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Abstract—The thesis develops mathematical foundations of isotone fuzzy
Galois connections and the associated concept lattices and attribute implica-
tions. In particular, we study isotone fuzzy Galois connections and concept
lattices parameterized by linguistic hedges. Isotone fuzzy Galois connec-
tions and concept lattices provide an alternative to antitone fuzzy Galois
connections and concept lattices. We show that hedges enable us to con-
trol the number of formal concepts, i.e. collections of objects and attributes
which represent interesting clusters in data. We present properties of iso-
tone connections with hedges, including their axiomatization, and describe
the structure of the associated concept lattices. In addition, we present a
logic of if-then rules such as “if all attributes of an object are among those
from A then they are among those from B.” We provide basic syntactic and
semantic notions, describe complete non-redundant sets of the if-then rules,
and a logic for reasoning with such dependencies with its ordinary-style and
graded-style completeness.
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Chapter 1

Introduction

Formal concept analysis (FCA) [15] is a method of analysis of relational data invented
in Germany by Rudolf Wille. In the 1980s, solid mathematical and computational
foundations of FCA have been developed. In the past decade or so, FCA enjoyed a
considerable interest in various communities and many papers on applications of FCA
in various domains appeared, including papers in premier journals and conferences. The
method is based on formalization of a philosophical view of a conceptual knowledge.
Basic notion in FCA is a formal concept which consists of two sets: extent – set of all
objects sharing the same attributes, and intent – set of all the shared attributes. This
definition of formal concept comes from traditional / Port-Royal logic [2, 23].

The basic input data for FCA, called a formal context, is a flat table in which rows
represent objects and columns represent attributes. Entries of the table contain either
a cross×, which means that the corresponding object has the corresponding attribute,
or a blank which means the opposite. One of the main outputs of FCA is a concept
lattice – hierarchy of formal concepts present in the formal context. Extent and intent
of the formal concepts are formed by particular operators, antitone Galois connections,
induced by the formal context.

In the human thinking, it is natural to assume groups of objects whose attributes
belong to the same set. For instance, consider a formal context containing people as
objects; among attributes are: age1, age2, . . . , age100 representing age in years. Each
object has exactly one of the age attributes. It is natural to think, for example, about a
group of people with age between 20 and 30 years. This group of people does not emerge
as extent in concept lattice when antitone Galois connections are used as concept-forming
operators since all people with age between 20 and 30 years do not share the same age.
To obtain such groups as extents, different concept-forming operators must be used:
isotone Galois connections. In a formal concept formed by isotone Galois connection,
the extent is a set in which no object has other attributes than those in the intent; the
intent is a set of all attributes of objects in the extent.

In everyday life we use concepts which are not sharply bounded (e.g. ’great dancer’
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or ’middle aged man’). In terms of FCA, objects and attributes do not need to belong
to a formal concept in full degree. Similarly the relation between objects and attributes
is a matter of degree. There are several approaches to generalize formal concept analysis
to be able to process such indeterminancy or uncertainty [5, 6, 31, 25, 22, 1]. Many of
them are based on Zadeh’s theory of fuzzy sets [40]. Particularly, [5] generalizes antitone
Galois connection to antitone fuzzy Galois connections which form extents and intents of
formal concepts as fuzzy sets. An analogous generalization of isotone Galois connections
is studied in this thesis.

The isotone Galois connections were shown to play an important role in Boolean
factor analysis. Boolean factor analysis [37] concerns with reduction of space dimension
of logical data. Its goal is to decompose a table describing a relation between objects and
attributes (in fact, a formal context) into two tables: one describing relation between
objects and factors, second describing relation between factors and objects, such that
number of factors is as small as possible and composition of these two relation (with
standard relational product) is the original relation. We can read the composition as:
“object has an attribute iff there is a factor such that the object has the factor and
the factor is a manifestation of the attribute.” Belohlavek and Vychodil proved that
formal concepts formed by antitone Galois connections serve as optimal and universal
factors [14]. We can be interested in relational products with different meaning, for
instance “object has an attribute iff for each factor we have, if the object has the factor,
then the factor is a manifestation of the attribute.” This kind of relational product are
called triangular product and they were studied by Bandler and Kohout [26, 27]. In
[7], Belohlavek proved that optimal and universal factors are formal concepts formed by
isotone Galois connections.

One of the main aims of formal concept analysis is to find methods to decrease
number of formal concepts [35, 11, 33]. The number of formal concepts can be too big
even for input data which are not too large. A large collection of formal concepts is not
directly comprehensible by a user. Development of methods to overcome the problem is
thus an important task. Belohlavek and Vychodil [11] generalized antitone fuzzy Galois
connections using particular unary operations, linguistic hedges. The principal aim was
to control, in parametrical way, the number of formal concepts. Isotone fuzzy Galois
connections generalized in similar way are studied in this thesis.

Outline of the thesis

The thesis studies isotone Galois connections in a fuzzy setting and their generaliza-
tions which use linguistic hedges. Results presented in this thesis were published in the
following papers (the numbers in square brackets are the numbers of the papers in the
Bibliography).

[9] R. Belohlavek and J. Konecny. A logic of attribute containment. In KAM08,
pages 246–251, Wuhan, China, 2008.
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[24] J. Konecny. Isotone fuzzy Galois connections with hedges. Information Sciences,
181(10):1804–1817, 2011. Special Issue on Information Engineering Applications
Based on Lattices.

[3] E. Bartl, R. Belohlavek, J. Konecny, and V. Vychodil. Isotone Galois connections
and concept lattices with hedges. In IEEE IS 2008, Int. IEEE Conference on
Intelligent Systems, pages 15–24–15–28, Varna, Bulgaria, 2008.

The thesis is organized as follows. Chapter 2 describes basic notions of formal con-
cept analysis, fuzzy sets, Galois connections, closure operators, interior operators, and
linguistic hedges.

Chapter 3 describes properties and axiomatization of isotone fuzzy Galois connections
generalized using particular unary operators – namely, truth-stressing hedge which cor-
responds to logical connective “very true” and truth-depressing hedge which corresponds
to logical connective “slightly true”. We describe properties and axiomatization of the
generalized isotone Galois connections, structures of their fixpoints, correspondence with
antitone Galois connections.

Chapter 4 concerns with influence of the linguistic hedges on number of fixpoints and
provide an illustrative example.

Chapter 5 is dedicated to the second main output of formal concept analysis – partic-
ular data dependencies called attribute implications. The chapter studies the properties
of new attribute dependencies which are associated to the isotone Galois connections,
their non-redundant basis, and a logic for reasoning with these dependencies including
an ordinal as well as a graded version of a completeness theorem.
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Chapter 2

Preliminaries

We recall basic facts of residuated lattices, truth-stressing and truth-depressing hedges,
and fuzzy sets.

2.1 Residuated lattices and fuzzy sets

We use complete residuated lattices as basic structures of truth-degrees. A complete
residuated lattice [5, 19, 39] is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

(i) 〈L,∧,∨, 0, 1〉 is a complete lattice, i.e. a partially ordered set in which arbitrary
infima and suprema exist;

(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commu-
tative, associative, and a⊗ 1 = a for each a ∈ L;

(iii) ⊗ and → satisfy adjointness, i.e. a⊗ b ≤ c iff a ≤ b→ c.

0 and 1 denote the least and greatest elements. The partial order of L is denoted by ≤.
Throughout this thesis, L denotes an arbitrary complete residuated lattice.

Elements a of L are called truth degrees. ⊗ and → (truth functions of) “fuzzy
conjunction” and “fuzzy implication”.

Common examples of complete residuated lattices include those defined on a unit
interval, (i.e. L = [0, 1]) or on a finite chain in a unit interval, e.g. L = {0, 1n , . . . ,

n−1
n , 1},

∧ and ∨ being minimum and maximum, ⊗ being a left-continuous t-norm with the
corresponding →. The three most important pairs of adjoint operations on the unit
interval are
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 Lukasiewicz:
a⊗ b = max(a+ b− 1, 0)
a→ b = min(1− a+ b, 1)

Gödel:
a⊗ b = min(a, b)

a→ b =

{
1 a ≤ b
b otherwise

Goguen (product):

a⊗ b = a · b

a→ b =

{
1 a ≤ b
b
a otherwise

An L-set (or fuzzy set) A in a universe set X is a mapping assigning to each x ∈ X
some truth degree A(x) ∈ L where L is a support of a complete residuated lattice. The
set of all L-sets in a universe X is denoted LX .

The operations with L-sets are defined componentwise. For instance, the intersection
of L-sets A,B ∈ LX is an L-set A∩B in X such that (A∩B)(x) = A(x)∧B(x) for each
x ∈ X, etc. An L-set A ∈ LX is also denoted {A(x)/x |x ∈ X}. If for all y ∈ X distinct
from x1, x2, . . . , xn we have A(y) = 0, we also write {A(x1)/x1,

A(x2)/x1, . . . ,
A(xn)/xn}. If

there is exactly one x ∈ X s.t. A(x) > 0 (i.e. A = {A(x)/x}) we call A a singleton.
Binary L-relations (binary fuzzy relations) between X and Y can be thought of as

L-sets in the universe X × Y . That is, a binary L-relation I ∈ LX×Y between a set
X and a set Y is a mapping assigning to each x ∈ X and each y ∈ Y a truth degree
I(x, y) ∈ L (a degree to which x and y are related by I). An L-set A ∈ LX is called
crisp if A(x) ∈ {0, 1} for each x ∈ X. Crisp L-sets can be identified with ordinary sets.
For a crisp A, we also write x ∈ A for A(x) = 1 and x 6∈ A for A(x) = 0. An L-set
A ∈ LX is called empty (denoted by ∅) if A(x) = 0 for each x ∈ X. For a ∈ L and
A ∈ LX , a⊗A ∈ LX and a→ A ∈ LX are defined by

(a⊗A)(x) = a⊗A(x) and (a→ A)(x) = a→ A(x).

For universe X we define L-relation graded subsethood LX × LX → L by:

S(A,B) =
∧
x∈X

A(x)→ B(x) (2.1)

Graded subsethood generalizes the classical subsethood relation ⊆ (note that unlike ⊆,
S is a binary L-relation on LX . Described verbally, S(A,B) represents a degree to which
A is a subset of B. In particular, we write A ⊆ B iff S(A,B) = 1. As a consequence,
we have A ⊆ B iff A(x) ≤ B(x) for each x ∈ X. In the following we use well-known
properties of residuated lattices and fuzzy structures which can be found e.g. in [5, 19].

2.2 Linguistic hedges

We use unary operations called truth-stressing and truth-depressing hedges. Truth-
stressing hedges were studied from the point of fuzzy logic as logical connectives “very
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0

0.25

0.5

0.75

1

idL ∗1 ∗2 ∗3 ∗G

Figure 2.1: Truth-stressing hedges on 5-element chain with  Lukasiewicz operations

true”, see [21]. Our approach is close to that in [21]. A truth-stressing hedge is a mapping
∗ : L→ L satisfying the following conditions

1∗ = 1, (2.2)

a∗ ≤ a, (2.3)

(a→ b)∗ ≤ a∗ → b∗, (2.4)

a∗∗ = a∗, (2.5)

for each a, b ∈ L. Truth-stressing hedges were used to parameterize antitone L-Galois
connections e.g. in [4, 8, 13], and also to parameterize antitone L-Galois connections in
[3].

