

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

REALIZACE LABORATORNÍ ÚLOHY SE SYSTÉMEM ZIGBEE

REALIZATION OF LABORATORY EXERCISE USING THE ZIGBEE SYSTEM

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

Petr König

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Jiří Miloš, Ph.D.

BRNO 2017

Bakalářská práce

bakalářský studijní obor Elektronika a sdělovací technika

Ústav radioelektroniky

Student:Petr KönigRočník:3

ID: 164308 *Akademický rok:* 2016/17

NÁZEV TÉMATU:

Realizace laboratorní úlohy se systémem ZigBee

POKYNY PRO VYPRACOVÁNÍ:

Seznamte se s vrstvovou architekturou systému ZigBee. Důkladně prostudujte zejména fyzickou a MAC vrstvu. Sestavte osnovu budoucí laboratorní úlohy demonstrující parametry a možnosti ZigBee. Využijte dostupné hardwarové a softwarové vybavení laboratoře mobilních komunikací UREL pro generování i analýzu signálu fyzické vrstvy ZigBee. Prověřte možnost zachytávání a dekódování ZigBee paketů na rádiovém rozhraní.

Sestavte laboratorní úlohu demonstrující vlastnosti a možnosti použití systému ZigBee. Pokuste se postihnout zajímavé vlastnosti fyzické vrstvy ZigBee. Vypracujte návod laboratorní úlohy a také vzorový protokol.

DOPORUČENÁ LITERATURA:

[1] IEEE Standard for Local and metropolitan area networks: Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). New York: IEEE, 314 s. ISBN 978-0-7381-6683-4.

[2] HERNANDEZ, O., JAIN, V., CHAKRAVARTY, S., BHARGAVA, P. Position Loacation Monitoring: Using IEEE 802.15.4/ZigBee technology [online]. Freescale Beyondbits. [cit. 2015-05-12]. Dostupné z: https://www.freescale.com/files/microcontrollers/doc/brochure/PositionLocationMonitoring.pdf.

Termín zadání: 6. 2. 2017

Vedoucí práce: Ing. Jiří Miloš, Ph.D.

Termín odevzdání: 30.5.2017

prof. Ing. Tomáš Kratochvíl, Ph.D. předseda oborové rady

UPOZORNĚNÍ:

Konzultant:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

ABSTRAKT

Bakalářská práce se věnuje vrstvové architektuře systému ZigBee, zejména potom jeho fyzické a MAC vrstvě a demonstruje jeho parametry v praktické realizaci. Hlavní částí bakalářské práce je vytvoření laboratorní úlohy za pomocí vývojového kitu Jennic a Atmel. Studenti se pomocí této laboratorní úlohy seznámí se standardem ZigBee.

KLÍČOVÁ SLOVA

ZigBee, IEEE 802.15.4, laboratorní úloha, Jennic JN5139, ATAVRRZ200

ABSTRACT

The bachelor's thesis includes ZigBee layer architecture mainly Physical Layer (PHY) and Media Access Controlv Layer (MAC). It demonstrates their parameters in practical realization. Main part of the thesis is a creation of laboratory measurement protocol using development kit of Jennic company. Students will be familiar with ZigBee standard due to this laboratory exercise.

KEYWORDS

ZigBee, IEEE 802.15.4, laboratory exercise, Jennic JN5139, ATAVRRZ200

KÖNIG, P. *Realizace laboratorní úlohy se systémem ZigBee*. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2017. 39 s. Bakalářská práce. Vedoucí práce: Ing. Jiří Miloš, Ph.D.

PROHLÁŠENÍ

Prohlašuji, že svoji bakalářskou práci na téma *Realizace laboratorní úlohy se systémem ZigBee* jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení § 11 a následujících zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne

(podpis autora)

PODĚKOVÁNÍ

Ve své práci bych rád poděkoval vedoucímu bakalářské práce panu Ing. Jiřímu Milošovi Ph.D. za pedagogickou a odbornou pomoc při zpracování bakalářské práce.

V Brně dne

.....

(podpis autora)

OBSAH

1	ZigBee		10
	1.1	Aplikační vrstva (APL)	11
	1.2	Síťová vrstva (NWK)	11
	1.3	Linková vrstva (MAC)	12
	1.4	Fyzická vrstva (PHY)	12
	1.4.1	Frekvenční pásmo	13
	1.4.2	Číslování kanálů	13
2	Standard	IEEE 802.15.4	14
	2.1	Definice typu zařízení	14
	2.2	Topologie sítě	14
	2.3	Adresace zařízení	15
3	Vývojový	modul Jennic	16
	3.1	Hlavní modul	16
	3.2	Senzorový modul	17
4	Vyvojový	kit ATmel	18
	4.1	Obsah kitu	18
	4.2	Popis hardwaru	.18
	5.1	Popis	. 20
6	Závěr		21
7	Bibliogra	fie	22
A	. Laborato	orní úloha	25
	A.1	Zadání	. 25
	A.2	Teoretický úvod	. 25
	A.2.1.	Demonstrační program modulků RZ200	. 27
	A.2.2.	Utváření sítě	. 27
	A.2.3.	Připojení koncového zařízení	. 27
	A.2.4.	Výsledná funkce sítě	. 27
	A.2.5.	Demonstrační program modulků JENNIC	. 28
	A.2.6.	Utváření sítě	. 28

1	4.3	Postup měření	28
B.	Vzorový j	protokol	34
C.	Obsah př	iloženého DVD	39

SEZNAM OBRÁZKŮ

Obrázek 1.1: Vrstvy v architektuře ZigBee.	11
Obrázek 1.2: Zobrazení frekvenčního pásma 2,4GHz pro ZigBee, Wi-Fi a Blu	uetooth [3]
Obrázek 2.1: Topologie hvězda a Peer-to-Peer [1]	14
Obrázek 3.1: Hlavní modul DR001047 [4]	16
Obrázek 3.2: Senzorový modul DR1048 [5].	17
Obrázek 4.1: Popis modulku s rádiem (RCB) [6]	19
Obrázek 4.2: Popis modulku s displejem [6]	19
Obrázek 4.3: USB Dongle firmy Texas Instruments [7]	20
Obrázek A.1: schéma PHY/MAC protokolu	
Obrázek A.2: Topologie hvězda a Peer-to-Peer [1]	
Obrázek A.3: Obrazovka generátoru R&S SMU200A	
Obrázek B.1: Zaznamenané hodnoty z programu TI Packet Sniffer	
Obrázek B.2: Komunikace při sestavování sítě	
Obrázek B.3: Zachycené pakety po stisknutí tlačítka SW1	

SEZNAM TABULEK

Tabulka 1: ZigBee - přehled vybraných technických údajů.	10
Tabulka 2: Zachycený paket	30
Tabulka 3: Měřené kanály Zigbee	31
Tabulka 4: Vybrané kanály ZigBee pro změření šířky pásma	31
Tabulka 5: Zachycené pakety komunikace	32
Tabulka 6: Zachycené pakety komunikace	32
Tabulka 7: Adresy zařízení v síti	32
Tabulka 8: Zachycené pakety komunikace	33
Tabulka 9: Zachycené pakety komunikace	33

ÚVOD

Systém ZigBee poskytuje optimální řešení v oblasti senzorových sítí. Umožňuje přenos neperiodicky přenášených dat z nejrůznějších čidel, měřicích zařízení, a podobně. Taktéž se stará o jejich následné zpracování. Jedná se o robustní bezdrátový standard s nízkými přenosovými rychlostmi, vhodný i do prostředí s velkým množstvím interferencí. Využívá se v chytrých domácnostech a pro průmyslová zařízení. Jeho hlavní výhodou je nízká spotřeba. Výdrž zařízení se při napájení bateriemi pohybuje v řádu měsíců.

