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Abstract 
This work is a summary of current approaches to E E G signal processing for E E G biofeed­
back purposes and contains a design and implementation details of a custom E E G biofeed­
back application for attention training. It is accompanied by a case study which evaluates 
the effects of the application on measured E E G signals of a neurotypical student and a 
student with A D H D . 

Abstrakt 
Tato práce je shrnutím existujících přístupů pro zpracování E E G signálu za účelem E E G 
biofeedbacku a dále popisuje návrh a implementaci vlastní aplikace pro E E G biofeedback 
se zaměřením na trénink pozornosti. Dále obsahuje případovou studii provedenou na neu­
ro typickém studentovi a studentovi s A D H D , která zkoumá vliv implementované aplikace 
na měřený E E G signál subjektů. 
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Rozšířený abstrakt 
Tato práce se zabývá návrhem a tvorbou neurofeedbackové aplikace pro trénování po­
zornosti. Neurofeedback je proces, během nějž uživatel provádí nějkou činnost, která může 
být jak mentálně náročná, tak i t řeba meditatívni, při níž je napojen na E E G snímací 
zařízení. Mozková aktivita tohoto uživatele je v průběhu činnosti monitorována a ana­
lyzována za účelem rozlišení mentálního stavu uživatele. Ten dostává zpětnou vazbu ve 
vizuální či zvukové podobě na základě toho, zdali jeho mentálně stav splňuje nějaké nas­
tavené požadavky — třeba že je ve stavu aktivního soustředění. Tato zpětná vazba slouží 
k tomu, aby se uživatel naučil svůj mentální stav identifikovat, či ovládat. Neurofeed­
back se obvykle zaměřuje na trénování či odhalení nějakého specifického mentálního stavu, 
kupříkladu pozornosti či deprese. Obvykle se dělí na aktivní a pasivní. Při aktivním 
uživatel svou mozkovou aktivitou přímo ovládá nějakou aplikaci a při pasivním je pouze 
monitorován zatímco provádí nějakou činnost. Neurofeedback je obvykle prováděn po delší 
dobu, přes mnoho sezení, která trvají různou dobu podle toho, co je cílem daného tréninku. 
Při tréninku obvykle bývá cíleno na posílení či potlačení nějakého specifické frekvenčního 
pásma mozkové aktivity. Tato pásma jsou: 

. Delta(0.5-4Hz) — Indikuje N R E M spánek. 

• Théta(4-8Hz) — Indikuje zasnění, hlubokou relaxaci, meditaci 

• Alfa(8-14Hz) — Indikuje klidné soustředění, relaxaci 

• Senzorimotorický rytmus(12—16Hz) — Indikuje soustředění, fyzickou relaxaci 

• Beta(16-30Hz) — Indikuje silné soustředění, neklid, úzkost, stres 

• Gamma(>30Hz) — Indikuje stres, úzkost, vzrušení, paměťovou retenci 

Implementovaná aplikace se zaměřuje na trénink pozornosti a snaží se tedy u uživatelů 
posilovat výkon senzorimotorického rytmu(SMR). Pro měření E E G signálu je využito 16-ti 
kanálové zařízení Cython s rozšířením Daisy, od společnosti OpenBCI. Ke snímání je využito 
headsetu Ultracortex Mark IV se suchými špičatými elektrodami od téže společnosti. Zpra­
cování signálu je dosaženo pomocí open source knihovny brainflow. Signál je nejprve zbaven 
síťového šumu na 50Hz, následně pomocí pásmové propusti ořezán na interval l-30Hz. 
Nakonec jsou z něj odděleny výkony jednotlivých frekvenčních pásem. Aplikace následně 
převádí výkon S M R pásma na feedback pomocí jednoduchého prahového klasifikátoru. Hod­
nota výkonu je porovnávána vůči vnitřnímu prahu, který je v čase automaticky modifikován 
tak, aby reagoval na úspěšnost uživatele bud svým snížením nebo zvýšením. Pokud je práh 
překonán, uživateli je poskytnuta pozitivní zpětná vazba. Aplikace poskytuje vizuální zpět­
nou vazbu v podobě jednoduché hry. Uživatel hraje roli čarodějova učně, který se učí nová 
kouzla. Každé trénovací sezení sestává z odehrání jedné scény hry, která trvá v průměru 4 
minuty. Každá scéna je rozdělena na 3 časti. V první části uživatel "kreslí" symbol kouzla 

- na obrazovce je kurzor v podobě ruky s tužkou, který odkržvá obrázek jako pozitivní 
zpětnou vazbu. Druhá část zpočívá v učení kouzla, kdy je uživateli zobrazen nakreslený 
symbol a jako zpětná vazba se rozsvěcuje a vysílá částice. Po udržení pozornosti po stanove­
nou dobu se přejde do poslední části. Zde je uživatel postaven před nějaký objekt na který 
má kouzlo seslat, přičemž jako pozitivní efekt zde slouží postupné aplikování efektu kouzla. 
Jakmile uživatel dokončí třetí část, sezení končí. 



Součástí této práce byla také případová studie, která měla za úkol zhodnotit efekt 
aplikace na uživatele, byla provedena na dvou studentech, z nichž jeden trpí A D H D a 
druhý je neurotypický. Tato studie analyzovala hodnoty výkonu S M R pásma, hodnotu 
prahu aplikace, poměr pásem S M R a Théta a pásma S M R a vyšší frekvenční části Bety. 
Výsledky studie neprokázaly žádné jednoznačné změny v mozkové aktivitě ani jednoho z 
uživatelů. 
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Chapter 1 

Introduction 
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Figure 1.1: Trend of A D H D diagnoses in American children, aged 4-17. (American national 
institute of mental health) [30] 

Attention Deficit Hyperactivity Disorder (ADHD)[1] and ADHD-like problems are a 
fairly common occurrence among the population. This attention deficit disorder causes 
serious problems in day-to-day life of affected individuals, often without the person ever 
being properly diagnosed. Formerly, A D H D was only diagnosed in children and was thought 
to dissipate, coming adulthood. While that can happen, as much as third of affected children 
retain their A D H D through adulthood, often with other comorbid diagnoses1 [5]. In recent 
years, statistics of ADHD-impaired children are rising as can be seen illustrated on figure 
1.1. Traditionally, attention deficit disorders are treated using medications such as Strattera 
or Adderall, which are unfortunately sometimes accompanied by side effects ranging from 

1 Comorbidities are additional conditions appearing alongside a primary condition. In the case of ADHD, 
common comorbidities can be anxiety or depression. 
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annoying to severely impairing the individual. Some people may never find an appropriate 
prescription to help them, resulting in them having to cope with A D H D symptoms only 
using therapy. However, research suggests that a non-invasive treatment of A D H D could 
be performed via electroencephalography(EEG) biofeedback training, commonly referred to 
as neurofeedback [3]. This method has the patient be monitored via E E G equipment while 
performing a specific mental task during a training session. During the task, measured 
brain activity can show when the patient is in a state of distraction, inattention or anxiety. 
They can then be alerted of the fact, so that they can correct themselves. This feedback can 
be given in a variety of ways, from simple audio blips to gamified audio-visual applications. 
Thus, the patient can be trained to recognize when they are in such a state and how to 
counter it. 

This work documents the underlying approaches and technology behind electroen­
cephalography and attention-focused neurofeedback training and maps the design and 
implementation of a neurofeedback training application using gamification. The appli­
cation is developed in the Unity3D game engine and utilizes S M R power band enhance­
ment training [12]. A case study involving one ADHD-diagnosed university student and 
one neurotypical university student has been performed to evaluate the effectiveness of the 
application in attention training. The recorded data and their analysis are also contained 
in this work. 

3 



Chapter 2 

Neurofeedback for Attention 
Training 

Electroencephalography(EEG) serves as a method of reading signals from the brain. This 
technology sees broad use not only in neurological sciences, medicine or psychiatry but also 
in the field of brain-computer interfaces(BCIs) which develops methods for controlling the 
computer via brain signals. 

One of the applications of E E G is that of neurofeedback training. Neurofeedback train­
ing is a process, during which a user, monitored via E E G monitoring device, performs 
a specifically designed task. During this task, the user's brain activity is monitored and 
analyzed in order to decipher the user's current mental state. The ultimate goal of neuro­
feedback training is to teach the user to identify when they are in a specific mental state and 
how to control their brain activity in order to attain this state or to get out of it. Ideally, 
the user should then be able to do this instinctively, leading to long-term normalization 
of their anomalous brain activity. Neurofeedback training regimens employ a variety of 
possible training protocols, targeting different frequency bands, depending on what mental 
state should the user be trained to better control. Most common applications of neuro­
feedback nowadays are neurofeedback protocols for attention trainingfll], stress control[15] 
and anxiety control [7]. Other notable applications are neurofeedback regimens for epilepsy 
patients [20], schizophrenia patients [21] or a method of training paralyzed patients in using 
BCIs. The users are taught to control their brains with the help of provided feedback. This 
feedback can be in a variety of audio, visual or audio-visual forms. 

This chapter explores the different main brain wave frequency bands, along with their 
significance for neurofeedback training in general. Then, common attention training neu­
rofeedback protocols, targeting specific frequency bands, are presented. Lastly, the types 
of possible feedback that neurofeedback applications can provide is summarized. 

2.1 Bra in Wave Frequency Bands and Their Relation to Neu­
rofeedback Training 

Depending on what is the focus of neurofeedback training, different brain wave frequency 
bands are targeted. What follows are summaries of the main frequency bands, their sig­
nificance for neurofeedback in general and their role in attention training regimens. Also 
listed for bands focused during biofeedback regimens are the usual scalp regions as seen on 
figure 2.1 where electrodes are placed when said frequencies are recorded. 

4 



INION 

Figure 2.1: The 10-20 electrode placement system. 

Delta 

• Frequency Range: 0.5-4Hz 

• General Characteristics: N R E M sleep, waking up 

Delta waves appear during N R E M sleep and are indicative of the specific stage of N R E M 
sleep subject is currently in depending on how much of brain activity as a whole is composed 
of them. It is also an important indicator of a range of disorders, with the occurrence 
of specific waveforms in the Delta frequency acting as the indication. E.g., K-complex 
waveforms1 occuring at the start of a seizure. Delta waves are not used when training for 
attention. 

Theta 

• Frequency Range: 4-8Hz 

• General Characteristics: daydreaming, deep relaxation, meditation, sleepiness, 
arousal in adults 

. Scalp Regions: 01 , 02, Pz 

Theta waves are generally observed when one is in a state of sleepiness or tiredness and 
about to fall asleep or when daydreaming. During training, it can be desirable to either 
enforce it, when the goal is stress or anxiety management, or suppress it, when training for 
attention. 

Alpha 

• Frequency Range: 8-14Hz 

• General Characteristics: passive attention, peacefulness, meditation, deep relax­
ation, most prominent when eyes are closed 

X A waveform normally occuring during stage 2 of N R E M sleep. 
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. Scalp Regions: F3, F4, P3, P4, 01 , 03 , 02, Fz, Pz, Oz 

Alpha waves are mostly targeted in biofeedback regimens with the goal of stress or pain 
control. For attention purposes, alpha can indicate passive attention without specific focus. 

Sensorimotor Rhythm / M u Rhythm / Low-Beta 

• Frequency Range: 12-16Hz 

• General Characteristics: mental alertness, physical relaxation, inhibited by motor 
activity 

• Scalp Regions: C3, C4 

Sensorimotor rhythm(SMR) a.k.a. M u rhythm is a frequency band located in the fre­
quencies of Low-Beta. This band indicates a state of calm concentration and as such is in 
some attention training regimens enforced. S M R is also naturally suppressed during motor 
activity, whether it is actually performed or even imagined. Because of this suppression, 
S M R is used in biofeedback applications as a control scheme of an application via imaginary 
movement, often in addition to VR[36]. This application control method is called Motor 
Imagery and will be discussed in later parts of the project. S M R enforcement is generally 
desirable for both attention training and stress and anxiety management training. 

Beta 

• Frequency Range: 16-30Hz 

• General Characteristics: strong concentration, high energy, stress, anxiety 

. Scalp Regions: Pz, C4, C3, Cz 

Beta, in some works separated into Beta(16-20Hz) and High-Beta(20-30Hz), waves are 
the go-to indicator of focus and alertness and as such are generally the focus of attention 
training. They are, however, also an important indicator of stress and anxiety and thus 
are inhibited during stress management training. In attention training regimens, the Beta 
waves are enforced in order to achieve a state of focus. 

