

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

VÝPOČTOVÝ MODEL ŘETĚZOVÉHO POHONU JAKO MODUL VIRTUÁLNÍHO MOTORU

CHAIN DRIVE COMPUTIONAL MODEL AS VIRTUAL ENGINE MODULE

DIZERTAČNÍ PRÁCE DOCTORAL THESIS

AUTOR PRÁCE

Ing. JAN VLASTNÍK

VEDOUCÍ PRÁCE SUPERVISOR prof. Ing. VÁCLAV PÍŠTEK, DrSc.

ABSTRACT

This work deals with the methods of creating computational models for the analysis of the chain drive of camshafts in combustion engines.

Methods are compared of the simulation of the drive mechanism; a new method is also presented for the simulation of the tensioning and guide bar by means of a modal reduction of an elastic body in the Multibody system.

The work describes individual parts of the chain gear and the mathematical formulation of differential equations of motion. Algorithms are also indicated describing the mutual interaction of bodies in contact.

Computations are here described for the determination of individual parameters necessary for setting up a chain drive model.

The tensile characteristics of the chain is determined by the FEM programme. The chain model is analyzed in several alternatives of arrangement. FEM calculations are described here of the rigidity of contacts between the chain and the chain wheels and between the chain and the guide bars.

The computational model has been created in the MSC ADAMS programme. The computation is carried out for a stabilized speed of the crankshaft of 3,000, 4,500 and 6,000 rpm and for a continuous start from the idle state up to the speed of 6,000 rpm with a constant load of the crankshafts by the torsion moment. Computation is also carried out for loading the crankshafts with a torsion moment deduced from the cam shape.

The courses of the quantity obtained are processed by means of FFT; Campbell diagrams have been constructed for their evaluation. The results have been compared with the modal analyses of the individual parts of the chain gear for the determination of their mutual interaction.

Klíčová slova

České: řetěz, rozvodový mechanismus, dynamika Anglické: multibody system, MBS, MSC. ADAMS, timing chain, FFT, Prohlášení

Předkládám k posouzení tuto disertační práci. Prohlašuji, že jsem ji vypracoval samostatně s použitím níže uvedené literatury.

Veškeré uvedené hodnoty, grafy a výsledky byly mnou vypočítány.

V Brně dne 25.10.2009

Jan Vlastník

Poděkování

Na tomto místě bych chtěl poděkovat prof. Ing. Václavu Píštěkovi, DrSc. za podporu při řešení disertační práce.

1.ÚV(OD	7
1.1	Elementy řetězového převodu	8
1.2	Řetěz	9
1.3	Napínák řetězu	12
1.4	Řetězová kola	13
1.5	Vedení řetězu	14
1.6	Matematická formulace	14
2.SOU	JČASNÝ PŘÍSTUP K VYTVÁŘENÍ MODELU	19
3.STA	ANOVENÍ CÍLŮ PRÁCE	20
3.1	Rozbor teoretického řešení a jeho ověření	20
3.2	Vytvoření modelu řetězového převodu	20
3.3	Analýza výsledků	20
4.MU	LTIBODY MODEL V PROGRAMU MATLAB	21
4.1	Deformační a tlumící síly v řetězu	22
4.2	Kontaktní síly mezi řetězem a řetězovými koly	25
4.3	Řešená diferenciální rovnice, výpočet	27
5.MU	LTIBODY MODEL V PROGRAMU MSC ADAMS	29
5.1	Kontaktní tuhosti modelu	30
5.1.1	Kontaktní tuhost řetězového kola	
5.1.2	Kontaktní tuhost napínací lišty	32
5.2	Tuhost řetězu IWIS	34
5.2.1	Model řetězu bez vůle v kontaktech	35
5.2.2	Model řetězu s vůlí a přesahem v kontaktech	36
5.3	Modifikace napínací lišty	
5.3.1	Statická kontrola lišty s připojenými segmenty	41
5.3.2	Dynamická kontrola lišty s připojenými segmenty	42
5.4	Tlumení v multibody modelu	43
5.4.1	Vliv tlumení	44
5.5	Výpočty multibody modelu a vyhodnocení	46
5.5.1	Vyhodnocení tažné síly řetězu	47
5.5.2	Vyhodnocení rozběhu řetězového převodu	49
5.6	Analýza vlastních frekvencí částí převodu	55
5.6.1	Modální analýza napínací lišty	55

5.6.2	Modální analýza napínací lišty s předpětím	
5.6.3	Modální analýza řetězu	59
5.6.4	Zhodnocení výsledků	63
6.MOI	DEL PODLE REÁLNÉ PŘEDLOHY	
6.1	Kontaktní tuhosti	65
6.1.1	Kontaktní tuhost vodící a napínací lišty	65
6.1.2	Kontaktní tuhost řetězového kola	67
6.2	Výpočet a vyhodnocení rozběhu řetězového převodu	68
6.2.1	Vyhodnocení modelu s tuhými lištami	68
6.2.2	Vyhodnocení modelu s pružnými lištami	70
6.2.3	Porovnání maximálních amplitud	72
6.3	Analýza vlastních frekvencí částí modelu řetězového převodu	74
6.3.1	Modální analýzy napínací a vodící lišty	74
6.3.2	Modální analýza části řetězu	76
6.4	Zhodnocení výsledků výpočtu	80
7.MOI	DEL ŘETĚZOVÉHO PŘEVODU V ABAQUS EXPLICIT	81
7.1	Model Abaqus explicit	
7.2	Výpočet	
7.3	Předpokládané řešení problému	83
8.ZÁV	/ĚR	84
9.PŘE	CHLED LITERATURY	86
10.SE2	ZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK	87

1 ÚVOD

Řetěz je jeden z nejstarších prostředků k přenosu sil. Dnes ve strojírenství a v automobilovém průmyslu nabývá na důležitosti. Přes jeho rozmanité provedení a uspořádání představuje stabilní součást dopravní a těžební techniky. Ale požívá se také jako prvek pohonu nabízející výhodu tvarového přenosu sil, vysokou účinnost, robustnost, chod bez údržby a flexibilní uspořádání. Speciálně u motorových vozidel ve střední a vyšší výkonové třídě se umocňuje nasazení pro pohon vačkových hřídelí, vstřikovacích čerpadel a ostatních agregátů. Dále se otevírá oblast dalšího použití řetězových převodů, a tou je pohon vyvažovacích hřídelí u spalovacích motorů. Tyto řetězy s velmi malou osovou vzdáleností běží přibližně dvakrát rychleji než běžně používané a stanoví nové nároky na dynamiku a uspořádání řetězového převodu.

Stoupajících požadavků na výkon, tichý chod a snášenlivost se životním prostředím se dosáhne při optimálním složení jednotlivých částí systému a ideálním sladěním systémů mezi sebou. Chování jednotlivých částí přitom hraje velikou roli, při čemž uspořádání modelu musí vždy odpovídat realitě. Dlouho nebyl dostupný žádný adekvátní vývojový nástroj, který by vypovídal v počátečním stádiu vývoje o dynamických a provozních vlastnostech řetězového převodu. Ty mají také vliv na chování pohybu ventilového rozvodu, vstřikovacího čerpadla a dalších agregátů. Pouze dlouhodobými zkouškami na skutečném motoru přes celý provozní rozsah otáček se dá zjistit provozní bezpečnost. Nutné změny v uspořádání a úpraě rozvodu jsou proto po dobu vývoje velmi nákladné. Pro snížení nákladů na vývoj nabízejí simulační metody řadu výhod a zvyšuje se tím jejich význam. Existují spolehlivé simulační nástroje, které jsou relativně výhodné z hlediska nákladů, časově úsporné, umožňují analyzovat chování systému a obměňovat jednotlivé parametry pro zlepšení chování systému. Lze vytvořit efektivní optimalizační proces. Proti výhodám simulačních metod stojí často náročný iterační proces modelové abstrakce a ověřování. Každá aplikace simulační metody vždy vyžaduje kontrolu výsledků z hlediska hodnověrnosti a realističnosti. Vzájemným doplňováním simulací a zkoušek se dosáhne cíle - vytvořit kvalitní výrobek s krátkým vývojovým časem a nižšími náklady.

Vedle samotného kmitání řetězu je také důležitým ukazatelem odolnost proti opotřebení. Velká pozornost je věnována hluku, přičemž záleží na optimalizaci ostatních částí motoru. Pro určitý rozsah otáček představují rázy v rozvodovém mechanismu výrazný zdroj hluku. Rázy jsou vyvozovány kontakty jednotlivých součástí mechanismu. Proto simulační nástroj musí dávat přehled o těchto procesech pro jejich zhodnocení.

Obr. 1.1 Schéma uspořádání řetězového převodu

1.1 ELEMENTY ŘETĚZOVÉHO PŘEVODU

Řetězový převod u spalovacího motoru slouží k pohonu ventilového rozvodu, vstřikovacího čerpadla, olejového čerpadla a vyvažovacích hřídelí. U pohonu olejového čerpadla a vyvažovacího hřídele se většinou používá uspořádání se dvěma ozubenými koly, naproti tomu k pohonu rozvodového mechanismu se používá velká řada různých uspořádání. Různý počet a poloha vačkových hřídelí u řadových, vidlicových motorů a motorů s protilehlými písty určuje množství myslitelných uspořádání řetězového převodu. Řetězový převod mimo pohonu ventilového rozvodu u čtyřtaktního motoru zajišťuje i redukci otáček vačkového hřídele. Řetězové kolo na klikovém hřídeli je vyrobeno s malým průměrem roztečné kružnice, aby se řetězová kola na vačkových hřídelích, v uspořádání se dvěma hřídeli v hlavě motoru, nedotýkala. Aby se přenesl potřebný moment k pohonu rozvodového mechanismu, vznikají mezi řetězem a ozubeným kolem na klikovém hřídeli velké kontaktní síly. Na jedné straně je tažná větev řetězu, které brání v kývání v příčném směru pevná vodící lišta. Ta má zakřivenou plochu, kterou obepíná řetěz. Na volné větvi je umístěna napínací lišta přitlačovaná napínákem. Kolem ní se řetěz neobepíná vlivem tažné síly, ale je nutné tuto sílu vyvodit. Řetěz musí být předepnutý, aby se zabránilo přeskočení a aby se kompenzovaly změny délky řetězu vlivem teplotních rozdílů a opotřebení. Napínák je většinou hydraulický, protože musí také tlumit kmitání řetězového převodu. Opotřebení a ztráty výkonu v řetězovém převodu se snižují mazáním z olejového okruhu motoru.

1.2 ŘETĚZ

Řetěz se skládá z jednotlivých článků. Články se rozdělují na vnitřní a vnější. Vnitřní článek je složen ze dvou pásnic a dvou pouzder. Vnější článek je sestaven ze dvou pásnic a dvou čepů. Dále jsou odvozovány vícenásobné řetězy, u nichž jsou u vnějších článků prodlouženy čepy, na které jsou nasazeny vedle sebe vnitřní články. Mezi vnitřními články jsou umístěny dvojice pásnic.

Válečkové řetězy jsou trochu složitější, na pouzdra řetězu jsou nasazeny válečky. Ty snižují tření mezi řetězem a ozubeným kolem.

Vylepšenou výrobou a tepelným zpracováním materiálu se zvyšuje únosnost řetězů, a to tak, že na pohon rozvodových mechanizmů postačuje jednoduchý válečkový řetěz. Moderní jednoduché válečkové řetězy s 8mm roztečí dosahují únosnosti 3000 N bez únavy materiálu. Čep a pouzdro má mezi sebou vůli, pohybující se kolem 0,05 mm. V tomto prostoru se během provozu vytváří olejový film. Olejový film, který vzniká vzájemným rotačním pohybem jednotlivých článků proti sobě, je za provozu velmi důležitý. Pro dynamiku řetězového převodu je směrodatná podélná tuhost, která je dána tuhostí článků řetězu a tuhostí olejové vrstvy.

Lamely řetězu jsou ve srovnání s řemenem neohebné, přesto se řetěz obepíná kolem zakřivených ploch, což umožňuje vzájemné pootočení jednotlivých článků ve spojovacích kloubech. Běží-li řetěz přes ozubené kolo, jeho tvar se změní v část mnohoúhelníku. Z odchylky tvaru řetězu od oblouku kružnice vzniká mnohoúhelníkový efekt, u kterého se dají odvodit rázy při záběru a výběhu řetězu mezi ozubeným kolem a řetězem.

Na *obrázku 1.2* je zobrazena geometrie výběhu řetězového článku z ozubeného kola. Vektor rychlosti v je kolmý na rádius R. Průmět vektoru v na směr větve řetězu je rychlost řetězu v_f v podélném směru. v_q je výstupní rychlost v příčném směru.

Obr.1.2 Schéma polygonového efektu

Vlivem otáčení řetězového kola se mění úhel alfa a tím i velikost rychlostí v_q a v_f . Tento jev je ovlivněn velikostí rozteče řetězových článků a roztečným průměrem řetězového kola tak, že při menší rozteči a větším průměru kola se kolísání rychlostí v příčném a podélném směru zmenšuje. Velikosti rychlostí v_q a v_f můžeme zapsat jako funkce úhlu natočení řetězového kola α , přičemž

$$|\alpha| < \frac{\pi}{z}$$
 $v_q = R \cdot \Omega \cdot \sin \alpha$ (1.1)

$$v_f = R \cdot \Omega \left(\cos \alpha - \frac{z}{\pi} \sin \frac{\pi}{z} \right) \tag{1.2}$$

se vzrůstajícím počtem zubů se velikost rychlosti v příčném směru v_q zmenšuje a velikost rychlosti ve směru větve řetězu v_f se přibližuje velikosti rychlost obvodové v. Z toho vyplývá, že při zmenšování rozteče řetězu dosáhneme menšího polygonového efektu a tím i větší plynulosti chodu.