V laboratorní výuce předmětů *Rádiové a mobilní komunikace* a *Systémy mobilních komunikací* bohužel v současné době není realizována laboratorní úloha demonstrující tento přenosový standard.

Předkládaná bakalářská práce si klade za cíl popsat standard ZigBee, zejména vlastnosti jeho fyzické a MAC vrstvy. Hlavní náplní práce bude demonstrace hlavních parametrů pomocí laboratorní úlohy.

1 ZIGBEE

ZigBee je bezdrátová komunikační technologie postavená na standardu IEEE 802.15.4 5 [1]. Patří do skupiny personálních bezdrátových sítí - Personal Area Network (PAN) stejně jako například technologie Bluetooth.

Systém ZigBee je navržen jako jednoduchá a flexibilní technologie pro tvorbu i rozsáhlejších bezdrátových sítí, u nichž není požadován přenos velkých objemů dat. K jejím hlavním přednostem patří spolehlivost, jednoduchá a nenáročná implementace, velmi nízká spotřeba energie a nízká cena. Protokol je maximálně zjednodušen, aby se dal implementovat do osmibitových mikrokontrolerů [2].

Nejčastějším typem komunikace jsou tzv. **unicast** (jeden k jednomu) a **broadcast** (jeden všem). Z hlediska fyzického propojení sítě jsou podporovány tři topologie:

- 1. topologie typu hvězda,
- 2. topologie typu mesh,
- 3. stromová topologie.

Topologie sítě budou detailněji popsány níže. Tabulka 1 obsahuje některé vybrané parametry systému ZigBee a jeho výhody.

Frekvenční pásma	868/915 MHz (Evropa/Amerika) a 2,4 GHz (celosvětově)		
Spotřeba zařízení v síti (odběr)	jednotky mA		
Zabezpečení	Vysoká bezpečnost komunikace díky AES (Advanced Encryption Standard)		
Cena	nízká (~100 Kč)		
Dosah	10-300m		
přenosová rychlost	až 250kb/s		
Životnost baterie	týdny až roky		

Tabulka 1: ZigBee - přehled vybraných technických údajů.

Vrstvová architektura ZigBee je definována standardem IEEE 802.15.4. Převážně pracuje na specifikaci pro průmyslová bezdrátová zařízení s krátkým dosahem.

Obrázek 1.1: Vrstvy v architektuře ZigBee [2].

Vrstvová architektura systému ZigBee je znázorněna na obrázku **Obrázek 1.1Chyba! Nenalezen zdroj odkazů.** V dalších podkapitolách budou vrstvy ZigBee architektury popsány s důrazem na nejnižší vrstvy síťového protokolu.

1.1 Aplikační vrstva (APL)

Aplikační vrstva, Application Layer (APL) zajišťuje především síťová připojení z pohledu aplikace, skládá se z aplikační podvrstvy, ZigBee objektů a uživatelských aplikačních objektů.

Aplikační vrstva zajištuje [2]:

- definice profilů aplikací,
- správu endpoints (8-bit identifikátor aplikace),
- zabezpečení komunikace,
- konfiguraci zařízení ZC (Coordinator), ZR (Router), ZED (End Device).

1.2 Síťová vrstva (NWK)

Sítová vrstva, Network layer (NWK), zaručuje, že každé zařízení může komunikovat se všemi zařízeními v síti. Síťová vrstva také definuje typ komunikace. Nejčastějším typem komunikace je tzv. unicast (jeden k jednomu) a broadcast (jeden všem).

Při broadcast vysílání je adresa cílového uzlu definována jako 0XFFFF. Při přijmutí paketu s touto adresou je paket přijímacím uzlem uložen do paměti a po náhodně dlouhé době vyslán zpět do sítě. V paměti se uloží sekvenční číslo paketu. Pokud se přijme paket se stejným sekvenčním číslem, pak je tento paket zahozen. Broadcast komunikace se nepotvrzuje [2].

Síťová vrstva zajišťuje:

- konfiguraci nového zařízení (nově přidaná jednotka může v síti vystupovat jako router nebo jako koncové zařízení),
- spuštění sítě,
- připojení do sítě a odpojení od sítě,
- zabezpečení síťové vrstvy,
- směrování rámců v síti,
- udržování směrovacích tabulek (informace o vzniklých cestách mezi uzly),
- vytváření tabulek sousedních uzlů.

1.3 Linková vrstva (MAC)

Linková vrstva Media Access Control (MAC) zajištuje [2]:

- definice typu zařízení RFD/FFD (Reduced/Fully Function Device),
- adresování zařízení,
- definice topologie hvězda a peer-to-peer,
- generování Beacon rámců v případě, že je zařízení koordinátorem sítě (slouží pro synchronizaci nebo k probuzení uživatelských zařízení)
- synchronizace zařízení podle hodnot v Beacon rámci,
- vyhrazování časových intervalů pro komunikaci GTS (Guarantee Time Slots),
- vkládání mezirámcových intervalů,
- asociování zařízení se sítí a jejich odpojování.

1.4 Fyzická vrstva (PHY)

Fyzická vrstva, Physical Layer (PHY) specifikuje přístup k přenosovému médiu. Kvůli nutnosti implementovat standard ZigBee i do málo výkonných 8 bitových mikrokontrolerů (HC08, x51) bylo dbáno na maximální jednoduchost implementace protokolů. Díky tomu struktura protokolů nezabere více než 30 kB programové paměti.

Fyzická vrstva definuje základní parametry, které musí čip splňovat, jako je minimální citlivost přijímače, maximální vysílací výkon, typ modulace, přenosová rychlost, frekvenční pásmo a podobně.

Fyzická vrstva zajišťuje [2]:

- vypnutí a zapnutí rádiového vysílače,
- přenos a příjem dat,
- výběr frekvenčního kanálu,

- detekci energie na kanálu (Energy Detection),
- zjištění volného kanálu (Clear Channel Assessment),
- zjištění kvality přijímaných dat pomocí Link Quality Indication (LQI) parametru.