On every complete residuated lattice L, there are two important truth-stressing
hedges:

(i) identity, i.e. a∗ = a (a ∈ L);

(ii) globalization, i.e.

a∗ =

{
1, if a = 1,
0, otherwise.

(2.6)

Fig. 2.1 shows examples of truth-stressing hedges on 5-element chain with  Lukasiewicz
operations L = 〈{0, 0.25, 0.5, 0.75, 1},min,max,⊗,→, 0, 1〉. The left-most truth-stressing
hedge idL is identity; the right-most truth-stressing hedge ∗G is a globalization.

A truth-depressing hedge with respect to truth-stressing hedge ∗ is a mapping � :
L→ L such that following conditions are satisfied

0� = 0 (2.7)

a ≤ a� (2.8)

(a→ b)∗ ≤ a� → b� (2.9)

a�� = a� (2.10)
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0

0.25

0.5

0.75

1

idL �1 �2 �3

(idL , ∗1 , ∗2 , ∗3 , ∗G) (∗G) (∗2 , ∗G) (∗G)

�4 �5 �6 �AG

(∗1 , ∗2 , ∗3 , ∗G) (∗1 , ∗G) (∗2 , ∗G) (∗G)

Figure 2.2: Truth-depressing hedges on 5-element chain with  Lukasiewicz operations

for each a, b ∈ L. A truth-depressing hedge is a (truth function of) logical connective
“slightly true”, see [38].

On every complete residuated lattice L, there are two important truth-depressing
hedges:

(i) identity, i.e. a� = a (a ∈ L);

(ii) antiglobalization, i.e.

a� =

{
0, if a = 0,
1, otherwise .

(2.11)

Fig. 2.2 shows all truth-depressing hedges on 5-element chain with  Lukasiewicz op-
erations L = 〈{0, 0.25, 0.5, 0.75, 1},min,max,⊗,→, 0, 1〉. In parentheses are listed the
truth-stressing hedges for which the truth-depressing hedge satisfies (2.9). The left-most
truth-depressing hedge in upper row idL is identity; the right-most truth-depressing hedge
in lower row �AG is antiglobalization.
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Remark 1. (a) Note that from (2.4) follows that any truth-stressing hedge is monotone.
If a ≤ b then (a→ b)∗ = 1. From (2.4) we have 1 ≤ a∗ → b∗, i.e. a ≤ b implies a∗ ≤ b∗.
Similarly, from (2.9) we have monotony of truth-depressing hedge.

(b) The identity is a truth-depressing hedge with respect to any truth-stressing hedge.
(c) If � is truth-depressing hedge w.r.t truth-stressing hedge ∗ then � is truth-depressing

hedge w.r.t. globalization ∗G (since (a→ b)∗G ≤ (a→ b)∗ ≤ a� → b� ). For that reason
we do not declare the truth-stressing hedge for which the truth-depressing hedge satisfies
(2.9), if it is not important.

We need following lemmas.

Lemma 1 ([8]). A truth-stressing hedge ∗ satisfies (
∨

i∈I a
∗
i )
∗ =

∨
i∈I a

∗
i .

Lemma 2. A truth-depressing hedge � satisfies (
∧

i∈I a
�
i )� =

∧
i∈I a

�
i .

Proof. “≥” Obvious from the definition of truth-depressing hedge.

“≤” Since we have (
∧

i∈I a
�
i ) ≤ a�i and � is monotone (see Remark 1(a)) we have

(
∧

i∈I a
�
i )� ≤ a��i = a�i . Hence (

∧
i∈I a

�
i )� ≤

∧
i∈I a

�
i .

2.3 Formal Concept Analysis

In this part we recall basics of formal concept analysis (FCA). The main aim in FCA
is to extract interesting clusters (called formal concepts) from tabular data. A partially
ordered collection of all formal concept is called a concept lattice. In the basic setting,
the input data to FCA is organized in a table (formal context) such as the one in
Table 2.1.

A formal context is a triplet 〈X,Y, I〉, where X and Y are sets of objects and at-
tributes, respectively, and I ⊆ X × Y is a relation between X and Y . The fact that
〈x, y〉 ∈ I is interpreted as “object x has an attribute y”.

Table 2.1: Formal context describing objects x1, x2, x3 and their yes/no attributes y1,
y2, y3, y4.

y1 y2 y3 y4
x1 1 1 0 0
x2 0 1 1 0
x3 0 0 1 1

A formal context 〈X,Y, I〉 induces operators ⇑I : 2X → 2Y and ⇓I : 2Y → 2X :

A⇑I = {y | 〈x, y〉 ∈ I for each x ∈ A} (2.12)

B⇓I = {x | 〈x, y〉 ∈ I for each y ∈ B}. (2.13)
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In words, we can describe the induced operators as follows: A⇑I is a set of all
attributes shared by all objects from A. B⇓I is a set of all objects sharing all attributes
from B.

A formal concept of 〈X,Y, I〉 is a pair 〈A,B〉 such that

A⇑I = B and B⇓I = A. (2.14)

The set of all formal concepts of 〈X,Y, I〉 is denoted B(X⇑, Y ⇓, I):

B(X⇑, Y ⇓, I) = {〈A,B〉 |A⇑I = B and B⇓I = A}. (2.15)

A subconcept-superconcept hierarchy of formal concepts is a partial order ≤ defined
a follows

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (2.16)

(or, equivalently, iff B2 ⊆ B1) (2.17)

for each 〈A1, B1〉, 〈A2, B2〉 ∈ B(X⇑, Y ⇓, I).

B(X⇑, Y ⇓, I) with ≤ forms a complete lattice:

Theorem 3 (Main theorem of concept lattices, [15]). Let 〈X,Y, I〉 be formal context.
Then B(X⇑, Y ⇓, I) is complete lattice whose infima and suprema are defined as follows:∧

j∈J
〈Aj , Bj〉 = 〈

⋂
j∈J

Aj , (
⋃
j∈J

Bj)
⇓⇑〉 (2.18)

∨
j∈J
〈Aj , Bj〉 = 〈(

⋃
j∈J

Aj)
⇑⇓,
⋂
j∈J

Bj , 〉 (2.19)

Moreover, an arbitrary complete lattice K = 〈K,≤〉 is isomorphic to B(X⇑, Y ⇓, I)
iff there are mappings µ : X → K, ν : Y → K such that

1. µ(X) is
∨

-dense in K, ν(Y ) is
∧

-dense in K;

2. µ(x) ≤ ν(y) iff 〈x, y〉 ∈ I.

[29] showed that operators 〈⇑I , ⇓I 〉 are in one-to-one correspondence with so-called
antitone Galois connections. A pair 〈⇑, ⇓〉 of mappings ⇑ : 2X → 2Y , ⇓ : 2Y → 2X is said
to form antitone Galois connection between sets X and Y if the following the conditions
are satisfied:

(i) if A1 ⊆ A2 then A⇑2 ⊆ A
⇑
1 ,

(ii) if B1 ⊆ B2 then B⇓2 ⊆ B
⇓
1 ,

(iii) A ⊆ A⇑⇓,
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(iv) B ⊆ B⇑⇓

for A,A1, A2 ∈ 2X and B,B1, B2 ∈ 2Y .

The following theorem explains the correspondence:

Theorem 4 ([29]). Let 〈X,Y, I〉 be formal context, 〈⇑, ⇓〉 be an antitone Galois connec-
tion between X and Y . Then

(i) 〈⇑I , ⇓I 〉 is an antitone Galois connection.

(ii) I〈⇑,⇓〉 defined by

I〈⇑,⇓〉(x, y) iff y ∈
{
1/x
}⇑

(2.20)

is a relation between X and Y and we have

(iii) 〈⇑, ⇓〉 = 〈
⇑I〈⇑,⇓〉 ,

⇓I〈⇑,⇓〉 〉 and I = I〈⇑I ,⇓I 〉.
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Chapter 3

Isotone Galois Connections with
Hedges

3.1 Definition

We start by recalling the definition of and basic facts about the isotone fuzzy Galois
connections [16, 32]:

Definition 1. An isotone L-Galois connection between sets X and Y is a pair 〈e, d〉 of
mappings e : LX → LY and d : LY → LX satisfying S(A,Bd) = S(Ae, B).
(S is the graded subsethood (2.1))

Isotone L-Galois connections are sometimes called isotone fuzzy Galois connections.
The following theorem provides an alternative definition using perhaps more compre-
hensible conditions [16].

Theorem 5. A pair 〈e, d〉 of mappings e : LX → LY and d : LY → LX is an isotone
Galois connection iff e and d satisfy

S(A1, A2) ≤ S(Ae1 , A
e
2 ), (3.1)

S(B1, B2) ≤ S(Bd1 , B
d
2 ), (3.2)

A ⊆ Aed, (3.3)

B ⊇ Bde. (3.4)

The importance of Galois connections, both antitone and isotone, derives from the
fact that they are induced in a natural way from binary relations and that the fixpoints
(i.e. pairs s.t. 〈A,B〉 s.t. Ae = B and Bd = A) of Galois connections have natural
meaning. A canonical way an isotone Galois connection 〈e, d〉 arises from a binary fuzzy
relation I between sets X and Y is described by:

Ae(y) =
∨

x∈X A(x)⊗ I(x, y), (3.5)

Bd(x) =
∧

y∈Y I(x, y)→ B(y). (3.6)
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If X and Y are interpreted as the set of objects and attributes and I(x, y) as a degree to
which object x ∈ X has attribute y ∈ Y , then Ae(y) is just the truth degree of “there
exists x in A which has y” and Bd(x) is the truth degree of “for all y: if x has y then
y belongs to B”. That is, Ae is the fuzzy set of attributes shared by at least one object
from A and Bd is the fuzzy set of objects whose attributes are all in B.

Note that in the bivalent case, i.e. when I is an ordinary relation and A and B are
ordinary sets, the operators defined by (25) and (26) are studied in [15]. The operators
studied in this thesis extend those from [15] in that we assume that I is a fuzzy relation
and A and B are fuzzy sets with truth degrees taken from a complete residuated lattice
L. If L is the two-element Boolean algebra, operators (25) and (26) as well as their
parameterized versions (27) and (28) introduced below studied coincide with those from
[15]. Note also that the pairs of mappings (25) and (26) appear in [17, 23] and also in
[22]. In what follows, we present and study operators which generalize (25) and (26)
in that we parameterize (25) and (26). Technically, we parameterize (25) and (26) by
inserting hedges at particular places in (25) and (26). Throughout the rest of the thesis,
we assume that ∗ is truth-stressing hedge on L and � is truth-depressing hedge on L
(which does not need to be a truth-depressing hedge w.r.t. ∗).

Let X, Y be sets of objects and attributes respectively, I be an L-relation between
X and Y , i.e. I is a mapping I : X × Y → L. 〈X,Y, I〉 is called a formal fuzzy context.

· · · y · · ·
...

...
x · · · I(x, y)
...

Figure 3.1: Formal fuzzy context

For a formal fuzzy context 〈X,Y, I〉 we define a pair 〈∩, ∪〉 of mappings ∩ : LX → LY

and ∪ : LY → LX by

A∩(y) =
∨

x∈X A(x)∗ ⊗ I(x, y), (3.7)

B∪(x) =
∧

y∈Y I(x, y)→ B(y)�. (3.8)

These mappings play a crucial role in the thesis. The meaning of A∩ and B∪ is
essentially the same as that of Ae and Bd. The difference is in that parts of the verbal
description of A∩ and B∪ contain “very true” and “slightly true” respectively, compared
to that of Ae and Bd. For example, A∩(y) is the truth degree of “there exists x for
which it is very true that it belongs to A and which has y”.