Za pohybu jednotlivých částí výše uvedenými rychlostmi při náběhu článků řetězu u ozubených kol dochází ke kontaktům. Ty vybuzují kmity řetězu v podélném a příčném směru. U řetězového převodu se ovlivňují jednotlivé větve mezi sebou, což způsobuje, že jednotlivé kmity v příčném a podélném směru se sčítají. (Fritéz, 1998)

Obr. 1.3 Náběh řetězu na ozubené kolo

Na obrázku 1.3 jsou zakresleny kinematické vztahy náběhu řetězu na ozubené kolo. Rychlost větve řetězu v_g je rovná unášivé rychlosti v ose posledního zabírajícího pouzdra. Vr je rychlost bodu dotyku 1 odpovídající unášivé rychlosti kola v tomto místě. v_{g1} představuje rychlost větve řetězu v místě dotyku 1 . ΔV je rozdíl rychlosti řetězové větve v_{g1} a unášivé rychlosti řetězového kola v bodě dotyku 1 ve směru normály N. Při výběhu z řetězového kola se musí článek urychlit, aby jeho rychlost odpovídala rychlosti řetězové větve, čemuž odpovídá otočení vektoru rychlosti ΔV . Vlivem setrvačnosti hmotnosti článku není nárůst rychlosti tak veliký. Z tohoto důvodu se na dráze řetězových článků v tomto místě vytváří oblouk. Zde síly ke zrychlení řetězového článku závisí na absolutní rychlosti, s vyššími otáčkami se síly zvětšují. (Fritz, 1998)

1.3 NAPÍNÁK ŘETĚZU

Hlavní úlohou napínáku řetězu je vytvářet předpětí a tlumit kmity řetězového převodu. Toto musí zajistit po celou životnost motoru bez výrazného opotřebení při posuvech a bez výrazné změny mechanických vlastností. K plnění této úlohy jsou používány hydraulické napínáky řetězu, které jsou uloženy mezi blok motoru a napínací kladku nebo lištu. Jsou to součásti velmi podobné hrníčkovým zdvihátkům ventilů s vymezováním vůle, přičemž se odlišují jednotlivými parametry a tvarem.

Obr. 1.4 Stavba napínacího elementu řetězového převodu

Jejich hlavními částmi jsou přepouštěcí ventil a píst, který má v sobě dutinu. Když na volné větvi řetězového převodu klesá síla a tím i výsledná síla na napínák řetězu, vytlačuje tlak oleje a síla od pružiny píst z pouzdra. Přitom poklesne tlak oleje v dutině pístu, což způsobí otevření ventilu. Olej z mazacího okruhu motoru může protéci do dutiny pístu. Jestliže se zvýší síla ve volné větvi motoru, píst začne zajíždět do pouzdra, přepouštěcí ventil se přivře, v dutině pístu se zvýší tlak a tím i otvírací tlak ventilu. Dalším pohybem se zvýší tlak oleje v dutině pístu a předpětí pružiny. Reakční síla způsobí předpětí řetězu. Mechanické části, především kulička přepouštěcího ventilu mají svou setrvačnost a zavírání ventilu není ideální skoková změna. Za těchto okolností dochází k vybuzenému kmitání napínáku řetězu mezi popsanými krajními polohami. Kmitání je tlumeno pohybem oleje přes přepouštěcí ventil, kde dochází k turbulentnímu proudění.

Aby ve volné větvi nepřesáhla napínací síla vysokých hodnot, můžou se regulovat tlakové špičky oleje v dutině pístu pojistným ventilem. (Fritz, 1998)

1.4 ŘETĚZOVÁ KOLA

Profil ozubených kol popisuje norma DIN 8196. *Obrázek 1.5* ukazuje úhel rozevření χ zubové mezery, r_1 je rádius vykrojení a r_2 rádius hlavy zubu vytváří zubovou mezeru. Jestliže je rádius r_2 malý a úhel rozevření velký, ozubení je uzavřené. Při opačných hodnotách je ozubení otevřené. Uzavřené ozubení zamezuje relativnímu pohybu pouzder vůči řetězovému kolu. Proto se podélná síla od větve řetězu rychle přenáší do ozubení. Kontaktní síla při náběhu a výběhu pouzdra z ozubení je výrazně větší než u otevřeného ozubení. Směrem ke středu opásání se zmenšují kontaktní síly mezi ozubením a pouzdry řetězu. Při postupném opotřebování pouzder řetězu se tento efekt zvětšuje, protože protažení rozteče pouzder řetězu neodpovídá rozteči zubů řetězového kola. U otevřeného ozubení se vyšší kontaktní síly projevují pozitivně na vzniku chvění a na opotřebení řetězového převodu. Toto se projevuje i na zvukovém projevu tohoto převodu. Současně však přibývá nebezpečí přeskočení řetězu přes ozubení. Toto nebezpečí je největší u řetězových kol s malým úhlem opásání a vysokou zátěží. Rušivé vlivy mohou být způsobeny také axiálními posuvy řetězového kola proti ostatním. K axiálnímu posunu řetězového kola může dojít odlišnou dilatací vačkových hřídelů a klikového hřídele. (Fritz, 1998)

Obr. 1.5 Profil ozubení

1.5 VEDENÍ ŘETĚZU

Pro vedení a napínání řetězu jsou mezi jednotlivá ozubená kola umístěny vodící lišty. Základní těleso vodící lišty je vyrobeno z lehké hliníkové slitiny nebo z plastu. Pro třecí plochu se používá tvrzený plast. Třecí plocha s olejovou vrstvou se vyznačuje malým třením. Kritická místa jsou na zakřivených vodících lištách. Minimální třecí síly snižují opotřebení vodících lišt otěrem. Příliš malá zakřivení však vedou k tomu, že jednotlivá pouzdra na základě své hybnosti při náběhu na vodící lištu vytvářejí rázy, což vede k jejímu opotřebení. Tyto rázy s výrazně sníženým účinkem se však jeví, ve srovnání s rázy při náběhu řetězu na ozubená kola, jako velice malé. (Fritz, 1998)

1.6 MATEMATICKÁ FORMULACE

Řetězové převody jsou komplexní systémy těles, skládajících se z tuhých a poddajných těles.

Obr. 1.6 Omezení pohybu tělesa

Matematický model pro výpočet dynamických systémů vychází z kinematických rovnic. Typické těleso je na *obrázku 1.6.* Pro každé těleso i z n-tělesového systému můžeme napsat rovnice se silovými a momentovými podmínkami (*1.3*).

$$\left\{ \begin{pmatrix} \dot{p} \\ \dot{L} \end{pmatrix} - \begin{pmatrix} E & 0 \\ \tilde{r}_{SA} & E \end{pmatrix} \begin{pmatrix} F_A \\ M_A \end{pmatrix} - \begin{pmatrix} E & 0 \\ \tilde{r}_{SA} & E \end{pmatrix} \begin{pmatrix} F_P \\ M_P \end{pmatrix} \right\}_i = 0$$
(1.3)
$$i = 0, \dots, n$$

Kde

$$\begin{pmatrix} \dot{p} \\ \dot{L} \end{pmatrix} = \begin{pmatrix} mE & 0 \\ 0 & I_s \end{pmatrix}_i \begin{pmatrix} \dot{v}_s \\ \dot{\Omega} \end{pmatrix}_i + \begin{pmatrix} 0 \\ \tilde{\Omega}I_s \Omega \end{pmatrix}_i$$

Tyto vztahy se obvykle nazývají Newton-Eulerovy rovnice.

Na *obr. 1.6* bod *S* je těžiště tělesa s uvažovanými vlastnostmi popsanými v *m*, matice hmotností, a v $I_s \in IR^{3,3}$, matice momentů setrvačnosti. $v_s \in IR^3$ je absolutní přímočará rychlost a $\Omega \in IR^3$ je absolutní úhlová rychlost tělesa. Síly $F \in IR^3$ a momenty $M \in IR^3$ jsou rozděleny podle indexu na *A* pro aktivní a *P* pro pasivní.

Každé zrychlení nebo rychlost můžeme vyjádřit lineárním termínem pomocí zobecněných souřadnic.

$$\begin{pmatrix} v_{S} \\ \Omega \end{pmatrix}_{i} = \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}_{i} \dot{q} + \begin{pmatrix} \tilde{j}_{S} \\ \tilde{j}_{R} \end{pmatrix}_{i}$$

$$\begin{pmatrix} \dot{v}_{S} \\ \dot{\Omega} \end{pmatrix}_{i} = \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}_{i} \ddot{q} + \begin{pmatrix} \bar{j}_{S} \\ \bar{j}_{R} \end{pmatrix}_{i}$$

$$\begin{pmatrix} \partial v_{S} \\ \partial \Omega \end{pmatrix}_{i} = \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}_{i} \partial \dot{q}$$

$$\begin{pmatrix} \partial v_{S} \\ \partial \Omega \end{pmatrix}_{i} = \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}_{i} \partial \dot{q}$$

$$(1.4)$$

Ve druhé rovnici si můžeme všimnout přidaného výrazu, který vyjadřuje absolutní zrychlení $(\dot{v}_s, \dot{\Omega})$ soustředěné v (\bar{j}_s, \bar{j}_R) nejsou dále specifikovány. Matice (J_B, J_R) , které vyplývají z této úpravy

$$\begin{pmatrix} \partial v_{\mathbf{B}} / \partial \dot{q} \\ \partial \Omega / \partial \dot{q} \end{pmatrix}_{i} = \begin{pmatrix} J_{B} \\ J_{R} \end{pmatrix}_{i}; \begin{pmatrix} J_{B} \in IR^{3,f} \\ J_{R} \in IR^{3,f} \end{pmatrix}_{i}$$
(1.5)

nazýváme Jacobián translace bodu *B*, který je různý od (*S*,*A*,*P*), a Jacobián rotace.

Po substitucích a úpravách rovnice (1.3) dostaneme výraz:

$$\sum_{i=1}^{n} \left\{ \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}^{T} \begin{pmatrix} mE & 0 \\ 0 & I_{S} \end{pmatrix} \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}^{Z} \\ + \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}^{T} \begin{bmatrix} \begin{pmatrix} 0 \\ \tilde{\Omega}I_{S}\Omega \end{pmatrix} + \begin{pmatrix} mE & 0 \\ 0 & I_{S} \end{pmatrix} \begin{pmatrix} \bar{j}_{S} \\ \bar{j}_{R} \end{pmatrix} \end{bmatrix} \right]$$
(1.6)
$$- \begin{pmatrix} J_{S} \\ J_{R} \end{pmatrix}^{T} \begin{pmatrix} F_{A} \\ M_{A} \end{pmatrix} \right\}_{i} = 0$$

Výsledkem je tohoto výrazu je rovnice:

$$M(q,t)\cdot \ddot{q} - h(q,\dot{q},t) = 0 \in IR^{f}$$
(1.7)

se symetrickou kladně definovanou maticí hmotností $M \in IR^{f,f}$ a vektorem $h \in IR^{f}$, který se skládá ze všech účinků gyroskopických sil a součtu působících momentů a sil.

Výpočty mechanických systémů s podmíněnými kontakty nejsou omezeny stupni volnosti těles. V soustavě se generují síly které jsou závislé pouze na stavu systému a na čase. Tyto síly vstupují do pohybových rovnic. Obvykle se idealizují silové vazby takovým způsobem, že se převezmou síly působící v jednom směru. Tento způsob je definován na spojení dvou těles *obr 1.7*.

$$F_{i} = e_{i} \varsigma_{K} \in IR^{3}$$

$$F_{i} = e_{j} \varsigma_{K} \in IR^{3}$$

$$|F_{i}| = |F_{j}|, e_{i} = e_{j}$$
(1.8)

Obr. 1.7 Silová vazba mezi tělesem i a j

Toto jsou aplikované síly v třírozměrném prostoru (IR^3) . Pro dosazení do rovnice (1.6) se musí provést transformace sil $J_A \in IR^{3,f}$ a transformace momentů $J_R \in IR^{3,f}$. Poté dostaneme:

$$M\ddot{q} - h - J_{Ai}^{T}F_{i} - J_{Aj}^{T}F_{j} - J_{Ri}^{T}M_{i} - J_{Rj}^{T}M_{j} = 0$$
^(1.9)

Kde M_i je zadáno stejným způsobem jako F:

$$\boldsymbol{M}_{i} = \boldsymbol{e}_{i} \cdot \boldsymbol{\eta}_{k}; \boldsymbol{M}_{j} = \boldsymbol{e}_{j} \cdot \boldsymbol{\eta}_{k}; |\boldsymbol{M}_{i}| = |\boldsymbol{M}_{j}|$$
^(1.10)

Dosazením rovnic (1.8) a (1.10) do (1.9) dostaneme:

$$M\ddot{q} - h - \sum \left(w_A \zeta_k\right)_i - \sum \left(w_R \eta_k\right)_i = 0 \qquad (1.11)$$

kde

$$w_{Ai} = J_{Ai}^{T} e_{i} + J_{Aj}^{T} e_{j}; w_{Ri} = J_{Ri}^{T} e_{i} + J_{Rj}^{T} e_{j}$$

Vektory w_{Ai} , w_{Ri} jsou jednotkové vektory v prostorovém uspořádání se směrem, který koresponduje se silami a momenty. Dolní index vždy odlišuje těleso *i* od tělesa *j*. Abychom mohli simulovat kolize mezi jednotlivými tělesy musí být působení kontaktních sil podmíněno vzdáleností dotykových bodů. Silové zákony se změní v zatížení při kolizi tímto způsobem:

$$F_{A}(\gamma) = \zeta = \begin{cases} -c\gamma; \, pro\gamma < 0\\ 0; \, pro\gamma \ge 0 \end{cases}$$
(1.12)

Obr. 1.8 Závislost síly u systému s vůlí

Výpočet síly je rozdělen do dvou fází. Pro kladné γ je síla $\zeta = F_A = 0$ a pro zápornou vzdálenost $\zeta = -c \cdot \gamma$. *c* je tuhost kontaktu odpovídající velikosti kontaktní síly v závislosti na velikosti pružné deformace. (Fritz, 1998)

2 SOUČASNÝ PŘÍSTUP K VYTVÁŘENÍ MODELU

Hlavním pramenem, kde jsou dostupné aktuální informace týkající se výpočtových modelů rozvodových mechanismů, je časopis *Motortechnische Zeitschrift*. Článek názvu *Numerische Simulation des Einflusses verschiedener Spannelemente auf die Körperschallanregung durch Steuerkettentriebe* obsahuje stručný popis základních částí řetězového převodu. Je popsán přístup k výpočtu a vyhodnocení. Jsou zde testovány dvě varianty napínacího elementu. Vyobrazeny jsou průběhy sledovaných veličin z nichž jsou některé porovnány s měřením. (Schaffner, 2003)

V článku MTZ - *Eine neue Steuerkette ohne Polygoneffekt* je popisována modifikace pouzdrového řetězu snižující vliv polygonového efektu. Upravená je geometrie pásnic řetězu, které se dotýkají válcových ploch na řetězových kolech. Článek, který nabíhá na řetězové kolo, se opře o válcovou plochu výstupkem na přední straně pásnice. To zabraňuje příčnému pohybu článku řetězu. Po naběhnutí se článek usadí na řetězové kolo. Výsledky ze simulací pouzdrového řetězu a upraveného pouzdrového řetězu jsou porovnány a vyhodnoceny. (Korse, 2004)

V podstatě se stále jedná o multibody výpočet. Řetěz je reprezentován soustavou pružin a tlumičů. Kontaktní síly jsou vypočteny z velikostí průniků jednotlivých těles. Největší pozornost je věnována konstrukci a parametrům tlumícího a napínacího členu řetězového převodu.