1.4.1 Frekvenční pásmo

Fyzická vrstva podporuje tato frekvenční pásma [1]:

780- 787 MHz pro Čínu
950- 956 MHz pro Japonsko
868 - 868.6 MHz pro EU
902 - 928 MHz pro USA
2400 - 2483.5 MHz celosvětově

Obrázek 1.2: Zobrazení frekvenčního pásma 2,4GHz pro ZigBee, Wi-Fi a Bluetooth [3]

Podle obrázku **Obrázek 1.2** lze vidět, že v pásmu 2,4GHz jsou ZigBee kanály široké 2 MHz s odstupem 5 MHz. Střední frekvenci každého kanálu lze vypočítat pomocí vzorce (1).

$$f_c(k) = 2405 + 5 \times (k - 11), [MHz]$$
 (1)

kde $f_c(k)$ je střední frekvence kanálu k v MHz a k je číslo ZigBee kanálu.

1.4.2 Číslování kanálů

V pásmu 868 MHz je k dispozici jeden kanál s modulací Binary Phase-shift Keying (BPSK), v pásmu 915 MHz je k dispozici 10 kanálů s modulací BPSK a v pásmu 2,4 GHz 16 kanálů s modulací Offset-Quadrature Phase-shift Keying (O-QPSK).

2 STANDARD IEEE 802.15.4

Bezdrátové osobní sítě WPAN se používají k přenosu informací na relativně krátké vzdálenosti. Spojení uskutečněné sítí WPAN vyžaduje malou nebo žádnou infrastrukturu na rozdíl od bezdrátové sítě WLAN (Wi-Fi). Tato vlastnost umožňuje malé, levné a energeticky úsporné řešení pro širokou škálu zařízení a aplikací.

Standard IEEE 802.15.4 definuje fyzickou vrstvu PHY a linkovou vrstvu MAC pro přenosná a pohyblivá zařízení s malou rychlostí přenosu dat a pracujících obvykle na vzdálenosti menší než 10 m. Rychlost dat je až 250 kb/s s možností snížení podle potřeb zařízení (senzorů) [1].

2.1 Definice typu zařízení

Standard IEEE 802.15.4 definuje 2 typy síťových zařízení:

FFD zařízení může vykonávat roli koordinátora sítě (PAN-C), směrovače (R-Router) nebo koncového prvku (ED - End Device). Koordinátor sítě má vždy jedinečnou adresu 0x00, je v síti jen jeden a může komunikovat s jinou WPAN sítí.

RFD zařízení je komunikační a senzorické zařízení, které nedisponuje funkcí směrování dat. To znamená, že komunikace s jiným RFD musí být provedena přes FFD zařízení.

Obrázek 2.1: Topologie hvězda a Peer-to-Peer [1].

2.2 Topologie sítě

IEEE 802.15.4 LR-WPAN může pracovat v jedné ze dvou topologií, a to hvězda nebo peer-to-peer (rovný s rovným). V topologii hvězda komunikuje každé zařízení pouze s PAN koordinátorem, takže se v síti nachází pouze koncová zařízení. V topologii peer-to-peer nemusí jít komunikace přes PAN koordinátora, ale zařízení spolu mohou navzájem komunikovat pouze pokud jsou v dosahu, jak lze vidět na obrázku**Obrázek**

2.1.

Peer-to-peer topologie umožňuje implementovat složitější síťové útvary, jako je například mesh.

Standard definuje celkem tři modely přenosu dat:

- přenos dat od koncového zařízení ke koordinátorovi (pouze v topologii hvězda),
- přenos dat od koordinátora k zařízení (pouze v topologii hvězda),
- přenos dat mezi dvěma FFD zařízeními.

2.3 Adresace zařízení

Každé zařízení v protokolu 802.15.4 je identifikováno unikátní adresou, která bývá nakonfigurována manuálně nebo přidělena dynamicky koordinátorem sítě. Používá se základní 16-bitová adresa. Tento identifikátor umožňuje komunikaci mezi zařízeními v síti pomocí krátkých adres a umožňuje přenosy mezi zařízeními v rámci nezávislých sítí.

3 VÝVOJOVÝ MODUL JENNIC

K fyzické realizaci jsem si vybral Development kit firmy Jennic JN5139-EK010 a kit firmy Atmel ATAVRRZ200, které jsou dostupné v laboratoři *Mobilních komunikací* ústavu radioelektroniky, FEKT, VUT v Brně.

Vývojový kit firmy Jennic JN5139-EK010 poskytuje prostředí pro realizaci ZigBee sítě. Umožňuje vytvořit sítě typu hvězda, strom nebo mesh. Pro naše účely postačí ukázkový program, který je v modulkách nahraný od firmy Jennic.

Souprava Jennic obsahuje:

- hlavní řídící modul s displejem DR001047 V1.1,
- čtyři senzorové moduly DR1048 V1.1.

3.1 Hlavní modul

Obrázek 3.1: Hlavní modul DR001047 [4].

- hlavní modul, umožňující rychlý vývoj aplikací, ZigBee ve standardu IEEE 802.15.4 obsahuje tyto komponenty:
- LCD displej 128 x 64 pixelů,
- čidlo vlhkosti a teploty SHT11 s rozsahem od -40°C do 85°C,
- čidlo úrovně osvětlení TAOS TSL2550,
- 5 LED indikátorů a 4 tlačítka,
- sériovou EEPROM,
- UART rozhraní pro komunikaci a programování,
- Jennic konektor pro připojení vysílací části,
- 40 pinový port pro další rozšíření,
- tlačítka RESET a PROGRAMMING.

3.2 Senzorový modul

Obrázek 3.2: Senzorový modul DR1048 [5].

- čidlo vlhkosti a teploty SHT11 s rozsahem od -40°C do 85°C,
- čidlo úrovně osvětlení TAOS TSL2550,
- 3 LED indikátory a 2 tlačítka,
- sériovou EEPROM,
- UART rozhraní pro komunikaci a programování,
- Jennic konektor pro připojení vysílací části,
- 40ti pinový port pro další rozšíření,
- tlačítka RESET a PROGRAMMING.

4 VYVOJOVÝ KIT ATMEL

Vývojový kit ATAVRRZ200 od firmy Atmel slouží k demonstraci standardu ZigBee. Pracuje v bezlicenčním pásmu 2,4 GHz.

4.1 Obsah kitu

Sada obsahuje dva druhy komponentů. Jsou jimi modulová deska s diplejem (Display Board) a modul s rádiem - Radio Controller Boards (RCBs).

Balení obsahuje:

- deska s displejem (1ks)
- moduly s rádiovým vysílačem/přijímačem AT86RF230 (5ks)
- CDROM se softwarem AVR Studio, WinAVR, firmware k modulům a příručka
- AVRISP mkII In-System Programmer (k programování firmwaru)
- adaptér 3V k napájení desky s displejem

4.2 Popis hardwaru

Všech pět modulků RCB obsahuje mikrokontroler ATmega1281V a vysílač AT86FR230. Mikrokontroler má v sobě nahrán firmware pro spuštění demonstrační funkce. Tento program je propojen s vrstvou MAC, PHY a HAL a komunikuje s vysílacím čipem AT86FR230.