The fixed points of 〈∩, ∪〉 (i.e. pairs 〈A,B〉 such that A∩ = B and B∪ = B) are
called formal (fuzzy) concepts. Operators induced by formal fuzzy context are usually
called concept-forming operators. The set of all formal concepts of 〈X,Y, I〉 is denoted
B(X∗∩, Y �∪, I).
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For formal concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(X∗∩, Y �∪, I) we define

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B1 ⊆ B2) (3.9)

As we show later, B(X∗∩, Y �∪, I) with ≤ forms a complete lattice.

3.2 Basic properties

This section describes the generalization 〈∩, ∪〉 of concept-forming operators 〈e, d〉 from
[16] and shows basic properties of 〈∩, ∪〉.

Theorem 6. Mappings ∩, ∪ defined by (3.7) and (3.8) satisfy the following properties:

(i) A∩ = A∗e and B∪ = B�d

(ii) A∩ = A∗∩ and B∪ = B�∪

(iii) A∩ ⊆ Ae and Bd ⊆ B∪

(iv) S(A1, A2)
∗ ≤ S(A∗1, A

∗
2) ≤ S(A∩1 , A

∩
2 )

S(B1, B2)
∗Y ≤ S(B�1 , B

�
2 ) ≤ S(B∪1 , B

∪
2 )

where ∗Y is a truth-stressing hedge for which (2.9) is satisfied.

(v) A∗ ⊆ A∩∪ and B∪∩ ⊆ B�

(vi) A1 ⊆ A2 implies A∩1 ⊆ A∩2
B1 ⊆ B2 implies B∪1 ⊆ B∪2

(vii) S(A∗, B∪) = S(A∩, B�)

(viii)
(⋃

i∈I A
∗
i

)∩
=
⋃

i∈I A
∩
i and

(⋂
i∈I B

�
i

)∪
=
⋂

i∈I B
∪
i

(ix) A∩∪∩∪ = A∩∪ and B∩∪∩∪ = B∩∪

Proof. (i), (ii) follow immediately from definition of ∩ and ∪ and from properties of
hedges.

(iii) follows from the fact, that ⊗ is monotone and → is isotone in the second argu-
ment.

(iv) S(A1, A2)
∗ ≤ S(A∗1, A

∗
2) and S(B1, B2)

∗Y ≤ S(B�1 , B
�
2 ) follow from definitions

of the truth-stressing and truth-depressing hedges and Lemmas 1 and 2. S(A∩1 , A
∩
2 ) =

S(A∗e1 , A∗e2 ) = S(A∗1, A
∗ed
2 ) ≥ S(A∗1, A

∗
2). The second assertion is similar.

(v) A∗ ⊆ A∗ed = A∩d ⊆ A∩∪; B∪∩ ⊆ B∪e = B�de ⊆ B�.
(vi) A1 ⊆ A2 implies 1 = S(A1, A2)

∗ ≤ S(A∩1 , A
∩
2 ). The second claim is similar.

(vii) S(A∗, B∪) = S(A∗, B�d) = S(A∗e, B�) = S(A∩, B�).
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(viii) Using Lemma 1, we have(⋃
i∈I

A∗i

)∩
(y) =

∨
x∈X

(∨
i∈I

(A∗i (x))∗ ⊗ I(x, y)

)
=

=
∨
x∈X

((∨
i∈I

A∗i (x)

)
⊗ I(x, y)

)
=

=
∨
i∈I

(∨
x∈X

A∗i (x)⊗ I(x, y)

)
=
∨
i∈I

A∩i (y)

Similarly, using Lemma 2, we have(⋂
i∈I

B�i

)∪
(x) =

∧
y∈Y

I(x, y)→

(∧
i∈I

B�i (y)

)� =

=
∧
y∈Y

(
I(x, y)→

(∧
i∈I

B�i (y)

))
=

=
∧
i∈I

∧
y∈Y

I(x, y)→ B�i (y)

 =
∧
i∈I

B∪i (x)

(ix) Using (v) A ⊆ A∩∪ and (vi) two times we get A∩∪ ⊆ A∩∪∩∪. Using (v) with
B = A∩ we have A∩∪∩ ⊆ A∩�. Using (vi) we get the first claim. The second claim is
similar.

Remark 2. Note that the induced concept-forming operators with ∗, � have very sim-
ilar properties to those defined by (3.13) and (3.14) which were introduced in [3]. The
following list sums up properties of these operators which are analogous to those from
Theorem 6.

(i) A∩ = A∗Xe and B∪ = B∗Y d,

(ii) A∩ = A∗X∩ and B∪ = B∗Y ∪,

(iii) A∩ ⊆ Ae and B∪ ⊆ Bd,

(iv) S(A1, A2)
∗X ≤ S(A∗X1 , A∗X2 ) ≤ S(A∩1 , A

∩
2 ),

S(B1, B2)
∗Y ≤ S(B∗Y1 , B∗Y2 ) ≤ S(B∪1 , B

∪
2 ),

(v) B∪∩ ⊆ B∗Y ,



ISOTONE GALOIS CONNECTIONS WITH HEDGES 15

(vi) A1 ⊆ A2 implies A∩1 ⊆ A∩2 ,
B1 ⊆ B2 implies B∪1 ⊆ B∪2 ,

(vii) S(A∗X , B∪) = S(A∩, B∗Y ),

(viii)
(⋃

i∈I A
∗X
i

)∩
=
⋃

i∈I A
∩
i and

(⋂
i∈I Bi

)∪
=
(⋂

i∈I B
∗Y
i

)∪
,

(ix) A∩∪∩ ⊆ A∩∗Y and B∪∩∪ ⊆ B∗Y ∪.

We have extended (3.5) and (3.6) and made them parameterizable using truth-
stressing hedge and truth-depressing hedge while we have kept most of their basic prop-
erties. In particular we have lost properties Aede = Ae and Bede = Be and replaced
them by the property (ix) in Theorem 6.

3.3 Axiomatization

We now turn to the problem of axiomatization of the mappings defined by (3.7) and
(3.8). We present characteristic properties of these mappings.

In this part, we use subscription I to denote operations induced by context 〈X,Y, I〉
(∩I and ∪I ) to distinguish them from operators introduced in Definition 2. At the end of
this part, we show that these operations are the same, thus we do not need to distinguish
them in later parts of this thesis.

Isotone Galois connections were axiomatized in [16]. We generalize the approach of
[16] as follows:

Definition 2. Let X,Y be two universes. A pair of mappings 〈∩, ∪〉, ∩ : LX → LY ,
∪ : LY → LX is called isotone L-Galois connection between X and Y if

S(A∗, B∪) = S(A∩, B�) (3.10)(⋃
i∈I

A∗i

)∩
=
⋃
i∈I

A∩i (3.11)

a∗ ⊗ {1/x}∩(y) = {a/x}∩(y) (3.12)

Lemma 7. Operators ∩I and ∪I defined by (3.7) and (3.8) form an isotone L-Galois
connection 〈∩I , ∪I 〉 with hedges ∗ and �.

Proof. Due to Theorem 6 (vii) and (viii), it is enough to show that (3.12) is satisfied.
Indeed,

a∗ ⊗ {1/x}∩I (y) = a∗ ⊗
∨
x∈X

1⊗ I(x, y) =

=
∨
x∈X

a∗ ⊗ I(x, y) = {a/x}∩(y)
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Lemma 8. For every mapping ∩ : LX → LY there exist at most one mapping ∪ : LY →
LX satisfying S(A∗, B∪) = S(A∩, B�) for every A ∈ LX and B ∈ LY .

Proof. If ∪
′

is another such mapping, we have S(A∗, B∪
′
) = S(A∩, B�) for any A and

B. Take any x ∈ X and put A = {1/x}. Then

B∪(x) = S(A∗, B∪) = S(A∗, B∪
′
) = B∪

′
(x)

Therefore, ∪ coincides with ∪
′
.

Lemma 9. Let 〈∩, ∪〉 be an isotone L-Galois connection with hedges ∗ and �. Then
there exists an L-relation I between X and Y such that 〈∩, ∪〉 = 〈∩I , ∪I 〉.

Proof. We need to find I such that A∩ = A∩I and B∪ = B∪I for all A ∈ LX , B ∈ LY .
Due to Lemma 8, it is sufficient to find I for which A∩ = A∩I . Namely, 〈∩I , ∪I 〉 satisfy
S(A∗, B∪) = S(A∩, B�) by Lemma 7. Hence, ∪I coincides with ∪ due to Lemma 8.

Define I by I(x, y) = {1/x}∩(y). Then we get

A∩(y) = A∗∩(y) =
∨

x∈X,y∈Y
{A∗(x)/x}∩(y) =

=
∨
x∈X

∨
y∈Y

A∗(x)⊗ {1/x}∩(y) =

=
∨
x∈X

A∗(x)⊗ I(x, y) = A∩I (y)

This finishes the proof.

Theorem 10. Let 〈X,Y, I〉 be formal fuzzy context, 〈∩, ∪〉 be an isotone L-Galois con-
nection with hedges ∗ and �. Then

• 〈∩I , ∪I 〉 is isotone L-Galois connection with hedges ∗ and �.

• I〈∩,∪〉 defined by I〈∩,∪〉(x, y) = {1/x}∩(y) is an L-relation between X and Y and
we have

• 〈∩, ∪〉 = 〈∩I〈∩,∪〉 , ∪I〈∩,∪〉 〉 and I = I〈∩,∪〉.

Proof. Due to Lemma (7) and Lemma (9), it suffices to show that I = I〈∩,∪〉. We have

I〈∩,∪〉(x, y) = {1/x}∩I (y) =

=
∨
z∈X
{1∗/x}(z)⊗ I(z, y) = I(x, y)

Remark 3. Note that we only need ∩ to define I〈∩,∪〉 and we need ∩ to satisfy only ∩ and
∪. Having such operation, we can use Theorem 10 to find corresponding ↓ as ↓ =

∪I〈∩,∪〉 .
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LX LY

A

A∗

B�

B

�∗

d

e

Figure 3.2: Formal concept of B(X∗∩, Y �∪, I)

3.4 Why we use a truth-depressing hedge?

In [3] we introduced the following concept-forming operators:

A∩(y) =
∨
x∈X

A(x)∗X ⊗ I(x, y) (3.13)

B∪
′
(x) =

∧
y∈Y

I(x, y)→ B(y)∗Y (3.14)

where ∗X and ∗Y are truth-stressing hedges. Note that the only difference from the
concept-forming operators defined by (3.7) and (3.8) is that a truth-stressing hedge ∗Y

is used in (3.14) while a truth-depressing hedge � is used in (3.8). In this part we argue
that the use of a truth-depressing hedge is more convenient.

Let us take a look at a geometric interpretation of a formal concept as a fixpoint
of isotone L-Galois connection with hedges ∗ and � (see Fig. 3.2; Arrows in Figures 3.2,
3.3, and 3.4 represent mappings. For example mapping ∗ : LX → LX is representd by
arrow between A and A∗ inside LX ; A∗ placed under A means A∗ ⊆ A).

If a truth-stressing hedge ∗Y is used we have the situation depicted in Fig. 3.3. B
and B∗Y degenerate into one point, as described by the following theorem.

