

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC ENGINEERING

LABORATORNÍ PŘÍPRAVEK PRO TESTOVÁNÍ TRANZISTORŮ IGBT

LABORATORY TEST EQUIPMENT FOR IGBT TRANSISTORS

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE

Bc. PAVEL CHVÁTLINA

VEDOUCÍ PRÁCE SUPERVISOR doc. Dr. Ing. MIROSLAV PATOČKA

BRNO 2009

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav výkonové elektrotechniky a elektroniky

Diplomová práce

magisterský navazující studijní obor Silnoproudá elektrotechnika a výkonová elektronika

Student: Chvátlina Pavel, Bc. *Ročník:* 2

ID: 112453 *Akademický rok:* 2008/09

NÁZEV TÉMATU:

Laboratorní přípravek pro testování tranzistorů IGBT

POKYNY PRO VYPRACOVÁNÍ:

1. Navrhněte obvodově i konstrukčně laboratorní přípravek na jednorázové testování tranzistorů IGBT. Přípravek by měl umožnit pozorování zapínacích a vypínacích dějů až do 1,2kV a 2,4kA.

2. Přípravek podle 1. bodu realizujte.

3. Vlastnosti přípravku ověřte experimentálně.

DOPORUČENÁ LITERATURA:

Dle doporučení vedoucího

Termín zadání: 1.10.2008

Vedoucí projektu: doc. Dr. Ing. Miroslav Patočka

Termín odevzdání: 22.5.2009

doc. Ing. Čestmír Ondrůšek, CSc. předseda oborové rady

UPOZORNĚNÍ:

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

Abstrakt

V této diplomové práci je popsána funkce a realizace laboratorního přípravku, určeného pro měření a vyhodnocování průběhů kolektorového proudu i_C a napětí u_{CE} během vypínacího a zapínacího děje výkonového tranzistoru IGBT. Vypínací a zapínací doby t_{off} a t_{on} se u současných výkonových tranzistorů IGBT pohybují řádově v desetinách až jednotkách µs, takže snímání proudu i_C a napětí u_{CE} zde probíhá ve velmi krátkém čase. Měřicí obvod u tohoto přípravku funguje na principu krátkodobého vybíjení kondenzátorové baterie do zátěže induktivního charakteru přes měřený tranzistor. Díky tomu lze velice elegantním způsobem nahradit zdroj, jehož maximální výstupní výkon by se musel pohybovat v jednotkách MW. V závěrečné části této práce jsou popsány vlastnosti a návrh vysokofrekvenčního snímače s Rogowského cívkou, který je možné použít pro snímání průběhu kolektorového proudu během vypínací a zapínací doby měřeného tranzistoru IGBT. Průběhy proudu i_C a napětí u_{CE} lze vyhodnotit pomocí paměťového osciloskopu.

Klíčová slova

budicí obvod, násobič napětí, Rogowského cívka, tranzistor IGBT, vypínací děj, zapínací děj

Abstract

This master's thesis describes the function and realization of the laboratory test equipment designed for measuring and analysing of collector current i_C and voltage u_{CE} courses during the opening and closing process of a power IGBT transistor. The opening and closing times t_{off} and t_{on} of the new power transistor IGBT are changing in the range from tenths to the ones μ s, so the reading of current i_C and voltage u_{CE} proceeds in a very short time. The measuring circuit of this test equipment is based on a short-time discharging of a condenser battery to the inductive load over the measured transistor. Consequently it is possible to replace the power supply whose maximum output power would otherwise have to be in the range of ones MW. In the final part of this thesis there are described properties and design of a high-frequency sensor with the Rogowski coil, which can be used for reading collector current i_C and voltage u_{CE} courses can be analysed with a storage oscilloscope.

Keywords

drive circuit, voltage multiplier, Rogowski coil, IGBT transistor, opening process, closing process

Bibliografická citace

CHVÁTLINA, P. Laboratorní přípravek pro testování tranzistorů IGBT. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2009. 61 s. Vedoucí diplomové práce doc. Dr. Ing. Miroslav Patočka.

Prohlášení

Prohlašuji, že svou diplomovou práci na téma Laboratorní přípravek pro testování tranzistorů IGBT jsem vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne

Podpis autora

Poděkování

Poděkování patří především vedoucímu mé diplomové práce Doc. Dr. Ing. Miroslavu Patočkovi, který mi díky svým jedinečným pedagogickým schopnostem dovedl vždy vysvětlit veškerou problematiku týkající se tvorby mé diplomové práce.

Děkuji také Ing. Petru Procházkovi za jeho obětavost a pomoc při výrobě DPS a za poskytnutí pracovního zázemí pro jejich následné osazení a oživení.

Svým dvěma spolubydlícím Jindrovi a Pepovi děkuji za skvělou atmosféru, která na pokoji panovala po celý závěrečný rok studia.

Dále bych velmi rád poděkoval svým rodičům za jejich trpělivost, starostlivost a podporu, kterou mi poskytovali po celou dobu mého studia, jak jen to bylo možné. Velké díky patří také mé babičce za její ochotu a hlavně za nemalou finanční podporu, bez níž bych si magisterské studium dokázal jen velmi těžko představit. Dále děkuji svému strýci za pomoc s přepravou mezi Brnem a Libercem a své tetě za včasnou pomoc s anglickým překladem Abstraktu této práce. Za kontrolu a úpravu textu diplomové práce vděčím své mamče a za pomoc při tisknutí svému taťkovi.

V Brně dne

Podpis autora

OBSAH

1 ÚVOD	9
2 DYNAMICKÉ PARAMETRY VÝKONOVÉHO TRANZISTORU	10
2.1 MĚŘENÍ VYPÍNACÍHO A ZAPÍNACÍHO DĚJE VÝKONOVÉHO TRANZISTORU	10
2.2 Vypínací děj výkonového tranzistoru	11
2.3 ZAPÍNACÍ DĚJ VÝKONOVÉHO TRANZISTORU	12
3 REALIZACE OBVODU PRO MĚŘENÍ VYPÍNACÍHO A ZAPÍNACÍHO DĚJE	13
3.1 Vysokonapěťový zdroj	16
3.1.1 KASKÁDNÍ JEDNOCESTNÝ NÁSOBIČ NAPĚTÍ	16
3.1.2 REALIZACE VYSOKONAPĚŤOVĖHO ZDROJE	18
3.1.5 V YBIJENI KONDENZATORU	20 22
	22
3.2.1 PRINCIP CINNOS11 RIDICIHO OBVODU	25 24
3.2.3 NAPÁJECÍ ZDROJ ŘÍDICÍHO OBVODU	25
3.2.4 MĚŘENÍ VÝSTUPNÍHO SIGNÁLU ŘÍDICÍHO OBVODU	26
4 BUDICÍ OBVODY VÝKONOVÝCH TRANZISTORŮ IGBT	28
4.1 GALVANICKÉ ODDĚLENÍ BUDICÍCH OBVODŮ	28
4.1.1 MOŽNOSTI GALVANICKÉHO ODDĚLENÍ BUDICÍCH OBVODŮ	29
4.2 Elektronické ochrany budicích obvodů	30
4.2.1 SATURAČNÍ OCHRANA	31
4.2.2 HLÍDÁNÍ PŘEPĚTÍ	33
4.2.3 HLÍDÁNÍ TEPLOTY.	33
4.2.4 HLIDANI PRITOMNOSTI VLASTNICH NAPAJECICH NAPETI BUDICIHO OBVODU	33
4.5 GENERATOR P WIVI SIGNALU PRO TESTOVANI FUNKCNOSTI BUDICICH OBVODU	34
4.3.1 PRINCIP CINNOSTI A OBVODOVA REALIZACE GENERATORU PWM SIGNALU 4.3.2 Měření výstupního PWM Signál II	33
5 SNÍMÁNÍ PRŮBĚHU PROUDU POMOCÍ ROGOWSKÉHO CÍVKY	
5 1 ROGOWSKÉHO CÍVKA JAKO SNÍMAČ STŘÍDAVÉHO PROUDU	
5 1 1 MATEMATICKÝ POPIS ROGOWSKÉHO CÍVKY	41
5.2 ROGOWSKÉHO CÍVKA JAKO SNÍMAČ VYSOKOFREKVENČNÍCH IMPULZNÍCH PROUD	ů 42
5.2.1 NÁVRH SNÍMAČE KOLEKTOROVÉHO PROUDU S ROGOWSKÉHO CÍVKOU	
5.2.2 Měření výstupního signálu snímače s Rogowského cívkou	47
6 ZÁVĚR	49
LITERATURA	50
SEZNAM SYMBOLŮ A ZKRATEK	51
SEZNAM PŘÍLOH	54
PŘÍLOHY	55

1 Úvod

V současné době se výkonové měniče realizují pomocí tranzistorů, které se svými parametry vyrovnaly i těm nejrobustnějším vypínatelným polovodičovým součástkám – tyristorům GTO (Gate Turn Off). Jedná se o tranzistory IGBT (Insulated Gate Bipolar Transistor), jejichž struktura sdružuje většinu výhodných vlastností bipolárních a unipolárních tranzistorů. Od roku 1986, kdy se tyto tranzistory poprvé objevily na trhu s parametry $I_C = 50$ A a $U_{CES} = 600$ V [5], až do současnosti učinil vývoj polovodičových struktur výrazný krok vpřed. Dnešní výkonové tranzistory IGBT vyráběné např. firmou Infineon disponují parametry $I_C = 600$ A a $U_{CES} = 6,5$ kV, nebo $I_C = 3,6$ kA a $U_{CES} = 1700$ V.

Vzhledem k těmto parametrům je pro správnou funkci celého měniče nezbytné vědět, jakým způsobem se mění napětí u_{CE} a proud i_C výkonového tranzistoru během vypínací a zapínací doby t_{off} a t_{on} . V průběhu těchto velmi krátkých časů (desetiny až jednotky µs) totiž napětí na tranzistoru u_{CE} klesá, nebo naopak roste s obrovskou strmostí du/dt, která u některých typů výkonových tranzistorů IGBT může dosahovat hodnoty 10 až 20 kV/µs [5]. Kolektorový proud i_C se u těchto tranzistorů může měnit se strmostí až 10 kA/µs [7].

Aby bylo možné zaznamenávat průběhy napětí u_{CE} a proudu i_C bez zdroje, jehož maximální výstupní výkon by se musel pohybovat v jednotkách MW ($P_{max} = U_{CES} \cdot I_C$), musí být použit speciální měřicí obvod. Tento obvod využívá krátkodobé vybíjení kondenzátorové baterie do zátěže induktivního charakteru přes měřený tranzistor. Vypínací a zapínací děj se zde tedy měří jednorázově během velmi krátkého času (jednotky až desítky µs) a průběhy napětí u_{CE} a proudu i_C výkonového tranzistoru se zaznamenávají pomocí paměťového osciloskopu. Přesná funkce tohoto obvodu včetně jeho návrhu jsou podrobně popsány v této diplomové práci. Kromě toho jsou zde popsány také vlastnosti a návrh snímače s tzv. Rogowského cívkou, s jehož pomocí lze velice výhodně snímat průběh kolektorového proudu měřeného tranzistoru IGBT.

2 DYNAMICKÉ PARAMETRY VÝKONOVÉHO TRANZISTORU

Mezi základní dynamické parametry výkonového tranzistoru patří jeho vypínací a zapínací doba, kterými lze popsat vypínací a zapínací děj tranzistoru tak, jak je podle [1] uvedeno v následujících kapitolách 2.1 až 2.3.

2.1 Měření vypínacího a zapínacího děje výkonového tranzistoru

Pro měření vypínacího a zapínacího děje se u výkonových tranzistorů používá obvod, jehož schéma je vidět na Obr. 2.1a. Jedná se o snižující pulzní měnič (STEP-DOWN) pro práci v I. kvadrantu (Obr. 2.1b), zapojený jako tranzistorový dolní spínač. Zátěž Z musí být v tomto případě induktivního charakteru, protože čistě odporová zátěž nemá žádný technický smysl. Díky indukčnosti zátěže je zajištěno, že v průběhu velmi krátkých intervalů vypínací a zapínací doby bude proud zátěže I_z konstantní. Induktivní zátěž se tedy v tomto případě chová jako ideální zdroj konstantního proudu.

Obr. 2.1: a) Snižující pulzní měnič zapojený jako tranzistorový dolní spínač [1]. b) Rozdělení pracovních kvadrantů zátěže [1].

2.2 Vypínací děj výkonového tranzistoru

Během vypínání výkonového tranzistoru je z hlediska přepínacích ztrát a návrhu budicího obvodu nejdůležitější sledovat průběhy kolektorového proudu i_C a napětí u_{CE} na měřeném tranzistoru. Jak mohou tyto průběhy vypadat, je naznačeno na Obr. 2.2. Na tomto obrázku je kromě průběhu proudu i_C vidět také průběh proudu i_{D0} nulovou diodou. Průběhy obou proudů i_C a i_{D0} odpovídají rovnici

$$i_{C}(t) + i_{D0}(t) = I_{z} = \text{konst.}$$
 (2.1)

Z Obr. 2.2 je zřejmé, že je celková vypínací doba t_{off} složena z tzv. doby neměnného proudu t_s (storage time) a doby poklesu proudu t_f (fall time).

Po dobu t_s je z parazitní kapacity tranzistoru odváděn náboj, a velikost kolektorového proudu i_C tak zůstává stále konstantní. Napětí u_{CE} se během doby t_s nelineárně zvyšuje z hodnoty saturačního napětí U_{CEsat} až na hodnotu napájecího napětí U_d (Obr. 2.1a). Během doby t_f kolektorový proud exponenciálně klesá se strmostí di_C/dt . Smyčka měřicího obvodu na Obr. 2.1a, složená ze zdroje U_d, diody D0 a tranzistoru T, má parazitní indukčnost L_p , kvůli které vznikne při poklesu proudu i_C na tranzistoru přepětí ΔU_{off} dané vztahem

$$\Delta U_{off} = L_p \cdot \frac{di_C(t)}{dt}.$$
(2.2)

Velikost doby t_s a t_f závisí na typu a parametrech použitého výkonového tranzistoru. Typicky se časy t_s a t_f pohybují v desetinách µs, ale v některých případech bývá doba t_s uváděna i v jednotkách µs, např. u tranzistoru firmy Infineon s parametry $I_C = 600$ A, $U_{CES} = 6,5$ kV je doba $t_f = 0,5$ µs a doba $t_s = 6$ µs.

Obr. 2.2: Průběhy proudů i_C , $i_{D\theta}$ a napětí u_{CE} během vypínací doby t_{off} [1].

