on various occasions in experimental setting [16, 17, 18]. In essence the subtraction
procedure (described in the section II.1) was applied to both arms of an entangled
two mode squeezed vacuum state. The entanglement distillation was considered
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successful if both subtraction attempts were successful.

In this chapter we investigate the consequences of employing the improved photon
subtraction procedure (introduced in section II.2) instead of the original one the
distillation method was conceived with. In our present analysis the entanglement
distillation procedure [15] is used to enhance entanglement in a single copy of a
Gaussian two mode squeezed vacuum state.

Both the original and the improved subtraction procedures are employed in the
distillation protocol and their effects are quantified using the Gaussian logarithmic
negativity and EPR correlations (cf. section I.6). Furthermore the results are com-
pared with an idealised realisation of the subtraction procedure directly employing
the annihilation operators.

1 Idealised photon subtraction with annihilation
operators

The entanglement measures in our consideration rely on variance matrices of quadra-
ture operators of the entangled bipartite systems. In this section we obtain the ana-
lytical form of the variance matrix of quadrature operators of a two mode squeezed
vacuum state transformed by the entanglement distillation procedure [15] employing
the ideal single photon subtraction.

|Φ⟩

|Ψγ⟩
1

â2
2

â1

Figure V.1: A pair of annihilation operators is applied to the entangled two mode
squeezed state |Ψγ⟩, yielding the state |Φ⟩.

In the spirit of the distillation procedure presented in the Figure V.1 a pair of
annihilation operators is applied to both arms of the bipartite signal state

|Φ⟩ = N â1â2 |Ψγ⟩ , (V.1)
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where |Ψγ⟩ represents the two mode squeezed state (I.50)—(I.51). Because neither
operator preserves normalisation, the resulting state has to be renormalised. Fol-
lowing the standard interpretation of quantum mechanics the normalisation reads

N =
1√

⟨Ψγ|â†2â
†
1â2â1|Ψγ⟩

=
1√

⟨Ψγ|n̂1n̂2|Ψγ⟩
, (V.2)

where the commutation relations (I.5) permit the reordering of the creation and
annihilation operators, yielding the respective number operators

n̂f = â†f âf ∀f = 1, 2 . (V.3)

We may obtain the exact value of the normalisation factor N by expanding the two
mode squeezed vacuum state (I.50) in the number representation. The expectation
value in the denominator of the relation (V.2) becomes

⟨Ψγ|n̂1n̂2|Ψγ⟩ = (1− λ2)
∑
f ′

∑
f

λfλf ′ ⟨f ′|n̂1|f⟩ ⟨f ′|n̂2|f⟩

= (1− λ2)
∑
f ′

∑
f

λfλf ′
δff ′δff ′f 2

= (1− λ2)
∑
f

λ2ff 2

(V.4)

with λ = tanh γ following the relation (I.50). The summation on the right hand side
converges for |λ| < 1 and its value may be found in the closed-form (A.3). Finally
an explicit formula for the normalisation factor is found

N =
1− λ2

λ
√
1 + λ2

, (V.5)

which may be substituted back into the original expression (V.1) for the subtracted
two mode squeezed state. Using the expansion (I.50) for |Ψγ⟩ again, we readily
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obtain the state in the number representation

|Φ⟩ = N â1â2 |Ψγ⟩

= N
√
1− λ2

∑
f

λff |f − 1⟩ |f − 1⟩

= N
√
1− λ2

∑
f

λf+1(f + 1) |f⟩ |f⟩

=
∑
f

ϑf |f⟩ |f⟩ ,

(V.6)

where the cumulative weights ϑf in the summation consequently read

ϑf = N
√
1− λ2λf+1(f + 1)

=
1− λ2

λ
√
1 + λ2

√
1− λ2λf+1(f + 1)

=

√
(1− λ2)3

1 + λ2
λf (f + 1) .

(V.7)

We are now in a perfect position to derive the variance matrix of the quadrature
operators of the state (V.6). Consider a vector of the quadrature operators (I.6) of
both arms of the entangled system first

ξ̂ = (x̂1, p̂1, x̂2, p̂2)
⊺ . (V.8)

The elements σij of the respective 4× 4 variance matrix σ are given by the formula

σij =
1

2
⟨ξ̂iξ̂j + ξ̂j ξ̂i⟩ − ⟨ξ̂i⟩⟨ξ̂j⟩ ∀i, j = 1 . . . 4 , (V.9)

where the first quadratic (symmetrical) expression reflects the general lack of com-
mutativity of the operators in question.