Modul RCB se skládá z:

- mikrokontroléru AVR ATmega 1281V
- rádiový vysílač/přijímač AT86FR230 s anténou na tištěném spoji
- dva konektory pro připojení k modulu s displejem
- držák na 2 baterie AAA
- vypínač
- testovací tlačítko
- tři LED diody

Obrázek 4.1: Popis modulku s rádiem (RCB) [6]

Modul s displejem slouží ke konfiguraci a monitorování zařízení v síti. Po připojení RCB modulu lze modulek naprogramovat pomocí ISP nebo JTAG

Modul s diplejem se skládá z:

- mikroprocesoru AVR ATmega128L
- displeje LCD
- dva konektory pro připojení modulků RCB
- externí konektor na napájení
- držák na 2 baterie AA
- vypínač
- testovací tlačítka a joystic
- konektory na programování ISP a JTAG

Obrázek 4.2: Popis modulku s displejem [6]

5 USB DONGLE CC2531EMK

5.1 Popis

Tento USB dongle od firmy Texas Instruments obsahuje nezbytný hardware pro správné vyhodnocovaní, demonstraci, monitorování a vývoj softwaru pro aplikace v pásmu IEEE 802.15.4 nebo ZigBee. Čip CC2530 v sobě obsahuje optimalizovaný mikroprocesor 8051 a vysílací část na 2.4GHz. Zároveň podporuje rozhraní USB 2.0 a lze ho připojit k počítači. Pracuje a poskytuje rozsáhlou hardwarovou podporu pro manipulaci s pakety, ukládání dat, šifrování dat, ověřování dat, indikaci kvalitu spojení a časové informace o paketech [7].

Dongle je předem naprogramovaný jako paketový zachytávač, který budeme v laboratorní úloze používat k zachytávání ZigBee paketů.

USB dongl se skládá z:

- čipu CC2531 s anténou na tištěném spoji
- rozhraní USB
- dvě LED diody
- dvě malá tlačítka
- konektory pro připojení externích čidel nebo zařízení
- konektor pro programování a ladění řídící jednotky

Obrázek 4.3: USB Dongle firmy Texas Instruments [7]

6 ZÁVĚR

Hlavním cílem této bakalářské práce bylo popsat jednotlivé vrstvy architektury ZigBee a seznámit se s jejich funkcemi. Druhá část bakalářské práce popisuje laboratorní úlohu. Úlohu má za cíl demonstrovat vybrané parametry a možnosti tohoto standardu.

Pro praktickou realizaci úloh jsem vybral vývojový kit firmy Jennic JN5139-EK010 a vývojový kit firmy Atmel ATAVRRZ200. Oba vývojové kity byly dostupné v laboratoři Mobilních komunikací ústavu radioelektroniky. Vývojový kit firmy Jennic obsahuje jeden hlavní modul a 4 senzorové programovatelné moduly. Senzorové moduly mohou měřit osvětlení, teplotu a vlhkost prostředí. Data ze senzorů se poté vysílají na displej hlavního modulu. Vývojový kit firmy Atmel obsahuje jeden hlavní modul s displejem a konektorem na programování a 5 programovatelných modulků. programu výrobce demonstrovat V ukázkovém od lze funkci vypínačů a světel (LED diod) v topologickém zapojení typu hvězda. V takovém zapojení prochází veškerá komunikace přes jediného PAN koordinátora sítě, který tuto komunikaci řídí.

V laboratorní úloze seznamuji studenty s tímto standardem a s vývojovými kity firmy Atmel a Jennic. V první části laboratorní úlohy si student vyzkouší generování paketu ZigBee pomocí generátoru Rohde&Schwarz SMU200A. Paket poté zachytí pomocí USB Donglu od firmy Texas Instruments a jejich programem SmartRF Packet Sniffer. Druhá část laboratorní úlohy se zabývá fyzickou vrstvou standardu ZigBee. Student má za úkol proměřit pomocí spektrálního analyzátoru Rohde&Schwarz FSP všech 16 kanálů ZigBee, jejich středový kmitočet a výkon. U dvou vybraných poté i jejich šířku pásma. V třetí část má student za úkol zachytit komunikaci modulků firmy Atmel pří zakládání a provozu sítě. Zachytávání paketů zajištuje USB Dongle a program SmartRF Packet Sniffer. V tomto programu student v reálném čase vidí zachytávání paketů a také jejich obsah.

7 BIBLIOGRAFIE

- [1] IEEE STANDARD FOR LOCAL AND METROPOLITAN AREA NETWORKS. Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). New York: IEEE, 314 s. ISBN 978-0-7381-6683-4..
- [2] ING. MILAN ŠIMEK, Ph.D. Bezdrátové senzorové sítě. První. Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav telekomunikací Purkyňova 118, 612 00 Brno, 2013, 978-80-214-4638-0.
- [3] DAINTREE NETWORKS INC. *Getting Started with ZigBee and IEEE 802.15.4*. 2004–2010.
- [4] JENNIC. DR1047 Controller Board Reference Manual. Revision 1.1. 2007.
- [5] JENNIC. DR1048 Sensor Board Reference Manual. Revision 1.1. 2007.
- [6] ATAVRRZ200 Demonstration Kit AT86RF230 (2450 MHz band) Radio Transceiver. Atmel.com [online]. 2006 [cit. 2017-05-23]. Dostupné z: http://www.atmel.com/tools/ATAVRRZ201AVRZ-LINK5-PACK2_4GHZRCB.aspx?tab=documents
- [7] USB Dongle: CC2531 USB Hardware User's Guide. *TI*. b.r. Dostupné také z: http://www.ti.com/lit/ug/swru221a/swru221a.pdf
- [8] *ROHDE & SCHWARZ. Generation of IEEE 802.15.4 Signals. Application Note. b.r.* b.r.

SEZNAM SYMBOLŮ, VELIČIN A ZKRATEK

fc(k) stredni frekvence ZigBee kana	análu.	ZigBee l	frekvence	střední	fc(k)
-------------------------------------	--------	----------	-----------	---------	-------

APL	Application Layer
ACK	Acknowledgement
BI	Beacon Interval
BO	Beacon Order
BPSK	Binary Phase-shift Keying
DB	Display Board
ED	End Device
EMC	Electromagnetic Compatibility,
FFD	Full Function Device
IEEE	Institute of Electrical and Electronics Engineers
ISP	In System Programming
IFS	Inter Frame Spacing
JTAG	Joint Test Actoin Group
LED	Light-Emitting Diode
TI	Texas Instruments
MAC	Media Access Control
NWK	Network
O-QPSK	Offset-Quadrature Phase-shift Keying
PAN	Personal Area Network
PHY	Physical Layer
R&S	Rohde&Schwarz
RCB	Radio Controller Boards
RFD	Reduced Function Device
SD	Superframe Duration
WPAN	Wireless Personal Area Network

SEZNAM PŘÍLOH

A. Laboratorní úloha					
A.1	Zadání				
A.2	Teoretický úvod				
A.3	Postup měření				
B. Vzoro	vý protokol	34			
C. Obsah přiloženého DVD					

