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Abstract
This thesis explores the fusion of asynchronous cellular automata and machine learning
techniques for simulating complex biological processes. Its main focus is on showcasing
the inherent potential of a computational framework constructed through combining the
parallelism of an asynchronous cellular automata updating model with the predictive ca-
pabilities of machine learning algorithms. This study aims to demonstrate the qualities
of such hybrid approach by implementing three mathematical cellular automata models of
increasing complexity—that is, listed based on their level of complexity, Conway’s Game of
Life, SmoothLife and Lenia—in their basic form and then integrate machine learning into
the function of the latter two, comparing the results of both approaches afterwards.

Abstrakt
Tato práce zkoumá spojení asynchronních celulárních automatů a technik strojového učení
pro simulaci komplexních biologických procesů. Jejím hlavním zaměřením je předvést
vrozený potenciál výpočetního rámce konstruovaného spojením paralelismu aktualizačního
modelu asynchronních celulárních automatů s prediktivními schopnostmi algoritmů stro-
jového učení. Tato studie si klade za cíl demonstrovat kvality takového hybridního přístupu
implementací tří matematických modelů celulárních automatů s rostoucí složitostí—tj.,
seřezeny podle stupně složitosti, Conwayova Hra Života, SmoothLife a Lenia—ve své zák-
ladní formě a následnou integrací strojového učení do funkce dvou posledně jmenovaných,
po čemž následuje porovnání výsledků obou přístupů.
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Rozšířený abstrakt
Práce nejprve čtenáře uvede do problematik celulárních automatů a strojového učení z

hlediska teoretického, se zaměřením zejména na základní koncepty a komponenty, a také na
konkrétní algoritmy a struktury používané k řešení složitých úkolů. Zmíněna je také aplikace
celulárních automatů i strojového učení na problematiky nejen biologického charakteru, ale
i jiných problémů reálného světa. Čtenář se také dozvídá o aktuálních trendech ve vývoji
celulárních automatů a především strojového učení, jenž získává v posledních letech na
popularitě. Jsou prezentovány nejen pokroky ve výzkumu, ale i překážky a výzvy, jemž
momentálně vědecký svět čelí.

Vlastní řešení pak spočívá ve třech etapách—zaprvé, implementace a zaručení funkčnosti
všech tří předem zmíněných modelů celulárních automatů, se zaměřením na poukázání
na jejich návaznost z hlediska postupného rozšiřování předchůdného modelu a stupňování
složitosti i možností modelu. Je prezentován podrobný postup, úvod do zvoleného pro-
gramovacího jazyka i jeho nástrojů, vysvětlení jednotlivých kroků, i matematický podtext.
Druhým krokem je vytvoření modelu strojového učení, k čemuž je jakožto nejpraktičtější
možnost zvolen model dopředné neuronové sítě se zaměřením na předpověd budoucích kroků
simulace. Takový model je následně úspěšně implementován, vytrénován a následně inte-
grován do funkce simulací SmoothLife i Lenia.

Třetím krokem vlastního řešení je pak postupná kalibrace primárně modelu strojového
učení z hlediska jak trénování tak aplikace na námi implementované a zvolené modely
celulárních automatů, a to dokud není dosaženo vyhovujících výsledků. Jako primární cíl
je určena převážně stabilizace funkcionality modelů celulárních automatů, čímž se myslí
zejména prevence jejich předčasného zániku. Jako vedlejší cíl je také dána jejich případná
excelerace ve smyslu zrychlení jejich seskupení do stabilizovaného stádia.

V prvním pokusu o integraci natrénované neuronové sítě do zvolených modelů celulárních
automatů je vytvořena váha ovlivňující simulaci, ovšem váha je zde prozatím pouze stat-
ického charakteru, což vede k selhání u všech třech testovaných simulací. V SmoothLife
dochází k postupnému umírání “kluzáků”, zatímco Lenia s náhodnou počáteční konfigurací
i s orbium počáteční konfigurací se vůbec ani nedokáže zformovat. K mírnému zlepšení při-
jde až u druhého pokusu, kdy dojde ke změně váhy na dynamickou, čili měnící se za běhu
programu. Zavedena je také lehká podpora stability v místech, kde již momentální stav
mřížky je relativně stabilní. SmoothLife i Lenia s orbium počáteční konfigurací sice stále
umírají, avšak Lenia s náhodnou počáteční konfigurací se dokáže zformovat, což naznačuje
krok správným směrem. Tuhle skutečnost také potvrdí třetí a finální pokus, zaměřený na
úpravy a kalibraci již zavedených proměnných, zavedení další podpory stability spočívající v
podpoře již existujících vzorů, a také zjemnění váhy za účelem předejítí náhlým přechodům.
U SmoothLife se “kluzáci” přestanou ztrácet a dokonce získají schopnost rozdvojit se, což
udělá simulaci značně živější. U Lenie s náhodnou konfigurací se doba zformování drasticky
zkrátí—přesněji čtyřnásobně. Lenia s orbium konfigurací sice stále selhává, ale tentokrát
pomaleji a s vizuálně zajímavějším zánikem.

Celkově dojde k usouzení, že propojení strojového učení s celulárními automaty může
být prospěšné, ale některé modely, jako Lenia s orbium konfigurací, budou s největší
pravděpodobností vyžadovat další stabilizační mechanismy. Budoucí práce v téhle oblasti
by se měla zaměřit na exploraci různých přístupů ke stabilitě a také zvážit pokusy s jinými
modely strojového učení, aby se předešlo tendencím k selhání.
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Chapter 1

Introduction

Throughout the extensive span of civilization, man has always sought to understand the
intricate and delicate manners in which life as we know it functions and unravels. There are
plenty of publications of various kinds and age recorded in the history of humankind that
serve as contemporary records of these endeavours, and it is safe to say there will be no
shortage of them long into the future still. This wonder already sparked many a research in
the field of computational biology, in particular research focused on exploring the intricacies
of emergent behaviour, dynamic patterns, and the orchestration of complex systems, and
it is this same place of curiosity and excitement from which aspirations of this thesis stem.

The thesis’ contents could be divided into two parts; the former, ”educational“ part
strives to present a coherent and concise overview of the progress that had so far been made
within the individual domains of cellular automata and machine learning, mainly focusing
on introducing both subjects in more of a theoretical sense, as well as on their role and
contribution in the quest to unravel the biological tapestry formed of the aforementioned
trifecta. Particular emphasis is placed on emergence, or emergent behaviour, which stands
as a testament to the wondrous capacity of simple rules and localized interactions to spawn
intricate and often unpredictable patterns.

The latter part leans away from theory and delves more into the topic’s practical aspects,
first introducing the reader into the world of cellular automata programming, as well as
later integrating machine learning into the models. It sets a goal to create a computer
setup that mirrors how life forms grow and change unpredictably, and it does so by using
different cellular automata models of increasing complexity—namely, Conway’s Game of
Life, SmoothLife, and Lenia—while exploring how to integrate machine learning into the
latter two to introduce not just prediction of behaviour, but also adaptive capabilities and
possible stability enhancement.

1.1 Motivation and Objectives
Let us first look into one side of the objectives of this work, namely the one focusing on
the exploration of cellular automata and machine learning. Both are, individually, well-
established and extensively researched concepts; machine learning in particular has seen
a surge of interest in recent years. The same cannot, however, be said for the fusion of
both fields, which has yet to receive comprehensive attention in the realm of research. The
objective of this thesis lies in pointing out the unfortunate nature of the under-exploration

4



of the potential synergy between these two domains, given the promising avenues it could
open for understanding complex systems and, mainly, emergent behaviour.

Which leads us to the other primary objective of this work—unveiling the neglected
significance of emergence. In the world of science as well as academia, the concept of
emergence always seems to draw the short end of the stick when it comes to any serious
conversation or consideration. One cannot help but describe this as strange, considering how
fundamental of a role it has in understanding complex systems. Granted, emergence can be
rather challenging to work with; its unpredictable nature combined with complex dynamics
often make it feel like trying to catch a fleeting shadow, especially so when one is trying to
gauge its impact on the system under study. It is not unusual, then, to see it being pushed to
the sidelines, and while the pervading aversion towards its study is understandable given the
complexity of the subject at hand, this paper seeks to clarify emergence’s nuances, advocate
for its due consideration and ultimately demonstrate the inherent benefits its exploration
brings to the table. Through this display, it seeks to implore the world of research to no
longer give emergence the cold shoulder, and acknowledge it as a crucial component of the
scientific discourse as well as a challenge.
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Chapter 2

Cellular Automata

2.1 Introduction
In the fields of mathematical modelling, computational science and complex systems, cel-
lular automata, or CA for short, represent an important and valuable concept, and as such
have, since their inception, been the subject of extensive research. Scientists and researchers
alike have used and built upon said concept in order to gain insight into complex, dynamic
processes with difficult to predict outcomes or even development, and monitor interactions
otherwise near-impossible to foresee. In fact, cellular automata have been instrumental in
attempts at mapping one of the most difficult but important concepts, one which touches
basically every field of study; we speak, of course, of emergence, or emergent behaviour
[22].

Despite what one would assume, the efficiency of a cellular automaton, as far as the
aforementioned application is concerned, doesn’t come at the expense of simplicity. Some
context is, of course, required for such a statement to be made—by simplicity, we mean
that of the conceptual kind. In its very basic form, a cellular automaton can be described
as a grid-based computational model composed of an array of cells. This model evolves
over discrete time steps, in which each individual cell exists in one of pre-established states
and determines its next state, that is its state in the following discrete time step, based
on predefined rules that consider the states of neighbouring cells. As the time progresses,
patterns ranging from simple to complex emerge, demonstrating how simple rules can create
complex behaviours.

2.2 Basic Concepts
While a very brief explanation has already been provided of what a modern cellular automa-
ton is and how it functions, the subject of this thesis requires a more thorough understanding
of the subject at hand. This section’s aim is, hence, to introduce the essentials of working
with and understanding cellular automata, and provide all the necessary knowledge we need
to grasp concepts introduced further down the line.

2.2.1 Components

Cellular automata are comprised of several basic components that work together to facil-
itate its behaviour. Among the most important of these are the cells, the grid, states,
neighbourhood, time steps and rules. These would all be considered the very building
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blocks of a cellular automaton, without which it cannot properly function, and so warrant
a thorough understanding. The following text does attempt a proper description of all the
aforementioned components except for rules, which are more complex and as such deserve
a section of its own.

To begin describing how a cellular automaton functions, it would probably be best to
start with the primary piece of the puzzle—the cells. This term refers to the basic units,
abstract in nature, used by the automaton to exhibit own behaviour. They are the entities
subjected to the individual automaton’s pre-defined rules at each discrete time step and
whose states are hence updated accordingly. It is worth noting that this change of state is
typically synchronous—however, the subject of this thesis does revolve around the opposite
approach, meaning asynchronous.

Although we had established cells to be abstract entities, they still do have to exist
somewhere, occupy some space within which their states can be saved at each discrete time
step so as to enable both their visualisation and subjection to the automata’s rules for the
next step. The grid, then, typically represented as a one, two or three-dimensional array
(or even higher [38]), exists as a spatial domain which serves this very purpose. We can
think of it as a canvas upon which the computational model unfolds.

The words states and time steps had already been used quite a few times, so let us
define their meaning as well. The former encapsulates all the various configurations the
automata’s cells can and do assume at each discrete time step, distinguishing themselves
as a firmly established ”player“ on the field. In most cases, we can make do with binary
configurations—typical example being an ”on“ and an ”off“ state. However, states can also
be declared as a wide range of values, though one has to expect this would inevitably mean
greater computational complexity. The latter of the terms, time step, is used to represent
a single unit of time in the automaton’s evolution, or, in other words, the progression from
one iteration of the updating process (where all cells within the grid are updated according
to the automata’s rules) to another.

Last but not least, the neighbourhood. A neighbourhood of a cell refers to the sur-
roundings of each individual cell, or more specifically it determines which adjacent cells
are to be taken into consideration during the updating process. This range of influence
is entirely adjustable, though the two most common configurations (for a two and higher-
dimensional grid) are referred to as ”von Neumann“ and ”Moore“ [26], where the former es-
tablishes only the directly connected cells as a neighbourhood (extending to include all cells
orthogonally adjacent to the von Neumann neighbourhood itself in case of bigger depth),
whereas the latter takes into consideration all immediately adjacent cells (this reach would,
in case of higher depth, extend to include cells immediately adjacent to the ones defined as
neighbourhood in the previous depth). The following diagram should clarify further.

Figure 2.1: von Neumann and Moore neighbourhoods
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2.2.2 Rules and Rule Tables

Rules, also called transition rules or transition functions, are the driving force of a cellular
automaton. Of course, the components described previously all contribute to a cellular
automaton’s function, but it is rules which govern the very reason we built it in the first
place—its behaviour. They provide what we can look at as a template on which cells base
their evolution during each time step, and as such every slight change to these rules can
completely alter the course and result of the simulation.

Rule tables, often represented as lookup tables or sets of conditional statements, can
essentially be seen as nothing more than collections of these rules—that is, they encapsulate
a set of rules that define the behaviour of the automaton. Each entry or row in a rule table
acts as input that corresponds to a specific configuration of a cell and the cells within its
neighbourhood, and its output then, consequently, defines the new state of the central cell
for the next time step.

Deterministic or Stochastic Nature

There are several ways to make distinctions between cellular automaton’s rule sets, but
one of the most important ones we can make is whether the rule sets are deterministic or
stochastic. The difference here is very simple, and lies in whether a degree of randomness
is or isn’t incorporated into them and thus into the decision-making during each of the
automaton’s update steps.

Rules flagged as deterministic are simply that; they follow set, firmly established pat-
terns and rules to which they strictly adhere, ensuring consistency when it comes to the
matter of each individual cell’s change of state at each discrete time step. These rules
will almost exclusively provide the same outcome for the same starting conditions. In
other words, a deterministic approach maintains uniformity across the board, which means
predictability as well.

It is up to the concrete automaton’s task and desired outcome whether it warrants the
use of a stochastic approach. Sometimes, some amount of unpredictability is desired or even
required to achieve correct results [47]. In such a case, the only option is to turn to stochastic
rules, which bring in randomness by various means; be it by involving additional factors in
the decision-making process during a cell’s update step evaluation, defining probabilities of
whether or not the cell will actually even undergo an update at a given discrete time step,
and so on. The stochastic approach is much preferred in various fields where randomness,
uncertainty, or probabilistic elements play significant roles in modelling or understanding
complex systems. This includes fields such as biology, physics, economics and more.

There’s also the possibility of combining the aforementioned approaches within one
cellular automaton. This hybrid approach would allow to incorporate both deterministic
qualities as well as randomness in the system’s rules, which would then directly translate
to both predictability and variability in the cellular automaton’s behaviour. This would
then enable modelling scenarios where certain aspects of the system follow clear patterns,
while other areas differ between each run of a simulation. It should be clear that such an
approach would lead to a richer diversity of exhibited behaviours and patterns.

2.2.3 Boundary Conditions

Whilst this section would technically fall under the topic of rules in the sense that it still
deals with the issue of cells’ updating process, they’re not quite the same. Think about
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it; transition rules in of themselves are a great way to define the behaviour of a cellular
automaton, but there is an important problem which has, up until now, been ignored. A
part of the process, or rather of the grid, for which these rules will simply fall apart. We’re
of course talking about the cells at the inner bounds of the grid. These cells cannot, for their
lack of a complete neighbourhood, use exclusively the defined transition rules as guidance,
and as such are additionally subjected to what we call boundary conditions.

Boundary conditions aren’t rules per se. They do influence the behaviour of cellular
automata, but only by defining the behaviour of cells that are missing a part of their
neighbourhood due to their position at the edge of the grid. They just set the context or
constraints within which transition rules operate. Now that we understand what boundary
conditions are, let us move on to more in-depth explanation and classification. There are
three kinds of boundaries we will consider here: fixed value, periodic, and reflective
boundaries [7].

Perhaps the simplest and laziest of the three, fixed boundary conditions maintain the
same state for cells at the grid’s edges throughout the whole simulation. This approach is
very easy to implement, but can cause static behaviour or specific effects along these edges.

Reflective boundary conditions treat the grid like a loop, connecting opposite edges
together and thus creating a continuous environment, letting patterns move smoothly across
the grid’s boundaries (by ”spilling over“ to the opposite side).

Unlike fixed and reflective boundary conditions, periodic boundary conditions enable the
cells at the grid’s edges to interact with the outside environment. Cells at these edges could
change according to varied rules, considering information from beyond the grid or reacting
dynamically to external influences. These types of boundary conditions prove valuable for
simulating systems that have interactions with an external environment.

2.2.4 Emergent Behaviour and Rule Complexity

We’ve already learned that basic transition rules can come together to create intricate,
unpredictable patterns on a larger scale. All of these unexpected patterns can pop up
even though they weren’t explicitly programmed into the original rules, simply as a result
of hard-to-predict interactions between cells themselves; these interactions, or rather their
result, is what we refer to as emergence.