Because the state (V.6) is defined in the number representation it is convenient to
restate the quadrature operators in terms of the creation and annihilation operators
of the optical field. Consequently the elements of the variance matrix σ comprise
expectation values of the field operators and their quadratic products.

With some effort we may show that the expectation values linear in the field oper-
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ators simply vanish. Consider the annihilation operator âl of either mode

⟨âl⟩ =
∑
f ′

∑
f

ϑf ′ϑf ⟨f ′|âl|f⟩ ⟨f ′|f⟩

=
∑
f ′

∑
f

ϑf ′ϑf

√
f ⟨f ′|f − 1⟩ ⟨f ′|f⟩ ,

(V.10)

where the inner products on the right hand side lead to a pair of conflicting condi-
tions (f = f ′− 1)∧ (f = f ′) which may never be satisfied simultaneously. A similar
conflict occurs in the case of the expectation value of the conjugate operators ⟨â†l ⟩.
As a consequence the expectation values at hand cancel out completely

⟨âl⟩ = ⟨â†l ⟩ = 0 ∀l = 1, 2 . (V.11)

Following the definition (I.6) we obtain the same results for the quadrature operators,

⟨x̂l⟩ = ⟨p̂l⟩ = 0 ∀l = 1, 2 . (V.12)

Turning our attention to the quadratic products of the field operators we can show
that some of the expectation values vanish as well. Consider the operators acting
on the same modes first. Their expectation values

⟨â1â1⟩ = ⟨â2â2⟩ = ⟨â†1â
†
1⟩ = ⟨â†2â

†
2⟩ (V.13)

are identical since the structure of the state is symmetrical in both modes. Similarly
the mixed quadratic products involving annihilation in one mode and creation in the
other give identical results ⟨â1â†2⟩ = ⟨â†1â2⟩. It is therefore necessary to only consider
the following pair of relations

⟨â1â1⟩ =
∑
f ′

∑
f

ϑf ′ϑf ⟨f ′|â1â1|f⟩ ⟨f ′|f⟩

=
∑
f ′

∑
f

ϑf ′ϑf

√
f
√

f − 1 ⟨f ′|f − 2⟩ ⟨f ′|f⟩ ,

⟨â1â†2⟩ =
∑
f ′

∑
f

ϑf ′ϑf ⟨f ′|â1|f⟩ ⟨f ′|â†2|f⟩

=
∑
f ′

∑
f

ϑf ′ϑf

√
f
√

f ′ + 1 ⟨f ′ + 1|f − 1⟩ ⟨f ′|f⟩ ,

(V.14)
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which suffer from similar, impossible to satisfy, conditions. As a consequence the
expectation values (V.14) cancel out completely

⟨â1â1⟩ = ⟨â†1â
†
1⟩ = ⟨â2â2⟩ = ⟨â†2â

†
2⟩ = ⟨â1â†2⟩ = ⟨â†1â2⟩ = 0 . (V.15)

The remaining quadratic products of the field operators lead to actual non-zero
expectation values. Consider the expectation values of the number operators first

⟨â†l âl⟩ =
∑
f ′

∑
f

ϑf ′ϑf ⟨f ′|n̂l|f⟩ ⟨f ′|f⟩

=
∑
f ′

∑
f

ϑf ′ϑff ⟨f ′|f⟩ ⟨f ′|f⟩

=
∑
f

ϑ2
ff

∀l = 1, 2 . (V.16)

The expectation values of the reverse ordered quadratic products are acquired with
the aid of the commutation relations (I.5), giving the values

⟨âlâ†l ⟩ = ⟨â†l âl + 1⟩

=
∑
f

ϑ2
ff + 1 ∀l = 1, 2 . (V.17)

The final pair of the quadratic expectation values is obtained straightforwardly

⟨â1â2⟩ =
∑
f ′

∑
f

ϑf ′ϑf ⟨f ′|â1|f⟩ ⟨f ′|â2|f⟩

=
∑
f ′

∑
f

ϑf ′ϑff ⟨f ′|f − 1⟩ ⟨f ′|f − 1⟩

=
∑
f

ϑfϑf+1(f + 1) ,

⟨â†1â
†
2⟩ =

∑
f ′

∑
f

ϑf ′ϑf ⟨f ′|â†1|f⟩ ⟨f ′|â†2|f⟩

=
∑
f ′

∑
f

ϑf ′ϑff
′ ⟨f ′ − 1|f⟩ ⟨f ′ − 1|f⟩

=
∑
f

ϑfϑf+1(f + 1) .