Gamma 

• Frequency Range: >30Hz 

• General Characteristics: memory retention, focus, attention, learning, stress, anx­
iety, high arousal 

• Scalp Regions: Oz 

Gamma waves have demonstrated relevance for several cognitive processes, such as 
perception, learning and memory. Studies have been done, exploring, whether gamma 
training can enhance intelligence[17] or perceptual processing[26] with some promising re­
sults. Biofeedback training of the Gamma frequency band is not as common as stress or 
attention regimens, however. This is in part due to difficulties in separating the Gamma 
waves from muscle-activity interference(20-300Hz), which it is entirely overlapped by. This 
strong interference needs to be resolved before any actual research conclusions into Gamma 
biofeedback training can be made. 

I.i 



2.2 Attention Training Protocols 

In general, neurofeedback attention training protocols consist of a number of sessions, usu­
ally in the tens, with frequency of one or two per week. The length of each session can also 
vary, depending on the neurofeedback application used and on the user. Common lengths 
are between 30 minutes and an hour. Different approaches need to be taken for example 
when working with children because of their shorter attention span and the fact that they 
often undertake neurofeedback training not of their own volition. 

Typical session starts with a pre-training E E G screening to determine baseline threshold 
values of the monitored brain frequency bands. This is absolutely necessary to do, as these 
values depend on many changing factors such as the user's mood, how tired they are, if 
they are in any stress, etc. The session itself then consists of the user controlling the 
neurofeedback training application. During the training, supervising person monitors brain 
activity of the user. Some applications, for example at the V U T ' s Alfons student help 
center2, allow the supervising person to modify the target thresholds on the fly. This is 
done, so the user is not discouraged if they are not very successful during the session, as 
their willingness to participate is an important factor in the effectivity of neurofeedback 
training. If the training session is long, or when working with children, breaks can be made 
during. After the training session, the supervisor finishes with a short evaluation of the 
user's performance. 

There are three common attention training protocols: 

• Theta/Beta — Protocol aiming to suppress Theta level and enhance Beta. Probably 
the most common attention training protocol. In some cases, Low-Beta is targeted 
instead of Beta. 

• Theta /SMR — Protocol aiming to suppress Theta level and enhance SMR. This 
training protocol tries to improve calm focus without increasing anxiety and stress, 
which are indicated by higher Beta frequencies. Can be used alongside Theta/Beta 
protocol. 

• Alpha/Beta — Protocol aiming to enhance Alpha frequency band and regulate Beta. 
This is usually done when the goal is anxiety treatment. It can, however have positive 
impact for attention also. Mainly because anxiety is a very common comorbidity to 
A D H D , with intrusive thought as a common symptom affecting both disordersfl]. 

2.3 Approaches and Methods in Attention-Focused Neuro­
feedback Training Applications 

Neurofeedback for improving user's attention generally falls under the so-called high-frequency 
neurofeedback. This means that it focuses on amplifying higher-frequency bands — Low-
Beta, Beta, governing alertness and focus, while impeding or regulating lower ones -
Theta, sometimes Alpha, governing relaxation and distraction. Neurofeedback then usu­
ally follows one of two primary approaches, those being biofeedback monitoring (a.k.a. 
passive biofeedback) and biofeedback training (a.k.a. active biofeedback), which differ 
in the way the user interacts with the feedback application. 

2 V U T ' s Alfons student help center — https://alfons.vutbr.cz 
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Passive Biofeedback 

Passive biofeedback has the user performing a mental task, such as studying educational 
materials, while they are monitored by E E G equipment. During this task, feedback is 
provided to them in the forms of audio feedback, visual feedback, tactile feedback or a 
combination thereof. As the feedback's effect is only informative, the user needs to be 
taught how to interpret the feedback given, so that they can adequately react to it. 

Passive visual feedback usually consists of a variety of dynamic graphs on a screen, 
displayed in such a way, that the user can at a glance evaluate their current state. Audio 
feedback works off of a threshold, set at the beginning of a training session, derived from 
the user's overall mental state at that particular time. When the values of monitored 
frequency bands are below or above the threshold, a repeated auditory cue is played as a 
form of negative or positive feedback respectively. This cue informs the user of their current 
attention state. The feedback can either be simple, just playing a sound when threshold is or 
is not met, or more complex, with different sounds for specific frequency bands or multiple 
thresholds. Audio and visual feedback are often combined. Tactile feedback affects an 
instrument the user is using to perform their task. For example, [2] uses a modified game 
controller to provide feedback. The user plays an unmodified commercial video game, while 
the biofeedback application modifies the responsiveness (vibrations, precision of controls) of 
the game controller depending on the user's attention level. The overall goal of passive 
biofeedback applications is to incite in the user a feeling of relaxed attention. 

Active Biofeedback 

In active biofeedback training, the user, instead of simply being monitored while accom­
plishing a task, actively controls the application through their brain. The tasks of one or 
more objects on screen, that change position, shape, color or other characteristics based 
on user's brain activity. This approach often utilizes gamification'^ to make the tasks the 
application throws at the user as appealing as possible. Motor imagery(MI) is a specific 
form of control scheme utilized for active biofeedback. MI uses the fact, that imaginary 
motor movement has a noticeable effect on the S M R frequency band in the form of its 
suppression. This is a useful thing for gamified applications, because it increases the user's 
level of immersion into the game, thus making focus on it easier. MI games can be paired 
with virtual reality(VR) headsets to further improve immersion and filter out the environ­
ment. This can for example produce a simple flight simulator game [36], where the user is 
in a cockpit and through imagining simple arm movement controls the plane or spaceship. 
The disadvantage of MI is that it can be very difficult to get the user to a point where they 
can actually imagine the movement in such way that the changes in S M R are usable for this 
control scheme, because active imagination of motor movement is not something a person is 
used to. Active biofeedback sessions tend to be shorter than passive feedback ones, mostly 
because of the higher mental demand for active focus. At the end of the session, the user 
should be feeling alert and energized. 

3Gamification is the application of game-design elements and principles in non-game contexts. 

8 



Chapter 3 

Electroencephalography Signal 
Processing for Neurofeedback 
Purposes 

This chapter explores the underlying technology behind neurofeedback, specifically E E G 
signal, its acquisition from the user and the processing necessary for it to be usable for 
neurofeedback training. It also discusses the role machine learning can play in E E G signal 
processing and its possible use for neurofeedback purposes. This chapter draws heavily 
from the books Brain-Computer Interfaces: Principles and Practice by J . Wolpaw and E . 
W . Wolpaw[34] and Analyzing Neural Time Series Data: Theory and Practice by M . X . 
Cohen[9], which focus on E E G signal processing and brain-computer interfaces. 

3.1 Basics of Electroencephalography 

Electroencephalography(EEG) is typically a non-invasive method of measuring electrical 
activity in the brain of a person at a given time through the use of electrodes placed along 
the person's scalp. While intracranial 1 E E G methods exist, as this work focuses on the use 
of E E G in neurofeedback training, only scalp electrode-based methods will be considered. 
Each of the electrodes is connected to an amplifier, which in turn is connected to a E E G 
recording machine. The number of electrodes can vary. Two electrodes, usually adjacent 
ones or one at measured site and second on some reference site common to all electrodes, 
form an E E G channel. The potential of this channel is calculated as the difference between 
the potentials of the two electrodes. This then produces a continuous chart with the ampli­
fied electric charge of the channel, like the one that can be seen on figure 3.2 with example 
of multi-channel eeg. 

Placement of the reading electrodes is an extremely important part of E E G recording 
and is highly dependent on what exactly are the E E G data going to be used for. As 
different regions of the brain serve different function, corresponding regions of the scalp 
can provide readings related to the corresponding function. The placement of electrodes 
usually follows the international 10-20 system[18] or the higher-resolution 10-10[22](on the 
figure 3.1) system, which specify these different region with relation to the size of the head. 
The digits in the system name represent actual distances between electrodes which are 10% 

1Invasive method, which has electrodes surgically implanted directly into the brain. 
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Figure 3.1: The international 10-10 electrode placement system. Colors of locations repre­
sent corresponding brain regions as seen on the brain image in the top right. 

or 20% (or 10%, 10% etc. for more precise systems) of front to back or right to left scalp 
distance. 

Electrode placement locations use naming convention consisting of a letter and a num­
ber. The letter specifies lobe — F - Frontal, O - Occipital, C - Central, P - Parietal and T -
Temporal. The number specifies hemisphere location, with odd numbers for left hemisphere 
and even ones for right hemisphere. In place of the number, z can be found, which refers 
to an electrode placed on the midline. 

When used for neurofeedback attention training, E E G signal from the sensorimotor 
cortex, cingulate gyrus and frontal lobes, specifically locations C3, C4, Cz, FCz , CPz are 
of interest as usual locations for measuring Beta, S M R and Theta bands[19]. 

E E G Signal Artifacts 

In the process of E E G monitoring, undesirable artifacts have to be taken into account. 
These artifacts are signals not originating from the brain, that contaminate the measured 
E E G signal. Prevention and removal of artifacts is a very important part of the process 
whenever E E G is used. Generally artifacts can be classified into two main groups, phys­
iological and non-physiological. 3.3 shows an example of the effect different artifacts can 
have on the E E G reading. 
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Figure 3.2: Example of multi-channel E E G recording[33]. 

Physiological Artifacts 

Physiological artifacts are signals caused by non-brain body activity. Some of the most 
common ones are: 

• Ocular activity — Caused by blinking and eye movements. This artifact cannot 
be fully prevented, as blinking is involuntary, as are micro eye movements. Ocular 
activity contaminate E E G signals in the lower frequencies (delta, theta, alpha), specific 
frequencies depending on the type of activity, e.g., kappa rhythm(eyelid fluttering) 
showing up in the alpha frequency range. 

• Cardiac activity — Caused by the heartbeat. Shows up as periodic artifacts, de­
pending on the specific electrode location. Filtering it can be aided by including single 
referential electrocardiography electrode. 

• Muscle activity — Caused by moving muscles in the head, neck and shoulder areas. 
Causes very noticeable artifacts in higher frequencies(beta, gamma and above). Is 
very disrupting when staying still is not a possibility for a user. As it overlaps beta 
frequencies, care should be taken to try and remove this artifact or prevent it when 
any beta-focus neurofeedback regimen is implemented. 

• Respiratory activity — Caused by breathing while the user is laying down, which 
may change skin-electrode contacts with chest movements. Generally not a problem 
apart from E E G monitoring concerning sleep. Causes periodic interference in lower 
frequencies. 

Non-Physiological Artifacts 

Non-physiological artifacts are caused by environmental or technical interference. Sources 
of this can be for example poor grounding, power network noise, bad electrode contact with 
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Figure 3.3: Example of the effects that different artifacts can have on an E E G reading. 
From the left, these artifacts are: blinking, bad contact between fourth electrode from 
the bottom and skin, swallowing and bad contact between shared reference electrode and 
skin[8]. 

skin or cable interference. These can usually be prevented by proper practice or filtered 
out in case of some that are expected, like the Czech power network noise around 50Hz. 

3.2 Acquiring the E E G Signal 

The E E G signal represents changes in electrical potential coming from the activity of cere­
bral neurons, measured on the skin surface by scalp-placed electrodes during a time-frame 
and amplified. This change in potential is measured in specific channels. A channel repre­
sents a pair of E E G electrodes, one located on the specific region the measurement requires 
and one reference electrode, which is usually either adjacent to the first or one that is 
shared by all electrodes as a referential electrode. More common of the two approaches is 
the common referential electrode approach. A collective placement of electrodes and the 
resulting set of channels is called a montage. The output voltage of a specific channel at 
time t is then given, in respect to an external ground and used amplifiers, as follows[34]: 

E(t) = A[V1(t)-V2(t)}, (3.1) 

where E(t) is the channel output voltage, A is the total system gain due to the several 
amplifier stages and V\ and Vi are electric potentials of the two E E G electrodes. Example 
of signal acquisition pipeline feeding into a brain-computer system can be seen on figure 3.4. 
The raw potentials from the E E G electrodes are first ran through a differential amplifier. 
This step removes a significant amount of noise shared between the two electrodes. Then, 
usually a series of analog filters is applied, most commonly, following are employed: 

• A low-pass filter[27] to remove higher frequencies (e.g., 100+Hz), which correlate to 
brain frequencies that are not interesting for a specific analysis and higher-frequency 
muscle movement artifacts which are present in most of E E G readings. 