The idea itself isn’t too complicated. Cells simply follow the rules that were set to them
and engage with their neighbours. But this suddenly sets off a chain reaction across the
whole grid and the result is the creation of intricate patterns and behaviors that go beyond
what one might predict by looking solely at just the pre-defined rules. Emergent behaviour
surely is a captivating, and perhaps a little scary, concept—scary precisely for the fact that
we can rarely ever foresee its results, but captivating for the exact same reason.

However, this idea isn’t actually novel, nor is it limited to computational models. Before
cellular automata, emergent behaviour could have been observed in many a natural system,
and is therefore important for cellular automata’s application in the fields of biology and
physics [22].

As for rule complexity, this term refers to how transition rules and boundary conditions
affect the varied and intricate nature of the resulting patterns. Rule complexity exists on
an entire spectrum, from really simple rules which create repetitive patterns or patterns
that are easily predictable, to complex ones which can contribute to the creation of more
unpredictable but interesting results.
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The link between rule complexity and emergent behaviour should be fairly obvious. The
more complex the rules, the more significantly they can impact the diversity, richness, and
unpredictability of emergent patterns. A common misconception is that complexity equals
more complicated rules or simply greater amount of rules, but this isn’t necessarily the
case; simple-sounding rules can introduce great complexity, while a lot of rules which look
complicated can, ultimately, only work towards a mundane, unchanging result.

2.2.5 Universality

When learning cellular automata, one might stumble upon the term universality, specifi-
cally in the context of labeling an automaton as ”universal“. Universality basically boils
down to the ability to perform various tasks by simply being programmed differently while
still retaining the same underlying construction. It means the system can mimic diverse
and complex computations, akin to a universal Turin machine (so, able to handle any
computation), and essentially emulate any other system.

In our case, this means a ”universal“ cellular automaton can mimic diverse and complex
computations and as such become incredibly adaptable whilst still retaining its simplicity.

2.3 Types of Cellular Automata
Though he didn’t know it back then, von Neumann’s prototype of what he intended to
turn into self-replicating machines was the very foundation of what we now know as cellular
automata, that much is clear. It was him who planted the seed that others later adapted,
albeit in the pursuit of something a little bit different; that is, simulation of complex
patterns and behaviours. However, this evolution wasn’t a straightforward process, and
it most certainly didn’t happen overnight. The road to where cellular automata are right
now started with von Neumann’s idea, but the first big milestone happened in 1968, when
Stephen Wolfram introduced one-dimensional—otherwise known as elementary—cellular
automata. Since then many adaptations and modifications arose, each paving the way
towards bigger and better understanding of the concept’s underlying potential.

One could say that ’cellular automata walked so machine learning could run’. This
metaphore needs to be taken with a grain of salt, but nevertheless, it perfectly captures the
importance of cellular automata research, mainly its contribution in shining light on how
simple rules and interactions among individual components can lead to the generation of
complex behaviours and patterns [22]. While not a direct precursor to machine learning,
the principles and understanding gained from studying cellular automata helped shape the
broader field of computational intelligence and thus indirectly contributing to the evolution
of machine learning methodologies [9].

From the points raised previously, it is clear how important, crucial even, it is to under-
stand how the evolution of cellular automata happened and what ideas its most significant
milestones brought to the table. However, while there have been lots of types of cellular
automata devised over the years, we will point out and examine only the four of the most
beneficial for our purposes, that is for the purposes of this paper. Those would be Ele-
mentary cellular automata, Stochastic (Probabilistic) cellular automata, Asyn-
chronous cellular automata themselves, and, last but not least, the very interesting
Neural cellular automata.
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2.3.1 Elementary Cellular Automata

Elementary cellular automata specifically refer to one-dimensional cellular automata with
two possible cell states: ’on’ or ’off’ (labeled 0 and 1). Since they are one-dimensional,
meaning that they consist of a linear array of cells, its rules depend only on the state of
the currently evaluated cell, and the states of its two immediate neighbours—the one to
the immediate left and the one to the immediate right of it specifically.

Because the neighbourhood consists of only 3 cells, and each cell can only be of either
the value of ’0’ or ’1’, a single elementary cellular automaton has exactly 23 = 8 possible
configurations for a cell and its neighbourhood, and each elementary cellular automaton
has to also define the resulting cell state for each and every one of these configurations.
This makes it so there there are exactly 28 = 256 elementary cellular automata rule sets
[22].

Based on a numbering method created by Stephen Wolfram, these rules sets (hereinafter
only rules) are categorized as simple binary numbers as follows: each rule is shown as a
set of eight numbers (zeros and ones), where each number (from left to right) represents a
configuration of a 0, 1, 2,..., 7 written in binary (so 000, 001, 010,..., 111) and the ’0’ and
’1’ in the place of a specific configuration then denotes the resulting state for a cell in the
case of said configuration. To clarify, we can showcase this numbering system for some rule;
let’s take Rule 30, for example, where Rule 30 = 000111102, for which the configuration is
as follows:

Current Configuration 000 001 010 011 100 101 110 111
Next State 0 1 1 1 1 0 0 0

Table 2.1: Rule 30 Elementary Cellular Automaton Rule Set

Another classification we do when it comes to these rules is based on their behaviour,
where we, for instance, distinguish between rules which lead to simple, repetitive patterns
and those which show results directly opposite. It was again Wolfram who create these four
categories:

• Rules leading to simple and uniform patterns which often repeat.

• Rules leading to moderately complex patterns; they usually start as more complex
before stabilizing.

• Rules leading to seemingly random patterns without any observable uniformity.

• Rules leading to complex, organized structures without observable repetition and
randomness.

The wonder of elementary cellular automata lies in their knack for showing unexpected
complexity despite following basic rules at the cell level. Even though these rules are
straightforward, the resulting patterns and structures they create can be strikingly intricate
and hard to predict. This surprise complexity has sparked lots of exploration into what
these automata can do, sparking research in computer science, physics, and biology.

2.3.2 Stochastic Cellular Automata

Stochastic, also known as Probabilistic, cellular automata are a type of cellular automata
which introduce probabilistic behaviour (as opposed to the usual deterministic approach)
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by employing probabilistic rules (see: 2.2.2). Simply put, instead of strict adherence to the
automaton’s rules, a degree of randomness in the form of unpredictability and probability
distributions is sprinkled in, meaning sometimes, cells simply toss a coin or take a chance
instead of doing what they’re supposed to. This means we can say that they do not always
do what one would expect; same as—you guessed it—processes found in nature.

The reason for bringing this type of cellular automata up in the context of this paper
should then be clear. Processes found in the biological field rarely ever are idealistic or
predictable; while most organisms have some pre-programmed instincts, they don’t always
strictly conform to these. A lion could choose to hunt down a gazelle, but he may also
decide he’d already eaten enough that day, we just don’t know. But before we get into
individuality and such, let us stop here, as the contribution-related point should already be
made.

2.3.3 Asynchronous Cellular Automata

This type of cellular automata holds a very important role in the evolution of cellular au-
tomata for the introduction of a very intriguing concept—cells’ individuality. Or something
close to it, at least. But how?

Let us take a look at the updating process, which has, so far, been pretty straightforward.
Every update step, each and every cell is subjected to the automaton’s rules and changes its
state accordingly. We’ve introduced stochasticity to shake things up a bit, but nevertheless,
the updating process has always had one goal, which was to synchronize the update of every
cell across the whole grid—we aptly call this update pattern synchronous. But what would
happen if we did away with this approach?

Asynchronous cellular automata use the asynchronous approach to cell updates, mean-
ing they allow cells to update independently at different times by giving them each their
own update schedule. This entirely breaks the uniformity synchronous updating is known
for apart and sows seeds of much desired chaos, bringing in irregularity and flexibility of
the automaton’s behaviour. As every cell is given more freedom in the ’when’ department
of the updating process, they are, for example, allowed increased flexibility in reactions to
internal and external stimuli. This brings us to the word mentioned at the beginning of
this subsection. Simply put, where synchronous updating allows for the simulation of colle-
giality amongst cells, we can safely say that asynchronous updating allows for the opposite,
meaning their individuality.

This fascinating concept is very important in nature—not just because it is the subject
of this thesis. Therefore, it only seems appropriate that we dedicate an entire separate
section (see: 2.4) to it, where we examine asynchrony and asynchronous cellular automata
more thoroughly.

2.3.4 Neural Cellular Automata

It felt fitting to also include Neural cellular automata in our list, the reasons for which
are numerous; aside from their concept making for a very captivating study, the most
significant reason for their inclusion would be their aim to mimic the behaviour of neurons
(think: biological neural systems). The concept of Neural cellular automata has been
formed as the culmination of various research and studies in the fields of cellular automata
and neural networks (among others); it is difficult, then, to attribute their creation to a
single person and hence may prove difficult to search for information. However, there is
a quite prominent article [34] published in 2020 by Alexander Mordvintsev, which could
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be deemed as a perfect introduction into the subject, and as such will be used in further
explanation.

Based on the aforementioned article, Neural cellular automata bear a striking resemb-
lence with Convolutional neural networks, allowing for the construction of Neural cellular
automata models using components readily available in popular machine learning frame-
works. The article also proposes that Neural cellular automata could be referred to as

”Recurrent Residual Convolutional Networks with ’per-pixel’ Dropout“—this name aims
to highlight their similarities and connections to established neural network architectures.

We can infer the function of a Neural cellular automaton as follows: every cell serves to
mimic an artificial neuron, and its state then reflects the activation level or behavior of that
neuron. These artificial neurons still interact with each other as cells would in a cellular
automaton; that is, by updating their states based on local rules and considering the states
of nearby neurons, thus mirroring how information is exchanged between neurons in real
biological networks.

Figure 2.2: A single update step of the Neural Cellular Automata model [34].

Albeit discovered only relatively recently, Neural cellular automata have already gained
attention for their potential applications across various fields, particularly for their ability to
mimic the behaviour of neural networks whilst operating within the simpler computational
framework of cellular automata. A fundamental aspect of Neural cellular automata is also
the concept of self-organization, which is noted to be gaining interest in mainstream machine
learning, particularly with the popularization of Graph neural network models.

2.4 Asynchronous Approach
Multi-dimensional cellular automata in their rawest form already are amazing tools of
complex patterns and behaviour simulation, on top of being not too complicated conceptual-
wise. However, while they would suit most needs, we can’t always say the same for biological
processes; especially when it comes to the manner in which updates occur. After all,
most things in nature don’t by any means conform to the idea of synchrony. There is no
synchronizing ”clock“, so to speak, to orchestrate every living being and manage a universal
overlook of all processes which may occur, nor is there any proof to the existence of a force
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dictating when, where and what happens. Most natural systems act on their own accord,
and as such, so they should in our simulations.

Though nature doesn’t follow a strict schedule, it doesn’t mean every biological sim-
ulation requires asynchrony in order to exhibit correct behaviour; in fact, in most cases,
the most optimal solution would simply be to test various updating schemes (including
synchronous) and decide on which would be the best for our use-case based on observed re-
sults [19]. In simulations focusing on phenomena where cell-level dynamics aren’t the main
focus of study (so, ones where our goal is only to observe broader patterns or behaviours),
the synchronous pattern would be more than adequate whilst easier to implement. The
choice between synchronized and asynchronous models should match what we’re trying to
understand about the biological system under study.

Nevertheless, there are simulations where individuality among cells has a part to play in
how true the result is to the real deal. For these purposes, we will define what asynchrony
is and how to go about implementing it in our systems.

2.4.1 Defining Asynchrony

Asynchrony is easiest to imagine as the opposite of synchrony, or rather anything that
doesn’t fall under the description of synchrony. Simply put, anything that isn’t synchronous
is inherently asynchronous. Where synchrony refers to the state of happening at the same
time, which is usually achieved either through precise timing or through coordination of the
process by which the involved subprocesses are manipulated, asynchrony can be derived as
every scenario where that isn’t true.

In cellular automata, asynchrony means that cells update independently of other cells
and ergo are given a greater degree of autonomy, being provided their own internal clock
as well as the ability to update their states without regards to the global system state.
This consequently leads to parallelism, where cells can perform computations concurrently,
which has a plethora of benefits when one’s intent is to involve cell-level dynamics in the
simulation.

2.4.2 Fully Asynchronous Updating vs. Alpha-asynchronous Updating

Suppose we have already evaluated our options, and have come to the conclusion that what
we’re attempting to simulate could benefit from our taking the asynchronous route. We
now have our direction, but before we can move on to the implementation itself, we still
have a couple more decisions to make; one of which is the choice between fully asynchronous
and alpha-asynchronous updating [41].

If one were to form an abbreviate description of the difference between both options,
it would be that fully asynchronous updating takes the idea of asynchrony and applies it
in full, with no regards to keeping any conceivable organization, whilst alpha-asynchronous
updating adds a bit of structure or rules for the updating process while still keeping the
flexibility and dynamic nature that comes with the inclusion of asynchrony.

In other words, the difference between both options has to do with the level of order
that the concrete phenomena requires. In systems like cellular automata, fully asynchronous
updating means that each and every cell will be updating wholly independently of eachother
to achieve a highly decentralized process; meaning, no fixed update sequence. This results
in a system that is fully unpredictable and highly complex.

On the other hand, we use alpha-asynchronous updating when we do want to keep the
asynchronous updating of cells, but we want to introduce a low degree of structurizing
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so the simulation doesn’t run completely amok. In this approach, we set a few rules or
constraints to the updating process to introduce some level of order, such as, for example,
allowing cells of a certain state to update before all others. This way, we can still reap the
benefits of asynchrony whilst retaining some authority over how the simulation evolves.

2.4.3 Update Schemes

The other decision we have to make is to choose an update scheme. Update schemes are
basically guidelines for how to implement the updating process in regards to either setting
the order (or lack thereof) of updated cells, or giving each cell an update clock of its own and
thus introducing complete individuality. There exist numerous update scheme expositions;
therefore, for the scope of our research, we will adopt the approach outlined in one such
paper (Cornforth et al, 2005) [15].

• The synchronous scheme - at every time step, all cells undergo simultaneous updates
(this is the standard, synchronous model, presented here only for comparison)

• The random independent scheme - nodes are selected randomly with replacement at
each time step. As stated in the paper, asynchronous random boolean networks could
be applicable to biological systems due to the exact points raised previously in this
thesis—the perceived absence of a synchronizing clock.

• The random order scheme - very briefly, all nodes are updated at each time step in a
random order.

• The cyclic scheme - a fixed update order is created at random during model initial-
ization, determining the selection of a node at each time step.

• The clocked scheme - upon initialization, each cell is given an individual timer set to
a random period. When this period reaches zero, the cell undergoes an update and
the timer is reset. This achieves autonomous updating which proceeds at different
rates for different cells.

• The self-sync scheme - this scheme is similar to the clocked scheme, except it also
incorporates local synchrony by having the update sequence be influenced by local
interactions (neighbourhood).

2.5 Cellular Automata in Biological Systems
We know that cellular automata excel at modeling complex systems—and there are few
systems more complex than those found in nature. The initial development of cellular
automata was, arguably, also motivated by the prospect of modelling biological phenomena
[22], along with mathematical and computational curiosity, so there is no doubt that many
knew the significance its discovery would have on this field soon after the concept was
laid down—indeed, the first big stepping stone in the exploration of cellular automata
capabilities, made mere 4 years after von Neumann’s introduction of their concept, was
Conway’s Game of Life, which aims to simulate natural dynamics. Since then, cellular
automata have found extensive applications in modeling biological processes due to their
ability to simulate complex systems based on simple rules.
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When the terms cellular automata and biology get mentioned, the minds of most would
immediately be able to supply many an application, such as tumor growth modeling, eco-
logical systems study (e.g. predator-prey interactions) or morphogenesis. We will, however,
primarily focus on the study of pattern formation, as this was among the main concepts
which drove forward the development and exploration of cellular automata within the realm
of natural systems. Alan Turing’s work on reaction-diffusion systems aimed to explain the
formation of patterns in biological systems, offering ideas that later contributed to the
development of cellular automata models simulating similar phenomena—from his work,
a model was derived, one capable of explaining pattern formation without a preformed
pattern [8].

Since then, many studies based on cellular automata arose, particularly those focusing
on tumor growth simulations as well as others with focus on the study of ecological systems.
Even though recent years showed various scientific fields’ attentions drifting towards ma-
chine learning, including biology, cellular automata still remain valuable tools in the studies
of the aforementioned applications, as they offer a different approach; meaning, of course,
their emphasis on the simulation of systems based on simple rules and local interactions. As
such, cellular automata and their iterations will likely remain a valuable tool in modeling
biological processes for the foreseeable future.
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Chapter 3

Machine Learning

3.1 Introduction
It is safe to say that everyone who has had any interest in the world of technology and com-
puter science in recent decades has heard of the following two terms: artificial intelligence
and its subfield machine learning. It would be hard not to, as both of these fields have
garnered unprecedented attention for their capabilities in solving problems encountered in
various aspects of our lives—perhaps most recognizable is the use of machine learning in
the fields of e-commerce and marketing, but it’s decision-making and data analysis prowess
also has other applications, such as in voice or face recognition systems, security, climate
data analysis, education and healthcare.