Theorem 11. Let B(X∗X∩, Y ∗Y ∪, I) denote the set of all fixpoints of the operators by
(3.7) and (3.8) and B(X∗X∩, Y ∪, I) set of all fixpoints of the same operators for ∗Y being
identity idL. Then we have

B(X∗X∩, Y ∗Y ∪, I) = {〈A,B〉 ∈ B(X∗X∩, Y ∪, I) | B = B∗Y }. (3.15)

Proof. “⊆”: B = B∪
′∩ ⊆ B∗Y ⊆ B proves, that B = B∗Y . For intent B we have

B = B∪
′∩ = B∗Y d∗Xe = Bd∗Xe proving that B ∈ Int(X∗X∩, Y ∪, I).

“⊇”: B = Bd∗Xe = B∗Y d∗Xe = B∪
′∩, thus B ∈ Int(X∗X∩, Y ∗Y ∪, I).
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LX LY

A

A∗X

B = B∗Y

∗X

d

e

Figure 3.3: Formal concept of B(X∗X∩, Y ∗Y ∪
′
, I) with truth-stressing hedges

LX LY

A

A∗X

B

B∗Y

∗X ∗Y

⇑ ⇓

Figure 3.4: Concept of B(X∗X↑, Y ∗Y ↓, I)

Note that Theorem 11 says that using ∗Y brings just trivial selection of formal con-
cepts.

The use of truth-depressing hedge brings us to analogy of the geometrical interpre-
tation of a formal concept of B(X↑, Y ↓, I), which is depicted in Figure 3.4.

In the case of concept-forming operators ↑, ↓, we have both composition ⇑⇓ and ⇓⇑

being closure operators. With truth-stressing hedges ∗Y and ∗X the compositions ⇑∗Y ⇓

and ⇓∗X⇑ keep to be closure operators. On the other hand, the truth-stressing hedges ∗X

and ∗Y are interior operators. 1 Similarly, in the case of concept-forming operators ∩, ∪,
we have the composition ed being a closure operator. With a truth-depressing hedge
� the composition e�d keeps to be a closure operator. A truth-stressing hedge ∗ works
opposite way to the composition e�d. Dually, the compositions de and d∗e are interior
operators, while � is a closure operator.

The main benefits of using truth-depressing hedge in (3.8) are:

• According to Theorem 6 for any isotone L-Galois connection with ∗ and � we have
convenient properties A∩∪∩ ⊆ A∩∗Y and B∪∩∪ ⊆ B∗Y ∪. Analogous properties do
not generally hold true for isotone L-Galois connection with ∗X and ∗Y .

• By Theorem 11, using a truth-stressing hedge ∗Y in (3.14) turns to be a selection of

1further description of B(X↑, Y ↓, I) is out of scope of this thesis, see f.e. [4, 8, 13] for this topic.
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formal concepts from B(X∗X∩, Y ∪, I) based on membership degrees in their intents.
Particulary, all concepts from B(X∗X∩, Y ∪, I) whose intents contain attributes in
other truth-degrees than fix(∗Y ) are filtered out. This kind of selection does not
seem to be reasonable.

• The reduction of the size of the associated concept lattice with two truth-stressing
hedges is too drastic [3]. Especially when using ∗Y = ∗G , the resulting concept lat-
tice commonly happens to be a trivial lattice containing no interesting information.
Reduction with truth-stressing hedge and truth-depressing hedge (see Section 4)
seems to be more natural in comparison with the previous one.

3.5 Main theorem on the structure of B(X∗∩, X�∪, I)
In this part we show that concept lattice B(X∗∩, Y �∪, I) is isomorphic to a concept
lattice of a particular ordinary formal context with ⇑,⇓. Moreover, we provide a variant
of the main theorem of concept lattices for B(X∗∩, Y �∪, I). The content of this part is
inspired by [4, 11].

We need the following notions:

Definition 3. For A ∈ LX we define bAc∨ ∈ 2X×L and bAc∧ ∈ 2X×L by

bAc∨ = {〈x, a〉 | a ≤ A(x)} (3.16)

bAc∧ = {〈x, a〉 |A(x) ≤ a} (3.17)

Described verbally, bAc∨ can be considered as an area in X × L under the membership
function A : X → L and bAc∧ as an area in X × L above the membership function
A : X → L.

For A′ ∈ 2X×L we define dA′e∨ ∈ LX and dA′e∧ ∈ LX by

dA′e∨(x) =
∨
{a | 〈x, a〉 ∈ A′} (3.18)

dA′e∧(x) =
∧
{a | 〈x, a〉 ∈ A′} (3.19)

for each x ∈ X.

Definition 4. For A′ ⊆ X×L and (truth-stressing or truth-depressing) hedge • : L→ L,
define A′• = {〈x, a•〉 | 〈x, a〉 ∈ A′}.

Lemma 12 ([13]). For A ⊆ fix(∗)×X we have A ⊆ bdAe∨∗c∨∗.

Analogously, we have:

Lemma 13. For B ⊆ fix(�)× Y we have B ⊆ bdBe∧�c∧
�

.
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Proof. Let 〈y, b〉 ∈ B. Then b ≥ dBe∧. Since b ∈ fix(�), we have b ≥ dBe∧�. Thus

〈y, b〉 ∈ bdBe∧�c∧. Finally 〈y, b〉 ∈ bdBe∧�c∧
�

since b ∈ fix(�).

Define mappings ↑× : X × fix(∗)→ Y × fix(�) and ↓× : Y × fix(�)→ X × fix(∗) by

A↑× = bdAe∨∩c∧
�

and B↓× = bdBe∧∪c∨
∗

(3.20)

Lemma 14. The pair 〈↑× , ↓×〉 forms an antitone Galois connection between sets X×fix(∗)
and Y × fix(�).

Proof. Antitony: A1 ⊆ A2 implies dA1e∨ ⊆ dA2e∨ which implies dA1e∨∩ ⊆ dA2e∨∩ which
implies bdA2e∨∩c∧ ⊆ bdA1e∨∩c∧. Similarly B1 ⊆ B2 implies dB2e∧ ⊆ dB1e∧ which implies
dB1e∧∪ ⊆ dB2e∧∪ which implies bdB2e∧∪c∨ ⊆ bdB1e∧∪c∨.

Extensivity: Using Lemma 12, A↑×↓× = bdbdAe∨∩c∨
�e∧
∪
c∧
∗

= bdbdAe∨∩c∨e∧
�∪c∧

∗
=

bdAe∨∩�∪c∧
∗ ⊇ bdAe∨∗c∧∗ ⊇ A. Similarly B ⊆ B↓×↑× .

The following theorem is a direct consequence of the main theorem of concept lattices
[15]. It says that concept lattice of the formal fuzzy context corresponding to isotone
Galois connection 〈↑× , ↓×〉 forms a complete lattice and each complete lattice satisfying
some particular technical condition is isomorphic to the concept lattice of a formal
context 〈U, V, I〈↑× ,↓× 〉〉 which is given by the antitone the Galois connection defined by

(3.20) and by (2.20).

Theorem 15. 1. B(U⇑, V ⇓, I〈↑× ,↓× 〉) equipped with ≤, defined by 〈A1, B1〉 ≤ 〈A2, B2〉
iff A1 ⊆ A2, is a complete lattice where the infima and suprema are given by∧

j∈J
〈Aj , Bj〉 = 〈

⋂
j∈J

Aj , (
⋃
j∈J

Bj)
↓×↑×〉, (3.21)

∨
j∈J
〈Aj , Bj〉 = 〈(

⋃
j∈J

Aj)
↑×↓× ,

⋂
j∈J

Bj〉 (3.22)

2. Moreover, an arbitrary complete lattice K = 〈K,≤〉 is isomorphic to B(U, V, I〈↑× ,↓× 〉)
iff there are mappings µ : U → K, ν : V → K such that

(a) µ(U) is
∨

-dense in K, ν(V ) is
∧

-dense in K;

(b) µ(u) ≤ ν(v) iff 〈u, v〉 ∈ I〈↑× ,↓× 〉.

Lemma 16. The (crisp) relation I× = I〈↑× ,↓× 〉 between X × fix(∗) and Y × fix(�) cor-

responding to Galois connection 〈↑× , ↓×〉 defined by (3.20) is given by

〈〈x, a〉, 〈y, b〉〉 ∈ I× iff I(x, y) ≤ a→ b (3.23)
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Proof. We have 〈〈x, a〉, 〈y, b〉〉 ∈ I× iff 〈y, b〉 ∈ {〈x, a〉}↑× . By definition of ↑× , this is

equivalent to 〈y, b〉 ∈ bd{〈x.a〉}e∨∩c∨
�

. Since bd{〈x, a〉}e∨∩c∨
�

= b{a/x}∩c∨� and since
the smallest c such that 〈y, c〉 ∈ b{a/x}∩c∨� is c = ({a/x}∩(y))�, the last assertion is
equivalent to ({a/x}∩(y))� ≤ b. Since b = b�, this is equivalent to ({a/x}∩(y)) ≤ b.
Now, {a/x}∩(y) = a∗ ⊗ I(x, y) = a ⊗ I(x, y), whence {a/x}∩(y) ≤ b is equivalent to
I(x, y) ≤ a→ b by adjointness.

Theorem 17. B(X∗∩, Y �∪, I) (concept lattice with hedges) is isomorphic to B(X ×
fix(∗)↑× , Y × fix(�)↓× , I×) (ordinary concept lattice). The isomorphism

h : B(X∗∩, Y �∪, I)→ B(X × fix(∗)↑× , Y × fix(�)↓× , I×)

and its inverse

g : B(X × fix(∗)↑× , Y × fix(�)↓× , I×)→ B(X∗∩, Y �∪, I)

are given by

h(〈A,B〉) = 〈bAc∨∗, bBc∧�〉 (3.24)

g(〈A′, B′〉) = 〈dA′e∨∩∪, dB′e∧∪∩〉 (3.25)

Proof. We need to show, that (a) h and g are defined correctly, (b) h is order-preserving,
(c) g(h(〈A,B〉)) = 〈A,B〉 and h(g(〈A′, B′〉)) = 〈A′, B′〉.

(a) For 〈A,B〉 in B(X∗∩, Y �∪, I) we have bAc∨∗↑× = bA∩c∧� and bBc∧�↓× = bB∪c∨∗

directly from definitions of operators ↑× and ↓× (3.20).

For 〈A′, B′〉 in B(X × fix(∗)↑× , Y × fix(�)↓× , I×), dA′e∨∩∪∩ = dbdA′e∨∩c∧e∧
∪∩

=

dA′↑×e∧
∪∩

= dbdA′↑×e∧
∪c∨e∨

∩
= dA′↑×↓×e∨

∩
= dA′e∨∩. Similarly (dB′e∧∪∩)∪ =

dB′e∧∪.

(b) For 〈A1, B1〉, 〈A2, B2〉 ∈ B(X∗∩, Y �∪, I) we have A1 ⊆ A2 iff bA1c∨ ⊆ bA2c∨ iff
bA1c∨∗ ⊆ bA2c∨∗.