Aplikace používané k analýze dynamického chování řetězového převodu jsou založeny na principu multibodysystem. Některé softwarová řešení vycházejí z obecných systémů. Jsou zpravidla vybaveny nadstavbou specializovanou na virtuální modely spalovacích motorů, která obsahuje nástroje na vytváření modelů řetězových převodů. Nejznámější komplexní komerční multibody aplikace jsou *MSC ADAMS* a *SIMPACK*. můžeme rozdělit do dvou skupin. Další aplikace jsou specializovány přímo na multibody modely řetězových převodů, komerční aplikace *AVL – Advanced Simulation Technologies* nebo nekomerční aplikace firmy *IWIS*.

3 STANOVENÍ CÍLŮ PRÁCE

3.1 ROZBOR TEORETICKÉHO ŘEŠENÍ A JEHO OVĚŘENÍ

Vyhledání matematických formulací diferenciálních pohybových rovnic a transformačních vztahů. Zjištění základního principu funkce kontaktních vazeb v multibody modelech. Ověření zjištěných skutečností na zjednodušeném modelu řetězového převodu naprogramováním a výpočtem v matematickém programu.

3.2 VYTVOŘENÍ MODELU ŘETĚZOVÉHO PŘEVODU

Sestavení multibody modelu řetězového převodu pro pohon vačkových hřídelí podle reálného vzoru v programu ADAMS, modulu ADAMS - engine. Zjištění tuhosti řetězu a tuhostí dotyků jednotlivých součástí pomocí statické FEM analýzy. Provedení dynamické simulace pohybů řetězového převodu při základních provozních stavech spalovacího motoru.

3.3 ANALÝZA VÝSLEDKŮ

Provést analýzu výsledků simulací pomocí Campbellových diagramů. Zjistit rezonanční oblasti a ty porovnat s výsledky modálních analýz jednotlivých částí řetězového převodu.

4 MULTIBODY MODEL V PROGRAMU MATLAB

Na ověření matematického principu multibody systému popsaného v předchozí kapitole byl podle pohybových rovnic sestaven skript pro výpočet dynamického chování řetězového převodu. Výpočet byl proveden v matematickém systému MATLAB. (Karban, 2006) Jako výchozí model bylo zvoleno co nejjednodušší uspořádání řetězového převodu, skládající se pouze z řetězu, hnaného a hnacího kola. Tvar zubové mezery kola byl zjednodušen pouze na jeden rádius. Schéma modelu je vidět na obrázku 4.1.

Obr. 4.1 Zjednodušený model řetězu pro sestavení rovnic a výpočet v programu MATLAB.

Základem výpočtu je pohybová diferenciální rovnice upravená do tvaru :

$$M\dot{q} - F_P(q) - F_T(q,q) - F_K(q) = 0$$
(4.1)

V této rovnici je q zobecněná souřadnice, M je matice hmotností, F_P je vektor sil vyvozených deformací pružin, F_T je vektor sil tlumení a F_K je vektor kontaktních sil. (Jalon, 1996)

4.1 DEFORMAČNÍ A TLUMÍCÍ SÍLY V ŘETĚZU

Řetěz je v multibody modelu nahrazen soustavou hmotných bodů, které jsou propojeny pružinami a tlumícími členy. Schéma zjednodušení řetězu v multibody modelu je na obrázku 4.2.

Obr. 4.2 Schéma zjednodušení řetězového článku.

Síly od deformace pružin jsou vypočteny ze souřadnic jednotlivých bodů. Z příslušných souřadnic q_X dvou sousedících bodů se zjistí jejich aktuální vzdálenost, od které se odečte počáteční délka řetězového článku l_0 . Součinem tohoto rozdílu a koeficientu tuhosti c_1 získáme velikost deformační síly F_P . (Hippmann, 2003)

Výpočet sil vzniklých deformací pružin funguje ve výpočtu v programu MATLAB podle schématu na obrázku 4.3.

Obr. 4.3 Schéma výpočtu sil od deformace pružin

Obdobně funguje výpočet tlumících sil. Do výpočtu musí vstupovat údaje o rychlostech q'_X jednotlivých bodů. Z těchto rychlostí se na základě údajů o poloze q_X zjistí rozdíl rychlosti ve směru spojnice příslušných dvou bodů. Součinem této rychlosti a koeficientu tlumení d_1 získáme tlumící sílu v daném směru.

Obr. 4.4 Schéma výpočtu tlumících sil

4.2 KONTAKTNÍ SÍLY MEZI ŘETĚZEM A ŘETĚZOVÝMI KOLY

Kontaktní síly jsou vyvozeny kolizí dvou těles. V tomto modelu se dotýká pouzdro řetězu řetězového kola v místě dna zubu. Geometricky je tento kontakt určen v 2D prostoru je tento kontakt určen rádiusem pouzdra řetězu R_p a rádiusem dna zubové mezery R_z . Kontakt se může zjednodušit a transformovat pouze na kontakt bodu X a rádiusu R_k , který má velikost R_z - R_p . (Pfeifer, 1996)

Kontakt bodu X a hraničního rádiusu Rk vymezeného body ABC nastane, jestliže jsou splněny následující geometrické podmínky. Bod X musí ležet v polorovině ABC a zároveň v polorovině ACB. Vzdálenost bodů AX musí být větší než rádius R_k . Velikost kontaktní síly F_{kX} je rovna součinu velikosti průniku δ_X a tuhosti kontaktu. Směr síly odpovídá vektoru XA.

Obr. 4.6 Schéma výpočtu kontaktních sil

Výpočet kontaktních sil F_K použije výchozí souřadnice řídících bodů *ABC* řetězových kol. Souřadnice jsou transformovány do nové polohy odpovídající úhlu natočení řetězových kol. Nové souřadnice společně s body středů pouzder řetězu o souřadnicích q_x jsou použity pro zjištění kolizí a výpočet kontaktních sil.

4.3 ŘEŠENÁ DIFERENCIÁLNÍ ROVNICE, VÝPOČET

Po dosazení dostane pohybová diferenciální rovnice tento tvar:

m_1	0							0	$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} F_{Px1} \end{bmatrix}$	l	$\begin{bmatrix} F_{Tx1} \end{bmatrix}$		$\begin{bmatrix} F_{Kx1} \end{bmatrix}$		0	
0	m_1	0					••		y ₁		F_{Py1}		F_{Ty1}		F_{Ky1}		0	
	0	m_2	0						<i>X</i> ₂		F_{Px2}		F_{Tx2}		F_{Kx2}			
	••	0	m_2	0	••				y_2		F_{Py2}		F_{Ty2}		F_{Ky2}			
	••		0		0				•	—		-		-		-	••	=0
	••			0	m_{18}	0			<i>X</i> ₁₈		F_{Px18}		F_{Tx18}		F_{Kx18}			
	••			••	0	m_{18}	0		ÿ ₁₈		F_{Py18}		F_{Ty18}		F_{Ky18}		0	
	••					0	0	0	α_1		0		0		0		0	
0					••		0	J_{2}	α_2						M_{K2}		Mk_2	

Výpočet byl proveden v řešiči ODE45 založeném na explicitní metodě Runge – Kutta (4. řád s odhadem chyby 5. řádu). Velikost časového kroku si řídí řešič sám.

Obr. 4.7 Úhlová rychlost hnaného kola v závislosti na čase

Obr. 4.8 Poloha středu pouzdra řetězu v závislosti na čase

Počáteční podmínkou je konstantní úhlová rychlost hnacího kola 10 rad/s a kroutící moment na hnaném kole působící proti směru otáčení 0.01 N*m. Výsledkem je graf pohybu prvního článku v osách X, Y a úhlová rychlost hnaného kola.

5 MULTIBODY MODEL V PROGRAMU MSC ADAMS

Model je vytvořen v programu pro modelování kinematiky a dynamiky MSC Adams 2005. Tento program obsahuje univerzální nástroj pro modelování dynamických systémů i nástroje, moduly zaměřené na různé oblasti průmyslu.

K modelování řetězového převodu je nejvýhodnější použít modul "engine", který je určen pro vytváření modelů k analýze dynamiky spalovacích motorů. Způsob práce spočívá ve skládání výpočtového modelu z jednotlivých subsystémů. Subsystémy se vytvářejí na základě "template". "Template", neboli tapeta je parametrický model určité části modelu, skládající se z vazeb , okrajových podmínek, z obecných částí, např. těleso, pružina, tlumič, nebo ze specifických částí určitého modulu. V modulu engine jsou pro sestavení rozvodového mechanismu nadefinovány specifické části: převod ozubenými koly, převod ozubeným řemenem, převod řetězem. U částí těchto převodů můžeme měnit umístění kol, počet kol, vkládat kladky, popřípadě opěrné lišty. Každá část převodu např. ozubená kola, řetězová kola, řetězy, řemeny má svůj konfigurační soubor, uložený v databázové struktuře adresářů MSC ADAMS. Pomocí parametrů v konfiguračním souboru se nastavují jeho vlastnosti a geometrie.

První model pro testovací výpočet vychází z předlohy "template" *_chain_timing_sohc* v programu MSC.ADAMS, ve které jsou provedeny změny v odpružení napínací lišty, v nastavení parametrů kontaktní tuhosti řetězových kol a v hmotnosti článků řetězu.

Obr. 5.1 Model s tuhou lištou v programu MSC.ADAMS

Model je složen z hnacího a hnaného řetězového kola a z napínací lišty uchycené v její horní části rotační vazbou. Pro vyvození předpětí v řetězu působí na napínací lištu v její spodní části předepnutá pružina. Zároveň s pružinou je uchycen souosý tlumič vibrací, který má stejné působiště. Řetěz je tvořen segmenty válcového tvaru, představující pouzdra řetězu, pružně spojená s tuhostí odpovídající tuhosti řetězu.

Pro testovací model je požita tuhost reálného řetězu IWIS zjištěná MKP výpočtem, viz. *kapitola 5.6*.

Kontaktní tuhost mezi koly a řetězem, lištou a řetězem je zjištěna taktéž pomocí MKP, *kapitola 5.1*.

5.1 KONTAKTNÍ TUHOSTI MODELU

Multibody model se skládá z těles spojených mezi sebou vazbami, které představují různé typy spojení. První skupinou jsou vazby kinematické, ty omezují různé stupně volnosti pohybu tělesa. Druhou skupinou jsou silové vazby, ty vyvíjejí na tělesa akční a reakční síly v závislosti na jejich poloze. Podmnožinou silových vazeb jsou kontakty, u nichž je silové působení podmíněno kolizí těles. Velikost kontaktní síly je závislá na velikosti průniku těles, na velikosti parametru kontaktní tuhosti a na definici výpočtu velikosti kontaktní síly. Definice výpočtu kontaktní síly může být například lineární, nebo exponenciální.

5.1.1 Kontaktní tuhost řetězového kola

Kontaktní tuhost mezi řetězovým kolem a pouzdrem řetězu se v závislosti na vzájemné poloze mění. Pouzdro řetězu se může dotýkat řetězového kola v místě rádiusu na dně zubové mezery, nebo rádiusu na boku zubu. Poloměry těchto rádiusů jsou různé a ovlivňují kontaktní tuhost.

Vliv má také to, v jaké výšce od paty zubu je kontaktní bod. Čím výš je kontaktní bod, tím menší je ohybová tuhost zubu.

Tato hlediska jsou vzata v úvahu ve výpočtu kontaktní tuhosti, *viz. obr. 5.2.* Při výpočtu je materiál kola a pouzdra řetězu ocel s lineární charakteristikou, E=2.1e5 MPa, μ =0.3.

Obr. 5.2 FEM model pro výpočet kontaktní tuhosti mezi řetězem a řetězovým kolem. Úhel záběru 45° a 90° stupňů.