2.3 Zapínací děj výkonového tranzistoru

Stejně jako v předchozím případě jsou při zapínání výkonového tranzistoru nejdůležitější průběhy proudu i_C a napětí u_{CE} , které jsou spolu s průběhem proudu i_{D0} naznačené na Obr. 2.3. Z obrázku je patrné, že je celková zapínací doba t_{on} rozdělena na čtyři intervaly. První je doba zpoždění při sepnutí t_d (delay time), druhým intervalem je doba nárůstu proudu t_r (rise time), ve třetím případě jde o zotavovací dobu v závěrném směru t_{rr} (reverse recovery time) a poslední čtvrtý interval není definován.

Během doby t_d zůstává kolektorový i_C nulový a napětí u_{CE} na tranzistoru má stále hodnotu napájecího napětí U_d (Obr. 2.1a), takže se z hlediska řízení jedná o určité dopravní zpoždění. Po uplynutí doby t_d dochází k nárůstu kolektorového proudu a na parazitní indukčnosti L_p tak opět vzniká napěťový úbytek ΔU_{on} daný rovnicí 2.3. O tento úbytek je během doby t_r a t_{rr} napětí na tranzistoru menší než napájecí napětí U_d .

$$\Delta U_{on} = L_p \cdot \frac{di_c(t)}{dt}.$$
(2.3)

Během doby t_{rr} dochází k odvádění náboje z PN přechodu nulové diody D0, což způsobí chvilkový překmit proudu i_C nad hodnotu proudu zátěže I_z . Ve čtvrtém intervalu je již hodnota kolektorového proudu konstantní a napětí u_{CE} se ustálí na hodnotě saturačního napětí U_{CEsat} . Stejně jako v případě vypínacího děje (doby t_s a t_f) se také časy t_d a t_r pohybují v desetinách µs.

Obr. 2.3: Průběhy proudů i_C , $i_{D\theta}$ a napětí u_{CE} během zapínací doby t_{on} [1].

3 REALIZACE OBVODU PRO MĚŘENÍ VYPÍNACÍHO A ZAPÍNACÍHO DĚJE

U obvodu pro měření vypínacího a zapínacího děje výkonového tranzistoru se vychází ze schématu na Obr. 2.1a. Pro praktickou realizaci měřicího obvodu však musí být schéma upraveno tak, jak je vidět na Obr. 3.1. Jako zdroj napájecího napětí $U_d = 1200$ V zde slouží čtyři výkonové bezindukční impulzní svitkové polypropylenové kondenzátory s kapacitou 110 µF na 1750 V od firmy Vishay, které jsou zapojené paralelně. Tuto kondenzátorovou baterii o celkové kapacitě $C_d = 440$ µF na 1750 V je možné nabíjet pomocí stejnosměrného vysokonapěťového zdroje.

Další úprava schématu vychází z použití modulu FF1000R17IE4 od firmy Infineon se dvěma výkonovými IGBT tranzistory T_H, T_D a dvěma diodami D0_H, D0_D, jejichž uspořádání uvnitř pouzdra modulu je patrné z Obr. 3.2. Parametry obou tranzistorů jsou $I_{Cnom} = 1000$ A, $U_{CES} = 1700$ V, $P_{tot} = 6,25$ kW, $t_{on} = 0,42$ µs a $t_{off} = 1,75$ µs (podrobnější popis lze nalézt v datasheetu, který je součástí přiloženého CD). Aby zapojení měřicího obvodu odpovídalo schématu na Obr. 2.1a, musí být pro spínání použit dolní tranzistor T_D spolu s diodou D0_H horního tranzistoru, jak je naznačeno na Obr. 3.1. Z důvodu snížení parazitní indukčnosti ve smyčce kondenzátorová baterie C_d – dioda D0_H – tranzistor T_D musí být modul propojen s kondenzátory pomocí tzv. sendvičových spojů (viz Příloha A).

Měření vypínacího a zapínacího děje pomocí obvodu na Obr. 3.1 je možné provádět následujícím způsobem: dolní tranzistor T_D se dvakrát opakovaně sepne pomocí řídicích impulzů u_{GE} , naznačených na Obr. 3.3. Doby t_1 , t_2 a t_3 se mohou pohybovat v jednotkách až desítkách µs. Dále je z Obr. 3.3 patrné, že při prvním sepnutí tranzistoru T_D (čas t_1) se na zátěž Z krátkodobě připojí napětí u_z o hodnotě napájecího napětí U_d . Protože má zátěž Z v podobě vzduchové cívky převážně induktivní charakter (vliv činné složky R je při takto krátkých časech téměř zanedbatelný), bude se od okamžiku sepnutí proud i_z lineárně zvyšovat podle vztahu

$$i_z = \frac{1}{L} \cdot \int_0^{t_1} u_z dt \,. \tag{3.1}$$

Obr. 3.3: Průběhy napětí u_{GE} , u_z , u_{CE} a proudů i_z , i_C , i_{D0H} u měřicího obvodu.

Během časového intervalu t_1 je tranzistor T_D sepnut, takže proud zátěže i_z odpovídá kolektorovému proudu i_C . Po uplynutí času t_1 , kdy proud i_z a tedy i proud i_C dosáhne jmenovité hodnoty proudu tranzistoru I_{Cnom} (u modulu FF1000R17IE4 je $I_{Cnom} = 1000$ A), klesne řídicí napětí u_{GE} k nule, a u tranzistoru začne probíhat vypínací děj s dobou t_{off} podle Obr. 2.2, který je na Obr. 3.3 označen červenou barvou. V tomto okamžiku se začne v cívce indukovat napětí obrácené polarity, než je napětí u_z . Díky tomu se otevře horní dioda D0_H, která bude pokračovat ve vedení proudu i_z tekoucího cívkou po dobu t_2 (průběh i_{D0H}). Během této doby, kdy je tranzistor T_D vypnutý, bude mít proud i_{D0H} téměř konstantní hodnotu o velikosti I_z . Proud i_{D0H} můžeme prohlásit za konstantní, jestliže je splněna podmínka

$$\tau = \frac{L}{R} >> t_2, \tag{3.2}$$

kde τ je časová konstanta závislá na parametrech cívky. Cívka tedy musí mít velmi malý odpor *R* vzhledem ke své indukčnosti *L*. Toho lze docílit menším počtem závitů a použitím vodiče s větším průřezem.

Po uplynutí doby t_2 se na hradlo tranzistoru T_D přivede druhý řídicí impulz, díky němuž začne u tranzistoru probíhat zapínací děj s dobou t_{on} podle Obr. 2.3, který je na Obr. 3.3 zvýrazněn modrou barvou. Tranzistor tak na cívku opět připojí napětí zdroje U_d a převezme proud i_{D0H} , který tekl horní diodou v době t_2 . V intervalu t_3 kolektorový proud i_C opět lineárně narůstá stejným způsobem jako v čase t_1 . Během doby t_3 se tedy proud i_C zvyšuje nad hodnotu I_{Cnom} , takže druhý řídicí impulz nesmí být příliš dlouhý, aby nedošlo ke zničení tranzistoru.

Po uplynutí času t_3 se tranzistor vypne a proud i_z se tak opět začne uzavírat přes horní diodu D0_H. Poté začne proud i_z a tedy i proud i_{D0H} exponenciálně klesat k nule (vzhledem k relativně dlouhé době zániku proudu již činnou složku *R* cívky uvažujeme) podle vztahu

$$i_z = i_{DH0} = I_{C \max} \cdot e^{-\frac{t}{\tau}}$$
 (3.3)

3.1 Vysokonapěťový zdroj

Informace uváděné v této kapitole byly čerpány především z [2]. Jako vn zdroj z Obr. 3.1 mohl být použit transformátor s vysokým výstupním napětím, ale vzhledem k tomu, že by jeho sekundární vinutí muselo být navinuto mnoha závity tenkého vodiče a hrozilo by tak veliké riziko mezizávitových zkratů, byla tato varianta zamítnuta.

Vysokonapěťový zdroj je v našem případě realizován pomocí tzv. kaskádního násobiče napětí. Obecná funkce kaskádních násobičů napětí spočívá v řazení určitých typů usměrňovačů tak, aby byly z hlediska střídavého napájení všechny jejich vstupy zapojeny paralelně a z hlediska jejich výstupních stejnosměrných napětí byly jejich výstupy zapojeny do série. Podle typu použitého usměrňovače lze kaskádní násobiče rozdělit na jednocestné násobiče (Delonův násobič), dvoucestné násobiče z Graetzových můstků a dvoucestné násobiče ze dvou Delonových násobičů. Všechny uvedené typy násobičů jsou vhodné především jako zdroje vysokého napětí pro aplikace s velmi malým proudovým odběrem (maximálně desítky až stovky mA), což je dáno vysokými požadavky na kapacitu výstupních elektrolytických kondenzátorů pro dosažení co nejmenšího zvlnění výstupního napětí násobiče.

3.1.1 Kaskádní jednocestný násobič napětí

V našem případě byl použit kaskádní jednocestný (Delonův) násobič napětí, jehož schéma je vidět na Obr. 3.4. Ze schématu je patrné, že se tento násobič skládá ze čtyř jednocestných usměrňovačů s elektrolytickým kondenzátorem na výstupu, takže se jedná o čtyřstupňový násobič napětí.

Obr. 3.4: Čtyřstupňový kaskádní jednocestný (Delonův) násobič napětí.

Pro jednoduchost bude nyní popsána funkce nezatíženého jednocestného násobiče. Při záporné půlvlně sinusového napájecího napětí u_1 (kladný potenciál je na dolní vstupní svorce, jak je naznačeno na Obr. 3.4), je dioda D₁ v propustném směru a kondenzátor C₁ se přes tuto diodu nabije na hodnotu odpovídající amplitudě napětí u_1 danou vztahem

$$U_{C1} = \sqrt{2} \cdot \boldsymbol{u}_1. \tag{3.4}$$

Při kladné půlvlně napájecího napětí u_1 (kladný potenciál je na horní vstupní svorce) je dioda D₁ v závěrném směru a vede dioda D₂, přes kterou se nabíjí kondenzátor C₂. Během kladné půlvlny však není kondenzátor C₂ připojen přes diodu D₂ pouze na napájecí napětí u_1 , ale nabíjí se na napětí dané součtem napětí na kondenzátoru C₁ a amplitudy napětí u_1 podle rovnice

$$U_{C2} = U_{C1} + \sqrt{2} \cdot u_1 = \sqrt{2} \cdot u_1 + \sqrt{2} \cdot u_1 = 2\sqrt{2} \cdot u_1 = 2 \cdot U_{C1}.$$
(3.5)

Během druhé záporné půlvlny napětí u_1 je dioda D_1 stále zavřená, protože kondenzátor C_1 je nabit na hodnotu U_{Cl} (to platí pouze za předpokladu nezatíženého násobiče), takže nemusí být přes tuto diodu dobíjen. Dioda D_2 je také zavřená, protože je zápornou půlvlnou napětí u_1 polarizována v závěrném směru. Za těchto předpokladů se otevře dioda D_3 a začne se nabíjet kondenzátor C_3 . Při nabíjení vznikne v obvodu násobiče uzavřená smyčka složená z kondenzátoru C_3 , ze zdrojů napětí U_{Cl} , $-\sqrt{2} \cdot u_1$, $-U_{C2}$ a z diody D_3 , u které lze úbytek napětí v propustném směru zanedbat. Napětí, na které se bude kondenzátor C_3 nabíjet, lze potom vypočítat pomocí následujících rovnic sestavených podle uvedené smyčky.

$$U_{C3} + U_{C1} - \sqrt{2} \cdot u_1 - U_{C2} = 0 \Longrightarrow$$

$$U_{C3} = U_{C2} - U_{C1} + \sqrt{2} \cdot u_1 \Longrightarrow$$

$$U_{C3} = 2\sqrt{2} \cdot u_1 - \sqrt{2} \cdot u_1 + \sqrt{2} \cdot u_1 = 2\sqrt{2} \cdot u_1 = 2 \cdot U_{C1}$$
(3.6)

U druhé kladné půlvlny napětí u_1 probíhá nabíjení kondenzátoru C₄ přes diodu D₄ stejným způsobem jako v předchozím případě, ale uzavřená smyčka se rozšíří o zdroj napětí U_{C3} . Rovnice pro výpočet výsledného napětí na kondenzátoru C₄ potom vypadají následovně:

$$U_{C4} + U_{C2} - \sqrt{2} \cdot u_1 - U_{C1} - U_{C3} = 0 \Rightarrow$$

$$U_{C4} = U_{C3} - U_{C2} + U_{C1} + \sqrt{2} \cdot u_1 \Rightarrow$$

$$U_{C4} = 2\sqrt{2} \cdot u_1 - 2\sqrt{2} \cdot u_1 + \sqrt{2} \cdot u_1 + \sqrt{2} \cdot u_1 = 2\sqrt{2} \cdot u_1 = 2 \cdot U_{C1}$$
(3.7)

Z rovnic 3.5, 3.6 a 3.7 je zřejmé, že se od druhého stupně dále nabíjejí všechny kondenzátory na dvojnásobek hodnoty napětí U_{CI} . Na horních kondenzátorech tak vzniknou liché násobky napětí U_{CI} a na spodních kondenzátorech sudé násobky napětí U_{CI} .

3.1.2 Realizace vysokonapěťového zdroje

Praktický návrh vysokonapěť ového zdroje byl v našem případě proveden následujícím způsobem: z Obr. 3.5 je vidět, že je z bezpečnostních důvodů na vstupu násobiče zapojen oddělovací transformátor typu RJN 40 o výkonu 40 VA vyrobený firmou SVED Liberec. Sekundární napětí tohoto transformátoru je tedy zároveň vstupním napětím násobiče, takže se pro výpočet výstupního napětí bude uvažovat $u_1 = 240$ V (oddělovací transformátory mají na sekundární straně vždy vyšší napětí než je napětí sítě $u_s = 230$ V na straně primární). Za těchto předpokladů se v případě nezatíženého násobiče nabije kondenzátor C₁ na napětí $U_{C1} = 340$ V (rovnice 3.4). Podle rovnic 3.5, 3.6 a 3.7 budou mít napětí na kondenzátorech v dalších stupních stejnou hodnotu a bude platit, že $U_{C2} = U_{C3} = U_{C4} = 680$ V. Na horních kondenzátorech tedy budou k dispozici napětí:

 $U_{Cl} = 340 \text{ V}, U_{C3} = 680 \text{ V}$ a $U_{Cl} + U_{C3} = 3 \cdot U_{Cl} = 1020 \text{ V}$ (liché násobky)

a na dolních kondenzátorech budou napětí:

$$U_{C2} = U_{C4} = 680 \text{ V}$$
 a $U_{C2} + U_{C4} = 4 \cdot U_{C1} = 1360 \text{ V}$ (sudé násobky).

Obr. 3.5: Vysokonapěťový zdroj s kondenzátorovou baterií C_d na výstupu.