A. LABORATORNÍ ÚLOHA

A.1 Zadání

- 1. Seznamte se systémem ZigBee
- 2. Seznamte se s obsluhou spektrálního analyzátoru Rohde&Schwarz FSP a generátoru Rohde&Schwarz SMU200A, moduly ZigBee JN5139-EK010 a ATAVRRZ200, programem TI SmartRF Packet Sniffer a se zapojením pracoviště.
- **3.** Vytvořte pomocí programu Excel ZigBee paket a vysílejte ho generátorem Rohde&Schwarz SMU200A, poté ho zachyť te pomocí USB Donglu.
- **4.** S použitím spektrálního analyzátoru zobrazte a proměřte všech 16 rádiových kanálů pro ZigBee, zobrazte šířku vybraného kanálu ZigBee změřte úroveň výkonu a přepočítejte na mW.
- **5.** Zachyťte a popište komunikaci mezi PAN koordinátorem s modulky Atmel při vytváření sítě a při fungování tlačítko světlo (LED dioda).

A.2 Teoretický úvod

ZigBee je bezdrátová komunikační technologie postavená na standardu IEEE 802.15.4 5. Patří do skupiny personálních bezdrátových sítí Personal Area Network (PAN) například stejně jako technologie Bluetooth.

Zigbee pracuje ve těchto pásmech:

•	780- 787 MHz	pro Čínu
•	950- 956 MHz	pro Japonsko
•	868 – 868.6 MHz	pro EU
•	902 – 928 MHz	pro USA
•	2400 – 2483.5 MHz	celosvětově

V pásmu 868 MHz je k dispozici jeden kanál s modulací Binary Phase-shift Keying (BPSK), v pásmu 915 MHz je k dispozici 10 kanálů s modulací BPSK. a v pásmu 2,4 GHz 16 kanálů s modulací Offset-Quadrature Phase-shift Keying (O-QPSK).

$$f_c(k) = 2405 + 5 \times (k - 11), [MHz]$$
 (1)

Zigbee využívá při komunikaci komunikační protokol, který se skládá ze tří částí:

- fyzická a MAC vrstva
- síťová vrstva (NWK)
- aplikační vrstva (APL)

			Bytes: 2	1	020	014	n	2
			Frame Control Field (FCF)	Sequence Number (SN)	Adress Fields	Aux. Sec. Header	Data Payload	Frame Check Seq. (FCS)
				MAC He (MH	eader R)		MAC Payload	MAC Footer (MFR)
					MAC Protoc (MP	col Data Unit PDU)		
Bytes:4	1	1				5127		
Preamble Sequence	Start of Fr. Del. (SFD)	Frame Length	PHY Service Data Unit (PSDU)					
Synchroniza (Sl	ation Header HR)	PHY Header (PHR)	PHY Payload					
				PHY Protocol Da (PPDU)	ta Unit			

Obrázek A.1: schéma PHY/MAC protokolu

Zigbee využívá při komunikaci čtyř typů rámců. Ty jsou řídící nebo datové:

- beacon Frame
- data Frame
- acknowledgment Frame
- MAC Command Frame

Standard IEEE 802.15.4 definuje 2 typy síťových zařízení:

FFD zařízení může vykonávat roli koordinátora sítě (PAN-C), směrovače (R-Roouter) nebo koncového prvku (ED - End Device). Koordinátor sítě má vždy jedinečnou adresu 0x00, je v síti jen jeden a může komunikovat s jinou WPAN sítí.

RFD zařízení je komunikační a senzorické zařízení, které nedisponuje funkcí směrování dat, to znamená, že komunikace s jiným RFD musí být přes FFD.

Obrázek A.2: Topologie hvězda a Peer-to-Peer [1].

A.2.1. Demonstrační program modulků RZ200

Vývojové modulky od firmy Atmel jsou výrobcem naprogramovány tak, aby demonstrovaly praktické využití Zigbee v praxi. Znázorňují modelovou situaci kdy hlavní modul s displejem se chová jako PAN koordinátor a modulky RCB mají funkci vypínače nebo LED diody [6].

A.2.2. Utváření sítě

Síť je sestavená do typu hvězda, to znamená, že veškerá komunikace probíhá přes PAN koordinátora takže přímá komunikace mezi koncovými zařízeními není povolena. PAN koordinátor také celou síť vytváří a po zapnutí vybírá volný kanál, na kterém bude vysílat. Na každém z kanálů 11 až 26 proto vyšle *Beacon Request*. Při tomto kroku se na displeji zobrazí *Scanning channels*, při kterém můžeme vidět, který kanál se aktuálně prohledává. Pokud už je na kanálu vytvořená jiná síť, PAN koordinátor této sítě na něj zareaguje odpovědí. Pokud je kanál volný, zůstane *Beacon Request* bez odpovědi. Síť se poté vytvoří na nejnižším volném kanále [6].

A.2.3. Připojení koncového zařízení

Po zapnutí každého koncového zařízení se spustí funkce, která na každém z kanálů 11 až 26 vyšle *Beacon Request* a zaznamená si všechny odpovědi od PAN koordinátorů, kteří jsou v dosahu. Koncové zařízení potom vybere kanál na kterém vysílá PAN koordinátor, kterého podle PAN ID hledal. Poté se koncové zařízení pokusí připojit a při úspěšném připojení teprve obdrží adresu.

První připojené koncové zařízení dostane přiřazenou funkci výstupu LEDs zajištěnou LED diodami. Dalším zařízením bude přiřazena funkce vstupu-přepínače(switch) zajištěného tlačítkem T1. Druhé zařízení bude do sítě přidáno jako Switch 1, třetí jako Switch 2 a čtvrté jako Switch 3.

Tlačítkem SW1 pod displejem na PAN koordinátoru dokončíte konfiguraci sítě a koncová zařízení budou pracovat podle toho jak byla nadefinována [6].

A.2.4. Výsledná funkce sítě

Poté, co jsme dokončili konfiguraci sítě budou koncová zařízení pracovat tak, že při stisku tlačítka T1 na koncovém zařízení se pošle zpráva PAN koordinátorovi aby oznámil výstupnímu koncovému zařízení s LED diodami přepnutí stavu. Koncové zařízení, které má v síti přidělenou Switch 1 bude přepínat LED diodu D1, zařízení Switch 2 bude přepínat LED diodu D2 a zařízení Switch 3 bude přepínat LED diodu D3.

Během provozu sítě jsou na displeji zaznamenávány informace o koncových zařízeních jako je počet stisknutí tlačítka, úroveň výkonu přijatého signálu PAN koordinátorem v dBm a aktuální stav každé LED diody [6].

A.2.5. Demonstrační program modulků JENNIC

Modulky Jennic jsou od výrobce naprogramovány programem ZigBee Home Sensor demo. Tento program zobrazuje na hlavním modulku s displejem údaje, které naměří ze svých čidel připojené senzorové modulky. Na displeji tak můžeme vidět hodnotu z čidla vlhkosti, čidla teplo a čidla úrovně osvětlení v místnosti.