(V.18)

We are now equipped with enough information to complete the variance matrix. As
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we saw the expectation values linear in the quadrature operators vanish. Conse-
quently the formula (V.9) yielding σij elements simplifies into

σij =
1

2
⟨ξ̂iξ̂j + ξ̂j ξ̂i⟩ . (V.19)

The commuting diagonal elements are evaluated with the aid of the relations (V.14),
(V.16) and (V.17). We therefore obtain a quadruplet

σ11 = ⟨x̂1x̂1⟩ =
1

2
⟨â1â†1 + â†1â1 + â1â1 + â†1â

†
1⟩ =

1

2
+ ⟨n̂1⟩ ,

σ22 = ⟨p̂1p̂1⟩ =
1

2
⟨â1â†1 + â†1â1 − â1â1 − â†1â

†
1⟩ =

1

2
+ ⟨n̂1⟩ ,

σ33 = ⟨x̂2x̂2⟩ =
1

2
⟨â2â†2 + â†2â2 + â2â2 + â†2â

†
2⟩ =

1

2
+ ⟨n̂2⟩ ,

σ44 = ⟨p̂2p̂2⟩ =
1

2
⟨â2â†2 + â†2â2 − â2â2 − â†2â

†
2⟩ =

1

2
+ ⟨n̂2⟩

(V.20)

of clearly identical values. Hence the diagonal of the variance matrix reads

σii =
1

2
+
∑
f

ϑ2
ff ∀ i = 1 . . . 4 . (V.21)

The off-diagonal elements are derived in a similar fashion. Most of the correlations
simply cancel out following the relation (V.15)

σ12 = σ21 =
1

2
⟨x̂1p̂1 + p̂1x̂1⟩ =

1

2ı
⟨â1â1 + â†1â

†
1⟩ = 0 ,

σ34 = σ43 =
1

2
⟨x̂2p̂2 + p̂2x̂2⟩ =

1

2ı
⟨â2â2 + â†2â

†
2⟩ = 0 ,

σ14 = σ41 =
1

2
⟨x̂1p̂2 + p̂2x̂1⟩ =

1

2ı
⟨â1â2 − â†1â

†
2⟩ = 0 ,

σ23 = σ32 =
1

2
⟨x̂2p̂1 + p̂1x̂2⟩ =

1

2ı
⟨â1â2 − â†1â

†
2⟩ = 0 .

(V.22)

Finally, the only non-zero off-diagonal elements of the variance matrix read

σ13 = σ31 =
1

2
⟨x̂1x̂2 + x̂1x̂2⟩ = +

1

2
⟨â1â2 + â†1â

†
2⟩ ,

σ24 = σ42 =
1

2
⟨p̂1p̂2 + p̂1p̂2⟩ = −1

2
⟨â1â2 + â†2â

†
2⟩ .

(V.23)
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It is clear that their absolute values are identical, given by the relation (V.18)

σ13 = σ31 = −σ24 = −σ42 =
∑
f

ϑfϑf+1(f + 1) . (V.24)

We can obtain explicit expressions for its the non-zero elements. The summation
on the right hand side of (V.21) may be expanded into

∑
f

ϑ2
ff =

(1− β)3

1 + β

∑
f

βff(f + 1)2

=
(1− β)3

1 + β

∑
f

βf (f + 2f 2 + f 3)

= 2
(1− β)3

1 + β

β(2 + β)

(1− β)4

= 2
β(2 + β)

1− β2
,

(V.25)

where we set β = λ2 < 1 and used the closed-form formulae (A.2), (A.3) and (A.4)
derived in the appendix A. Similarly the summation in (V.23) becomes

∑
f

ϑfϑf+1(f + 1) = λ
(1− β)3

1 + β

∑
f

βf (f + 2)(f + 1)2

= λ
(1− β)3

1 + β

∑
f

βf (2 + 5f + 4f 2 + f 3)

= 2λ
(1− β)3

1 + β

1 + 2β

(1− β)3

= 2λ
1 + 2β

1− β2
.