Požadovaná maximální hodnota napětí U_d , na kterou je třeba nabíjet kondenzátory $C_{d1} - C_{d4}$, je 1200 V. Z toho důvodu jsou tyto kondenzátory připojeny na spodní výstupní větev násobiče s napětím $U_{C2} + U_{C4} = 4 \cdot U_{C1} = 1360$ V. Stisknutím dvoupólového tlačítka TL1 se připojí sekundární vinutí transformátoru RJN 40 přes předřadný odpor $R_{před} = 180 \Omega / 5$ W na vstupní svorky násobiče. Začnou se tak nabíjet kondenzátory $C_{d1} - C_{d4}$ přes nabíjecí odpor R_{1nab} o hodnotě 47 $\Omega / 20$ W (pro možnost připojení kondenzátorů $C_{d1} - C_{d4}$ na některou z horních výstupních větví násobiče jsou součástí obvodu také nabíjecí odpory R_{2nab} a R_{3nab} se stejnými parametry jako má R_{1nab}).

Nabíjecí proces však v žádném případě neproběhne během dvou kladných a dvou záporných půlvln vstupního napětí u_l , jak je popsáno v předchozích odstavcích. V těchto odstavcích totiž uvažujeme nabíjení výstupních kondenzátorů nezatíženého násobiče. V našem případě je však výstup násobiče zatížen nabíjecím proudem I_{nab} , jehož velikost je dána kapacitou elektrolytických kondenzátorů zapojených v jednotlivých stupních násobiče. Z toho důvodu může nabíjení na plné napětí 1360 V trvat i několik sekund až desítky sekund, takže napětí U_d je možné plynule zvyšovat až na hodnotu 1200 V pomocí tlačítka TL1.

Ze schématu na Obr. 3.4 je patrné, že výstupní kondenzátory ve druhém, třetím a čtvrtém stupni násobiče musí být dimenzovány na napětí vyšší než $U_{C2} = U_{C3} = U_{C4} = 680$ V. Běžně dostupné elektrolytické kondenzátory se však vyrábějí pouze do napětí 450 V. Proto jsou na výstupech uvedených stupňů násobiče na Obr. 3.5 vždy dva elektrolytické kondenzátory zapojené do série, aby bylo na každém z nich napětí nejvýše 340 V.

Kapacita kondenzátoru C₁ byla z cenových a rozměrových důvodů zvolena 22 μ F / 450 V. Protože kapacity výstupních kondenzátorů musí být v každém stupni násobiče stejné, neboli musí platit, že $C_1 = C_2 = C_3 = C_4$, byla kapacita kondenzátorů C_{2a}, C_{2b}, C_{3a}, C_{3b} a C_{4a}, C_{4b} ve zbývajících stupních zvolena 47 μ F / 450 V. Ve druhém, třetím a čtvrtém stupni jsou tedy výsledné výstupní kapacity $C_2 = C_3 = C_4 = 23,5 \mu$ F / 900 V podle rovnice

$$C_2 = C_3 = C_4 = \frac{C_{2a} \cdot C_{2b}}{C_{2a} + C_{2b}} = \frac{C_{2a}}{2}, \text{ kde } C_{2a} = C_{2b}.$$
 (3.8)

Výstupní proud násobiče je pak možné vypočítat pomocí rovnice 3.9, která je odvozena z empirického vztahu

$$C_{2\neq4} \ge \frac{2n \cdot (n+2) \cdot I_{nab}}{f \cdot U_{C1}} \Longrightarrow I_{nab} = \frac{f \cdot U_{C1} \cdot C_{2\neq4}}{2n \cdot (n+2)}, \qquad (3.9)$$

kde f je frekvence vstupního napájecího napětí násobiče (50 Hz) a n je počet stupňů násobiče, ze kterých je odebírán nabíjecí proud I_{nab} (v případě násobiče na Obr. 3.5 je n = 4). Po dosazení všech hodnot do rovnice 3.9 vyjde nabíjecí proud $I_{nab} = 8,3$ mA.

Všechny diody $D_1 - D_4$ musí být dimenzovány na závěrné napětí U_R o minimální hodnotě 680 V, která odpovídá napětí $U_{C2} = U_{C3} = U_{C4}$ na výstupech násobiče. V našem případě byly vybrány diody typu EM 518 s parametry $U_{RRM} = 2000$ V a $I_{FAV} = 1$ A. Proud tekoucí diodami je zároveň nabíjecím proudem o velikosti $I_{nab} = 8,3$ mA, takže z hlediska proudových i napěťových parametrů jsou tyto diody dostatečně předimenzované.

3.1.3 Vybíjení kondenzátorů

Kondenzátory $C_{d1} - C_{d4}$ a kondenzátory výstupních větví násobiče je možné vybíjet do odporů $R_{1vyb} - R_{3vyb}$ pomocí tlačítka TL2. Ze schématu na Obr. 3.5 je patrné, že po připojení vybíjecích odporů lze celý obvod zjednodušit a překreslit tak, jak je naznačeno na Obr. 3.6. Odpory $R_{1vyb} - R_{3vyb}$ jsou zde nahrazeny jedním vybíjecím odporem R_{vyb} , do kterého se po stisknutí tlačítka TL2 začne vybíjet kondenzátorová baterie C_d spolu s kondenzátory C_2 a C_4 , protože je na nich stejné napětí ($U_d = U_{C2} + U_{C4} = 1200$ V). Během vybíjení se při poklesu napětí pod hodnotu $U_d/2 = 600$ V otevřou diody D_1 a D_4 (úbytky napětí na diodách jsou v tomto případě zanedbány), které ke kondenzátorům C_2 , C_4 a C_d připojí navíc ještě kondenzátor C_3 nabitý právě na hodnotu $U_d/2$, a umožní tak jeho vybítí. Kondenzátor C_1 není k vybíjecímu odporu R_{vyb} ničím připojen, takže po stisknutí tlačítka TL2 zůstane jako jediný nabitý, a to na hodnotu $U_{C1} = U_d/4 = 300$ V. Vodiče s diodami D_2 a D_3 jsou ve schématu zakresleny pouze čárkovanou čarou, protože tyto diody nemají na vybíjení kondenzátorů žádný vliv.

Obr. 3.6: Zjednodušený obvod násobiče při vybíjení kondenzátorů C2, C3, C4 a Cd.

Pro vybíjení byly vybrány metaloxidové odpory v keramickém pouzdru o hodnotě $R_{Ivyb} = R_{2vyb} = R_{3vyb} = 820 \ \Omega / 20 \ W$. V tomto případě bylo nutné ověřit, jestli se vybitím kondenzátorů C₂, C₃, C₄ a C_d nepřekročí maximální přípustné oteplení ΔT_{max} použitých vybíjecích odporů, které bylo stanoveno na 50 °C. Skutečné oteplení ΔT všech tří odporů (R_{1nab} zanedbáme) po úplném vybití z napětí $U_d = 1200 \ V$ je možné vypočítat pomocí rovnice

$$\Delta T = \frac{W}{3C_{\theta}} = \frac{W}{3 \cdot c \cdot m}, \qquad (3.10)$$

kde W je energie nabitých kondenzátorů, C_{θ} je tepelná kapacita jednoho odporu, c je měrná tepelná kapacita keramiky a m je hmotnost jednoho odporu. Hmotnost m je možné vypočítat jako součin hustoty ρ a objemu V podle rovnice

$$m = \rho \cdot V \,. \tag{3.11}$$

Energii Wlze vypočítat podle známého vztahu

$$W = \frac{1}{2}C \cdot U_d^2, \qquad (3.12)$$

kde C představuje celkovou kapacitu sérioparalelní kombinace kondenzátorů C₂, C₃, C₄ a C_d, pro kterou platí

$$C = C_{2,4} + C_3 + C_d = \frac{C_2}{2} + C_3 + C_d, \qquad (3.13)$$

kde $C_{2,4} = 11,75 \ \mu\text{F}$ je kapacita sériově zapojených kondenzátorů C₂ a C₄.

Kondenzátory C₂, C₃ a C₄ mají kapacitu 23,5 µF a kapacita kondenzátorové baterie C_d je 440 µF. Jeden vybíjecí odpor má objem $V = 12 \text{ cm}^3$, hustota keramiky byla odhadnuta na hodnotu $\rho = 4 \text{ g/cm}^3$ a měrná tepelná kapacita keramiky byla odhadnuta na hodnotu c = 0,5 J/Kg. Pokud tyto hodnoty postupně dosadíme do předchozích rovnic, dostaneme následující výsledky: C = 475,25 µF, W = 342 J, m = 48 g, $C_{\theta} = 24 \text{ J/K}$ a $\Delta T = 5 \text{ °C}$. Oteplení ΔT vybíjecích odporů R_{1vyb} – R_{3vyb} vyšlo o řád menší než maximální přípustné oteplení ΔT_{max} , takže zmíněné odpory v tomto směru vyhovují dané aplikaci.

Dalším důležitým parametrem je v našem případě maximální napětí, které můžeme na odpor připojit tak, aby nebyla porušena jeho elektrická pevnost a nedošlo k průrazu. Hodnota tohoto napětí je u použitých odporů $R_{1vyb} - R_{3vyb}$ 1000 V a nejvyšší možné napětí, které se na jednom odporu v tomto obvodu může objevit, je 1360 V/3 = 453 V, takže odpory je skutečně možné použít pro tuto aplikaci.

Při napětí $U_d = 1200$ V bude mít vybíjecí proud kondenzátorů C₂, C₄ a C_d počáteční (maximální) hodnotu $I_{vyb(max)} = 0,5$ A danou vztahem

$$I_{vyb(max)} = \frac{U_d}{R_{1vyb} + R_{2vyb} + R_{3vyb}} = \frac{U_d}{R_{vyb}}$$
(3.14)

a z této hodnoty bude exponenciálně klesat na nulovou hodnotu stejným způsobem jako napětí. Jak již bylo řečeno na začátku kapitoly 3.1.3, z plného napětí U_d se budou vybíjet pouze kondenzátory C₂, C₄ a C_d a kondenzátor C₃ se začne vybíjet až při poklesu napětí pod hodnotu $U_d/2$. V tomto okamžiku dojde ke změně časové konstanty z hodnoty $\tau_{Ivyb} =$ 1,11 s (rovnice 3.15) na hodnotu $\tau_{2vyb} =$ 1,17 s (rovnice 3.16), kde $C_{2,4,3} =$ 35,25 µF je kapacita paralelní kombinace $C_{2,4}$ a C_3 .

$$\tau_{1\nu yb} = R_{\nu yb}C_d + \left(R_{\nu yb} + R_{1nab}\right)C_{2,4}$$
(3.15)

$$\tau_{2vyb} = R_{vyb}C_d + \left(R_{vyb} + R_{1nab}\right)C_{2,4,3}$$
(3.16)

Změna časové konstanty $\Delta \tau = \tau_{2vyb} - \tau_{Ivyb} = 0,06$ s = 60 ms je však vzhledem k celkové době vybíjení zanedbatelná, takže za dobu vybití kondenzátorů C₂, C₃, C₄ a C_d je možné s relativně velikou přesností prohlásit pětinásobek časové konstanty τ_{2vyb} , což je 5,85 s. Po uplynutí této doby bude mít napětí na kondenzátorové baterii C_d hodnotu 0,007Ud, a to je přibližně 8 V.

3.2 Řídicí obvod

Z průběhů na Obr. 3.3 je zřejmé, že pro měření vypínacího a zapínacího děje musí být řídicí obvod schopen na svém výstupu generovat dva po sobě jdoucí napěťové impulzy s dobou t_1 a t_3 , které mají proměnnou délku. Doba t_2 mezi těmito impulzy musí být také proměnná, přičemž všechny časy t_1 , t_2 a t_3 se musí pohybovat v jednotkách až desítkách μ s, jak již bylo uvedeno v kapitole 3.

Na základě těchto požadavků byl řídicí obvod realizován pomocí čtyř monostabilních klopných obvodů MKO₁ – MKO₄ typu 4528 a příslušné kombinační logiky řady CMOS 4000 (Obr. 3.7). Obvody řady CMOS 4000 mají mnoho výhodných vlastností, mezi které patří podle [3] např. velmi malý příkon ve statickém režimu, vysoká šumová imunita (typicky 40 % napájecího napětí U_{DD}), velký rozsah pracovních teplot (u keramického pouzdra -55 až 125 °C a pro plastové -40 až 85 °C), velký logický zisk (50 až 100), malé nároky na napájecí zdroj (nevadí ani brum o velikosti 10 až 20 % U_{DD}) a velký rozsah napájecích napětí (3 až 16 V), které bylo v našem případě zvoleno 15 V.

Integrovaný obvod typu 4528 obsahuje dva nezávislé monostabilní klopné obvody, takže jsou zde použity celkem dva obvody 4528. U MKO₂ – MKO₄ je možné nastavit dobu kyvu (dobu trvání jednoho výstupního impulzu) pomocí externího potenciometru R_t a keramického kondenzátoru C_t, které je nutné připojit mezi piny V_{DD}, RC_{TCA} a C_{TCA} (popř. RC_{TCB} a C_{TCB}) tak, jak nakresleno ve schématu na Obr. 3.7. Pro tyto MKO byly zvoleny hodnoty $C_t = 1$ nF a $R_t = 100$ k Ω . Do série s každým potenciometrem R_t byl navíc zapojen odpor R_{min} o hodnotě 4,7 k Ω , takže dobu kyvu (časy t_1 , t_2 a t_3) je možné u všech tří MKO nastavovat nezávisle na sobě v rozmezí přibližně od 3 do 50 µs. MKO₁ je v tomto obvodu použit pouze pro odstranění zákmitů, které mohou vznikat během rozpojování mechanického kontaktu tlačítka TL3. Z toho důvodu byly hodnoty součástek R_{imp} a C_{imp} zvoleny tak, aby se po krátkém stisknutí tlačítka TL3 na výstupu MKO₁ vygeneroval jediný impulz o délce přibližně $t_{imp} = 2$ s, takže $R_{imp} = 2$ M Ω a $C_{imp} = 3,3$ µF.

Obr. 3.7: První část řídicího obvodu s monostabilními klopnými obvody 4528.

3.2.1 Princip činnosti řídicího obvodu

Řídicí obvod funguje následujícím způsobem: stisknutím tlačítka TL3 se na vstup I_{1A} prvního monostabilního obvodu MKO₁ přivede spouštěcí impulz o výšce $U_{DD} = +15$ V. Náběžná hrana tohoto impulzu spustí MKO₁ a ten na svém výstupu O_A vygeneruje impulz o délce t_{imp} . Náběžná hrana spouštěcího impulzu se tak pouze přenese na vstup I_{1B} obvodu MKO₂, který na svých výstupech O_B a \overline{O}_B vygeneruje impulzy naznačené na Obr. 3.7. Na výstupu O_B jde o první řídicí impulz s časem t_1 (Obr. 3.3), po jehož ukončení odstartuje náběžná hrana pulzu na výstupu \overline{O}_B další klopný obvod MKO₃, který určuje dobu t_2 . Tato doba je dána délkou impulzu na výstupu O_B vygeneruje druhý řídicí impulz s dobou trvání t_3 .