• A high-pass filter[27] to remove lower frequencies (e.g., <lHz) , again, to remove un­
interesting frequencies. 
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A notch filter[27] to remove specific frequency correlating to power network noise. In 
the Czech Republic, that would be about 50Hz. 

Figure 3.4: A diagram example of signal acquisition pipeline. V\ and V2 represent scalp-
placed E E G electrodes, with V2 being referential. The difference between the raw measured 
potentials is fed through a differential amplifier. What follows is a series of filters to remove 
common artifacts. This filtered signal is then amplified significantly, sampled and digitized. 
The digital signal is then processed and used by a B C I system. 

As the signal from the E E G electrodes is very weak (units to tens of fiV), it is then 
significantly (e.g., 20000 times) amplified, following the filters[34]. The amplified signal is 
then sampled and digitized using an analog-digital converter. This digital result can then be 
projected onto a display or further processed for other purposes, like for a B C I application. 

3.3 Extracting and Translating E E G Signal Features for Neu­
rofeedback 

Having an amplified digital E E G signal is not enough for a neurofeedback application to 
work with. A further processing must be done on the signal. Feature extraction is a process 
during which signal is analyzed in a way that allows it to be represented by its features -
specific characteristics of the signal, in form understandable for the human or application 
and free from extraneous content. Complex B C I applications, which are controlled by trans­
lating user's mental commands to application commands, generally require these features 
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to fulfill a number of conditions. Traditional neurofeedback applications however usually 
work by monitoring current power of a specific frequency band in order to control the feed­
back given to the user. Most commonly neurofeedback applications are controlled with just 
modulations of targeted frequency bands — e.g., application for attention training, which 
moves a cube when Beta is above set threshold and Theta below a set threshold. Thus, 
the features to be extracted from E E G signal when performing neurofeedback training are 
the base frequency bands — Delta, Theta, SMR, Beta and Gamma. For attention, Theta, 
S M R and Beta should be sufficient, maybe in addition to Alpha, if monitoring stress level is 
desirable. A set of multiple extracted features is referred to as feature vector. This feature 
vector is then converted to application commands in a process called feature translation. In 
some solutions, a single transformation can produce these commands right from the digital 
signal, making no distinction between the feature extraction and translation stages. The 
feature extraction process can be seen as three consecutive steps [34]: 

• Signal preprocessing in order to minimize noise and enhance relevant aspects of the 
signal. 

• Extraction of the target features. 

• Preparation of feature vector for translation stage such as normalization. 

Preprocessing 

The preprocessing step when extracting features for neurofeedback usually starts by filtering 
the uninteresting frequencies from E E G signal. This can be done using a band pass filter[27], 
which passes a selected frequency band. For attention training neurofeedback, such a band 
could be 4—30Hz, which would allow extraction of Theta, Alpha, S M R and Beta. Generally, 
it is wise to choose this frequency interval prudently, as even though higher frequencies 
are not monitored during attention training, they could be useful for identifying muscle 
artifacts in the E E G signal [34]. Resulting signal is then sometimes normalized in order to 
simplify further processing. This, however should be done with caution, as it may lead to 
loss of important information, especially for neurofeedback. Normalization is more useful 
when signal dynamics are monitored rather than amplitudes. Neurofeedback is generally 
interested in amplitudes, hence normalization is not as useful there. 

The last preprocessing step is the removal of noise and artifacts. As discussed before, 
artifacts are an undesirable contamination of the E E G signal, originating from somewhere 
else than the brain. Noise on the other hand is a signal contamination originating from 
unrelated brain functions. A common way to remove noise and some artifacts are spatial 
filters[9]. Spatial filters take advantage of the fact, that recorded E E G channels often have 
a common referential electrode. This allows for reconstruction of any alternative set of 
channels by weighting and combining the channels after digitization. The use of a spatial 
filter can enhance sensitivity to specific brain signals — which is crucial for a neurofeed­
back application — or suppress certain artifacts and noise common to more electrodes [34]. 
Usually, spatial filters are selected as weighted sums of respective channels, e.g., in matrix 
form and matrix notation: 
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where X is a matrix of consecutive signals in channels, with P being the number of con­
secutive signals and iV number of channels. W is the weight matrix with each of M rows 
representing a set of iV channel weights. Each row of Y then constitutes a resulting spatially 
filtered channel — M channels with P samples. 

There are 2 main categories of spatial filters, depending on how they acquire the weights 
W, these being data-independent spatial filters and data-dependent spacial filters. Data-
independent spatial filters, as the name suggests, rely solely on fixed geometrical relation­
ships with no regards for the specific data. Three common filters in this category are small 
and large Laplacian spacial filters and common-average reference filters [34]. The common-
average reference filters are realized by recording all channels with a common reference 
electrode, computing the global mean of all the channels and subtracting it from each and 
every channel. This operation helps mitigate the effect of noise and artifacts shared by 
all electrodes, like the power line interference. The surface Laplacian spatial filters on the 
other hand do not use the average of all the electrodes, but instead only taking into account 
a number of electrodes around a specific one in some radial distance. Again, a mean of 
these is computed and subtracted from the specific electrode channel. This removes the 
commonalities between spatially close channels, resulting in emphasized local activity. 

Data-dependent spatial filters are derived from each individual person's data. Wi th 
increased complexity, these filters allow for results that are more tailored to the specific user, 
which can be highly beneficial for B C I applications utilizing a more complex control scheme. 
They are also useful where exact characteristics of the monitored brain activity are not fully 
known. Some common methods for deriving these filters are principal component analysis, 
independent component analysis and common spatial patterns [34]. As the characteristics 
relevant for attention training neurofeedback are fairly well known and the control scheme 
of these applications not overly complex, data-dependent spatial filters are not as common. 

Target Feature Extraction 

When developing a neurofeedback application, the sort of signal features of interest are 
the frequency features. Usually, neurofeedback applications are controlled by the power of 
specific frequencies being over or under a set threshold for a period of time. Therefore, 
computing the power of monitored frequencies is the goal of feature extraction for neuro­
feedback training application. The most common method of converting a signal from time 
domain to frequency domain is the discrete Fourier transform[9] (DFT) , usually computed 
with fast Fourier transform[9] (FFT) . There are, however some alternatives to F F T , notably 
simply computing band powers and autoregressive (AR) modelling [34]. 

Band power calculation is a very simple and straightforward method for tracking specific 
frequency amplitudes. It consists of first isolating said frequency using a band pass filter, 
producing a largely sinusoidal signal. This signal is then either squared or converted to 
its absolute value, in order to receive only positive numbers. Lastly, the whole signal is 
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smoothed using either a low-pass filter or integration. This resulting smoothed signal then 
represents the respective band power. While yielding good results, F F T or A R modelling 
is preferred to this simple method when tracking multiple different frequency bands at once 
because of the need for multiple band pass filters. As neurofeedback generally does monitor 
multiple frequency bands, other methods are preferred. 

The primary method behind A R modelling is representing the signal to be analyzed 
as white noise passing through an infinite impulse response (IIR) filter[27]. The signal's 
spectrum is then defined by the weights of such a filter. This method is able to perform 
spectral analysis on shorter signal blocks than F F T , which is a boon for B C I applications, 
that require to be highly responsive — e.g., cursor movement on the screen or wheelchair 
controls. A R modelling however has some problems with accounting for spectrally adjacent 
or outright overlapping signals (e.g., SMR, which overlaps lower Beta) or distinguishing 
artifacts. 

D F T and its efficient implementation — the F F T — is probably the most common 
method for converting signal from the time domain to the frequency domain. It often serves 
as a baseline method for comparison between spectral analysis methods due to its relative 
simplicity and effectiveness. Fundamentally, the Fourier transform works by representing 
the signal as a sum of a number of sinusoids. Formally, Fourier transformation of variable 
x at frequency / can be defined as [9]: 

N 

•r—^ -i2nf(k-l) 
Xf = 2ZXke N . (3-3) 

k=l 
where iV is the number of discrete points in the sampled signal and Xf is the Fourier 
coefficient of x on / . This coefficient is a complex number representing magnitude and 
phase. Wi th that, the magnitude is computed as such: 

\Xf\ = Va2 + b2, (3.4) 

where a and b are the real and imaginary components of the complex number Xf respec­
tively. Power, which is to be used as the final extracted feature, is then computed as 
magnitude squared. 

Feature Translation 

Simply put, feature translation is the process of translating some feature vector X into 
some application command C. This process is done by a model, which can be either some 
mathematical equation, a set of them or some mapping mechanism. For a theoretical 
neurofeedback attention training application, with feature vector x, a model comparing the 
powers of individual brain frequencies to set threshold could have this form: 

„ [positive for x; >= 9 Vxj £ X , 
C=V J , (3.5) 

I negative for Xi < 9 Vxj £ X 

where C is command given to an application, positive meaning "give positive feedback" 
and negative meaning "give negative feedback", xi is the power of brain frequency H and 9 
is the set threshold. Some variations on this simple threshold model are the basis of many 
typical neurofeedback training applications. Other example of a simple model could be one 
described by a linear function: 
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C = bX + a, (3.6) 

where again, C again represents an application command vector and X represents a feature 
vector, a and b are then parameters of this model. Some more sophisticated models, 
such as those using machine learning, can even encompass both feature extraction and 
translation, as they take digitized E E G signal as input and output application command 
outright. Generally, these models are highly dependent on the specific B C I application. 

Machine Learning for E E G Processing 

Machine learning, especially deep learning(DL) [14], can be a valuable tool in all stages of 
E E G signal processing[16][29], from artifact filtering to feature translation[35]. It can help 
mitigate some problems inherent to the nature of E E G signal, such as its low signal to noise 
ratio due to multitude of possible artifacts, its strong variability in time and high inter-
subject variability due to physiological differences between individuals. When taking other 
domains as examples, such as natural language processing and image processing, D L could 
alleviate the need for rigorous preprocessing of data, as it potentially could extract features 
from raw data. It could also help with generalization of used models to help with the inter-
subject variability. There are, however, still many problems present with the usage of D L 
for E E G signal processing purposes. The field of D L E E G processing is still fairly new and 
certainly more niche than natural language or computer vision. The professional extraction 
of E E G signal is also time and money intensive process, with large privacy concerns, which 
leads to a problem of not enough data available for creating large open datasets such as 
those available for other domains. E E G signal is also very different from visual or language 
data in its signal to noise ratio and it has not been sufficiently explored whether existing D L 
techniques are sufficient for this. There is also a problem of training the neural networks 
present when employing supervised learning. This requires a sufficient training dataset, 
where an E E G professional is needed for annotation, as it is very difficult to distinguish 
between a clean signal and a noisy one. As far as unsupervised learning goes, there has 
been some reports of succesful applications, however it is still a very unexplored field. 
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Chapter 4 

Attention Neurofeedback 
Application 

The main focus of this project was the development of neurofeedback training applica­
tion. Specifically, this application targets users with attention deficit hyperactivity disorder 
(ADHD) or other attention-affecting problems. The feedback is provided in the form of a 
simple interactive game, where the results of the player character's action are decided by 
whether the user's attention level is sufficient. This gamified approach to neurofeedback 
aims to provide to a user an actual enjoyable experience, not only training. The applica­
tion is developed using the OpenBCI platform 1, which is a community platform, providing 
open hardware and open source software solutions for B C I technology. For E E G signal 
acquisition, the Ultracortex "Mark IV" E E G Headset2 with dry electrodes is used. The 
headset is designed with 10-20 electrode placement system in mind. The 16-channel Cyton 
Board with the Daisy extension board 3 will then be used for signal acquisition. For the 
application development, the Unity game engine will be used'1, utilizing the open source 
brainflow library 5 to process raw E E G data. 

This chapter will discuss design philosophy and implementation of this neurofeedback 
training game (further addressed as "neurogame"). 

4.1 E E G Signal Processing Pipeline 

The neurogame is controlled by measuring the value of S M R frequency band power and 
comparing it to automatically adjusted threshold value. The goal of the E E G processing 
pipeline is to filter the incoming raw E E G signal, isolate the S M R frequency band and 
calculate its power value. The whole process is illustrated on figure 1.1, with figure 4.2 
showing the scalp electrode placements chosen. The digitized E E G signal, acquired from 
the Daisy board is further filtered, first by using a 50Hz notch filter to get rid of the 
electrical network interference and second by using a band filter to acquire only the range 
of 1—30Hz, in order to remove the inherent D C offset[23] of the device. Then, all samples 
with values over 100/xV or under -100/xV are removed, as these are most likely artifacts. 
Data is further detrended to remove any potential linear trends [10]. The power of these 

1 OpenBCI website 
2 Open BCI e-shop link for the headset 
3Open BCI e-shop link for the board 
4 Unity 3D engine 
5 The Brainflow library 
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frequency bands is extracted by computing the Fast Fourier Transform, which is used to 
compute the power spectral density[28], which will in turn is fed into the brainflow library 
to extract the power of the S M R band. This power value is then translated into input using 
a threshold model as seen in 3.5. 