(V.26)

In conclusion the variance matrix of the quadrature operators reads

σ =


∆ · δ ·
· ∆ · −δ

δ · ∆ ·
· −δ · ∆

 (V.27)
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with ∆ and δ given by the relations (V.21), (V.25), (V.23) and (V.26) as

∆ =
1

2
+ 2

β(2 + β)

1− β2
, δ = 2λ

1 + 2β

1− β2
. (V.28)

Clearly the variance matrix of the distilled state has the same structure as the input
signal mode (I.52), however, its values have changed.

2 Subtraction with the improved subtraction
procedure

In this section we investigate the consequences of employing the improved subtrac-
tion procedure in the entanglement distillation protocol. In the following paragraphs
we adapt both subtraction procedures that were previously introduced in chapter II
to accommodate the two mode signal state and to reflect its entangled nature. Sub-
sequently we extend the conclusions of chapter III to provide a suitable description
of the subtraction procedure in context of the entanglement distillation protocol.

The central idea of the improved subtraction procedure revolves around the way the
unsuccessful subtraction attempts are handled. Because the original subtraction
procedure is but a building block of the improved procedure we start with analysis
of its necessary modifications first.

A basic scheme of the procedure is depicted in the Figure V.2. The principal dif-
ference (cf. Figure II.1b) lies in the number of the signal modes; the first signal
mode SI that does not take a part in the interaction directly is dashed out. Its
physical properties are, however, affected due to its entanglement with the second,
interacting mode SII .

59



(1) (2) (3) (4)

WS

W⋆

SII

SI

A

L

WA

WL

DM
APD

Π⋆

BS

ζ BS

η

Figure V.2: The scheme is similar to the Figure II.1b with one difference. There is a pair
of entangled signal modes present. Only one arm (SII) directly participates
in the interactions with the ancillary modes (A, L).

The interactions leading to the subtraction with outcome Π⋆ (where ⋆ ∈
{◦, •} denote the positive and negative outcomes, i.e., the successful and
unsuccessful subtraction attempts) remain the same.

Similarly to the previous analysis (cf. Figure II.1b) the scheme of the procedure is
divided into four logical units. We are going to describe each part of the scheme in
the spirit of the analysis performed in chapter III and adapt the general formulation
of subsection III.2.C to match the present circumstances.

(1) The input state comprises the entangled pair of signal modes and the factorized
pair of idlers. Suppose the Wigner function WS(ξS) of the signal state is given
in the form of a Gaussian decomposition (III.58) as

WS(ξS) =
∑
f

γS
f KµS

f Θ
S
f
(ξS) (V.29)

with the 4×4 characteristic matrices ΘS
f and the 4× 1 vectors of mean values

µS
f . In general these characteristic matrices may not be decomposed into a

direct matrix sum due to the presence of correlations between the modes.

The Wigner function WSAL(ξ) of the joint state is then given by the familiar
decomposition (III.60). The joint vector of phase space coordinates reads

ξ = ξS ⊕ ξA ⊕ ξL (V.30)
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with the vector ξS respective to the two mode signal state

ξS = (xSI
, pSI

, xSII
, pSII

)⊺ . (V.31)

(2) The second mode (SI) of the signal interacts with the idler (A) on a beam
splitter of transmittance ζ. The idler then interacts with the virtual ancillary
mode (L) on a beam splitter of transmittance η, which models the inefficient
avalanche photodiode detector in our consideration.

Both the interactions are Gaussian in their nature and can be represented by
a sequence of transformations

V (ζ, η) = [1⊕ 1⊕ V (η)] [1⊕ V (ζ)⊕ 1] (V.32)

where the elements of the product are properly padded matrices (I.33) charac-
terising the individual beam splitters and 1 represents a 2×2 identity matrix.

