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ABSTRACT
The CESNET association develops the COMBO line of high-performance (currently
with up to two 100Gbps ports) programmable network adapters, focused on network
data analysis and processing.  These cards come with an FPGA chip, which allows users
to define exactly how the network traffic should be processed.  A possible use case for
these cards is as network switches for virtual machines within a data center.

The focus of this thesis is on implementing TC Flower offloading support for the
COMBO line of cards (software and FPGA firmware).  It is a common interface for
installing  flow match+action  rules  into  SmartNICs,  and  allows  them to  be  used  to
manage network traffic between virtual machines and the outside world, saving CPU
cycles in the host machine.

KEYWORDS
computer network, packet classification, flow rule, offloading, virtual network switch,
device driver,  virtualization, hardware acceleration

ABSTRAKT
Sdružení CESNET vyvíjí  vysokorychlostní  programovatelné  síťové  karty  COMBO
(aktuálně až s dvěma 100Gbps porty) zaměřené na analýzu a zpracování síťových dat.
Karty obsahují FPGA čip, který dovoluje uživatelům přesně definovat způsob, jakým
má být síťový provoz zpracován.  Jedno z možných využití těchto karet je jako síťový
přepínač pro virtuální stroje v data centru.

Tato práce je zaměřená na implementaci podpory TC Flower offloadu pro karty
COMBO (software a FPGA firmware).   Jedná se o všeobecné rozhraní pro instalaci
flow pravidel typu shoda+akce do SmartNICů, a dovoluje nám použít  je pro správu
síťového  provozu  mezi  virtuálními  stroji  a  vnějším  světem.  Cílem  je  úspora
procesorových cyklů hostitelského stroje.

KLÍČOVÁ SLOVA
počítačová síť, klasifikace paketů, flow pravidlo, převod do hardwaru, virtuální síťový
přepínač, ovladač zařízení, virtualizace, hardwarová akcelerace



ROZŠÍŘENÝ ABSTRAKT
Sdružení CESNET vyvíjí  vysokorychlostní  programovatelné  síťové  karty  COMBO
(aktuálně až s dvěma 100Gbps porty) zaměřené na analýzu a zpracování síťových dat.
Karty obsahují FPGA čip, který dovoluje uživatelům přesně definovat způsob, jakým
má být síťový provoz zpracován.  Nedávno byla pro COMBO karty implementována
podpora technologie SR-IOV, která umožňuje rozdělení prostředků karty na několik tzv.
virtuálních funkcí, které mohou být v rámci virtualizace předány virtuální strojům.

Typické využití technologie SR-IOV v kontextu síťových karet je poskytnutí pří-
mého síťového přístupu virtuálním strojům, síťový provoz v tomto případě neprochází
hostitelským operačním systémem.  Tento přístup je výhodný hlavně u systémů s mnoha
virtuálními stroji mezi kterými nepřetržitě protéká veliké množství dat, jako například
u serverů v data centrech, kde jsou virtuální stroje pronajímány různým zákazníkům pro
účely internetového hostingu.  Čas, který u softwarového řešení musí procesor serveru
na realizaci síťového provozu strávit, bývá v tomto případě výrazný, protože v rámci
třídění paketů mezi jednotlivými virtuálními stroji a vnějším světem musí hostitelský
operační systém analyzovat datové políčka hlaviček každého jednoho paketu.

Tato práce je zaměřena na vytvoření hybridního řešení pomocí karty COMBO, kde
virtuální stroje jsou připojeny na SR-IOV virtuální funkce karty, ale karta sama o sobě
pakety z virtuálních strojů předává přímo hostitelskému operačnímu systému, který je
třídí stejně jako u softwarového řešení.  Rozdílem od čistě softwarového řešení je, že
hostitelský operační může do karty nainstalovat klasifikační pravidla, které pro pakety
známého druhu provádí směrování přímo v samotné kartě.  Využívá se tady konceptu
síťových toků (angl. network flows), kde tok představuje skupinu paketů pocházející od
stejné aplikace nebo služby, se stejnou destinací. Principem funkce hybridního řešení je,
že do hostitelského operačního systému se vždy dostane jenom první paket síťového
toku, který operační systém využije pro sestrojení klasifikačního pravidla pro daný tok,
a zbylé pakety toku zpracuje již samotná síťová karta.

V hostitelském operačním systému  je  realizace  síťového  provozu  pro  virtuální
stroje zajištěna virtuálním síťovým přepínačem (angl.  virtual switch).   Implementace
přepínače je různá v závislosti od požadavků, např. jádro Linux obsahuje implementaci
přepínače pracujícího na OSI úrovni 2, který je spravován pomocí nástroje  brctl.  Pro
zapojení do složitějších vnějších sítí jsou výhodné programovatelné síťové přepínače,
mezi které patří např. Open vSwitch, který podporuje konfigurační protokol OpenFlow.

Pro Open vSwitch bylo v jádru Linux vyvinuto rozhraní TC Flower, které dovoluje
virtuálnímu přepínači převádět pravidla na zpracování síťových toků do hardwaru.  Toto
rozhraní existuje jako součást klasifikačně-akčního podsystému TC CA, který poskytuje
celou řadu mechanizmů pro řízení síťového provozu.  TC Flower, formálně TC filtr typu
flower, byl navržen jako alternativa k existujícímu Open vSwitch jádrovému ovladači,
jelikož dochází u zmíněného ovladače k značné duplicitě kódu se zbytkem jádra.  Filtr
flower využívá existujícího kódu jádra, jako například  flow dissector, čímž zamezuje
dvojímu výskytu stejných poruch, a dovoluje využití existujících nástrojů.



Technologie využita pro návrh samotného FPGA firmwaru je jazyk P4, konkrétně
překladač  z  P4 na  VHDL,  který  je  na  CESNETu vyvíjen  v  rámci  platformy NDK
(NetCOPE Development Kit).  Jazyk P4 je doménově specifický jazyk určen pro popis
funkce síťového prvku, s možností konfigurace za běhu pomocí  P4Runtime rozhraní.
Konkrétně se v jazyku P4 popisuje rozkladač (angl.  parser), který rozloží procházející
pakety na hlavičky a náklad (angl. headers and payload); tabulky, které podle hlaviček
a metadat mohou nad paketem vykonat libovolně složité úkony; a ovládací programy,
které  jsou  spouštěné  rozkladačem na  základě  obsahu  hlaviček  paketů,  a  mohou  na
pakety podmíněně aplikovat tabulky.  Samotný obsah tabulek, ve formátu pravidel typu
shoda+akce, je nahráván za běhu přes rozhraní P4Runtime.

V rámci NDK P4 implementace existuje knihovna libp4dev, která slouží na nízko-
úrovňovou konfiguraci firmwaru karty vytvořeného pomocí NDK P4 kompilátoru.  Tato
knihovna je určena hlavně pro použití v P4Runtime implementaci, ale dá se použít i pro
specifické aplikace, pokud nepřekáží nepřenositelnost na jiné P4 platformy.  Knihovna
využívá pro konfiguraci rozhraní MI32, které je zpřístupněno knihovnou libnfb pomocí
mapování virtuální paměti mezi ovladačem karty v jádře a knihovnou libnfb.

Pro přenos síťových dat byla v rámci platformy NDK vyvinuta technologie NDP
(NetCOPE Data Plane), která specializovaným aplikacím umožňuje zpracovávat pakety
v dávkovém režimu, bez toho aby operační systém musel jednotlivé pakety analyzovat.
Aplikacím jsou pomocí knihovny libnfb přímo zpřístupněny paměťové regiony DMA,
do kterých karta nezávisle na procesoru ukládá příchozí pakety, a z kterých čte pakety
na odeslání.

V rámci ovladače pro karty podporující NDK platformu, tzv. NFB karty (COMBO
karty jsou příkladem NFB karet), existuje několik pod-ovladačů vhodných pro rozličné
aplikace.  Jeden z pod-ovladačů ovladače NFB je ndp_netdev, který vytváří nad techno-
logií NDP standardní síťová rozhraní.  Počet těchto rozhraní odpovídá počtu tzv. NDP
kanálů karty, které představují hardwarové jednotky řešící DMA komunikaci.  Ovladač
ndp_netdev je všeobecný, a způsob jeho použití závisí na konkrétní aplikaci.

Ovladač ndp_netdev byl v této práci využit jako testovací platforma pro vývoj pod-
pory převodu TC Flower pravidel do COMBO karty.  Síťová rozhraní pro NDP kanály
zastupovali funkci reprezentátorů virtuálních funkcí, a bylo využito vlastnosti NDK P4
implementace, podle které výchozí destinace paketů je místo původu, což nám dovolilo
s jednoduchostí modelovat situaci, kde virtuální funkce vždy provádějí loopback.  

Pro instalaci pravidel do P4 tabulek bylo zapotřebí přizpůsobit knihovnu libp4dev
pro práci v prostředí jádra operačního systému Linux.  Tento krok si vyžadoval přidání
podmíněného vkládáni hlaviček standardní C knihovny, náhradu funkcionality standard-
ní C knihovny ekvivalentními funkcemi a datovými typy dostupnými v prostředí jádra
Linux, a vytvořením skriptu pro export souborů knihovny do archivu a pro rozbalení
archivu s  libp4dev zdrojovými kódy pro využití v jádru pro NFB ovladač.  Taky bylo
zapotřebí napsat lepidlový kód, který knihovně  libp4dev dovolil uvnitř NFB ovladače
komunikovat po MI32 sběrnici s COMBO kartou.

Protože se jednalo u knihovny libp4dev o port do nového prostředí, bylo zapotřebí
ověřit funkci knihovny v tomto novém prostředí.  Byl navržen jednoduchý pod-ovladač
ovladače NFB zvaný p4test, který na principu stavového automatu zpracovává příkazy
od uživatele a volá funkce knihovny libp4dev.  Tento ovladač byl následně upraven pro



funkci mimo jádra, jako běžný program, a porovnáním funkce této verze p4test s verzí
fungující v jádře byla ověřena funkčnost knihovny libp4dev v prostředí jádra.

U návrhu P4 programu byl kvůli jednoduchosti,  a kvůli pozdější možnosti opti-
malizace samotného P4 kompilátoru, zvolen postup použití jediné tabulky s dlouhým
seznamem čtených políček, kde součástí klíče je maska specifikující sledované políčka,
což umožňuje jednoduchý převod klíčů pravidel z formátu TC Flower to formátu P4.
Pro akce byla zvolena jedna univerzální akce, která přímá dlouhý seznam parametrů,
který určuje její chování.  Tento přístup plyne z rozdílů akcí u TC Flower a v P4, kde
TC Flower pravidlo může mít neomezeně dlouhý seznam libovolných akcí,  zatímco
pravidla v jazyku P4 mají vždy jenom jednu akci, která v našem případě představuje
libovolnou kombinaci TC akcí.  V budoucnu se uvažuje nad vytvořením skritptu, který
by na základě napsaného firmwaru vytvářel firmwary podporující více tabulek, které by
pro lepší využití omezených zdrojů FPGA podporovali jenom zákazníkem definovaný
formát pravidel.