Oba po sobě jdoucí výstupní impulzy obvodů MKO₂ a MKO₄ s časy t_1 a t_3 jsou přivedeny na vstup hradla NOR z integrovaného obvodu 4001 (4 x 2-vstupové <u>hradlo</u> NOR), pomocí něhož je realizována funkce negovaného logického součtu Y = A + B. Z toho plyne, že se na výstupu hradla NOR objeví signál v podobě dvou obrácených impulzů, které jsou naznačeny na Obr. 3.7.

Z výše popsaného principu funkce řídicího obvodu vyplývá, že odstranění zákmitů (pomocí obvodu MKO₁), které mohou vzniknout po stisknutí tlačítka TL3, je v tomto případě naprostou nutností. Tyto zákmity by totiž mohly ve velmi krátkých časových intervalech opakovaně spustit monostabilní klopný obvod, na spínaný tranzistor (Obr. 3.1) by se tak v krátkém čase dostalo více řídicích impulzů, čímž by došlo k nekontrolovanému nárůstu proudu i_C nad hodnotu I_{Cmax} (Obr. 3.3) a tranzistor by mohl být zničen.

Přítomnost spouštěcího impulzu o délce t_{imp} na výstupu MKO₁ signalizuje LED dioda, která je spínána negovaným impulzem (o stejné délce) z výstupu O_A přes odpor R_{LED}. Pro tento účel musela být vybrána speciální nízkopříkonová LED dioda typu HLMP-K150 s proudovým odběrem $I_F = 1$ mA při napětí $U_F = 1,6$ V, aby nedocházelo k přetěžování výstupu MKO₁. Hodnotu odporu $R_{LED} = 13$ k Ω je potom možné vypočítat podle rovnice

$$R_{LED} = \frac{U_{DD} - U_F}{I_F}.$$
 (3.17)

Aby se zabránilo nežádoucímu samovolnému spouštění řídicího obvodu vlivem okolního rušivého napětí, je vstup I_{1A} obvodu MKO₁ připojen na zem přes odpor R_1 s hodnotou 47 k Ω .

3.2.2 Koncový stupeň řídicího obvodu

Ze schématu na Obr. 3.8 je patrné, že výstupní signál z hradla NOR (výstup Y na Obr. 3.7) předchozího obvodu musí být dále negován a proudově posílen pomocí tří paralelně zapojených invertorů z obvodu 4049 (6 x invertující oddělovač). Před vstupy těchto invertorů je signál navíc ještě rozdělen a dvakrát negován přes druhé hradlo NOR z obvodu 4001 a další tři invertory 4049, které signál proudově posílí stejně jako v případě horní větve koncového stupně.

Oba posílené signály jsou poté vedeny do dvojčinných emitorových sledovačů, jejichž výstupy Q nebo \overline{Q} je možné použít pro připojení budicího obvodu výkonového tranzistoru. Volba výstupu potom závisí na typu použitého budiče, který může reagovat na náběžnou (výstup Q) nebo sestupnou hranu (výstup \overline{Q}) řídicího signálu. Dvojčinné emitorové sledovače jsou v tomto případě tvořeny dvojicí bipolárních tranzistorů BC337 (T₁, T₃) a BC327 (T₂, T₄).

Aby bylo možné na výstup řídicího obvodu zapojit budič, jehož vstupní signál je oddělen pomocí optočlenu, byl výstup Q doplněn tranzistorem T_{OC} s otevřeným kolektorem (výstup OC – Open Collector). Jde o unipolární tranzistor MOSFET s kanálem N typu BS170 s parametry $I_D = 0.5$ A, $U_{DSS} = 60$ V a $P_D = 0.83$ W, který lze spínat přes odpor R_G o hodnotě 47 Ω .

Jak již bylo řečeno na začátku kapitoly 3.2, časy obou řídicích impulzů se mohou pohybovat v rozsahu přibližně od 3 do 50 μ s. Jedná se tedy o vysokofrekvenční aplikaci a z toho důvodu jsou zde použity přídavné keramické kondenzátory C₁ a C₃ o kapacitě 100 nF, zapojené paralelně k oběma sledovačům. Kvůli velké vnitřní parazitní indukčnosti elektrolytických kondenzátorů napájecího zdroje by bez těchto kondenzátorů docházelo k horší filtraci napájecího napětí +15 V [4].

Kvůli vysokému spínacímu kmitočtu f_s řídicího obvodu jsou paralelně k oběma emitorovým sledovačům zapojeny ještě elektrolytické kondenzátory C₂ a C₄ s kapacitou 10 µF / 50 V. Tyto přídavné filtrační kondenzátory musí být na desce plošných spojů spolu s kondenzátory C₁ a C₃ umístěny co nejblíže k oběma sledovačům, čímž se potlačí vliv parazitní indukčnosti L_p dlouhých přívodů od napájecího zdroje, která je přímo úměrná spínacímu kmitočtu f_s podle vztahu 3.18. Na této indukčnosti by mohly během spínání vznikat krátkodobé úbytky napětí, což je samozřejmě nežádoucí.

$$L_p = \omega_s \cdot X_L = 2\pi f_s \cdot X_L \tag{3.18}$$

Při odpojení vstupu Y koncového stupně od řídicího obvodu musí být na výstupu Q udržováno napětí 0 V a na výstupu \overline{Q} zase konstantní napětí +15 V, aby nemohlo dojít k samovolnému sepnutí budicího obvodu, připojeného k jednomu z těchto výstupů. Proto je vstup Y pevně připojen na napětí +15 V přes odpor R₂ o hodnotě 33 k Ω . Ze stejného důvodu jsou na vstupu i výstupu sledovače v horní větvi zapojeny odpory R₃ a R₄ na napětí 0 V a u sledovače v dolní větvi odpory R₅ a R₆ na napětí +15 V. Hodnoty těchto odporů jsou R₃ = R₅ = 47 k Ω a R₄ = R₆ = 15 k Ω .

3.2.3 Napájecí zdroj řídicího obvodu

Pro napájení řídicího obvodu byl navržen stejnosměrný stabilizovaný zdroj s výstupním napětím +15 V, jehož schéma je vidět na Obr. 3.9. V tomto zdroji je použit transformátor typu TRHEI422-1X18 s výstupním napětím 18 V (při zatížení), který je určený pro montáž do DPS. Na sekundární vinutí transformátoru je připojen integrovaný můstkový usměrňovač B380C1000DIL s hlavními filtračními kondenzátory C_{F1}, C_{F2} a integrovaným stabilizátorem 7815. Filtrační kondenzátory mají kapacitu $C_{F1} = 1000 \, \mu\text{F} / 50 \, \text{V}$ a $C_{F2} = 10 \, \mu\text{F} / 50 \, \text{V}$. Dle doporučení výrobce musí být ke stabilizátoru 7815 připojeny ještě keramické (bezindukční) kondenzátory C_{IN} a C_{OUT} o kapacitě $C_{IN} = 330 \, \text{nF}$ a $C_{OUT} = 100 \, \text{nF}$. Tímto zapojením se zabraňuje nežádoucímu kmitání napětí stabilizátoru na vyšších kmitočtech, a proto musí být kondenzátory C_{IN} a C_{OUT} umístěny na DPS ke stabilizátoru co nejblíže [4], jak je naznačeno na Obr. 3.9.

Obr. 3.9: Napájecí zdroj řídicího obvodu.

3.2.4 Měření výstupního signálu řídicího obvodu

Kompletní schéma zapojení řídicího obvodu popsaného v předchozích kapitolách je možné vidět na následující straně na Obr. 3.12. Ověření funkce tohoto obvodu bylo provedeno pomocí dvoukanálového paměťového oscil<u>o</u>skopu Agilent s šířkou pásma 100 MHz. Naměřené průběhy napětí na výstupech Q a Q po stisknutí tlačítka TL3 jsou vidět na oscilogramech na Obr. 3.10 a 3.11. Z těchto průběhů je patrné, že se jedná o dva řídicí impulzy s dobou trvání t_1 a t_3 popisované v kapitole 3.

Jak bylo dále popsáno v kapitole 3.2, byly hodnoty součástek R_t a C_t u obvodů MKO₂ – MKO₄ zvoleny tak, aby se časy t_1 , t_2 a t_3 mohly nezávisle na sobě měnit v rozmezí od 3 do 50 µs. Při nastavení všech tří potenciometrů na minimální hodnotu R_t byly pomocí funkce Cursors z obrazovky osciloskopu odečteny nejkratší možné časy $t_{1min} = t_{2min} = t_{3min} = 2,64$ µs (Obr. 3.10) a při maximální hodnotě R_t byly odečteny nejdelší možné časy $t_{1max} = t_{2max} = t_{3max} = 53,6$ µs (Obr. 3.11). Je tedy zřejmé, že nastavitelný rozsah všech tří časů je nepatrně větší než rozsah požadovaný.

Signál na výstupech Q nebo \overline{Q} již lze použít pro řízení budicího obvodu měřeného výkonového tranzistoru. Vzhledem k celkové složitosti budicích obvodů výkonových tranzistorů IGBT je této problematice věnována celá následující kapitola.

Š¢

7815

BUBDOHODODIL

TRHEM28-1X18

A

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

4 BUDICÍ OBVODY VÝKONOVÝCH TRANZISTORŮ IGBT

Jak je z názvu patrné, kapitola 4 pojednává o problematice budicích obvodů výkonových tranzistorů IGBT. Všechny informace uvedené v této kapitole byly čerpány z [5].

Pomocí budicích obvodů (budičů) se na řídicí elektrodu výkonového tranzistoru přivádí signál, díky kterému je možné tranzistor sepnout nebo naopak vypnout, a to pokud možno v co nejkratším možném čase. Na výstupu budiče musí být generován dostatečně kvalitní řídicí signál, aby byla zajištěna vysoká spolehlivost celého výkonového měniče.

4.1 Galvanické oddělení budicích obvodů

Kromě generování řídicího signálu je jedním z hlavních úkolů budičů také galvanické oddělení signálu mezi řídicími a výkonovými obvody měniče, což je patrné z Obr. 4.1. Větev měniče je zde složena z horního a dolního tranzistoru T_H a T_D . Tato větev je napájena z šestipulzního můstkového usměrňovače a stejnosměrného meziobvodu, takže střední hodnota napájecího napětí měniče je 540 V. Je tedy zřejmé, že kladná sběrnice má oproti zemnicímu vodiči PEN (0 V) trvale potenciál +270 V a záporná sběrnice zase potenciál -270 V, na kterém se současně nachází i emitor dolního tranzistoru. Emitor horního tranzistoru je na potenciálu -270 V pouze v případě, že je dolní tranzistor T_D v sepnutém stavu. V opačném případě (vypnutý tranzistor T_D a sepnut T_H) se emitor horního tranzistoru nachází na potenciálu +270 V.

Podle současných bezpečnostních norem musí být jakékoli elektrické zařízení určené do průmyslu vždy uzemněno. Při uzemnění řídicího obvodu, v našem případě označeného jako μ P, se však bude obvodová zem dolního budiče oproti tomuto obvodu nacházet na potenciálu -270 V a zem horního budiče zase na potenciálu +270 V nebo -270 V podle toho, který z tranzistorů T_H, T_D bude v sepnutém stavu. Z toho důvodu nelze přivést řídicí signál do budiče vodičem, ale pouze galvanicky oddělenou cestou.

4.1.1 Možnosti galvanického oddělení budicích obvodů

Na kvalitu galvanického oddělení budičů jsou kladeny vysoké nároky, protože při spínání tranzistorů se jejich emitory, a tedy i obvodové země budičů, mohou potenciálově pohybovat se strmostí du/dt dosahující ±10 až ±20 kV/µs podle typu použitých tranzistorů.

Existuje několik způsobů, jak je možné galvanické oddělení realizovat. Jedním z nich je např. použití optočlenu (Obr 4.1). Kvůli rychlosti přenosu však musí být optickým přijímačem fotodioda, nikoli fototranzistor. Optočlen musí nutně obsahovat také stínicí mřížku, která je umístěna vždy mezi optickým vysílačem a přijímačem. Vložením této mřížky se parazitní kapacita optočlenu C_{par} sníží přibližně na 1 pF. Kvůli vysoké strmosti du/dt (např. 20 kV/µs) ale může i přes tuto kapacitu protékat nebezpečně vysoký impulzní parazitní proud i_{par} , což je naznačeno následujícím výpočtem.

$$i_{par}(t) = C_{par} \cdot \frac{du(t)}{dt} = 1 \cdot 10^{-12} \cdot \frac{20 \cdot 10^3}{1 \cdot 10^{-6}} = 0,02A = \underline{20mA}$$
(4.1)

Z výsledku je zřejmé, že používání optočlenů se stínicí mřížkou je v těchto aplikacích skutečně nutností. Kvůli parazitním kapacitním proudům však mají současné nejkvalitnější optočleny se stínicí mřížkou odolnost proti rušení vlivem du/dt pouze do 5 až 15 kV/µs. Kromě toho jsou tyto optočleny velmi drahé a stejně se jejich spolehlivá činnost nachází na dolní hranici použitelnosti.

Další možností je oddělení řídicího signálu pomocí impulsního transformátorku. Toto řešení se jako jediné používá i pro galvanické oddělení napájecího zdroje budicího obvodu. V případě této kombinace se potom jedná o přenos informace i napájecí energie magnetickou cestou. Vzniká zde ale stejný problém s kapacitními proudy jako u optočlenů, což je způsobeno parazitní kapacitou mezi primárním a sekundárním vinutím, která by neměla přesahovat hodnotu asi 5 až 10 pF.

Pro vysokonapěťové aplikace a pro měniče s výkony 1 MW a výše je nejlepším řešením galvanické oddělení řídicího signálu pomocí optického vlákna. Z cenových a objemových důvodů však zatím není příliš vhodné používat optická vlákna u měničů malých výkonů, což je jedinou nevýhodou tohoto přenosu informace.

4.2 Elektronické ochrany budicích obvodů

Na Obr 4.2 je naznačeno principiální blokové schéma budicího obvodu výkonového tranzistoru. Izolační bariéra, zvýrazněná v levé části schématu, musí podle zkušebních norem vydržet střídavé efektivní napětí 2 kV s frekvencí 50 Hz po dobu jedné minuty. Vlastní budicí obvod je složen z vodorovného řetězce: optočlen – zesilovač a tvarovač – hradlovací obvod – koncový stupeň.