The Wigner function of the transformed state then reads

W ′
SAL(ξ) =

∑
f

γfKµ′
fΘ

′
f
(ξ) (V.33)

with the characteristic matrices and vectors of mean values transformed using
the resulting matrix V (ζ, η) according to the relation (III.43).

(3) In the third part, the virtual ancillary mode (L) is traced out. The Wigner
function W ′

SAL(ξ) is consequently transformed according to the relation (III.63)

WSA(ξ) =
∑
f

γf
2π

det⌊Θ′
f⌉L

Kµ′
fΘ

′′
f
(ξ) =

∑
f

γ′′
fKµ′

fΘ
′′
f
(ξ) (V.34)

where the cumulative factors γ′′
f comprise

γ′′
f = γf

2π

det⌊Θ′
f⌉L

. (V.35)

(4) The Wigner function WSA(ξ) is transformed again in the detection process.
Its transformation is governed by an equation similar to (III.65) in structure
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with a different normalisation due to the number of signal modes

W⋆(ξS) = (2π)−2

∑
f

∑
f ′

γ′′
f γ

⋆
f ′√

det⌊Ξff ′⌉A
exp

(
−1

2
ζff ′
)
Kδff ′Ξ

′
ff ′

(ξS)

∑
f

∑
f ′

γ′′
f γ

⋆
f ′√

detΞff ′
exp

(
−1

2
ζff ′
) (V.36)

with the factors γ′′
f coming from (V.35) and γ⋆

f ′ from (III.39).

The joint characteristic matrices Ξff , the joint vectors of mean values δff ′

and the additional factor exp
(
−1

2
ζff ′
)

are governed by the product relation
(III.46), starting again with the individual matrices and vectors of (V.34)
and (III.39). Furthermore the characteristic matrices Ξ′

ff ′ result from the
subsequent planar integral (III.57).

Finally the probability relation has to be scaled appropriately, reading

P⋆ = (2π)4
∑
f

∑
f ′

γ′′
fγ

⋆
f ′√

detΞff ′
exp

(
−1

2
ζff ′

)
. (V.37)

In conclusion the only significant differences with the original relations (III.65) and
(III.66) lie in the normalisation of the final expressions (V.36) for the Wigner func-
tion respective to detection outcome ⋆ ∈ {◦, •} and the corresponding probability
relation (V.37).

In the improved procedure introduced in the section II.2 we consider iterative chains
where the signal state is recycled until the subtraction finally succeeds or a prede-
termined, reasonable number of attempts is eventually reached.
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Wij, Pij

(1)

SII

(2 · · · f − 1)(f) (1)

SI

(2 · · · f ′ − 1) (f ′)

Figure V.3: The subtraction is repeatedly attempted on the first (SI) arm of the entan-
gled state until it succeeds in the fth step. Subsequently the subtraction
process is repeated for the second (SII) arm until it finally succeeds in the
f ′th step. The Wigner function of the resulting state is denoted Wff ′(ξS)
and the respective probability Pff ′ .

Because the signal modes are entangled they can not be considered separately. The
basic outline of the improved procedure adapted to reflect the entanglement of the
signal mode is presented in the Figure V.3. In this iterative chain the subtraction
finally succeeds in the f th attempt on the first mode (SI) and in the f ′th attempt
on the second mode (SII) of the entangled system. The conditional probability

Pff ′ =P ◦
1 (SI) · · ·P ◦

f−1(SI)P
•
f (SI)

P ◦
1 (SII) · · ·P ◦

f ′−1(SII)P
•
f ′(SII)

(V.38)

associated with the iterative chain represents the first (f−1) failures followed by the
final success on the first mode and similarly for the second mode where the success
occurs after (f ′ − 1) failed attempts. The individual probabilities P⋆

f (·) are given
by the relation (V.37) with the symbols SI and SII distinguishing the interacting
mode in the underlying subtraction procedure Figure V.2. The Wigner function
respective to this chain is denoted Wff ′(ξS).