Po úspěšném zprovoznění převodu TC Flower pravidel do P4 tabulek uvnitř karty
byl navržen nový NFB pod-ovladač zvaný sriov_netdev, který pro karty s kompatibil-
ním firmwarem vytváří reprezentátory virtuálních funkcí, které se dají pomocí rozhraní
TC Flower využít  s  Open vSwitch pro realizaci hybridního řešení síťového přístupu.
Hlavní rozdíl P4 firmwaru použitého s tímto pod-ovladačem je přítomnost směrovací
tabulky, která určuje výchozí destinaci paketů.  Tato tabulka je ovladačem sriov_netdev
naplněna tak, aby se pakety odeslané virtuálními funkcemi objevili na reprezentátorech
daných virtuálních funkcí, a naopak aby pakety odeslané přes reprezentátory se objevili
ve virtuálních funkcích.  Tímto způsobem je realizována tzv. pomalá cesta paketů, která
slouží hlavně pro poskytnutí informací Open vSwitch o síťových tocích.

Následně byl napsán skript pro vytvoření virtuálních strojů připravených k využití
SR-IOV virtuálních funkcí COMBO karty, buď pomocí ndp_netdev, nebo pomocí spe-
cializovaných nástrojů využívajících technologii NDP.  Pomocí těchto virtuálních strojů
jsme byli schopni ověřit funkci hybridního řešení.

Výstupem práce je verze knihovny libp4dev, která je schopna pracovat v prostředí
jádra operačního systému Linux; testovací program a ovladač p4test, podpora převodu
TC Flower pravidel do hardwaru pro ovladač  ndp_netdev, ovladač  sriov_netdev který
využívá vytvořené podpory TC Flower spolu s Open vSwitch pro realizaci rychlé cesty
u hybridního softwarově-hardwarového řešení síťového připojení pro virtuální stroje,
FPGA firmware vytvořen v jazyku P4 pro použití  s  převodem TC Flower pravidel,
a skript pro vytvoření virtuálních strojů pro použití s sriov_netdev.

Hlavní omezení výstupu práce představuje použitá verze NDK P4 překladače, která
prozatím nepodporuje některé důležité součásti standardního P4 jazyka, jako jsou např.
podpora hlaviček proměnlivé velikosti, a obecná podpora výpočtu kontrolních součtů
zahrnujících data nákladu paketu.  Další omezení přestavuje volba konkrétní COMBO
karty, která byla sice ideální pro účely testování a vývoje, ale která nepodporuje externí
paměti, které jsou kritické pro dosažení velkého množství pravidel toků.

Další  omezení  představuje způsob přidělení  prostředků virtuálním funkcím, kde
každá virtuální  funkce dostane jeden NDP kanál.   Rychlost  přenosu je tak omezena
schopností virtuálního stroje sériově zpracovat proud paketů, což představuje v případě
serveru na kterém jsme testovali přenosovou rychlost zhruba 1Gbps.  Toto omezení se
dá ale jednoduše odstranit změnou topologie v syntézním systému platformy NDK.
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INTRODUCTION
The concept of virtual machines traces its origins back into the 1960s.  Like today, they
provided a way to maximize the usage of expensive and often under-utilized mainframe
(nowadays server) computers, as well as providing software backwards compatibility
for customers migrating to new hardware.  Additionally, the inherent isolation provided
by virtual machines acts as an extra layer of security and fault tolerance [1].

Several fundamentally different approaches exist when it comes to implementing
virtual machines.  The approach that is most interesting to server administrators is the
one described by  Popek and Goldberg by their set of virtualization requirements [2],
which describe a model known as classical virtualization.

Unlike with emulation, which involves explicitly parsing and interpreting the guest
machine’s  instructions  (potentially  needing  to  go  through  hundreds  of  native
instructions  for  a  single guest  instruction [3]),  in  classical  virtualization,  the guest’s
machine code is run directly on the host’s processor, with privileged instructions being
trapped.  This  technique  allows  virtual  machines  to  fulfill  the  requirement  that
a  statistically  dominant  fraction  of  machine  instructions  must  be  executed  without
VMM (virtual machine manager) intervention [2].

Historically, this has been difficult to achieve on x86 due to some of its design
limitations, leading to workarounds like binary translation and CPU paravirtualization
[3], but with the introduction of the AMD-V and Intel VT-x extensions in 2005–2006,
classical virtualization has become possible on the x86 platform, allowing people to run
VMs with unmodified OSes at near full speed [1].

One  of  the  main  bottlenecks  with  virtualization  in  general  is  I/O  overhead.
Traditionally, I/O is handled by the VMM (also known as the  hypervisor), which can
result in a lot of processing time being spent on explicitly copying and analyzing data,
especially when dealing with VMs in data centers, which require a high, sustained data
throughput from storage and networking devices.

A proposed solution is to give virtual machines direct access to hardware devices.
The SR-IOV specification makes this more practical by allowing for a single physical
PCI  Express  device  to  be  shared  by  multiple  virtual  machines,  providing  “virtual
functions” that behave like separate pieces of hardware.  This model is especially useful
for network adapters, where a virtual function more-or-less acts as a networking port
that a virtual machine can be hooked up to [4].

The goal of this thesis is to utilize the recently introduced SR-IOV capabilities of
CESNET’s COMBO network cards, in combination with industry-standard tools like
Open vSwitch and the P4 language, to create a managed, hardware-accelerated network
switch for virtual machines.  An implementation of the TC Flower interface is proposed,
alongside  FPGA  firmware  written  in  P4.  This  interface  is  intended  for  use  by
Open vSwitch, a software network switch implementation, which can use it to offload a
large portion of its packet classification and processing operations into hardware, saving
valuable CPU cycles and providing a fast virtual network switch configurable using the
industry-standard OpenFlow protocol.
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1 NETWORK SWITCHES
In the field of computer networking, bridging refers to a means of connecting several
independent local area networks (LANs) to create a single larger, aggregate network
(known as a  bridged LAN), using a device known as a bridge.  These devices allow
machines connected to networks of different kinds (Ethernet, Token Ring, Wireless) to
communicate with each other as if they were on a single physical network, as well as
potentially  providing  a  fallback  connection  in  the  case  of  a  failure  of  network
components [5].

They have also found use in  increasing the efficiency of Ethernet  networks by
allowing for  configurations  where only two machines exist  within a  single physical
network at a time.  This is called a fully switched network, and it avoids the problem of
transmission collisions, allowing for full-duplex communication over Ethernet cables.
The type of bridge used in this scenario is known as a network switch [6].

1.1 Level 2 Switches

This type of switch works by learning the MAC addresses of all of the devices on the
local  network,  and  transparently  passing  MAC  frames  destined  for  them  to  the
appropriate  ports.   In  order  to  be  addressable  as  an  OSI  Layer  2  end  node,  these
switches have a MAC address assigned to them, while also transparently forwarding
frames,  generally  without  modification  (except  perhaps  for  IEEE  802.1Q  VLAN
tagging).  They also come with spanning tree protocol support, in order to avoid loops
in a network which contains more than one switch.

Level 2 switches are protocol-independent, since they operate at the OSI Layer 2.
This does however means that they don't scale well due of broadcasts.  To a certain
extent,  VLANs  help  to  alleviate  this  problem,  but  they  introduce  their  own  set  of
problems as well, such as making communication between machines within different
VLANs less efficient,  since the traffic between these machines needs to be directed
through an external router.  This problem is addressed by multilayer switches [7].

1.2 Multilayer Switches

A multilayer switch, sometimes referred to as a Level 3 or Level 4+ switch (based on its
capabilities), is a network device which in addition to performing MAC bridging also
examines and utilizes information from packet fields that correspond to higher layers of
the OSI model.  This information can be used for IP routing, as well as for policy-based
switching, where a priority may be assigned to traffic of different applications based on
their importance [7], [8], [9].

Their model of operation generally involves using algorithms like  Open Shortest
Path First (OSPF) or  Routing Information Protocol (RIP) to communicate with other
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Level 3 routers or switches to build routing tables, and unlike Level 2 switches, they
tend to modify packet header fields, such as decrementing the Time To Live (TTL) field
and recalculating header checksum fields.  By performing Level 3 switching, they allow
for communication between machines in different VLANs to be efficient [7].

1.3 Managed Switches

Switches that provide a configuration interface are known as managed switches.  They
allow for better control and management of the network traffic within a LAN, allowing
to segment the network into VLANs and to set priorities on different types of network
traffic, as well as providing diagnostic data by monitoring network health [10].

The  Simple Network Management Protocol (SNMP) is an example of a protocol
used  to  manage  and  configure  these  types  of  network  switches.  Support  for  the
OpenFlow protocol is  sometimes provided as well,  serving as a vendor-independent
way of providing  Software-Defined Networking (SDN) support [11].  The  P4Runtime
specification fulfills  a similar purpose for switches that support the P4 language for
describing packet processing [12].
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2 SOFTWARE-DEFINED NETWORKING
SDN is a network management approach where the control and forwarding functions of
network management are decoupled.  A centralized, global view of the entire network is
provided, appearing to applications and policy engineers as a single logical switch.  This
allows for the underlying hardware to be abstracted away, and for network control to be
directly programmable, allowing for dynamic adjustments to network-wide traffic flow
based on changing needs [11].

2.1 The OpenFlow Specification

The OpenFlow Specification defines an abstract model of a network switch known as an
OpenFlow Logical Switch,  as well  as a communication protocol that allows it  to be
configured from a remote machine known as an OpenFlow Controller (Figure 2.1).

The basis for packet look-up and forwarding within an OpenFlow switch are flow
tables and a group table.  The flow tables contain flow entries, with match fields used
for selecting packets based on the values of their header fields, counters to measure how
many packets and bytes a given flow entry had selected, and a list of actions to perform
on selection, potentially including classification into a group, which in turn results in
actions described in the group table for the appropriate group to be performed.

The specification also describes  several  categories  of  ports  that  packets  can  be
received  from and  ultimately  redirected  to.  The  most  straight-forward  are  physical
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ports,  which  either  correspond  to  hardware  interfaces  of  the  switch,  or  potentially
to virtual slices corresponding to network interfaces in a virtualized deployment.

 Another category of ports are  logical ports, which are a higher-level abstraction
that may be implemented by non-OpenFlow means.  For example,  logical ports may
correspond to physical ports with some extra implementation-defined processing added.
Some of the possible uses are link aggregation groups, tunnels, and loopback interfaces.

When no flow entry manages to match on an incoming packet, the action of a spe-
cial entry called the  table-miss flow entry is invoked (if this entry is not present, the
packets are discarded).  A common use for this entry is to send unclassified packets
to the controller for inspection.  If the switch implements Level 2 switching or Level 3
routing, these unclassified packets may be sent into a  logical port to be processed by
these technologies.

Some of the supported actions that an OpenFlow Switch may perform on packets
are  redirection,  grouping,  discarding,  queue  id  specification  (to  provide  basic  QoS
support), metering, VLAN header manipulation, header field setting and copying, and
TTL decrementation [13].

2.2 Open vSwitch: A Software Implementation

Open vSwitch is a multilayer software switch written in C, well suited to function as
a virtual switch in VM environments.  It supports multiple virtualization technologies,
including Xen/XenServer,  KVM, and VirtualBox, as well  as deployment of a single
instance across several physical servers.

Some of the features it provides are support for 802.1Q VLAN, NIC bonding with
or without LACP, NetFlow, sFlow, QoS (Quality of Service) configuration,  Geneve,
GRE, VXLAN, STT, LISP tunneling, 802.1ag connectivity fault management, a tran-
sactional  configuration  database  with  C  and  Python  bindings,  high-performance
forwarding using a Linux kernel module, and support for OpenFlow 1.0 with numerous
extensions.

Additionally, the Open vSwitch project provides, among other useful tools, a utility
for querying and controlling OpenFlow switches and controllers, ovs-ofctl.  This can be
used  either  with  ovs-vswitchd  (the  switch  daemon),  or  with  any  other  OpenFlow
compatible switch [14].