6 digitized EEG channels 50Hz Notch Filter 1-30Hz Band Pass 
Filter 

Filtered 6-Channel signal 
Detrending Outlier Removal Detrending Outlier Removal 

PSD SMR band SMR Average PSD Isolation Accross Channels 
SMR Band Power Average 

Figure 4.1: The diagram of E E G processing pipeline to be used. The E E G signal is filtered 
by a 50Hz notch filter, followed by band pass filter to acquire only frequencies 1—30Hz. 
Outliers with amplitudes lower than — lOOfiV and higher than WOfiV are removed. De-
trending is applied to filtered data. Features in the form of frequency band powers are 
extracted using fast Fourier transform and PSD, averaged accross channels and then trans­
lated using a threshold model. 

-®--<2>--©--<3>--<$>!© 

Figure 4.2: The chosen electrode placements according to the 10-20 model. 

Using Machine Learning 

This work has decided not to employ machine learning in its implementation. While it 
could provide some help with mitigating the expected high levels of noise, natural for dry-
electrode recordings, the potential problems still overweight the benefits. The unavailability 
of useable public datasets would make training the neural network difficult, along with 
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the fact that any custom dataset would have to be made without supervision of an E E G 
professional, which would make its value questionable. The more common approach of am 
E E G processing pipeline is employed as it time-tested and can be used without the need of 
consulting an E E G professional in order to confirm correctness of recorded data. 

4.2 Design of the Neurogame 

The primary goal of the neurogame is to train the user in taking control of their mental 
state. This is usually done by utilizing a simple feedback loop — the user is instructed to try 
and get into and stay in some mental state (in this case attention); the application decides 
whether this state is attained by monitoring user's brain activity based on some thresholds, 
which are usually modifiable by the training supervisor on the run; the application provides 
either positive or negative feedback; the user tries to stay in their current mental state or 
modify it based on the feedback given; repeat ad infinitum. Graphically, such a loop is 
shown on figure 4.3. This process can feel tedious to the user, as these applications tend to 
be very simple in terms of user-application interaction and their feedback often consists of 
the movement of an object when mental activity criteria are met. The developed neurogame 
tries to create a more immersive and engaging experience for the player. To attain this goal, 
following is important: 

• A fitting theme for the game — so that it makes sense that the user is affecting the 
game just by using their mind. 

• Mixing up the training tasks to try and break the tedium — instead of just moving 
some arbitrary object, change the object of focus during the training sessions and 
along with it change how the object reacts to user input. 

• Creating some idea of progress — an end goal for the session. Instead of the session 
ending when some time limit is met, have an actual goal the user is trying to achieve. 

But even with these criteria, this game still followss the basic neurofeedback training loop 
4.3, in order to properly work at improving attention. The goal is to not make the user feel 
that they are exercising while that is exactly what they are doing. They should at least 
partially enjoy the experience. 
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Positive 
Feedback 

Negative 
Feedback 

Figure 4.3: Diagram of a typical neurofeedback application feedback loop. 

More formally, the game implements an SMR-enhancement training regimen using vi­
sual feedback. 

Thematic Design and Gameplay Loop 

A n immersive neurogame should have a reason as to why the player is affecting his envi­
ronment with his mind. This neurogame makes the player a wizard's apprentice. In such 
an environment, it makes sense that the user is using their mind to change it — they are 
casting spells, which as one would expect, requires focus and attention. A theme such as 
this provides an immersive link between the technology used and the feedback given. 

The gameplay loop consists of the user learning a specific spell. This process has three 
stages. Drawing a spell glyph 4.4 — Here, the user is faced with a task of drawing a 
symbol. The screen displays the symbol, which is automatically traced by a cursor. The 
speed of the cursor is changed by whether the user's attention is sufficient or not, slowing 
down on negative evaluation and speeding up on positive. This stage is finished when the 
cursor traces the whole symbol. 
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first, pi must learn the spoil oloph. let's draw it to 
commit it TO your memory. "Focus deeply on drouiing it. • • • • • 

Figure 4.4: Spell glyph drawing stage. 

Learning the spell 4.5 — The cursor disappears and only the spell symbol remains. 
The user is instructed to focus on lighting up the symbol. When the user is sufficiently 
focused, the symbol's color changes and particles are emitted from it. When focus is not 
sufficient, the symbol starts reverting its color to faded black at a much slower pace and 
stops emitting particles. When the symbol is completely lit up, this stage ends and the 
symbol moves to a side part of the screen and last stage begins. 

Figure 4.5: Spell learning stage. 

Trying out the spell 4.6 — Now, the user is met with a task to complete. A spell 
target is shown and the user is briefed on what the spell effect should do. This is for 
example lighting up an extinguished campfire. When the user's focus is sufficient the spell 
effect starts to manifest — a fire starts to appear etc. and particles are emitted by the spell 
target. When focus is insufficient, the spell starts to revert at slower rate and particles are 
no longer emitted. Upon succefully casting the spell, the session ends. 
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Figure 4.6: Spell casting stage. 

User Interface and App Flow 

The game consists of two main scenes — the main menu scene and the feedback scene. 
Main menu scene 4.7 is used to connect to the E E G headset and select a specific training 
scene. The UI consists of: 

1. Settings Button — When pressed, the configuration dialogue pops up, where the 
user can change some default training parameters. 

2. Connect to headset button — When the headset dongle is connected to USB and 
the headset is powered on, this button established connection between the app and 
the headset. 

3. Start stream button — This button is enabled upon connecting to the headset and 
starts the stream off raw E E G data from the headset to the app and also starts the 
signal processing on the app side. Upon hitting this button, the application starts 
the logging of raw data. 

4. Game Scene Selection — This area consists of buttons which are enabled after 
stream start. Upon clicking a specific button, representing a training scene, the app 
switches to the screen selected and B F training begins. 
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Figure 4.7: Main menu screen. 

Feedback scene 4.8 is where the actual B F training and the gameplay loop take place. 
The UI consists of: 

1. Focus indicator — This box changes colour based on the level of users focus on 
gradient from red to green. Fully green represents the user's S M R band power being 
at or above the current set threshold and fully red representing being 2/j,V2/Hz or 
more under the set threshold. It serves as another form of visual feedback to the 
player. 

2. Text box — Here, the user is provided encouragement and flavour text about the 
current spell. 

3. Play area — Here, all the game components — drawing, symbol and spell targets 
are displayed during the training session. 

4. Pause screen — pressing the Escape keyboard button stops the app (the raw eeg is 
still being logged) until it is pressed again. 

Figure 4.8: Feedback scene. Pause screen usually covers whole scene. 
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The training session generally starts by connecting the headset, starting streaming and 
selecting a specific training scene. Then, the control is in the hands of the training user 
and no intervention is generally necessary. 

Data Gathering and Analysis tools 

After pressing the Start stream button, logging starts. A l l logs are located in folder 
Recordings and the filenames are in the form of timestamp_logtype.csv. The application 
logs all raw E E G data received so it can later be accessed for analysis, as seen on 4.9. 
Apart from raw E E G log, second log file is created, to which all changes to S M R band 
power threshold, used in the threshold classifier, are recorded, as seen on 4.10. 

2. -187500.022352 -187500.022352 17372.781619 ... 0. 147000 192 .000001 ) . . . 1627127003.234021 0.000000 
4 . 000000 -187500.022352 -187500.022352 18329.227363 ... 0.147000 192 .000001 ) . . . 1627127003.242023 0.0000Be 
S. 000000 -187500.022352 -187500.022352 17319.093322 ... 0.223500 192 .000001 ) . . . 1627127003.249028 0.000000 
8. -187500.022352 -187500.022352 18017.785999 ... 0.223500 192 .000001 ) . . . 1627127003.258020 0.000000 
18 .009009 -187500.022352 -187500.022352 17953.815216 ... 0.223500 192 .000001 % . . . 1627127903.266030 0.000000 

Figure 4.9: Raw E E G log example. First column is sample index. Columns 2—17 are 
raw values recorded in channels 1—16 (value of ±187500 means channel is not recording 
anything). What follows is a number of columns with other values (depending on used 
board). 31th column contains a U N I X timestamp and the last column is again some other 
value (used only is some boards). 

[Timestamp Event Valje 
1627057957 TNEGAUT0 3.46487084504759 
1627057958 TPOSAUT0 4.46487084504759 
1627057959 TPOSAUT0 5.24924394206433 
1627057960 TPOSAUT0 5.24924394206433 
1627057961 TPOSAUT0 6.71505900128202 
1627057962 TPOSAUT0 6.71505900128202 
1627057963 TPOSAUT0 6.71505900128202 
1627057964 TPOSAUT0 7.96046226083725 
1627057966 TNEGAUT0 7.30450092578258 
1627057967 TNEGAUT0 7.30450092578258 
1627057968 TNEGAUT0 6.35954535754115 
1627057969 TNEGAUT0 6.35954535754115 

Figure 4.10: Threshold change log example. First column is a U N I X timestamp, second is 
type of change — T N E G A U T O is lowering the threshold, T P O S A U T O is increasing the 
threshold. Last column in the value the threshold has been changed to. 

For data analysis, a python jupyter notebook6 Analysis.ipynb is used. This notebook 
loads specified csv files with raw eeg data and threshold change data. The eeg data under­
goes the same preprocessing as in the app itself — notch filter, bandpass filter, detrending. 
the notebook then provides methods for plotting data samples in relation to time, with the 
ablity to plot multiple files at once for comparation purposes. The data plotted can be 
raw E E G samples, processed E E G samples, S M R band power in time, changes to thresh­
old in time. Other than plotting, the notebook provides methods for scoring session data 
based on either the average S M R band power achieved, median S M R band power, ratio of 
threshold increases to threshold decreases, highest maximum threshold achieved, highest 

6Project Jupyter 
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minimum threshold achieved. The notebook utilizes the brainflow and numpy libraries for 
data processing and the matplotlib library for data plotting. 

4.3 Implementation and Usage 

The application as a whole, including the E E G processing has been implemented using the 
Unity3D game engine in the C # programming language. The analytic tools were written 
in Python. 

E E G Recording 

The recordings are taken using the Ultracortex "Mark IV" E E G Headset with dry 
electrodes and the OpenBCI Cython board with the Daisy extension. 6 of the 
16 available channels are used, with electrodes placed on the locations C3, Cz, C4, P3, 
Pz and P4 according to the 10-20 system. Before each session, proper placement of the 
headset on the head of the user must be ensured. For this purpose, the OpenBCI GUI 
application (4.11) is ideal'. First, place the headset on the subject's head and turn on 
the usb dongle and the cyton board in this order. Next, in the OpenBCI GUI app, select 
live streaming from Cython board with 16 channels and let it autoconnect to the headset. 
Afterwards, start the stream and check impedances on the used electrode channels (available 
by clicking the omega icon next to each channel), this value should not pass 70 kS7. If the 
impedance value is too high, adjust the headset and electrode positions, until it registers 
under 70kf2. Next, have the user blink repeatedly and chekc on the F F T plot if there are 
visible significant artifacts in the <10Hz range. If so, all should be ready, otherwise try 
restarting the OpenBCI GUI and try again. If there is still no visible blink artifacting, 
there may be a problem with the device. Another possible test of measurement can be 
the closed eyes Alpha response[6]. When the user closes their eyes for a few seconds, their 
F F T values at around 10Hz should noticeably spike. This does not however work for all 
people, some people may not produce this increase in Alpha. If everything seems fine 
with the OpenBCI GUI application, close it and proceed with the B F session, as only one 
application can be connected to the board at a time, unless restreaming is set up in the 
OpenBCI GUI application. The board can now produce raw E E G recordings of the user 
with 125Hz sampling rate. 

7OpenBCI GUI 
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Figure 4.11: The OpenBCI GUI. 

