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ABSTRACT 
The C E S N E T association develops the C O M B O line of high-performance (currently 
with up to two lOOGbps ports) programmable network adapters, focused on network 
data analysis and processing. These cards come with an F P G A chip, which allows users 
to define exactly how the network traffic should be processed. A possible use case for 
these cards is as network switches for virtual machines within a data center. 

The focus of this thesis is on implementing T C Flower offloading support for the 
C O M B O line of cards (software and F P G A firmware). It is a common interface for 
installing flow match+action rules into SmartNICs, and allows them to be used to 
manage network traffic between virtual machines and the outside world, saving C P U 
cycles in the host machine. 

KEYWORDS 
computer network, packet classification, flow rule, offloading, virtual network switch, 
device driver, virtualization, hardware acceleration 

ABSTRAKT 
Sdružení C E S N E T vyvíjí vysokorychlostní programovatelné síťové karty C O M B O 
(aktuálně až s dvěma lOOGbps porty) zaměřené na analýzu a zpracování síťových dat. 
Karty obsahují F P G A čip, který dovoluje uživatelům přesně definovat způsob, jakým 
má být síťový provoz zpracován. Jedno z možných využití těchto karet je jako síťový 
přepínač pro virtuální stroje v data centru. 

Tato práce je zaměřená na implementaci podpory T C Flower offloadu pro karty 
C O M B O (software a F P G A firmware). Jedná se o všeobecné rozhraní pro instalaci 
flow pravidel typu shoda+akce do SmartNICů, a dovoluje nám použít je pro správu 
síťového provozu mezi virtuálními stroji a vnějším světem. Cílem je úspora 
procesorových cyklů hostitelského stroje. 

KLÍČOVÁ SLOVA 
počítačová síť, klasifikace paketů, flow pravidlo, převod do hardwaru, virtuální síťový 
přepínač, ovladač zařízení, virtualizace, hardwarová akcelerace 



ROZŠÍŘENÝ ABSTRAKT 
Sdružení C E S N E T vyvíjí vysokorychlostní programovatelné síťové karty C O M B O 
(aktuálně až s dvěma lOOGbps porty) zaměřené na analýzu a zpracování síťových dat. 
Karty obsahují F P G A čip, který dovoluje uživatelům přesně definovat způsob, jakým 
má být síťový provoz zpracován. Nedávno byla pro C O M B O karty implementována 
podpora technologie SR-IOV, která umožňuje rozdělení prostředků karty na několik tzv. 
virtuálních funkcí, které mohou být v rámci virtualizace předány virtuální strojům. 

Typické využití technologie S R - I O V v kontextu síťových karet je poskytnutí pří
mého síťového přístupu virtuálním strojům, síťový provoz v tomto případě neprochází 
hostitelským operačním systémem. Tento přístup je výhodný hlavně u systémů s mnoha 
virtuálními stroji mezi kterými nepřetržitě protéká veliké množství dat, jako například 
u serverů v data centrech, kde jsou virtuální stroje pronajímány různým zákazníkům pro 
účely internetového hostingu. Čas, který u softwarového řešení musí procesor serveru 
na realizaci síťového provozu strávit, bývá v tomto případě výrazný, protože v rámci 
třídění paketů mezi jednotlivými virtuálními stroji a vnějším světem musí hostitelský 
operační systém analyzovat datové políčka hlaviček každého jednoho paketu. 

Tato práce je zaměřena na vytvoření hybridního řešení pomocí karty C O M B O , kde 
virtuální stroje jsou připojeny na S R - I O V virtuální funkce karty, ale karta sama o sobě 
pakety z virtuálních strojů předává přímo hostitelskému operačnímu systému, který je 
třídí stejně jako u softwarového řešení. Rozdílem od čistě softwarového řešení je, že 
hostitelský operační může do karty nainstalovat klasifikační pravidla, které pro pakety 
známého druhu provádí směrování přímo v samotné kartě. Využívá se tady konceptu 
síťových toků (angl. network flows), kde tok představuje skupinu paketů pocházející od 
stejné aplikace nebo služby, se stejnou destinací. Principem funkce hybridního řešení je, 
že do hostitelského operačního systému se vždy dostane jenom první paket síťového 
toku, který operační systém využije pro sestrojení klasifikačního pravidla pro daný tok, 
a zbylé pakety toku zpracuje již samotná síťová karta. 