Because a pure-software approach for a network switch would involve a significant
amount of overhead, there are options for providing hardware acceleration.  The two
officially supported approaches are implementing either an  ofproto provider or a  dpif
provider.   An  ofproto provider can take full advantage of hardware with support for
field  masking,  whereas  a  dpif provider  is  usually  easier  to  implement,  but  it  splits
wildcard rules into exact-match entries,  resulting in an inefficient use of TCAMs in
hardware that support wildcarding [15].

Support in OVS for hardware rule offloading via the Linux TC Flower interface is
currently implemented as a dpif provider [4].

5



2.3 The P4 Language

One of the limiting factors of  OpenFlow is that the flow tables and group table are
pre-defined  by  the  standard  and  by  hardware  vendors.  This  means  that  a  network
administrator  can’t  change  the  classification  mechanisms and  the  actions  that  these
tables support [13].  The P4 language project aims to resolve this issue by developing
a domain-specific, declarative language that allows network administrators to describe
how packets are to be classified and processed by the device’s pipeline [16].

The language itself addresses the configuration of a forwarding element (definition
of packet headers and parsing, tables, actions, and pipeline layout and control flow),
which upon being configured may have its  tables populated in  a similar  manner  to
a  switch  supporting  OpenFlow [16].   The  P4Runtime specification  aims  at  creating
a vendor-independent configuration interface for P4-based forwarding elements [12].

An abstract model consisting of a parser and a set  of match+action tables split
between ingress and egress is described by the specification.  (Figure 2.2)

The parser provides a Parsed Interpretation of each received packet, which is then
used by the ingress pipeline match+action tables to select packets to perform actions on,
and to specify the destination ports of the individual packets. This destination is decided
upon before a packet enters the egress pipeline. Upon reaching the end of the egress
pipeline, the packet is re-assembled from its potentially modified parsed interpretation
and sent to the appropriate port [16].

Additionally, the P4 language provides support for packet cloning and recircula-
tion,  which is useful for monitoring purposes (port mirroring) and for implementing
recursive packet processing policies.
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Checksum verification and recalculation support is also provided.  Generating hash
or checksum values involves utilizing a selected algorithm to process a set of bytes from
a packet, defined by a field list, to produce a fixed-width integer result.  Checksum fields
may be verified at ingress and updated at egress using a  calculated_field declaration,
preferably located just after the header instance declaration.  Alternatively, the primitive
action modify_field_with_hash_based_offset() may be used to calculate a checksum or
hash value explicitly [16].

The language also provides support for memories which hold their values across
multiple packets being processed, known as  stateful memories, in the form of  meters,
counters, and registers.  Meters provide a visual representation of a data rate, outputting
a red, yellow or green color signal, with the metering algorithm being implementation-
dependent. RFC 2697 and RFC 2698 provide examples of possible metering algorithms.

Counters provide an exact numeric amount of either packets or the bytes of packets
that fulfill a certain criterion, such as being processed by a specific match+action rule,
and registers are stateful memories that can be read and written by actions in a general
manner, e.g. to verify that a “first packet” of a flow had already been encountered [16].

Actions, also known as  compound actions, are imperative functions consisting of
potentially multiple primitive actions, and are used to manipulate packets in a defined
manner.  A few notable examples of primitive actions are modify_field(), which is used
for modifying header field values with optional bit-wise masking;  add_header() and
remove_header(), which are respectively used to add or remove fields from a packet
(e.g. a VLAN tag); drop(), which used for dropping (ie. discarding) packets, and actions
like add(), subtract_from_field(),  bit_xor() or shift_left() which perform arithmetic and
bit-wise operations on packet fields.

In addition to the previously mentioned  registers, which are accessible using the
primitive actions register_read() and register_write(), compound actions can optionally
take parameters.  The values passed to the actions as parameters are programmed using
the run-time API as a part of the match+action entries which invoke the action [16].

The other part of a match+action entry in a table are the match criteria.  P4 supports
matching on exact values of fields, it supports longest prefix matching (lpm) where the
rule with the longest common prefix with a field is selected (useful for subnets), ternary
matching where a bitwise mask is applied to a field before comparison, range matching
where a field’s value has to be within a certain numeric range,  and  valid matching,
which  is  used  for  checking whether  the  parser  had  extracted  a  certain  header  from
a given packet or not.

Each table declaration consists of a set of matching criteria, the applicable actions
on a match, and table properties like the size, and whether or not it should support time-
outs.  Whether or not a packet is subject to the match+action rules of a table is decided
by a  control flow program, which may conditionally apply tables to packets, and call
other control flow functions [16].
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3 TC FLOWER AND ITS USE WITH SR-IOV
SWITCHES

The standard model for SR-IOV switches in Linux revolves around the concept of each
virtual function being represented by a  netdev.  The term netdev refers to an abstract
object which represents a network port, and within an SR-IOV setup, a netdev for a VF
is known as a virtual function representer [4], [17].

These representers serve a role similar to TAP devices in a paravirtualized network
setup.  Packets sent through the egress of a VF representer appear at the ingress of the
VF (thus are accessible to a virtual machine), and packets sent through the egress of the
VF (e.g. by a virtual machine) arrive at the ingress of the appropriate representer.

Within this model, in order to create a network for virtual machines utilizing VFs,
their representers are put into a software bridge.  This approach is inherently inefficient,
as all traffic ends up going through the host operating system, but with the use of bridge
implementations that support hardware acceleration, such as Open vSwitch, it allows for
a hybrid model where only some network traffic goes through the host operating system
(e.g. packets needed for MAC address learning and flow identification), and the rest is
handled by hardware, by traffic control rules installed by the software switch [4].

In the case of Open vSwitch on Linux, the TC Classifier-Action subsystem may be
used for this purpose.  In particular, the flower filter (referred to throughout this work as
TC Flower) was designed as a flexible alternative to the official Open vSwitch kernel
data-path implementation, with far less code duplication achieved by utilizing existing
frameworks within the Linux kernel [18].

3.1 The TC CA Subsystem

The Linux kernel contains support for advanced network traffic control.  Upon arrival at
the ingress of a netdev, and before reaching the egress of a netdev, incoming and out-
going packets respectively are subject to the Traffic Control Classifier-Action (TC CA)
subsystem.

This subsystem is configurable by user-space applications using the netlink API,
and it revolves around the concept of queuing disciplines (qdiscs), which may reorder
and limit the flow of packets, and use  filters to sort the packets into various different
classes, allowing them to treat different kinds of packets differently based on the criteria
observed by the filters.  A class may either be a FIFO or another qdisc.  Using qdiscs as
classes within qdiscs allows network administrators to build sophisticated, hierarchical
chains of traffic control rules.

The filters, however, are not limited to merely sorting packets into classes.  They
have a wide and easily extensible selection of possible actions they may perform, which
is the reason behind it being called a Classifier-Action subsystem [17].
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3.2 Queuing disciplines on Ingress

The primary purpose of a queuing discipline is to schedule outgoing network traffic, and
all netdevs are required to have one, even if it’s merely a simple FIFO, attached on their
egress.  This is known as a root qdisc [19].

A qdisc can, however, also be attached to the ingress of a netdev.  An ingress qdisc
is a dummy queuing discipline which exists solely as an object onto which filters may be
attached (figure 3.1).  A typical use for an ingress qdisc is with a policer (a filter which
performs one action when the data rate is above a specified value, and another when it’s
below) to limit the amount of traffic accepted on a network interface [19].

The ingress qdisc has become especially useful with the introduction of support for
SR-IOV virtual switches, where it can be used with filters which support hardware rule
offloading (such as TC Flower) to handle switching rules [4].

 Its usefulness as an anchor point for classifier-action rules eventually lead to the
ingress qdisc being generalized into the  clsact qdisc, which in addition to the ingress
also works on the egress of a netdev.  The clsact qdisc replaces and is fully backwards
compatible  with the  ingress qdisc,  but  it  does  not  replace the  root  qdisc on egress.
Instead, it acts as an anchor point for classifier-action rules that should be applied before
packets reach the root qdisc (for example, in the case of the root qdisc being classless,
since  classless qdiscs don’t support having  filters attached to them), and it  provides
a central egress counterpart to the ingress classifier-action rules, allowing for them to
easily share their driver state [20].

3.3 Overview of TC Filters

Filters look at incoming packet data and/or metadata and perform a defined action when
applicable.  They are kept in a priority-ordered list for each protocol, where the priority
values with a smaller numeric value represent higher importance.  This list is traversed
for each packet until an appropriate filter is found [17].
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Originally,  qdiscs used to  support  having only one such chain of filters,  which
conceptually corresponds to a single flat match+action table, with the option of being
able to modify and then recirculate packets, making them go through the list of filters
again to create hierarchical rules (e.g. for encapsulation).  Since it's convenient to be able
to create such rules using a hierarchy of tables instead, and because table hierarchies are
how  such  rules  are  commonly  implemented  in  hardware,  multi-chain  support  was
eventually introduced to TC CA [21].

3.3.1 The “basic” filter

The  basic filter utilizes the extended match infrastructure of the Linux kernel, which
allows for complex matching rules to be built out of a group of simple rules chained
together using logic AND and OR operators, and parentheses [22], [23].

The currently supported rules in the extended match infrastructure are cmp, which
performs arithmetic  comparisons  of  packet  data  fields  at  specified  offsets  (with  the
ability to specify the OSI layer);  meta, which does the same for supported metadata
fields; nbyte, which matches on a sequence of bytes within a packet; ipset, which checks
whether a packet is a member of an ipset; ipt, which checks for xtables matches; canid,
which matches on CAN bus frames, and u32, which performs bit-wise masked matching
on a specific packet field [23].

3.3.2 The “flow” filter

The flow filter, not to be confused with the flower filter, is a filter that serves to extend
the hashing capabilities of a Stochastic Fairness Queuing (SFQ) qdisc, while avoiding
the need of hard-coding new hashing functions into said qdisc [24].

The SFQ qdisc schedules the transmission of packets based on “flows”, trying to
ensure fairness so that a single application doesn’t utilize the entire upload bandwidth
by making flows transmit data in turns.  The term flow refers to a distinct connection or
conversation between two machines, such as the packets of a TCP session [19], [25].

The flow filter supports matching on a set of pre-defined fields, such as the source
and destination address of the level 3 protocol, the specific level 3 and 4 protocols that
are used, the priority key (DSCP/ECN value for IP packets), etc.  In addition to these
fields, flow can utilize the extended match infrastructure used by the basic filter [24].

3.3.3 The u32 filter

The universal 32bit filter, also known as the “ugly” 32bit filter, can be used to match on
arbitrary  bit  fields  in  a  packet.   It  uses  values,  masks,  and  offsets,  with  several
abstraction directives that provide a higher level for defining matching rules.

In addition to being able to perform an action or assign packets to classes, the u32
filter can delegate packets to another filter, and when used with another u32 filter, this
allows it to be used to build arbitrarily complex match+action policies.

The filter delegation is typically achieved by using hash tables, with the match field
providing the key from which a hash value is computed [26].
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3.3.4 The BPF filter

The BPF filter is a fully programmable filter which provides an implementation of the
Extended Berkeley Packet Filter (eBPF) and the Classic Berkeley Packet Filter (cBPF)
instruction set architecture. These are minimal instruction sets, which are designed for
implementing small programs that can be safely executed in the kernel environment.