Zbývající část schématu tvoří celkem pět rychlých elektronických ochran, jejichž hlavním úkolem je zajistit nezničitelnost řízeného tranzistoru. Elektronické ochrany jsou realizovány pomocí komparátorů, jejichž výstupní signály jsou svedeny na vstup logického členu OR. Výstupem tohoto členu je havarijní STOP signál, který je přiveden do hradlovacího obvodu a přes optočlen také zpět do řídicího obvodu kvůli zpětnému hlášení o vzniklé havarijní situaci. U hradlovacího obvodu má havarijní signál nejvyšší prioritu a bez ohledu na stav řídicího signálu dává ihned povel k vypnutí výkonového tranzistoru. Funkce jednotlivých elektronických ochran jsou podrobněji vysvětleny v následujících podkapitolách.

Obr. 4.2: Blokové schéma budicího obvodu výkonového tranzistoru [5].

4.2.1 Saturační ochrana

Jedná se o jednu z nejdůležitějších a také nejchytřejších elektronických ochran, která se používá pro hlídání velikosti kolektorového proudu I_C řízeného tranzistoru. Princip funkce ochrany spočívá v tom, že je zbytečné a hlavně nevýhodné snímat proud jako úbytek napětí na odporovém bočníku umístěném v emitoru výkonového tranzistoru, když se samotný tranzistor v sepnutém stavu na dráze kolektor – emitor chová také jako bočník. Díky tomu lze u plně sepnutého tranzistoru snímat pouze tzv. saturační napětí U_{CEsat} , takže zcela zdarma získáme bočník, který je navíc prakticky téměř bezindukční. Tato vlastnost je velice důležitá hlavně při snímání větších proudů, protože díky bezindukčnosti může být tato ochrana extrémně rychlá (rychlejší princip neexistuje).

Jednou z nevýhod této metody je nelineární závislost výstupních charakteristik tranzistoru (závislost napětí U_{CE} na proudu I_C). Další nevýhodou je větší složitost celkového zapojení ochrany, což je dáno tím, že na tranzistoru je ve vypnutém stavu napětí stejnosměrného meziobvodu, které je několikanásobně větší než napětí saturační. Z toho důvodu musí být mezi komparátorem K_s a řízeným tranzistorem T_{IGBT} zapojen ještě vzorkovací obvod, tvořený tranzistorem T_{vz} a odporem R_{vz}, a snímací obvod, složený z odporu R_s a diody D_s.

Průběhy všech důležitých veličin, které se týkají funkce saturační ochrany je možné vidět na Obr. 4.3, který je na následující straně. Z těchto průběhů je patrné, že v časech T_{zap} a T_{vyp} je tranzistor T_{IGBT} opakovaně spínán a vypínán pomocí řídicích impulzů o výšce $+U_{GE}$ a $-U_{GE}$. Tranzistor je plně sepnut nebo naopak vypnut pouze v intervalech t_{zap} a t_{vyp} a ve zbývajících intervalech t_{on} a t_{off} probíhá u tranzistoru zapínací nebo vypínací děj, popsaný v kapitolách 2.2 a 2.3. Ze schématu na Obr. 4.2 je patrné, že během doby t_{vyp} , t_{on} a t_{off} musí oddělovací dioda D_S bránit přístupu vysokého napětí U_d na vstup komparátoru K_S. Aby se během této doby na vstupní svorce komparátoru K_S neobjevilo ani napájecí napětí $+U_{nap}$ (15 V), které by komparátor vyhodnotil mylně jako přetížení, je toto napětí svedeno vzorkovacím obvodem na zem přes odpor R_S a sepnutý tranzistor T_{vz}. Po skončení zapínací doby t_{on} se tranzistor T_{vz} vypne a na vstupu komparátoru se po uplynutí doby t_{RC} objeví napětí U_{sat} , které je rovno součtu úbytku napětí $U_{F(th)}$ na diodě D_S (přibližně 0,6 V) a saturačního napětí U_{CEsat} na výkonovém tranzistoru T_{IGBT} (2 až 6 V podle typu použitého tranzistoru). Z toho plyne, že saturační ochrana je aktivní pouze v intervalu t_{sat} .

Je tedy zřejmé, že signál pro vzorkovací obvod (napětí u_{vz}) musí být odvozen od řídicího signálu určeného pro tranzistor T_{IGBT} a navíc musí být za tímto signálem ještě opožděn o dobu t_{zp} pomocí zpožďovacího členu. Celkové zpoždění však musí být nepatrně delší než je zapínací doba t_{on} výkonového tranzistoru, což je zde zajištěno dolní propustí prvního řádu R_s, C_s, která slouží zároveň jako ochrana proti vysokofrekvenčnímu rušení. To se sice projeví prodloužením celkové reakční doby saturační ochrany o dobu t_{RC} , která může být ve skutečnosti i o několik µs delší než doba t_{zp} , ale i přesto je použití této ochrany v současnosti jediným způsobem, jak realizovat téměř absolutní zkratuvzdornost.

Kromě toho může být saturační ochrana provozována v režimu jednorázovém (propojka J_1) nebo regenerativním (J_2). Při detekci nadproudu zajistí jednorázový režim díky bistabilnímu klopnému obvodu BKO trvalé vypnutí řízeného tranzistoru, zatímco v režimu regenerativním dochází s každým novým řídicím povelem vždy k novému pokusu o sepnutí tranzistoru T_{IGBT}. Pokud nadproud stále trvá, ochrana tranzistor vždy předčasně vypne, takže dochází ke zužování řídicích impulzů, neboli ke zmenšování střídy oproti signálu z PWM modulátoru. Jestliže se kolektorový proud tranzistoru vrátí pod přípustnou mez, budič se samovolně vrátí do normálního režimu.

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

4.2.2 Hlídání přepětí

Úkolem této ochrany je hlídání napětí na řízeném tranzistoru ve vypnutém stavu. Tranzistor je ve vypnutém stavu namáhán napětím stejnosměrného meziobvodu, které se pohybuje řádově ve stovkách V až v jednotkách kV podle toho, v jaké napájecí síti měnič pracuje. Z toho důvodu musí být snímané napětí U_{CE} nejdříve sníženo pomocí děliče R_1 , R_2 tak, aby jej mohl komparátor K_P porovnávat s referenčním napětím U_{Pref} , jehož hodnota bývá řádově v jednotkách V. Vzhledem k citlivosti vstupních svorek komparátoru musí být snížená hodnota napětí U_{CE} porovnávána s referenčním napětím U_{Pref} s určitou hysterezí. Při překročení mezní hodnoty snímaného napětí dojde k překlopení na výstupu komparátoru, takže se zabrání dalšímu sepnutí tranzistoru. Tato ochrana nemusí být použita, jestliže je stejnosměrné mezilehlé napětí hlídáno centrálně.

4.2.3 Hlídání teploty

Pro hlídání maximální přípustné teploty výkonového tranzistoru je použit komparátor K_{θ} v kombinaci s vhodným snímačem teploty. Ideálem je umístit tento snímač přímo do bezpotenciálového modulu tak, aby byl co nejblíže výkonovému čipu. Pokud je v měniči hlídána teplota chladiče centrálně, tato ochrana být použita nemusí. Při prudkém přehřátí řízeného tranzistoru však centrální ochrana nezareaguje a tranzistor tak v žádném případě nezachrání.

4.2.4 Hlídání přítomnosti vlastních napájecích napětí budicího obvodu

Tato elektronická ochrana je v našem případě realizovaná dvojicí komparátorů K_{+U} a K_{-U} . Komparátor K_{+U} sleduje hodnotu kladného napájecího napětí a komparátor K_{-U} zase hodnotu napájecího napětí záporného. Podobně jako u ochrany pro hlídání přepětí (4.2.2) musí i v tomto případě oba komparátory K_{+U} a K_{-U} pracovat s určitou hysterezí.

Stálá hodnota napájecího napětí je nezbytná pro správnou funkci každého budiče výkonového tranzistoru, a proto by tato ochrana měla být vždy jeho součástí. Kladné napájecí napětí $+U_{nap}$ totiž určuje úroveň výstupního řídicího signálu budiče pro sepnutí tranzistoru a záporné napětí $-U_{nap}$ zase určuje úroveň výstupního signálu pro jeho vypnutí. Je tedy zřejmé, že při poklesu napětí $+U_{nap}$ bude tranzistor spínán napětím nižším než je požadované, takže se nemusí dostat do plně vodivého stavu. Napětí U_{CE} na tranzistoru v sepnutém stavu se tak zvýší, a tím se výrazně zvětší i ztrátový výkon tranzistoru, což je samozřejmě nežádoucí. Na nárůst napětí $-U_{nap}$ zase bude během vypínání z řídicí elektrody tranzistoru odčerpáván menší proud, neboli bude odváděn menší náboj z parazitní kapacity na rozhraní gate – emitor, a vypnutí tak může probíhat podstatně pomaleji.

4.3 Generátor PWM signálu pro testování funkčnosti budicích obvodů

Před připojením budicího obvodu k měřenému výkonovému tranzistoru je nutné, aby byla nejdříve ověřena jeho správná funkce, kterou je především generování kvalitního řídicího signálu. Za tímto účelem byl sestaven testovací obvod, pomocí něhož je možné generovat obdélníkový signál s proměnou střídou a frekvencí. Tento obvod byl navržen tak, aby mohl být propojen s koncovým stupněm z Obr. 3.8, na jehož výstupy Q, \overline{Q} nebo OC lze připojit zkoušený budič. Schéma testovacího obvodu a průběhy důležitých veličin jsou na Obr. 4.4. Z tohoto obrázku je vidět, že se jedná o generátor pulzně šířkově modulovaného (PWM) signálu, který je realizován pomocí astabilního klopného obvodu a generátoru trojúhelníkového signálu, jejichž princip činnosti je popsán v [6].

4.3.1 Princip činnosti a obvodová realizace generátoru PWM signálu

Testovací obvod je napájen ze zdroje stabilizovaného napětí $U_{nap} = +15$ V z Obr. 3.9. Pro potlačení parazitní indukčnosti napájecích vodičů je použit elektrolytický filtrační kondenzátor C_{F3} s kapacitou 100 µF / 50 V. Protože se jedná o vysokofrekvenční aplikaci, byl paralelně ke kondenzátoru C_{F3} připojen ještě keramický kondenzátor C₅ o kapacitě 100 nF (viz kapitola 3.2.2). Generátor PWM signálu je realizován pomocí operačních zesilovačů (OZ₁ – OZ₄ z integrovaného obvodu TL074), a proto potřebuje pro svoji činnost symetrické napájení. Z toho důvodu bylo napětí U_{nap} rozděleno na poloviny (2 x 7,5 V) odporovým děličem R_{d1}, R_{d2} s kondenzátory C₆ – C₉. Hodnota odporů R_{d1} a R_{d2} je 6,8 kΩ, kondezátory C₆ a C₇ mají kapacitu 10 µF / 50 V a kapacita kondenzátorů C₈, C₉ je 100 nF.

Astabilní klopný obvod s generátorem trojúhelníkového signálu je vytvořen pomocí invertujícího integračního zesilovače s OZ_1 a komparátoru s hysterezí s OZ_2 . Tento obvod funguje následujícím způsobem: napětí u_2 na výstupu komparátoru je vedeno na vstup integračního zesilovače, takže průběh napětí u_1 odpovídá integrálu hodnoty u_2 . Jestliže se výstup komparátoru nachází v kladné saturaci o konstantní hodnotě U_{nap} , má průběh napětí u_1 podobu klesající přímky. Pokles napětí u_1 je způsoben tím, že je použit integrační zesilovač v invertujícím zapojení. Pokud napětí u_1 klesne pod dolní komparační úroveň, výstup OZ_2 se překlopí na hodnotu 0 V a napětí u_1 bude naopak lineárně narůstat až na hodnotu horní komparační úrovně, kde dojde k dalšímu překlopení OZ_2 .

Velikost horní a dolní komparační úrovně je dána hysterezí komparátoru (napětí U_H), která je podle [6] přímo úměrná poměru hodnot odporů R_{H1} , R_{H2} podle vztahu

$$U_{H} = \frac{U_{nap}}{2} \cdot \frac{R_{H1}}{R_{H2}}.$$
(4.2)

Tato rovnice byla upravena s ohledem na použité napájení 2 x 7,5 V. Při volbě napětí $U_H = 5$ V a hodnoty odporu $R_{H2} = 12$ k Ω je potom možné pomocí rovnice 4.2 dopočítat hodnotu odporu R_{H1} následovně:

$$R_{H1} = \frac{2U_H}{U_{nap}} \cdot R_{H2} \,. \tag{4.3}$$

Po dosazení do vztahu 4.3 vyjde hodnota $R_{HI} = 8 \text{ k}\Omega$, takže z řady E24 byl vybrán odpor $R_{H1} = 8,2 \text{ k}\Omega$.

Z požadavků na testovací obvod vyplývá, že na výstupu integračního zesilovače (OZ₁) musí být generován trojúhelníkový signál s proměnnou frekvencí. Změnu frekvence je zde možné provádět stupňovitě změnou kapacity $C_{fl} - C_{f3}$ pomocí přepínače S₁, nebo plynule potenciometrem R_f. U výstupního PWM signálu testovacího obvodu musí být možné měnit frekvenci v následujících rozsazích:

$$f_1 = 20 \text{ Hz} - 200 \text{ Hz} \implies T_{1max} = 50 \text{ ms a } T_{1min} = 5 \text{ ms,}$$

$$f_2 = 200 \text{ Hz} - 2 \text{ kHz} \implies T_{2max} = 5 \text{ ms a } T_{2min} = 0,5 \text{ ms,}$$

$$f_3 = 2 \text{ kHz} - 20 \text{ kHz} \implies T_{3max} = 0,5 \text{ ms a } T_{3min} = 50 \text{ \mus.}$$

Z toho důvodu byla u potenciometru R_f zvolena hodnota $R_{fmax} = 10 \text{ k}\Omega$ a hodnota odporu R_{fmin} je 1 k Ω . Kapacity kondenzátorů $C_{f1} - C_{f3}$ je potom možné vypočítat ze známého vztahu 4.4a pro proud kondenzátoru.

$$i(t) = C \frac{du(t)}{dt} \Rightarrow C = i(t) \frac{dt}{du(t)} \Rightarrow$$
 (4.4a, b)

$$C_{f_{1+3}} = I \cdot \frac{T_{1+3\max}/2}{2U_H} = I \cdot \frac{T_{1+3\max}}{4U_H}, \text{ kde } I = \frac{U_{nap}/2}{R_{f\max} + R_{\min}}$$
 (4.5a, b)

Dosazením do rovnic 4.5a a 4.5b dostaneme hodnotu proudu I = 0,68 mA a hodnoty kapacit $C_{fl} = 1,7 \ \mu\text{F}, C_{f2} = 170 \text{ nF}$ a $C_{f3} = 17 \text{ nF}$. Na základě těchto vypočtených hodnot byly vybrány kondenzátory s kapacitami $C_{fl} = 1,5 \ \mu\text{F}, C_{f2} = 150 \text{ nF}$ a $C_{f3} = 15 \text{ nF}$.