A.2.6. Utváření sítě

Po zapnutí hlavního modulku s displejem se zobrazí logo JENNIC. Pod tímto logem můžeme vidět funkci tlačítek, které se najdeme pod displejem. Pomocí tlačítek +/- vybereme kanál, na kterém chceme vysílat. Poté stiskněte tlačítko **Done**, tím se vytvoří síť a modul čeká na připojení modulků se senzory do sítě. Po připojení modulků se senzory do sítě můžeme vidět hodnoty, které naměří. Pomocí tlačítek lze přepínat zobrazení z jednotlivých čidel.

A.3 Postup měření

ad.3 Zapnětě počítač a přihlaste se. Na ploše najdete soubor v excelu s názvem IEEE-802.15.4-Frame-Builder a otevřete jej. Je to vzorový dokument excel pro tvorbu paketů do Rohde&Schwarz SMU200A. Nejprve je potřeba povolit makra a ovládací prvky ActiveX. To provedeme tak, že v upozornění o zabezpečení klikneme na **povolit obsah**. V listu General je popsán standard IEEE-802.15.4, frekvenční pásma, PHY a MAC datový protokol a O-QPSK modulaci. Přepněte se do listu O-QPSK. Zde najdete obrázek s popisem celého PHY protokolu a možnost vygenerování si takového paketu.

Začneme stisknutím tlačítkem **Reset**, kterým dáme celý dokument do původní podoby. V první odstaveci nastavíme:

- PAN ID Comp.: NO
- Frame Type: Data

Po zadání všech polí parametrů pro MAC vrstvu stiskneme tlačítko **update MHR**, tím hodnoty potvrdíme. Při správném zadání tlačítko zezelená. Na řádku *Data Playload* zadejte data, která budete přenášet. Zadat lze pouze hodnoty 00 až FF. Pokračujte stisknutím tlačítka **Calc. FCS** a **Update MPDU**, tím jsme uzavřeli celý MAC protokol.

Poté je potřeba přidat data pro PHY vrstvu. Patří sem synchronizační hlavička SHR a informace *Frame Lenght* o délce protokolu MPDU. Synchronizační hlavička vychází ze standardu IEEE 802.15.4 a pro zachování kompatibility se ZigBee nesmí být změněna. Délka protokolu MAC rámce je zobrazena jako jedno-bytové číslo pod zkratkou Len a závisí na objemu přenášených dat. Tlačítkem **PPDU** uzavřeme celý PHY protokol. Aby měl USB dongl dostatek času na zpracování přijatých dat, je potřeba na řádku IFS (Inter Frame Spacing) doplnit **6** *bytes*.

Tlačítky **Create Data** List a **Create Ctr List** vygenerujeme data pro generátor a uložíme je na flash disk.

Zapnětě Rohde&Schwarz SMU200A, kterým budeme generovat paket ZigBee. Po zapnutí můžete vidět celý vysílací kanál.

Obrázek A.3: Obrazovka generátoru R&S SMU200A

Vyjměte flash disk z počítače a zapojte jej do Rohde&Schwarz SMU200A. V okénku Baseband je potřeba nastavit jako zdroj dat náš soubor v excelu. To uděláme tak, že klikneme na **config- Custom Digital Mod.** Jako Data source zvolíme Data list. Tlačítky **Select Data List** a **Select Control List** zvolíme naše data vygenerované z excelového souboru. Potvrdíme tlačítkem Select. Dále zkontrolujte a případně opravte další nastavení:

- Set acc to standard na User
- Symbol Rate 1Msym/s,
- Coding OFF
- Modulation type user
- Load user Mapping 15.4-OQPSK
- Filter Root cosine
- Rill Off Factor 0.35
- Power Ramp cont. On/cosine/1.00sym.

Okno zavřeme a stiskneme **On** na kartě **Baseband**.

Na kartě I/Q Mod zvolíme Internal Basseband I/Q

Tlačítkem FREQ zvolte frekvenci kanálu na kterém ZigBee bude vysílat

Tlačítkem LEVEL nastavte velikost signálu na -30dBm. Modulaci spustíme tlačítkem I/Q Mod poté zapneme vysílání tlačítkem RF/A Mod.

Na ploše otevřete program Packet Sniffer. Program je od firmy Texas Instrument. A slouží k zachytávání paketů přes USB Dongle připojený k počítači. Zvolte možnost IEEE 802.15.4/ZigBee, poté stiskněte tlačítko **Start**. V kolonce Capture device uvidítě připojený USB Dongle CC2531. V kolonce Radio configuration zvolíme kanál nebo frekvenci zařízení. Poté můžeme program spustit klávesou F5 nebo tlačítkem v v vrchní liště. Můžete sledovat průběh zachytávání paketů.

Po několika vteřinách úspěšného přijímání paketů můžeme zachytávání vypnout pomocí tlačítka **n**ebo klávesou F6.

Prohlédněte se zachycené pakety a zapište je do tabulkyTabulka 2:

Tabulka 2: Zachycený paket

Len.	Туре	Sec	PnD	Ack	PAN	Seq	Dest PAN	Dest. Addr	Source PAN	Source Addr	MAC playload	LQI	FCS
								1.001			prayroud		

Napiště ve které části paketu se nachází vámi vysílaná data:.....

- ad.4 Zapněte spektrální analyzátor a nastavte:
 - tlačítkem FREQ start FREQ Start 2400 MHz Stop 2485 MHz;
 - AMPT RF ATTEN MANUAL 50 dB,
 - REF LEVEL 10 dBm,
 - RANGE LOG 70 dB,
 - UNIT dBm;
 - tlačítkam SWEEP SWEEPTIME MANUAL 2,5 ms;
 - tlacitkem BW RES BW MANUAL 1 MHz
 - VIDEO BW MANUAL 1 MHz.

Ověřte, zda je Jennic modul zapnutý a připojený ke spektrálnímu analyzátoru. Zapněte i druhý modulek, který bude přenášet informace na displej.

Modulek ovládejte pomocí tlačítek. Tlačítkem Reset se vrátíte na úvodní obrazovku Jennic. Pomocí tlačítek **+/-** vyberte kanál, který chcete měřit a potvrďte tlačítkem Done. Kanál se poté zobrazí na spektrálním analyzátoru.