The eBPF instruction set is seen as a successor to the classic BPF instruction set,
providing better run-time performance, with specific design considerations ensuring that
it works well with JIT compilers.

Support for these instruction sets means that the user is not limited to any particular
set of classifiers or actions, as they can write their own specialized classification and
actions code in a subset of the C language, e.g. using the LLVM framework.  Since the
code is specialized, it can also be remarkably efficient, as it doesn’t have to deal with
unused features that could potentially slow down the classification process [27].

3.3.5 The flower filter

Similarly to the flow filter, the flower filter identifies packets based on them belonging
to a “flow” by observing the values of well-known packet fields and metadata.  Unlike
the  flow filter, which mainly serves to distinguish between packets of different flows,
the flower filter aims at selecting packets of specific flows and performing specific sets
of actions on them.

The  flower filter utilizes the Linux  flow dissector to extract the fields of interest
from a packet, which then serve as the packet’s matching key.  This key is compared to
the keys in the list of installed match+action rules, and upon a match, the corresponding
action is performed [28].

Unlike the other previously mentioned filters, which allow for arbitrary fields to be
matched,  the  flower filter  operates  with  a  fixed  set  of  supported  matching  fields,
although the selection of fields is rather comprehensive.  This approach is similar to that
of OpenFlow, which is one of the main inspirations for the flower filter [18].

3.4 Overview of TC Actions

In order to fulfill their classification purpose, filters within the TC CA subsystem have
a built-in action that selects an appropriate class for matching packets.  Filters may also
have an arbitrary list of  programmed actions attached to them, which allows for the
passing network traffic to be manipulated in various ways, such as by dropping packets,
by  modifying  packet  contents,  by  having  packets  copied  or  redirected  (stolen)  to
a different network interface, etc.

The programmable actions are designed in the spirit of the UNIX philosophy, with
a single action doing just one thing and doing it well, and being able to be combined
with other actions by attaching the input of one action to the output of another.  It is also
relatively easy to implement a new TC action in case the need arises [17].

11



3.4.1 The “generic action”

A core aspect of policy specification in the TC CA subsystem are its pipeline controls,
known as pipeline opcodes, which are used by programmable actions to control packet
flow through the pipeline, their existence serving as a form of separation of policy and
mechanism.

The generic action, also known as gact, is a programmable action that doesn’t do
anything on its own, existing solely as a vessel for pipeline opcodes, analogous to how
the ingress and clsact qdiscs exist solely to have filters attached to them [17].

The  drop opcode causes matching packets to be dropped, the  reclassify opcode
causes classification to restart by jumping to the first filter in the filter chain of a qdisc,
the continue opcode causes classification to continue by jumping to the next filter in the
current  filter chain,  the  pipe opcode causes the next action in a list of actions to be
performed, and the pass opcode causes packet classification to end for a given packet,
with the qdisc being able to process it afterwards [29].

3.4.2 The pedit action

This action allows for arbitrary packet data to be changed.  Either a numeric offset and
field size (potentially with an offset value retrieved from a separate field of the packet),
or the name of a commonly recognized header field, can be used to identify the section
of the packet that should be modified.

The selected part of the packet may be cleared (set to zero), inverted bit-wise, set to
a specific value, or have a numeric value added to it [30].

3.4.3 The “checksum” action

Modifying packet fields with pedit might cause the various checksum values stored in
the packet to become invalidated.  The checksum action serves to correct this, triggering
checksum recalculation of specified header fields.

At the time of writing,  checksum recalculation is  available for the IPv4 header
checksum, ICMP and IGMP header checksums, as well as TCP, UDP, UDP-Lite and
SCTP checksums [31].

3.4.4 The mirred action

Packet mirroring and redirection, which is useful for network analysis, and in the case
of SR-IOV switches with TC Flower offloading, for having the hardware itself redirect
incoming packets to their correct destinations, is implement by the mirred action.

The mirred action additionally allows the network administrator to specify whether
the copied or stolen packets are to appear on the  ingress or  egress of  the specified
destination network interface.  Ingress mirroring is useful if a software application is
listening on the given destination network interface, whereas egress mirroring is useful
for sending the packets into external hardware [32].
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3.4.5 The “vlan” action

Manipulation of IEEE 802.1Q and 802.1ad tags is provided by the vlan action.  It allows
for VLAN encapsulation and decapsulation, as well as for modifying existing 802.1Q
tags.  Each VLAN tag has a protocol ID, VLAN ID, and priority number, all of which
can be set using this action [33].

3.4.6 The skbedit action

To modify a packet’s associated metadata, the skbedit action is provided.  It can be used
for changing the transmission queue used for a given packet, for changing the packet’s
type  (supporting  the  host,  other-host,  broadcast and  multicast types),  for  changing
firewall marks, as well as for overriding classification decisions by either specifying
a priority or using the Differentiated Services field of IPv4/IPv6 headers [34].
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4 THE NDK PLATFORM
The NetCOPE Development Kit, which is developed by CESNET and commercialized
by Netcope Technologies a.s., is a platform that allows for the rapid development of
hardware-accelerated network applications using FPGA network cards [35], [36], [37].

It consists of a collection of efficient implementations of components useful for
network cards (network interfaces, timestamp generation, PCIe bus interface, fast DMA,
etc.), a build system for synthesizing firmware for FPGA chips from both Xilinx and
Intel, and drivers, libraries and utilities for interfacing with and manipulating with the
cards.  Figure 4.1 provides a general overview of the architecture [35].

4.1 NetCOPE FPGA Boards

The term NetCOPE FPGA Board (NFB) generally refers to any FPGA-based network
card that the NDK platform has been ported to.  In addition to CESNET's COMBO
cards, parts of NetCOPE have been ported to Intel's programmable acceleration cards,
such as the Intel FPGA PAC N3000 [38].

Within this work, we will restrict ourselves to CESNET's COMBO cards, although
supporting Intel's cards with the proposed TC Flower extension is an eventual goal,
given how it would allow for the use of unmodified guest OS images on VMs.

The specific card used throughout this work is the COMBO-200G2QL (Figure 4.2).
The main factors that lead to its selection are its fully operational SR-IOV support, and
the fact that it has two 100Gbps QSFP28 transceivers, which allows for easier testing
by utilizing one of the transceivers to generate network traffic for the other to receive.
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At the heart of the COMBO-200G2QL card is a Xilinx Virtex UltraScale+ FPGA.
The card can be configured with either one or two Gen. 3 PCI-Express end-points, with
16 lanes each, allowing for a 200 Gbps data throughput to RAM [39].

4.2 NetCOPE Data Plane

Network traffic is conventionally processed a packet at a time.  Since the overhead of
processing each packet individually can be substantial when operating with a high data
throughput, the  NetCOPE Data Plane (NDP) provides an alternative that uses buffers
containing many packets, which are transferred between software and hardware in bulk.

These buffers are directly accessible to applications via the libnfb library, and allow
for more efficient implementations of specialized network data analysis and processing
solutions [38].

The software driver communicates with so-called NDP controllers on an NFB card,
which serve to implement DMA communication channels, with RX channels copying
packet data into the computer’s memory, and TX channels reading packet data from it.
For each of these channels, the driver maintains a ring buffer, and allows applications to
“subscribe” to the channels to gain access over the buffer, with it being mapped into the
application’s address space by the mmap() system call.

To read received packets, the ndp_rx_burst_get() function can be used to fill out an
array of packet structures, with each member containing a pointer to the packet’s data,
metadata, and the length of these fields.  These structures refer to data in the ring buffer,
and thus, once the application no longer needs them, it needs to notify the NDP driver
by invoking the ndp_rx_burst_put() function.  This will move the read pointer for the
given subscriber to after the set of packets which was read.  The read pointer for the ring
buffer is set to the value of the read pointer of the subscriber who’s read pointer is the
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farthest away from the write pointer, which means that in order for space to be freed in
the ring buffer, all active subscribers need to read (or at least acknowledge) all received
packets on a given RX channel [40].

As for transmitting packets, it involves reserving space on the ring buffer of a TX
channel, copying packet data into it, and then notifying the driver that the data is ready
to be transmitted.  The ndp_tx_burst_copy() function works by copying data from the
previously defined packet structures into the ring buffer, providing an easy, albeit slow
way of transmitting packets.

 The ndp_tx_burst_get() function allows for a more efficient approach, by utilizing
a partially filled packet structure array to reserve space on the ring buffer for a given set
of packets.  It serves as an allocation function, taking the length parameter of each of the
data and metadata fields, and filling out the buffer parameters with appropriate pointers
into the ring buffer.  The application can then use these pointers to populate the buffer,
and use the ndp_tx_burst_put() function once it’s done to publish the packets.

4.3 Command-line tools

In addition to the libnfb library, a set of command-line utilities is provided as a part of
the NDK Platform [40].

nfb-boot is a utility that allows for FPGA firmware manipulation on an NFB card.
It can be used to upload new firmware to a card, as well as to reboot the card and switch
between which of the currently loaded firmware images is being used (the cards usually
have two firmware images, with one of them serving for recovery purposes).

nfb-info is a tool that displays basic information about an NFB card, including the
board type, currently loaded firmware and its capabilities, and PCI bus and NUMA node
information.

nfb-dma is a tool for querying the status of the individual DMA channel controllers,
showing information about how many packets were transmitted or received via a DMA
channel, as well as the current state of its registers.

nfb-eth is a tool used for configuring and querying information about the network
transceivers on an NFB card.  Similarly to nfb-dma, it shows how many packets were
transmitted or received via a transceiver and its status information, but it also allows
the user to enable or disable a transceiver, configure the PCS/PMA, and configure the
MAC filter of a transceiver.

nfb-bus is a tool that provides direct access to the MI32 bus of an NFB card.  This
bus is used for communicating with an NFB card outside of packet data transfers, and is
used by all of the above-mentioned utilities.  This makes nfb-bus especially useful when
working on new hardware features for NFB cards, as it provides a convenient means of
configuring the newly implemented feature, allowing hardware designers to fully flesh
out the design before spending time on implementing a proper configuration utility.

ndp-tool is a utility that performs packet transfers over the NetCOPE Data Plane.
It supports generating sets of packets and transmitting them, transmitting predefined sets
of packets from .pcap files, receiving packets and either displaying information about
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them or storing them into a .pcap file, and re-transmitting any received packets. These
individual modes of operation can also be accessed via standalone executables, such as
ndp-generate, ndp-transmit, ndp-read, ndp-receive, ndp-loopback, etc.

4.4 The P4 Compiler

The NDK Platform provides a compiler capable of generating VHDL architectures from
P4 descriptions.  At the time of writing, only the P4.14 revision of the P4 language was
supported, although support for the P4.16 revision was close to being released [41].

4.4.1 Compiler description

The compiler works by creating an internal representation of a forwarding element des-
cribed in  the P4 language and mapping it  to  a  network  device architecture.  It  uses
a Parser-Deparser model, where packets are broken down into individual header fields,
potentially modified by a processing block, and then reconstructed by a deparser.

The main components of a match+action table in this design are the search engine
and the action engine (figure 4.3).  The purpose of the search engine is to pick the most
appropriate action for a packet based on its headers and metadata [42].

At the time of writing, search engines of three different kinds were supported.  The
ternary content-addressable memory (TCAM) engine is the most versatile, as it is able
to provide exact, LPM and ternary matching, but it also consumes the most resources
out of the three.  The binary search tree longest prefix match (BST LPM) engine allows
for a more efficient implementation of LPM matching, and the Cuckoo hashing engine
is optimal for exact matching, using the least resources out of the three [41].