V hostitelském operačním systému je realizace síťového provozu pro virtuální 
stroje zajištěna virtuálním síťovým přepínačem (angl. virtual switch). Implementace 
přepínače je různá v závislosti od požadavků, např. jádro Linux obsahuje implementaci 
přepínače pracujícího na OSI úrovni 2, který je spravován pomocí nástroje brctl. Pro 
zapojení do složitějších vnějších sítí jsou výhodné programovatelné síťové přepínače, 
mezi které patří např. Open vSwitch, který podporuje konfigurační protokol OpenFlow. 

Pro Open vSwitch bylo v jádru Linux vyvinuto rozhraní T C Flower, které dovoluje 
virtuálnímu přepínači převádět pravidla na zpracování síťových toků do hardwaru. Toto 
rozhraní existuje jako součást klasifikačně-akčního podsystému T C C A , který poskytuje 
celou řadu mechanizmů pro řízení síťového provozu. T C Flower, formálně T C filtr typu 
flower, byl navržen jako alternativa k existujícímu Open vSwitch jádrovému ovladači, 
jelikož dochází u zmíněného ovladače k značné duplicitě kódu se zbytkem jádra. Filtr 
flower využívá existujícího kódu jádra, jako například flow dissector, čímž zamezuje 
dvojímu výskytu stejných poruch, a dovoluje využití existujících nástrojů. 



Technologie využita pro návrh samotného F P G A firmwaru je jazyk P4, konkrétně 
překladač z P4 na V H D L , který je na C E S N E T u vyvíjen v rámci platformy N D K 
(NetCOPE Development Kit). Jazyk P4 je doménově specifický jazyk určen pro popis 
funkce síťového prvku, s možností konfigurace za běhu pomocí P4Runtime rozhraní. 
Konkrétně se v jazyku P4 popisuje rozkladač (angl. parser), který rozloží procházející 
pakety na hlavičky a náklad (angl. headers and payload); tabulky, které podle hlaviček 
a metadat mohou nad paketem vykonat libovolně složité úkony; a ovládací programy, 
které jsou spouštěné rozkladačem na základě obsahu hlaviček paketů, a mohou na 
pakety podmíněně aplikovat tabulky. Samotný obsah tabulek, ve formátu pravidel typu 
shoda+akce, je nahráván za běhu přes rozhraní P4Runtime. 

V rámci N D K P4 implementace existuje knihovna libp4dev, která slouží na nízko-
úrovňovou konfiguraci firmwaru karty vytvořeného pomocí N D K P4 kompilátoru. Tato 
knihovna je určena hlavně pro použití v P4Runtime implementaci, ale dá se použít i pro 
specifické aplikace, pokud nepřekáží nepřenositelnost na jiné P4 platformy. Knihovna 
využívá pro konfiguraci rozhraní MI32, které je zpřístupněno knihovnou libnfb pomocí 
mapování virtuální paměti mezi ovladačem karty v jádře a knihovnou libnfb. 

Pro přenos síťových dat byla v rámci platformy N D K vyvinuta technologie N D P 
(NetCOPE Data Plane), která specializovaným aplikacím umožňuje zpracovávat pakety 
v dávkovém režimu, bez toho aby operační systém musel jednotlivé pakety analyzovat. 
Aplikacím jsou pomocí knihovny libnfb přímo zpřístupněny paměťové regiony D M A , 
do kterých karta nezávisle na procesoru ukládá příchozí pakety, a z kterých čte pakety 
na odeslání. 

V rámci ovladače pro karty podporující N D K platformu, tzv. N F B karty ( C O M B O 
karty jsou příkladem N F B karet), existuje několik pod-ovladačů vhodných pro rozličné 
aplikace. Jeden z pod-ovladačů ovladače N F B je ndp_netdev, který vytváří nad techno
logií N D P standardní síťová rozhraní. Počet těchto rozhraní odpovídá počtu tzv. N D P 
kanálů karty, které představují hardwarové jednotky řešící D M A komunikaci. Ovladač 
ndp_netdev)e všeobecný, a způsob jeho použití závisí na konkrétní aplikaci. 