(c) For 〈A,B〉 in B(X∗∩, Y �∪, I) we have

dbAc∨∗e∨∩∪ = dbA∗c∨e∨∩∪ = A∗∩∪ = A

For 〈A′, B′〉 in B(X × fix(∗)↑× , Y × fix(�)↓× , I×) we have

bdA′e∨∩∪c∨
∗

= bdbdA′e∨∩c∧
�e∧
∪
c∨
∗

= bdA↑×e∧
∪c∨
∗

= A′↑×↓× = A′
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Theorem 18. 1. B(X∗∩, Y �∪, I) equipped with ≤ , defined by 〈A1, B1〉 ≤ 〈A2, B2〉
iff A1 ⊆ A2, is a complete lattice where the infima and suprema are given by∧

j∈J
〈Aj , Bj〉 = 〈(

⋂
j∈J

Aj)
∩∪, (

⋂
j∈J

B�j )∪∩〉 (3.26)

∨
j∈J
〈Aj , Bj〉 = 〈(

⋃
j∈J

A∗j )
∩∪, (

⋃
j∈J

Bj)
∪∩〉 (3.27)

2. Moreover, an arbitrary complete lattice K = 〈K,≤〉 is isomorphic to B(X∗∩, Y �∪, I)
iff there are mappings µ : fix(∗)×X → K, ν : fix(�)× Y → K such that

(a) µ(fix(∗)×X) is
∨

-dense in K, ν(fix(�)× Y ) is
∧

-dense in K.

(b) µ(a, x) ≤ ν(b, y) iff I(x, y) ≤ a→ b.

Proof. From Theorem 15 and Theorem 17.
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Chapter 4

Reducing the Size of Concept
Lattices

The main idea of generalizing concept-forming operators 〈∩, ∪〉 by a truth-stressing hedge
and a truth-depressing hedge is to gain control on the size of the resulting concept lattice.
In the case of the original isotone concept-forming operators 〈e, d〉, the number of formal
fuzzy concepts can be inconveniently big. For instance in the example below, we obtain
207 formal fuzzy concepts from formal context with 6 objects and 4 attributes. Proper
selection of the truth-stressing hedge and truth-depressing hedge decreases the number
of formal fuzzy concepts in the resulting concept lattice as demonstrated in this section.
We also provide a theoretical result about sizes of concept lattice.

Example 1. We demonstrate the influence of hedges by the following example. Consider
the formal fuzzy context represented by Table 4.1. The table describes six books and their
graded attributes. For the five-valued  Lukasiewicz chain

L = 〈{0, 0.25, 0.5, 0.75, 1},min,max,⊗,→, 0, 1〉

as our structure of truth degrees, there are 40 combinations of truth-stressing hedge ∗ and
truth-depressing hedge � (5 possible choices of ∗ and 8 possible (independent) choices of
�, see Figures 2.1 and 2.2). For each combination of ∗ and � we compute the corre-
sponding concept lattice B(X∗∩, Y �∪, I). The concept lattices are depicted in Fig. 4.2.
Note that the concept lattices B(X∗∩, Y �∪, I) are displayed in a standard manner by
means of their line diagrams (Hasse diagrams).

One can notice that in Fig. 4.2 we get interesting alternating of big and small sizes
of the concept lattices. For instance in the first column we have sizes 5,20,12,25,7,25. In
the rest of this section we explain why this effect occurs.

Let L be a complete residuated lattice and TD(L) the set of all truth-depressing
hedges and TS(L) set of all truth-stressing hedges.

Define partial order ≤ in TS(L) by

∗1 ≤ ∗2 iff fix(∗1) ⊆ fix(∗2) (4.1)
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Table 4.1: Context of books and their graded properties

High Rating Large No. of Pages Low Price Top Sales Rank

1 0.75 0.00 1.00 0.00

2 0.50 1.00 0.25 0.50

3 1.00 1.00 0.25 0.50

4 0.75 0.50 0.25 1.00

5 0.75 0.25 0.75 0.00

6 1.00 0.00 0.75 0.25

And define partial order ≤ in TD(L) by

�1 ≤ �2 iff fix(�1) ⊆ fix(�2) (4.2)

Note that the truth-depressing hedges from Fig. 2.2 form a partially ordered set
depicted in Fig. 4.1(left), and that the truth-stressing hedges from Fig. 2.1 form partially
ordered set depicted in Fig. 4.1(right).

Theorem 19. For a formal fuzzy context 〈X,Y, I〉, truth-depressing hedges �a ,�b ∈
TD(L) s.t. �a ≤ �b, and truth-stressing hedges ∗a , ∗b ∈ TS(L) s.t. ∗a ≤ ∗b we have

|B(X∗a∩, Y �a∪, I)| ≤ |B(X∗b∩, Y �b∪, I)|. (4.3)

Moreover,

Ext(X idL∩, Y �a∪, I) ⊆ Ext(X idL∩, Y �b∪, I) (4.4)

Int(X∗a∩, Y idL∪, I) ⊆ Int(X∗b∩, Y idL∪, I) (4.5)

Proof. Denote
〈X ′1, Y ′1 , I ′1〉 := 〈X × fix(∗a), Y × fix(�a), I×1 〉

and
〈X ′2, Y ′2 , I ′2〉 := 〈X × fix(∗b), Y × fix(�b), I×2 〉

. Note that 〈X ′1, Y ′1 , I ′1〉 is a subcontext of 〈X ′2, Y ′2 , I ′2〉; i.e. X ′1 ⊆ X ′2, Y
′
1 ⊆ Y ′2 and I ′1 is

a restriction of I ′2 to X ′1, Y
′
1 : I ′1 = I ′2 ∩X ′1 × Y ′1 . The theorem follows from Theorem 17

and properties of subcontexts (see chapter 3 in [15]).

Remark 4. Note that the second part of Theorem 19 does not generally hold for a truth-
stresser ∗ different from identity. For instance, for the formal fuzzy context 〈X,Y, I〉
shown in Table 4.2, truth-stressing hedges ∗1, truth-depressing hedges �5 ≤ �1 (see
Fig. 4.1),we have:

{0.75/x1, 1.00/x2} ∈ Ext(X∗1∩, Y �5∪, I)
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Table 4.2: Formal fuzzy context from Remark 4

y1 y2

x1 0.75 0.00

x2 0.00 0.25

�1

�3
�5

�2

�4

�6

�AG

idL

∗2∗3

∗1

idL

∗G

Figure 4.1: Truth-depressing hedges from Fig. 2.2 with ≤ (left) and truth-stressing
hedges from Fig. 2.1 with ≤ (right)

but
{0.75/x1, 1.00/x2} /∈ Ext(X∗1∩, Y �1∪, I)

.

4.1 Illustrative example

In Table 4.3, linguistic terms are used instead of truth degrees. The table can be
transformed into formal L-context with X = {F1, F2, F3, F4} and Y = [6 − 12] ×
{consumption}∪ [140−220]×{speed}; the structure L of truth-degrees is three-element
chain with  Lukasiewicz operations. The transformed formal L-context is depicted in
Table 4.4. This example is based on example from [31].

Note that using isotone Galois connection for this kind of data is very reasonal. For
instance, we want to have “very fast car” to be a subconcept of “fast car”.

Figures 4.3, 4.4, 4.5, and 4.6 show formal concepts formed with isotone Galois connec-
tion with various combinations of truth-stressing hedges and truth-depressing hedges.
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∗G ∗3 ∗2 ∗1 idL

�AG

5 9 16 16 16

�6

20 29 36 36 36

�5

12 20 27 27 45

�4

25 36 43 43 94

�3

7 27 22 60 61

�2

25 59 43 98 99

�1

12 42 27 80 130

idL

25 66 43 109 207

Figure 4.2: Concept lattices B(X∗∩, Y �∪, I) induced by the context from Table 4.1 and
numbers of their formal concepts. The picture shows concept lattices resulting by all
combinations of truth-stressing hedge ∗ and truth-depressing hedge � from Fig. 2.1 and
Fig. 2.2.

consumption speed

F1 very high fast

F2 8-10l/100km very fast

F3 at least 8l/100km not so fast as F2

F4 at least 8l/100km fast

Table 4.3: Table “Cars”
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1
X

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

2
{1 /
F
1
,1
/F

2
,.
5 /
F
3
,1
/F

4
}

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

3
{1 /
F
1
,.
5 /
F
2
,.
5 /
F
3
,1
/F

4
}

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

4
{1 /
F
1
,.
5 /
F
2
,.
5 /
F
3
,.
5 /
F
4
}

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

5
{1 /
F
1
,.
5 /
F
2
,1
/F

4
}

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

6
{1 /
F
1
,.
5 /
F
2
,.
5 /
F
4
}

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

7
{1 /
F
1
,1
/F

2
,.
5 /
F
3
,.
5 /
F
4
}

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

8
{.
5 /
F
1
,.
5 /
F
2
,.
5 /
F
3
,.
5 /
F
4
}

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

9
{.
5 /
F
1
,.
5 /
F
2
,.
5 /
F
4
}

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

10
{.
5 /
F
1
,.
5 /
F
4
}

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

11
{.
5 /
F
1
}

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

12
{1 /
F
2
}

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

13
{.
5 /
F
2
}

1 1 2 0
6

8
10

1
2

1 1 2 0 1
40

1
60

18
0

20
0

22
0

14
∅

1 1 2 0
6

8
10

12

1 1 2 0 14
0

16
0

18
0

20
0

22
0

1

2

3

4
5

6

7

8

9

10

1
1

12

1
3

14

Figure 4.3: Concept lattice B(X idL∩, Y idL∪, I) of the formal context from Table 4.4



REDUCING THE SIZE OF CONCEPT LATTICES 28

consumption speed

F1

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

F2

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

F3

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

F4

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

Table 4.4: Table “Cars” transformed to a formal L-context

1

2

3

4

5

6

1 X

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

2 {1/F1,
1/F2,

.5/F3,
1/F4}

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

3 {1/F1,
.5/F2,

1/F4}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

4 {1/F1,
.5/F2,

.5/F4}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

5 {1/F2}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

6 ∅
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

Figure 4.4: Concept lattice B(X∗G∩, Y idL∪, I) of the formal context from Table 4.4
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1

2

3

4

5

6

7

8

1 X

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

2 {1/F1,
1/F2,

.5/F3,
1/F4}

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

3 {1/F1,
.5/F2,

1/F4}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

4 {.5/F1,
.5/F4}

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

5 {.5/F1}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

6 {1/F2}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

7 {.5/F2}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

8 ∅
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

Figure 4.5: Concept lattice B(X idL∩, Y �AG∪, I) of the formal context from Table 4.4

1

2

34

5

1 X

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

2 {1/F1,
1/F2,

.5/F3,
1/F4}

1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

3 {1/F1,
.5/F2,

1/F4}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

4 {1/F3}
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

5 ∅
1

1
2

0
6 8 10 12

1

1
2

0
140 160 180 200 220

Figure 4.6: Concept lattice B(X∗G∩, Y �AG∪, I) of the formal context from Table 4.4
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Chapter 5

Logic of Containment

Logical calculi for reasoning about binary (yes-or-no) attributes as well as computational
aspects such as extraction of various types of rules from data have been intensively stud-
ied in the past. Particular attention has been paid to various types of if-then rules, see
e.g. [28] for logic of binary attributes and its connection to functional dependencies; [18]
and [15] for description and algorithms for extraction of a smallest complete set of if-
then dependencies from binary data; [41] for an overview of association rules and [36] for
related logical calculi. [36] which, however, concerns much more general dependencies
in binary data, namely those in somewhat forgotten [20] which provides sophisticated
logico-statistical foundations for hypotheses formation (association rules are a very par-
ticular case).