E E G Processing 

The E E G signal was processe with the open source Brainflow library. This library provides 
interface for connecting to various E E G recording devices and a large variety of E E G 
signal processing methods. The preprocessing steps are all implemented in the C # script 
NeuroinputHandler.es. This script handles both connecting to the board and reception 
and processing of data. The board object employs a ring buffer of size 45000 to buffer 
incoming raw E E G samples, which equates to 6m of streaming (sampling frequency of 
125HZ). After starting the stream, the script waits 10s for the buffer to be sufficiently filled 
with data. Then, a processing method, which handles all the data manipulation and sets 
the current value of S M R band power, is set to be invoked every 200ms. The processing 
starts by applying a 50Hz notch filter to get rid of the ambient electrical network noise. 
Next, a bandpass filter with a band of 1-30HZ is applied, specifically using a fourth order 
Butterworth filter[25]. This specific band was selected to fully encompass the S M R band. 
The lower frequency end should not be set higher than 1Hz due to high pass filters creating 
further distortions when the pass value is higher than 1Hz and 1Hz is enough to remove 
the present D C offset in raw data[23]. The reason for using both a l-30hz band pass and a 
50hz notch filters is that if only the band pass was used, there could still be some network 
interference left across the recording if it is particularly strong[13]. Hence, to be sure, both 
a notch filter and a band pass filters are applied, after the band pass is applied, outlier 
filtering is performed. This removes all samples with voltage higher/lower than 100/xV/-
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100/xV, as those are most likely artifacts. As dry electrodes specifically have problem with 
signal drift, the data is then detrended using the provided Brainflow method. Then, power 
spectral density is calculated using the Welch method[32] using F F T with 256 point hanning 
window. Lastly, using the provided brainflow method, the S M R band power is extracted. 
A l l of these operations are done for each separate channel. At the end, the band powers 
are averaged to get the final value to be used. The script also computes and provides a 2s 
average of the S M R band power to be used in threshold classifier modification. 

Classification 

Classification of the extracted S M R band power is implemented in the C # script Input-
Classifier, cs. The classifier can on demand evaluate the user's current S M R band power 
against a set threshold and returns a boolean value referring to the result — true value if 
at or above threshold, false if below. The classifier is self-setting in the way, that it changes 
the threshold value based on the ratio of successful evaluations against the unsuccesful 
ones. Every second, a ratio of success/failure evaluations is checked. If it is at or above 1.2, 
the classifier threshold is changed to the 2s average of user's S M R band power increased 
by 2/iV2/Hz to increase difficulty and encourage S M R band power enhancement in the 
long run. Similarly if at or below 0.7, the threshold is set to the 2s average decreased by 
2fj,V2/Hz to reduce the difficulty and prevent frustration from prolonged failure. 

Application 

The application is developed using the Unity3D game engine and written in the C # lan­
guage. Apart from Unity itself, one free addon to it was used in the implementation of this 
application. The addon is the DOTween animation engine 8 . The free font Ancient Modern 
Tales9 was also used. Then, the Brainflow library was added to the Unity engine for E E G 
signal processing. The application cosists of a Main Menu scene and then 10 other scenes, 
which house the B F scenarios. The Main Menu provides means to connect to the E E G 
headset, start data stream and a setup dialog. The setup dialog allows the user to change 
the default values of following training parameters: 

• List of 6 channels to be used for E E G signal. Have to correspond to the same channel 
numbers as in the OpenBCI GUI application. (Defaults: 3, 4, 11, 12, 15, 16) 

• Frequency of threshold modification check in seconds. (Default: 2) 

• Amounts by which threshold is increased/decreased in relation to average, when the 
user is too succesfull/unsuccesful in fj,V2/Hz. (Default: 2/2) 

• M i n / M a x speed of symbol drawing cursor, modifying the length of drawing stage. 
(Default: 0.2, 2) 

• Success/Failure evaluation ratios needed for changing the threshold. (Default: 1.2/0.7) 

• Length of symbol glowing animation in seconds, modifying the length of spell learning 
stage. (Default: 15) 

8Dotween animation engine — http://dotween.demigiant.com 
9Ancient Modern Tales font — https://www.dafont.com/ancient-modern-tales.font 
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• Length of casting animation in seconds, modifying the length of spell casting stage. 
(Default: 20) 

These values are saved in the public class settings and accessed by the relevant objects at 
runtime and have to be set before starting the E E G stream. The input reception and clas­
sification is handled by the InputHandler object, which houses the NeuroinputHandler.es 
and InputClassifier.es scripts. This object is set to be persistent across game scenes. 

The application uses a simple event messaging system object [31] to allow game object 
scripts to monitor game events without having to couple them using direct reerences. This 
message system uses very simple Listen/Trigger paradigm. There is one EventManager 
object housing a EventManager.es script that provides the interface for listening to/trig­
gering events. A l l of the possible events are listed in the Enums.Message enum. The event 
manager keeps a dictionary of messages and methods that should be invoked provided the 
message is supplied using the TriggerEvent method. Any object can add its methods to 
the dictionary by calling the StartListening method or remove it from the dictionary using 
the StopListening method. A n example of event messaging is depicted on diagram 1 0 

Event Manager Object 1 Object 2 Object 3 

StartListening(EVENT1, method"!) 

StartListening(EVENT2, method2) 

StartListening(EVENT2, method"!) 

•D TriggerEvent(EVENT2) 

lnvoke(method2) 

I t Invoke(methodl) 

Figure 4.12: Example of two objects subscribing their methods to specific messages and 
then them getting triggered by third object. 

Upon succesfully connetcting to the headset, starting the E E G stream and selecting 
the B F scenario, the relevant game scene is loaded and the game starts. The FlowManager 
object triggers some game events which are not dependent on the user input. Such an event 
can be progressing to next game stage after the congratulatory message for completing the 
current stage has been displayed for long enough amount of time. This is done simple by 
delayed invoking of methods, and is done in the FlowManagerTraining.es script attached 
to the object. The game scenes contain a Focuslndicator UI object, which is a colored 
and textured rectangle sprite that changes color on a gradient from red to green based on 
user's neuroinput. This is done simply by accessing the NeuroinputHandler S M R band 
power values and comparing the input to an interval of < threshold — 2, threshold > and 

10fig:eventdiag 
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changing the gradient according to that. Another prominent object in the game scenes is 
the TextBox object, which displays messages to the user. These generaly inform the user 
of what the visual feedback of the current stage will look like, e.g. that the symbol will 
start glowing with input in the spell learning stage. It also display some lighthearteded fluff 
messages to break the monotony of the B F training and provides words of encouragement 
to the user. 

The game scenes are broken down into three distint stages which differ by the goal of 
the user and provided visual feedback. First stage consist of the drawing of spell symbol. 
For this stage, the centerpiece is the symbol to be drawn and cursor, which follows a path 
and "draws" the symbol. The path of the cursor is hardcoded in the way that its path is 
constructed of invisible Node objects. The cursor slowly travels along the path and as it 
travels, circles are drawn onto a blank mask texture on the corresponding location. Under 
this mask, an object with a texture of charcoal drawing is located which is set to only be 
visible when under a mask. This process is done in the Rail.es script. The speed of the 
cursor is dependent on the threshold evaluation. If it is negative, it travels with minimum 
speed, if positive, with maximum. This ensures that this stage is always completed, even 
without any user input. After the cursor "draws" the whole symbol, the game proceeds to 
the next stage. 

The second stage is spell training. Here, the cursor and drawn symbol disappear com­
pletely and only a faded pre-drawn symbol image is left. Now, with the user's input, the 
symbol's color and opacity change. Positive input is further indicated by enabling the sym­
bol's particle system. Now, in contrast to first stage, when the input threshold is not met, 
the image starts reverting to its faded state at approximately the rate of 1/5 of positive 
change. This means that now the user input is necessary for the progress to next stage, 
meaning a slight increase in difficulty. This stage ends when the symbol is fully colored and 
opaque. On stage end, the symbol is moved to the side and the last stage starts. 

In the last stage, the main objects of attention is some spell target. The user is instructed 
to "cast" the spell on the target. As the user meets the set threshold, the target object 
starts to emit particles and change in accordance to the current spell effect, e.g. fire starting 
to appear in a cold campfire. Again, if the user does not meet the threshold, the object 
starts reverting and stops emitting particles, now reverting at the rate of 1/4 of positive 
change, in order to increase difficulty. 

After the user succeeds in casting the spell, the game session ends, E E G stream stops 
and the application closes. 
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Chapter 5 

Case Study: Effects of 
Neurofeedback Application on a 
User with A D H D and on a 
Neurotypical User 

As Part of this master's thesis a case study of the effectivity of the resulting application 
has been conducted. Most case studies regarding attention-focused biofeedback training are 
conducted on children or young adolescents, such as [4] or [24]. They also tend to only focus 
on neurotypical subjects as controls. This study aims, apart from evaluating the effectivity 
of biofeedback training on an A D H D individual, to also explore the effects of such training 
on a neurotypical student. This study looks at data recorded during training sessions. It 
analyses the recorded data to find any possible trends in the data or correlations present. 

5.1 Study Variables 

Participants 

This study will be performed on two participants, which ctre cts follows: 

• Person A is a 25year-old male university student diagnosed with A D H D , with O C D , 
anxiety and depression comorbidities and experiences difficulties in his studies. Sub­
ject was treated with atomoxetine medication for his A D H D in the past. The goal with 
person A is to improve self-reported attention level and improve A D H D symptoms. 

• Person B is a 23year-old neurotypical male university student with no reported psy­
chiatric or neurological problems. The subject will both act as a control for this 
study and will be used to explore the possibility for improving the ability to sustain 
attention in healthy individuals. 

Equipment and Setup 

For recording, the OpenBCI Ultracortex Mark IV headset with dry spikey electrodes and 
the Cython board with Daisy extension was used. Out of the 16 available channels, 6 were 
used in the following configuration according to the 10-20 system: 
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Ch3 — C3 

. Ch4 — C 4 

. CH11 — Pz 

. CH12 — Cz 

. Ch l5 — P3 

. Ch l6 — P 4 

In the locations 01 and 02, stabilization pins were placed instead of electrodes to 
ensure higher stability of headset on subject's head. The subjects were seated in office 
chairs without head support to be able to fully lean back on it and relax without putting 
pressure on the headset. Application was ran on a Windows 10 dektop P C with 32" monitor. 
Application settings were set to default values. 

Limitations 

There are several problems with the reliability of measured data that stem from the lim­
itations of employed hardware. The biggest problems come with the usage of spikey dry 
electrodes. While they theoretically allow faster setup due to no need of any preparation 
of subject's scalp area, this comes at a cost. During the study, it became apparent, that 
the dry electrodes are less than ideal for users with thick and long hair, which was the case 
for person A . Each session was preceeded with difficulties trying to provide sufficient skin 
connection for the dry electrodes and even then, the results were quite inconsistent. The 
electrodes were also uncomfortable and caused light pain during sessions. They are also 
less sensitive than wet electrodes and more prone to artifacts. 

Training Regimen 

Recording sessions consist first of equipment setup and user instruction. A scene in the 
B F training application is selected. The subject goes through the scene, which consists of 
three sections of B F with short pauses (tens of seconds) inbetween. After the last section 
is completed, the session ends. The B F controls are set to evaluate subject's S M R band 
power level during training. 

Person A performed 20 sessions in total, 4 sessions a day, with 1 hour pauses in between. 
Person B performed 10 sessions in total, 2 a day, with 5 hours in between. One session 
without setup lasted about 4 minutes on average. 

5.2 Analysis Methodology 

This section will specify the methods used to analyze the data collected during the study, 
the goals of the analysis and the rationale behind the methods used. 

Absolute or Relative Power Values 

The application uses measure S M R band power for control purposes. Due to the inherent 
inconsistency of recorded voltage values of the dry electrode headset, the general magnitude 
of the absolute S M R band power differs wildly even in consecutive recordings taken during 
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the same day. A n example of four recordings taken during a single day, spaced one hour 
apart can be seen in figure 5.1. The fourth recording has values that are consistently much 
higher than the other three. This discrepancy could provide problematic when it comes to 
analysis. 

Figure 5.1: Absolute S M R power recorded accross four sessions. Recordings are spaced 
one hour apart. The bottom graph illustrates the problem with analyzing absolute power 
values — both S M R and Alpha powers here seem scaled up when compared to the other 
three. This "scaling up" is present accross all frequency bands. 

Figure 5.2: Relative S M R power recorded accross the same sessions as 5.1. These graphs 
show that when relative power values are used, the scale of data is consistent accross the 
recording, thus allowing for better comparison. 
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To address this, instead of using absolute power values, relative power is used. Example 
of recording represented with relative band power can be seen on figure 5.2. Using relative 
band power provides the benefit of being able to compare recorded value from multiple 
sessions without the problem of varying scale. It also preserves the ratios between the 
different frequency bands, as can be seen when comparing the two example figures, which 
both show the S M R and Alpha powers of the same four recordings. 