Ovladač ndp_netdev byl v této práci využit jako testovací platforma pro vývoj pod
pory převodu T C Flower pravidel do C O M B O karty. Síťová rozhraní pro N D P kanály 
zastupovali funkci reprezentátorů virtuálních funkcí, a bylo využito vlastnosti N D K P4 
implementace, podle které výchozí destinace paketů je místo původu, což nám dovolilo 
s jednoduchostí modelovat situaci, kde virtuální funkce vždy provádějí loopback. 

Pro instalaci pravidel do P4 tabulek bylo zapotřebí přizpůsobit knihovnu libp4dev 
pro práci v prostředí jádra operačního systému Linux. Tento krok si vyžadoval přidání 
podmíněného vkládáni hlaviček standardní C knihovny, náhradu funkcionality standard
ní C knihovny ekvivalentními funkcemi a datovými typy dostupnými v prostředí jádra 
Linux, a vytvořením skriptu pro export souborů knihovny do archivu a pro rozbalení 
archivu s libp4dev zdrojovými kódy pro využití v jádru pro N F B ovladač. Taky bylo 
zapotřebí napsat lepidlový kód, který knihovně libp4dev dovolil uvnitř N F B ovladače 
komunikovat po MI32 sběrnici s C O M B O kartou. 

Protože se jednalo u knihovny libp4dev o port do nového prostředí, bylo zapotřebí 
ověřit funkci knihovny v tomto novém prostředí. B y l navržen jednoduchý pod-ovladač 
ovladače N F B zvaný p4test, který na principu stavového automatu zpracovává příkazy 
od uživatele a volá funkce knihovny libp4dev. Tento ovladač byl následně upraven pro 



funkci mimo jádra, jako běžný program, a porovnáním funkce této verze p4test s verzí 
fungující v jádře byla ověřena funkčnost knihovny libp4dev v prostředí jádra. 

U návrhu P4 programu byl kvůli jednoduchosti, a kvůli pozdější možnosti opti
malizace samotného P4 kompilátoru, zvolen postup použití jediné tabulky s dlouhým 
seznamem čtených políček, kde součástí klíče je maska specifikující sledované políčka, 
což umožňuje jednoduchý převod klíčů pravidel z formátu T C Flower to formátu P4. 
Pro akce byla zvolena jedna univerzální akce, která přímá dlouhý seznam parametrů, 
který určuje její chování. Tento přístup plyne z rozdílů akcí u T C Flower a v P4, kde 
T C Flower pravidlo může mít neomezeně dlouhý seznam libovolných akcí, zatímco 
pravidla v jazyku P4 mají vždy jenom jednu akci, která v našem případě představuje 
libovolnou kombinaci T C akcí. V budoucnu se uvažuje nad vytvořením skritptu, který 
by na základě napsaného firmwaru vytvářel firmwary podporující více tabulek, které by 
pro lepší využití omezených zdrojů F P G A podporovali jenom zákazníkem definovaný 
formát pravidel. 

Po úspěšném zprovoznění převodu T C Flower pravidel do P4 tabulek uvnitř karty 
byl navržen nový N F B pod-ovladač zvaný sriov_netdev, který pro karty s kompatibil
ním firmwarem vytváří reprezentátory virtuálních funkcí, které se dají pomocí rozhraní 
T C Flower využít s Open vSwitch pro realizaci hybridního řešení síťového přístupu. 
Hlavní rozdíl P4 firmwaru použitého s tímto pod-ovladačem je přítomnost směrovací 
tabulky, která určuje výchozí destinaci paketů. Tato tabulka je ovladačem sriov_netdev 
naplněna tak, aby se pakety odeslané virtuálními funkcemi objevili na reprezentátorech 
daných virtuálních funkcí, a naopak aby pakety odeslané přes reprezentátory se objevili 
ve virtuálních funkcích. Tímto způsobem je realizována tzv. pomalá cesta paketů, která 
slouží hlavně pro poskytnutí informací Open vSwitch o síťových tocích. 

Následně byl napsán skript pro vytvoření virtuálních strojů připravených k využití 
SR- IOV virtuálních funkcí C O M B O karty, buď pomocí ndp_netdev, nebo pomocí spe
cializovaných nástrojů využívajících technologii N D P Pomocí těchto virtuálních strojů 
jsme byl i schopni ověřit funkci hybridního řešení. 