Recently, several classical as well as new aspects of reasoning about attributes have
been developed in a series of papers for graded attributes, i.e. for attributes such as
red or good performance which apply to objects in degrees, see e.g. [12] for an overview
of results and [10] for computational aspects. In this chapter, we present a general
logic of if-then rules A ⇒ B for graded attributes which read: if all attributes of an
object are contained A then they are contained in B. We introduce basic syntactic
and semantic notions, covering two basic meanings of containment of graded attributes
(Section 5.1), describe complete non-redundant sets of if-then rules (Section 5.2), and
a logic for reasoning with such dependencies with its ordinary-style and graded-style
completeness (Section 5.3). The next section provides preliminaries.

5.1 Basic concepts of syntax and semantics

Let Y be a set of (symbols of) graded attributes. A fuzzy attribute implication (over Y )
is an expression

A⇒ B,

where A,B ∈ LY (A and B are L-sets of attributes). Fuzzy attribute implications (FAIs)
are our basic formulas. The intended meaning of A⇒ B is:
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if all attributes of an object are contained in A then they are contained in
B.

In a graded setting, having an attribute is a matter of degree. Hence, validity of A⇒ B
is naturally a matter of degree as well. We need to be careful about the meaning of
containment. We provide a general semantics which covers two appealing meanings
of containment: bivalent containment and graded containment. Let M be an L-set
representing attributes of object x, i.e. M(y) is a degree to which x has attribute y. By
||A⇒ B||∩∪M , we denote the truth degree of A⇒ B for x (we attach the superscript ∩∪

in order to distinguish our semantics from that of [12]). Our aim is to capture to the
following intuitions: For a bivalent approach to containment, ||A⇒ B||∩∪M = 1 (A⇒ B
is fully true) means:

if M ⊆ A then M ⊆ B.
Note that M ⊆ A means that M(y) ≤ A(y) for all y ∈ Y . For a graded approach to

containment, ||A⇒ B||∩∪M = 1 means:
S(M,A) ≤ S(M,B),

i.e. a degree to which M is contained in A is less than or equal to the degree to which
M is contained in B. Both of the approaches can be obtained as particular cases of a
general definition which uses a hedge:

Definition 5. A degree ||A⇒ B||∩∪M ∈ L to which A⇒ B is valid in M (M is an L-set
of attributes of some object) is defined by

||A⇒ B||∩∪M = S(M,A)∗ → S(M,B) (5.1)

Now, one can easily check that for ∗ being globalization and identity, this definition
meets the above-described intuitive requirements regarding the bivalent and ordinary
approach to containment. Note also that ||A ⇒ B||∩∪M is a general degree, possibly
different from 0 and 1.

We are going to evaluate FAIs A ⇒ B in data tables with graded attributes. Such
tables can be regarded a triplets 〈X,Y, I〉 where X and Y are sets of objects (rows) and
attributes (columns), and I : X × Y → I is an L-relation with I(x, y) being interpreted
as the degree to which attribute y applies to object x.

Definition 6. Let M be a collection of L-sets M ∈ LY . A degree ||A⇒ B||∩∪M to which
A⇒ B is valid in M is defined by

||A⇒ B||∩∪M =
∧

M∈M ||A⇒ B||∩∪M (5.2)

A degree ||A⇒ B||∩∪〈X,Y,I〉 to which A⇒ B is valid in a data table 〈X,Y, I〉 with graded
attributes is defined by

||A⇒ B||∩∪〈X,Y,I〉 = ||A⇒ B||∩∪{Ix|x∈X}, (5.3)

where Ix denotes the “row of x”, i.e. Ix(y) = I(x, y).
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There is a close relationship between our semantics of FAIs and isotone Galois con-
nections and the lattices of their fixpoints which were studied in chapter 3:

∩ : LX → LY and ∪ : LY → LX by

A∩(y) =
∨

x∈X(A(x)∗ ⊗ I(x, y)), (5.4)

B∪(x) =
∧

y∈Y (I(x, y)→ B(y)), (5.5)

for A ∈ LX and B ∈ LY .
Note that (5.4) and (5.5) can be considered as both isotone Galois connections with

truth-stressing hedges with ∗X = idL and isotone Galois connections with truth-stressing
hedge and truth-depressing hedge with � = idL .

The following theorem shows a basic connection between our semantics and isotone
Galois connection with a truth-stressing hedge. It says that validity of A⇒ B in a data
table 〈X,Y, I〉 coincides with validity in the system of its intents and with a degree of
containment of A∪∩ in B.

Theorem 20. For a FAI A⇒ B and a formal L-context 〈X,Y, I〉,

||A⇒ B||∩∪〈X,Y,I〉 = ||A⇒ B||∩∪Int(X∩,Y ∪,I) (5.6)

= S(A∪∩, B) (5.7)

Proof. (5.6): ||A ⇒ B||∩∪〈X,Y,I〉 = ||A ⇒ B||∩∪{Ix|x∈X} =
∧

x∈X S(Ix, A)∗ → S(Ix, B) =∧
x∈X A∪(x)∗ → B∪(x) =

∧
x∈X A∪∗(x) → B∪(x) = S(A∪∗, B∪) = S(A∪∗∩, B) =

S(A∪∩, B)
(5.7): “≤”: ||A⇒ B||∩∪〈X,Y,I〉

≤
∧

M∈Int(X∩,Y ∪,I) S(M,A)∗ → S(M,B) iff S(A∪∩, B) ≤
∧

M∈Int(X∩,Y ∪,I) S(M,A)∗ →
S(M,B)
iff for each M ∈ Int(X∩, Y ∪, I):
S(A∪∩, B) ≤ S(M,A)∗ → S(M,B)
iff for each M ∈ Int(X∩, Y ∪, I):
S(M,A)∗ ⊗ S(A∪∩, B) ≤ S(M,B)
iff for each M ∈ Int(X∩, Y ∪, I) (note that M = M∪∩):
S(M∪∩, A)∗ ⊗ S(A∪∩, B) ≤ S(M∪∩, B)
iff for each M ∈ Int(X∩, Y ∪, I):
S(M∪∗, A∪)∗ ⊗ S(A∪∗, B∪) ≤ S(M∪∗, B∪)
which is true since S(M∪∗, A∪)∗ ≤ S(M∪∗, A∪∗).

“≥”: follows from Ix = {x}∩ ∈ Int(X∩, Y ∪, I).

Let us now turn to theories and models.
In graded setting, a theory naturally consists of formulas to which we attach grades [17,

19]. That is, a theory of FAIs is an L-set T of FAIs. The degree T (A ⇒ B) to which
A⇒ B belongs to T can be seen as a degree to which we assume the validity of A⇒ B.
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From another point of view, T can be seen an L-set of implications extracted from data
such that T (A⇒ B) is a degree to which A⇒ B holds true in data. If T is an ordinary
set, we call it a crisp theory, and write A⇒ B ∈ T if T (A⇒ B) = 1 and A⇒ B 6∈ T if
T (A⇒ B) = 0.

For a theory T , the set Mod(T ) of all models of T is defined by

Mod(T ) = {M ∈ LY | for each A,B ∈ LY :

T (A⇒ B) ≤ ||A⇒ B||∩∪M }.

That is, M ∈ Mod(T ) means that for each attribute implication A ⇒ B, a degree
to which A ⇒ B holds in M is higher than or at least equal to a degree T (A ⇒ B)
prescribed by T . Particularly, for a crisp T , Mod(T ) = {M ∈ LY | for each A ⇒ B ∈
T : ||A⇒ B||∩∪M = 1}.

A degree ||A⇒ B||∩∪T ∈ L to which A⇒ B semantically follows from an L-set T of
attribute implications is defined by

||A⇒ B||∩∪T =
∧

M∈Mod(T ) ||A⇒ B||∩∪M .

We need the following lemma which says that validity to a degree can be reduced to
validity to degree 1.

Lemma 21. For A,B,M ∈ LY and c ∈ L we have

c ≤ ||A⇒ B||∩∪M iff ||A⇒ c→ B||∩∪M = 1. (5.8)

Proof. By simple derivation.

Lemma 21 has surprising consequences. It enables us to reduce the concept of a model
of an L-set of fuzzy attribute implications to the concept of a model of an ordinary set
of fuzzy attribute implications, and to reduce the concept of semantic entailment from
an L-set of fuzzy attribute implications to the concept of semantic entailment from an
ordinary set of fuzzy attribute implications:

Lemma 22. Let T be an L-set of fuzzy attribute implications and A,B ∈ LY . Define
an ordinary set c(T ) of fuzzy attribute implications by

c(T ) = {A⇒ T (A⇒ B)→ B |A,B ∈ LY and T (A⇒ B)→ B 6= Y }. (5.9)

Then we have

Mod(T ) = Mod(c(T )), (5.10)

||A⇒ B||∩∪T = ||A⇒ B||∩∪c(T ). (5.11)

Proof. (5.10) directly using Lemma 21. (5.11) is a consequence of (5.10).
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Furthermore, Lemma 21 enables us to reduce the concept of a degree of entailment
of a fuzzy attribute implication from an L-set of fuzzy attribute implications to the
concept of an entailment in degree 1 (full entailment) of a fuzzy attribute implication
from an L-set of fuzzy attribute implications:

Lemma 23. For A,B ∈ LY and an L-set T of fuzzy attribute implications we have

||A⇒ B||∩∪T =
∨
{c ∈ L | ||A⇒ c→ B||∩∪T = 1}.

Proof. Using Lemma 21, we have

||A⇒ B||∩∪T =
∧

M∈Mod(T ) ||A⇒ B||∩∪M =

=
∨
{c ∈ L | c ≤ ||A⇒ B||∩∪M for each M ∈ Mod(T )} =

=
∨
{c ∈ L | ||A⇒ c→ B||∩∪T = 1}.

Therefore, we have:

Corollary 24. For A,B ∈ LY and an L-set T of fuzzy attribute implications we have

||A⇒ B||∩∪T =
∨
{c ∈ L | ||A⇒ c⊗B||∩∪c(T ) = 1},

with c(T ) defined as in Lemma 22.

Corollary 24 shows that the concept of a degree of entailment from an L-set of fuzzy
attribute implications can be reduced to entailment in degree 1 from a set of fuzzy
attribute implications. We use this fact in the subsequent development.

An ordinary set T of fuzzy attribute implications is said to be semantically closed if
||A⇒ B||∩∪T = 1 iff A⇒ B ∈ T , i.e. if T = {A⇒ B | ||A⇒ B||∩∪T = 1}.

5.2 Non-redundant bases

In this section, we describe non-redundant bases of formal L-contexts 〈X,Y, I〉.

Definition 7. A set T of FAIs is called complete in 〈X,Y, I〉 if ||A ⇒ B||∩∪T = ||A ⇒
B||∩∪〈X,Y,I〉 for each attribute implication A ⇒ B. If T is complete and no proper subset

if T is complete, then T is called a non-redundant basis (of 〈X,Y, I〉).

It follows that if T is complete, every A ⇒ B from T is valid in 〈X,Y, I〉 to degree
1 and for any other C ⇒ D, the degree to which C ⇒ D is valid in 〈X,Y, I〉 equals the
degree to which T entails C ⇒ D. That is, non-redundant sets are minimal sets of FAIs
with complete information about validity of FAIs in the data.

Lemma 25. For any A,M ∈ LY we have

||A⇒ A∪∩||M = 1 for each A ∈ LY and M = M∪∩ (5.12)
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Proof. LetM = M∪∩. We have S(M,A)∗ ≤ S(M∪, A∪)∗ ≤ S(M∪∗, A∪∗) ≤ S(M∪∩, A∪∩) =
S(M,A∪∩). Thus, S(M,A)∗ → S(M,A∪∩) = 1, i.e. ||A⇒ A∪∩||M = 1

The following theorem characterizes complete sets.