Machine learning is a departure from the traditional ways of computational science,
where computers follow explicit instructions written into algorithms for calculations and
problem-solving. Machine learning algorithms approach problems from a different an-
gle, rooted in statistical analysis—they allow computers to learn from sample data in-
puts through training, analyze the data statistically afterwards, and produce output values
within specific ranges [44]. This approach speeds up what would otherwise be a time-
consuming and tedious process—sometimes drastically.

We can conclude, then, that at its core, machine learning presents a powerful mechanism
for extracting knowledge from massive data sets, endowing machines with the capability
to learn and adapt autonomously. It’s not too far of a stretch then to say that machine
learning reflects the complex dynamics of neural networks in the mammalian brain; that is,
specifically the behaviour of neurons, which are interconnected in complex ways to process
complex data [31]. This process, where the brain learns and enhances its data-processing
capabilities by forging new connections between neurons, was the inspiration for artificial
neural networks—the backbone of machine learning algorithms. In the realm of machine
learning, neural networks stand out thanks to their proficiency in various information-
processing tasks, mainly due to their ability to recognize patterns and generalize learning
to novel, unseen data.

Depending on how learning is performed and how learning feedback is provided to
the developed system, we also classify the machine learning methods used; the two most
widely applied methods are supervised and unsupervised learning, where the former trains
algorithms on sample input and output data which is labeled, while the latter provides the
algorithm with data without labels so as to allow it to find structure in them. Between
supervised and unsupervised learning is reinforcement learning, a model in which an agent
optimizes its behavior based on positive feedback (rewards) received in response to signals.
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As should be evident by now, there is a lot to learn about this ever-expanding field. Even
attempting to summarize it all into these few paragraphs has proven quite difficult—and
unsuccessful. This chapter sets a goal to properly, in more detail, explore all aforementioned
topics as well as those which couldn’t be fit into this short summary, comprehensively
distilling years of research with the aim to provide an in-depth understanding of the subject
as a whole and its contemporary applications.

3.2 A Brief Historical Analysis
The world is filled with examples of machine learning usage, one doesn’t need to look
very far to notice them; it only takes paying a little bit of extra attention. How does the
mail server know which received messages are spam, for example? How do YouTube and
Netflix recommend videos and shows based on your recent activity? What about virtual
assistance technologies like Siri, or Alexa? Yes, those use machine learning to formulate
their responses as well. Over the last couple of decades, the world fell in love with machine
learning, and its research has seen a significant boom as a result; though, the history of
machine learning development does involve periods of fluctuating interest. There were times
when enthusiasm waned, which are often referred to as the ”AI winters“—a term first coined
in 1984, presented as the topic of a public debate at the annual meeting of the American
Association of Artificial Intelligence (AAAI) [40].

But we digress. The fact of the matter is that, at the time of writing this, machine
learning research as well as that of artificial intelligence is steadily rising in popularity.
There is a myriad of reasons to learn how it got to this point, how machine learning
developed over the years, but the main one is that by doing so, we unveil how and why
certain methods and techniques came to be. And for that, we best start at the very
beginning.

In 1943, Warren McCulloch and Walter Pitts published a seminal paper titled ”A Logical
Calculus of Ideas Immanent in Nervous Activity“ [30], in which they proposed the first
mathematical model of an artificial neuron, providing a theoretical basis for neural networks.
Later on, during a traditional debate on the topic of defining intelligence, Turing introduced
the concept for a universal machine capable of mimicking human thinking and behaviour
in tasks requiring some degree of intelligent thought. He proposed a practical test for
computer intelligence, specifically its capability of becoming equivalent to that of a human
[45]. This test—now simply known as the Turing test—became the groundwork for the
development of computer science and machine learning.

While the idea of machine learning and artificial intelligence was already present in the
minds of the scientific world, it wasn’t until 1956, when John McCarthy coined the term

”artificial intelligence“ during the Dartmouth Conference, that the era of the study of both
fields truly began. Envisioned were machines capable of learning and adapting without
explicit programming, a departure from traditional computational approaches, and early
perceptions of this concept were often fueled by optimism of unlocking the full potential of
machines to mimic human intelligence, primarily so in terms of problem-solving, decision-
making, and pattern recognition.

Machine learning and artificial intelligence were at the forefront of research. The sci-
entific world became obsessed with the very idea of systems capable of replicating human
thought processes, so much so that, as swiftly as the enthusiasm soared, it also dwindled
when research started encountering some significant bumps. Early developments slowed,
until the early 1970s saw them basically grind to a halt when it became clear that tech-
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nology at the time wasn’t capable of fulfilling expectations. Challenges such as limited
computational power, insufficient datasets, and the complexity of real-world problems con-
tributed to a decrease in funding and interest, as many researchers and companies became
skeptical about the practical feasibility of artificial intelligence and machine learning. The
following years marked the first true AI Winter [40].

It wasn’t until a decade later, in the mid-1980s, that the field experienced a resur-
gence, a reignition of interest. The time that followed became called the ”AI spring,“
which is a clever play on words in regards to waking up from the previously mentioned
AI winter. Advances in neural network research, the development of new algorithms, and
increased computational power reignited interest in machine learning, primarily through
the fact that researchers were seeking an instrument for solving complex problems, and the
aforementioned advancements made it more feasible to explore and apply machine learning
techniques in practical scenarios. It wasn’t quite the same boom as when the topics of ma-
chine learning and artificial intelligence first hit the scientific world, but slowly yet surely,
the curve of interest started bending back the other way.

Machine learning continued to be a topic that, while its exploration continued, its
popularity was nowhere remotely close to what it is today. The slow and steady rise in
research picked up the pace in the 2000s, when scientists turned to machine learning for its
capabilities in sorting through a vast amount of data; a skill that was once again becoming
relevant when various fields started producing larger data sets which required some sort of
handling [20].

A particularly significant role in this time played the return of neural networks, this time
in the form of deep learning, which checked all the boxes when it came to using the newfound
powerful computing resources, breakthroughs in algorithmic efficiency and abundance of
data to push forward research in finding a solution to not only the problems machine
learning used to be regarded as suitable for before, but the introduction of deep learning
also expanded these goals to include tasks such as image recognition, speech recognition
and more complex decision-making.

Deep learning did have a rocky start, with many people not believing its usefulness
when compared to what could be achieved using heuristic methods, Support Vector Ma-
chines (SVM), and other traditional approaches. The results were regarded as too similar,
and so the usage of deep learning was called into question when there already existed other,
easier, means of achieving the same goals. But all of these apprehensions stemmed from a
fundamental misunderstanding of where deep learning truly shines—in dealing with tasks
of a greater magnitude. Tasks which require the full use of the modern technologies, discov-
eries, hardware capabilities. It was only in using deep learning for solving these marginally
harder tasks that its place at the forefront of research was truly solidified.

The latest key development in machine learning, particularly important in regard to
processing sequences of data (primarily text and audio), were Transformers; who quite
literally transformed the way we approach many machine learning tasks. These utilize a
mechanism called ”self-attention“, which is a mechanism that essentially allows a model
to weigh different parts of a sequence to understand context. This approach addresses
limitations in traditional models, like the vanishing gradient problem that previously made
it hard to train very deep networks. The self-attention mechanism in Transformers allows
them to consider all parts of a sequence at once, which grants them the ability to handle
long sequences more efficiently and as such helps avoid the kind of paralyzation that older
models suffered from, where data processing could slow down or become stuck in complex
computations. This was huge for tasks such as language processing, and made training
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deeper networks more efficient, opening up new avenues for machine learning applications
that were once considered too complex or computationally expensive. As a result, the
research around Transformers saw a big boom, with 70% of the papers on AI that had
appeared on arXiv in the years 2020-2022 having some kind of mention to this type of
neural network [32].

As should be apparent by now, machine learning has, in its lifetime, been through a vast
amount of development and has experienced significant breakthroughs. The first of such
notable advancements is a study called LeNet, developed by Yann LeCun and his colleagues
in 1998 [28], which laid the foundation for convolutional neural networks (CNN) and demon-
strated the effectiveness of hierarchical feature learning. Fast forward to 2012, AlexNet,
a seminal work by Alex Krizhevsky and his team [27], revolutionized image classification
by leveraging deep convolutional networks, securing a decisive victory in the ImageNet
Large Scale Visual Recognition Challenge. The following year, the Visual Geometry Group
(VGG) introduced VGGNet [42], emphasizing the importance of deep architectures with
uniform filter sizes, influencing subsequent architectures. Residual Networks, or ResNets,
introduced by Kaiming He in 2015 [23], addressed the vanishing gradient problem by incor-
porating shortcut connections, enabling the training of exceptionally deep networks. Last
but not least, 2017 saw the introduction of Transformers by Vaswani [46], which brought a
paradigm shift in sequence-based tasks by utilizing the self-attention mechanism, allowing
models to process data more efficiently and paving the way for modern language models
like BERT and GPT. These milestones showcase the progression from LeNet to increasingly
sophisticated architectures like AlexNet, VGG, ResNets and Transformers, each contribut-
ing crucial insights and techniques that have become integral to the evolution of machine
learning.

As we travel the historical contours of machine learning, we witness not only a story of
technological innovation but also a persistent human effort to push the boundaries of what
new horizons machines can help us reach. From the early dreams of artificial intelligence to
the practical reality of today’s deep learning systems, this journey is a testament to human
ingenuity, resilience, and the relentless drive for a future where machines and humans
collaborate in harmony like never before.

3.3 Neural Networks
Neural networks are physical cellular systems capable of acquiring, storing, and using expe-
riential knowledge [18]. This knowledge takes on the form of steady states or mappings in
the network, allowing its retrieval in response to specific cues. Neural network processing
often involves solving large-scale problems in terms of dimensionality, data volume, and
computational complexity, which is a necessity for real-world applications in various fields.

Neural networks work differently from conventional digital computers—the goals of
both approaches don’t exactly align. You see, while digital computers excel at executing
predetermined sequences of commands with incredible speed and accuracy, they fail to
provide any means of solving problems where scenarios are hard to predetermine; unless,
of course, one would be willing to write all of the use-cases out themselves, but in certain
scenarios, such a feat is bordering on being impossible. This is where neural networks come
into play. Their primary goal is to mimic the brain’s ability to perform complex tasks, such
as understanding speech and processing images, with remarkable efficiency. Even though
they operate at speeds much slower than those of computers, their capability of solving
problems described previously sets them apart.
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Formally, a neural network is a computer system consisting of many interconnected
nodes which process information dynamically in response to external inputs. We have
already previously likened these nodes to neurons 3.1, stating that, like in the neural systems
found in a brain, they collectively contribute to the network’s ability to learn from data
and make decisions. While this analogy with biological systems may have been the initial
inspiration for neural networks, their architecture and operations differ significantly from
the complexity of real nervous systems.

Renewed interest in neural networks in recent years can be attributed to both hardware-
and software-related advances in computer architecture, especially so the big strides the
fields of graphics processing units (GPUs) and computing parallelism have been achiev-
ing lately, as well as the availability of large amounts of data. This resurgence has been
accompanied by a change in perspective, with a growing awareness of the importance of
intermediate representations created in neural networks during the learning process [39].
These intermediate representations, embedded in the network’s hidden layers, have poten-
tial implications for tasks such as transfer learning, extending the utility and flexibility of
neural network architectures.

By their nature, neural networks are powerful tools for approximating complex func-
tions and solving difficult computational tasks, from handwritten character recognition to
natural language processing. As the field continues to develop, researchers are exploring
new architectures, optimization techniques, and applications, driven by efforts to exploit
the full potential of these approaches in addressing real-world problems.

3.3.1 Basic Components

As is true for almost any unique model or system, there are some concepts and components
it is comprised of, and which we need to have at least a basic understanding of before we
can dive into more elaborate and complex problems.

We should start with the fundamental computational units of artificial neural networks,
which would be neurons (also called units, nodes or perceptrons [49]). The purpose of
these neurons is very simple; they process received input signals (often weighted values)
by performing mathematical computations on these inputs and producing output signals
accordingly. In addition to neurons, neural networks also sport an extensive network of
weighted connections, which influence and drive the flow of information between neurons.
Think of these connections as paths between each two individual neurons, where each of
these paths is given a certain weight. This weight determines the strength of said connection,
and is adjusted during the network’s training process in order to optimize the network’s
performance. Along with weights, there are also what we call biases, which are constant
values assigned to each individual neuron. These values are used as an additional means
of influencing the range of outputs, which comes in especially handy in situations where
the inputs are insufficient to trigger activation based on the weights alone. This is done
during the computation process, by adding the bias to the weighted sum of inputs for the
specific neuron before applying the activation function. This adjustment not only allows
for accelerating or delaying the activation of a given neuron, but also provides each neuron
with the ability to produce a non-zero output even in the absence of input signals [49].

Before we continue, we need to clear up a misconception that artificial neural networks
don’t differ much from their biological counterparts. While the very concept of artificial
neural networks is inspired by neurons and neural networks found in biological brains, they
quickly diverged from these concepts as the field of machine learning progressed throughout
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the years, and new complex ideas and techniques have been developed. As had been said
by others, ”It is easy to draw the wrong conclusions from the possibilities in AI research by
anthropomorphizing Deep Neural Networks, but artificial and biological neurons do differ
in more ways than just the materials of their containers [35].“ To further showcase the
distinction, please refer to figure 3.1, which shows the differences between how a biological
and an artificial neuron look and work.

Figure 3.1: A biological neuron and an artificial neuron comparison (via
https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-
networks-fab22249cbfc)

Neural networks are organized into layers [1], each consisting of interconnected neurons
and serving a distinct purpose in the information processing pipeline—by which we mean
that each layer performs specific computations and processing on the input data. Imagine
we have a system in place, as pictured in figure 3.2, consisting of three different types of
layers; first and foremost, there’s the Input layer, whose sole purpose is to accept input
data and simply pass them on to the next layer. Each neuron in the input layer represents
a feature or attribute that is passed as the input data, which means the number of neurons
in this layer is determined by the dimensionality of the input data (how many distinct
attributes are passed to the neural network). There are no activation functions associated
with the neurons found in the input layer, and no computations are made on the input data
either.

Past the input layer lies the realm of Hidden layers. Unlike the other two types of
layers, this section can hold multiple layers, each consisting of multiple neurons through
which they’re connected. The number of hidden layers and neurons in each layer can
vary depending on the concrete network’s architecture. Hidden layers are where all main
computations of the neural network take place; that is, where input data passed on by the
input layer is evaluated and subjected to computations involving weighted sums of inputs
followed by the application of an activation function. They introduce non-linearity into the
network’s computations, which allows for complex relationships in the data to be observed
and learned, enabling the neural network to model intricate patterns and extract meaningful
features from the input data.

Once the hidden layers work their magic, the results are passed to the Output layer,
which is the final layer of the neural network and produces the network’s predictions or
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classifications. The neurons found here compute the final outputs based on the information
propagated from the hidden layers, with the option to also apply an activation function
(depending on the nature of the task at hand). Each neuron in this layer represents the
network’s predictions or classifications for the input data.

Figure 3.2: A neural networks layers architecture representation

To put this new information into a better perspective, let us draw a (rough) practical
example. Suppose, for a moment, that we have a binary classification problem, where we
want to predict whether a person will buy a product based on two features: age and income.
The input layer will then consist of two neurons, each representing one feature (age and
income). This data will subsequently be passed on to the hidden layers for processing—
let’s say that we will have two hidden layers, one which determines whether the currently
processed person will buy our product based on age, and another layer which evaluates based
on income. The neurons in these layers use activation functions and weighted connections
to produce a real number; for example, if we consider a hidden layer with three neurons
and use the ReLU activation function, the output of each neuron could be any real number
within the range of the activation function’s output (usually < 0,+∞) for ReLU). These
outputs are then passed to the next layer, be it another hidden layer or the output layer,
contributing to the overall computation of the neural network. The output layer will then
take the final values that it gets from the hidden layer, and uses its own computations and
activation function to determine the final result (”0“ or ”1“ in this case, or ”will“ or ”will
not“ buy).

We now have the basic structure of a neural network, and as such can move on to cov-
ering components managing its function. We should start this venture with a term already
previously mentioned but never really explained, activation functions—non-linear func-
tions applied to the output of neurons in order to transform the input signal into an output
signal [49], which gets then passed on to subsequent layers. In doing so, they introduce
the non-linearity phenomenon into the neural network’s computations, which allows the
network to learn and represent more complex patterns. There are many different common
activation functions, but amongst the most well-known are the Sigmoid function, the Tanh
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(Hyperbolic Tangent) function, the ReLU (Rectified Linear Unit) function, and Softmax
(a sigmoid/logistic activation function that works on calculating probability values), each
serving specific purposes depending on the network’s architecture and objectives.

The core of the process of training a neural network is comprised of three primary
components. Starting with Forward propagation, this is the process which handles the
passing of data through the entire neural network, meaning it encapsulates accepting the
data passed to the neural network on the input layer, processing the results on the output
layer (usually by using an activation function), as well as the entire procedure happening
in between, on the hidden layers—computing the weighted sum of inputs at each neuron,
applying an activation function to the result, and passing the output to the next layer.