S M R Power and Classifier Threshold Accross Sessions 

The goal of the studied application is S M R band power enhancement in users in order to 
train attention. The application itself is controlled by comparing current S M R band power 
against a dynamic threshold. Example of S M R and threshold during recording can be seen 
on figure 5.3. These two variables are a prime candidate for analysis, as their change in 
time could provide some information on whether the user is making progress or the app has 
no noticeable effects. The analysis will explore if there are any noticeable differences in the 
relative S M R power values or relative threshold values when compared in early and later 
sessions. Example of relative S M R power values accross sessions can be seen on figure 5.4. 

100 
Session Time [ s I 

Figure 5.3: Example of relative S M R and relative threshold during a session. 

0.10 0.15 0.20 
Relative SMR Power 

Figure 5.4: Example of relative S M R power values of a user accross 20 sessions. 

calculated as BandPower jTotalPowerAccrossAllBands 
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S M R / T h e t a and S M R / H i g h Beta Ratios 

While the S M R band can generally be taken as a measure of a person's calm attention, there 
are two more notable bands that are important for attention neurofeedback. The theta band 
represents deep calm, inattention and meditative state. During periods of attention, theta 
should be as suppressed as possible. Hence, ratio of SMR/The ta shows another valuable 
metric of attention besides just S M R power. High Beta, on the other hand, represents a 
state of strong focus and anxiety. While it is desirable to enhance this band to a certain 
point to enhance attention, it should not exceed high values, as that, instead of the desired 
attention and focus, indicates undesirable anxiety. The application should therefore ideally 
show increasing S M R / H i g h Beta ratio at a similar rate as the S M R band power alone 
throughout the training. A n example SMR/The ta ratio and power values are shown in 
figure 5.5 

Session Time I s ] 

H TO (!) CBO® £E>0>SO O O ZW> O O O O © O 

& a> <a» <mo ancxraro oo imo ceo o c o o o o o o o OD o c 

1.5 
SMR/Theta Ratio 

Figure 5.5: Example of S M R and Theta relative band power in the upper graph and changes 
in SMR/The ta ratio over 20 sessions on lower. 

Correlation Analysis 

The last part of analysis is searching for any interesting correlations in the recorded vari­
ables. The specific variables, that will be explored in this manner are: 

• SMR, Alpha, Low Beta, High Beta, Theta, Delta band absolute and relative power 
values. 

• The ratios of all couples of band powers. 

• The total power value of all bands. 

• The absolute and relative value of classifier threshold. 

For mathematical evaluation of correlation, thePearson correlation coefficient (PCC) was 
employed. This coefficient is used to measure linear correlation between two sets of data. 
The results are in the range of < —1,1 >, where 0 denotes no correlation, 1 perfect linear 
correlation and -1 perfect linear inverse correlation. It is computed as: 
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r x y = - ^ i f o - s X l f c - i / ) ( 5 J ) 

where n is sample size, Xi, yi are individual sample points and x = \ X ^ L i x * ^ s sample 
mean (analogously y). 

The P C C results are represented by a 30x30 correlation matrix. Example of a slice of 
one such matrix can be seen on figure 5.6 

SMR Alpha Low Beta High Beta Delta Theta Threshold 

SMR 0.684329 0.589694 0.393459 0.348130 0.431238 0.074756 

Alpha 0.684329 0.465212 0.433494 0.486574 0.546152 0.051148 

Low Beta 0.589694 0.465212 0.457974 0.356260 0.405256 0.053806 

High Beta 0.393459 0.433494 0.457974 0.353343 0.348659 0.055495 

Delta 0.348130 0.486574 0.356260 0.353343 0.589407 0.068967 

Theta 0.431238 0.546152 0.405256 0.348659 0.589407 0.098349 

Figure 5.6: Slice of a correlation matrix with correlation coefficient over 0.5 highlighted. 

5.3 Person A Results 

S M R Power and Classifier Threshold Accross Sessions 

The figure 5.7 shows the relative S M R power values recorded during all 20 sessions. The 
data shows no noticeable trends in S M R power values, positive or otherwise, as is the case 
with relative threshold data, visible on figure 5.8. There are minor deviations accross the 
sessions, but nothing that would point to any consistent change, be it in maximal values, 
minimal values or the median. 
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Figure 5.7: Person A's Relative S M R band power values over the course of all 20 sessions 
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Figure 5.8: Person A's Relative threshold values over the course of all 20 sessions 

S M R / T h e t a and S M R / H i g h Beta Ratios 

Both SMR/The ta and S M R / H i g h Beta band power ratios are mostly consistent, which is 
expected, considering the minimal deviation of S M R band power over sessions. 
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Figure 5.9: Person A's SMR/The ta ratio over the course of all 20 sessions 

1 

2 

3 
4 
5 
6 
7 
3 

* 9 

10 

• tZr -

m u m oosnoo o a n o a ) • o 

OO ( D O COD O O O O 

O O 

» " " • O O O O O O O O O 

BDGEDO O O £BO O # O C 

1 0 0 O 4 K D CCD OffiXEO O O O 

— b m o f f i o o o o o onto o o o o 

o o o o o a u o o o o 

—iiiBin o QH> O OtE 0IX3OL-'.• - 3 » 

1 C J B X I • ani oo o c o o 

< OtJCCi o o o o 

U t m n m i o m o o o oo 

• M B O B O C O OOO O O d 

DBBBH M M O OB < 

J O O O O ©DO O 

O B G&C&C1 O 

O i n H H O I C D C O O E O O O O f f i J O O O O 

{ B O O O i ) O S O O I O O ® OOO 

c n m m m oo ace o c o c o 

© o o 

o o 

0.0 0,5 1.0 1.5 
SMR/HB 

2 0 2 5 rl.O 

Figure 5.10: Person A's S M R / H i g h Beta ratio over the course of all 20 sessions 

Correlation Analysis 

The correlation analysis has shown no unexpected correlations. Only expected ones (e.g. 
S M R correlating with SMR/The ta ratio) were found. For reference, the figure 5.11 shows 
correlations for relative band power values. The rest of the correlation matrix can be seen 
in appendix B. 
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Relative SMR Relative Alpha Relative Law Beta Relative High Beta Relative Delta Relative Theta Relative Threshold I 
S M R / A 0 6 2 7 3 6 0 -0.241379 0.370749 0 0 6 0 9 5 3 -0.045668 - 0 0 1 8 9 6 4 0.048335 

S M R / L B 0.504433 0.346605 -0.423053 -0.029233 -0.019133 -0.009362 0.012803 

S M R / H B 0.734683 0.348205 0.189304 -0.430182 0.004080 0.023995 -0.016514 

S M R / D 0.700946 0.448854 0.349640 0.273524 • -0.586038 0.059657 0.173998 

S M R / T 0.706325 0.388199 0.279349 0.170959 -0.133379 -0.532262 0.091201 

A / L B 0.011335 0.478912 -0.085558 0.009476 -0.001264 -0.032798 

A / H B 0.232326 0.601693 -0.083261 -0 .574536 0.057830 0.036310 -0.097112 

A / D 0.404301 0.668526 0.205173 0.284063 • -0 .661090 0.078287 0.174192 

A / T 0.314378 0.628233 0.078233 0.154917 -0.129888 -0.616736 0.060633 

L B / H B 0.221244 -0.005446 0.710185 -0.466104 0.O47516 0.043529 -0.032591 

L B / D 0.352929 0.221804 0.691499 0.299456 -0 .600130 0.067103 0.171988 

L B / T 0.268657 0.092844 0.675032 0.196639 -0.115752 -0.558673 0.067989 

H B / D 0.214682 0.241116 0.221585 0.665445 -0.683565 0.059342 0.200123 

H B / I 0.086093 0.105069 0.105878 0.618870 -0.142473 -0.655872 0.081045 

D / T -0.212870 -0.286514 -0.222868 -0.314919 0.742049 -0.561310 -0.222416 

Power Total -0.241190 -0.261364 -0.259781 -0.373955 0.467071 -0.033449 -0.407052 

Relative S M R 0.503552 0.371852 0.095295 -0.388571 -0.067985 0.188471 

Relative A l p h a 0.503552 0.081698 0.068538 • -0 .503467 -0.097175 0.178171 

Relative L o w Beta 0.371852 0.081698 0.128061 -0.393949 -0.064690 0.178588 

Relative High Beta 0.095295 0.068538 0.128061 -0 .616494 -0.195408 0.243231 

Relative Delta -0.388571 -0.503467 -0.393949 -0 .616494 -0.285236 -0.319896 

Relative Theta -0.067985 -0.097175 -0.064690 -0 .195408 -0.285236 0.066921 

Threshold - 0 . 0 U 3 2 5 -0.044529 -0.044794 -0.067863 0.039859 0.050360 0.693036 

Relative Threshold 0.188471 0.178171 0.178588 0.243231 -0.319896 0.066921 I 

Figure 5.11: Person A's frequency band correlation matrix. Yellow fields indicate correlation 
coefficient over 0.5 and orange ones coefficient under -0.5. 

5.4 Person B Results 

S M R Power and Classifier Threshold Accross Sessions 

The figure 5.12 shows the relative S M R power values recorded during all 10 sessions. As 
with person A , the results display no noticeable S M R enhancement. A slight S M R inhibition 
can be seen on the last few sessions. This may relate to wrong headset setup or person B's 
wellbeing, as the sessions 7 to 10 were conducted when they were suffering from an illness. 
The threshold data 5.13 shows the same pattern of no significant change during most of 
the sessions and an inhibition during the last few. 

39 



2 

3 

4 

* 
C 5 
o 
m g 
ai D 

in 
7 

a 

9 

10 

0.00 0.05 

O D O C O o <E> C D o •sro o c 

<*- nnm • • o O O O 

Ho^ooo o:o 

0.10 0.15 0.20 0.25 0.30 
Relative SMR 

3,35 0.40 

Figure 5.12: Person B's Relative S M R band power values over the course of all 20 sessions 
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Figure 5.13: Person B's Relative threshold values over the course of all 20 sessions 

S M R / T h e t a and S M R / H i g h Beta Ratios 

The SMR/The ta ratio, shown in figure 5.15, shows the same pattern as the S M R power, 
with the same inhibition during sessions 7 to 10, which is expected. In S M R / H i g h Beta 
ratio, however, the expected decrease during later sessions is instead replaced by an increase, 
as can be seen in figure 5.15. The figure 5.14 shows that during these sessions, high beta 
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frequency was extremely low. Values so low probably indicate that there were recording 
problems during the sessions that were not identified prior to analysis. 
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Figure 5.14: Person B's relative High Beta band values during sessions 6 to 10. 

o 
"l/I 

OJ c 

IT. 

7 

3 

9 

10 

i-C 

E O O H D O O C O O O O O 

— | « I N I M M N R A R M I-TRN N N I M I o O O O O O 0 0 C 

— ( C K S H E O O O O WOC3XM) O O O O O C O O O 

\nnm :E'<ECO W> O O 0 0 O OOOO O 

o aaioo m 00 O O O D 

— | M K E K O M B E M » < m > O O O ( ^ 0 O O I O OO O 

SO OOOODOO O OO O O O O 

I—J J J ^^«1)0(11x110 O 

J J ^̂ m D̂O<B<S> <o o 

|—[~ I J D w a i OOXUBO O 

0.0 0,5 1.0 1.5 

5MFVT 

2 C 2 5 3.0 

Figure 5.15: Person B's SMR/The ta ratio over the course of all 20 sessions 
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Figure 5.16: Person B's S M R / H i g h Beta ratio over the course of all 20 sessions 

Correlation Analysis 

As with person A , the correlation analysis has again shown no unexpected correlations. For 
reference, the figure 5.17 shows correlations for relative band power values. The rest of the 
correlation matrix can be seen in appendix B. 