Theorem 26. T is complete iff Mod(T ) = Int(X∩, Y ∪, I).

Proof. Let T be complete. Suppose M ∈ Mod(T ). We have ||M ⇒M∪∩||∪∩Int(X∩,Y ∪,I) =

S(M∪∩,M∪∩) = 1 by (5.6), i.e. ||M ⇒ M∪∩||∪∩T = 1 by completeness and (5.6).
Since M is a model of T , we have ||M ⇒ M∪∩||∪∩M = 1 which immediately gives 1 =
S(M,M)∗ ≤ S(M,M∪∩), i.e. M ⊆ M∪∩. That is, M ∈ Int(X∩, Y ∪, I) which proves
that Mod(T ) ⊆ Int(X∩, Y ∪, I).

Now take M ∈ Int(X∩, Y ∪, I). For each implication A ⇒ B ∈ T we have ||A ⇒
B||∪∩M ≥ ||A ⇒ B||∪∩Int(X∩,Y ∪,I) = ||A ⇒ B||∩∪Mod(T ) = 1 by (5.6), i.e. M ∈ Mod(T )

showing Int(X∩, Y ∪, I) ⊆ Mod(T ).
Conversely, if Mod(T ) = Int(X∩, Y ∪, I) then ||A⇒ B||∩∪T = ||A⇒ B||∩∪Int(X∩,Y ∪,I) =

||A⇒ B||∩∪〈X,Y,I〉.

Definition 8. Given 〈X,Y, I〉, P ⊆ LY is called a system of pseudo-intents of 〈X,Y, I〉
if for each P ∈ LY we have:

P ∈ P iff P 6= P∪∩ and ||Q⇒ Q∪∩||P = 1 for each Q ∈ P with Q 6= P .

In what follows, P denotes a system of pseudo-intents.

Lemma 27. Let T = {P ⇒ P∪∩|P ∈ P}. Then Mod(T ) ⊆ Int(X∩, Y ∪, I).

Proof. It suffices to show that each model M ∈ Mod(T ) is an intent of Int(X∩, Y ∪, I).
By contradiction, let M ∈ Mod(T ) and assume M /∈ Int(X∩, Y ∪, I). That is M 6= M∪∩.
Since M ∈ Mod(T ), we have ||Q⇒ Q∪∩||∪∩M = 1(Q ∈ P). Therefore M ∈ P by definition
of P, i.e. M ⇒M∪∩ belongs to T . We have

||M ⇒M∪∩||∪∩M = S(M,M)∗ → S(M∪∩,M)

= S(M∪∩,M) 6= 1

which contradicts M ∈ Mod(T ).

Theorem 28. T = {P ⇒ P∪∩ |P ∈ P} is complete.

Proof. We show that
||A⇒ B||∩∪T = ||A⇒ B||∩∪Int(X∩,Y ∪,I)

for each FAI A⇒ B. Completeness of T is then a consequence of (5.6). By Lemma 25,
each intent M ∈ Int(X∩, Y ∪, I) is a model of T , proving the ≤-part. The ≥-part follows
from Lemma 27.
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The following theorem is the main result of this section. It says that in order to get
a non-redundant basis of 〈X,Y, I〉, it is sufficient to compute a system of pseudo-intents
of 〈X,Y, I〉.

Theorem 29. T = {P ⇒ P∪∩|P ∈ P} is a non-redundant basis.

Proof. By Theorem 28, T is complete. Now we are going to show the non-redundancy.
Take T ′ ⊂ T . Clearly, there must be P ∈ P s.t. P ⇒ P∪∩ does not belong to T ′.
In addition to that, we have ||Q ⇒ Q∪∩||∪∩P = 1 (Q ∈ P, Q 6= P ) by Definition 8, i.e.
P ∈ Mod(T ′). On the other hand, P /∈ Mod(T ) since ||P ⇒ P∪∩||∪∩P = S(P, P∪∩ 6= 1).
That is,

||P ⇒ P∪∩||∪∩〈X,Y,I〉 = ||P ⇒ P∪∩||∪∩T 6= ||P ⇒ P∪∩||∪∩T ′

i.e. T ′ is not complete, showing the non-redundancy of T .

Lemma 30. Let P,Q ∈ P ∪ Int(X∩, Y ∩, I) such that

S(Q,P )∗ ≤ S(P ∪Q,P∪∩) (5.13)

S(P,Q)∗ ≤ S(P ∪Q,Q∪∩) (5.14)

Then P ∪Q ∈ Int(X∩, Y ∩, I).

Proof. Put T ′ = T {P ⇒ P∪∩, P ⇒ P∪∩}, where T = {P ⇒ P∪∩|P ∈ P}. Definition 8
and lemma 25 yield P,Q ∈ Mod(T ′). Hence, for each A ⇒ B ∈ T ′ we have S(P,A)∗ ≤
S(P,B) and S(Q,A)∗ ≤ S(Q,B). Thus,

S(P ∪Q,A)∗ = (S(P,A) ∧ S(Q,A))∗ ≤
≤ S(P,A)∗ ∧ S(Q,A)∗ ≤
≤ S(P,B) ∧ S(Q,B) = S(P ∩Q,B)

which immediately gives that P ∪Q is a model of T ′. Taking into account Lemma 27,
it is sufficient to show that P ∩Q is a model of {P ⇒ P∪∩, Q ⇒ Q∪∩}. By (5.13) and
(5.14) we have

S(P ∪Q,P )∗ = S(Q,P )∗ ≤ S(P ∪Q,P∪∩)

and
S(P ∪Q,Q)∗ = S(P,Q)∗ ≤ S(P ∪Q,Q∪∩)

i.e. ||P ⇒ P∪∩||∪∩P∪Q = 1 and ||Q⇒ Q∪∩||∪∩P∪Q = 1.

If the scale L of grades is finite and ∗ is globalization, the non-redundant basis T
given by pseudo-intents is the smallest one in terms of the number of FAIs it contains:

Theorem 31. Let L be a finite residuated lattice with ∗ being the globalization. Let T ′ be
complete in 〈X,Y, I〉, where Y is finite. Then |T | ≤ |T ′|, where T = {P ⇒ P∪∩|P ∈ P}
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Proof. We prove the claim by showing that for each P ∈ P, T ′ contains an implication
A⇒ B s.t. A∪∩ = P∪∩.

Take P ∈ P. Since P 6= P∪∩ and T ′ is complete, Theorem 26 yields that T ′ contains
A ⇒ B such that ||A ⇒ B||∪∩P 6= 1. That is, we have P ⊆ A and P * B because ∗

is the globalization. Completeness of T ′ together with (5.6) yields S(A∪∩, B) = 1 i.e.
A∪∩ ⊂ B. Thus, from A∪∩ ⊂ B and P * B we have P * A∪∩.

As a consequence, A∪∩ ∪ P is not an intent, because P ⊆ A and P * A∪∩ yield
A∪∩ ⊂ A∪∩ ∪ P ⊆ A, i.e. the union A∪∩ ∪ P is not closed under ∪∩.
Now we claim that A∪∩ ⊆ P . By contradiction, A∪∩ * P and P * A∪∩ would give

P ∪A∪∩ ∈ Int(X∩, Y ∪, I) by Lemma 30 which would violate A∪∩ ∪ P ∈ Int(X∩, Y ∪, I)
as observed lately.

Therefore, A ⊆ P gives A∪∩ ⊆ P∪∩ while A∪∩ ⊆ P gives A∪∩ = A∪∩∪∩ ⊆ P∪∩.

5.3 Completeness theorems

In this section, we introduce an axiomatic system for fuzzy attribute logic (FAL) and
prove completeness theorems. First, we introduce deduction rules and a notion of a proof
of a fuzzy attribute implication from an ordinary set T of fuzzy attribute implications.
Second, we prove that a fuzzy attribute implication A⇒ B is provable from an ordinary
set T of fuzzy attribute implications iff A ⇒ B semantically follows from T in degree
1. Third, we introduce a concept of a degree |A ⇒ B|∩∪T of provability of a fuzzy
attribute implication A⇒ B from an L-set T of fuzzy attribute implications and show
that |A⇒ B|∩∪T = ||A⇒ B||∩∪T .

5.3.1 Deduction rules

Our axiomatic system consists of the following deduction rules.

(Ax) infer A⇒ A ∪B,

(DCut) from A⇒ B and B ∩ C ⇒ D infer A ∩ C ⇒ D,

(Sh) from A⇒ B infer c∗ → A⇒ c∗ → B

for each A,B,C,D ∈ LY , and c ∈ L. Rules (Ax)–(Sh) are to be understood as usual
deduction rules: having fuzzy attribute implications which are of the form of fuzzy
attribute implication in the input part (the part preceding “infer”) of a rule, a rule
allows us to infer (in one step) the corresponding fuzzy attribute implication in the
output part (the part following “infer”) of a rule. (Ax) is a nullary rule (axiom) which
says that each A⇒ A ∪B (A,B ∈ LY ) is inferred in one step.

Remark 5. If ∗ is globalization, (Sh) can be omitted. Indeed, for c = 1, we have c∗ = 1
and (Sh) becomes “from A ⇒ B infer A ⇒ B” which is a trivial rule; for c < 1, we
have c∗ = 0 and (Sh) becomes “from A ⇒ B infer Y ⇒ Y ” which can be omitted since
Y ⇒ Y can be inferred by (Ax).
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A fuzzy attribute implication A⇒ B is called provable from a set T of fuzzy attribute
implications using a set R of deduction rules, written T `R A⇒ B, if there is a sequence
ϕ1, . . . , ϕn of fuzzy attribute implications such that ϕn is A ⇒ B and for each ϕi we
either have ϕi ∈ T or ϕi is inferred (in one step) from some of the preceding formulas
(i.e., ϕ1, . . . , ϕi−1) using some deduction rule from R. If R consists of (Ax)–(Sh), we
say just “provable . . . ” instead of “provable . . . using R” and write just T ` A ⇒ B
instead of T `R A⇒ B.

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” (ϕi, ϕ are fuzzy attribute implications)
is said to be derivable from a set R of deduction rules if {ϕ1, . . . , ϕn} `R ϕ. Again, if
R consists of (Ax)–(Sh), we omit R.

Lemma 32. The following deduction rules are derivable from (Ax) and (DCut):

(Ref) infer A⇒ A,

(Wea) from A⇒ B infer A ∩ C ⇒ B,

(Add) from A⇒ B and A⇒ C infer A⇒ B ∩ C,

(Pro) from A⇒ B ∩ C infer A⇒ B,

(Tra) from A⇒ B and B ⇒ C infer A⇒ C,

for each A,B,C,D ∈ LY .

Proof. By simple derivation.

5.3.2 Ordinary completeness

In this section, we show that deduction rules (Ax)–(Sh) are sound and we prove their
completeness. We restrict ourselves to the case of a finite L.

A deduction rule “from ϕ1, . . . , ϕn infer ϕ” is said to be sound if for each M ∈
Mod({ϕ1, . . . , ϕn}) we have M ∈ Mod({ϕ}), i.e. each model of all of ϕ1, . . . , ϕn is also
a model of ϕ.

Lemma 33. Each of the deduction rules (Ax)–(Sh) is sound.

Proof. For illustration, we check (Sh). Let M ∈ Mod({A⇒ B}). We have to show that
M ∈ Mod({c∗ → A⇒ c∗ → B}).