Then there’s the Loss function, which is a way of measuring how well the neural
network’s predictions match the true labels or targets in the training data. It quantifies the
difference between the predicted output and the actual output for a given set of input data,
with the goal of achieving as small a value of the loss function as possible, because smaller
value means a more precise prediction or classification. One can then check the value of the
loss function, adjust parameters of the neural network (weights, biases), and check the loss
function again afterwards to see if the changes made a more positive or negative impact on
the overall accuracy.

Figure 3.3: Neural Network Loss Visualization

The last of the three components is Backpropagation [49], which is a little more
complicated in comparison to the other two. What it does, as in the end result, is relatively
simple—one can think of it like a feedback loop that helps a neural network learn from its
mistakes. It’s how the network adjusts its internal parameters (like weights and biases) to
get better at making predictions, primarily using the previously mentioned loss function.
But the way it does this is a whole other beast to tame. In essence, ”In the case of neural
networks, all the activation units are differentiable, as is the output of the network. Thus,
if we can define an error function (eg. sum of squares) that is a differentiable function
of the output, we can evaluate the derivatives of this error with respect to the weights,
and find weights that minimize the error using gradient descent or other methods. This
method of propagating error from the top layers to lower layers is called backpropagation
[39].“ If you didn’t fully understand that, I don’t blame you, and will try to provide an
explanation that is a bit simpler. The process of backpropagation starts by taking the loss
function values (errors), which are then propagated backwards through the network, layer by
layer, calculating gradients using calculus and the chain rule, to determine how much each
parameter in the network contributed to the error. Based on the obtained gradients, the
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algorithm updates the network’s parameters (weights and biases) in the opposite direction
of the gradient to minimize the errors. These parameter updates are performed iteratively,
with each iteration bringing the network closer to minimizing the error and improving its
ability to predict more accurately.

The iterative updates are facilitated by a diverse array of optimization algorithms,
such as Gradient Descent and its variants, Adam (Adaptive Moment Estimation), Ada-
grad (Adaptive Gradient Algorithm) and others. These algorithms iteratively update the
network’s parameters based on the gradients of the loss function with respect to those pa-
rameters, effectively guiding the network towards a configuration that minimizes prediction
error.

3.3.2 Types of Neural Networks

There is a tremendous amount of neural network types which emerged as results of research
in the field over the years, so much so that listing and explaining all of them would be
bordering on impossible, not to mention pointless strictly from a practical standpoint. Yes,
it is useful to know of some of the options out there, not simply just to broaden one’s
horizons, but also to know of the possibilities should one find the need for them. However,
diving too deeply into the details of each type may not always be necessary or practical,
especially for those who are new to the field or who have specific use cases in mind, because
each type of neural networks that had been invented over the years excels in a specific
scenario, and each architecture has its own strengths and weaknesses; thus, having a broad
understanding of the various types allows practitioners to choose the most suitable model
for a given problem or application, after which they can further their knowledge pertaining
that specific model. With that notion in mind, this section sets a goal to scratch the surface
of what the world of neural networks has to offer as of now, without delving too much into
details.

Feed-forward Neural Network (FNN)

Also known as the multi-layer perceptrons (MLPs) model, this type of neural network is one
of the simplest forms of artificial neural networks, because the input data in this case travels
only in one direction through all of the network’s layers without forming any feedback loops
or cycles within the network.

While feed-forward neural networks are versatile models capable of tackling many a
task—they were among the first types of neural networks to demonstrate the capability to
approximate complex functions and learn meaningful representations from data—they may
struggle with capturing complex patterns in data with high non-linearity. Nevertheless,
their simplicity and versatility does still make them an important neural network model,
with uses in facial recognition, natural language processing and others, but also primarily
as an inspiration for many other, more sophisticated, neural network architectures.

Convolutional Neural Network (CNN)

Convolutional neural networks are a highly popular neural networking model used exten-
sively in computer vision and image or video processing tasks [23]. They are similar to
feed-forward neural networks, but are specifically designed to process structured grid-like
data such as images or videos by leveraging principles from linear algebra and optimizing
filters through automated learning. Additionally, convolutional neural networks use rela-

25



tively little pre-processing compared to other algorithms, as they can automatically learn
and optimize the filters during training.

Unlike feed-forward neural networks, convolutional neural networks use one or more
convolutional layers in place of hidden layers (which can be either pooled or entirely con-
nected) to extract hierarchical features from the input [29]. These convolutional layers
play a crucial role in the whole process, as it is on these layers that convolution operations
are applied to the input data, which involves sliding a set of learnable filters (also known
as kernels) over the input data’s maps. This allows the network to uncover and extract
local patterns and features—such as edges, textures, shapes—from raw data by performing
element-wise matrix multiplications and summations, saving us the trouble of extracting
these features manually.

There also exist types of neural networks called Deconvolutional neural networks. These
adopt the same principles as convolutional neural networks, but the other way around. Sim-
ply put, they are convolutional neural networks that use transposed convolutional layers
and are trained to perform the reverse operation of convolution, also known as transposed
convolution or upsampling. While this may not sound very useful at first glance, such an
approach proves itself very capable of performing tasks related to the construction or re-
construction of data—such as image generation, image upscaling, or even image inpainting.

Figure 3.4: Convolutional Neural Network architecture (via https://saturncloud.io/blog/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/)

Recurrent Neural Network (RNN)

This type of neural networks is primarily used in tasks where one needs to process sequences
of data [14]; what does that mean, you may ask? Imagine you’re reading a sentence, word
by word. As you read each word, you’re not just processing said word in isolation, but
your understanding of it is influenced by the words that came before. For example, if you
see the word ”mouse“ on its own, without knowing what words came before, you might
think of an animal. However, if you knew that, before this word, the word ”computer“ was
mentioned as well, your brain would automatically assume we’re talking about the piece
of hardware. In other words, your understanding of the currently processed word changed
through context.

Recurrent neural networks handle this problem by maintaining a memory of past inputs—
each neuron acts as a memory cell to retain information across time steps, which enables
the performing of intelligent computation and implementation of feedback loops, where the
network assesses mistakes and adjusts its predictions accordingly. It does so by utilizing

26

https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/


a process that saves the output generated by the network’s processor nodes and feeds it
back into the algorithm. Instead of just processing one piece of data at a time, the network
remembers what it had seen before and uses this knowledge to further its understanding of
the current data. This memory helps these types of neural networks tackle tasks where the
order of data matters, like predicting the next word in a sentence, recognizing handwriting,
or even generating music.

However, as is true with many other things, these types of networks don’t come without
any flaws. Their primary flaw stems from the fact that they can face problems holding
information when the sequence of data is really long, skewing the predicted results. This
is where variants come in; primarily so the Long Short-Term Memory (LSTM), which, in
short, is a specialized variant of recurrent neural networks designed to address the aforemen-
tioned issue (more specifically the vanishing gradient problem [2]), and as such remember
important information for longer periods of time. If we had to describe this variant in
more detail, we can say that they introduce memory cells with gates that regulate the
flow of information, allowing them to selectively remember or forget information over time
[25]. This, as you may have guessed, means they’re capable of more effectively capturing
important dependencies in sequences (think information required in a multitude of sequen-
tial data processings), making them well-suited for tasks such as machine translation and
speech recognition.

Another variant, so to speak, of recurrent neural networks, is the Sequence-to-Sequence
(Seq2Seq) model [43]. This model is also designed for tasks involving sequences of data,
but it differs from the ones previously mentioned in that it essentially utilizes the other
variants, such as RNNs or LSTMs themselves, to do its work. The Seq2Seq model consists
of two main components: an encoder and a decoder, both of which can be implemented
using RNN layers, and we can think of them as translators; the former, encoder, takes an
input sequence, scans it for important information, and then generates a vector of a fixed
size—which we call context vector—representing this information. We can, therefore, say
that the input had been ”translated“ into something more comprehensible. The decoder
then uses this context vector, along with what it itself had generated so far, to produce
an output sequence, essentially ”translating“ it into another sequence of data, such as a
translation of text in a different language, a summarization of a longer text, or a response
in a conversation.

Aside from LSTMs and Seq2Seq models, we should also mention Hopfield Networks.
These are in no way comparable to the former two in that they do not address the same is-
sue; instead, Hopfield networks are used to solve problems related to associative memory or
pattern recognition. They are designed to store patterns as stable states and retrieve them
based on partial or corrupted inputs. In other words, they are used for content-addressable
memory tasks, where the network learns to associate input patterns with specific output
patterns. This makes Hopfield networks useful for tasks such as pattern recognition, opti-
mization, and content-addressable memory.

Deep Neural Network (DNN)

Deep neural networks [48] are among the most popular types of neural networks, for good
reasons. They’re capable of automatically learning layered representations of raw data by
utilizing deep learning techniques (more on those later 3.5), where the most important part
of that statement is the word ”automatically“—one of the key advantages of utilizing deep
learning is the ability to find and learn features in raw, unlabeled data, entirely without any
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manual feature engineering involved. This makes deep neural networks highly adaptable to
different domains and reduces the amount of domain expertise required to build effective
models.

However, while they are certainly a very interesting and, arguably, powerful type of
neural networks, the value of these models comes primarily from the fact that they use
deep learning—which is a very important topic in of itself, and as such will be discussed in
more detail in a section of its own. By doing so, the inner workings of deep neural networks
and their usage shall be explained in that way as well.

Transformers

As of writing this thesis, Transformers are the latest key development in machine learning,
especially when it comes to processing sequences of data. Their primary feature is a mecha-
nism called ”self-attention“, sometimes called ”intra-attention“; which isn’t a novel concept
and has been used rather successfully in various (primarily text comprehension-related)
tasks in the past, but the difference here is that the Transformer is the first transduction
model that relies entirely on self-attention in computing representations of its input and
output, without needing sequence-aligned RNNs or convolutional layers [46].

Self-attention basically allows the model to weigh different parts of a given sequence
to understand how they relate to eachother, assigning scores to these relationships to help
determine what part of the sequence is most important. In other words, it is capable of
determining context; this is a big step forward to solving limitations in traditional mod-
els, like the vanishing gradient problem that previously made it hard to train very deep
networks. Self-attention also makes it so the Transformer can consider all parts of a se-
quence at once, meaning Transformers allow for more computation to be parallelized than
older models—like recurrent neural networks, in which data processing could slow down
or become stuck in complex computations. By adopting this parallelized approach, Trans-
formers can handle long sequences more efficiently, leading to their widespread adoption in
various domains—primarily so text and audio processing, though it can process some types
of images as well.

In summary, Transformers are a big deal because they can look at the whole sequence at
once, not just one step at a time like older models. This makes them faster and often more
accurate for a wide variety of tasks, and as such they had been the subject of thorough
study and adaptation since their introduction in 2017. Thanks to the advantages the
self-attention mechanism brings to the table, we’re seeing Transformers used in things
like language translation tools, text generation (GPT [36]), language representation model
(BERT [17]) and so on. They are a major step forward in AI development, because they
brought a new way to process sequences that is fast, efficient, and pretty adaptable to a lot
of different tasks.

3.4 Learning Paradigms
So far, we’ve established some basics of machine learning models and their components,
delving into the rabbit hole that is neural networks. However, there is a major part of the
overall machine learning process we’ve simply skimmed over, with the subtle implication
that the topic is of too large a scale to take apart efficiently in just a couple paragraphs—
we speak of, of course, the ”learning“ itself. It is high time we talked about the primary
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learning paradigms used in machine learning, what with how much they’d been teased, and
unfold the tapestry of possibilities they offer.

What do these learning methods do, exactly? There is a subtle nuance in how one
can perceive what the word learning actually encompasses, especially when mentioned in
certain scenarios or in combination with certain words. In his paper, Carbonell outlines two
basic forms the word can take on: knowledge acquisition and skill refinement [10], where
the former can be boiled down to acquiring new concepts, by which we mean studying
and understanding them, to the point where this knowledge can be applied (usually in
combination with other knowledge) in an effective manner. The latter one of these terms,
on the other hand, refers to the incremental honing of both physical and mental skills via
repetitive exercises.

If he had to look at both of these learning forms from the perspective of machine learning,
then knowledge acquisition refers to algorithms working with data to learn and understand
new concepts or patterns, which happens by picking out important pieces of information
from the data and creating models that can apply what they’ve learned to make predictions
or group things together. For instance, in image recognition, a machine learning program
gets better at recognizing objects by learning from labeled pictures during its training. On
the flip side, skill refinement could still be taken as we’ve described it before—that is, getting
better at a task through continuous practice, or optimizing performance if you will. This
tweaking and fine-tuning of the model and its parameters to improve the performance of
a machine learning model—at least, until or unless overfitting occurs—is done very simply
by running it several times.

In the earlier stages of machine learning development, a much bigger emphasis was put
on the study of learning from the perspective of knowledge acquisition. However, nowadays,
both forms are regarded as fundamental aspects of machine learning, and the prevalence of
one over the other depends more so on the specific task and application, though usually it
is regarded as not just recommended, but almost necessary to combine both.

Speaking of, we should really get to introducing some of the most used learning methods;
aside from deep learning, that is, as that’s one which emerged relatively recently and almost
immediately spawned a plethora of research and sparked unprecedented amounts of interest,
and as such we will dedicate an entire section of its own to it. Furthermore, as deep learning
addresses slightly different issues, it isn’t too uncommon to see its combination with the
other methods explored in this section.

To commence, we will start with Supervised learning [29][6]. Supervised learning
is essentially a guided type of learning in that an input dataset contains both input data
and, mainly, corresponding labels. These labels are primarily what differentiates supervised
learning from its counterpart, as it is them that the machine uses as a guide in learning
to correctly predict said labels in the future, on data that doesn’t have them. This is
achieved through running the model on the labeled dataset in an attempt to learn inherent
patterns, and the subsequent adjustment of the model’s internal parameters (weights) to
minimize errors contributing to incorrect predictions, for which it employs various opti-
mization techniques/algorithms. This makes supervised learning perfect for tasks such as
image classification; speaking of, there are two main task types supervised learning is used
for, which would be classification [3] and regression [5] tasks. The difference between two
is simple; let’s say our input data are pictures of people. In classification tasks, the model
focuses on learning to separate the input data into predefined classes or categories, so for
example in this case, determining whether an image is a picture of a man or a woman. On
the other hand, in regression tasks, the model’s purpose is to predict a continuous numer-
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ical value based on input features—here, it can be predicting the age of the person in the
image. No matter which type of task is being handled, though, the method’s effectiveness
does hinge on the quality of the labeled data.

Next up, we have Unsupervised learning [24][6], which is the aforementioned coun-
terpart to supervised learning. As you may have correctly assumed, its primary difference
and selling point has to do with labels—or, more specifically, lack thereof. This may not
sound very appealing at first glance, but the lack of a teacher isn’t always a bad thing.
You will definitely not achieve as good results in image classification as with supervised
learning, but that really isn’t what the unsupervised variant is for, anyway. Instead, it is
used when one’s goal is to uncover patterns, structures, or any kinds of inherent similarities
within the received data; a task in which labels would achieve naught but muddying of the
water. Forcing the algorithm to work without the presence of labels allows it to identify
natural groupings within the data without any previous knowledge, and as such unsuper-
vised learning excels in tasks like clustering, which is the practice of grouping data together
based on shared characteristics or features, even those one could easily miss or dismiss upon
first glance.

Now, we come to a type of learning we can most easily describe as a mixture of both
of the so-far mentioned learning methods; hence why it is aptly called Semi-supervised
learning [4][6]. In this case, we are given a mixture of labeled and unlabeled data (where
usually the pool of unlabeled data is larger, often significantly so), and our goal, or rather
the goal of the method, is to leverage both types of data to enhance the learning process by
first using the labeled data to build a basic understanding of what we’re dealing with, and
then turning to the data that is unlabeled to further refine the model or discover additional
patterns that may not have been apparent during the previous step. This way, one can
efficiently use a small amount of data with labels along with a larger amount of data
without, effectively making efficient use of available resources. Semi-supervised learning
isn’t as widely used as the learning methods it incorporates, but there is no doubt that it
can prove useful in fields and situations where it isn’t possible to get much data that is or
can be labeled due to lacking the means, be it due to time or money constraints.

The last learning method we will introduce in this section is Reinforcement learning
[4][6], which is an approach inspired by the idea of reinforcement behaviour, or learning
through trial and error. Simply put, the model learns by being run over and over whilst
trying out different sequential decisions with the goal of finding the most optimal way to
reach a desired outcome, learning from its mistakes in the process through environmental
feedback in the form of either rewards or penalties. It doesn’t truly have any input data
to speak of, unlike the previous learning methods; instead, reinforcement learning operates
solely based on interaction with the environment. This rids the method of a serious lim-
itation, and as such, its applications are widespread, from things like training a machine
to play computer games on a professional level to tasks as big as traffic control. These
use-cases broaden even more when one takes into consideration the ability to combine this
method with deep learning, into what we call Deep reinforcement learning, which applies
deep learning to reinforcement learning problems.