Relative SMR Relative Alpha Relative Law Beta Relative High Beta Relative Delta Relative Theta Relative Threshold 

S M R / A 0.609933 -0.233342 0.346911 0.144207 -0.024553 -0.072518 0.044358 

S M R / L B 0.46B930 0.266357 -0.3361 16 -0.050481 0.010427 0.016954 C . : C ^ 2 ; 3 

S M R / H B D.620723 0.288033 0.130167 -0.385185 0.054359 0.044726 -0.023288 

S M R / D 0.763913 0.496296 0.447857 0.428983 • -0.618357 0.089155 0.184912 

S M R / T 0.706040 0.330581 0.359567 0.283736 -0.085816 -0.497669 0.146746 

-0.065653 0.415829 -0.162533 0.010505 0.078612 -0.051329 A /LB -0.065653 0.415829 -0.162533 0.010505 0.078612 -0.051329 

A / H B 0.133434 0.525415 -0.125969 -0 .527862 0.061055 0.115433 -0.069966 

A / D 0.424748 0.738066 0.303129 0.386314 • -0.702441 0.147052 0.188696 

A / T 0.375453 0.606083 0.203905 0.243783 -0.109070 -0.563263 0.162127 

L B / H B 0.198130 0.034143 0.577751 -0.394515 0.055900 0.024929 -0.017577 

L B / D 0.417646 0.320360 0.770824 0.466269 • -0 .624650 0.070951 0.180233 

L B / T 0.333422 0.125386 0.707867 0.330386 -0.102750 -0.515675 0.123215 

H B / D 0.239353 0.292319 0.345926 0.784587 -0.677106 0.058882 0.194032 

H B / f 0.197422 0.100141 0.250932 0.679989 -D. 145198 -0.570636 0.142226 

D / f -0.193092 -0.294959 -0.207289 -0.278024 0.72S782 -0.628622 -0.128986 

Power Total -0.161548 -0.222872 -0.188323 -0.300056 0.379974 -0.072710 -0.214728 

Relative S M R 0.521016 0.461466 0.260135 -0.407921 -0.053741 0.203239 

Relative A l p h a 0.521016 0.215716 0.177723 -0.537653 0.017113 0.219961 

Relative L o w Beta 0.461466 0.215716 0.336264 -0.437902 -0.088127 0.194582 

Relative High Beta 0.260135 0.177723 0.336264 -0.619127 -0.172325 0.235021 

Relative Delta -0.407921 -0.537653 -0.437902 -0 .619127 -0.421844 -0.249280 

Relative Theta -0.053741 0.017113 -0.038127 -0 .172325 -0.421844 -0.040771 

Threshold 0.042654 0.010125 0.020215 -0.051286 0.076289 -0.075883 0.630172 

Relative Threshold 0.203239 0.219961 0.194582 0.235021 -0.249280 -0.040771 

Figure 5.17: Person B's frequency band correlation matrix. Yellow fields indicate correlation 
coefficient over 0.5 and orange ones coefficient under -0.5. 
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5.5 Study Conclusion 

The study has shown no concrete evidence of any change in either user's E E G signal. A l l 
analyzed values stayed mostly the same during the sessions, with slight deviations. While 
both users reported, that the difficulty of controlling the neurofeedback app felt lower after 
a number of sessions, the data shows no evidence of actual changes in E E G activity or 
higher thresholds being set by the application. 

More testing has to be done in order to sufficiently evaluate any potential effect of the 
application. Longer training regimens with more spaced out training sessions should be 
explored. Another proposition is the use of other measuring devices, such as wet electrode 
headsets or different types of dry electrodes. 
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Chapter 6 

Conclusion 

The main goal of this project was the design and development of a new neurofeedback 
application for attention training. For this purpose, the existing solutions regarding atten­
tion enhancement neurofeedback were explored, along with the underlying theory. Mult i ­
ple varying approaches to neurofeedback training regimens, which targeted varying sets of 
E E G frequency bands were considered. In the end, it was decided to target S M R band 
enhancement in order to increase attention in the user. Multiple methods of processing and 
translating the E E G signal into application commands were researched. 

The final application has been developed using the Unity3D game engine and the open 
source Brainflow library. The Brainflow library was used to capture and process E E G signal 
from a Cyton board with Daisy extension, which was used for E E G recording aloing with an 
Ultracortex Mark IV dry electrode headset. The application uses the same approaches seen 
in typical neurofeedback application — user focusing on controlling the application with 
their brain for a set period of time, while receiving positive or negative feedback. This pro­
cess was enhanced by gamifying the process. This was done by creating a simple narrative 
of user learning spells and casting them, the goal was to break up the monotony of usual 
neurofeedback applications and try to set actual goals for the user with no set session time. 
The application also, unlike typical ones, does not require an operator that would modify 
the thresholds evaluating the user's input. Here, the thresholds are set automatically dur­
ing session by evaluating the ratio of succesful/unsuccesful inputs and increasing/lowering 
the threshold accordingly. This both ensures the user does not get frustrated when not 
able to produce the desired brain activity and that the user us sufficiently challenged when 
succeful. 

A case study has been designed and carried out to evaluate the effectiveness of this 
neurofeedback application with regards to two main user groups — adults with attention 
problems and neurotypical adults. Two university students, one from each group, were 
selected as testing subjects for the study. They both underwent a rigorous training regimen 
consisting of multiple daily training sessions. The recorded E E G data was analyzed to 
find out if any noticeable changes to S M R band power value or application threshold values 
across sessions were present. No significant changes in brain activity were discovered during 
the study. While the users both reported that they found the application much easier 
to control after few sessions, there was no evidence of change in the E E G signal. More 
evaluation could be done by employing different training regimens or different recording 
hardware. 

The gamification of the application could be further expanded upon, in order to ob­
fuscate the training process and increase immersion in the users. Different, more complex 
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control methods could be used, such as event-related potentials, or even E E G controls 
combined with traditional controllers, such as gamepads. 
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Append i x A 

Source Structure and Building 

The application source files mainly follows the standart Unity project folder structure, as 
can be seen on figure A . l . Additions are the Recordings and Analysis folders, which contain 
E E G logs and analysis tools respectively. Another added folder is BrainflowTo Unpack, 
which contans brainflow C++ libraries. To build this project, the whole folder should be 
opened in Unity3D editor and built for the desired platform. It was only tested on windows, 
but Linux version should also be buildable out of the box. After building the project to 
the desired path, the contents of the BrainflowTo Unpack folder should be copied to the 
same directory that contains the app executable file. The app is then launchable through 
the executable. The Recordings directory will be created when necessary in the app root 
folder. The Jupyter notebook used for analysis requires the pip packages specified in the 
file Analysis/requirements.txt to be installed. 
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Append i x B 

Ratio Correlation Matrices 

Person A 

Relative SMR Relative Alpha Relative Low Beta Relative High Beta Relative Delta Relative Theta Relative Threshold 

SMR/A 0.627360 -0.241379 0.370749 0,060953 -0.O45668 -0.018964 0.048335 

S MR/LB 0.504433 0.346605 -0.423053 -0.029233 -0.019133 -0.009362 0.01 2803 

SMR/HB 0.734683 0.348205 0.189304 -0.430182 0.004080 0.023995 -0.016514 

SMR/D 0.700946 0.448854 0.349640 0.273524 • -0.536038 0.059657 0.173998 

SMR/T 0.706325 0.388199 0.279349 0.170959 -0.133379 -0.532262 0.091201 

A/LB 0.011335 0.478912 -0.587385 -0,085558 0 .009476 -0.001264 -0.032798 

A/HB 0.232326 0.601693 -0.083261 -0,574536 0.057830 0.036310 -0.097114 

A/D 0.4043 01 0.668526 0.205173 0,284063 -0.661090 0.078287 O.I7i1S2 

A/T 0.314378 0.628233 0.078233 0.154917 -0.129888 -0.616736 0.060633 

LB/HB 0.221244 -0.005446 0 .710185 -0,4661 J4 0.047516 0.O43529 -0.032591 

LB/D 0 .352929 0.221804 0.691499 0,299456 -0.600130 0.567103 0.171988 

LB/r 0.268657 0.092844 0.675032 0.196639 -0.115752 0.067989 

HB/D 0.241116 0.221585 0,665445 -0.633565 0.059342 0.200123 

HB/T 0.086093 0.105069 0.1055"S 0,618870 -0.142473 -0.655B72 0.081045 

D/I -0.212870 -0.286514 -0.222868 -0.314919 0.742049 -0.561310 -0.222416 

Power Total -0.241190 -0.261364 -0.259781 -0,373955 0.467071 -0.033449 -0.407052 

Relative SMR 0.503552 0.371852 0,095295 -0.388571 -0.067985 0.188471 

Relative Alpha 0.503552 0.081698 0,068538 -0.503467 -0.097175 0.178171 

Relative Low Beta 0.371852 0.081698 0,128061 -0 .393949 -0.064690 0.178588 

Relative High Beta 0.095295 0.068538 0.128061 -0.616494 -0.195408 0.243231 

Relative Delta -0.388571 -0.503467 -0.393949 -0,616494 -0.285236 -0.319896 

Relative Theta -0.067985 -c . :y" - T ? -0.064690 -0,195408 -0 .235236 0.066921 

Threshold -0.014325 -0.0445 29 -0.O44794 -0,067863 0.039859 0.0533I5C 0.693036 

Relative Threshold 0.188471 0.178171 0.178588 0.243231 -0.319896 0.066921 

Figure B . l : Person A's frequency band correlation matrix. Yellow fields indicate correlation 
coefficient over 0.5 and orange ones coefficient under -0.5. 

52 



SMR/A SMR/LB SMR/HB SMR/D SMR/T A/LB A/HB A/D A/T LB/HB LB/D LB/T HB/D HB/T D/T 1 

S M R 0.337356 0.371216 0.62735.6 0.309002 0.339006 0.076420 0.341580 0.111600 0.146800 0.223591 0.035539 0.098992 -0.027121 -0.052658 0.039860 

Alpha -0.202986 0.217187 0.310065 0.047349 0.100220 0.380513 0.591893 0.156804 0.275058 0.072616 -0.070777 -0.049841 -0.093765 -0.076371 0.082962 

Low Beta 0.2074-73 -0.235295 0.208265 0.078880 0.10O357 -0.370009 0.034318 -0.026833 -0.016710 0.559254 0.239537 0.379749 -0.034503 -0.030578 0.060012 

High Beta -0.01 2893 -0.01 8853 -0.237519 -0.034252 -0.006456 -0.001302 -0.252788 -0.041472 0.008389 -0.259038 -0.022016 0.029582 0.170553 0.238734 0.077429 

Delta -0.065766 0.019445 0.076221 -0.294532 -0.126717 0.072307 0.175705 -0.327825 -0.106958 0.073221 -0.303907 -0.120827 -0.348938 -0.149161 0.534597 

Theta -0.058378 0.034874 0.123980 -0.120748 -0.322631 0.095948 0.224385 -0.126195 -0.350735 0.091804 -0.132587 -0.342661 -0.160050 -0.405286 -0.070228 

S M R / A 0.236265 0.430064 0.356899 0.435691 -0.356487 -0.226244 -0.080723 -0.133134 0.266120 0.221995 0.253012 0.049455 0.026380 -0.010914 

SMR/LB 0.236265 1 0.463164 0.272090 0.345445 0.665995 0.277717 0.167345 0.204556 -0.341476 -0.208055 -0.275491 0.008180 -0.016498 -0.003197 

SMR/HB 0.430064 0.453164 0.391359 0.433477 0.075628 0.628853 0.153400 0.137631 0,490448 0.110282 0.107535 -0.152584 -0.229235 0.001258 

S M R / D 0.356399 0.272090 0.391359 0.435543 0.002769 0.107757 0.312446 0.216159 0.112820 0.74474S 0.195990 0.690957 0.101854 -0.342152 

S M R / T 0.435691 0.345445 0.433477 0.435543 0.013243 0.148916 0.235903 0.730674 0.124394 0.208681 0.650282 0.132107 0.573368 0.221634 

A/LB -0.356487 0.665995 0.075628 0.002769 0.013243 I 0.444243 0.212573 0.294254 -0.454106 -0.303285 -0.333098 -0.025892 -0.034016 0.000645 

A / H B -0.226244 0.277717 0.628353 0.107757 0.148916 0.444243 0.248498 0.345321 0.342664 -0.051586 -0.069101 -0.227416 -0.293739 0.022800 

A / D -0.030723 0.167345 0.153400 0.S12446 0.235903 0.212573 0.248498 0.337915 -0.005392 0.675198 0.094933 0.754325 0.104054 -0.391204 

A / T -0.133134 0.20455.6 0.187631 0.216159 0.730674 0.294254 0.345321 0.337915 -0.026151 0.093355 0.547623 0.11732S 0.643597 0.263482 

LB/HB 0.266120 -0.341476 0.490448 0.112820 0.124394 -0.454106 0.342664 -0.005392 -0.026151 0.356111 0.423790 -0.131643 -0.249817 0.015945 