First, M ∈ Mod({A⇒ B}) iff ||A⇒ B||∩∪M = 1 iff S(M,A)∗ ≤ S(M,B) iff

for each y ∈ Y : M(y)⊗ S(M,A)∗ ≤ B(y). (5.15)

Second, M ∈ Mod({c∗ → A ⇒ c∗ → B}) iff ||c∗ → A ⇒ c∗ → B||∩∪M = 1 iff
S(M, c∗ → A)∗ ≤ S(M, c∗ → B) iff for each y ∈ Y we have

M(y)⊗ S(M, c∗ → A)∗ ≤ c∗ → B(y)

which is true by 5.15:

M(y)⊗ S(M, c∗ → A)∗ ≤
≤M(y)⊗ (c∗∗ → S(M,A)∗) ≤
≤M(y)⊗ S(M,A)∗ ≤ B(y).
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We proved that (Sh) is sound.
Soundness of (Ax) and (DCut) can be proved analogously.

Remark 6. Note that deduction rules for semantics related to antitone Galois connec-
tions truth-stressing hedge [34] (Ax) infer A ∪B ⇒ A,

(Cut) from A⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,

(Mul) from A⇒ B infer c∗ ⊗A⇒ c∗ ⊗B
are not sound for our semantics.

Indeed, for (Ax) is enough to put M = A, B ⊂ A. For (Cut) put M ⊂ A ∪ C;M 6⊆
A,B,C,D,B ∪D;. For (Mul) put ∗ = idX ,M = B 6= ∅;B ⊂ c⊗A.

A set T of fuzzy attribute implications is said to be syntactically closed if T ` A⇒ B
iff A ⇒ B ∈ T , i.e. if T = {A ⇒ B |T ` A ⇒ B}. The following lemma is almost
immediate.

Lemma 34. A set T of fuzzy attribute implications is syntactically closed iff we have:

(Ax)-closure A⇒ A ∪B ∈ T ,

(DCut)-closure if A⇒ B ∈ T and B ∩ C ⇒ D ∈ T then A ∩ C ⇒ D ∈ T ,

(Sh)-closure if A⇒ B ∈ T then c∗ → A⇒ c∗ → B ∈ T
for each A,B,C,D ∈ LY , and c ∈ L.

Lemma 35. Let T be a set of fuzzy attribute implications. If T is semantically closed
then T is syntactically closed.

Proof. By Lemma 34, we have to show that for each deduction rule “from ϕ1, . . . , ϕn

infer ϕ”, i.e. one of (Ax)–(Sh), we have that if ϕ1, . . . ϕn ∈ T then ϕ ∈ T . Let thus
ϕ1, . . . ϕn ∈ T . Since {ϕ1, . . . ϕn} ⊆ T , for any model M ∈ Mod(T ) we have M ∈
Mod({ϕ1, . . . ϕn}), i.e. M ∈ Mod({ϕi}) for each i = 1, . . . , n. Since each of the rules
(Ax)–(Sh) is sound, we conclude M ∈ Mod({ϕ}). Since M is an arbitrary model of T ,
this shows that ϕ is true in each model of T . Since T is semantically closed, we get
ϕ ∈ T .

Lemma 36. Let T be a set of fuzzy attribute implications, let both Y and L be finite.
If T is syntactically closed then T is semantically closed.

Proof. Let T be syntactically closed. In order to show that T is semantically closed,
it suffices to show {A ⇒ B | ||A ⇒ B||∩∪T = 1} ⊆ T . We prove this by showing that
if A ⇒ B 6∈ T then A ⇒ B 6∈ {A ⇒ B | ||A ⇒ B||∩∪T = 1}. Recall that since T is
syntactically closed, T is closed under all of the rules (Ref)–(Tra) of Lemma 32.

Let thus A ⇒ B 6∈ T . To see A ⇒ B 6∈ {A ⇒ B | ||A ⇒ B||∩∪T = 1}, we show
that there is M ∈ Mod(T ) which is not a model of A ⇒ B. For this purpose, consider
M = A− where A− is the smallest one such that A ⇒ A− ∈ T . Note that A− exists.
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Namely, S = {C |A ⇒ C ∈ T} is non-empty since A ⇒ A ∈ T by (Ref), S is finite by
finiteness of Y and L, and for A⇒ C1, . . . , A⇒ Cn ∈ T , we have A⇒

⋂n
i=1Ci ∈ T by

a repeated use of (Add).
We now need to show that (a) ||A⇒ B||∩∪A− 6= 1 (i.e., A− is not a model of A⇒ B)

and (b) for each C ⇒ D ∈ T we have ||C ⇒ D||∩∪A− = 1 (i.e., A− is a model of T ).
(a): By contradiction, suppose ||A ⇒ B||∩∪A− = 1. Using A− ⊆ A we then get

1 = ||A⇒ B||∩∪A− = S(A−, A)∗ → S(A−, B) = 1→ S(A−, B) = S(A−, B), i.e. A− ⊆ B.
Since A⇒ A− ∈ T , (Pro) would give A⇒ B ∈ T , a contradiction.

(b): Let C ⇒ D ∈ T . We need to show ||C ⇒ D||∩∪A− = 1, i.e. S(A−, C)∗ →
S(A−, D) = 1 which is equivalent to S(A−, C)∗ ⊗ A− ⊆ D, i.e. A− ⊆ S(A−, C)∗ → D.
To see this, it is sufficient to show that A ⇒ S(A−, C)∗ → D ∈ T because A− is
the smallest one for which A ⇒ A− ∈ T ). Note that we have (b1) A ⇒ A− ∈ T by
definition of A−, (b2) A− ⇒ S(A−, C)∗ → C ∈ T since as A− ⊆ S(A−, C)∗ → C, A− ⇒
S(A−, C)∗ → C is an instance of (Ax); and (b3) S(A−, C)∗ → C ⇒ S(A−, C)∗⊗D ∈ T
which follows from (Sh) applied to C ⇒ D ∈ T . Now, A⇒ S(A−, C)∗ → D ∈ T follows
by (Tra) applied twice to (b1), (b2), and (b3).

Corollary 37. Let T be a set of fuzzy attribute implications. T is syntactically closed
iff T is semantically closed.

Theorem 38 ((ordinary) completeness). Let L and Y be finite. Let T be a set of fuzzy
attribute implications. Then

T ` A⇒ B iff ||A⇒ B||∩∪T = 1.

Proof. Denote by syn(T ) the least syntactically closed set of fuzzy attribute implications
which contains T . It can be shown that syn(T ) = {A⇒ B |T ` A⇒ B}. Furthermore,
denote by sem(T ) the least semantically closed set of fuzzy attribute implications which
contains T . It can be shown that sem(T ) = {A ⇒ B | ||A ⇒ B||∩∪T = 1}. To prove the
claim, we need to show syn(T ) = sem(T ). As syn(T ) is syntactically closed, it is also
semantically closed by Corollary 37 which means sem(syn(T )) ⊆ syn(T ). Therefore, by
T ⊆ syn(T ) we get

sem(T ) ⊆ sem(syn(T )) ⊆ syn(T ).

In a similar manner we get syn(T ) ⊆ sem(T ), showing syn(T ) = sem(T ). The proof is
complete.

5.3.3 Graded completeness

In this section, we introduce a notion of a degree |A ⇒ B|∩∪T of provability of a fuzzy
attribute implication A ⇒ B from an L-set T of attribute implications. Then, we
show that |A ⇒ B|∩∪T = ||A ⇒ B||∩∪T , which can be understood as a graded com-
pleteness (completeness in degrees). Note that graded completeness was introduced by
Pavelka [30], see also [17, 19] for further information.
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For an L-set T of fuzzy attribute implications and for A ⇒ B we define a degree
|A⇒ B|∩∪T ∈ L to which A⇒ B is provable from T by

|A⇒ B|T =
∨
{c ∈ L | c(T ) ` A⇒ c⊗B}, (5.16)

where c(T ) is defined by (5.9).

Theorem 39 (graded completeness). Let L and Y be finite. Then for every L-set T of
fuzzy attribute implications and A⇒ B we have |A⇒ B|∩∪T = ||A⇒ B||∩∪T .

Proof. Consequence of Corollary 24 and Theorem 38.

5.4 Illustrative example

We close the example “Cars” from Section 4.1 by presenting non-redundant base of
the formal fuzzy context from Table 4.4. The attribute implications from the base are
depicted in Fig. 5.1. The base was computed using pseudointents as proposed in Theorem
29 with ∗ being a globalization ∗G . Note that the attribute implications in Fig. 5.1 have
their natural meaning; for instance the last attribute implications reads: “there is no
car with consumption limited to 10-12l/100km which is very fast”.
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Figure 5.1: Non-redundant base of the formal L-context Cars from Table 4.4
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Chapter 6

Conclusions

We have developed foundations of isotone Galois connections with a truth-stressing
hedge and a truth-depressing hedge. We have explored basic calculus of such connec-
tions, i.e. on the properties analogous to those which are essential for the other type
of Galois connections studied in the literature. We studied structure of B(X∗∩, Y �∪, I)
and proved an analogy of the main theorem of concept lattices for our setting. More-
over, we compared our generalization with the approach studied in [3]. We showed how
parameterization by hedges influences size of resulting concept lattice.

In addition, we have studied a logic of if-then rules such as “if all attributes of an
object are among those from A then they are among those from B.” We provided
basic syntactic and semantic notions, described complete non-redundant sets of the if-
then rules, and a logic for reasoning with such dependencies with its ordinary-style and
graded-style completeness.
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[8] R. Belohlavek, T. Funioková, and V. Vychodil. Fuzzy closure operators with truth
stressers. Logic Journal of the IGPL, 13(5):503–513, 2005.

[9] R. Belohlavek and J. Konecny. A logic of attribute containment. In KAM08, pages
246–251, Wuhan, China, 2008.

[10] R. Belohlavek and V. Vychodil. Fuzzy attribute implications: Computing non-
redundant bases using maximal independent sets. In Australian Conference on
Artificial Intelligence, pages 1126–1129, 2005.

[11] R. Belohlavek and V. Vychodil. Reducing the size of fuzzy concept lattices by
hedges. In FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Sys-
tems, pages 663–668, Reno (Nevada, USA), 2005.



BIBLIOGRAPHY 45

[12] R. Belohlavek and V. Vychodil. Attribute implications in a fuzzy setting. In Rokia
Missaoui and Jrg Schmidt, editors, Formal Concept Analysis, volume 3874 of Lec-
ture Notes in Computer Science, pages 45–60. Springer Berlin / Heidelberg, 2006.
10.1007/11671404 3.

[13] R. Belohlavek and V. Vychodil. Fuzzy concept lattices constrained by hedges.
JACIII, 11(6):536–545, 2007.

[14] Radim Belohlavek and Vilem Vychodil. Discovery of optimal factors in binary data
via a novel method of matrix decomposition. J. Comput. Syst. Sci., 76(1):3–20,
2010.

[15] B. Ganter and R. Wille. Formal concept analysis: Mathematical foundations.
Springer, Berlin-Heidelberg, 1999.

[16] G. Georgescu and A. Popescu. Non-dual fuzzy connections. Arch. Math. Log.,
43(8):1009–1039, 2004.

[17] G. Gerla. Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer,
Dordrecht, 2001.

[18] J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives
resultant d’un tableau de données binaires. Math. Sci. Humaines, 95:5–18, 1986.
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