3.4.1 Generalization, Overfitting and Underfitting

Training a machine learning model can throw some notably large snags under our feet, and
we of course try our best to avoid tripping on them. One such problem stems from the fact
that we train our model on training data, which is fine, but the broad goal of our training is
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not that the model works well on just said training data, but that it is capable of doing the
same on data it hasn’t seen before [21]. In other words, we want to know how well a model
can learn underlying patterns in the data it was given and transfer this knowledge into
recognizing these patterns in new, unexplored data; we call this process Generalization.

This is where we may encounter problems. If we overtrain the algorithm on the training
set, we risk it capturing noise or irrelevant patterns which fits the model too closely to the
training data, rendering it incapable of generalizing—we call this Overfitting. The inverse
can happen as well, meaning training a model with data of inadequate amount or quality
so that it essentially learns very little, if anything at all. This is known as Underfitting.
Overfitting and underfitting will not be noticeable until tested on new data (a test consisting
of examples the model hasn’t yet seen), but by that time the trained model is already pretty
much useless to us.

Of course, techniques to improve generalization by reducing overfitting and underfitting
exist, but there isn’t a way to completely erase the problems; at least, not as of now, if
there ever will be. ”Good models will probably still overfit at least a little bit, and if we
try to eliminate overfitting, i.e. eliminate the gap between training and test error, we’ll
probably cripple our model so that it doesn’t learn anything at all [21].“

3.5 Deep Learning
Deep learning is a learning paradigm used with increasing enthusiasm in modern times,
particularly so thanks to advancements in hardware technologies (as has been more thor-
oughly explained before: 3.2). It presents itself as a specialized and advanced technique
within the broader field of artificial intelligence, more specifically one that builds upon the
foundation of neural networks. In this hierarchical dependency within the field of artificial
intelligence (as illustrated in Figure 3.5), each concept builds upon the previous one to
achieve increasingly sophisticated levels of intelligence and capability—and deep learning
represents the pinnacle of this progression.

Figure 3.5: Hierarchical dependency within the field of artificial intelligence
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As a part of a larger family of machine learning techniques that leverage data represen-
tations as a basis for the training of models, deep learning stands out primarily thanks to its
usage of artificial neural networks as its primary computational network. They use neural
networks with many hidden layers (a fact based on which they are actually called ”deep“),
for their capability to learn complex mappings between inputs and outputs through a pro-
cess known as backpropagation. This practice allows them to automatically—by which we
mean without explicit human intervention or manual feature engineering—learn hierarchi-
cal representations of data. It was one of the first, and remains one of the most effective,
learning techniques capable of training directly on raw data [16]. This, along with the
ability to handle large, high-dimensional datasets with complex patterns, is deep learning’s
forte.

The advantages deep learning brings to the table are only expanded in combination
with other learning methods; a practice that isn’t all that uncommon. Particularly strong,
and widely used in tasks regarding computer vision and image classification, is its pairing
with convolutional neural networks, where deep learning enables the network to handle
large datasets and learn from raw data directly. Among the wide variety of combinations
also stand out two others: first, with recurrent neural networks, where deep learning is
used to enrich the network’s capability to capture long-range dependencies in sequential
data, and second, the combination of deep learning with reinforcement learning, fixing
problems which may arise when the latter has to learn complex behaviours autonomously,
especially in environments where it’s challenging or impractical to provide explicit guidance
or supervision to the model.

Although the whole topic of deep learning may seem quite daunting to the newcomer,
especially so if they’re looking for a way to implement a model themselves, there exist
deep learning libraries, such as TensorFlow and PyTorch, which provide pre-built functions
and modules designed for efficient and relatively easy deployment of a deep neural network,
including building the model and training it, making deep learning accessible even to people
new to programming. Python, which is the language used by the aforementioned libraries,
is also considered one of the easiest and most efficient programming languages one can start
their programming journey with. Even better, PyTorch will be used in this thesis to build
our models, meaning a basis for starting out will be provided as well.
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Chapter 4

The Trifecta of Dynamic Systems
Simulation - Conway’s Game of
Life and its Evolutionary
Continuum to Advanced Iterations

Cellular automata and machine learning are both subjects holding a firm position at the
forefront of computational exploration; even more so is their fusion, for the combination of
cellular automata’s relative conceptual simplicity at next to no expense to its capabilities
as far as simulating complex systems goes, and the adaptive, data-driven prowess of ma-
chine learning, promises unprecedented potential in understanding and modeling intricate
phenomena.

This convergence, however, fascinating as it is, has unfortunately not been explored very
extensively as it isn’t particularly easy to pick up. To be able to do so, we will progress
through three individual cellular automata models of rising complexity so as to build our
foundational understanding of the subject at hand—starting with the simple Conway’s
Game of Life, from whence we will advance on to SmoothLife, and afterwards, finally, we
will wander into the intricate landscapes of Lenia. It is in the latter two that we will seek
to incorporate machine learning into the ordeal. In doing so, we will present why these
advanced versions of cellular automata were carefully chosen as the focus of investigation
for this work.

The trifecta of computational models mentioned above starts with Conway’s Game
of Life, which is celebrated as one of the most important stepping stones in cellular au-
tomata history. The model’s strict adherence to simple rules, binary state transitions and
synchronous updates by the use of discrete time steps make its implementation relatively
simple, whilst still proving it to be quite the efficient tool in simulating complex behaviours.

Building on the foundation laid down by Conway’s Game of Life, SmoothLife serves
as an organic evolution from the aforementioned model, augmenting it trifold; first by
switching from the binary nature of states to continuous, second—as a corollary of the
previous change—by utilizing a smoother transition function, and lastly by shaking up
the standards established in neighbourhood definitions through the application of circular
convolution over a neighbourhood in the form of a radius.

As part of this ongoing process, Lenia represents the cutting edge of this evolutionary
progression (especially as far as simulating natural systems goes) as it implements all the
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upgrades mentioned with SmoothLife, while also introducing asynchronous updates over
continuous time, ridding us of the strictness of the discrete time step concept.

This chapter’s goal is to provide an analysis of all three models and machine learning
techniques, as well as present the results of experiments and observations found whilst
working on their implementation and, primarily, integration of machine learning. Please
note that any code samples shown henceforth are simply to serve as a showcase of the general
way and steps to take in order to implement these models in PyTorch, mainly to provide
basic knowledge of PyTorch functions together with insight of how the implementation itself
was approached, and as such our goal won’t be to create complete and runnable scripts.
Should you want that, please refer to the fully working scripts enclosed with this thesis
instead.

4.1 Python & PyTorch
The programming language chosen for the purposes of this thesis is Python, for which the
reasons are aplenty. First and foremost, Python is generally agreed upon to be one of
the easiest programming languages to pick up as a non-programmer or programmer alike,
whilst offering a wide range of libraries handling some basic or even complex functionalities
that can make our lives significantly easier and trivialize even seemingly challenging tasks.
Which brings us to another point; one such library is PyTorch—an open-source deep learn-
ing framework containing tools specifically designed for handling various machine learning
related tasks, from building a neural network model and training it, to optimizers, loss func-
tions and supporting GPU acceleration. Among the most important tools PyTorch offers,
and which we will be using a lot throughout our implementations, are torch.tensor, which
represents multi-dimensional arrays or tensors, torch.nn for building neural networks and
various layers, and torch.fft, which provides functions for fast Fourier transforms and
signal processing.

To install Python as well as PyTorch, you can follow the official PyTorch guide; however,
for brevity purposes, a tutorial as concise as possible will be provided in the next subsection.
Keep in mind that the practices that will be used aren’t future-proof, and as such may
become obsolete in the future.

4.1.1 Installing Python and PyTorch

First task to tackle is installing Python on our computer, whilst keeping in mind that the
ultimate goal is to use it with PyTorch. This means we have to ensure compatibility issues
don’t arise. For this, we can refer to PyTorch’s Release Compatibility Matrix found at the
start of their official RELEASE documentation. Once the preferred version of Python is
determined, we can go and download it from the official Python website, install it as per
the included instructions (it’s advised to check the box to ”Add Python to PATH“, so you
avoid having to do so afterwards) and then do the same with PyTorch. Once again, make
sure both the Python and PyTorch versions are compatible. Whether they’ve been installed
correctly can be confirmed using the following commands:

python --version

pip list
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4.1.2 Installing CUDA (+ cuDNN)

Once Python and PyTorch are running, we can also take a look at CUDA (Compute
Unified Device Architecture), which is a parallel computing platform enabling the use of
NVIDIA GPUs for general-purpose computing tasks, meaning various computationally in-
tensive workloads can be redirected from CPU to GPU. This accelerates the entire process
exponentially, which comes in very handy in machine learning (along with others), par-
ticularly so for the training process as it includes extensive computation and as such can
be quite lengthy. To install CUDA, one needs to first ensure that their GPU supports it,
meaning that it is a compatible NVIDIA GPU. This can be done using a simple terminal
command:

Windows: nvidia-smi

Linux/Mac: lspci | grep -i nvidia

Running one of the disclosed commands should return details about the NVIDIA GPU
on our system; if it does, we can be sure that it is compatible, and may proceed to down-
loading the NVIDIA CUDA Toolkit and installing it. Once again, we have to make sure
that we get the correct CUDA version, compatible with our PyTorch setup. Should an
older version of CUDA be needed, we can refer to the archive of previous CUDA releases
instead. Go through the regular setup, then check whether it had been installed correctly
by running a simple Python script:

import torch

#check if CUDA is available
if torch.cuda.is_available():

print("CUDA is available.")
else:

print("CUDA is not available.")

Last but not least, we have the option to also get cuDNN (CUDA Deep Neural Network),
which is a library designed to optimize and further accelearte the deep learning-oriented
computing tasks handled by CUDA, by introducing more efficient implementations for its
common neural network operations, primarily so convolutions and activation functions.
cuDNN is entirely optional, but it is nevertheless a valuable asset to add to our repertoire.
Should you choose to get it as well, simply go to the cuDNN download page and proceed
from there, similarly to the previous CUDA installation. Once again, a successful cuDNN
installation can be confirmed by a simple Python script:

import torch

#check if cuDNN is available
if torch.backends.cudnn.is_available:

print("cuDNN is available.")
else:

print("cuDNN is not available.")
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4.2 Conway’s Game of Life
Often presented as one of the first important milestones in cellular automata development,
Conway’s Game of Life aims to simulate emergent complexity similar to that which can ob-
served in biological systems. For our purposes, this automaton will serve as the foundational
basis of information upon which the other two models will be built.

4.2.1 Basics

Conway’s Game of Life is a two-dimensional cellular automaton with binary cell states and a
condition-based rule set. This means that it operates on a two-dimensional grid populated
by cells which, at all times, can only be in either one of two states—dead (respectively
labeled ’0’) and alive (’1’). The system evolves over discrete time steps, and evolution of
cells is based on a rule set consisting of four fundamental conditional rules:

• If a live cell has two or three live neighbours, it stays alive.

• If a live cell has fewer than two live neighbours, it dies (underpopulation).

• If a live cell has more than three live neighbours, it dies (overpopulation).

• If a dead cell has exactly three live neighbours, it becomes a live cell (reproduction).

In terms of neighbourhood, the model isn’t strict as to the preferred configuration,
but as the Moore neighbourhood allows for interactions with a large selection of cells and
ergo introduces more options, it should come as no surprise that it tends to result in
more complex and varied patterns. For this very reason, we will choose to go with this
configuration.

4.2.2 Patterns

Conway’s Game of Life is well-known for producing many different types of patterns. The
emergence of these patterns is a result of the interplay between the initial configuration of
cells and the application of the four fundamental rules governing the evolution of the cellular
automaton. We classify the patterns based on their behaviour into four main categories:

Still lifes

Still lifes are stable configurations that do not change from generation to generation. Basi-
cally, they are a pattern which remains static in between time steps, at least unless another
pattern collides with them. There is a handful of Still life patterns which occur in Conway’s
Game of Life, but the most common include the Block, the Tub, the Beehive, the Loaf and
the Boat.
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Figure 4.1: GoL: Still life patterns examples

Oscillators

Oscillators are patterns that repeat their configuration after a certain number of generations,
while retaining their initial position. They showcase the periodic nature of the Game of
Life dynamics. Examples of oscillators include the Blinker and the Beacon, which oscillate
between two states, and the Pulsar, which oscillates between three states.

Figure 4.2: GoL: Oscillator patterns examples

Spaceships

One of the most intriguing aspects of Conway’s Game of Life is the existence of moving
patterns. Gliders are configurations that translate themselves across the grid while main-
taining their overall shape. These dynamic patterns illustrate the potential for complexity
and movement within the cellular automaton. While these patterns differ drastically in
terms of size and number of oscillations, we will showcase them on the most basic of
them—the Glider.
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Figure 4.3: GoL: Spaceships example - glider

In summary, the richness of Conway’s Game of Life lies in its ability to generate an
astonishing variety of patterns, ranging from static and stable to dynamic and complex.
These patterns not only provide aesthetic appeal but also serve as a testament to the
intricate and unpredictable nature of emergent phenomena in cellular automata.

4.2.3 Simple Implementation

Implementing Conway’s Game of Life is relatively simple, but a necessary stepping stone if
one wants to delve into programming more progressive types of simulations. This subsec-
tion provides a basic analysis of the process, meaning building the simulation components,
implementing Conway’s Game of Life rules and incorporating everything into the forward
pass, all using primarily PyTorch functions.

Definitions

First, we need to define our basic components 2.2.1; that means we have to: create a grid
of cells, set said cells to binary states, and create a neighbourhood (in our case Moore).

1 #create a randomly populated grid of cells, where low = smallest generated number = 0,
2 #high = one above the highest generated number = 2, and (height, width) are dimensions
3 #of the grid
4 grid = torch.randint(low, high, (height, width))
5

6 #create a convolution filter (Moore neighbourhood)
7 Moore_filter = torch.tensor([[1, 1, 1],
8 [1, 0, 1],
9 [1, 1, 1]])

Forward Pass

Next, we have to implement the forward pass, which will be called at each time step. Its
purpose is to serve as a function that can be called on each given time step to update the
state of each cell based on the number of its alive neighbours, as per the rules of Conway’s
Game of Life.

We will use the previously defined grid and convolution filter to feed into PyTorch’s
convolution function. Convolution basically takes in the original grid and a filter, then uses
element-wise multiplication followed by summation to produce an output; which is perfect
in our case, as this means convolution will basically create a new grid where each cell will
contain a value corresponding to the number of alive neighbours in the kernel (our Moore
neighbourhood) around that cell.
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1 #obtain count of alive neighbours for each individual cell using convolution
2 alive_neighbours_cnt = torch.nn.functional.conv2d(grid.unsqueeze(0),
3 Moore_filter, padding=1)

Once we have obtained the count of alive neighbours, nothing’s stopping us from im-
plementing the Conway’s Game of Life rules 4.2.1. Note that, due to the nature of how
we will update the grid (creating a new grid to compute on), we will only really need to
compute on old grid and fill the new one with cells which should stay/become alive. This
means that, basically, we will only need to implement rules #1 and #4).

1 #convert self.grid into a new tensor where each value is represented as a byte to
2 #ensure that all elements in self.grid strictly conform to being 0 or 1 to avoid
3 #unexpected behavior
4 alive = self.grid.byte()
5

6 #implement Rule #1 (so, check if a cell is alive and has 2 or 3 alive neighbours)
7 new_grid = (alive & (torch.eq(alive_neighbours_cnt.squeeze(), 2) |
8 torch.eq(alive_neighbours_cnt.squeeze(), 3)))
9 #implement Rule #4 (so, check if a cell is dead and has 3 alive neighbours)

10 new_grid += (~alive & torch.eq(alive_neighbours_cnt.squeeze(), 3))
11

12 #update grid, squeeze() it to remove any added dimensions (make it a 3x3 tensor again)
13 grid = new_grid.clone().squeeze()

4.3 SmoothLife
SmoothLife builds upon the foundation laid by Conway’s Game of Life and seeks to push
it to greater heights. Its idea was first proposed by Stephan Rafler in his paper titled

”Generalization of Conway’s ”Game of Life” to a continuous domain - SmoothLife“ [37],
and it is precisely this paper we will use as a base for our study and, consequently, imple-
mentation.

4.3.1 Advancements to Conway’s Game of Life

SmoothLife takes all that made Conway’s Game of Life, seeking to create a more continuous
and therefore natural experience. It does so primarily through the combination of three
things:

1. By getting rid of the binary nature of states, instead calculating state as a float valued
between 0.0 and 1.0.

2. As a consequence of the previous change, by introducing a smoother transition func-
tion, which only serves to further augment the visual appeal and complexity of the
simulation.

3. By reforming the concept of a neighbourhood, introducing the application of circular
convolution over a certain radius around each cell.

Additionally, SmoothLife incorporates a variety of parameters to control aspects like birth,
survival, and range, providing a more flexible framework for exploring emergent behaviours.
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4.3.2 Mathematical Background

The previous points make it quite clear that SmoothLife requires a different strategy from
the mathematical standpoint; while it still utilizes a condition-based rule set, it requires a
more nuanced and continuous approach due to the nature of a continuous state space.