The action engine performs operations on packet header fields, metadata, as well as
control information (e.g. drop control), with the output values dependent on the action
selected by the search engine.  Primitive actions are implemented as blocks in parallel
with each other, with a distribution block assigning them inputs and synchronization
tags, and a selection block deciding, based on the sync tags, what data to provide on the
output in order to preserve the sequential logic of the action definition [42].
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Within this implementation of P4, packet redirection is performed by modifying the
egress_port field of the intrinsic metadata structure.  This field is an 8-bit value, and it
refers to network transceiver channels on the range of 0-127, and NDP channels on the
range of 128-255.  By default, it has the same value as the  ingress_port field, which
means that the default behavior is to return packets to where they came from.

Some of the notable missing features of the current implementation are support for
variable-length headers, support for implicit checksum verification, and for recirculation
and mirroring of packets.  Additionally, checksum and hash-value generators can only
use data from defined headers, use of the  payload keyword within field lists for hash
generators is not yet supported.  To partially mitigate this limitation, an extension was
introduced which calculates a 16-bit one’s complement sum of the payload, which can
be used in TCP and UDP checksum calculations [41], [43], [44].

4.4.2 Firmware configuration

The FPGA architecture generated by the compiler can be synthesized using the build
system provided by NDK, and once loaded onto an NFB card, can be configured using
the libp4dev library [41].

This library can either be used directly in the case of specialized applications, or it
may be used as a back-end by a  P4Runtime implementation to provide a standardized
P4 configuration interface.  Limited  P4Runtime support  using the  libp4dev library is
provided in a locally maintained branch of the PI repository [45].

The synthesized firmware may contain one or more P4 cores.  The 200G2QL card
contains two P4 cores by default, one for each of the two QSFP28 transceivers, where
received packets are sent into the P4 core which corresponds to the transceiver. The
P4 cores do, however, have the ability to send packets anywhere, and the mapping of
packets transmitted from NDP DMA channels to P4 cores (or transceivers, if one wishes
to skip all P4 pipelines) is configurable on run-time with the TX Mapper components.

  Within the  libp4dev library, a P4 core is represented by a  p4device_t structure.
This structure is meant to be allocated manually (useful for making it a part of a larger
structure) and initialized to P4DEVICE_EMPTY before having p4device_init() invoked
on it.  This function accepts either the path to the card’s NFB driver device node in /dev,
or a device ID from which it can guess this path, as well as a component ID to specify
which of the card’s P4 cores to represent with the newly initialized p4device_t structure.

Match+action tables are accessed using the  p4device_get_table() function, which
accepts a  p4device_t structure and a table name, returning a  p4table_t structure. This
structure can be used with functions like p4table_insert_rule(),  p4table_modify_rule(),
p4table_delete_rule(), and  p4table_insert_default_rule() to maintain the matching and
action rules of the given table.

Because libp4dev keeps its table information state in memory, and this state is lost
upon termination, whenever libp4dev opens a P4 core, it does not know about the rules
which were installed into its tables beforehand. Therefore, the p4device_reset() function
is provided. It accepts a p4device_t structure, and it fully clears and zeroes out all tables
and registers within the P4 core. This makes it useful as an extra initialization step for
cases when knowledge of the exact state of the P4 core is important [41].
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5 EXPERIMENTAL PART
The development process of implementing TC Flower offloading support on the NDK
Platform was largely a learning experience.  While it is open source, some parts of the
Linux kernel source tree aren't particularly well documented, which means that the most
effective way to get familiar with certain APIs is to study their code and the code that
uses them, and to write your own test drivers that interacts with said APIs.  This holds
true for the TC Flower offloading API, at least at the time of writing.  The Bootlin Elixir
Cross Referencer prove to be especially useful for studying the kernel source tree [46].

In order to be able to offload TC Flower match+action rules, the driver behind
a network interface needs to be able to access hardware resources which control packet
classification in a card.  Within the NDK Platform, this is provided by the  nfb kernel
module, which among other things exposes the MI32 bus of the card, which is used for
configuring match+action rules with the P4 implementation developed by CESNET.

The nfb kernel module itself follows a modular design, where it consists of several
sub-modules that fulfill different roles, such as a character device driver for granting
user-space applications access to NFB cards, the NDP driver for packet transfers, the
boot driver for flashing and booting FPGA designs, and a driver with network interfaces
linked to NDP (DMA) channels.  While the nfb kernel module does support SR-IOV, it
does not come with a sub-module that creates representer network interfaces for virtual
functions, which is ultimately implemented within this work for use with OVS [40].

5.1 Configuring P4 pipelines from within the Linux kernel

The first roadblock encountered on the journey of implementing TC Flower offloading
using the NDK P4 implementation was the fact that libp4dev, the low-level library used
for configuring P4 pipelines of FPGA architectures generated by the NDK P4 compiler,
is a user-space library, not intended to be run in the Linux kernel environment.

A saving grace in this regard is the fact that the library is written in the standard C
programming language, and it doesn't depend on any libraries that would be difficult to
port to the kernel environment.  Additionally, the nfb kernel module provides APIs that
are very similar to the user-space APIs provided by the libnfb library that are ultimately
used by libp4dev.

After some negotiations with the developers of libp4dev and the nfb kernel module,
it was decided to introduce compatibility macros into the libp4dev source tree to provide
functionality usually provided by the standard C library by the equivalent kernel calls
for cases when the library is compiled in the kernel environment, as well as providing
macros  for  logging messages  which  would  either  be  backed by  printf()  or  printk(),
instead of invoking printf() function directly.

These compatibility macros would be introduced by the config.h header file, which
is typically used to provide macros about detected system characteristics and requested
features to enable during compilation.  This header file is typically included by every
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code file within the project, so that the macros are always available.  A script would then
be introduced that would create an archive with the libp4dev source tree, and a special
config.h file that contains not only feature test macros, but also type definitions, and
macros that replace standard C library calls like malloc() and strdup() with their Linux
kernel environment counterparts.  With this file available, all that a libp4dev code file
needs to do to be able to function in the Linux kernel is to conditionally avoid including
any standard C library headers, as is shown in listing 5.1.

#include "config.h"
 
#include "p4dev.h" // Include high-level contents
#include "firmware/fw.h" // Low-level device implementations
#include "firmware/dummy.h" // Test implementation
#include "p4dev_base.h"
#include "p4dev_msg_logging.h"

#ifndef __KERNEL__
    #include <string.h>
    #include <stdlib.h>
    #include <assert.h>
    #include <stdbool.h>
    #include <math.h>
#endif

 Listing 5.1: Example of include guards introduced into libp4dev

The most significant changes took place in the error reporting code of the library,
consisting previously of only the p4dev_error.h file, which contained both declarations
of error types, as well as definitions of inline functions for copying and printing names
of error codes, as well as a static definition of a table of names for the error codes.

This original design had a few deficiencies.  First off, since the table of error code
names was defined in a header file as a static array, it meant that a copy of the table was
placed into every object file which used the headers of  libp4dev.  Not only was this
approach inefficient, it also meant that when the library would be updated, applications
wouldn't have access to the names of any new error codes without recompiling.

Additionally, a bigger concern for the kernel-space port were the inline functions,
which required access to the compatibility macros provided by  config.h.  This header
file is only meant to be included by code files, as including it in a header file would
contaminate any application which tried to use is with  libp4dev project constants, and
more disconcertingly, it would contaminate drivers that would use the library with its
compatibility macros, which could lead to compilation issues.

Thus, the error reporting header p4dev_error.h was split, creating a new code file,
p4dev_error.c, which contains the table of names of error codes, as well as the functions
which were previously defined as inline in the header file.  Additionally, a new function,
p4dev_err_str(), was introduced, which behaves very similar to the standard strerror()
call in that it returns a pointer to an error code name that is not meant to be freed.

Another notable change was the removal of floating point arithmetic use, since the
Linux kernel environment doesn't support floating point math.  The library used floating
point division, paired with the standard ceil() function, to perform integer division with
upwards rounding.  This was easy enough to replace with a macro that in addition to
division would also check the remainder, which if non-zero would increment the result
by 1, as is shown in listing 5.2.
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/*!
 * \brief This macro performs integer division (unsigned 32-bit) with the
 * result being incremented by one if the remainder after division is not zero.
 *
 * \param [in] dividend Number to be divided
 * \param [in] divisor Number to divide by
 */
#define UINT32_DIV_CEIL(dividend, divisor) \
    ((uint32_t)(((dividend) / (divisor)) + ((((dividend) % (divisor)) > 0)? 1 : 0)))

/* Without the macro: */
new_transactions = (uint32_t)ceil((*bit_index + bitwidth)/32.0);

/* With the macro: */
new_transactions = UINT32_DIV_CEIL(*bit_index + bitwidth, 32);

 Listing 5.2: The UINT32_DIV_CEIL() macro, with example usage

The libp4dev library was written in a modular way to allow it to easily work with
various different drivers for FPGA cards running architectures produced by the NDK P4
compiler.  It has several built-in "firmware backends" that provide the library with the
means of communicating via the MI32 bus with the P4 application core.  The backend
used with the nfb kernel drivers is provided by fw_nfb.c, support for drivers that provide
direct address space mapping is handled by fw_map.c, and fw_generic.c allows for the
use of application-specific callbacks to access the MI32 bus.  Which backend should be
used is decided upon at compile time with the --enable-device=<variant> option of the
build system's configure script.

In order to make the code easily usable within various different kernel drivers, the
generic backend was selected as the backend that would be provided in source archives
generated by the create-kernel-archive.sh script.  Additionally, the script provides a list
of bundled code files, and a directory with symbolic links to the header files that should
be publicly available, for ease of integration into the source tree of a kernel driver.

Because P4-related code developed by CESNET is not freely distributable, unlike
the device driver code, a copy of the libp4dev library is not enclosed in the electronic
attachment.  However, all changes made to libp4dev as a part of this thesis are provided
in  the  electronic  attachment,  in  patch  form (generated  by  git  format-patch),  in  the
source-code/benc-patches/p4base/ directory. This directory contains most changes made
to  the  p4base repository,  of  which  libp4dev is  a  part  of,  found in the  sw/libp4dev/
directory.  A copy of the create-kernel-archive.sh script is also provided in source-code/
in the electronic attachment.

5.1.1 Gluing it all together

The libp4dev library does have a few dependencies, such as the flat device tree library
libfdt, and the APIs required by firmware backends such as libnfb in the case of the nfb
backend.  The  nfb kernel module contains within its source tree a copy of the  libfdt
library, and it also provides APIs that are very similar to the libnfb library's API, which
makes incorporating libp4dev into the nfb kernel module a straight-forward process.

Within the source tree of the  nfb kernel module, which is located in the  drivers/
directory of the  swbase repository of the NDK platform, the code is  located in  the
kernel/drivers/ sub-directory, categorized into further sub-directories such as fdt for the
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libfdt library, spi for the Xillinx SPI controller driver, and nfb for the source code files
of the nfb kernel module itself, which contains further sub-directories for sub-modules.

The natural place where to put libp4dev is into the drivers/kernel/drivers/ directory
of the swbase repository, next to fdt.  However, it is unwise to directly copy the source
code  files  and  add  them  into  the  repository,  since  these  files  are  already  version-
controlled in the p4base repository.  A better approach is to either use a git submodule,
which allows for the nesting of  git  repositories,  or to  write  a  script  that  clones the
p4base repository, uses create-kernel-archive.sh to create an archive of libp4dev kernel
source code files and unpacks it into the drivers/kernel/drivers/libp4dev/ directory.  The
create-kernel-archive.sh script automatically creates a .gitignore file that lists all of the
files within the archive, to avoid accidentally adding these files into other repositories.