The improved subtraction procedure either succeeds in any of the iterations under
consideration or it fails completely. Because the first successful iteration is not
known beforehand, we take all the possible iterative chains into account. Each of
the iterative chains is statistically independent. The overall probability of successful
subtraction is therefore obtained in the additive form

Q =
N∑
f

N∑
f ′

Pff ′ , (V.39)

where N represents the maximal number of subtraction attempts on each
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mode of the signal. The overall Wigner function of the subtracted state

W (ξS) = Q−1

N∑
f

N∑
f ′

Pff ′Wff ′(ξS) (V.40)

describes the result of the modified distillation procedure [15] under our considera-
tion. In line with the section V.1 and the distillation protocol itself we start with a
signal two mode squeezed state which was briefly introduced in the subsection I.7.F.
The state is Gaussian and its decomposition into Gaussian kernels is straightforward

WS(ξS) = γS
1 KΘS

1
(ξS) (V.41)

with the characteristic matrix ΘS
1 obtained as an inverse of the variance (I.52)

ΘS
1 = 2


cosh 2γ · − sinh 2γ ·

· cosh 2γ · sinh 2γ

− sinh 2γ · cosh 2γ ·
· sinh 2γ · cosh 2γ

 , (V.42)

the vector of mean values µS
1 ≡ 0 and the normalisation (weight) factor given as

γS
1 =

√
detΘS

1

(2π)2
= π−2 . (V.43)

3 Probability and performance assessment

In our analysis of the distillation protocol we compare the effects of the improved
subtraction procedure with the results obtained for the ideal subtraction. The per-
formance of the distillation is assessed using the Gaussian logarithmic negativity
and the EPR correlations introduced earlier in the section I.6.

The effects of the improved subtraction procedure for different maximal numbers
of subtraction attempts N are presented in the Figure V.4 and the Figure V.5,
where the mappings of the logarithmic negativities Λ and EPR correlations Υ are
shown as functions of the overall success probability (V.39). Both the entanglement
measures are functions of second moments of the quadrature operators of the distilled

64



states. In the case of the ideal subtraction the variance matrix is defined by the
relation (V.27). In the case of the improved subtraction procedure the overall Wigner
function (V.40) is simply decomposed into a linear combination of Gaussian kernels
and the overall variance matrix can be straightforwardly extracted with the formula
(B.6) derived in the appendix B.

The entanglement measures are computed numerically for an initial two mode
squeezed vacuum state (I.52) with the squeezing rate γ ≡ 1.00. The numerical sim-
ulation is performed for both the ideal (η = 1.00) and the inefficient (η = 0.64)
detection models.

The effects of the improved subtraction procedure measured in terms of the log-
arithmic negativity Λ are shown in the Figure V.4. We can see that the success
probability Q can be improved by an order of magnitude by taking as little as 10
subtraction attempts into account. The probability can be further improved by in-
creasing the number of attempts, however, the difference is not as significant. We
can also see the distillation procedure is not negatively impacted by inefficient de-
tection in terms of achievable logarithmic negativity. The inefficient detection only
impacts the success rate of the distillation and decreases the improvements otherwise
attainable by the improved procedure.

The Figure V.5 represents the effects measured in terms of the EPR correlations
Υ. Similarly to the previous case we can see that the success probability Q can be
improved by an order of magnitude by taking as little as 10 subtraction attempts.
Likewise the inefficient detection does not negatively impact the attainable EPR
correlations.
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Figure V.4: The success probability Q can be improved by roughly on order of magnitude
by taking as little as ten subtraction attempts in both the ideal (left plot)
and realistic (right plot) detection models.

We show the mapping of Gaussian logarithmic negativity Λ for N = 1,
N = 10, and N = 75 for detection efficiencies η = 1.00 and η = 0.64.

Furthermore we can see in the far right region of each plot that the procedure
may succeed with negativity lower than it was in the beginning, effectively
failing to distil any entanglement.

The horizontal START line indicates the logarithmic negativity of the initial
state. The IDEAL line indicates the negativity of the state obtained with the
ideal distillation procedure, giving an upper boundary on the performance
of improved subtraction procedure.

66



10
−
9

10
−
8

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10.10

0.11

0.12

0.13

0.14

START

IDEAL

Q

Υ

η ≡ 1.00

10
−
9

10
−
8

10
−
7

10
−
6

10
−
5

10
−
4

10
−
3

10
−
2

10
−
1

10.10

0.11

0.12

0.13

0.14

START

IDEAL

Q

Υ

η ≡ 0.64

N = 1 N = 10 N = 75

Figure V.5: The success probability Q can be improved by roughly on order of magnitude
by taking as little as ten subtraction attempts in both the ideal (left plot)
and realistic (right plot) detection models.