Inner and Outer Fillings

In his paper, Rafler describes the mathematical backbone of his discovery as thus: the
proposed model allows cells to have a finite size, typically circular (disk-shaped), instead
of infinitesimal points, which then allows us to determine the next state of the cell by ”the
filling of the circle around that point [37]“ as well as the (ring-shaped) neighbourhood.
We can think of them as one big circle, which is divided into two key quantities: the inner
circle (cell’s filling), and the outer ring (neighbourhood’s filling). The typical neighbourhood
configuration in SmoothLife involves setting the outer radius to three times the inner radius,
creating a 3-cell-wide neighborhood ring.

• Inner Filling (𝑚): The inner filling represents the filling of a circular cell, calculated
as the integral of the state function 𝑓(𝑥⃗, 𝑡) over a disk with radius 𝑟𝑖:

𝑚 =
1

𝑀

∫︁
|𝑢⃗|<𝑟𝑖

𝑓(𝑥⃗+ 𝑢⃗, 𝑡) 𝑑𝑢⃗

where 𝑀 is a normalization factor ensuring that 𝑚 ranges from 0 to 1.

• Outer Filling (𝑛): The outer filling represents the filling of a ring-shaped neighbor-
hood, calculated as the integral of the state function over a ring with inner radius 𝑟𝑖
and outer radius 𝑟𝑎:

𝑛 =
1

𝑁

∫︁
𝑟𝑖<|𝑢⃗|<𝑟𝑎

𝑓(𝑥⃗+ 𝑢⃗, 𝑡) 𝑑𝑢⃗

Similarly, 𝑁 is a normalization factor that keeps 𝑛 within the range [0, 1].

Transition Function

In the original Game of Life, the state of a cell in the next time-step depends on its current
state and the number of live neighbors. In SmoothLife, the state of a cell at position 𝑥⃗ in
the next time-step is determined by a transition function 𝑠(𝑛,𝑚). This function takes the
inner and outer fillings and maps them to a new state, defined on the interval [0, 1]× [0, 1]
with output also in the range [0, 1].

4.3.3 Implementation

Compared to Conway’s Game of Life, SmoothLife obviously brings with added challenges;
however, if we adhere to the rules set out by Rafler and make use of the tools that were
presented to us, our job will be much simpler.

Definitions

We will, again, need to define the most basic structures and values for our model. Some we
will have to determine ourselves, while others can be directly taken from our source material,
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at the end of Rafler’s paper; namely, the birth and death intervals, sigmoid widths, and
inner and outer radii.

1 #set the dimensions of the grid
2 height = 50
3 width = 50
4 #create a grid---it will need a more complex way of initialization, more on that later
5 grid = torch.zeros((height, width))
6

7 #values taken out of Rafler’s paper
8 birth_interval = (0.28, 0.37)
9 death_interval = (0.27, 0.45)

10 sigmoid_widths = (0.03, 0.15)
11 inner_radius = 6.0
12 outer_radius_multiplier = 3.0

Grid initialization

First, we have to initialize a grid. However, this time, simply using torch.rand or any of
its variants won’t do; as already mentioned, cells in SmoothLife aren’t simply a point on
the grid, but instead they are presumed to be of a circular shape. As such, we have to take
the idea of what torch.rand does and mold it to our situation. We can do so by setting a
radius for the cells, and then create random ”patches“ in the general shape of these cells on
the grid. In other words, we have to fill the grid as we did previously with Game of Life,
but instead of filling one point at a time, we will be filling a bigger ”square“ each time.
This code showcases the general idea of what we’re trying to achieve by this:

1 #set the cell radius (example)
2 inner_radius = 6
3

4 grid_area = height * width
5 #inner radius = size of patch, so for example inner radius = 6 is a 6x6 patch,
6 #meaning the area of the patch is 6^2
7 patch_area = inner_radius ** 2
8 #cover 30% of the grid space
9 coverage_goal = 0.3

10 #calculate how many patches of 1s to create
11 estimated_patches_cnt = (grid_area / patch_area) * coverage_goal
12 #round the final number of patches up
13 patches_cnt = math.ceil(estimated_patches_cnt)
14

15 for _ in range(patches_cnt):
16 #get a random starting point for the patch
17 start_row = torch.randint(0, height - int(inner_radius), (1,))
18 start_col = torch.randint(0, width - int(inner_radius), (1,))
19 #calculate the ending point for the patch
20 end_row = start_row + inner_radius
21 end_col = start_col + inner_radius
22

23 #fill the patch on the grid
24 grid[start_row:end_row, start_col:end_col] = 1

41



Convolution

Due to the direction in which we’re taking our simulation, by which we primarily refer to
how forward pass will be defined, we actually need to calculate two separate representations
of the smoothed inner filling (real_M) and outer filling (real_N) in the spatial domain. This
raises the question of the best method to realise this, and whether it can be achieved using
already available functions. Personal experimentation proved that things weren’t so simple,
and the readily available functionalities were hard to mold into working for our purpose;
that is, until stumbling upon an interesting article detailing a way to achieve precisely
what we need [33]. As such, a new plan was devised, and the result would become our own
personalised convolution function designed specifically for our purposes. First, let us define
a function that will create a circular mask.

1 def generate_circle(size, radius):
2 """
3 Generate a circular mask with a given radius
4 """
5 #calculate coordinates
6 y_coord, x_coord = torch.meshgrid(torch.arange(size[0]), torch.arange(size[1]),
7 indexing=’ij’)
8 #compute distances from the center
9 distances = torch.sqrt((x_coord - size[1] / 2) ** 2 +

10 (y_coord - size[0] / 2) ** 2)
11

12 #create circle with 1s inside the radius and 0s outside
13 circle = (distances <= radius).float()
14

15 #roll the circle, centering it at extremes (this is better for convolution)
16 circle = torch.roll(circle, size[0] // 2, dims=0)
17 circle = torch.roll(circle, size[1] // 2, dims=1)
18

19 #result will be a 2D grid with a circle drawn onto it with 1s
20 return circle

Next, we will use this function to craft our shapes. The idea is to create two circles;
one bigger and another smaller one. The smaller one will be our inner filling, and then, by
subtracting it from the bigger one, we will also get an area equal to our ring. To prepare
both areas for convolution, we will also transform them from the spatial domain to the
frequency domain using Fast Fourier Transform. To do so, we will first have to normalize
the circles by dividing them by their respective sums using torch.sum, to ensure the sum
of all elements in each circle is 1. This is important for consistency while using operations
like convolution. We also can’t forget to cut out the ”ring“ shape for our outer area by
subtracting the smaller circle from the bigger circle. Last but not least, we finally apply
Fast Fourier Transform.
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1 #create two circles; the outer and inner one
2 smaller_circle = generate_circle(size, inner_radius)
3 bigger_circle = generate_circle(size, inner_radius * outer_radius_multiplier)
4

5 #create the final areas
6 #normalize the circles using torch.sum, then apply fft to transform them into the
7 #frequency domain. Create the "ring" outer area by subtracting the smaller circle
8 #from the bigger one
9 inner_area = torch.fft.fft2(smaller_circle / torch.sum(smaller_circle))

10 outer_area = torch.fft.fft2((bigger_circle - smaller_circle) /
11 torch.sum(bigger_circle - smaller_circle))

Forward Pass

Here, with our convolution ready, we can keep strictly to our blueprint, meaning that we
can define the transition function as:

𝑠(𝑛,𝑚) = 𝜎2(𝑛, 𝜎𝑚(𝑏1, 𝑑1,𝑚), 𝜎𝑚(𝑏2, 𝑑2,𝑚)) (4.1)

Where the sigmoid functions (for smoothing) are:

𝜎1(𝑥, 𝑎) =
1

1 + exp(−(𝑥− 𝑎)4/𝛼)
(4.2)

𝜎2(𝑥, 𝑎, 𝑏) = 𝜎1(𝑥, 𝑎) (1− 𝜎1(𝑥, 𝑏)) (4.3)

𝜎𝑚(𝑥, 𝑦,𝑚) = 𝑥(1− 𝜎1(𝑚, 0.5)) + 𝑦 𝜎1(𝑚, 0.5) (4.4)

In short, 𝜎1 calculates the current cell’s degree of being alive (creates smooth transition
from 0 to 1), which helps avoid abrupt changes (anti-aliasing). 𝜎𝑚 determines the thresholds
through linear interpolation between x and y, controlled by m. 𝜎2 returns a high output if
x is between a and b, and is used by the main function 𝑠(𝑛,𝑚) to determine whether n is
between two thresholds created by 𝜎𝑚. Programatically, we can simply copy what’s laying
in front of us:
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1 def s(n, m):
2 new_aliveness = self.sigma_2(n, self.sigma_m(self.birth_low, self.death_low, m),
3 self.sigma_m(self.birth_high, self.death_high, m))
4

5 #we clamp the result here to make sure values stay between 0 and 1
6 return torch.clamp(new_aliveness, 0, 1)
7

8 def sigma_1(x, a, filling):
9 #x == m | n

10 #a == 0.5 | thresholds (sigma_m results)
11 #filling == self.N | self.M
12 return (1.0 / (1.0 + torch.exp(-4.0 / filling * (x - a))))
13

14 def sigma_2(x, a, b):
15 #x == n
16 #a, b == thresholds (sigma_m results)
17 return (self.sigma_1(x, a, self.inner_filling) *
18 (1.0 - self.sigma_1(x, b, self.inner_filling)))
19

20 def sigma_m(x, y, m):
21 #x == self.birth_high|low
22 #y == self.death_high|low
23 #m == m
24 return (x * (1.0 - self.sigma_1(m, 0.5, self.outer_filling)) +
25 y * self.sigma_1(m, 0.5, self.outer_filling))

Past this point, the forward pass is relatively simple. We first convert our grid from
the spatial domain to the frequency domain through Fast Fourier Transform, in order to
perform convolution in a more computationally efficient manner. Then do the convolution
itself (by simply multiplying converted grid with the previously prepared convolution masks,
the ”circle“ and ”ring“ ones), using Inverse Fast Fourier Transform to convert our grid back
into the spatial domain and torch.real to extract the real part. Once that step is done,
all that’s left to do is to simply apply the SmoothLife rules with smoothing.

1 #convert grid from the spatial domain to the frequency domain for convolution
2 grid_transformed = torch.fft.fft2(grid)
3 #do convolution (simply through multiplication), using Inverse Fast Fourier Transform
4 #to convert grid back into the spatial domain and torch.real to extract the real part
5 M_real = torch.real(torch.fft.ifft2(grid_transformed * inner_area))
6 N_real = torch.real(torch.fft.ifft2(grid_transformed * outer_area))
7

8 #apply SmoothLife rules with sigmoid smoothing
9 grid = s(N_real, M_real)

4.4 Lenia
Let me preface this section by relaying one important message—compared to the previous
models, Lenia is somewhat hard to fully grasp. On paper, this model is relatively simple if
we already possess knowledge of the inner workings delegating SmoothLife’s functionality;
however, the truth is, the changes Lenia introduces into the mix are severe enough to
warrant adjustments in nearly every part of the overall process, and fully grasping the
mathematical background is quite the feat in of itself. Luckily, all of these are fully detailed
in research papers—by people behind Lenia as well as others—that can be found on Lenia’s
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official site. For our purposes, we will mainly work with the original paper by Bert Wang-
Chak Chan [12]. It is still a lot of information, but an effort will be expended to try making
it as digestible as possible.

4.4.1 Advancements to SmoothLife

SmoothLife is already capable of wonderful things; capturing complex behaviours and dy-
namics, studying emergent properties, all whilst allowing for more fluid and organic-like
patterns compared to traditional cellular automata. That said, however, it isn’t without its
constraints. Lenia strives to rid us of these constraints, providing more options for tuning
and, in turn, makes it more adept at simulating behaviours which are more complex and
life-like.

1. SmoothLife’s radial pattern for its kernel is rather straightforward and as such nigh
impossible to customize. Lenia uses a more generalised structure, making it more
adjustable.

2. SmoothLife generally uses smaller amount of parameters to decide how cell states
change, while the way Lenia’s growth and convolution processes are set up allows for
more fine-tuning.

3. In regards to the previous point, SmoothLife’s basic setup might also result in a fewer
types of patterns and behaviours, compared to what Lenia’s flexible approach has to
offer.

4. Where SmoothLife usually uses a simple transformation function only utilizing a single
sigmoid curve, Lenia’s transformation function makes use of Lenia’s flexibility and,
though harder to design, enables more intricate patterns and dynamics through this
added complexity.

4.4.2 Mathematical Background

A comprehensive mathematical definition of Lenia is provided in the original paper by Bert
Wang-Chak Chan [12]. Lenia’s mathematical structure revolves around a combination
of convolution, kernel functions, and transformation functions, set in a continuous state
space; here’s a high-level summary of the primary mathematical components, as per the
aforementioned paper:

Discrete and Continuous Lenia

Lenia has two primary forms: discrete Lenia and continuous Lenia. Discrete Lenia enhances
the concepts of traditional cellular automata, by extending state values from 𝑥 ∈ {0, 1} to
𝑥 ∈< 0, 𝑃 >, 𝑃 ∈ Z, as well as describing the neighbourhood as a disk-shaped region of
size defined by radius 𝑅.

Continuous Lenia is the hypothetical limit where the discrete values and discrete space
of discrete Lenia become continuous, allowing cells to have any value between 0 and 1 and
to exist in a continuous space.
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Neighbourhood

Lenia’s neighbourhood is defined as a set of cells within a certain radius 𝑅 from a central
cell, mathematically described as:

𝒩 = {x ∈ ℒ : ‖x‖2 ≤ 𝑅} (4.5)

Convolution

Here, the formulas vary for discrete and continuous Lenia. For the former, the convolution
at a point 𝑥 to yield the potential distribution 𝑈 𝑡 is defined as:

U𝑡(x) = K *A𝑡(x) =
∑︁
𝑛∈𝒩

K(n)A𝑡(x+ n) ∆𝑥2 (4.6)

Whereas in the latter case, the convolution is given by:

U𝑡(x) = K *A𝑡(x) =

∫︁
𝑛∈𝒩

K(n)A𝑡(x+ n) d𝑥2 (4.7)

where A𝑡(𝑥) represents the state of the grid at time 𝑡 and K(𝑛) is the kernel function
that defines the influence of neighbors.

Kernel Structure

The kernel K is constructed by kernel core 𝐾𝐶 : [0, 1] → [0, 1] which determines its detailed

”texture“, and kernel shell 𝐾𝑆 : [0, 1] → [0, 1] which determines its overall ”skeleton“ [12].”In other words, kernel core defines the basic shape of the kernel. It is sually a unimodal
function with a peak in the middle, and as such can take on various forms, i.e.:

𝐾𝐶(𝑟) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

(︂
𝛼− 𝛼

4𝑟(1− 𝑟)

)︂
exponential, 𝛼 = 4

(4𝑟(1− 𝑟))𝛼 polynomial, 𝛼 = 4

1[ 1
4
, 3
4
](𝑟) rectangular

. . . or others

(4.8)

The kernel shell creates concentric rings based on the core, allowing for more complex
structures. It is defined as:

𝐾𝑆(𝑟;𝛽) = 𝛽⌊𝐵𝑟⌋𝐾𝐶(𝐵𝑟 mod 1) (4.9)

At the end, the kernel also undergoes normalization to ensure the convolution results
remain within [0, 1]:

K(n) =
𝐾𝑆(‖n‖2)

|𝐾𝑆 |
(4.10)

Where the normalization factor |KS| is given as |𝐾𝑆 | =
∑︀

𝒩 𝐾𝑆 ∆𝑥2 for discrete Lenia, or∫︀
𝒩 𝐾𝑆 d𝑥2 for continuous Lenia.
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Growth Mapping

The growth mapping function determines how the potential U𝑡(𝑥) is transformed into a
growth value. The function can take various forms:

𝐺(𝑢;𝜇, 𝜎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 exp

(︂
−(𝑢− 𝜇)2

2𝜎2

)︂
− 1 exponential

2 1[𝜇±3𝜎](𝑢)

(︂
1− (𝑢− 𝜇)2

9𝜎2

)︂𝛼

− 1 polynomial, 𝛼 = 4

2 1[𝜇±𝜎](𝑢)− 1 rectangular
. . . or others

(4.11)

Update Rule

New state is calculated by adding a fraction ∆𝑡 (d𝑡 in CL) of the growth and clipping to
ensure it remains within the range [0, 1]:

A𝑡+Δ𝑡(x) =
[︀
A𝑡(x) + ∆𝑡 G𝑡(x)

]︀1
0

(4.12)

4.4.3 Implementation

The Leania implementation described in this section will be based on the existing imple-
mentations [11]. For the purpose of this section, let us define them for the most basic
application—with a randomized grid—which will simply showcase continuous space influ-
ence.

Definitions

First, let’s define the basic Lenia parameters. These parameters are highly malleable, and
their values can be changed for different applications and outcomes.