Trojúhelníkový signál u_1 se přivádí na vstup komparátoru OZ₄, kde je pomocí sčítacích odporů R_{PWM1}, R_{PWM2} nasuperponován na konstantní hodnotu řídicího napětí $U_{\check{r}}$ $(R_{PWM1} = R_{PWM2} = 10 \text{ k}\Omega)$. Komparátor OZ₄ pak toto napětí porovnává s napětím $U_{nap}/2$, které je přiváděno na invertující vstup přes dolní propust tvořenou odporem R_{DP1} o hodnotě 22 k Ω a keramickým kondenzátorem C_{DP1} s kapacitou 100 nF.

Hodnotu řídicího napětí $U_{\check{r}}$, a tedy i střídu *s* výstupního PWM signálu, lze plynule měnit potenciometrem R_s . Aby bylo možné měnit střídu v plném rozsahu (s = 0 - 1), musí se napětí $U_{\check{r}}$ pohybovat mezi hodnotami $U_{nap}/2 - U_H = 2,5$ V a $U_{nap}/2 + U_H = 12,5$ V. Do série s potenciometrem $R_s = 10$ k Ω byly zapojeny odpory R_{sh} a R_{sd} o hodnotě 680 Ω , takže řídicí napětí lze měnit od hodnoty $U_{\check{r}min} = 0,9$ V do hodnoty $U_{\check{r}max} = 14,1$ V podle rovnic

$$U_{\#\min} = U_{nap} \cdot \frac{R_{sd}}{R_{sh} + R_{sd} + R_s} \text{ a } U_{\#\max} = U_{nap} \cdot \frac{R_{sd} + R_s}{R_{sh} + R_{sd} + R_s}.$$
 (4.6a, b)

Z důvodu impedančního oddělení je mezi děličem R_{sh} , R_s , R_{sd} a odporem R_{PWM2} zapojen ještě sledovač OZ₃. Na vstup sledovače je napětí $U_{\check{r}}$ přivedeno přes dolní propust R_{DP2} , C_{DP2} , přičemž hodnota odporu R_{DP2} a kapacita kondenzátoru C_{DP2} jsou stejné jako v případě dolní propusti R_{DP1} , C_{DP1} .

Výstupní signál u_{PWM} testovacího obvodu je možné přivést na vstup koncového stupně z Obr. 3.8 pomocí přepínače S₂, kterým lze přepínat mezi výstupem Y řídicího obvodu z Obr. 3.7 a výstupem testovacího obvodu, což je naznačeno blokově na Obr. 4.5. Celkové schéma zapojení testovacího a řídicího obvodu je možné vidět na Obr. 4.6 na následující straně.

Obr. 4.5: Blokové schéma obvodu pro testování tranzistorů IGBT.

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

4.3.2 Měření výstupního PWM signálu

Funkce obvodu zapojeného podle schématu na Obr. 4.6 byla opět ověřena pomocí dvoukanálového osciloskopu Agilent. Zaznamenané průběhy napětí u_1 (Obr. 4.4) a napětí na výstupu Q koncového stupně jsou na oscilogramech na Obr. 4.7 a 4.8. Tyto průběhy byly naměřeny při nejnižší možné frekvenci f_{1min} (Obr. 4.7) a při nejvyšší možné frekvenci f_{3max} (Obr. 4.8) generovaného PWM signálu při poloviční střídě (s = 0,5).

Jak je uvedeno v kapitole 4.3.1, požadované hodnoty těchto mezních frekvencí měly být $f_{1min} = 20$ Hz a $f_{3max} = 20$ kHz. Pomocí funkce Cursors byly z obrazovky osciloskopu odečteny hodnoty $T_{1max} = 40,6$ ms (Obr. 4.7) a $T_{3min} = 45,2$ µs (Obr. 4.8), takže dosažitelné mezní hodnoty frekvencí jsou $f_{1min} = 24,6$ Hz a $f_{3max} = 22,1$ kHz, což je přijatelné. Odchylky od požadovaných frekvencí jsou způsobeny především tím, že se hodnoty použitých součástek nepatrně liší od hodnot vypočtených. Na oscilogramech je také vidět, že kvůli trojici invertorů 4049 zapojených v koncovém stupni je signál na výstupu Q negován oproti signálu u_{PWM} , jehož průběh pro s = 0,5 je na Obr. 4.4.

Obr. 4.7: Výstupní PWM signál při nejnižší frekvenci (5 V/d, 10 ms/d).

Obr. 4.8: Výstupní PWM signál při nejvyšší frekvenci (5 V/d, 10 µs/d).

5 SNÍMÁNÍ PRŮBĚHU PROUDU POMOCÍ ROGOWSKÉHO CÍVKY

V předchozích kapitolách 3 a 4 je popsána realizace obvodu pro měření vypínacího a zapínacího děje výkonového tranzistoru IGBT. Tento měřicí obvod se skládá z vn zdroje a z řídicího obvodu, jehož součástí je také generátor PWM signálu pro testování funkčnosti budicích obvodů. Pro správné vyhodnocení průběhů kolektorového proudu i_C měřeného tranzistoru však musí být součástí měřicího celku také vhodný proudový snímač.

Vzhledem k tomu, že vypínací a zapínací děj probíhá u současných typů výkonových tranzistorů ve velmi krátkém čase (nejvýše jednotky μ s), musí mít snímač vysoký horní mezní kmitočet (desítky MHz) a zároveň nesmí do silového obvodu vnášet žádnou přídavnou indukčnost (parazitní indukčnost L_p silového obvodu nesmí být větší než desítky nH). Těmto požadavkům nevyhovují ani snímače, jako je např. "bezindukční" odporový bočník nebo snímač na principu Hallovy sondy. Z toho důvodu se v našem případě jeví jako nejvýhodnější pro snímání průběhu kolektorového proudu tranzistoru použití snímače s Rogowského cívkou. Proto jsou v kapitole 5 podrobně popsány vlastnosti tohoto snímače včetně jeho návrhu, přičemž všechny informace uváděné v této kapitole byly čerpány z [7].

5.1 Rogowského cívka jako snímač střídavého proudu

Snímač střídavého proudu s Rogowského cívkou, naznačenou na Obr. 5.1a, funguje jako vzduchový transformátor. Primární vinutí tohoto transformátoru tvoří vodič, kterým protéká měřený proud i_I , a sekundární vinutí je tvořeno vlastní Rogowského cívkou. Protože je do primárního vinutí vnucován měřený proud i_I , jedná se v tomto případě o transformátor proudu.

Aby cívka žádným způsobem nedeformovala průběh měřeného proudu, nesmí svým vinutím nijak ovlivnit tvar magnetického pole, vyvolaného tímto proudem. Z toho důvodu musí být Rogowského cívka realizována vždy jako cívka vzduchová a jejím vinutím nesmí protékat žádný proud. Narozdíl od běžného měřicího transformátoru proudu tedy Rogowského cívka pracuje v režimu naprázdno, takže mezi primárním a sekundárním vinutím nevznikají žádné silové interakce, což je velice výhodné hlavně při měření velikých zkratových proudů.

Díky tomu, že sekundární vinutí není navinuto na jádře z feromagnetického materiálu, je možné Rogowského cívku považovat za naprosto přesný lineární snímač, který je použitelný pro měření v širokém rozsahu proudů. Je to dáno tím, že je magnetizační křivka vzduchu, narozdíl od křivky pro feromagnetikum, lineární ve velkém rozsahu intenzity magnetického pole H, což je patrné z Obr. 5.1b.

Chování Rogowského cívky lze podle [7] jednoduše vysvětlit pomocí obvodového modelu transformátoru proudu, který je na Obr. 5.2. Pokud by cívka pracovala jako klasický proudový transformátor v režimu nakrátko, bylo by možné snímat výstupní napětí u_2 z odporového bočníku R_b o velmi malém odporu. Podle Ohmova zákona je pak napětí u_2 přímo úměrné sekundárnímu proudu i_2 , takže platí:

$$u_{2}(t) = R_{b} \cdot i_{2}(t)$$
, kde $i_{2}(t) = i_{2,K}(t) - i_{\mu}(t)$. (5.1a, b)

Ze zapojení obvodového modelu a z rovnice 5.1b vyplývá, že je v režimu nakrátko proud i_2 zatížen systematickou chybou, úměrnou velikosti magnetizačního proudu $-i_{\mu}$. V režimu naprázdno však k sekundárnímu vinutí bočník připojen není, takže napětí u_2 lze snímat přímo z indukčnosti L_2 . Toto napětí je pak podle rovnice 5.2a přímo úměrné derivaci sekundárního proudu $i_{2,K}$, který již chybou o velikosti $-i_{\mu}$ zatížen není, což je další výhoda oproti měřicímu transformátoru proudu. Z odvozené rovnice 5.2b je zřejmé, že abychom získali informaci o proudu $i_{2,K}$, musí být ještě výstupní napětí u_2 pomocí vhodného obvodu integrováno.

$$u_{2}(t) = L_{2} \cdot \frac{di_{2,K}(t)}{dt} \Longrightarrow i_{2,K}(t) = \frac{1}{L_{2}} \cdot \int u_{2}(t) dt \qquad (5.2a, b)$$

Obr. 5.2: Obvodový model transformátoru proudu [7].

5.1.1 Matematický popis Rogowského cívky

Matematický popis Rogowského cívky lze odvodit pomocí Ampérova zákona, který je možné zapsat v následujícím tvaru.

$$\int_{I} \vec{H} \cdot \vec{dl} = N_1 \cdot i_1 \tag{5.3}$$

U rovnice 5.3 platí, že je hodnota křivkového integrálu nezávislá na tvaru integrační cesty, neboli na tvaru hraniční křivky *l*. Aby se Rogowského cívka z topologického hlediska co nejvíce přiblížila této hraniční křivce, musí být nekonečně tenká. Za nekonečně tenkou můžeme cívku prohlásit tehdy, jestliže pro průměry *d* a *D*, vyznačené na Obr. 5.1a, platí nerovnost $d \le D$. Z toho důvodu musí být cívka vůči své délce relativně velmi tenká, a to nejlépe o dva řády. V tom případě již velikost indukovaného napětí u_2 nezávisí na tvaru Rogowského cívky, což je také její nejcennější vlastností.

Protože hodnota integrálu není závislá na tvaru hraniční křivky *l*, můžeme pro jednoduchost použít kruhové středově symetrické uspořádání na Obr. 5.1a, pro které platí:

$$N_1 \cdot i_1(t) = \int_l \overrightarrow{H}(t) \cdot \overrightarrow{dl} = H_2(t) \cdot \pi D = H_2(t) \cdot l \Longrightarrow H_2(t) = \frac{N_1 \cdot i_1(t)}{l}.$$
(5.4)

Pomocí rovnice 5.4 pro intenzitu magnetického pole H_2 lze určit magnetickou indukci B_2 uvnitř cívky:

$$B_{2}(t) = \mu_{0} \cdot H_{2}(t) = \mu_{0} \cdot \frac{N_{1} \cdot i_{1}(t)}{l}$$
(5.5)

a pomocí rovnice 5.5 je pak možné vyjádřit vztah pro spřažený tok Rogowského cívky:

$$\Psi_{2}(t) = N_{2} \cdot \phi_{2}(t) = N_{2} \cdot B_{2}(t) \cdot S = N_{2} \cdot B_{2}(t) \cdot \frac{\pi d^{2}}{4} = N_{2} \cdot \mu_{0} \cdot \frac{N_{1} \cdot i_{1}(t)}{l} \cdot \frac{\pi d^{2}}{4} \Longrightarrow$$
$$\Psi_{2}(t) = N_{1}N_{2}\mu_{0} \frac{\pi d^{2}}{4l} \cdot i_{1}(t) = M \cdot i_{1}(t). \tag{5.6}$$

Z výsledného vztahu pro spřažený tok Ψ_2 dostaneme rovnici 5.7 pro vzájemnou indukčnost M mezi vinutím cívky a vodičem, kterým teče měřený proud i_1 .

$$M = N_1 N_2 \mu_0 \cdot \frac{\pi d^2}{4l}$$
(5.7)

Indukčnost vlastního vinutí Rogowského cívky lze určit následujícím způsobem:

$$L_{2} = \frac{N_{2}^{2}}{R_{m}} = N_{2}^{2} \cdot \mu_{0} \frac{S}{l} = N_{2}^{2} \mu_{0} \cdot \frac{\pi d^{2}}{4l}.$$
(5.8)

$$i_{1}(t) = \frac{1}{M} \cdot \Psi_{2}(t) = \frac{4l}{\pi N_{1} N_{2} \mu_{0} d^{2}} \cdot \Psi_{2}(t) = \frac{4l}{\pi N_{1} N_{2} \mu_{0} d^{2}} \cdot \int u_{2}(t) dt .$$
(5.9)

Je tedy zřejmé, že měřený proud i_1 je přes konstantu přímo úměrný integrálu výstupního napětí u_2 , takže na výstupu cívky musí být zapojen integrátor. Stejný převodní vztah je možné ve zjednodušené podobě nalézt např. v knize [8], ale odvození je zde narozdíl od [7] neúplné.

5.2 Rogowského cívka jako snímač vysokofrekvenčních impulzních proudů

Při měření vysokofrekvenčních impulzních proudů je u snímače velice důležitou vlastností horní mezní kmitočet, jehož hodnota se vzhledem k rychlým změnám měřeného proudu musí pohybovat v desítkách až stovkách MHz. Na druhé straně však u snímače nejsou kladeny nároky na nízký dolní mezní kmitočet, který může být v jednotkách kHz až v jednotkách MHz.

Z rovnice 5.9 plyne, že na výstupu Rogowského cívky musí být zapojen integrátor. Vzhledem k vysokému hornímu meznímu kmitočtu však nemůže být použit aktivní integrátor realizovaný pomocí operačního zesilovače, ale integrátor pasivní v podobě dolní RC-propusti, zapojený podle Obr. 5.3. Pokud mají prvky *R* a *C* zanedbatelné parazitní indukčnosti, lze pomocí nich realizovat integrátor v kmitočtové oblasti až do stovek MHz.

Obr. 5.3: Rogowského cívka s dolní RC-propustí na výstupu [7].