We show the mapping of EPR correlations Υ for N = 1, N = 10, and
N = 75 for detection efficiencies η = 1.00 and η = 0.64.

Furthermore we can see in the far right region of each plot that the procedure
may succeed with negativity lower than it was in the beginning, effectively
failing to distil any entanglement.

The horizontal START line indicates the EPR correlations of the initial state.
The IDEAL line indicates the correlations of the state obtained with the
ideal distillation procedure, giving an upper boundary on the performance
of improved subtraction procedure.
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Conclusions and outlooks

We have introduced an improved single photon subtraction procedure and developed
a mathematical description suitable for numerical simulations. We focused on two
applications of the procedure; first we explored the preservation of quantum super-
position by exploiting the properties of superposed coherent states and determined
the preservation of quantum superposition to be considerably hindered by inefficient
detection. In the case of ideal detection the procedure indeed preserved quantum
superpositions with a high rate of success.

The second application involved quantum entanglement distillation. We compared
the performance of the improved procedure for different maximal number of subtrac-
tion attempts. We observed an improvement of roughly one order of magnitude in
success probability in comparison with the original, single step subtraction protocol.
Unlike in the first application the inefficient detection was not fatal in respect to
the attainable increase of entanglement and the only negative effect was a slightly
lower success rate of the distillation procedure.

Further extensions to the work may include optimization of the procedure in terms
of optimal parameters (primary beam splitter transmittance rate) under constraints
imposed on the number of subtraction attempts and intensity of the signal mode.
Furthermore the procedure could be extended to include additional losses and noise
mixed into the signal mode in each subtraction attempt. In our current consideration
the parameters of the improved procedure remain fixed for each subtraction attempt.
A particularly interesting extension could be to adaptively change these parameters
and search for their optimal values.

Moreover the current mathematical description supports a broader class of condi-
tional operations comprising any number of ancillary modes and interactions char-
acterised by Gaussian operations and measurements on avalanche photodiode de-
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tectors. This makes, for example, description of a single photon addition quite
straightforward task.

Furthermore our methodology may be used to model any quantum optical network
consisting of linear optics, squeezing, and avalanche photodiode detectors, which
essentially encompasses all existing quantum optical experiments. This ultimate goal
would require a more robust, faster and scaleable implementation of the underlying
numerical simulations.

69



Appendix A

Closed-form formulae of select
series

In the chapter V we relied on closed-form formulae of a number of series. In this
appendix we provide a step by step derivation of their final expressions.

Suppose |λ| < 1. Then the following series converge and their respective sums may
be obtained as closed-form formulae∑

f

λf =
1

1− λ
, (A.1)

∑
f

λff =
λ

(1− λ)2
, (A.2)

∑
f

λff 2 =
λ(1 + λ)

(1− λ)3
, (A.3)

∑
f

λff 3 =
λ(1 + 4λ+ λ2)

(1− λ)4
. (A.4)

We are going to derive the formulae in the following paragraphs. We may recognize
the geometric series (A.1) which converges for |λ| < 1 and the sum reads

S(0) =
∑
f

λf =
1

1− λ
. (A.5)
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We may employ a simple trick to obtain the closed-form expressions for the rest of
the series. Consider the derivative of a single element of the geometric series

∂

∂λ
λf = fλf−1 (A.6)

which may be multiplied by the common ratio λ to yield

λ
∂

∂λ
λf = fλf . (A.7)

The second series (A.1) may be rewritten with the aid of this relation into

∑
f

λff = λ
∂

∂λ

∑
f

λf = λ
∂

∂λ
S(0) = λS(1) , (A.8)

where the symbol S(f) denotes the f th derivative of the geometric series expression

S(f) =
∂fS

∂λf
=

f !