Two scripts were introduced;  unpack-libp4dev.sh, which takes an archive created
by create-kernel-archive.sh and unpacks it into the nfb kernel module's source tree, and
retrieve-libp4dev.sh,  which performs the  above-described steps  to  copy the  libp4dev
kernel source files from the p4base repository into the nfb kernel module's source tree.

In addition to .gitignore, a file called libp4dev_csrc_files is created by the create-
kernel-archive.sh script.  This file contains a list of all of the C code files (as opposed to
header files) provided by the archive.  This list is intended to be used by the kernel build
system, as is shown in listing 5.3.

# Read the list of libp4dev source files from a separate file
libp4dev-csrc-list := $(DRIVER_TOPDIR)/kernel/drivers/libp4dev/libp4dev_csrc_files
libp4dev-csrc := $(shell cat $(libp4dev-csrc-list) 2>/dev/null || true)
$(foreach p4csrc, $(libp4dev-csrc), $(eval libp4dev-csrc-rel += ../libp4dev/$(p4csrc)))
libp4dev-objs := $(libp4dev-csrc-rel:%.c=%.o)

# Add glue code:
libp4dev-objs += ../libp4dev/p4lib_nfb_glue.o

# The library requires C99 to work
libp4dev-cflags := -std=gnu99 -Wno-declaration-after-statement -Wno-strict-prototypes \
                   -UPACKAGE_VERSION

# CFLAGS declarations understood by older kernel versions (e.g. Linux 5.3):
$(foreach p4obj, $(libp4dev-objs), $(eval CFLAGS_$(shell basename $(p4obj)) :=        \
        $(libp4dev-cflags)))

# CFLAGS declarations understood by newer kernel versions (e.g. Linux 5.5):
$(foreach p4obj, $(libp4dev-objs), $(eval CFLAGS_$(p4obj) := $(libp4dev-cflags)))

# Add the libp4dev global mutex (must not have libp4dev CFLAGS applied):
libp4dev-objs += ../libp4dev/p4lib_nfb_glue_mutex.o

nfb-$(CONFIG_NFB_LIBP4DEV) += $(libp4dev-objs)

 Listing 5.3: Makefile snippet for compiling libp4dev into the nfb kernel module

In order to be able to use libp4dev within the nfb kernel module effectively, a small
amount of glue code is necessary.  First off, libp4dev is not thread safe, so it's important
to provide a global mutex to ensure that no more than one kernel thread uses the library
at a time.  This mutex is defined in a separate file from the rest of the glue code, since
the glue code uses inline functions from libp4dev headers and thus needs its CFLAGS,
but whereas libp4dev is designed with the C99 standard in mind, code within the Linux
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kernel is typically compiled with the -std=gnu89 option of GCC (ANSI C89 with GNU
extensions), and this mode is necessary for mutex definitions to work.

The second issue is that libp4dev expects to be passed the path to a device node (or
possibly other type of directory entry) that corresponds to an FPGA accelerator card.
Within the nfb kernel module, the struct nfb type is used to identify an accelerator card,
and a pointer to an instance of this type needs to be passed to the library instead.  The
approach chosen to achieve this was to implement a token structure that would contain
said pointer and a special text string, where a pointer to this embedded text could be
passed to the library as a device path, and upon the text being recognized, it would
know that it's safe to type-cast the embedded text pointer into a pointer of the token type
and gain access to the struct nfb pointer for the acceleration card.  With this mechanism
implemented, it was trivial to adapt the code from the libp4dev nfb firmware backend,
fw_nfb.c, to work within the nfb kernel module environment as callback routines to be
used with p4device_init_callbacks() with the generic firmware backend selected.

5.1.2 Testing it with the p4test driver and user-space tool

While the previous steps have allowed for libp4dev to be compiled as a part of the nfb
kernel module, it is not enough for a codebase to merely compile for it to be ready for
use, its functionality needs to be evaluated first, especially when it has never been used
in a given environment before.

In order to sufficiently evaluate the  libp4dev library in kernel-space, a test driver
that accepts commands written from user-space into a virtual file in the /proc directory
was implemented.  This driver, called p4test, creates a file for each P4 application core
in the /proc/p4test/ directory, e.g. /proc/p4test/nfb0-p4c1 for the second core of the first
nfb accelerator card, where each of these files correspond to a p4device_t instance, and
the commands written into the individual files cause the appropriate libp4dev functions
to be invoked on the corresponding p4device_t instance.

Specifically, the reset command invokes the p4device_reset() function, the enable
and  disable commands  invoke  the  p4base_enable()  and  p4base_disable()  functions
respectively, and the  table command adds or removes match+action rules from tables
using  p4table_insert_rule() and  p4table_delete_rule(), or similar functions for default
rule manipulation and addition of rules at specific table indices.

The table commands accepts sub-commands, with add-rule and del-rule accepting
a set of matching keys, where  add-rule uses the keys, along with an action name and
parameter  list,  to  construct  a  p4rule_t instance  and insert  it  into  the  selected  table,
whereas del-rule uses it to identify the rule to be deleted.  The special keyword default,
when used in place of the key list, makes the command refer to the default rule of a
table.  A simplified del-rule-index sub-command that accepts only the index of the rule
within the table is also provided.  A detailed description of the command syntax, as well
as examples of usage, are available in the  p4test source tree, which is enclosed in the
electronic  attachment  in  the  source-code/swbase-sriov-netdev-tc-flower/drivers/kernel/
drivers/nfb/p4test/ directory (see the README file in the directory and in the demo sub-
directories for details).  The p4test command interpreter code files are not included in
the electronic attachment, since they could be seen as a contribution to the NDK P4
project (discussed later), which is currently not freely distributable.
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Reading  the  contents  of  the  virtual  files  produces  information  about  the  given
P4 application core, such as the name of the firmware image, the list of tables, the rule
format (keys, actions, parameters) accepted by tables, currently installed rules, and the
state of counters.

In addition to the kernel driver, a user-space variant of  p4test was implemented,
which runs as a regular application, and accepts the same format of commands on its
standard input, allowing for back-to-back testing of the kernel-space version of libp4dev
with the user-space version, as is shown on figure 5.1.  The user-space version of p4test
has shown to be generally useful, so it's been integrated into the p4base repository, into
the sw/p4test/ directory.

The user-space variant of  p4test supports an additional command,  status,  which
prints the information that the user would acquire from the kernel version by reading
from the virtual files in /proc/p4test/ onto its standard output.

To aid with the testing, a small python script that uses the scapy library to generate
a set of packets with pre-defined header field values and stores them in the .pcap format
was written.  This script, packet_generate.py, is based on the hypothetical IPv7 packet
generation script, but instead of the header configuration and field values being a part of
the program text, they are stored in a structure, for ease of creating packets with specific
properties without having to modify the code itself.  The script supports generating IPv4
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and IPv6 packets with up to two VLAN tags, utilizing either the TCP or UDP transport
layer.

These  .pcap packet sets can be sent through an NFB card's P4 pipeline using the
ndp-transmit tool, and the processed packets can be collected using ndp-receive.  The
results can then be analyzed using either the companion script  packet_examine.py, or
a more sophisticated tool like wireshark.  Both scripts are in the p4test source directory,
in  examples/general-demo/  for  the  user-space  variant,  and  in  general-demo/  for  the
kernel-space variant. This directory also contains the P4 program that was mainly used
during this phase of testing, and a set of p4test commands to populate the tables of an
NFB card running firmware generated from said P4 program.

Using p4test, several bugs in libp4dev, as well as the newly introduced glue code,
were discovered and fixed.  The electronic attachment contains most of the alterations
made to the NDK git repositories as a part of this thesis in source-code/benc-patches/,
with  p4test code files redacted due to licensing concerns.  The most significant bug
fixed in libp4dev was one which prevented the use of the second P4 application core on
NFB cards,  caused  by  incorrect  iteration  over  the  card's  device  tree  structure,  and
incorrect resource locking.

The evaluation process was ultimately a success, the library ended up operating in
the same way in both the kernel environment and user-space environment.  The act of
writing the two p4test variants and the example P4 programs and their corresponding
p4test command sets was useful in its own right as a learning experience in becoming
more familiar with both the P4 language and the NDK tools and P4 compiler.
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5.2 Extending the existing ndp_netdev driver

Within the nfb kernel module exists the ndp_netdev network interface driver. This driver
creates a network interface (netdev) for each of the card's NDP channels, as is shown on
figure 5.2.  Packets sent through the egress of an ndp_netdev interface are sent into the
card through the corresponding NDP channel, and a copy of all packets received from
an NDP channel appear on the ingress of the corresponding ndp_netdev interface.

This driver is generic, meaning that it can be used for various different purposes in
different applications. We can use the  ndp_netdev driver as a test bed for TC Flower
offloading development by pretending that the individual NDP channels correspond to
SR-IOV virtual  functions  and  implementing  TC  Flower  offloading  on  top  of  their
netdevs, which act as virtual function representers in this model.

The default behavior of the NDK P4 implementation is to return packets to where
they came from, as discussed in chapter  4.4.1.  Using this default behavior, we have
a test model where the mock VFs always perform packet loopback, e.g. any packets sent
through the egress of nfb0d2 will end up appearing back on its ingress.  This behavior
can  be  overridden  for  specific  packets  with  a  match+action  rule  that  changes  the
egress_port in the  intrinsic_metadata, allowing us to model the redirection of packets
into a different mock VF.
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In order to provide TC Flower offloading for a netdev, the NETIF_F_HW_TC bit
needs to be set in its feature mask, and an ndo_tc_setup() callback routine that sets up
TC flow blocks, configuring callbacks to handle the management of hardware offloaded
filters attached to either an  ingress or  clsact qdisc, needs to be provided.  The caller
specifies whether to set up a TC flow block on the ingress or egress of the netdev.  In our
case,  filter offloading on ingress has been implemented,  attempting to perform filter
offload on egress will result in an "operation not supported" error.

The enum tc_setup_type type is used to specify what kind of TC element is to be
configured.  The callback function that is installed during the TC fow block setup in our
driver supports the TC_SETUP_CLSFLOWER variant when TC Flower offloading is
enabled in the driver and supported by hardware, otherwise it returns an "operation not
supported" error.  In the case of TC Flower, the function handles the installation and
removal of match+action rules from hardware, as well as querying information about
how many packets and bytes a given rule in hardware had processed.

The individual offloaded rules are all identified by a unique numeric cookie value,
which may be used as a hash table key for fast lookup.  Additionally, a priority number
and chain number are provided.

The software implementation of TC Flower uses the Linux flow dissector to extract
the desired fields from packets, which it then compares with the fields of match+action
rules, utilizing a hash table search to locate any matching rule and to perform the action
associated with it.  This means that the matching key data is stored in the flow dissector
format as well, and it's passed in this format to hardware offload drivers as well.

This key format can be understood as a wide key with optional fields.  An analogy
in P4 would be a table with a long list of ternary matching keys.  It was decided that for
the sake of simplicity, the flow dissector key would be directly converted into a P4 key
for such a table, which is performed by nfb_tcfl_parse_keys().

While this approach is simple, it is not ideal from a resource usage point of view, as
with the current NDK P4 compiler implementation, it uses expensive TCAM memory,
significantly restricting the number of rules that can be offloaded, especially when used
in combination with OVS, for which the TC Flower support is implemented as a  dpif
provider (as discussed in chapter 2.2), meaning that it doesn't make good use of TCAM
memory.  This will eventually be addressed by introducing wide-key optimizations into
the P4 compiler, and by using an acceleration card with external memories, but that is
outside of the scope of this thesis.