Nyní spusťte paměťový mód pomocí:

- TRACE DETECTOR DETECTOR MAX PEAK,
- TRACE SELECT TRACE 1,
- CLEAR/WRITE, MAX HOLD

Tlačítkem MKR a tlačítky MAKER 1 a MAKER 2 změřte centrální kmitočet, šířku pásma a výkon, který přepočítejte na mW. Pomocí vzorce (1) spočítejte kmitočty standardu ZigBee. Naměřené hodnoty zapište do tabulkyTabulka 3:

Č. kanálu	Kmitočet (vypočtený)	Kmitočet (změřený)	Výkon nosné	Výkon nosné
	[MHz]	[MHz]	[dBm]	[mW]
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

Tabulka 3: Měřené kanály Zigbee

Změřte šířku dvou vybraných kanálu ZigBee, zapište jejich úroveň výkonu a poté ji přepočítejte na mW. Naměřené hodnoty zapište do tabulkyTabulka 4:

Tabu	lka 4:	Vybran	é kanály	ZigB	ee p	ro zm	ěření š	ířky pásn	na
č.	/1	ăm	,	TZ	• /	v ,	T 7	• . • .	\$7/1

Č. kanálu	Šířka pásma	Kmitočet (vypočtený)	Kmitočet (změřený)	Výkon nosné	Výkon nosné	
	[MHz]	[MHz]	[MHz]	[dBm]	[mW]	

ad.5 V programu Packet Sniffer klikněte na koš a zastavte zachytávání. Při opětovném spuštění zachytávání tlačítkem budou vymazány předchozí záznamy. Zapněte PAN koordinátora přepnutím přepínače do polohy BAT. Zapojený modulek je potřeba také zapnout a to tažením červeným vypínačem směrem k displeji. Zachycenou komunikaci zapište do tabulkyTabulka 5:

	Typ paketu	Popis informace	Vysílá	Příjemce		
1						
2						

Tabulka 5: Zachycené pakety komunikace

PAN koordinátor vytvořil síť, nyní můžeme zapnout modulek, který se pokusí přihlásit do sítě. Zachycenou komunikaci zapište do tabulky Tabulka 6:

	Typ paketu	Popis informace	Vysílá	Příjemce
1				
2				
3				
4				
5				
6				
7				
8				

Tabulka 6: Zachycené pakety komunikace

Zapněte další modulky a připojte je do sítě jako Switch. Přidělené adresy všech zařízením v síti potom zapište do tabulkyTabulka 7:

Tabulka 7: Adresy zařízení v síti

Zařízení	PAN koordinátor	LED	Switch 1	Switch 2	Switch 3
Přidělená Adresa					

Po připojení všech zařízení zmáčkněte tlačítkem SW1 pod displejem na PAN koordinátoru, tím dokončíte konfiguraci sítě. Zapište komunikaci do tabulky Tabulka 8:

	Typ paketu	Popis informace	Vysílá	Příjemce
1				
2				
3				
4				

Tabulka 8: Zachycené pakety komunikace

Nyní již je síť hotová. Po stiskněte tlačítko T1 na některém z modulků Switch. Tím zapneme LED diodu na modulku, který jsme si nakonfigurovali jako LED. Komunikaci po stisknutí tlačítka zapište do tabulkyTabulka 9:

Tabulka 9: Zachycené pakety komunikace

	Typ paketu	Popis informace	Vysílá	Příjemce
1				
2				
3				
4				

Použité přístroje a pomůcky:

Generátor Rohde&Schwarz SMU200A Spektrální analyzátor Rohde&Schwarz FSP Vývojový kit ZigBee JN5139-EK010 Vývojový kit ZigBee ATAVRRZ200 USB Dongle CC2531EMK

B. VZOROVÝ PROTOKOL

1 400	Tabulka 10. Zachyceny paket												
Len.	Туре	Sec	PnD	Ack	PAN	Seq	Dest	Dest.	Source	Source	MAC	LQI	FCS
							PAN	Addr	PAN	Addr	playload		
	data	0	0	1	0	0x01	0x2222	0x1234	0x4444	0xABCD	Zaslaná	0-	OK
											data	255	

Tabulka 10: Zachycený paket

Napiště ve které části paketu se nachází vámi vysílaná data: MAC Playload Zaznamenané hodnoty z programu TI Packet Sniffer

🚸 Tex	🤻 Texas Instruments SmartRF Packet Sniffer IEEE 802.15.4 MAC and ZigBee 2003														
File	Settings	Help													
D 🗎	🗋 🚘 🔲 🛅 🕨 🕼 🍹 🦓 🛛 ZigBee 2003 🛛 💆														
P.nbr. RX 1	Time (us) +0 =0	Length	Туре ДАТА	Fran Sec Pnd 0 0	ne control fie Ack.reg 1	Hd PAN_compr 0	Sequence number 0x01	Dest. PAN 0x2222	Dest. Address 0x1234	Source PAN 0x4444	Source Address 0xABCD	MAC payload 11 22	LQI 36	FCS OK	Î
P.nbr. RX 2	Time (us) +1728 =1728	Length	Type DATA	Fran Sec Pnd 0 0	Ack.reg	eld PAN_compr 0	Sequence number 0x01	Dest. PAN 0x2222	Dest. Address 0x1234	Source PAN 0x4444	Source Address 0xABCD	MAC payload 11 22	LQI 36	FCS OK	
P.nbr. RX 3	Time (us) +864 =2592	Length	Type DATA	Fran Sec Pnd 0 0	ne control fie Ack.reg 1	Hd PAN_compr 0	Sequence number 0x01	Dest. PAN 0x2222	Dest. Address 0x1234	Source PAN 0x4444	Source Address 0xABCD	MAC payload 11 22	LQI 36	FCS OK	
P.nbr. RX 4	Time (us) +864 =3456	Length	Type DATA	Fran Sec Pnd 0 0	ne control fie Ack.reg 1	ld PAN_compr 0	Sequence number 0x01	Dest. PAN 0x2222	Dest. Address 0x1234	Source PAN 0x4444	Source Address 0xABCD	MAC payload 11 22	LQI 36	FCS OK	
P.nbr. RX 5	Time (us) +864 =4320	Length	Type DATA	Fran Sec Pnd 0 0	ack.reg 1	ld PAN_compr 0	Sequence number 0x01	Dest. PAN 0x2222	Dest. Address 0x1234	Source PAN 0x4444	Source Address 0xABCD	MAC payload 11 22	LQI 36	FCS OK	
P.nbr.	Time (us)			Fran	e control fie	ld	Sequence	Dest.	Dest.	Source	Source	MAC payload			Ψ.
Capti	uring device	Radio (Configura	ation Sele	ect fields P	acket details .	Address book	(Display f	ilter Time	line					
IE	EE 802.15.	1 Channel		0x14 (2	150 MHz)	V									
Packet	count: 753		Error	r count: 1		Filter off		RF device	CC2531	Channe	el: 20 [0x14]			

Obrázek B.1: Zaznamenané hodnoty z programu TI Packet Sniffer

Č. kanálu	Kmitočet (vypočtený)	Kmitočet (změřený)	Výkon nosné	Výkon nosné
	[MHz]	[MHz]	[dBm]	[mW]
11	2405	2405±0,5	1~3	1,2~2
12	2410	2410±0,5	1~3	1,2~2
13	2415	2415±0,5	1~3	1,2~2
14	2420	2420±0,5	1~3	1,2~2
15	2425	2425±0,5	1~3	1,2~2
16	2430	2430±0,5	1~3	1,2~2
17	2435	2435±0,5	1~3	1,2~2
18	2440	2440±0,5	1~3	1,2~2
19	2445	2445±0,5	1~3	1,2~2
20	2450	2450±0,5	1~3	1,2~2
21	2455	2455±0,5	1~3	1,2~2
22	2460	2460±0,5	1~3	1,2~2
23	2465	2465±0,5	1~3	1,2~2
24	2470	2470±0,5	1~3	1,2~2
25	2475	2475±0,5	1~3	1,2~2
26	2480	2480±0,5	1~3	1,2~2