Obr. 5.3 Kontaktní tuhost řetězového kola

Kontaktní tuhost řetězu a řetězového kola má zpočátku nelineární charakteristiku. V předpokládaném intervalu zatížení lze vypočtenou charakteristiku nahradit lineární závislostí. Řetěz v tomto modelu je stále předepnutý silou působící prostřednictvím napínací Ústav automobilního a dopravního inženýrství DIZERTAČNÍ PRÁCE

lišty. Z tohoto předpokladu vyplývá, že realitě bude více odpovídat tuhost z výpočtu se záběrovým úhlem 45°. Pro dosazení do výpočtu byl použit koeficient tuhosti 3.1 e5 N/mm.

Kontakt	Tuhost [N/mm]					
45°	3.10E+05					
90°	4.40E+05					

Obr. 5.4 Parametry kontaktní tuhosti řetězového kola

5.1.2 Kontaktní tuhost napínací lišty

Kontaktní tuhost napínací lišty je zjištěna pomocí FEM modelu, respektive tří podobných modelů, kde se liší místa kontaktu lišty s pouzdrem řetězu svou polohou.

Poloha je dána opásáním lišty řetězem. Bod A je v místě, kde se řetěz přestává dotýkat lišty, bod B je v polovině opásání a bod C je v místě náběhu řetězu na lištu. *Obr 5.5*.

Obr. 5.5 FEM model pro výpočet tuhosti vodící lišty v místech A,B,C

Lišta je uchycena v místě čepu s okrajovými podmínkami umožňujícími rotaci a v místě uchycení pružiny s okrajovou podmínkou zabraňující posuvu ve směru působení pružiny. Pouzdro řetězu se posouvá ve směru normály zakřivení lišty, čímž se dostane do vzájemného kontaktu. Z posuvu středu pouzdra a z reakční síly v něm je vytvořena deformační charakteristika.

Obr. 5.6 Detail FEM modelu pro výpočet tuhosti vodící lišty v místě B

Vodící a napínací lišty jsou většinou vyrobeny z plastu, pro testovací model byl zvolen materiál polyamid PA 66, jehož mechanické vlastnosti jsou následující: E= 3.5e3 MPa, μ =0.4 , ρ = 1.36 g*cm⁻³.

Tento materiál je v porovnání s ocelí velice pružný. Napínací lišta má dva opěrné body, otočný čep a místo uchycení pružiny. Tyto dva body jsou od sebe relativně daleko. Na liště vlivem této vzdálenosti a působení napínací síly proti reakční síle v řetězu vzniká ohybový moment, který lištu deformuje.

Ohybová deformace je při malé síle velká v porovnání s kontaktní deformací, což je vidět v diagramu, *obr 5.7*. Rozdíl velikosti posuvu při stejné síle v bodech A a B je velký.

V modelu v MSC.ADAMS se ale napínací lišta uvažuje jako tuhé těleso, kde se ohybová tuhost zanedbává. Takovéto řešení může mít zásadní vliv na výsledky.

Parametr kontaktní tuhosti napínací lišty pro výpočet v MSC ADAMS odpovídá tuhosti v místě C, kde je nejmenší vliv ohybové tuhosti.

Obr. 5.7 Deformační charakteristika napínací lišty

Kontakt	Tuhost [N/mm]
A	1766
В	1112
С	4200

Obr. 5.8 Parametry tuhosti napínací lišty.

5.2 TUHOST ŘETĚZU IWIS

Pro zjištění tuhosti řetězu je vytvořen FEM model segmentů řetězu IWIS F105-153.0-22-02. Model je složen ze čtyř článků, dvou vnitřních a dvou vnějších, a z částí článků sloužících k uchycení. Podle rovin symetrie je zredukován na ¼ celku. Jeden konec je uchycen a ve druhém je předepisován posuv.

Velikost síly odpovídá reakční síle v bodě uchycení. Z uzlů ve středech čepů, *viz obr.5.9*, jsou odečítány posuvy. Z těchto hodnot je sestavena tahová charakteristiku řetězu.

5.2.1 Model řetězu bez vůle v kontaktech

Řetěz je zde pro výpočet zjednodušen. Části řetězu, které jsou ve skutečnosti nalisovány jsou v tomto případě spojeny v jeden celek. Mezi čepem a pouzdrem řetězu je vytvořen kontakt s nulovou vůlí.

Obr. 5.9 FEM model pro výpočet tuhosti řetězu

Celková reakční síla [N]		Posunutí uzlů [mn	ן)	Pr	Celková tuhost přepočtená na jeden článek		
	Uzel 1	Uzel 2	Uzel 3	Vnitřní článek	Vnější článek	Oba články	[N/mm]
0	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	-
228	4.278E-03	8.058E-03	8.508E-03	3.374E-04	3.780E-03	4.118E-03	110934
457	8.556E-03	1.612E-02	1.702E-02	6.763E-04	7.559E-03	8.235E-03	110983
686	1.283E-02	2.417E-02	2.552E-02	1.017E-03	1.134E-02	1.235E-02	111031
915	1.711E-02	3.222E-02	3.403E-02	1.359E-03	1.511E-02	1.647E-02	111079
1144	2.139E-02	4.028E-02	4.254E-02	1.702E-03	1.888E-02	2.059E-02	111130
1373	2.567E-02	4.833E-02	5.105E-02	2.047E-03	2.265E-02	2.470E-02	111180
1603	2.995E-02	5.638E-02	5.955E-02	2.393E-03	2.642E-02	2.882E-02	111230
1832	3.423E-02	6.442E-02	6.806E-02	2.740E-03	3.019E-02	3.293E-02	111282
2062	3.851E-02	7.247E-02	7.657E-02	3.090E-03	3.396E-02	3.705E-02	111333
2292	4.279E-02	8.051E-02	8.507E-02	3.440E-03	3.772E-02	4.116E-02	111385
2523	4.707E-02	8.855E-02	9.358E-02	3.792E-03	4.148E-02	4.527E-02	111438
2753	5.135E-02	9.659E-02	1.021E-01	4.145E-03	4.524E-02	4.939E-02	111491
2984	5.563E-02	1.046E-01	1.106E-01	4.500E-03	4.900E-02	5.350E-02	111545
3215	5.992E-02	1.127E-01	1.191E-01	4.856E-03	5.276E-02	5.761E-02	111598
3446	6.420E-02	1.207E-01	1.276E-01	5.214E-03	5.651E-02	6.172E-02	111652
3677	6.848E-02	1.287E-01	1.361E-01	5.572E-03	6.026E-02	6.583E-02	111706
3909	7.276E-02	1.368E-01	1.446E-01	5.933E-03	6.401E-02	6.995E-02	111760
4140	7.704E-02	1.448E-01	1.531E-01	6.295E-03	6.776E-02	7.406E-02	111815
4372	8.133E-02	1.528E-01	1.616E-01	6.658E-03	7.151E-02	7.817E-02	111871
4604	8.561E-02	1.609E-01	1.701E-01	7.022E-03	7.525E-02	8.228E-02	111925

Obr. 5.10 Závislost deformace na zatížení, tuhost článku řetězu.

Ústav automobilního a dopravního inženýrství DIZERTAČNÍ PRÁCE

Tahová charakteristika řetězu má v této oblasti zatížení téměř lineární charakter. Tuhost vnitřního a vnějšího článku je velice rozdílná. Pásnice vnějšího článku jsou dále od sebe, což vytváří větší ohybový moment na čepu podepřeném v místech kontaktů. Tyto čepy se výrazně ohýbají, protože mají menší průměr. Naproti tomu jsou vnitřní pásnice blíže ke středu, vyvozují menší ohybový moment a působí na ohybově tužší pouzdra.

Pro zadání parametru tuhosti řetězu do programu MSC ADAMS je použita průměrná hodnota obou tuhostí.

Obr. 5.11 Tahová charakteristika řetězu

5.2.2 Model řetězu s vůlí a přesahem v kontaktech

U reálného řetězu je mezi čepem a pouzdrem vůle, která umožňuje vzájemný rotační pohyb. Tato vůle se během provozu zvětšuje vlivem opotřebení.

FEM model se od modelu pro výpočet tahové charakteristiky bez vůle liší v počtu kontaktních spojení a jejich vlastnostech.

Kontakt mezi čepem a pouzdrem má předepsanou určitou vůli, tabulka *obr. 5.13*. Nalisované spoje, spojení vnější pásnice a čepu, spojení vnitřní pásnice a pouzdra mají ve vlastnostech kontaktu předepsán přesah a tření o velikosti 0.8, viz. tabulka *obr. 5.13*. Průměry spojení vycházejí z uložení s vůlí H7/g6, mezi čepem a pouzdrem, a uložení s přesahem H7/s6, pouzdro – vnitřní pásnice, a H7/r6, čep – vnější pásnice.

Obr. 5.12 FEM model pro výpočet tuhosti řetězu

Kontakt	Uložení	D	H7		g6,s6,r6		maximální vůle/	minimimální	střední
		[mm]	ES [um]	EI [um]	es [um]	ei [um]	přesah [um]	vůle/ přesah [um]	hodnota [um]
1	H7/g6	3.15	12	0	-4	-12	24	4	14
2	H7/s6	5	12	0	27	19	27	5	16
3	H7/r6	3.15	12	0	23	15	23	3	13

Obr. 5.13 Uložení a tolerance řetězu

Výpočet je proveden pro tři různé velikosti vůle mezi čepem a pouzdrem. Nalisované spojení má velikosti přesahů ve středu tolerančního pole.

Z porovnání tahových charakteristik vyplývá, že tuhost řetězu je velmi podobná jako u modelu s pevným spojením bez vůle. Velikou roli zde ovšem hraje vůle mezi čepem a pouzdrem. Řetěz začne přenášet sílu až v okamžiku dotyku čepu s pouzdrem. Tato vlastnost může mít veliký vliv na dynamické chování řetězu.

Obr. 5.14 Tahová charakteristika řetězu

V programu MSC.ADAMS umožňuje zadat nelineární tahovou charakteristiku tuhosti řetězu. Nelineární charakteristika se musí zadat ve tvaru koeficientů polynomu pátého řádu, přesněji koeficienty páté, třetí a první mocniny. Tahová charakteristika se musí aproximovat tímto tvarem polynomu.

Výpočet řetězového převodu s nelineární charakteristikou řetězu je proveden pro kombinaci střední vůle v kontaktech se středními přesahy v nalisovaných spojích. Aproximace tahové charakteristiky, která je použita při výpočtu v MSC ADAMS, je vidět na *grafu obr.5.15*. Koeficient u členu pátého řádu je v tomto případě roven hodnotě 5.0 e+10, koeficient u členu třetího řádu je roven 1,0 e+4 a třetím koeficientem je nula.

Obr. 5.15 Tahová charakteristika řetězu s vůlí

5.3 MODIFIKACE NAPÍNACÍ LIŠTY

Ohybová tuhost lišty může mít na dynamické chování řetězového převodu velký vliv. Bylo třeba najít způsob modelování, který by ohyb lišty umožnil. Nejefektivnějším způsobem je použití poddajného tělesa v modelu. Model lišty se zpracuje ve FEM programu, k čemuž se použije CAD geometrie. Pomocí modální syntézy se vygenerují parametry pro vložení do MSC ADAMS. Výsledná struktura v MSC ADAMS odpovídá maticím tuhosti a hmotnosti FEM modelu.

Vložení poddajného tělesa do multibody modelu je rozděleno na dva kroky. Prvním je vytvoření sítě modelu ve FEM programu a jeho výpočet modální analýzy a uložení příslušných dat do souboru .mnf (modal neutral file). V druhém kroku se tento soubor importuje do MAC.ADAMS, kde se může provést výběr vlastních tvarů použitých pro transformaci tuhostí a dále se provede připojení poddajného tělesa do struktury multibody modelu.

Obr. 5.16 Multibody model s poddajnou lištou

MSC.ADAMS využívá k modální syntéze Craig-Bampton metodu. Tato metoda je založena na kombinaci dvou skupin vlastních tvarů. (MSC ADAMS, 2005)

Constraint modes

Tyto módy jsou statické tvary získané tím, že jednomu hraničnímu uzlu se předepíše jednotkový posun v jednom směru DOF a ostatním hraničním uzlům se předepíše nulový posuv ve všech DOF. Počet těchto módů odpovídá počtu DOF u všech hraničních uzlů. (*MSC ADAMS Online help*, 2005)

Fixed-boundary normal modes

Módy jsou získány modální analýzou při odebrání DOF na hraničních uzlech. Tyto módy se mohou protřídit a vybrat jen některé pro určitý frekvenční přenos, nebo omezit určitou maximální frekvencí. Tímto výběrem je určena kvalita modelu. (*MSC ADAMS Online help*, 2005)

Na základě těchto skupin módů se sestaví transformační matice, kterou se zredukuje matice hmotností a matice tuhostí. Tím se sníží počet stupňů volnosti na hodnotu odpovídající počtu vybraných Fixed-boundary normal modes a Constraint modes. (*MSC ADAMS Online help*, 2005)

Konstrukce FEM modelu pro vygenerování modálního souboru musí obsahovat set hraničních uzlů s předepsanými stupni volnosti, na které se dále v multibodymodelu definují vazby. Jelikož délka segmentu lišty je delší než hrana elementu na ploše lišty, musí se segment připojit na více uzlů. K tomuto účelu je vhodné použít element RBE3, kde je posuv závislého uzlu odvozen od posuvů uzlů řídících. Na vnější uzly poddajného tělesa jsou připevněny segmenty pružné lišty. Toto řešení umožňuje použití kontaktu s tím, že si lišta zachová své ohybové vlastnosti.

Obr. 5.17 FEM model pro přenos do MSC.ADMS

5.3.1 Statická kontrola lišty s připojenými segmenty

Pro ověření podobnosti mechanických vlastností jsem provedl statickou kontrolu , *obr. 5.18*, graf *obr . 5.19*, a porovnání výsledků s hodnotami z kapitoly 5.1.2. Segmenty lišty z multibodymodelu jsou zde nahrazeny elementy se zanedbatelnou hustotou. Uzly těchto elementů jsou spojeny s příslušným hraničním bodem pomocí RBE2 elementů.