With this approach, a set of supported matching keys had to be decided upon.  It is
an eventual goal to create a script that would generate a P4 firmware image that would
support matching keys based on a description, so that users would be able to specify the
kind of fields they want to match on to make better use of limited hardware resources.
This script could work by deleting unwanted parsing steps and table keys from the P4
program, reducing the size of the key.  Additionally, multiple tables could be specified,
each supporting different matching criteria.

With this in mind, it was decided that the default P4 program would have a single
table for match+action rule offloading, with its key being as wide as possible, since the
key can always be shortened, and the TC Flower offload driver can simply provide
a zero mask for any parts of the wide key that weren't specified in the rule.  This way,

27



we could have a universal firmware image that supports all keys, but can't hold many
rules.  This image would not only be useful for developing the TC Flower offloading
code, but also for examining the kinds of rules that get installed by solutions like OVS.

For the ndp_netdev TC Flower implementation, the P4 program used for generating
such a firmware image is enclosed in source-code/swbase-ndp-netdev-tc-flower/drivers/
tc-flower-offload-p4-prog/ in the electronic attachment, currently supporting matching
on IPv4 and IPv6 packets with up to two VLAN tags and either a TCP, UDP, or SCTP
transport layer.  The firmware does not support fragmented IPv4 packets, or packets
with optional IP header fields (both IPv4 and IPv6) due to limitations of the current
NDK P4 compiler implementation.

A useful property of the TCAM search engine implementation used by the NDK P4
compiler is that the priority of rules within tables is well defined, with the rule index
specifying the priority – rules with a higher index number have a higher priority.  This
property can be exploited to implement priority handling for offloaded rules, the driver
keeps a priority-ordered linked list of offloaded match+action rules, and a new function
was introduced into the  libp4dev library,  p4table_insert_rule_next_to(), which allows
for the insertion of a rule in-between existing rules, pushing them to the side to free up
space for the new rule if necessary, maintaining a desired ordering.

This list is also useful in error recovery.  If an inconsistency is either suspected or
detected between the information the driver keeps about the offloaded rules and the
actual rules offloaded in hardware, e.g. as a consequence of a failed MI32 bus write, the
driver  temporarily  shuts  down the  P4 pipeline  and re-configures  the  tables,  able  to
traverse the linked list of offloaded rules to quickly re-populate the match+action tables.

For the actions of match+action rules, a conceptual incompatibility exists between
TC and P4.  While a TC CA rule can have an arbitrary combination of actions, the P4
language allows only a single pre-defined compound action per match+action rule.  This
lead to the implementation of a universal action that performs a variety of optional sub-
actions specified by its parameters, and the parameters are generated by interpreting the
manner in which a set of TC actions would modify a packet.  Analogous to the keys,
there could later be  a script that would cut this action down into less capable variants
according to the needs of the user, with the driver then examining the actions available
in hardware and picking the optimal variant for a particular rule.

The universal action consists of a set of modify_field() invocations, making use of
the mask field to only perform the modifications on demand.  In order to add or remove
VLAN tags, a metadata bit is set, and the actual addition or removal is done by separate
actions that are invoked by the control flow program when the corresponding metadata
bits are set.  In order to achieve this behavior in P4.14, helper tables that have only
a default rule and always perform this single rule are provided.  These tables can be
applied conditionally from within the flow control program, and as long as the runtime
environment  ensures  that  the  default  rules  are  actually  configured,  the  behavior  of
directly invoking actions is achieved.  Within the  ndp_netdev TC Flower driver, the
default rule installation is handled by the nfb_tcfl_set_default_rules() function.

The action that required the most effort to implement was pedit, as it manipulates
raw packet data at given offsets, either from the start of a packet or from headers.  The
header-based variant was implemented, interpreting the provided modification bitmask
data and using it to construct the correct set of parameters for the universal action.
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It's important to note that while this TC Flower implementation does support IPv4
header checksum recalculation, which is performed implicitly by the hardware after the
t_ipv4_output_csum_calc helper table is configured, it does not support transport layer
header checksum recalculation.  The primary reason is that the NDK P4 compiler does
not support the payload keyword for specifying that the data beyond the parsed headers
should be included in the data set used to calculate a checksum, and while there is an
extension that provides a limited alternative that can be used for TCP and UDP, it is
non-standard,  and for this test  driver, the disadvantage of the P4 program not being
conformant to the P4.14 standard is greater than the advantage of having the checksum
recalculation, since the modified packets are not used by any actual applications for
networking, they're merely looped back by the hardware for testing.

To keep track of the amount of bytes and packets that a match+action rule handled,
a P4 counter is provided.  This counter is bound to the offloading table statically, which
means that each rule specifies the counter cell that it should be tracked by.  This allows
for greater flexibility compared to direct binding, for which the counters track the rules
based on their indices, since the indices of existing rules can change as a consequence of
new rule insertion.  This does, however, mean that the driver itself needs to implement
the allocation of counter cell identifiers for rules.  Since the identifiers are all of the
same size, a simple bitmap-based allocator was implemented.  The counter ID bitmap is
stored as a part of the flow chain information within the driver.  Each rule is assigned
a counter cell identifier, and it's passed to the card as an action parameter.

The actual testing of the ndp_netdev TC Flower driver was performed similarly to
the testing of p4test, using the packet_generate.py script, ndp-transmit and ndp-receive.
NDP channels can have multiple readers and writers (as described in chapter 4.2), so the
regular NDP tools can be used as an alternative to the kernel network interface.  The
kernel network interface itself was tested as well, using tcpdump and Bit-Twist.  In order
to install TC Flower rules, the tc utility provided by the iproute2 project can be used, as
shown on listing 5.4.

# modprobe mdio
# insmod nfb.ko ndp_netdev_enable=yes ndp_netdev_carrier=yes \
                ndp_netdev_tc_flower_offload=yes

# ip link set dev nfb0d5 up
# tc qdisc add dev nfb0d5 ingress

# tc filter add dev nfb0d5         \
          protocol ip parent ffff: \
          flower skip_sw           \
          src_ip 192.168.2.0/24    \
          action drop

# tc filter show dev nfb0d5 ingress
filter protocol ip pref 49152 flower 
filter protocol ip pref 49152 flower handle 0x1 
  eth_type ipv4
  src_ip 192.168.2.0/24
  skip_sw
  in_hw
        action order 1: gact action drop
         random type none pass val 0
         index 1 ref 1 bind 1

# tc filter delete dev nfb0d5 ingress prio 49152

 Listing 5.4: Example of using the ndp_netdev TC Flower driver
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The code for this driver is available in the feat-benc-tc-flower-demo branch of the
NDK swbase repository, in the drivers/kernel/drivers/nfb/ndp_netdev/ directory, a copy
of  the  files  from  this  branch  is  in  source-code/swbase-ndp-netdev-tc-flower/  in  the
electronic attachment.  In order to compile this driver, a Linux kernel of the version 5.3
or newer is necessary, libp4dev files need to be added as described in chapter 5.1.1, and
TC Flower offloading needs to be enabled in the drivers/Makefile.conf file.  The driver
can then be compiled using either the autotools-based or cmake-based build system, and
used as shown in listing 5.4.

5.3 The sriov_netdev driver and Open vSwitch

While the above described driver does provide a functional implementation of TC
Flower hardware offloading using a COMBO card, it's not particularly useful, since the
network interfaces that the rules may be attached to only ever perform packet loopback.
The bigger picture in which TC Flower plays a major role is in the context of virtual
network switches, such as Open vSwitch, for which it provides a means of accelerating
their function by allowing for some of their operations to be performed by hardware.

In the context of the COMBO series of cards and the NDK, the most useful way to
utilize TC Flower and Open vSwitch is with NVF (network function virtualization), of
which the SR-IOV variant is currently supported.  Figure 5.3 shows a conceptual layout
of an NFB card being used together with Open vSwitch to act as a network switch for
virtual machines, with TC Flower making it possible for Open vSwitch to alter the paths
of packets in the P4 core.
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The layout shown in figure 5.3 was chosen because it would be easy to implement
using a modified version of the ndp_netdev driver.  This modified driver would create
network interfaces for communicating with individual virtual functions or with ethernet
ports, configuring the P4 core to facilitate this communication, and allow for the default
packet paths (the dotted lines in the P4 core) to be overridden by TC Flower using the
mirred action (egress redirect mode), as described in chapter 3.4.4.

Originally, this modified driver, sriov_netdev, used only a single NDP channel for
all packet communication with the card, since with Open vSwitch, only the first packets
of a flow would reach the driver, and it would leave more NDP channels available for
use with virtual functions.  While this approach worked, it introduced an extra metadata
header that would be difficult to work with in the eventual port to Intel acceleration
cards, and it was therefore decided to set aside 2 NDP channels for each virtual function
and ethernet port, and to set up a default mapping between the pairs.

This mapping is handled by the t_redirect P4 table, which is set up by the driver on
initialization.  The driver analyzes the card's device tree, checking how many SR-IOV
virtual functions it supports and how many NDP channels it has set aside for them, and
uses this information to populate the t_redirect P4 table and to create the corresponding
netdevs.  Since the amount of virtual functions that are currently enabled is configurable
on runtime using sysfs, a notification mechanism was added into the nfb kernel module
to allows drivers such as sriov_netdev to be notified about changes in the current virtual
function count, which is used by the sriov_netdev driver to maintain the correct amount
of netdevs, creating or destroying them as necessary.

The NDK P4 synthesis tools create two P4 cores on the COMBO-200G2QL cards
by default, to help achieve better data throughput when both of its 100Gbps QSFP28
transceivers are used.  Since we do not plan on using this card in the long term, due to
its high manufacturing costs and lack of external memory support, we've decided not to
fully exploit its design, and use only one P4 core for TC Flower offloading.  It's possible
to modify the NDK P4 synthesis tools to generate only one P4 core for this card to
reclaim the resources that the unused second core takes up, but currently, it’s merely set
up to drop all of the packets it receives.  It can be used, however, together with the
second PCIe end-point that the card offers, for testing, acting almost as a second NFB
card that can generate a stream of packets to be processed by the first P4 core.

The P4 firmware adapted for the sriov_netdev driver additionally supports TCP and
UDP checksum recalculation, implemented using non-standard P4 extensions, although
it's easy to comment out the non-standard parts and uncomment the corresponding lines
that adhere to the P4.14 standard in case the NDK P4 compiler eventually implements
the payload keyword in field_list declarations.  This feature is important since the data
used for these checksum calculations includes not just the packet payload and the fields
from the respective transport layer headers, but also from the IP header, particularly the
source and destination IP addresses [43][44][47][48], and not being able to recalculate
the  level  4  checksum would  disallow the  hardware  from changing  IP addresses  of
packets, an operation that is commonly performed as a part of level 3 packet routing.

The code for this driver is available in the feat-benc-sriov-ovs-demo branch of the
NDK  swbase repository, in the  drivers/kernel/drivers/nfb/sriov_netdev/ directory, with
the  p4-program sub-directory containing the firmware P4 description.  A copy of the
files from this branch is in source-code/swbase-sriov-netdev-tc-flower/ in the electronic
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attachment.  The P4 program requires a special version of the NDK P4 compiler, as per
the instructions in the README file located in the p4-program directory.