Tabulka 11: Měřené kanály Zigbee

Změřte šířku dvou vybraných kanálu ZigBee, zapište jejich úroveň výkonu a poté ji přepočítejte na mW. Naměřené hodnoty zapište do tabulky Tabulka 4:

Č. kanálu	Šířka pásma	Kmitočet (vypočtený)	Kmitočet (změřený)	Výkon nosné	Výkon nosné	
	[MHz]	[MHz]	[MHz]	[dBm]	[mW]	
24	2,2	2470	2470,1	2,3	1,698	
26	2,1	2480	2480,1	2,1	1,622	

Tabulka 12: Vybrané kanály ZigBee pro změření šířky pásma

Tabulka 13: Zachycené pakety komunikace

	Typ paketu	Popis informace	Vysílá	Příjemce	
1	Beacon Request	Prohledá všechny kanály	PAN	Jiný PAN	
2	MAC payload	Poslání dat o založení sítě	PAN	Jiný PAN	

PAN koordinátor vytvořil síť, nyní můžeme zapnout modulek, který se pokusí přihlásit do sítě. Zachycenou komunikaci zapište do tabulky:

Tabulka 14: Zachycené pakety komunikace

	Typ paketu	ketu Popis informace Vysílá		Příjemce
1	Beacon Reques	Vyhledávání PAN	modulek	PAN
2	Superframe specification	Odpověď s údaji	PAN	modulek
3	Asociation request	Žádost o připojení	modulek	PAN
4	ACK	Potvrzení přijmu	PAN	modulek
5	Data request	Žádost o adresu	modulek	PAN
6	ACK	Potvrzení přijmu	PAN	modulek
7	Short adress	Přidělení adresy	PAN	modulek
8	ACK	Potvrzení přijmu	modulek	PAN

Zapněte další modulky a připojte je do sítě jako Switch. Přidělené adresy všech zařízením v síti potom zapište do tabulky Tabulka 7:

Tabulka 15: Adresy zařízení v síti

Zařízení	PAN koordinátor	LED	Switch 1	Switch 2	Switch 3
Přidělená Adresa	Pokaždé	Pokaždé	Pokaždé	Pokaždé	Pokaždé
	jiné	jiné	jiné	jiné	jiné

🎝 Texas Instruments SmartRF Packet Sniffer IEEE 802.15.4 MAC and ZigBee 2003					
File Settings Help					
Photic, Time (us) Length Transe control field Sequence Dest. Dest. Dest. FCS 1 -0 10 CMD 0 0 0 0x250 DxFFFF DxFFFF DxFFFF 113 OK					
Photo RX Time (us) 2 Length =3008322 Frame control field Type Sec Frame control field For Ack.reg PAIL_compr Dest. PAIL_compr Source PAIL_compr MACpayload PAIL_compr Lol FCS 2 =3008322 12 DATA 0 0 1 0x2FFF 0x2BAAD 115 0K					
Phot. RX Tene (us) +46706987 Length Type Sec Fnd Ack.reg FA_compt 10 Frame control field Sequence Number Dest. NAM Dest. Address Lol III FCS 3 =49715309 10 0 0 0 0xFFFF 0xFFFF 118 0K					
Phot. RX Time (us) + 49717716 Length Type Sec Fnd kck:reg PAN_compt BCN Frame control field Source Number Sou					
Photo RX Time (us) +2232401 Length Type Sec Fnd Ack:reg PAN_compt Frame control field Sequence Number Dest PAN Source Address Address Disc. Source Disc. Source Address Loi Disc. Source Loi Disc. Source <thloi< th=""> Loi Disc. Source <th< td=""></th<></thloi<>					
Pnbr. Time (us) +1061 Length Type Sec Pnd Ack: reg FAII_compt 6 Sequence +1051278 L01 FCS 6 =5155278 5 AcK 0 0 0 0xAC 120 0K					
Phot. RX Time (us) +495548 Length Type Sec Fnd Ack.reg FAN_compt (KH) Frame control field Source Number Source NAM Source Ox00425FFFF170B20 Loi Its FCS					
Prink: RX Time (us) +892 Length Frame control field Type Sec Pnd Ack.reg PAN compt Ack.reg PAN compt Ack.reg PAN compt 0 xAD Sequence 120 Lot 0 xAD FCS					
Photo RX Time (us) g = 52450317 Length 29 Frame control field Sequence Multication Dest Address Source Multication Source Source Source					
Phtr. RX Time (us) +1351 Length Type Sec Find Ack:reg FAIL_compr 0 Sequence number 0 LOI FCS 10 =52451666 5 ACK 0 0 0 0 115 0K					

Obrázek B.2: Komunikace při sestavování sítě

Po připojení všech zařízení zmáčkněte tlačítkem SW1 pod displejem na PAN koordinátoru, tím dokončíte konfiguraci sítě. Zapište komunikaci do tabulky:

	Typ paketu	Popis informace	Vysílá	Příjemce	
1	MAC payload	Informace o funkci	PAN	LED	
2	ACK	Potvrzení přijmu	LED	PAN	
3	MAC payload	Informace o funkci	PAN	Switch 1	
4	ACK	Potvrzení přijmu	Switch 1	PAN	

Tabulka 16: Zachycené pakety komunikace

Nyní již je síť hotová. Po stiskněte tlačítko T1 na některém z modulků Switch. Tím zapneme LED diodu na modulku, který jsme si nakonfigurovali jako LED. Komunikaci po stisknutí tlačítka zapište do tabulky:

	Typ paketu	Popis informace	Vysílá	Příjemce
1	MAC payload	Stisk tlačítka	Switch 1	PAN
2	ACK	Potvrzení přijmu	PAN	Switch1
3	MAC payload	Zapnutí LED 1	PAN	LED
4	ACK	Potvrzení přijmu	LED	PAN

Tabulka 17: Zachycené pakety komunikace

Zachycené pakety po stisknutí tlačítka SW1 jsou na obrázku **Obrázek B.3**: Zachycené pakety po stisknutí tlačítka SW1**Obrázek B.3Chyba! Nenalezen zdroj odkazů.** (končí modrým označením) a po stisknutí tlačítka na modulku Switch

Obrázek B.3: Zachycené pakety po stisknutí tlačítka SW1

C. OBSAH PŘILOŽENÉHO DVD

Na přiloženém DVD se nachází text bakalářské práce ve formátu PDF, instalační program Packet Sniffer (Setup_SmartRF_Packet_Sniffer_2.18.1) a soubor formátu excel pro generátor Rohde&Schwarz SMU200A.