Obr. 5.18 FEM model pro ověření tuhosti napínací lišty v místech A,B,C

Obr. 5.19 Deformační charakteristika napínací lišty, porovnání tuhosti napínací lišty se segmenty

Jan Vlastník

Patrný rozdíl v kontaktní a ohybové tuhosti se vyskytuje pouze v místě kontaktu C. Kontaktní tuhost je vyšší v důsledku malé vzdálenosti od hraničního bodu. Tato odchylka je v porovnání s rozptylem kontaktních tuhostí samotné lišty ještě přípustná.

Zmenšení odchylky se dá docílit zmenšením délky segmentů a navýšením jejich počtu.

5.3.2 Dynamická kontrola lišty s připojenými segmenty

Modely pro tuto kontrolu jsou identické se statickou kontrolou, změna je v odstranění článku řetězu.

Hodnoty vlastních frekvencí se u obou modelů shodují. U lišty se segmenty se vyskytuje navíc čtrnáctý řád, který je způsoben příčným kmitáním jednoho segmentu.

Připojení segmentů pomocí prvků RBE3 nijak výrazně neovlivňuje tuhost lišty.

		_	
	Rau	[Hz]	[Hz]
	1	103	103
	2	577	577
ATA .	3	837	837
+HA	4	898	898
HH.	5	1759	1758
TTHE	6	2356	2354
	7	2799	2798
	8	2919	2917
	9	3334	3332
	10	4756	4753
	11	5245	5242
	12	5447	5443
HHHK	13	6807	6803
	14	7432	7245
	15	7520	7430
	16	8356	7513
	17	9029	8335
•	18	9806	8363
	19	11338	9023
	20	11351	9801

Lišta bez segmentů Lišta se segmenty

Obr. 5.20 Porovnání vlastních frekvencí u lišty se segmenty a lišty bez segmentů.

5.4 TLUMENÍ V MULTIBODY MODELU

V multibody modelu s vysokým počtem stupňů volnosti je nutné použít tlumící elementy, které zlepšují stabilitu výpočtu. V případě modelu řetězového převodu výpočet bez tlumení v řetězových článcích vůbec nezkonverguje. V mechanismu se akumuluje energie až do doby, kdy se stane numerické řešení nestabilní. Obecně se na počátku řeší model s malými koeficienty tlumení nebo z hodnotami vyplývajícími z kvalifikovaného odhadu nebo z měření. V přírodě je tlumení dáno fyzikálními vlastnostmi materiálů a prostředí. Obecně si lze představit, že jde o sílu, která působí proti pohybu.

$$F_t = -b \cdot v = -b \cdot \frac{dy}{dt} \tag{5.1}$$

Kde *b* je konstanta charakterizující interakci mezi objektem a prostředím. Po dosazení do diferenciální rovnice dostaneme:

$$m \cdot \frac{d^2 y}{dt^2} + b \cdot \frac{dy}{dt} + k \cdot y = 0$$
(5.2)

Obecné řešení je:

$$y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

 C_1 a C_2 jsou integrační konstanty z okrajových podmínek, λ_1 a λ_2 jsou kořeny charakteristické rovnice tvaru:

$$m \cdot \lambda^2 + b \cdot \lambda + k = 0 \tag{5.3}$$

Řešení této rovnice je:

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4km}}{2m}$$
(5.4)

Znaménko výrazu pod odmocninou určuje charakter čísel λ_1 a λ_2 . Pokud výraz pod odmocninou nabývá hodnoty větší než nula, nastane nadkritické tlumení, pohyb se u jednorozměrného mechanismu udává po exponenciále. Pokud je hodnota nulová, nastane kritické tlumení, viz výraz 5.5.

$$b_{kr} = \sqrt{4 \cdot k \cdot m} \tag{5.5}$$

Kmitavý pohyb nastane, jestliže výraz pod odmocninou je menší než nula. Potom se může výraz 5.4 napsat ve tvaru:

$$\lambda_{1,2} = -\frac{b}{2m} \pm i \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2}$$
(5.6)

Reálná část se označuje jako koeficient doznívání:

$$\delta = \frac{b}{2m} \tag{5.7}$$

Důležitým parametrem je vlastní frekvence:

$$\Omega_0 = \sqrt{\frac{k}{m}} \tag{5.8}$$

Vlastní frekvence tlumené soustavy:

$$\Omega_{tl} = \sqrt{\Omega_0^2 - \delta^2} \tag{5.9}$$

(Malenovský, 2005)

5.4.1 Vliv tlumení

Zjistíme tedy kritické tlumení jednoho článku řetězu. Hmotnost článku redukovaná do jednoho působiště je m = 2.7 e- 3 kg,

tuhost řetězu je k = 1.115 e+8 N/m.

Podle rovnice pro velikost kritického tlumení :

$$b_{ir} = \sqrt{4 \cdot k \cdot m} \tag{5.5}$$

je velikost kritického tlumení pro řetězový článek je 1114 Hz. V testovacím výpočtu jsou zvoleny tři stupně tlumení řetězu ,a to 10, 100, 1000 N*s/m, tlumení v kontaktech je 100 N*s/m. Výpočet je proveden pro otáčky 6000 1/min hnacího řetězového kola a moment 5.0 N*m na hnaném řetězovém kole. Výstupní hodnoty jsou vyhodnoceny pomocí FFT, aby bylo možné porovnat velikosti amplitud.

Obr. 5.21 Porovnání amplitud kroutícího momentu na hnacím kole.

Obr. 5.22 Porovnání amplitud úhlové rychlosti na hnaném kole.

Obr. 5.23 Porovnání amplitud rychlosti posuvu napínací lišty v místě upevnění pružiny.

Z diagramů *obr. 5.21 – 5.23* vyplývá, že velikost tlumení nemá bezprostřední vliv na velikost amplitud vzniklých vybuzením polygonovým efektem. Tlumení ovšem snižuje velikost amplitud složek chvění vzniklých rezonancí částí mechanismu. Velikost tlumení tedy má vliv na to jaké, rezonanční frekvence se projeví, a jaké budou utlumeny. Na velikosti tlumení také záleží, jestli výpočet bude stabilní či nikoliv. Proto je vhodné na místa mechanismu, kde se vyskytuje velké kolísání sil působících mezi tělesy, použít tlumení.

5.5 VÝPOČTY MULTIBODY MODELU A VYHODNOCENÍ

Program MSC.ADAMS má předdefinováno zaznamenávat obecné výstupní veličiny, jako je poloha, rychlost, zrychlení, síla. Z výstupních veličin jsem pro porovnání a snadnější vyhodnocení vybral hodnoty kroutícího momentu na hnacím kole, velikost úhlové rychlosti na hnaném kole a rychlost bodu na napínací liště v místě uchycení pružiny. Výstupy jsou vyhodnoceny pomocí rychlé Forierovy transformace.

Výpočet s multibody modelem je proveden pro několik druhů okrajových podmínek, které odpovídají provozním stavům spalovacího motoru.

Výpočty při ustálených otáčkách hnacího kola mají na začátku okrajovou podmínku otáčky 3000, 4500, 6000 1/min. Počáteční rychlost řetězu v tečném směru jeho střednice odpovídá počáteční obvodové rychlosti hnacího kola. Hnané řetězové kolo musí mít stejnou obvodovou rychlost jako hnací kolo. Na hnané řetězové kolo působí proti směru otáčení konstantní kroutící moment velikosti 5 N*m. Tento moment je proti reálnému stavu konstantní, aby se do modelu v tomto případě nezanášel další vliv buzení. Časový interval výpočtu je tak dlouhý, aby odpovídal desíti otáčkám hnacího kola při dané rychlosti otáčení. Vzorkovací frekvence u toho výpočtu je 20 kHz.

Výpočet modelu je proveden také pro rozběh z klidu až do otáček 6000 1/min v časovém úseku osmnácti sekund. U tohoto výpočtu se vyskytovaly problémy s konvergencí, proto je výpočet proveden se vzorkovací frekvencí 50 kHz.

5.5.1 Vyhodnocení tažné síly řetězu

Z výsledných dat lze určit průběh tažné síly řetězu v jednotlivých místech řetězového převodu. Tyto údaje mohou posloužit pro dimenzování řetězu z hlediska únavových vlastností i k analýze opotřebení.

Na schématu *obr. 5.24* jsou vyznačeny oblasti, ve kterých se článek řetězu vyskytuje. V diagramech průběhů sil jsou tyto oblasti vyznačeny stejnými barvami.

Obr. 5.24 Schéma pro vyhodnocení tažné síly v řetězu

Tažná síla řetězu u modelu s tuhou lištou

Obr. 5.25 Tažná síla v řetězu u modelu s tuhou lištou při otáčkách 3000, 4500, 6000 [1/min]

Tažná síla řetězu u modelu s poddajnou lištou

Obr. 5.26 Tažná síla v řetězu u modelu s poddajnou lištou při otáčkách 3000, 4500, 6000 [1/min]

Zhodnocení

Z porovnání výsledků v jednotlivých diagramech vyplývá, že síla v řetězu se s rostoucími otáčkami zvyšuje, což je dáno dostředivým zrychlením.

Síla v řetězu výrazně kolísá při náběhu a výběhu z řetězových kol vlivem kontaktu se zuby řetězového kola. V okolí napínací lišty síla kolísá nejméně, protože je zde podepírána lištou. V řetězu působí tah vyvozený předpětím na napínací liště a dynamické účinky polygonového efektu. Při průběhu článku volnou větví převodu dochází k největším výchylkám. Tato větev přenáší tah vzniklý kroutícím momentem hnaného kola a je také napínána silou vyvozenou předpětím na napínací liště. V kolísání síly se projevuje polygonový efekt obzvláště v příčném směru. Nepodepřené články mohou příčně kmitat a tento pohyb převádět na podélnou kolísavou sílu.

Rozdílné průběhy tažné síly řetězu v modelu s tuhou lištou a v modelu s poddajnou lištou jsou zřejmě způsobeny deformací lišty při silových špičkách, která je nejvíce patrná při přechodu článku z napínací lišty na hnané kolo.

5.5.2 Vyhodnocení rozběhu řetězového převodu

Výsledky z výpočtu rozběhu řetězového převodu jsou vyhodnoceny pomocí Campellova diagramu, který dává potřebný přehled o průběhu zkoumaného výstupu. V diagramu jsou na ose x vyneseny hodnoty rychlosti otáčení hnacího kola. Na ose y jsou frekvenční hladiny rozkladu výstupu FFT. Barva plochy představuje třetí rozměr diagramu, který odpovídá amplitudě příslušné frekvence při příslušných otáčkách. Velikosti amplitud vzniklých buzením jsou řádově několikrát vyšší než velikosti amplitud odezvy, které jsou také důležité pro vyhodnocení výsledků. Z tohoto důvodu je použito logaritmické měřítko velikosti amplitud .

V diagramech maximálních amplitud je zobrazena velikost maximální amplitudy FFT rozkladu v závislosti na otáčkách hnacího řetězového kola. Vodorovná osa udává frekvenci buzení polygonovým efektem, která je rovna součinu frekvence otáčení hnacího kola a počtu jeho zubů.

Amplitudy mementu na hnacím kole u modelu s tuhou lištou

Obr. 5.27 Campbellův diagram amplitudy mementu na hnacím kole u modelu s tuhou lištou

Amplitudy úhlové rychlosti hnaného kola u modelu s tuhou lištou

Obr. 5.28 Campbellův diagram amplitudy úhlové rychlosti hnaného kola u modelu s tuhou lištou

Amplitudy rychlosti bodu na konci napínací lišty u modelu s tuhou lištou Spectrogram amplitudy (Rychlost posunuti)

Obr. 5.29 Campbellův diagram amplitudy rychlosti bodu na konci napínací lišty u modelu s tuhou lištou

Amplitudy mementu na hnacím kole u modelu s poddajnou lištou

Obr. 5.30 Campbellův diagram amplitudy mementu na hnacím kole u modelu s pružnou lištou

Amplitudy úhlové rychlosti hnaného kola u modelu s poddajnou lištou

Obr. 5.31 Campbellův diagram amplitudy úhlové rychlosti hnaného kola u modelu s pružnou lištou

Amplitudy rychlosti bodu na konci napínací lišty u modelu s poddajnou lištou

Obr. 5.32 Campbellův diagram amplitudy rychlosti bodu na konci napínací lišty u modelu s pružnou lištou

Amplitudy mementu na hnacím kole u modelu s tuhou lištou a nelineární charakteristikou řetězu

Obr. 5.33 Campbellův diagram amplitudy mementu na hnacím kole u modelu s tuhou lištou a nelineární charakteristikou řetězu.

s tuhou lištou a nelineární charakteristikou řetězu

Amplitudy rychlosti bodu na konci napínací lišty u modelu s tuhou lištou a nelineární charakteristikou řetězu

Obr. 5.35 Campbellův diagram amplitudy rychlosti bodu na konci napínací lišty u modelu s tuhou lištou a nelineární charakteristikou řetězu Brno, 2009

Porovnání maximálních amplitud při odpovídajících frekvencích buzení

Obr. 5.36 Maximální velikost amplitudy momentu v závislosti na frekvenci buzení polygonovým efektem.

Obr. 5.37 Maximální velikost amplitudy úhlové rychlosti řetězového kola 2 v závislosti na frekvenci buzení polygonovým efektem.

Obr. 5.38 Maximální velikost amplitudy rychlosti konce napínací lišty v závislosti na frekvenci buzení polygonovým efektem.