LB/D 0.221995 -0.208055 0.110282 0.744748 0.20S681 -0.303285 -0.051586 0.675198 0.093355 0.356111 0.413745 0.706410 0.114655 -0.353264 

LB/T 0.253012 -0.275491 0.107535 0.195990 0.650282 -0.383098 -0.069101 0.094933 0.547623 0.423790 0.413745 0.129567 0.623861 0.245848 

H B / D 0.049455 0.O0S 180 -0.152584 0.690957 0.132107 -0.025892 -0.227416 0.754325 0.117328 -0.131643 0.706410 0.129567 0.307753 -0.393810 

i n s / i 0.026380 -0.016498 -0.229235 0.101854 0.573368 -0.034016 -0.293739 0.104054 0.643597 -0.249817 0.114655 0.623861 0.307753 0.279293 

D/T -0.010914 -0.003197 0.001258 -0.342152 0.221634 0.000645 0.022800 -0.391204 0.263482 0.015945 -0.353264 0.245848 -0.393810 0.279293 

Power Total -0.070331 0.022347 0.038709 -0.195533 -0.125536 0.090964 0.205694 -0.212277 -0.096122 0.059011 -0.200208 -0.115038 -0.224958 -0.132601 0.356810 

Relative S M R 0.627360 0.504433 0.734683 0.700946 0.706325 0.011335 0.232326 0.404301 0.314378 0.221244 0.352929 0.268657 0.214682 0.086093 -0.212870 

Relative Alpha -0.241379 0.346605 0.348205 0.448854 0.338199 0.478912 0.601693 0.668526 0.628233 -0.005446 0.221804 0.092844 0.24- - 16 0.105069 -0.286514 

Relative Low Beta 0.370749 -0.423053 0.139304 0.349640 
0.279349 1 

-0.537385 -0.033261 0.205173 0.073233 0.710185 0.691499 0.675032 0.221585 0.105878 -0.222868 

Relative High Beta 0.050953 -0.029233 -0.430182 0.273524 0.170959 -0.085558 -0.574536 0.284063 0.154917 0.299456 0.196639 0.665445 0.613870 -0.314919 

Relative Delta -0.045668 -0.019133 0.004080 -0.536038 -0.133379 0.009476 0.057830 -0.129888 0.047516 -0.600130 -0.115752 -0.633565 -0.142473 0.742049 

Relative Theta -0.016964 -0.009362 0.023995 0.059657 -0.532262 -ij.;'ij12'".4 0.036310 0.078287 0.043529 0.067103 -0.558673 0.059342 -0.655872 -0.561310 

Threshold 0.000808 0.024109 0.028578 -0.014362 -0.030730 0.0157i:.- 0.01 6286 -0.028757 -0.052417 0.005251 -0.027743 -0.053450 -0.030966 -0.063631 0.01 5669 

Relative Threshold 0.048335 0.01 2803 -0.016514 0.173998 0.091201 -0.032798 -0.097114 0.174192 0.050633 -0.032591 0.171988 0.057989 0.200123 0.031045 -0.222416 

Figure B.2: Person A's frequency ratios correlation matrix. Yellow fields indicate correlation 
coefficient over 0.5 and orange ones coefficient under -0.5. 

53 



Person B 

Relative SMR Relative Alpha Relative Low Beta Relative High Beta Relative Delta Relative Theta Relative Threshold 

SMR/A 0.609933 -0.233342 0.346911 0.144207 -0.024553 -0.072518 0,0443 58 

S MR/LB 0.463930 0.266357 -0.3S81 16 -0.050481 0.010427 0.016954 0,004258 

SMR/HB 0.620723 0.2B8D33 0.135167 -0.385185 0.054359 0.044726 -0,023288 

SMR/D 0.763913 0.496296 0.447857 0.428983 -0.618357 0.0891 56 0.184912 

SMR/T 0.706040 0.330581 0.359567 0.283736 -0.085816 -0.497669 0,146746 

A/LB -0.065653 0.415S29 -0.537577 -0.162533 0.010505 0.078612 -0,351329 

A/HB 0.133434 0.525415 -0.125969 -0.527862 0.061055 0.115433 -0,069966 

A/D 0.424748 0.738066 0.303129 0.386314 -0.702441 0.147052 0,188696 

A/T 0.375453 0.606083 0.203905 0.243783 -0.109070 -0.563263 0.162127 

LB/HB 0.198130 0.034143 0.577751 -0.394515 0.055900 0.024929 -0.017577 

LB/D 0.417646 0.320360 0.770824 0.466269 -0.624650 0.070951 0,180233 

LB/I 0.333422 0.125886 0.707867 0.330386 -0.102750 -0.515675 0,123215 

HB/D 0.239353 0.292319 0.345926 0.784587 • -0.677106 0.058882 0,194032 

HB/T 0.197422 0.10314" 0.250932 0.679989 -0.145198 -0.570636 0.142226 

D/T -0.193092 -0.294959 -0.207289 -0.278024 0.725782 -0.628622 -0,128986 

Power Total -0.161546 -0.222872 -0.188323 -0.300056 0.379974 -0.072710 -0.2U72S 

Relative SMR 0.521016 0.461466 0.260135 -0.407921 -0.053741 0.203239 

Relative Alpha 0.521016 0.215716 0.177723 -0.537653 0.017113 0,219961 

Relative Low Beta 0.461466 0.215716 0.336264 -0.437902 -0.088127 0,194582 

Relative High Beta 0.260135 0.177723 0.336264 -0.619127 -0.1723 25 0,235021 

Relative Delta -0.407921 -0.537653 -0.437902 -0.619127 -0.421844 -0,249280 

Relative Theta -0.053741 0.0171 I i -0.088127 -0.172325 -0.421844 -0.040771 

Threshold 0.042654 0.010125 0.020215 -0.051286 0.076289 -0.075883 0.630172 

Relative Threshold 0.203239 0.219961 0.194582 0.235021 -0.249280 -0.O4O771 

Figure B.3: Person B's frequency band correlation matrix. Yellow fields indicate correlation 
coefficient over 0.5 and orange ones coefficient under -0.5. 
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SMR/A SMR/LB SMR/HB SMR/D SMR/T A/LB A/HB A/D JUT LB/HB LB/D LB/T HB/D HB/T D/r 1 

SMR 0.385244 0.323769 0.542670 0.383892 0.470945 -0.002515 0.243954 0.145605 0.230795 0.239968 0.174130 0.221460 0.057573 0.031240 0.061406 

Alpha -0.128923 0.193163 0.175913 0.189012 0.30S046 0.496002 0.253813 0.295833 0.138594 0.064765 0.052383 0.009610 -0.017515 0.034589 

Low Beta 0.235373 -0.224304 0.200890 0.198657 0.229761 -0.316933 0.049419 0.068655 0.093964 0.483037 0.332567 0.449230 0.032026 0.087026 0.036303 

High Beta 0.096964 0.011303 -0.136554 0.177640 0.190333 -0.036265 -0.258384 0.100160 0.120657 -0.215626 0.179307 0.193993 0.355757 0.393347 0.033181 

Delta -0.030917 0.057527 0.136671 -0.252871 -0.069323 0.073512 0.171901 -0.283540 -0.085236 0.101947 -0.265601 -0.094901 -0.294469 -0.138553 0.461899 

Theta -0.042184 0.047185 0.158231 -0.032043 -0.262403 0.107166 0.233562 -0.077501 -0.301076 0.122697 -0.091486 -0.273795 -0.130065 -0.339516 -0.111425 

S M R / A 0.257524 0.416416 0.371847 0.467765 -0.405593 -0.233553 -0.107544 -0.083961 0.208550 0.198657 0.275313 0.030344 0.141393 0.025800 

S MR/LB 
0257524 H 

0.459179 0.277866 0.318092 0.580784 0.232913 0.125609 0.172865 -0.320600 -0.216134 -0.251299 -0.015736 -0.026210 0.026683 

SMR/HB 0.418416 0.459179 0.328929 0.399093 0.047962 0.623345 0.099255 0.162506 0.547568 0.044670 0.058463 -o.205173 -0.227352 0.034646 

S M R / D 0.371847 0.277366 0.328929 0.498226 -0.047521 0.04213B 0.768942 0.295052 0.088152 0.722615 0.275496 0.687087 0.221843 -0.333357 

SMR/T 0.467765 0.318092 0.399093 0.498226 -0.076471 0.038048 0.228984 0.742367 0.114698 0.263496 0.674343 0.198993 0.632974 0.236284 

A/LB -0.405593 0.580784 0.047962 -0.047521 
-0.076471 1 

0.463765 0.196552 0.204945 -0.404631 -0.304958 -0.375619 -0.083923 -0.129223 -0.020085 

A / H B -0.283553 0.232913 0.623345 0.0421 33 0.038043 0.463765 0.222323 0.248933 0.401665 -0.097669 -0.137702 -0.270422 -0.341512 -0.000327 

A / D -0.107544 0.125609 0.099255 0.768942 0.228934 0.196552 0.222328 0.391813 -0.012243 0.674160 0.143973 0.706290 0.152115 -0.390573 

A / I -0.OS3961 0.172365 0.162506 0.295052 0.742367 0.204945 0.248983 0.391813 0.007601 0.132519 0.581401 0.182722 0.631163 0.317450 

LB/HB 0.208550 -0.320600 0.54756S 0.0381 52 0.114593 -0.404631 0.401665 -0.012243 0.007501 0.292101 0.349245 -0.214262 -0.234382 0.025574 

LB/D 0.198557 -0.216134 0.044670 0.722615 0.263496 -0.304958 -0.097669 0.674160 0.182519 0.292101 0.433890 0.721075 0.234166 -0.338736 

LB/T 0.275313 -0.251299 0.058468 0.275495 0.674343 -0.375619 -0.137702 0.14397S 0.581401 0.349245 0.433890 0.224470 0.675715 0.279941 

H B / D 0.080344 -0.015736 -0.205173 0.637087 0.198993 -0.083928 -0.270422 0.706290 0.182722 -0.214262 0.721075 0.224470 0.437647 -0.360626 

HB/T 0.141393 -0.026210 -0.227352 0.221843 0.632974 -0.129223 -0.341512 0.152115 0.631163 -0.234382 0.234166 0.675715 0.437647 0.281174 

D / r 0.025300 0.026683 0.034646 -0.333357 0.286234 -0.020085 -0.000327 -0.390573 0.317450 0.025574 -0.338736 0.279941 -0.360526 0.281174 

Power Total -0.010749 0.063428 0.149759 -0.130653 -0.032113 0.080993 0.134370 -0.162410 -0.060247 0.109773 -0.149671 -0.057337 -0.174274 -0.101757 0.317436 

Relative SMR 0.609933 0.463930 0.620723 0.763913 0.706040 -0.065653 0.133434 0.424743 0.375453 0.198130 0.417646 0.333422 0.239353 0.197422 -0.193092 

Relative Alpha -0.233342 0.266357 0.238033 0.496295 0.330531 0.41 5329 0.525415 0.738065 0.606033 0.034143 0.320360 0.125386 0.292319 0.100141 -0.294959 

Relative Low Beta 0.346911 -0.386116 0.130167 0.447857 0.359567 -0.537577 -0.125969 0.303129 0.203905 0.577751 0.770824 0.707867 0.345926 0.250932 -0.207289 

Relative High Beta 0.144207 -0.050481 -0.335185 0.428983 0.283736 -0.162533 -0.527362 0.336314 0.243733 -0.394515 0.466269 0.330386 0.784537 0.679989 -0.278024 

Relative Delta -0.024553 0.010427 0.054359 -0.085316 0.010505 0.061055 -0.702441 -0.109070 0.055900 -0.624650 -0.102750 -0.677106 -D.14519B 0.725782 

Relative Theta -0.072513 0.01 6954 0.0447 26 0.0891 56 -0.497569 0.078612 0.115433 0.147052 -0.563263 0.024929 0.070951 -0.515675 0.058832 -0.570636 -0.628622 

Threshold 0.026134 0.036649 0.033947 0.027111 0.085146 0.010329 0.069024 -0.001480 0.070523 0.054575 0.017204 0.052369 -0.008153 0.017254 0.093458 

Relative Threshold 0.044353 -0.023288 0.134912 0.146746 -0.051329 -0.069966 0.1386% : . ! v 1 -0.017577 0.130233 0.123215 0.194032 0.142226 -0.128986 

Figure B.4: Person B's frequency ratios correlation matrix. Yellow fields indicate correlation 
coefficient over 0.5 and orange ones coefficient under -0.5. 
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