Převodní vztah samotné Rogowského cívky je dán rovnicí 5.9 a pro napětí u_v na výstupu integrátoru z Obr. 5.3 platí:

$$u_{\nu}(t) \cong \frac{1}{RC} \cdot \int u_{2}(t) dt \Longrightarrow \int u_{2}(t) dt = RC \cdot u_{\nu}(t).$$
 (5.10a, b)

Protože se v tomto případě jedná o integrátor pasivní, který není dokonalý, je v rovnici 5.10a použito znaménko přibližnosti. Jestliže vyjádřený vztah 5.10b dosadíme do rovnice 5.9, dostaneme výsledný vzorec s převodní konstantou celého snímače:

$$i_{1}(t) = \frac{4RCl}{\pi N_{1}N_{2}\mu_{0}d^{2}} \cdot u_{v}(t).$$
(5.11)

Z rovnice 5.11 je pak možné vyjádřit přenos snímače, který je definovaný jako přenosová impedance naprázdno (rovnice 5.12). Tento přenos je platný pouze v oblasti kmitočtů, ležících mezi dolním a horním mezním kmitočtem.

$$\frac{u_{\nu}(t)}{i_{1}(t)} = \frac{\pi N_{1} N_{2} \mu_{0} d^{2}}{4RCl} .$$
(5.12)

Dolní mezní kmitočet snímače je dán časovou konstantou integrátoru τ_d , takže platí:

$$f_d = \frac{1}{2\pi\tau_d}$$
, kde $\tau_d = RC \Longrightarrow f_d = \frac{1}{2\pi RC}$. (5.13)

Pod tímto kmitočtem již integrátor ztrácí svoji integrační schopnost, a proto má frekvenční charakteristika v nízkofrekvenční oblasti tvar podle Obr. 5.4a. Horní mezní kmitočet snímače závisí hlavně na indukčnosti vinutí cívky L_2 , takže je určen časovou konstantou τ_h , a platí pro něj následující vztah:

$$f_h = \frac{1}{2\pi\tau_h}$$
, kde $\tau_h = \frac{L_2}{R} \Longrightarrow f_h = \frac{R}{2\pi L_2}$. (5.14)

Jestliže do rovnice 5.14 dosadíme za indukčnost L_2 výraz 5.8, dostaneme vztah

$$f_h = \frac{R}{2\pi} \cdot \frac{1}{L_2} = \frac{R}{2\pi} \cdot \frac{4l}{N_2^2 \mu_0 \pi d^2} = \frac{2Rl}{\pi^2 N_2^2 \mu_0 d^2}.$$
 (5.15)

Z této rovnice je patrné, že při požadavku na vyšší mezní kmitočet je nutné snižovat počet závitů vinutí cívky a její průměr, což způsobí snížení citlivosti snímače. Kvůli přítomnosti integračního členu klesá nad kmitočtem f_h frekvenční charakteristika se strmostí –20 dB/dek, jak je naznačeno na Obr. 5.4a. Tomu odpovídá odezva na jednotkový skok měřeného proudu i_1 , která je na Obr. 5.4b. Za dobu odezvy je možné považovat přibližně interval 2 τ , takže snímač je schopen věrohodně zobrazit pouze děje trvající déle než

$$t_{odezva} \cong 2\tau_h = 2 \cdot \frac{L_2}{R}.$$
(5.16)

5.2.1 Návrh snímače kolektorového proudu s Rogowského cívkou

Jak bylo řečeno na začátku kapitoly 5, v našem případě má být snímač s Rogowského cívkou použit pro snímání kolektorového proudu výkonového tranzistoru IGBT během vypínacího a zapínacího děje. V současnosti jsou tranzistory IGBT tak rychlé, že se při zapínání nebo vypínání může jejich kolektorový proud měnit se strmostí až 10 kA/µs. Aby bylo možné vyhodnotit takto strmý průběh proudu, musí mít snímač vysoký horní mezní kmitočet, jinak nebude sledovaný osciloskopický průběh odpovídat skutečnosti. Vzhledem ke krátké zapínací i vypínací době tranzistorů však u snímače není požadován nízký dolní mezní kmitočet. Je tedy zřejmé, že pro snímání kolektorového proudu tranzistoru během zapínacích a vypínacích dějů je nutné použít snímač s Rogowského cívkou v provedení, které je popsáno v předchozí kapitole 5.2.

V našem případě je měřený tranzistor IGBT součástí modulu FF1000R17IE4, jehož parametry jsou uvedeny v kapitole 3. U tohoto modulu se jedná o dolní tranzistor T_D , což je patrné z Obr. 3.1 a 3.2. Z Obr. 3.2 je vidět, že emitor tranzistoru T_D je vyveden na kontakty č. 8 a 10 a kolektor je na kontaktu č. 6. Na stejném kontaktu je však připojena i anoda horní diody D0_H, kterou teče proud zátěže i_z , když je tranzistor T_D vypnut (Obr. 3.3). Jestliže tedy Rogowského cívku obepneme kolem kontaktu č. 6, budeme snímat průběh celkového proudu zátěže i_z , a nikoli proud tranzistoru i_C . Pokud chceme snímat pouze kolektorový proud tranzistoru T_D , musíme Rogowského cívku uspořádat kolem svorek 8 a 10, jak je naznačeno modrou barvou na Obr. 5.5.

Obr. 5.5: Uspořádání Rogowského cívky při snímání proudu tranzistoru T_D.

45

Při uspořádání Rogowského cívky podle Obr. 5.5 vychází délka této cívky přibližně na 0,5 m. Rogowského cívka tedy musela být navinuta na dlouhé ohebné hadici s dostatečně malým průměrem, aby bylo možné cívku prohlásit za nekonečně tenkou vůči její délce (kapitola 5.1.1). Kvůli požadované citlivosti snímače však nebylo možné průměr snižovat libovolně, což je patrné z rovnice 5.12. Aby byla cívka vzduchová, musela být hadice z nemagnetického materiálu ($\mu_r = 1$). Nejvhodnějším dostupným řešením bylo použití izolace z měděného vodiče o průřezu 4 mm², která má průměr přibližně 4 mm.

Kvůli parazitní mezizávitové kapacitě musela být cívka navinuta vodičem s co nejmenším možným průměrem. Vzhledem k tomu, že Rogowského cívka pracuje v režimu naprázdno a jejím vinutím tedy neprotéká žádný proud, byl zvolen smaltovaný vodič s průměrem $d_{vod} = 0,1$ mm.

Aby velikost indukovaného napětí ve vinutí cívky nezávisela na tvaru hadice, musela být cívka navinuta podle topologických pravidel uvedených v [7]. Jedná se tedy o vzduchovou jednovrstvou toroidní cívku s provlečeným vodičem, která je znázorněna na Obr. 5.6a. Tímto způsobem bylo na zmiňovanou izolaci o průměru $d_{iz} = 4$ mm navinuto 1520 závitů. Průměr cívky *d* je možné vypočítat pomocí průměrů d_{vod} a d_{iz} podle vztahu 5.17. Jednotlivé průměry jsou graficky znázorněné na Obr. 5.6b.

$$d = d_{iz} + 2 \cdot \frac{d_{vod}}{2} = d_{iz} + d_{vod} = 4 + 0, 1 = 4, 1mm = \underline{4, 1 \cdot 10^{-3} m}$$
(5.17)

Po navinutí Rogowského cívky byl změřen odpor jejího vinutí $R_{2Cu} = 73,2 \ \Omega$ a indukčnost vinutí $L_2 = 104,2 \ \mu$ H. Pro kontrolu je možné parametry R_{2Cu} a L_2 vypočítat pomocí vztahů 5.19 a 5.20. Pro výpočet odporu R_{2Cu} je nutné znát přesný průměr smaltovaného vodiče bez izolace, který byl pouze odhadnut na hodnotu $d_{Cu} = 0,08 \ \text{mm}$ (Obr. 5.6b). Celkovou délku smaltovaného vodiče l_{vod} lze vypočítat následovně:

$$l_{vod} = N_2 \pi d + l = 1520 \cdot \pi \cdot 4, 1 \cdot 10^{-3} + 0, 5 = \underline{20,08m}.$$
 (5.18)

Protože se v našem případě jedná o cívku s provlečeným vodičem, musela být ve vztahu 5.18 k délce vodiče tvořícího vinutí přičtena ještě délka Rogowského cívky l = 0,5 m.

Obr. 5.6: a) Vzduchová jednovrstvá toroidní cívka s provlečeným vodičem [7]. b) Podélný řez Rogowského cívkou s vyznačenými průměry.

Celkový odpor vinutí cívky je dán vztahem:

$$R_{2Cu} = \rho_{Cu} \cdot \frac{l_{vod}}{S_{Cu}} = \rho_{Cu} \cdot \frac{4l_{vod}}{\pi d_{Cu}^2} = 1,69 \cdot 10^{-8} \cdot \frac{4 \cdot 20,08}{\pi \cdot (0,08 \cdot 10^{-3})^2} = \underline{67,5\Omega}.$$
(5.19)

Podle rovnice 5.8 je možné vypočítat indukčnost vinutí Rogowského cívky:

$$L_2 = N_2^2 \mu_0 \cdot \frac{\pi d^2}{4l} = 1520^2 \cdot \mu_0 \cdot \frac{\pi \cdot \left(4, 1 \cdot 10^{-3}\right)^2}{4 \cdot 0, 5} = \frac{76, 7\mu \text{H}}{4 \cdot 0, 5}.$$
(5.20)

Z výsledků u vztahů 5.19 a 5.20 je vidět, že se vypočtené hodnoty odporu R_{2Cu} a indukčnosti L_2 neshodují s hodnotami naměřenými. Je to způsobeno jednak chybou měřicích přístrojů a jednak také dosazením přibližných hodnot průměrů d_{Cu} a d, na jejichž kvadrátu jsou vypočtené hodnoty závislé.

Po měření parametrů vinutí Rogowského cívky byl na její výstupní svorky připojen pasivní integrátor složený z odporu $R_2 = 11,94$ k Ω a keramického kondenzátoru C = 23,7 nF. Snímač byl tedy zapojen podle Obr. 5.3, přičemž odpor R byl v tomto případě složen z odporu vinutí cívky R_{2Cu} a připojeného odporu R_2 , takže výsledná hodnota odporu byla:

$$R = R_{2Cu} + R_2 = 73, 2 + 11940 = 12013, 2\Omega.$$
(5.21)

Dolní mezní kmitočet snímače f_d lze vypočítat pomocí vztahu 5.13 následujícím způsobem:

$$f_d = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 12013, 2 \cdot 23, 7 \cdot 10^{-9}} = \underline{559 \text{Hz}}.$$
 (5.22)

Obdobně je možné dosazením naměřených hodnot odporů R_{2Cu} , R_2 a indukčnosti L_2 do rovnice 5.14 vypočítat horní mezní kmitočet snímače f_h :

5.2.2 Měření výstupního signálu snímače s Rogowského cívkou

Funkce celého snímače byla ověřena měřením zkratového proudu dvou 12 V akumulátorů s kapacitou 80 Ah zapojených do série, jak je naznačeno na Obr. 5.7. Kromě snímače s Rogowského cívkou byl do silového obvodu zapojen také bezindukční odporový bočník s odporem $R_b = 4,82 \text{ m}\Omega$. Úbytek napětí u_b na bočníku R_b i napětí u_v na výstupu integrátoru byly snímány pomocí dvoukanálového osciloskopu Agilent s šířkou pásma 100 MHz. Průběhy těchto napětí vypadaly téměř stejně jako na Obr. 5.8, kde byl pro měření zkratového proudu akumulátorů použit místo odporového bočníku snímač Tektronix TM502A s Hallovou sondou.

Z Obr. 5.8 je patrné, že napětí u_v ze snímače proudu s Rogowského cívkou velmi přesně kopíruje průběh strmé náběžné hrany zkratového proudu i_l , který je úměrný úbytku napětí u_b na bočníku R_b , zatímco průběh ustáleného proudu i_l již snímač nepřenese. Je to dáno tím, že má snímač vysoký horní mezní kmitočet f_h (výpočet 5.23) a relativně vysoký dolní mezní kmitočet f_d (výpočet 5.22).

Obr. 5.7: Schéma zapojení obvodu pro snímání průběhu zkratového proudu akumulátorů.

Obr. 5.8: Průběhy napětí u_v a u_b při zkratování akumulátorů (k. 1: 50 mV/d, k. 2: 10 mV/d, 200 μ s/d).

Díky hornímu meznímu kmitočtu $f_h = 18,3$ MHz je možné pomocí snímače spolehlivě zobrazit průběhy měřeného proudu, které jsou alespoň dvakrát pomalejší než je doba $\tau_h = 8,7$ ns (rovnice 5.16), což je v případě náběžné hrany proudu i_1 na Obr. 5.8 určitě splněno.

Kvůli vysokému dolnímu meznímu kmitočtu $f_d = 559$ Hz je však snímač schopen přenášet pouze průběhy proudu, které se mění v čase minimálně pětkrát rychleji než je doba $\tau_d = 284,7 \ \mu s.$ Je to způsobeno tím, že se s časovou konstantou τ_d vybíjí kondenzátor C přes odpor R. Pokud má tedy měřený proud stejnosměrný vyhlazený průběh, jako v našem případě ustálený zkratový proud akumulátorů, klesne od okamžiku ustálení za dobu τ_d napětí u_v na kondenzátoru C podle exponenciály na 37 % své původní hodnoty. Na obrazovce osciloskopu byl za dobu τ_d zaznamenán pokles napětí u_v ze 140 mV na hodnotu 50 mV, což odpovídá chybě snímače přibližně 63 %. Tato chyba dále exponenciálně narůstá s vybíjením kondenzátoru C, takže snímač je skutečně vhodný pouze pro vyhodnocování průběhů proudů s velikou strmostí di/dt.

Při zkratování akumulátorů byl pomocí osciloskopu změřen maximální úbytek napětí na bočníku $U_{bmax} = 3,625$ V. Podle Ohmova zákona pak tomuto napětí odpovídá zkratový proud:

$$I_{1\max} = \frac{U_{b\max}}{R_b} = \frac{3,625}{4,82 \cdot 10^{-3}} = \underline{\underline{752A}}.$$
 (5.24)

S úbytkem napětí u_b bylo současně změřeno také maximální výstupní napětí snímače $U_{vmax} = 109,4$ mV. Přenos snímače je možné zkontrolovat následujícím způsobem: jestliže z rovnice 5.12 vyjádříme napětí u_v a za proud i_1 dosadíme hodnotu I_{1max} ze vztahu 5.24, měli bychom dostat přibližně stejnou hodnotu jako je napětí U_{vmax} .

$$u_{\nu}(t) = \frac{\pi N_1 N_2 \mu_0 d^2}{4RCl} \cdot i_1(t) = \frac{\pi \cdot 1520 \cdot \mu_0 \cdot (4.1 \cdot 10^{-3})^2}{4 \cdot 12013, 2 \cdot 23, 7 \cdot 10^{-9} \cdot 0, 5} \cdot 752 = \underline{133, 2mV}$$
(5.25)

Z výsledku rovnice 5.25 je však zřejmé, že je vypočtené napětí u_v o 23,8 mV větší než naměřené napětí U_{vmax} . Tomu odpovídá chyba snímače 21,8 %. Příčinu této chyby je možné vysvětlit následovně: z Obr. 5.8 je vidět, že průběh zkratového proudu i_1 má z počátku velice strmou náběžnou hranu. Z touto strmostí se však proud i_1 nezvyšuje až do své maximální hodnoty I_{1max} , ale přibližně 50 µs před dosažením nejvyšší hodnoty se strmost proudu di_1/dt výrazně sníží. Kvůli nepatrné strmosti horní části náběžné hrany proudu i_1 se v tomto čase do Rogowského cívky neindukuje téměř žádné napětí, které by bylo možné integrovat, a proto je naměřené napětí U_{vmax} nižší než vypočtené napětí u_v .