5.6 ANALÝZA VLASTNÍCH FREKVENCÍ ČÁSTÍ PŘEVODU

V Campbellových diagramech se vyskytují rezonanční špičky vyvolané buzením prostřednictvím polygonového efektu. Z těchto diagramů se ale nedá u některých špiček zjistit příčina zvýšení amplitud. Některá tělesa modelu mohou rezonovat nebo mohou být ovlivňovány rezonancí okolních těles. Například když se zvýší kolísání úhlové rychlosti hnaného kola při určité frekvenci buzení, může být toto chování důsledkem rezonančního kmitání volné větve řetězu.

Proto bylo přistoupeno k analýze vlastních frekvencí a tvarů kmitů jednotlivých částí a skupin mechanismu.

5.6.1 Modální analýza napínací lišty

Modální analýza byla provedena na rovinně symetrickém modelu. Symetrie podle podélné roviny *xy* pomůže odfiltrovat torzní a ohybové kmitání v rovině *yz*. Velký vliv na vlastnosti lišty v modelu má její ohybová tuhost ve směru osy *x*. Lišta je uchycena pomocí SPC v místě uložení čepu, zde je ponechán volný rotační stupeň volnosti. U první varianty je v místě uchycení pružiny předepsán nulový posuv v ose *x*. Ve druhé variantě je použita vetknutá pružina se stejnou tuhostí jako v multibody modelu. Pružina je uchycena k liště na několik uzlů pomocí RBE2 elementu.

Obr. 5.39 Varianty modelu pro výpočet vlastních frekvencí napínací lišty:

- V místě uchycení pružiny je okrajová podmínka omezující příčný pohyb.
- Lišta je podepřena pružinou jako v MBS modelu.

V tabulce *obr. 5.40* jsou uvedeny hodnoty vlastních frekvencí obou modelů. První čtyři tvary vlastních kmitů jsou na *obrázcích 5.41 a 5.42*.

	Napínací lišta							
Mód	Lišta uchycená SPC1 [Hz]	Lišta uchycená pružinou [Hz]						
1	882	35						
2	2304	1328						
3	2987	2511						
4	5406	3590						
5	7478	6117						
6	8225	7530						
7	10793	8872						
8	11926	11673						
9	12921	12215						
10	14541	14439						
11	15252	15234						
12	16412	16328						
13	17495	17488						
14	18990	18975						
15	19467	19463						
16	20051	20053						
17	21253	21275						
18	22313	22437						
19	22544	22546						
20	23392	23470						

Obr. 5.40 Vlastní frekvence napínací lišty pro dvě varianty modelu

Obr. 5.41 Vlastní tvary kmitů u modelu uchyceného pomocí SPC 1.

Obr. 5.42 Vlastní tvary kmitů u modelu uchyceného pomocí pružiny.

5.6.2 Modální analýza napínací lišty s předpětím

Pro zjištění vlivu obepnutí napínací lišty řetězem a zjištění vlivu napínací síly byl vytvořen tento model. Zde se také využívá symetrie podle roviny *xy*. Lišta je uchycena podobně jako v předchozím modelu u druhé varianty. Navíc je zde řetěz. Jeho základ tvoří elementy typu RBE2 s řídícími uzly ve středech pouzder řetězu. Tyto středy jsou propojeny elementy typu ROD, které nepřenášejí rotace. Rotační stupeň volnosti je odebrán pomocí SPC ve směru 3. Ve středovém uzlu je umístěn prvek typu MASS, kterým je dosaženo celkové hmotnosti odpovídající jednomu článku řetězu. Kontakt řetězu s lištou je nahrazen pružinami s tuhostí odpovídající tuhosti kontaktu. V místě uchycení pružiny je vyvozována přepínací síla v rozmezí 10 – 100 N.

Obr. 5.43 Model s vodící lištou a řetězem pro výpočet vlastních frekvencí předepnuté soustavy

Frekvence			Napínací síla [N]													
(H	z]	10	20	30	40	50	60	70	80	90	100					
	5	882	910	1062	1216	1354	1479	1593	1699	1798	1892					
	6	1191	1189	1188	1241	1386	1523	1652	1774	1890	2003					
	7	2408	2400	2393	2385	2377	2369	2360	2351	2342	2332					
	8 2897	2897	2903	2909	2915	2920	2926	2932	2938	2944	2950					
	9	4830	4837	4842	4847	4852	4856	4860	4863	4865	4866					
	10	4932	4931	4930	4930	4928	4927	4926	4925	4923	4922					
	11	6867	6867	6867	6865	6862	6858	6853	6846	6837	6826					
Mód	12	7345	7334	7323	7311	7299	7287	7274	7261	7247	7234					
wou	13	8500	8499	8498	8495	8492	8487	8482	8475	8467	8458					
	14	9378	9379	9379	9378	9377	9374	9370	9364	9357	9348					
	15	9590	9587	9583	9579	9573	9567	9559	9550	9540	9529					
	16	10492	10490	10487	10483	10476	10468	10457	10444	10429	10411					
	17	10974	10972	10968	10963	10957	10950	10941	10931	10920	10906					
	18	11400	11405	11409	11411	11412	11412	11410	11407	11402	11394					
	19	11509	11511	11512	11513	11513	11512	11510	11507	11503	11498					
	20	11853	11860	11865	11871	11875	11878	11881	11882	11882	11880					

Obr. 5.44 Tabulka vlastních frekvencí předepnutého modelu s líštou

Obr. 5.45 Vlastní tvary kmitů předepnutého modelu s líštou

Obr. 5.46 Diagram závislosti hodnoty vlastní frekvence na předpětí lišty

5.6.3 Modální analýza řetězu

MKP model byl vytvořen spojením pouzder řetězu, vytvořených elementy RBE2 a HEXA, elementy typu BAR a RBE2. RBE2 elementy spojené s BAR elementy mají volným stupněm rotace v ose z, aby se mohly články vůči sobě pootáčet. Celek byl dovážen elementem hmotnosti na hodnotu odpovídající hmotnosti článku v multibody modelu. Uzly na koncích řetězu odpovídají polohou středům článků zabírajícím s řetězovými koly a mají ponechán volný stupeň volnosti rotace kolem z.

Segment 1

Nelineární závislost velikostí vlastních frekvencí se vyskytuje u volných částí řetězu. Řetěz je napínán tažnou silou a tím roste jeho příčná tuhost a vlastní frekvence se zvyšují. V podélném směru se vliv tažné síly eliminuje a tuhost je stále stejná, ale protažením se změní jeho délka a hodnoty vlastních frekvencí klesnou. Pokles je ale velice malý, viz. graf *obr. 5.50*.

Obr. 5.47 FEM model pro výpočet vlastních frekvencí předepnuté části řetězu.

Frekvence		Napínací síla [N]											
(H	lz]	117	233	350	467	583	700	817	933	1050	1166		
	1	151	164	176	188	198	209	218	227	236	245		
	2	187	227	261	290	317	342	365	387	407	427		
	3	235	303	358	406	448	487	523	557	589	619		
	4	287	383	459	524	582	634	683	728	770	810		
	5	342	464	559	641	713	779	839	896	949	999		
	6	396	543	658	756	842	920	992	1059	1123	1182		
	7	449	620	754	867	966	1057	1140	1217	1290	1359		
	8	500	695	845	973	1086	1188	1281	1369	1451	1528		
	9	550	766	933	1074	1199	1312	1415	1512	1603	1689		
	10	596	832	1015	1169	1305	1428	1541	1647	1745	1839		
	11	638	892	1089	1255	1401	1533	1655	1768	1875	1975		
	12	682	955	1166	1344	1501	1643	1773	1895	2009	2117		
	13	727	1019	1244	1434	1602	1754	1893	2023	2145	2260		
	14	760	1066	1302	1501	1677	1835	1981	2117	2245	2366		
Mád	15	790	1110	1356	1564	1747	1912	2064	2206	2339	2465		
woo	16	818	1150	1405	1620	1810	1981	2139	2286	2424	2554		
	17	843	1185	1448	1670	1866	2043	2205	2357	2499	2633		
	18	864	1215	1485	1713	1914	2096	2263	2418	2564	2702		
	19	882	1241	1517	1750	1955	2140	2311	2470	2619	2759		
	20	897	1262	1543	1779	1988	2177	2350	2512	2663	2806		
	21	908	1278	1562	1802	2014	2205	2381	2544	2698	2843		
	22	916	1290	1577	1819	2032	2225	2402	2567	2722	2869		
	23	921	1297	1585	1829	2043	2237	2415	2581	2737	2884		
	24	4249	4248	4248	4247	4247	4246	4246	4246	4245	4245		
	25	8476	8475	8474	8473	8472	8471	8470	8469	8469	8468		
	26	12668	12667	12665	12664	12662	12661	12659	12658	12656	12655		
	27	16805	16804	16802	16800	16798	16796	16794	16792	16790	16788		
	28	20871	20869	20866	20864	20861	20859	20857	20854	20852	20850		
	29	24847	24844	24841	24838	24836	24833	24830	24827	24824	24821		
	30	28717	28714	28710	28707	28704	28700	28697	28694	28691	28687		

Obr. 5.48 Vlastní frekvence předepnuté části řetězu

Obr. 5.49 Diagram závislosti hodnoty vlastní frekvence příčných kmitů řetězu na předpětí napínací lišty

Obr. 5.50 Diagram závislosti hodnoty vlastní frekvence podélných kmitů řetězu na předpětí napínací lišty

Segment 2

Segmentem 2 je označena část řetězu odpovídající délce tří článků a nacházející se v úseku mezi hnacím řetězovým kolem a napínací lištou. FEM model je zpracován stejně jako Segment 1.

Frekvence [Hz]		Napínací síla [N]											
		140	281	421	561	701	841	981	1121	1262	1401		
	1	431	594	721	828	923	1010	1089	1163	1232	1297		
	2	750	1052	1284	1481	1654	1810	1954	2088	2214	2333		
Mód	3	948	1335	1632	1883	2103	2303	2486	2657	2817	2969		
	4	24847	24843	24840	24836	24833	24829	24826	24823	24819	24816		
	5	45905	45899	45893	45886	45880	45874	45867	45861	45855	45849		

Obr. 5.51 Vlastní frekvence předepnutého řetězu

Obr. 5.52 Diagram závislosti hodnoty vlastní frekvence příčných kmitů řetězu na předpětí napínací lišty

Obr. 5.53 Diagram závislosti hodnoty vlastní frekvence podélných kmitů řetězu na předpětí napínací lišty

5.6.4 Zhodnocení výsledků

Řetězový převod představuje soustavu těles propojených mezi sebou pružnými vazbami nebo podmíněnými vazbami, tj. kontakty. Buzení soustavy představuje otáčení hnacího a hnaného kola, které je v kontaktu s články řetězu. Při záběru a výběhu řetězového kola a řetězu vzniká polygonovým efektem, popsaným v kapitole 1, nerovnoměrnost v příčném a podélném

pohybu článků řetězu. Frekvence výchylek tohoto pohybu je lineárně závislá na otáčkách hnacího řetězového kola a odpovídá násobku počtu zubů kola a frekvence otáčení. Podobná je situace u hnaného řetězového kola zabírajícího s řetězem. Zde ovšem vyvozuje pohyb řetěz. Řetězové kolo je v tomto případě brzděno konstantním kroutícím momentem. Zde už frekvence výchylek není konstantní, ale mírně kolísá vlivem změn trajektorie řetězu. Dochází zde k posouvání fáze. Frekvence by měla oscilovat kolem frekvence záběrů hnacího řetězového kola.

V Campbellových diagramech se objevují výrazné amplitudové špičky, jejichž hřbet je lineární a je přímo úměrný otáčkám hnacího kola. Nejnižší, tj. první řád má závislou frekvenci, která se rovná frekvenci otáčení hnaného kola násobenou počtem jeho zubů. S prvním řádem jsou spojeny i vyšší harmonické řády, což jsou odezvy s frekvencí rovnou násobku celého čísla a frekvence prvního řádu. Vodorovná linie, mírně se snižující při vyšších otáčkách, odpovídá příčnému kmitání volné části řetězu při některé z jeho vlastních frekvencí. U všech závislosti ve všech třech variantách modelu se vyskytuje zvýšení amplitud v nižším pásmu otáček 1500 – 2500 1/min, budící frekvence polygonového efektu je kolem hodnoty 600 Hz. Amplituda kroutícího momentu hnacího kola a amplituda úhlové rychlosti hnaného kola má navíc výrazné špičky kolem otáček 4000 – 4500 1/min.

Porovnáme-li výsledky jednotlivých variant modelu, vycházejí amplitudy sledovaných veličin u modelu s tuhou lištou několikanásobně menší. Vrcholy maximálních hodnot se kryjí s vrcholy maximálních hodnot u varianty s poddajnou lištou a u varianty s nelineární charakteristikou řetězu.

6 MODEL PODLE REÁLNÉ PŘEDLOHY

Model podle reálné předlohy vychází z již funkčního mechanismu. Koncepce uspořádání je 2xOHC. Model se skládá z hnacího řetězového kola a dvou hnaných kol. Na rozdíl od předchozího modelu je zde použita pevná vodící lišta. Vodící lišta je umístěna na tažné větvi řetězu a je upevněna třemi šrouby k bloku motoru. Model dále obsahuje opěrnou lištu, ta je umístěna mezi řetězovými koly vačkových hřídelí. Předpětí v řetězu je vyvoláno působením napínací lišty uchycené na čepu v její horní části, na kterou ve spodní části působí pružina s předpětím. Pohyb lišty je tlumen tlumičem, umístěným ve stejných bodech jako pružina. Tuhost pružiny odpovídá pružině v reálném mechanismu. Předpětí pružiny odpovídá předpětí v reálném modelu, zvětšeném o sílu, vznikající působením tlakového oleje na pístek napínáku řetězu. Tlumení odpovídá zkoušce lekage. Při zatížení pístku konstantní silou 100N se zjišťuje rychlost klesání. Z těchto hodnot je stanoveno přibližné tlumení. Pro porovnání byly vytvořeny dva modely. První model má vodící a napínací lištu v podobě tuhého tělesa s předepsanou kontaktní tuhostí, druhý model má napínací a vodící lištu pružnou.