1 #set the dimensions of the grid
2 height = 64
3 width = 64
4 #calculate middle of the grid, rounded down. This will come in handy later
5 mid = width // 2
6 #create grid, a simply randomized one will do
7 grid = torch.rand(height, width)
8

9 #scale is kind of useless for us as of now, but let’s keep it in for the future
10 scale = 1
11 #define radius of kernel
12 kernel_radius = 20 * scale
13 #frequency of cell updates
14 update_frequency = 10
15 #define the center of the Gaussian distribution = where the kernel or growth ’
16 #function has its maximum value
17 mean = 0.135
18 #standard deviation, or spread/width of the Gaussian curve
19 #(smaller spread value = narrower peak)
20 spread = 0.015
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Now we will also define some functions and steps that we will generally keep as they
are. These specify main functionalities and objectives of Lenia’s framework.

1 #function to create a kernel for convolution where kernel has a smooth distribution,
2 #returns a Gaussian (or normal) distribution, centered at "m", with a spread defined
3 #by "s"
4 def bell(x, m, s):
5 return np.exp(-((x - m) / s) ** 2 / 2)
6

7 #determines how cells in the cellular automaton should grow or shrink based on the
8 #"potential" derived from convolution with the kernel
9 def growth(U):

10 return bell(U, mean, spread) * 2 - 1
11

12 #now, define the kernel and prepare it for convolution by transforming it into
13 #the frequency domain using the Fast Fourier Transform
14 def create_kernel():
15 #create two 2D grid tensors representing the x and y coordinates
16 x_indices, y_indices = torch.meshgrid(torch.arange(-mid, mid),
17 torch.arange(-mid, mid), indexing=’ij’)
18 #compute the Euclidean distance from the origin for each point on the grid
19 distances = torch.sqrt(x_indices**2 + y_indices**2) / kernel_radius
20 #create the kernel
21 kernel = (distances < 1) * bell(distances, 0.5, 0.15)
22

23 #pre-calculate FFT of kernel
24 fK = torch.fft.fftn(torch.fft.fftshift(kernel.clone().detach() /
25 torch.sum(kernel.clone().detach())))
26

27 #return the kernel
28 return fK

Forward Pass

We have prepared most of what we need to execute forward pass, and as such will just
have to utilize it. We will also incorporate asynchronicity here, in the form of random
independent scheme 2.4.3 (we will create a mask where each cell will have a certain chance
to be updated).
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1 #call the previously defined function to create the kernel
2 fK = create_kernel()
3

4 #randomly determine whether each cell should be updated or not
5 #cells with values > 0.3 will be updated (30% chance)
6 update_mask = torch.rand_like(grid) > 0.3
7

8 #compute local neighborhood using convolution
9 #first compute the FFT of grid, then multiply it with pre-prepared kernel in the

10 #frequency domain and transform it back to the spatial domain using inverse FFT
11 U_fft = torch.fft.fftn(grid)
12 U_fft = torch.fft.ifftn(U_fft * fK)
13 #now get the real part
14 U = torch.real(U_fft)
15

16 #apply rules, update only the cells where update_mask is True
17 grid[update_mask] = torch.clamp(grid[update_mask] + 1 /
18 update_frequency * growth(U)[update_mask], 0, 1)

4.5 Machine Learning
By this point, we have successfully defined our foundational structure for both the math-
ematical and programmatic aspects of all three models, through which we can implement
them without any bigger problems. Our last step is, hence, to finally also delve into machine
learning and its applications on the implemented models—more specifically the latter two.
In this section, we will implement a machine learning model, train it on a data set, then
employ and integrate into the aforementioned cellular automata models.

4.5.1 Implementing a Neural Network model

For our machine learning model, we will be creating a simple feed-forward neural network
with one hidden layer using PyTorch’s nn module. This neural network will be used to
predict future state of the simulation based on an input, after which this functionality will
be applied to try and prevent the simulation from dying prematurely, or simply to make it
more “alive”, so to speak.

Defining the Predictor

While defining the Predictor neural network, we will mainly be working with the official
PyTorch tutorial for its nn module [13] and modifying it. We will be using the ReLU acti-
vation function over the other options for the single hidden layer to introduce nonlinearity
whilst maintaining faster computation due to ReLU’s simplicity.
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1 import torch
2 import torch.nn as nn
3

4 #future state predictor neural network model
5 class Future_state_predictor(nn.Module):
6 def __init__(self, input_size, hidden_size, output_size):
7 super(Future_state_predictor, self).__init__()
8 #define the input layer, with the expected size of data input as well as
9 #the size the hidden layer will expect as its input (so, input layer’s output)

10 self.fc1 = nn.Linear(input_size, hidden_size)
11 #define the hidden layers with a ReLU activation function
12 self.fc2 = nn.ReLU()
13 #define the output layer, with the expected size of input as well as the size
14 #of the data output
15 self.fc3 = nn.Linear(hidden_size, output_size)
16

17 def forward(self, x):
18 #simply pass the data input first through the input layer,
19 x = self.fc1(x)
20 #then the hidden layer (applying the ReLU activation function),
21 x = self.fc2(x)
22 #and lastly the output layer
23 x = self.fc3(x)
24

25 return x

Training the Predictor

Next step is to train our neural network on actual data. For this step, let’s create a new file
and implement our training there. Let us also assume that our cellular automata models
(SmoothLife and Lenia) are neatly packed in their own respective Python classes, called
CL_SmoothLife and CL_Lenia respectively, and both of them contain a function called
forward which manages their forward pass functionality. We will need to take these steps:

1. load the cellular automata model

2. define the predictor, optimizer and loss function

3. generate training data (inputs and targets) from the respective simulation

4. move model and data to GPU, if possible

5. stack train inputs and targets to lighten load

6. train the model (processing the data in mini-batches for faster processing)

7. save the trained model
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1 #load the cellular automata model (SmoothLife, for example)
2 model = CL_SmoothLife()
3

4 #define the predictor, as well as optimizer and loss function
5 predictor = Future_state_predictor(grid_size, 64, grid_size)
6 optimizer = optim.Adam(predictor.parameters(), lr=0.001)
7 criterion = nn.MSELoss()
8

9 #generate training data from the respective simulation
10 num_samples = 2000 #number of samples
11 train_inputs = []
12 train_targets = []
13 for h in range(num_samples):
14 current_state = model.grid.clone().detach()
15 model.grid = model.forward()
16 future_state = model.grid.clone().detach()
17

18 train_inputs.append(current_state.view(1, -1))
19 train_targets.append(future_state.view(1, -1))
20

21 #move model and data to GPU, if possible
22 if torch.cuda.is_available():
23 device = torch.device("cuda")
24 else:
25 device = torch.device("cpu")
26

27 #stack train inputs and targets (to lighten load)
28 train_inputs = torch.stack(train_inputs).to(device)
29 train_targets = torch.stack(train_targets).to(device)
30

31 #train the model for 300 epochs
32 for epoch in range(300):
33 optimizer.zero_grad()
34

35 #process data in mini-batches of 20 (for faster processing)
36 for i in range(0, len(train_inputs), 20):
37 batch_inputs = train_inputs[i:i + 20].view(20, -1)
38 batch_targets = train_targets[i:i + 20].view(20, -1)
39

40 #run inputs through neural network
41 outputs = predictor(batch_inputs)
42 #calculate current loss
43 loss = criterion(outputs, batch_targets)
44 loss.backward()
45

46 #if loss value went up, we’re encountered overfitting ==> stop training
47 if old_loss < loss.item() and old_loss != 0.0:
48 break
49 old_loss = loss.item()
50

51 #perform a single optimization step
52 optimizer.step()
53

54 #save the trained model
55 torch.save(predictor.state_dict(), "SmoothLife_predictor.pth")
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Loading the Predictor

While loading our saved predictor from inside the cellular automata implementations, we
mustn’t forget to set it to “testing” mode using .eval() (the default mode is “training”).

1 #initialize predictor
2 predictor = Future_state_predictor(input_size, 64, output_size)
3 #load pre-trained predictor
4 if torch.cuda.is_available():
5 predictor.load_state_dict(torch.load("SmoothLife_predictor.pth",
6 map_location=torch.device("cuda")))
7 else:
8 predictor.load_state_dict(torch.load("SmoothLife_predictor.pth",
9 map_location=torch.device("cpu")))

10 #put smooth predictor into eval mode
11 predictor.eval()
12

13 #load the predicted state using our predictor
14 #we use no_grad to disable gradient calculation, so we don’t mess up backward

propagation
15 with torch.no_grad():
16 predicted_state = predictor(grid.view(-1)).view(height, width)

Using the Predictor, Experimenting & Results

Now that we have our predictor loaded, it is time to put it to use. How do we go about
doing so, though? Past this point lies a collection of various personal attempts in using the
trained neural network model, and their results.

At first, naive thought led to a belief that, after a step was made, one could simply
combine the resulting state of the grid with the predicted state and as such have it influence
the simulation’s growth positively. This attempt included setting a value we will call alpha
determining how big an influence would the predicted state have on the outcome of the
current step. The thought wasn’t entirely wrong, but execution was lacking severely, as
shown in the result portrayed in figures 4.4 and 4.5, where in all cases the simulation would
very quickly start to deteriorate before eventually dying entirely. No amount of alpha
adjustment seemed to yield better results.

1 #increase the alpha (weight) to increase the influence of the predictor
2 alpha = 0.8
3 #combine original state with predicted state
4 grid = alpha * grid + (1 - alpha) * predicted_state

Figure 4.4: SmoothLife results of a simple predicted state influence with a static alpha.
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Figure 4.5: Lenia results of a simple predicted state influence with a static alpha.

Afterwards, it became clear that a different approach was required; the thought to
somehow adjust alpha during program execution came to mind, and as such a new idea
was born; a function was written which would, at every call of the forward pass function,
recalculate alpha based on the difference between predicted state and current state, as well
as a stability boost meant to give more weight to grid areas where the current state was
stable. Alpha was also instead turned into a weighing tensor.

1 def calculate_alpha(current_state, predicted_state):
2 #define the lowest and highest possible values for alpha
3 alpha_low = 0.001
4 alpha_high = 0.5
5

6 #calculate the difference between predicted state and current state
7 state_difference = torch.abs(predicted_state - current_state)
8

9 #give more weight to areas where the current state is stable
10 stability_boost = 0.2
11 #scale the state difference within the alpha range
12 diff = state_difference * (alpha_high - alpha_low)
13 #calculate new alpha
14 alpha = alpha_low + diff - (current_state * stability_boost)
15

16 #ensure alpha is within the specified range
17 alpha = torch.clamp(alpha, alpha_low, alpha_high)
18

19 return alpha

However, the results were still not very good. Only Lenia with a randomized initial
configuration seemed to improve; though if one looks closely, they could notice some abnor-
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malities occuring. SmoothLife and Lenia with an orbium initial configuration actually died
even faster than before. Some fiddling with the set values improved the models’ stability
slightly, but it was clear that more advanced adjustment was, indeed, needed.

Figure 4.6: SmoothLife results of a predicted state influence with a dynamic alpha.

Figure 4.7: Lenia results of a predicted state influence with a dynamic alpha.

This was when the final ideas were put in place. The stability factor received some
adjustments, while a boost to maintain already existing patterns was introduced as well.
This boost was realized by taking the current state of the grid and subtracting a percentual
weight of it from the alpha, to limit its influence in those regions. Lastly, alpha received
some smoothing as well, to avoid abrupt transitions.
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1 def calculate_alpha(predicted_state, alpha_low=0.05, alpha_high=0.5):
2 #calculate the difference between predicted state and current state
3 state_difference = torch.abs(predicted_state - grid)
4

5 #promote stability to next state, apply it
6 stability_factor = 0.5 - state_difference
7 alpha = alpha_low + (stability_factor * (alpha_high - alpha_low))
8

9 #add a small boost to alpha for regions where current state is present
10 regulator = 0.05 #NOTE: this boost was lowered significantly for Lenia, to 0.005
11 alpha -= self.grid * regulator #boost to maintain existing patterns
12

13 #apply a smoothing operation to avoid abrupt transitions
14 smoothed_alpha = torch.nn.functional.conv2d(alpha.unsqueeze(0).unsqueeze(0),
15 weight=torch.ones((1, 1, 3, 3)) / 9, #3x3 averaging kernel for smoothing
16 stride=1, padding=1,).squeeze()
17

18 #clamp alpha to ensure it stays within the allowed range
19 alpha = torch.clamp(smoothed_alpha, alpha_low, alpha_high)
20

21 return alpha

The results were, finally, satisfactory enough. Lenia with an orbium initial grid con-
figuration sadly still continued to die, though this time more slowly at least, and instead
of simply disappearing the orbium “imploded” inward. No matter how many adjustments
to the boosts were made, this situation didn’t seem to change. However, more noticeable
improvements could be observed in the other simulations, where SmoothLife became more
“alive” and aggressive, primarily so thanks to the fact that the new adjustments made it
so gliders, instead of simply continuing to glide in one direction, had gotten more prone to
splitting up into two separate gliders, setting off a chain reaction. Lenia with a randomized
grid configuration also seemed to assemble much faster than in any previous attempts.
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Figure 4.8: Comparison of SmoothLife results with and without a predicted state influence
(with an improved dynamic alpha).

Figure 4.9: Comparison of Lenia (with randomized grid configuration) results with and
without a predicted state influence (with an improved dynamic alpha).
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Figure 4.10: Lenia (with orbium grid configuration) results with a predicted state influence
(with an improved dynamic alpha). The simulation was allowed to run without the predictor
influence for 20 steps to better capture the shown behaviour.

4.6 Results Discussion & Conclusion
Experiments with our trained machine learning model yielded a varied arrangement of
observable results of both the positive and negative kind, highlighting the successful ap-
proaches as well as methods which required some further refinement. Our first experiment
was a testament to the latter; while the idea of a weight dictating the amount of sway the
predictor would have over the simulation wasn’t, in of itself, a bad one, the fact of said
weight being static was truly an exercise in naivety. This showed in the results, where
each of the three tested simulations died sooner or later—SmoothLife saw a gradual de-
crease in population primarily due to gliders disappearing, which can be seen in the second
screenshot in figure 4.4, while Lenia practically failed to so much as start, with a random-
ized configuration failing to truly fully form and orbium configuration simply disappearing
altogether.

It wasn’t until we decided to switch to dynamically changing alpha during program
runtime when we actually started seeing benefits of our cellular automata and machine
learning fusion. Granted, our first attempt at doing so ended up still in a not-so-pleasant
outcome, with SmoothLife and Lenia with orbium initial configuration even dying faster
than previously, while Lenia with randomized grid configuration at least formed but with
observable artefacts and inconsistencies. A few adjustments to alpha’s calculation process
later, however, primarily through boosts to stability and to maintaining already existing
patterns, and we started actually seeing great improvements in the overall performance of
two of the three models.
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SmoothLife actually turned its behaviour around somewhat, with gliders not disappear-
ing anymore and instead taking to multiplying by splitting in two, and the whole simulation
visibly becoming more erratic and “alive”, as illustrated in figure 4.8. Lenia with random-
ized initial grid configuration formed much faster than without the influence of machine
learning—concretely, taking four times less time to fully form, as evident in figure 4.9.
Orbium still continued to die, however; albeit this time around, its death was much slower
and visually interesting, what with it imploding.

Overall, we can conclude that the inclusion of machine learning in simulations using
cellular automata can be beneficial, with proof shown as to the notion. We’ve seen grad-
ual performance improvement in the simulation of both the SmoothLife and Lenia cellular
automata models, though when it comes to orbium configuration, some additional stabiliza-
tion mechanisms might be required to maintain a healthy simulation state. The persistent
issues faced in this configuration suggest that future work should explore alternative ap-
proaches to stability and consider trying different machine learning models and techniques
to avoid inherent tendencies toward collapse.

58



Bibliography

[1] Ahamed, I. and Akthar, D. A Study on Neural Network Architectures. Computer
Engineering and Intelligent Systems. 2016, vol. 7, p. 1–7, [cit. 2024-05-07]. Available
at: https://api.semanticscholar.org/CorpusID:55272667.

[2] Bengio, Y., Simard, P. and Frasconi, P. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks. 1994, vol. 5,
no. 2, p. 157–166, [cit. 2024-03-28]. DOI: 10.1109/72.279181. ISSN 1045-9227.
Available at: https://ieeexplore.ieee.org/document/279181.

[3] Bernard, E. Classification. Machine Learning Paradigms [online]. Available at:
https://www.wolfram.com/language/introduction-machine-learning/classification/.

[4] Bernard, E. Introduction to Machine Learning. Machine Learning Paradigms
[online]. Available at: https://www.wolfram.com/language/introduction-machine-
learning/machine-learning-paradigms/.

[5] Bernard, E. Introduction to Machine Learning. Regression [online]. Available at:
https://www.wolfram.com/language/introduction-machine-learning/regression/.

[6] Burkov, A. The Hundred-Page Machine Learning Book [online]. Andriy Burkov,
2019 [cit. 2024-05-02]. ISBN 9781999579517. Available at: http://ema.cri-info.cm/
wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf.

[7] Burzyński, M., Cudny, W. and Kosinski, W. K. Cellular automata: structures
and some applications. Journal of Theoretical and Applied Mechanics. Warsaw:
[b.n.]. 2004, vol. 42, p. 461–482, [cit. 2024-03-22]. ISSN 1429-2955. Available at:
https://api.semanticscholar.org/CorpusID:55638228.