Once the kernel module is built, the sriov_netdev driver can be enabled by passing
the  sriov_netdev_enable=yes argument  to  the  module  (e.g.  using  insmod).   Once it
starts up and creates the necessary netdevs, which can be verified using the dmesg and
ip -a commands, Open vSwitch can be set up as per the instructions in [49], substituting
the names of the network interfaces in that guide for the names used by sriov_netdev.

For the actual virtual machines themselves, they need a copy of the NFB drivers
themselves, since the virtual functions appear as limited-use NFB cards, currently with
just a single NDP channel for each. This NDP channel can be used either with the libnfb
library, with tools such as ndp-receive and ndp-transmit, or the ndp_netdev driver can be
used to provide a regular system network interface, allowing unmodified applications to
use it for networking, as is shown in figure 5.4.

Because several identical VMs may be attached to the virtual switch, and there isn't
currently a hardware solution in the NFB cards for passing MAC addresses from the
host system to guest systems, which could lead to there being several end nodes with the
same MAC address within a single level 2 network, the  ndp_netdev driver had to be
tweaked for use in such scenarios by implementing the ndo_set_mac_address() callback
function.  The implementation is identical to the one present in sriov_netdev, and it only
sets the MAC address in software, which is sufficient for our purposes.  This feature can
be seen in use in figure 5.4.

 Fig. 5.4: Demonstration of communication between VMs on an NFB virtual switch

In order to automate the deployment process, a script that creates a libvirt virtual
machine running CentOS with the NFB tools and drivers installed was written. This
script, enclosed in the electronic attachment as demo-sriov-tcfl-vm/vm-create.sh, accepts
a name for the new virtual machine and whether or not to enable ndp_netdev by default,
and uses the virt-builder and virt-customize tools to create the virtual machine.  A part of
the routine is a full system package update, installation of kernel headers, configuring
the grub boot loader to optionally enable ndp_netdev, enabling automatic root login on
the serial console for quicker debugging, and installation of the NDP tools and drivers
themselves, in the form of the netcope-common package.  The vm-data/ directory next
to the script contains the needed helper files, including the modified  netcope-common
package, with source code included (the netcope-common-6.6.1-1.tar.gz file).
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5.4 Evaluation of the achieved results

The primary purpose of a hardware-accelerated virtual switch is to reduce the amount of
CPU time spent on sorting and distributing packets between virtual machines. We were
able to achieve this goal by combining Open vSwitch with the NDK P4 technology with
a custom device driver supporting the TC Flower interface.

During initial testing of the setup, with a Linux 5.2 kernel, there were some issues
related to the PCI configuration space with this older kernel version, which resulted in
only one of the virtual functions being able to transmit packet data over NDP.  This
made testing more difficult, but not impossible, since the representer for the QSFP28
transceiver was fully operational, and it allowed for the virtual machine to be connected
using the virtual switch to a 100Gbps optical network.

We did not have access to a 100Gbps optical internet connection where the server
that this virtual switch was developed on was located (at the CESNET offices in the IT
faculty of BUT), but we did have access to another server with the same type of card
installed, as well as an optical cable that could be used to connect the two machines.
This allowed for one of the machines to act as a gateway to the internet for the other.

Using this configuration, we were able to successfully transfer packet data between
the virtual machine and the gateway.  Additionally, once the gateway was configured to
perform IP forwarding, we were able to connect the virtual machine to the internet, and
using the ovs-ofctl tool for administering OpenFlow switches, we were able to add rules
to block various websites.  By observing the kernel logs with dmesg, the netdev packet
counters with ip, and the TC Flower rules with tc, we were able to see the classification
offloading process in action.  Only a handful of packets ever reached the kernel network
interfaces on the host system, the rest were directly transferred between the gateway and
the virtual machine as per the classification rules set by Open vSwitch.  These rules are
maintained by dpif (datapath interface), and by watching the debugging messages in the
kernel log, we could see how dpif checks all of the offloaded rules twice a second to see
if the individual rules had handled any packets, and when a rule hasn't handled any in 10
seconds, we could see it being being removed to make space for other rules.

The few packets that do end up reaching the kernel network interfaces are either the
first packets of a flow, or packets of a protocol that currently isn't supported by the P4
firmware's parser, such as the ARP and ICMP protocols, which we were able to verify
using the  tcpdump utility.   These packets are transferred via the “slow path” by the
default redirection table.  While this typically doesn't present much of an issue, as these
particular protocols aren't used for the transfer of bulk data, a similar problem exists for
packets  that  use  a  different  transport  layer  protocol  than  TCP,  UDP,  or  SCTP,  or
a different level 3 protocol such as IPX.  In these cases, the P4 firmware and the TC
Flower driver would need to be extended to ensure that the packets use the “fast path”.

While the TC Flower driver is easy to expand, the current NDK P4 implementation
is rather constrained in what it can do.  For example, SCTP checksum recalculation is
not implemented, so while SCTP packets can be classified and redirected, they must not
be modified in any way, since not only does the SCTP protocol use a CRC32c checksum,
an algorithm not supported by the non-standard NetCOPE P4 checksum extensions, but
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the SCTP checksum calculation additionally uses the entire packet (with the checksum
field zeroed out) as its input data [50], which would result in a lot of separate field_list
declarations being necessary in order to properly handle packets with VLAN tags, a lot
of extra conditional steps would be required in in the control program, and the resulting
firmware would be sub-optimal.  A similar problem exists for implementing support for
packets  with  optional  IP header  fields,  since  the  NDK P4 implementation  does  not
support variable-length fields, and while it's technically possible to write a parser in P4
that extracts the optional fields into separate header structures, this adds a lot of extra
complexity into the P4 program and the corresponding generated firmware.

For this reason, and because of the GPL incompatibility of the  libp4dev library
(which  currently  prevents  the  drivers  written  as  a  part  of  this  thesis  from  being
deployed, since the Linux kernel is released under the terms of the GNU GPL license,
although this issue might get resolved in the future if libp4dev becomes open source), it
is planned to use a more flexible HLS approach for the firmware of the acceleration
card.  The architecture of the drivers wouldn't change, but  libp4dev would need to be
replaced with a  runtime configuration library that  would provide similar  features  to
libp4dev, but would instead work with the new HLS firmware.

As for the actual network performance, on the hardware we were testing, we were
able to achieve a transfer rate of roughly 1Gbps with ndp_netdev running on the virtual
machines, as can be seen on figure 5.4.  The main limiting factor is related to the CPU
overhead  of  processing  the  packets  in  the  virtual  machines,  the  ndp_netdev driver
processes packets going through an NDP channel serially, and if the overhead of packet
processing reaches a point where the CPU core running ndp_netdev reaches full usage,
the driver simply can't keep up.  This problem can be mitigated by adding queue support
into ndp_netdev and dedicating more than just a single NDP channel for VFs.  A quick
and dirty solution would be to pass several VFs to a single virtual machine, although the
software configuration would need to be more complicated to fully make use of the
extra ndp_netdev interfaces.

The biggest limitation of the current design is by far the small amount of rules that
can be offloaded into the acceleration card, 64 rules are currently supported, but in order
to be useful in a data center, thousands of rules need to be supported.  Usage of external
memories is currently the planned way to overcome this limitation.
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6 CONCLUSION
This thesis provides an overview of some of the technologies that can be used for the
purposes of providing efficient network access to virtual machines where a high data
throughput is desired, and where conventional network driver para-virtualization would
result in substantial amounts of overhead.

The COMBO line of acceleration cards are useful for a large number of different
tasks thanks to their programmable FPGA chips.  With support for SR-IOV having been
recently introduced to the cards, it makes it possible for them to be used as network
switches for virtual machines.  The aim of this thesis is to develop a concrete application
where a COMBO card fulfills this task.

The flower filter of the Linux TC CA subsystem was chosen as the mechanism that
would be used for installing match+action rules onto the card, thanks to its similarity to
OpenFlow, which allows projects like Open vSwitch to utilize it to manage the network
traffic between virtual machines.  Unlike the other filters in the TC CA subsystem, the
flower filter (TC Flower) was specifically designed with hardware offloading of flow
rules in mind, which makes it easy to implement support for it in network accelerators.

In the experimental part of the thesis, an extension of the NFB device drivers was
proposed and implemented, using the P4 compiler developed at CESNET as a part of
the NetCOPE Development Kit for generating HDL code from a high-level networking
description for generating the COMBO card's firmware.  This required that the libp4dev
library would be ported into the Linux kernel environment, where it could be used by
the extended driver.

This endeavor ended up being successful, allowing us to directly connect virtual
machines to a 100Gbps optical network, with the vast majority of the data transferred
between them and the outside network being handled by the card itself, with only a few
packets ending up reaching the host operating system, mainly for the purpose of setting
up the flow rules in the acceleration card's application core.

However, while the technology developed as a part of this thesis does work, it's not
yet in a state where it can be commercially used.  First off, the COMBO series of cards
is simply way too expensive to be used for this purpose, a cheaper alternative where this
technology could be ported to needs to be found, with the Intel PAC-N3000 being the
most likely candidate.  Additionally, the current firmware is rather inflexible, and scripts
need to be introduced to customize it for a particular use case in order to make better
use  of  limited  FPGA resources.  The  underlying  technology  might  also  need  to  be
changed, since the NDK P4 technology itself is quite inflexible, both in terms of its
capabilities and in terms of licensing, with packet classification based on HLS (high-
level synthesis) being the most likely replacement.

Over all, this project has been a success.  While it didn't result in a commercially
viable hardware-accelerated virtual  switch being created,  it  is  an important  stepping
stone on the journey of creating one.
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API Application Programming Interface

ARP Address Resolution Protocol

BPF Berkeley Packet Filter

BST Binary Search Tree

CA Classifier-Action

cBPF Classic Berkeley Packet Filter

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DMA Direct Memory Access

dpif Datapath Interface

DSCP Differentiated Services Code Point

eBPF Extended Berkeley Packet Filter

ECN Explicit Congestion Notification

FIFO First in, First out

FPGA Field-programmable gate array

Gpbs Gigabits per second

GCC GNU Compiler Collection / GNU C Compiler

GNU GNU’s Not Unix

GPL GNU General Public License

HDL Hardware Description Language

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol, or Intellectual Property

IPv4 Internet Protocol, Version 4

IPv6 Internet Protocol, Version 6

JIT Just-in-time (compiler)

KVM Kernel virtual machine

LAN Local Area Network

LLVM Low Level Virtual Machine (a compiler back-end project)

LPM Longest Prefix Match

MAC Medium Access Control

MI32 Universal 32-bit Memory Interface
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NDK NetCOPE Development Kit

NDP NetCOPE Data Plane

NFB NetCOPE FPGA Board

NIC Network Interface Card

NVF Network Function Virtualization

OS Operating System

OSI Open Systems Interconnection

OSPF Open Shortest Path First

PCS Physical Coding Sublayer

PF Physical function

PI Program Independent

PMA Physical Medium Attachment

Qdisc Queuing discipline

QoS Qality of Service

QSFP Quad Small Form-factor Pluggable

RAM Random Access Memory

RFC Request for Comments

RIP Routing Information Protocol

RX Receive

SCTP Stream Control Transmission Protocol

SDN Software-Defined Networking

SFQ Stochastic Fairness Queuing

SNMP Simple Network Management Protocol

SPI Serial Peripheral Interface

SR-IOV Single-root input/output virtualization

TC Traffic Control 

TCAM Ternary content-addressable memory

TTL Time to live

TX Transmit

VF Virtual Function

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor
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