Obr. 6.1 Modely podle reálné předlohy. Model s tuhými lištami – model s pružnými lištami.

6.1 ΚΟΝΤΑΚΤΝΙ ΤUHOSTI

Kontaktní tuhosti modelu podle reálné předlohy jsou zjištěny FEM výpočty podobně jakou u modelu v kapitole 5.1.

6.1.1 Kontaktní tuhost vodící a napínací lišty

Model pro zjištění tuhosti je vytvořen jako rovinně symetrický. Řetězové články se dotýkají vodící lišty okraji pásnic. Kontaktní tuhost je vztažena ke středové ose čepu řetězu. Články řetězu jsou spojeny pomocí RBE2 elementů způsobem popsaným v kapitole 6.3. Na vrchol RBE2 elementu je předepsána určitá deformace a v tomto bodě se také zjišťuje reakční síla. Ze závislosti deformace a reakční síly se určí tuhost kontaktu.

Tuhost se u vodící lišty mění v závislosti na poloze článku vzhledem k liště. Vodící lišta je upevněna ve třech místech, v jejichž okolí je příčná tuhost lišty větší. Pokud se článek nachází mezi těmito upevňovacími body dochází k ohybu a poklesu tuhosti.

Tento jev se nedá v modelu v MSC ADAMS s tuhou lištou postihnout. Proto je třeba zvolit kompromisní řešení. V tomto případě zvolená tuhost odpovídá poloze článku řetězu nad středním upevňovacím místem, viz *obr* 6.1.

Obr. 6.1 Umístění článků řetězu pro výpočet tuhosti vodící lišty.

V případě napínací lišty bude tuhost v příčném směru také závislá na poloze, jelikož je uchycena v horní části na čepu a v dolní části podepřena napínací jednotkou. V rámci zjednodušení je pro všechny tři lišty zvolena stejná kontaktní tuhost vycházející z kontaktní tuhosti vodící lišty, jejíž charakteristika je zobrazena v diagramu *obr. 6.2.* Tuhost odpovídá hodnotě 1.7 e4 N/mm.

Obr. 6.2 Závislost reakční síly na posuvu.

6.1.2 Kontaktní tuhost řetězového kola

Kontaktní tuhost řetězového kola a článku řetězu je řešena podobným způsobem. Články řetězu jsou spojené RBE2 elementy. Na řídící uzel je předepsána deformace a zjišťována reakční síla. Tyto hodnoty jsou zaneseny do grafu a zjištěna kontaktní tuhost. Kontaktní tuhost ve výpočtu MSC ADAMS je volena 2.17 e5 N/mm pro všechna řetězová kola.

Obr. 6.3 FEM model pro výpočet tuhosti řetězového kola

Obr. 6.4 Závislost reakční síly na posuvu.

6.2 VÝPOČET A VYHODNOCENÍ ROZBĚHU ŘETĚZOVÉHO PŘEVODU

6.2.1 Vyhodnocení modelu s tuhými lištami

Obr. 6.5 Campbellův diagram amplitudy mementu na hnacím kole u modelu s tuhými lištami

3500

4000

4500

5000

5500

Amplituda úhlové rychlosti na druhém řetězovém kole

2000

2500

3000

Otacky [1/min]

Obr. 6.6 Campbellův diagram amplitudy úhlové rychlosti řet. kola 2 u modelu s tuhými lištami

0

500

1000

1500

Amplituda úhlové rychlosti na třetím řetězovém kole

Obr. 6.7 Campbellův diagram amplitudy úhlové rychlosti řet. kola 3 u modelu s tuhými lištami

Amplituda rychlosti posuvu napínací lišty v místě uchycení pružiny

Obr. 6.8 Campbellův diagram amplitudy rychlosti bodu na konci napínací lišty u modelu s tuhými lištami

6.2.2 Vyhodnocení modelu s pružnými lištami

Amplituda momentu na hnacím řetězovém kole

Obr. 6.9 Campbellův diagram amplitudy mementu na hnacím kole u modelu s pružnými lištami

Amplituda úhlové rychlosti na druhém řetězovém kole

Obr. 6.10 Campbellův diagram amplitudy úhlové rychlosti ret. kola 2 u modelu s pružnými lištami

Amplituda úhlové rychlosti na třetím řetězovém kole

Obr. 6.11 Campbellův diagram amplitudy úhlové rychlosti ret. kola 3 u modelu s pružnými lištami

Amplituda rychlosti posuvu napínací lišty v místě uchycení pružiny

Obr. 6.12 Campbellův diagram amplitudy rychlosti bodu na konci napínací lišty u modelu s pružnými lištami

6.2.3 Porovnání maximálních amplitud

Porovnání maximálních amplitud momentu na hnacím řetězovém kole

Obr. 6.13 Maximální velikost amplitudy momentu v závislosti na frekvenci buzení polygonovým efektem.

Porovnání maximálních amplitud úhlové rychlosti na druhém řetězovém kole

Obr. 6.14 Maximální velikost amplitudy úhlové rychlosti řetězového kola 2 v závislosti na frekvenci buzení polygonovým efektem.

Obr. 6.15 Maximální velikost amplitudy úhlové rychlosti řetězového kola 3 v závislosti na frekvenci buzení polygonovým efektem.

Obr. 6.16 Maximální velikost amplitudy rychlosti konce napínací lišty v závislosti na frekvenci buzení polygonovým efektem.

6.3 ANALÝZA VLASTNÍCH FREKVENCÍ ČÁSTÍ MODELU ŘETĚZOVÉHO PŘEVODU

6.3.1 Modální analýzy napínací a vodící lišty

Stejným způsobem jako v kapitole 5.6.1 je proveden výpočet vlastních frekvencí napínací lišty. Výpočet je pro dvě varianty uchycení lišty. Obě varianty jsou v horní části uchyceny okrajovou podmínkou SPC s ponechaným stupněm volnosti pro rotaci kolem osy čepu. Varianty se liší v uchycení spodní části. První varianta je ve spodní části uchycena tak, aby se nemohla kývat v příčném směru, svislý pohyb je volný. Druhá varianta odpovídá funkčnímu stavu v modelu MSC ADAMS, kde je lišta uchycena pružinou.

Vodící lišta je uchycena v upevňovacích bodech, u nichž jsou ponechány rotační stupně volnosti ve směrech os upevňovacích šroubů.

Hodnoty vlastních frekvencí pro jednotlivé vlastní tvary, *viz. obr. 6.18,19*, jsou uvedeny v tabulce .

Mód	Napínací	Vodící lišta	
	Lišta uchycená SPC [Hz]	Lišta uchycená pružinou [Hz]	[Hz]
1	271	32	991
2	1027	352	1607
3	1547	1122	2690
4	2275	1549	3103
5	3340	2366	4016
6	3536	3347	4605
7	4480	4208	4835
8	4766	4724	5041
9	5812	5807	5349
10	6486	6383	5741
11	7070	7069	6373
12	7810	7693	6457
13	8343	8216	6732
14	9060	8792	6876
15	9278	9097	6969
16	9562	9425	7135
17	9811	9794	7163
18	9904	9811	7276
19	9942	9907	7460
20	10050	10030	7657

Obr. 6.17 Tabulka hodnot vlastních frekvencí

Obr. 6.18 Vlastní tvary kmitů u modelu uchyceného pomocí SPC 1.

Obr. 6.19 Vlastní tvary kmitů u modelu uchyceného pomocí pružiny.

Obr. 6.20 Vlastní tvary kmitů u modelu vodící lišty.

6.3.2 Modální analýza části řetězu

Redukce modelu řetězu

Pro modální analýzu a explicitní výpočet dynamiky řetězu je nutné provést redukci modelu řetězu použitého pro zjištění tuhosti. V modelu se musí nahradit kontaktní vazby konstrukcí elementů, zpravidla elementy typu RBE2, tvořící spojení zachovávající volný rotační stupeň volnosti. Musí být také zachována tuhost odpovídající modelu s kontaktními vazbami.

Obr. 6.21 FEM model pro výpočet tuhosti řetězu, redukovaný model řetězu.

Ústav automobilního a dopravního inženýrství DIZERTAČNÍ PRÁCE

V tomto případě je spojení vnějšího a vnitřního článku vytvořeno pomocí RBE2 elementů, s volným rotačním stupněm volnosti ve směru osy čepu řetězu. První RBE2 element je spojen s uzly na kontaktní ploše čepu, druhý je spojen s uzly pouzdra. Vrcholy RBE2 elementů jsou spojeny. Tuhost spojení ovlivňuje počet uzlů obsažených v elementech RBE2. Rozložením kontaktního tlaku mezi čepem a pouzdrem a působením sil v pásnicích vzniká ohybový moment na čepu, respektive na pouzdru řetězu. Ohyb se přenáší také na pásnice řetězu. Obdobný ohybový moment lze vyvodit na zjednodušeném modelu posunutím uzlu, v němž jsou RBE2 elementy spojeny, po ose čepu směrem k rovině symetrie.

Obr. 6.22 FEM redukovaný model řetězu. Spojení článků pomocí RBE2 elementů.

Postupnými úpravami počtů uzlů obsažených v RBE2 elementech a změnami polohy řídících uzlů RBE2 elementů je dosaženo adekvátní tuhosti zjednodušeného modelu ,viz diagram obr 6.23.

Obr. 6.23 Deformační charakteristika řetězu – model s kontakty, redukovaný model.

Modální analýza redukovaného řetězu – příčné kmitání

Pro vyhodnocení rozběhové zkoušky byla provedena modální analýza části řetězu, nacházející se mezi hnacím řetězovým kolem a napínací lištou. Tato volná část odpovídá přibližně délce osmi článků řetězu.

V tomto místě by měl být řetěz zatížen účinkem napínací síly. Zatížení řetězu ovšem vlivem dynamických účinků může kolísat, proto byl zvolen interval zatížení 0 – 1341 N.

Frekvence [Hz]		Napínací síla [N]				
		0	335	669	1005	1341
Mód	1	1156	1205	1252	1297	1340
	2	4330	4378	4425	4471	4517
	3	8911	8957	9002	9047	9091
	4	11845	11854	11863	11873	11882
	5	14170	14214	14258	14301	14345
	6	19439	19482	19525	19568	19611
	7	23323	23341	23360	23378	23396
	8	23968	24011	24054	24097	24140

Obr. 6.24 Tabulka vlastních frekvencí předepnutého řetězu

Hodnoty vlastních frekvencí pro jednotlivé vlastní tvary kmitů nejsou příliš závislé na napínací síle řetězu, viz. *obr. 6.24*. Vlastní tvary kmitů jsou zobrazeny na *obr. 6.26*. První tři vlastní tvary představují příčné kmitání, čtvrtý vlastní tvar odpovídá podélnému kmitání řetězu.

Obr. 6.25 Diagram závislosti hodnoty vlastní frekvence na předpětí.

Obr. 6.26 Vlastní tvary kmitů u modelu vodící lišty.

Modální analýza redukovaného řetězu – podélné kmitání

Tažná větev řetězu ovlivňuje přímo přenos hnacích sil na řetězová kola vačkových hřídelí. Větev je staticky napínána sílou odpovídající přepínací síle napínací lišty a tažnou sílou vyvozenou kroutícím momentem na hnacím kole.

Tažná větev je relativně dlouhá, což snižuje její podélnou tuhost.

FEM model tažné větve řetězu je vytvořen rozvinutím části řetězu, 38 článků, mezi hnacím kolem a kolem číslo 3. Předepsáním okrajových podmínek jsou zamezeny příčné pohyby. FEM model je na *obrázku 6.27*. První vlastní frekvence tohoto modelu je 1268 Hz, druhá vlastní frekvence je 3808 Hz.

Obr. 6.27 FEM model pro výpočet podélných kmitů tažné větve řetězu.

6.4 ZHODNOCENÍ VÝSLEDKŮ VÝPOČTU

Výsledky modelu podle reálné předlohy jsou proti testovacímu modelu mnohem přehlednější. Je zde potlačen rušivý vliv příčného kmitání tažné větve převodu použitím vodící lišty. Výsledky modelu s tuhou lištou a modelu s pružnou lištou se dosti liší ve velikosti amplitud, poloha amplitudových špiček je zhruba stejná. Model s pružnou lištou, v diagramu amplitud rychlosti posuvu *obr. 6.12*, má výraznou oblast zvýšených amplitud v rozmezí otáček 3500 – 4000 min⁻¹, která vzniká druhým řádem frekvence buzení polygonovým efektem (frekvence 2000 – 2400 Hz). Tato oblast se vyskytuje i v diagramech, *obr. 6.9, 6.10, 6.11*. Pokud tyto hodnoty porovnáme s výsledky modálních analýz jednotlivých součástí mechanismu, můžeme dojít k závěru, že v tomto pásmu rezonuje tažná větev převodu v podélném směru. Frekvenci druhého řádu může způsobit fázově posunuté buzení polygonovým efektem. V diagramech modelu s pružnou lištou, *obr. 6.9, 6.10, 6.11*, se vyskytuje ještě jedna

V diagramech modelu s pružnou lištou, *obr. 6.9, 6.10, 6.11*, se vyskytuje ještě jedna amplitudová špička při otáčkách 1500 min⁻¹, frekvence prvního řádu 500 Hz, u níž se nedá podle provedených modálních analýz určit vznik. Pravděpodobně půjde o torzní kmitání hnaných řetězových kol. Ty mají nezanedbatelný moment setrvačnosti a zabírají s pružným řetězem. Tuto hypotézu může potvrdit výpočet s jinými velikostmi momentů setrvačnosti těchto řetězových kol.