(1− λ)f+1
. (A.9)

Higher orders of f in the series lead to a general closed-form expression

∑
f

λffχ =

(
λ
∂

∂λ

)χ

S(0) . (A.10)

Consequently we may rewrite the series (A.3) and (A.4) into the following forms

∑
f

λff 2 =

(
λ
∂

∂λ

)2

S(0) = λS(1) + λ2S(2) , (A.11)

∑
f

λff 3 =

(
λ
∂

∂λ

)3

S(0) = λS(1) + 3λ2S(2) + λ3S(3) . (A.12)
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The closed-form formulae of (A.2), (A.3), and (A.4) then clearly read

∑
f

λff 1 = λS(1) =
λ

(1− λ)2
, (A.13)

∑
f

λff 2 = λS(1) + λ2S(2) =
λ

(1− λ)2
+

2λ2

(1− λ)3
=

λ(1 + λ)

(1− λ)3
, (A.14)∑

f

λff 3 = λS(1) + 3λ2S(2) + λ3S(3)

=
λ

(1− λ)2
+

6λ2

(1− λ)3
+

6λ3

(1− λ)4

=
λ(1 + 4λ+ λ2)

(1− λ)4
.

(A.15)
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Appendix B

Statistical moments of quadrature
operators

The first two statistical moments of quadrature operators play an important role in
a wide range of cases, including entanglement quantification (cf. section I.6).

A great advantage of Gaussian states is that the first two moments are well known as
they completely characterise such states. The states in our consideration, however,
decompose into linear combinations of Gaussian kernels (cf. chapter III) which makes
the extraction of the first two moments a slightly more involved process.

We have shown that for every Gaussian function there exists a Gaussian kernel as
its characteristic matrix is regular. Each decomposition (III.58) of a physical state
may be equivalently represented by a linear combination of Gaussian functions

W (ξ) =
∑
f

γf KµfΘf
(ξ)

=
∑
f

γf
(2π)χ√
detΘf

GµfΘ
−1
f
(ξ)

=
∑
f

βf Gµfσf
(ξ)

(B.1)
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with the weight factors βf including the normalisation factors

βf = γf
(2π)χ√
detΘf

(B.2)

following from the correspondence between Gaussian kernels and Gaussian functions

Gµσ(ξ) =
1

(2π)χ
√

detσ
Kµσ−1(ξ) . (B.3)

Ultimately we are interested in the expectation values ⟨ξ̂i⟩ and ⟨ξ̂iξ̂j⟩ in respect to
states described with the (B.1) distribution. These expectation values comprise the
variance matrix and the vector of mean values.

Our knowledge is, however, limited to the individual vectors of mean values µf

and variance matrices σf in respect to the individual Gaussian functions in the
decomposition (B.1).

We start with the linear expectation values of the phase space variables

⟨ξ̂i⟩ =
∫∫

· · ·
∫∫

ξi
∑
f

βf Gµfσf
(ξ) d2χξ

=
∑
f

βf

∫∫
· · ·
∫∫

ξi Gµfσf
(ξ) d2χξ

=
∑
f

βf⟨ξi⟩f

=
∑
f

βf (µf )i

(B.4)

where the operator ⟨·⟩f denotes the expectation value in respect to the Gµfσf
(ξ)

and the symbol (µf )i represents the ith element of the vector µf . The quadratic
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expectation values read

⟨ξ̂iξ̂j⟩ =
∫∫

· · ·
∫∫

ξiξj
∑
f

βf Gµfσf
(ξ) d2χξ

=
∑
f

βf

∫∫
· · ·
∫∫

ξiξj Gµfσf
(ξ) d2χξ

=
∑
f

βf⟨ξiξj⟩f

=
∑
f

βf

(
⟨ξiξj⟩f ± ⟨ξi⟩f⟨ξj⟩f

)
=
∑
f

βf (σf )ij +
∑
f

βf (µf )i(µf )j

(B.5)

where (σf )ij yields the ijth element of the variance matrix σf . The total variance
in respect to the Wigner function (B.1) may now be obtained without any extensive
effort using only the statistical properties of individual Gaussian functions

var(ξ̂i, ξ̂j) =
1

2
⟨ξ̂iξ̂j + ξ̂j ξ̂i⟩ − ⟨ξ̂i⟩⟨ξ̂j⟩

= ⟨ξ̂iξ̂j⟩ − ⟨ξ̂i⟩⟨ξ̂j⟩

=
∑
f

βf (σf )ij +
∑
f

βf (µf )i(µf )j −
∑
f

βf (µf )i
∑
f

βf (µf )j

(B.6)

where all the elements are immediately known from the expression (B.1).
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