[8] Cable, K. W. Alan Turing’s Reaction-Diffusion Model – Simplification of the
Complex [online]. 1. december 2010. Available at:
https://phylogenous.wordpress.com/2010/12/01/alan-turings-reaction-diffusion-
model-simplification-of-the-complex/.

[9] Cain, D. Harnessing Nature’s Genius: The Convergence of Evolutionary Algorithms
and Cellular Automata in AI [online]. 7. august 2023. Available at:
https://www.linkedin.com/pulse/evolutionary-algorithms-cellular-automata-
pioneering-future-cain.

[10] Carbonell, J. G., Michalski, R. S. and Mitchell, T. M. Machine Learning: A
Historical and Methodological Analysis. AI Magazine. september 1983, vol. 4, no. 3,
p. 69, [cit. 2024-04-02]. DOI: 10.1609/aimag.v4i3.406. Available at:
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/406.

59

https://api.semanticscholar.org/CorpusID:55272667
https://ieeexplore.ieee.org/document/279181
https://www.wolfram.com/language/introduction-machine-learning/classification/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/machine-learning-paradigms/
https://www.wolfram.com/language/introduction-machine-learning/regression/
http://ema.cri-info.cm/wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf
http://ema.cri-info.cm/wp-content/uploads/2019/07/2019BurkovTheHundred-pageMachineLearning.pdf
https://api.semanticscholar.org/CorpusID:55638228
https://phylogenous.wordpress.com/2010/12/01/alan-turings-reaction-diffusion-model-simplification-of-the-complex/
https://phylogenous.wordpress.com/2010/12/01/alan-turings-reaction-diffusion-model-simplification-of-the-complex/
https://www.linkedin.com/pulse/evolutionary-algorithms-cellular-automata-pioneering-future-cain
https://www.linkedin.com/pulse/evolutionary-algorithms-cellular-automata-pioneering-future-cain
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/406


[11] Chan, B. W.-C. From Conway to Lenia [online]. 2024-04-15 [cit. 2024-05-04].
Available at: https://colab.research.google.com/github/OpenLenia/Lenia-Tutorial/
blob/main/Tutorial_From_Conway_to_Lenia.ipynb.

[12] Chan, B. W.-C. Lenia: Biology of Artificial Life. Complex Systems. Wolfram
Research, Inc. october 2019, vol. 28, no. 3, p. 251–286, [cit. 2024-05-04]. DOI:
10.25088/complexsystems.28.3.251. ISSN 0891-2513. Available at:
http://dx.doi.org/10.25088/ComplexSystems.28.3.251.

[13] Chintala, S. Neural Networks Tutorial. Neural Networks [online]. 2024. Available
at: https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html.

[14] Cho, K., Merrienboer, B. van, Gülçehre, Ç., Bougares, F., Schwenk, H.
et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. CoRR. 2014, abs/1406.1078, p. 1724–1734, [cit. 2024-05-05].
Available at: http://arxiv.org/abs/1406.1078.

[15] Cornforth, D., Green, D. G. and Newth, D. Ordered asynchronous processes in
multi-agent systems. Physica D: Nonlinear Phenomena. may 2005, vol. 204, no. 1,
p. 70–82, [cit. 2024-03-11]. DOI: https://doi.org/10.1016/j.physd.2005.04.005. ISSN
0167-2789. Available at:
https://www.sciencedirect.com/science/article/pii/S0167278905001338.

[16] David, E. Deep Learning For Dummies® [online]. Deep Instinct Special Editionth
ed. 111 River St., Hoboken: John Wiley ‘I&’ Sons, Inc., 2018 [cit. 2024-04-02]. ISBN
978-1-119-48358-8. Available at:
https://info.deepinstinct.com/hubfs/TOF/Deep%20Learning%20for%20Dummies.pdf?

[17] Devlin, J., Chang, M., Lee, K. and Toutanova, K. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. CoRR. may 2018,
abs/1810.04805, [cit. 2024-05-07]. DOI: https://doi.org/10.48550/arXiv.1810.04805.
Available at: http://arxiv.org/abs/1810.04805.

[18] Engineering, V. C. of. Neural Networks [online]. Hyderabad: Vardhaman College
of Engineering, march 2021 [cit. 2024-03-13]. Available at:
https://vardhaman.org/wp-content/uploads/2021/03/Neural-Networks.pdf.

[19] Fatès, N. A. Asynchronous cellular automata. In: Meyers, R., ed. Encyclopedia of
Complexity and Systems Science [online]. Springer, December 2017, p. 21, 2023-09-11
[cit. 2024-03-10]. DOI: 10.1007/978-3-642-27737-5_671-1. Available at:
https://inria.hal.science/hal-01653675.

[20] Fradkov, A. L. Early History of Machine Learning. IFAC-PapersOnLine. 2020,
vol. 53, no. 2, p. 1385–1390, [cit. 2024-04-03]. DOI:
https://doi.org/10.1016/j.ifacol.2020.12.1888. ISSN 2405-8963. Available at:
https://www.sciencedirect.com/science/article/pii/S2405896320325027.

[21] Grosse, R. Lecture 7, Part 1: Generalization [online]. Toronto: Department of
Computer Science of the University of Toronto, 2020 [cit. 2024-04-02]. Available at:
https://csc413-2020.github.io/assets/readings/L07a.pdf.

60

https://colab.research.google.com/github/OpenLenia/Lenia-Tutorial/blob/main/Tutorial_From_Conway_to_Lenia.ipynb
https://colab.research.google.com/github/OpenLenia/Lenia-Tutorial/blob/main/Tutorial_From_Conway_to_Lenia.ipynb
http://dx.doi.org/10.25088/ComplexSystems.28.3.251
https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
http://arxiv.org/abs/1406.1078
https://www.sciencedirect.com/science/article/pii/S0167278905001338
https://info.deepinstinct.com/hubfs/TOF/Deep%20Learning%20for%20Dummies.pdf?
http://arxiv.org/abs/1810.04805
https://vardhaman.org/wp-content/uploads/2021/03/Neural-Networks.pdf
https://inria.hal.science/hal-01653675
https://www.sciencedirect.com/science/article/pii/S2405896320325027
https://csc413-2020.github.io/assets/readings/L07a.pdf


[22] Hanson, J. E. Cellular Automata, Emergent Phenomena in. In: Meyers, R. A.,
ed. Encyclopedia of Complexity and Systems Science [online]. Yorktown Heights,
USA: Springer, New York, NY, January 2009, p. 768–778 [cit. 2024-03-08]. ISBN
978-0-387-30440-3. Available at: https://doi.org/10.1007/978-0-387-30440-3_51.

[23] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. CoRR. 2015, abs/1512.03385, [cit. 2024-04-20]. DOI:
https://doi.org/10.48550/arXiv.1512.03385. Available at:
http://arxiv.org/abs/1512.03385.

[24] Hinton, G. E. and Sejnowski, T. J. Unsupervised Learning: Foundations of Neural
Computation [online]. MIT Press, 2006 [cit. 2024-05-02]. ISBN 9780262288033.
Available at: https://direct.mit.edu/books/edited-volume/2856/Unsupervised-
LearningFoundations-of-Neural.

[25] Hochreiter, S. and Schmidhuber, J. Long Short-term Memory. Neural
computation. december 1997, vol. 9, p. 1735–1780, [cit. 2024-05-03]. DOI:
10.1162/neco.1997.9.8.1735. Available at:
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory.

[26] Kari, J. Cellular Automata [online]. University of Turku [cit. 2024-04-07]. Available
at: https://www.cs.tau.ac.il/~nachumd/models/CA.pdf.

[27] Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C., Bottou, L.
and Weinberger, K., ed. Advances in Neural Information Processing Systems
[online]. Curran Associates, Inc., 2012, vol. 25 [cit. 2024-04-20]. Available at:
https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[28] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE. 1998, vol. 86, no. 11,
p. 2278–2324, [cit. 2024-04-20]. DOI: 10.1109/5.726791. Available at:
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf.

[29] LeCun, Y., Bengio, Y. and Hinton, G. Deep Learning. Nature. Nature Publishing
Group. may 2015, vol. 521, no. 7553, p. 436–444, [cit. 2024-05-02]. DOI:
10.1038/nature14539. Available at:
https://www.researchgate.net/publication/277411157_Deep_Learning.

[30] McCulloch, W. S. and Pitts, W. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics. december 1943, vol. 5, no. 4,
p. 115–133, [cit. 2024-04-20]. DOI: 10.1007/BF02478259. ISSN 1522-9602. Available
at: https://archive.org/details/a-logical-calculus-of-ideas-immanent-in-
nervous-activity.

[31] Mehlig, B. Artificial Neural Networks. CoRR. arXiv. january 2019,
abs/1901.05639, [cit. 2024-03-14]. DOI: https://doi.org/10.48550/arXiv.1901.05639.
Available at: http://arxiv.org/abs/1901.05639.

[32] Merritt, R. What Is a Transformer Model? [online]. 25. march 2022. Available at:
https://blogs.nvidia.com/blog/what-is-a-transformer-model/.

61

https://doi.org/10.1007/978-0-387-30440-3_51
http://arxiv.org/abs/1512.03385
https://direct.mit.edu/books/edited-volume/2856/Unsupervised-LearningFoundations-of-Neural
https://direct.mit.edu/books/edited-volume/2856/Unsupervised-LearningFoundations-of-Neural
https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
https://www.cs.tau.ac.il/~nachumd/models/CA.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
https://www.researchgate.net/publication/277411157_Deep_Learning
https://archive.org/details/a-logical-calculus-of-ideas-immanent-in-nervous-activity
https://archive.org/details/a-logical-calculus-of-ideas-immanent-in-nervous-activity
http://arxiv.org/abs/1901.05639
https://blogs.nvidia.com/blog/what-is-a-transformer-model/


[33] mikolalysenko. Conway’s Game of Life for Curved Surfaces (Part 1) [online]. 19.
november 2012. Available at:
https://0fps.net/2012/11/19/conways-game-of-life-for-curved-surfaces-part-1/.

[34] Mordvintsev, A., Randazzo, E., Niklasson, E. and Levin, M. Growing Neural
Cellular Automata. Distill. february 2020, [cit. 2024-03-08]. DOI:
10.23915/distill.00023. Available at: https://distill.pub/2020/growing-ca.

[35] Nagyfi, R. The differences between Artificial and Biological Neural Networks. The
differences between Artificial and Biological Neural Networks | by Richard Nagyfi |
Towards Data Science [online]. 4. september 2018. Available at:
https://towardsdatascience.com/the-differences-between-artificial-and-
biological-neural-networks-a8b46db828b7.

[36] OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L. et al. GPT-4 Technical
Report [online]. 6th ed. March 2024, 2024-03-04 [cit. 2024-05-07]. Available at:
https://arxiv.org/abs/2303.08774.

[37] Rafler, S. Generalization of Conway’s “Game of Life” to a continuous domain -
SmoothLife. ArXiv. Ithaca, New York: Cornell University. november 2011, [cit.
2024-05-01]. DOI: https://doi.org/10.48550/arXiv.1111.1567. Available at:
https://arxiv.org/pdf/1111.1567.

[38] Rampe, J. 4D Cellular Automata [online]. 15. december 2017. 2017-12-15. Available
at: https://softologyblog.wordpress.com/2017/12/15/4d-cellular-automata/.

[39] Roth, D. Neural Networks [online]. Philadelphia: Penn Engineering University of
Pennsylvania, School of Engineering and Applied Science, Department of Computed
and Information Science, october 2016 [cit. 2024-03-13]. Available at:
https://www.cis.upenn.edu/~danroth/Teaching/CS446-17/LectureNotesNew/
neuralnet1/main.pdf.

[40] Schuchmann, S. Analyzing the Prospect of an Approaching AI Winter [online]. [cit.
2024-04-17]. Bachelor’s thesis. Available at: https://www.researchgate.net/
publication/333039347_Analyzing_the_Prospect_of_an_Approaching_AI_Winter.

[41] Sethi, B. Theory and Applications of Fully Asynchronous Cellular Automata
[online]. Shibpur, 2017. [cit. 2024-03-12]. Dissertation. Indira Gandhi Institute of
Technology. Available at: https://www.researchgate.net/publication/
332901217_THEORY_AND_APPLICATIONS_OF_FULLY_ASYNCHRONOUS_CELLULAR_AUTOMATA.

[42] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In: [online]. September 2014 [cit. 2024-04-20].
Available at: https://arxiv.org/pdf/1409.1556.

[43] Sutskever, I., Vinyals, O. and Le, Q. V. Sequence to Sequence Learning with
Neural Networks. CoRR. 2014, abs/1409.3215, [cit. 2024-05-05]. Available at:
http://arxiv.org/abs/1409.3215.

[44] Tagliaferri, L. An Introduction to Machine Learning [online]. 31. may 2022.
2022-05-31. Available at: https:
//www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning.

62

https://0fps.net/2012/11/19/conways-game-of-life-for-curved-surfaces-part-1/
https://distill.pub/2020/growing-ca
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://arxiv.org/abs/2303.08774
https://arxiv.org/pdf/1111.1567
https://softologyblog.wordpress.com/2017/12/15/4d-cellular-automata/
https://www.cis.upenn.edu/~danroth/Teaching/CS446-17/LectureNotesNew/neuralnet1/main.pdf
https://www.cis.upenn.edu/~danroth/Teaching/CS446-17/LectureNotesNew/neuralnet1/main.pdf
https://www.researchgate.net/publication/333039347_Analyzing_the_Prospect_of_an_Approaching_AI_Winter
https://www.researchgate.net/publication/333039347_Analyzing_the_Prospect_of_an_Approaching_AI_Winter
https://www.researchgate.net/publication/332901217_THEORY_AND_APPLICATIONS_OF_FULLY_ASYNCHRONOUS_CELLULAR_AUTOMATA
https://www.researchgate.net/publication/332901217_THEORY_AND_APPLICATIONS_OF_FULLY_ASYNCHRONOUS_CELLULAR_AUTOMATA
https://arxiv.org/pdf/1409.1556
http://arxiv.org/abs/1409.3215
https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning
https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning


[45] Turing, A. M. Computing machinery and intelligence. Mind. 1950, vol. 49,
p. 433–460, [cit. 2024-04-20]. DOI: https://doi.org/10.1093/mind/LIX.236.433.
Available at: https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf.

[46] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. Attention
Is All You Need. CoRR. 2017, abs/1706.03762, [cit. 2024-05-07]. DOI:
https://doi.org/10.48550/arXiv.1706.03762. Available at:
http://arxiv.org/abs/1706.03762.

[47] Winkler, R. L. “Risk” and Energy Systems: Deterministic Versus Probabilistic
Models [online]. Laxenburg, Austria: International Institute for IIASA Applied
Systems Analysis, september 1973 [cit. 2024-03-17]. Available at:
https://pure.iiasa.ac.at/id/eprint/60/1/RM-73-002.pdf.

[48] Yi, H., Shiyu, S., Xiusheng, D. and Zhigang, C. A study on Deep Neural
Networks framework. In: 2016 IEEE Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC) [online].
October 2016, p. 1519–1522 [cit. 2024-05-01]. DOI: 10.1109/IMCEC.2016.7867471.
Available at: https://ieeexplore.ieee.org/document/7867471.

[49] Zhang, A., Lipton, Z. C., Li, M. and Smola, A. J. Dive into Deep Learning.
CoRR. august 2023, abs/2106.11342, [cit. 2024-05-07]. Available at:
https://arxiv.org/abs/2106.11342.

63

https://redirect.cs.umbc.edu/courses/471/papers/turing.pdf
http://arxiv.org/abs/1706.03762
https://pure.iiasa.ac.at/id/eprint/60/1/RM-73-002.pdf
https://ieeexplore.ieee.org/document/7867471
https://arxiv.org/abs/2106.11342

	Introduction
	Motivation and Objectives

	Cellular Automata
	Introduction
	Basic Concepts
	Components
	Rules and Rule Tables
	Boundary Conditions
	Emergent Behaviour and Rule Complexity
	Universality

	Types of Cellular Automata
	Elementary Cellular Automata
	Stochastic Cellular Automata
	Asynchronous Cellular Automata
	Neural Cellular Automata

	Asynchronous Approach
	Defining Asynchrony
	Fully Asynchronous Updating vs. Alpha-asynchronous Updating
	Update Schemes

	Cellular Automata in Biological Systems

	Machine Learning
	Introduction
	A Brief Historical Analysis
	Neural Networks
	Basic Components
	Types of Neural Networks

	Learning Paradigms
	Generalization, Overfitting and Underfitting

	Deep Learning

	The Trifecta of Dynamic Systems Simulation - Conway's Game of Life and its Evolutionary Continuum to Advanced Iterations
	Python & PyTorch
	Installing Python and PyTorch
	Installing CUDA (+ cuDNN)

	Conway's Game of Life
	Basics
	Patterns
	Simple Implementation

	SmoothLife
	Advancements to Conway's Game of Life
	Mathematical Background
	Implementation

	Lenia
	Advancements to SmoothLife
	Mathematical Background
	Implementation

	Machine Learning
	Implementing a Neural Network model

	Results Discussion & Conclusion

	Bibliography