7 MODEL ŘETĚZOVÉHO PŘEVODU V ABAQUS EXPLICIT

Vhodná metoda pro řešení rychlých dynamických jevů je explicitní FEM. Metoda využívá postupné časové integrace. Nepočítá s maticí tuhosti, vše je vztaženo k matici hmotnosti. Nelinearity včetně kontaktní síly jsou zahrnuty do vektoru vnitřních sil. Určení vnitřních sil zabírá u této metody nejvíce výpočetního času.

Tato metoda se požívá k řešení časově rychlých přechodových dějů, nebo úloh špatně konvergujících v implicitně formulovaných programech. Metoda je založena na průběhu ovlivňování jednotlivých elementů modelu tlakovými vlnami. Tlaková vlna se v tuhých materiálech šíří velmi rychle, tudíž k výpočtu těchto jevů je potřeba velmi malý časový krok řešení.

Časový krok integrace musí být menší než krok kritický. Pro kritický krok platí:

$$\Delta t \le \Delta t_{krit} = \frac{2}{\omega_{\max}} \tag{7.1}$$

ω_{max} je nevyšší vlastní frekvence prvku v modelu.

$$\omega_{\max} = \frac{2c}{l} \tag{7.2}$$

c je rychlost šíření vlnění v materiálu, l je charakteristický rozměr elementu. Rychlost šíření vlnění v materiálu je dána vztahem:

$$c = \sqrt{\frac{E}{\rho}} \tag{7.3}$$

Minimální velikost časového kroku po dosazení vypadá takto:

$$\Delta t^{crit} = l_{\sqrt{\frac{\rho}{E}}}$$
(7.4)

Časový krok je nastaven řešičem automaticky po vyhodnocení všech elementů. Je tedy důležité, mít v modelu stanovenou minimální délku hrany elementu. (Bořkovec, 2006)

7.1 MODEL ABAQUS EXPLICIT

Model, obr. 7.1, pro FEM explicit je sestaven podle reálné předlohy. Řetěz je zjednodušen a odpovídá modelu z kapitoly 6.3.2. Okrajové podmínky a zatížení odpovídají modelu pro MSC ADAMS, *kapitola* 6.

Obr. 7.1 FEM explicit model.

V modelu jsou vytvořeny kontakty mezi pouzdry řetězu a dotykovými plochami řetězových kol, mezi pásnicemi řetězu a povrchovými plochami lišt. Součinitel tření jednotlivých ploch je 0.1. Musí být také zavedeno tlumení materiálu, jinak se v modelu akumuluje energie a výpočet je nestabilní. Materiálové tlumení je zadáno koeficienty α =0.1e-8 a β =0.1 podle teorie Rayleigh.

7.2 VÝPOČET

Výpočet byl prováděn pro časový interval 2.0 s s časovým krokem 5.0e-8 s. Výchozí stav byl při nulových otáčkách hnacího kola. Časový interval byl tedy rozdělen na dvě části, rozběh a ustálení. Výpočet pohybu řetězu a řetězových kol ale neproběhne, jelikož dojde k přesmyknutí řetězu přes hnací řetězové kolo. Tento jev je patrně způsoben tvarovou nedokonalostí modelování kontaktu pouzder řetězu s dotykovou plochou řetězového kola. Střed pouzdra řetězu se může více přiblížit ke kontaktní ploše řetězových kol. Tím dojde k nekompatibilitě řetězu a řetězových kol, při které dojde k přesmyknutí řetězu. Viz obr 7.2.

Obr. 7.2 FEM explicit model – přesmyknutí řetězu

7.3 PŘEDPOKLÁDANÉ ŘEŠENÍ PROBLÉMU

Špatný záběr řetězu a řetězového kola můžeme zlepšit několika způsoby.

- Předepsáním přesahu ve vlastnostech kontaktních ploch
- Použitím kontaktní válcové plochy, kterou je možné proložit uzly pouzdra řetězu.

Tyto úpravy by měly zlepšit aproximaci kontaktních ploch a tím zmenšit jejich vůle. Mohou se ale negativně projevit ve zvýšení výpočetní náročnosti a tím prodlužit čas výpočtu.

8 ZÁVĚR

V této práci jsou popsány základní části řetězového rozvodového mechanismu, jako jsou řetězová kola, vodící a napínací lišta, hydraulický napínák řetězu. Je uveden popis matematického řešení dynamických soustav těles, obsahující teorii vzniku kontaktních sil mezi tělesy.

Matematické řešení je ověřeno vytvořením skriptu pro matematický software MATLAB. Detailněji je rozebrán způsob zjištění kolizí mezi řetězovými koly a pouzdry řetězu. Je zde naznačeno fungování algoritmů výpočtu deformačních, tlumicích a kontaktních sil. Výsledky jsou uvedeny ve formě grafů.

První zkušební výpočet byl proveden u předdefinovaného multibody modelu v programu MSC ADAMS. Model byl zjednodušen a proveden výpočet s lineární a nelineární charakteristikou řetězu. Dále byla udělána modifikace v modelu, tím byla vytvořena třetí varianta. Modifikace zahrnuje úpravy pro nahrazení původní napínací lišty lištou pružnou. Modifikace lišty byla ověřena statickým a dynamickým výpočtem.

Ověřen byl také vliv velikosti koeficientu tlumení řetězu na výsledky výpočtu multibody modelu.

Stanovení vstupních parametrů tuhostí pro multibody modely bylo provedeno pomocí FEM výpočtů jednotlivých částí mechanismu. Stěžejním výpočtem multibody modelu byl rozběh, otáčky hnacího řetězového kola se plynule zvyšují od nuly až na 6000 min⁻¹. Následně byly výsledky vyhodnoceny pomocí Campbellových diagramů. Pro rozbor výsledků byla provedena modální analýzy jednotlivých částí mechanismu. Z porovnání výsledků

v Campbellových diagramech a hodnot vlastních frekvencí částí mechanismu nebylo možné určit původ amplitudových špiček. V mechanismu byla tažná větev volná a její příčné kmity na mnoha vlastních frekvencích zastřely ostatní rezonanční frekvence.

Následně byl vytvořen model podle reálné předlohy ve dvou variantách, model s tuhými lištami a model s pružnými lištami. Výpočet a vyhodnocení bylo provedeno obdobně jako u testovacího modelu. Výsledky obou variant se shodují v průběhu amplitud vzniklých buzením. Velikost amplitud se výrazně liší. Ve variantě s pružnou lištou se v Campbellových diagramech vyskytly dvě amplitudové špičky. U jedné byla odhalena možná příčina vzniku, u druhé z provedených analýz nebylo možné příčinu přesně určit.

Ověření výpočtu bylo zamýšleno jiným výpočtem, založeném na rozdílném principu. Tato výpočtová metoda ovšem nebyla nejspíše tímto způsobem aplikována, nebo tento způsob použití nebyl zveřejněn. Velké problémy se vyskytly v definici kontaktů. Ukázalo se, že odladění výpočtového modelu je velice náročné, vzhledem k časovým nárokům a požadavkům na hardware. Výpočet a porovnání výsledků nebylo proto provedeno. Použití pružné lišty vytvořené podle skutečné geometrie v multibody výpočtu řetězového převodu nebylo zatím pravděpodobně realizováno. V technické praxi se ovšem použití pružných těles v multibody modelech stále více rozšiřuje. Nahrazením idealizovaných tuhých částí pružnými se zvyšuje realističnost výpočtu. Výsledky z takto upravených modelů mají jiné průběhy kde je patrný vliv deformací pružných lišt. V porovnání výsledků varianty s tuhými lištami a varianty s pružnými lištami se vyskytují dvě oblasti s vysokými amplitudami u druhé varianty. Sestrojení přesnějšího a detailnějšího výpočtu má i své nevýhody. Čas výpočtu je u modelu s pružnými lištami dvakrát větší. Doba přípravy modelu je několikanásobně delší.

Musely se vytvořit FEM modely pružných lišt, vypočítat jejich vlastní frekvence a vygenerovat *.mnf* soubory. Multibody model je mnohem složitější, má více stupňů volnosti. Náročnější je sestavení modelu. Vytvoření jednotlivých segmentů lišt a jejich připojení na uzly pružných těles je časově náročné. Pro praktické použití by bylo třeba vytvořit makro nebo generátor skriptů, aby se postup urychlil. Výpočtový čas je mnohem delší a mohou se vyskytnout problémy s nestabilitou.

Multibody výpočet je třeba ověřit experimentálně na zkušebním stavu ve stejné konfiguraci řetězového převodu a se stejnými okrajovými podmínkami.

9 PŘEHLED LITERATURY

- Friz, P. (1998) *Dynamik schnellaufender Kettentriebe*. Düsseldorf: VDI Verlag, ISBN 3-18-325311-9
- Pfeifer, F. (1996) *Multibody dynamics with unilateral contacts*. München: Wiley-Interscience Publication, ISBN 0-471-15565-9
- Bremer, H. (1998) *Dynamik und regelung mechanischer systéme*. Stuttgart: Teubner Verlag, ISBN 978-3519023692
- Jalon, J. G. (1996) *KINEMATIC AND DYNAMIC SIMULATION OF MULTIBODY* SYSTEMS. San Sebastian: Springer - Verlag, ISBN 0-387-94096-0
- Hippmann, G. (2003) AN ALGORITHM FOR COMPLIANT CONTACT BETWEEN COMPLEXLY SHAPED SURFACES IN MULTIBODY DYNAMICS. Lisabon: IDMEC/IST
- Karban, P. (2006) *Výpočty a simulace v programech Matlab a Simulink*. Brno: Comuter Press, a.s., ISBN 978-80-251-1448-3
- Basic ADAMS Full Simulation Training Guide. Michigan: MSC, 1998
- Bořkovec, J. (2006) Výpočtové modely tvárného porušování kovu v simulaci technologických procesu, Závěrečná zpráva projektu FRVŠ 2842/2006/G1. Brno, Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav mechaniky těles, mechatroniky a biomechaniky
- MSC ADAMS 2005 Online help C:/Program Files/ADAMS/help, 2005
- Schaffner, T. (2003) Numerische Simulation des Einflusses verschiedener Spannelemente auf die Körperschallanregung durch Steuerkettentriebe. MTZ - Motortechnische Zeitschrift, roč. 64, č.7-8, s. 568. ISSN: 0024-8525
- Korse, T. (2004) *Eine neue Steuerkette ohne Polygoneffekt*. MTZ Motortechnische Zeitschrift , roč. 65, č.5, s. 382. ISSN: 0024-8525
- MSC ADAMS Online help, C:/Program Files/ADAMS/help
- Malenovský, E. (2005) *Studijní opory z dynamiky* [online], poslední revize 28.11.2006 [cit.2009-6-10] Dostupné z:<http://www.umt.fme.vutbr.cz/~pkrejci/opory/dynamika/>. Oficiální stránky firmy AVI

Oficiální stránky firmy AVL

- Oficiální stránky firmy IWIS
 - http://www.iwis.com/
- Oficiální stránky firmy MSC
 - http://www.mscsoftware.com/
- Oficiální stránky firmy INTEC GmbH
 - http://www.simpack.com/

http://www.avl.com/

Ústav automobilního <u>a dopravního inž</u>enýrství

10 SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

μ	Poissonova konstanta
b	koeficient tlumení
b_{kr}	kritické tlumení
С	tuhost pružiny, rychlost šíření vlnění v materiálu
С	konstanta
D	roztečný průměr
E	jednotková matice, modul pružnosti
F	síla, síly
F_K	vektor kontaktních sil
F_P	vektor sil od deformací pružin
F_T	vektor sil tlumení
Н	silové účinky
<i>i</i> , <i>j</i>	indexy polohy
Is	matice momentů setrvačnosti
J_B	jakobián translace
J_R	jakobián rotace
k	tuhost
l	charakteristický rozměr elementu
L	rotační hybnost
10	délka článku řetězu
т	hmotnost
Μ	moment, momenty
M_B	matice obsahující souřadnice bodů
M_K	moment od kontaktních sil
p	translační hybnost
R	poloměr
r1	rádius vykrojení
r2	rádius hlavy zubu
R_p	rádius pouzdra řetězu
<i>r_{SA}</i>	vektor
R_z	rádius dna zubové mezery
t	čas
v	rychlost
v_f	podélná rychlost řetězu
v_g	rychlost větve řetězu
v_q	příčná rychlost řetězu

Ústav automobilního a dopravního inženýrství DIZERTAČNÍ PRÁCE

Jan Vlastník

Vr	rychlost bodu dotyku
W	jednotkový vektor
X	souřadnice
У	souřadnice
Z	počet zubů
α	velikost úhlu
γ	stlačení pružiny
δ	velikost průniku těles
Δt_{max}	největší časový krok integrace
Δt	časový krok integrace
Δt^{crit}	maximální velikost kroku integrace
$\varDelta V$	rozdíl rychlostí
ζ	síla od deformace pružiny
λ	kořen charakteristické rovnice
ρ	hustota materiálu
X	úhel rozevření zubové mezery
\mathcal{Q}	úhlová rychlost
ω_{max}	nevyšší vlastní frekvence
Abaqus	FEM program
atd.	a tak dále
BAR	2D prvek
Campbellův diagram	diagram pro zobrazení amplitud kmitání
degree of freedom (DOF)	stupeň volnosti
FEM (finite element method)	MKP (metoda konečných prvků)
FFT	rychlá Fourierova transformace
HEXA element	FEM element tvaru čtyřstěnu
MATLAB	matematický software
MBS (multibody system)	soustava mnoha těles
MSC ADAMS	program pro analýzu dyn. systémů
node	uzel
obr.	obrázek
ODE45	typ řešiče diferenciálních rovnic
rigid body element (RBE) 2,3	FEM – tuhý element
SPC 1	okrajová podmínka ve směru x
template	tapeta (parametrický model v MSC ADAMS)
viz.	viděno