6 ZÁVĚR

Laboratorní přípravek popsaný v této práci je velice výhodné používat pro měření vypínacího a zapínacího děje výkonových tranzistorů IGBT z následujícího důvodu: jak již bylo řečeno v Úvodu, mezní parametry jako je napětí U_{CES} a jmenovitý kolektorový proud I_C se u současných výkonových tranzistorů IGBT pohybují v jednotkách kV a v jednotkách kA. Pro měření vypínacího a zapínacího děje bychom museli mít k dispozici zdroj, jehož maximální výstupní výkon by odpovídal součinu napětí U_{CES} a proudu I_C . Tento výkon by se tedy musel pohybovat v jednotkách MW, což je za normálních podmínek z hlediska realizace velmi obtížné a hlavně nákladné.

Laboratorní přípravek pro testování tranzistorů IGBT však velice chytrým způsobem využívá jednorázové vybíjení výkonových kondenzátorů $C_{d1} - C_{d4}$ (Obr. 3.5) do zátěže induktivního charakteru, kterou je v našem případě vzduchová cívka. Tímto způsobem lze krátkodobě získat požadovaný maximální výkon, takže vypínací a zapínací děj může u měřeného tranzistoru IGBT probíhat při jeho skutečných mezních parametrech. Aby nedošlo k tepelnému poškození vzduchové cívky, musí celý měřicí proces trvat maximálně několik desítek µs. V tomto krátkém časovém intervalu se průběhy napětí u_{CE} a proudu i_C zaznamenají pomocí paměťového osciloskopu, díky kterému je pak možné vypínací a zapínací děj bez problému analyzovat.

Tento přípravek je navíc velice univerzální, protože kromě modulu FF1000R17IE4 (Obr. 3.1 a 3.2) lze na jeho výstup připojit i jiné typy modulů s výkonovými tranzistory IGBT. Každý modul má ale jinou rozteč kontaktů pro zapojení do silového obvodu, takže s výměnou modulu je nutné vyměnit také sendvičové spoje, odpovídající dané rozteči, což je menší nevýhoda laboratorního přípravku. Jak mohou vypadat sendvičové spoje pro moduly SKM 100GB125DN a SKM 300GB123D firmy Semikron, je možné nalézt v Přílohách B a C. Parametry a uspořádání výkonových tranzistorů uvnitř těchto modulů jsou k dispozici v datasheetech na přiloženém CD. V Přílohách A, B a C jsou horní spoje určeny vždy pro připojení tranzistoru T_D a diody D0_H na kladnou polaritu napětí U_d (+1200 V) a pomocí dolních spojů se T_D a D0_H připojí na polaritu zápornou (0 V). Vedle každého spoje je uvedeno číslování kontaktů příslušného typu modulu, přičemž každý kontakt propojený s kondenzátory C_{d1} – C_{d4} je zvýrazněn červenou barvou. Tyto výkonové kondenzátory jsou zde naznačeny čárkovanou čarou. Ve zbývajících přílohách lze nalézt návrhy DPS celého přípravku, navržené v programu Eagle 4.15 a jejich fotodokumentaci.

Pro snímání průběhu kolektorového proudu tranzistoru IGBT během vypínacího a zapínacího děje je v této práci doporučován snímač s Rogowského cívkou, který má podle [7] následující vlastnosti: díky tomu, že je Rogowského cívka navinuta na jádře z nemagnetického materiálu a jejím vinutím neteče žádný proud, je možné celý snímač považovat za naprosto přesný, lineární a hlavně použitelný pro měření v širokém rozsahu proudů. To však platí pouze pro měření proudů, jejichž průběh se nachází ve frekvenčním pásmu ležícím mezi dolním a horním mezním kmitočtem celého snímače. Další velice důležitou vlastností je to, že velikost indukovaného napětí v Rogowského cívce nezávisí na jejím tvaru. Toho lze velmi dobře využít při snímání proudu v silových obvodech se složitějším uspořádáním kontaktů, jako je v našem případě modul na Obr. 5.5.

LITERATURA

- [1] PATOČKA M.: Výkonová elektronika 2. Elektronické studijní materiály do předmětu MTVM. VUT Brno, FEKT, Brno 2007, verze z 19. 12. 2007.
- [2] KREJČIŘÍK A.: Napájecí zdroje I. Nakladatelství BEN, Praha 1997, 2. vydání, ISBN 80-86056-02-3.
- [3] JEDLIČKA P.: Přehled obvodů řady CMOS 4000 1. díl. Nakladatelství BEN, Praha 2005, 4. vydání, ISBN 80-7300-167-5.
- [4] VOREL P., PATOČKA M.: Průmyslová elektronika. Elektronické skriptum VUT Brno, FEKT, Brno 2007.
- [5] VOREL P., PATOČKA M.: Budiče výkonových tranzistorů MOSFET a IGBT. Časopis pro elektrotechniku Elektrorevue, <u>http://www.elektrorevue.cz</u>, Brno 2004, ISSN 1213-1539.
- [6] VOREL P., PROCHÁZKA P.: Řídicí členy v elektrických pohonech. Elektronické skriptum VUT Brno, FEKT, Brno 2009.
- [7] PATOČKA M.: Vybrané statě z výkonové elektroniky, Svazek IV., Magnetické obvody ve výkonové elektronice, pulsní měniče s transformátorem. Elektronické skriptum VUT Brno, FEKT, Brno 2005, verze z 18. 2. 2008.
- [8] FAKTOR, Z.: Transformátory a cívky. Nakladatelství BEN, Praha 1999, vydání první, ISBN 80-86056-49-X.

SEZNAM SYMBOLŮ A ZKRATEK

B_2	[T]	magnetická indukce uvnitř Rogowského cívky
С	[J/Kkg]	měrná tepelná kapacita keramiky
С	[F]	celková kapacita kondenzátorů
C_1, C_2, C_3, C_4	[F]	kapacity kondenzátorů Delonova násobiče
C_d	[F]	kapacita kondenzátorové baterie
C_{f1}, C_{f2}, C_{f3}	[F]	kapacity kondenzátorů integračního zesilovače
C_{par}	[F]	parazitní kapacita optočlenu
$C_{ heta}$	[J/K]	tepelné kapacita vybíjecího odporu
d	[m]	průměr jádra Rogowského cívky
D	[m]	průměr Rogowského cívky
d_{Cu}	[m]	průměr měděného vodiče
d_{iz}	[m]	průměr izolace
d_{vod}	[m]	průměr smaltovaného měděného vodiče
f	[Hz]	frekvence vstupního napájecího napětí násobiče
f_{1}, f_{2}, f_{3}	[Hz]	frekvence výstupního napětí integračního zesilovače
f_d, f_h	[Hz]	dolní a horní mezní kmitočet snímače
f_s	[Hz]	spínací frekvence
H_2	[A/m]	intenzita magnetického pole
I _{1max}	[A]	maximální hodnota zkratového proudu akumulátorů
<i>i</i> ₁	[A]	měřený (zkratový) proud
<i>i</i> ₂	[A]	výstupní proud Rogowského cívky
<i>i</i> _{2,K}	[A]	sekundární proud Rogowského cívky
i_C, I_C	[A]	kolektorový proud tranzistoru IGBT
I _{Cmax}	[A]	maximální hodnota kolektorového proudu
ICnom	[A]	jmenovitá hodnota kolektorového proudu
I_D	[A]	proud tranzistoru MOSFET
<i>i</i> _{D0} , <i>i</i> _{D0H}	[A]	proud nulovou diodou D0 a D0 _H
I_F	[A]	proud LED diody v propustném směru
I _{FAV}	[A]	proud diody v propustném směru
Inab	[A]	nabíjecí proud kondenzátorové baterie C_d
<i>i_{par}</i>	[A]	impulzní parazitní proud
I_{vyb}	[A]	vybíjecí proud kondenzátorů násobiče a baterie C_d
i_z, I_z	[A]	proud zátěže Z (vzduchové cívky)

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

iμ	[A]	magnetizační proud Rogowského cívky
K_U	[-]	napěťové zesílení snímače s Rogowského cívkou
l	[m]	délka Rogowského cívky
L	[H]	indukčnost zátěže Z (vzduchové cívky)
L_2	[H]	indukčnost vlastního vinutí Rogowského cívky
L_p	[H]	parazitní indukčnost
lvod	[m]	délka vodiče
m	[kg]	hmotnost vybíjecího odporu
M	[H]	vzájemná indukčnost
n	[-]	počet stupňů Delonova násobiče
N_1, N_2	[-]	počet závitů
P_D, P_{tot}	[W]	ztrátový výkon tranzistoru MOSFET a IGBT
P _{max}	[W]	maximální výstupní výkon zdroje
R	[Ω]	odpor zátěže Z (vzduchové cívky)
R _{1nab} , R _{2nab} , R _{3nab}	[Ω]	hodnoty nabíjecích odporů vn zdroje
$R_{1vyb}, R_{2vyb}, R_{3vyb}$	[Ω]	hodnoty vybíjecích odporů vn zdroje
R_2	[Ω]	hodnota odporu pasivního integrátoru
R_{2Cu}	[Ω]	odpor vinutí Rogowského cívky
R_b	[Ω]	odpor bočníku
R_f	[Ω]	odpor potenciometru pro změnu frekvence u_{PWM}
R_{H1}, R_{H2}	[Ω]	hodnoty odporů komparátoru s hysterezí
R_m	[H/m]	magnetický odpor
R_s	[Ω]	odpor potenciometru pro změnu střídy u_{PWM}
<i>S</i>	[-]	střída výstupního PWM signálu
S	[m ²]	průřez jádra Rogowského cívky
S _{Cu}	[m ²]	průřez měděného vodiče
t_1, t_2, t_3	[s]	časy řídicích impulzů
T_1, T_2, T_3	[s]	periody výstupního napětí integračního zesilovače
t _{odezva}	[s]	doba odezvy snímače s Rogowského cívkou
t_{off}, t_{on}	[s]	vypínací a zapínací doba tranzistoru IGBT
u ₁	[V]	vstupní napětí Delonova násobiče
u ₂	[V]	výstupní napětí Rogowského cívky
u_b, U_{bmax}	[V]	napětí na odporovém bočníku
$U_{C1}, U_{C2}, U_{C3}, U_{C4}$	[V]	napětí na kondenzátorech Delonova násobiče

ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v Brně

u_{CE}, U_{CE}, U_{CES}	[V]	napětí na tranzistoru IGBT
U _{CEsat}	[V]	saturační napětí tranzistoru IGBT
U_d	[V]	napájecí napětí měřicího obvodu (1200 V)
U_{DD}	[V]	napájecí napětí řídicího obvodu (15 V)
U_{DSS}	[V]	napětí na tranzistoru MOSFET
U_F	[V]	napětí na LED diodě v propustném směru
$U_{F(th)}$	[V]	napětí na diodě v propustném směru
u_{GE}, U_{GE}	[V]	řídicí napětí tranzistoru IGBT
U_H	[V]	hysterezní napětí komparátoru
Unap	[V]	napájecí napětí budicího obvodu (15 V)
U _{RRM}	[V]	závěrné napětí diody
$U_{\check{r}}$	[V]	řídicí napětí pro změnu střídy u_{PWM}
<i>u</i> _s	[V]	síťové napětí (230 V)
u_{v}, U_{vmax}	[V]	výstupní napětí snímače s Rogowského cívkou
<i>u_z</i>	[V]	napětí na zátěži Z (vzduchové cívce)
V	[m ³]	objem vybíjecího odporu
W	[J]	energie nabitých kondenzátorů
X_L	[Ω]	reaktance přívodů od napájecího zdroje
Ζ	[Ω]	impedance zátěže (vzduchové cívky)
ΔΤ	[°C]	skutečné oteplení vybíjecích odporů
ΔT_{max}	[°C]	maximální přípustné oteplení vybíjecích odporů
$arDelta U_{off}$	[V]	přepětí vzniklé při vypínání tranzistoru IGBT
ΔU_{on}	[V]	úbytek napětí vzniklý při zapínání tranzistoru IGBT
$\Delta \tau$	[s]	změna časové konstanty při vybíjení kondenzátorů
$\mu_{ heta}$	[H/m]	permeabilita vakua
μ_r	[-]	relativní permeabilita
ρ	[kg/m³]	hustota keramiky
ρ_{Cu}	[Ωm]	měrná rezistivita mědi
τ	[s]	časová konstanta zátěže (vzduchové cívky)
$ au_{1vyb}, au_{2vyb}$	[s]	časové konstanty při vybíjení kondenzátorů
$ au_d, au_h$	[s]	časové konstanty snímače s Rogowského cívkou
φ_2	[Wb]	magnetický tok Rogowského cívky
Ψ_2	[Wb]	spřažený tok Rogowského cívky
ω_s	[rad/s]	úhlová frekvence

SEZNAM PŘÍLOH

Příloha A: Sendvičo	vý spoj pro modul FF1000R17IE4	
Příloha B: Sendvičo	vý spoj pro modul SKM 100GB125DN	
Příloha C: Sendvičo	vý spoj pro modul SKM 300GB123D	
Příloha D: DPS a scl	héma zapojení pro čtyřstupňový kaskádní jednoce	stný
(Delonův) násobič napětí z Obr. 3.4	
Příloha E: DPS a scl	héma zapojení pro nabíjecí a vybíjecí odpory z Ob	r. 3.559
Příloha F: DPS pro	řídicí obvod z Obr. 3.12 a pro generátor PWM sig	nálu
z Obr. 4.4	4	60
Příloha G: Celkové j	pohledy na sestavené DPS	61

Přílohy

Příloha A: Sendvičový spoj pro modul FF1000R17IE4.

Příloha B: Sendvičový spoj pro modul SKM 100GB125DN.

Příloha C: Sendvičový spoj pro modul SKM 300GB123D.

Příloha D: DPS a schéma zapojení pro čtyřstupňový kaskádní jednocestný (Delonův) násobič napětí z Obr. 3.4.

Příloha E: DPS a schéma zapojení pro nabíjecí a vybíjecí odpory z Obr. 3.5.

Příloha F: DPS pro řídicí obvod z Obr. 3.12 a pro generátor PWM signálu z Obr. 4.4. (schéma zapojení těchto obvodů jsou z rozměrových důvodů pouze součástí přiloženého CD).

Příloha G: Celkové pohledy na sestavené DPS.