Výstupem práce je verze knihovny libp4dev, která je schopna pracovat v prostředí 
jádra operačního systému Linux; testovací program a ovladač p4test, podpora převodu 
T C Flower pravidel do hardwaru pro ovladač ndp_netdev, ovladač sriov_netdev který 
využívá vytvořené podpory T C Flower spolu s Open vSwitch pro realizaci rychlé cesty 
u hybridního softwarově-hardwarového řešení síťového připojení pro virtuální stroje, 
F P G A firmware vytvořen v jazyku P4 pro použití s převodem T C Flower pravidel, 
a skript pro vytvoření virtuálních strojů pro použití s sriov_netdev. 

Hlavní omezení výstupu práce představuje použitá verze N D K P4 překladače, která 
prozatím nepodporuje některé důležité součásti standardního P4 jazyka, jako jsou např. 
podpora hlaviček proměnlivé velikosti, a obecná podpora výpočtu kontrolních součtů 
zahrnujících data nákladu paketu. Další omezení přestavuje volba konkrétní C O M B O 
karty, která byla sice ideální pro účely testování a vývoje, ale která nepodporuje externí 
paměti, které jsou kritické pro dosažení velkého množství pravidel toků. 

Další omezení představuje způsob přidělení prostředků virtuálním funkcím, kde 
každá virtuální funkce dostane jeden N D P kanál. Rychlost přenosu je tak omezena 
schopností virtuálního stroje sériově zpracovat proud paketů, což představuje v případě 
serveru na kterém jsme testovali přenosovou rychlost zhruba lGbps. Toto omezení se 
dá ale jednoduše odstranit změnou topologie v syntézním systému platformy N D K . 
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INTRODUCTION 
The concept of virtual machines traces its origins back into the 1960s. Like today, they 
provided a way to maximize the usage of expensive and often under-utilized mainframe 
(nowadays server) computers, as well as providing software backwards compatibility 
for customers migrating to new hardware. Additionally, the inherent isolation provided 
by virtual machines acts as an extra layer of security and fault tolerance [1]. 

Several fundamentally different approaches exist when it comes to implementing 
virtual machines. The approach that is most interesting to server administrators is the 
one described by Popek and Goldberg by their set of virtualization requirements [2], 
which describe a model known as classical virtualization. 

Unlike with emulation, which involves explicitly parsing and interpreting the guest 
machine's instructions (potentially needing to go through hundreds of native 
instructions for a single guest instruction [3]), in classical virtualization, the guest's 
machine code is run directly on the host's processor, with privileged instructions being 
trapped. This technique allows virtual machines to fulfill the requirement that 
a statistically dominant fraction of machine instructions must be executed without 
V M M (virtual machine manager) intervention [2]. 

Historically, this has been difficult to achieve on x86 due to some of its design 
limitations, leading to workarounds like binary translation and C P U paravirtualization 
[3], but with the introduction of the A M D - V and Intel V T - x extensions in 2005-2006, 
classical virtualization has become possible on the x86 platform, allowing people to run 
V M s with unmodified OSes at near full speed [1]. 

One of the main bottlenecks with virtualization in general is I/O overhead. 
Traditionally, I/O is handled by the V M M (also known as the hypervisor), which can 
result in a lot of processing time being spent on explicitly copying and analyzing data, 
especially when dealing with V M s in data centers, which require a high, sustained data 
throughput from storage and networking devices. 

A proposed solution is to give virtual machines direct access to hardware devices. 
The S R - I O V specification makes this more practical by allowing for a single physical 
PCI Express device to be shared by multiple virtual machines, providing "virtual 
functions" that behave like separate pieces of hardware. This model is especially useful 
for network adapters, where a virtual function more-or-less acts as a networking port 
that a virtual machine can be hooked up to [4]. 

The goal of this thesis is to utilize the recently introduced S R - I O V capabilities of 
C E S N E T ' s C O M B O network cards, in combination with industry-standard tools like 
Open vSwitch and the P4 language, to create a managed, hardware-accelerated network 
switch for virtual machines. A n implementation of the T C Flower interface is proposed, 
alongside F P G A firmware written in P4. This interface is intended for use by 
Open vSwitch, a software network switch implementation, which can use it to offload a 
large portion of its packet classification and processing operations into hardware, saving 
valuable C P U cycles and providing a fast virtual network switch configurable using the 
industry-standard OpenFlow protocol. 
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1 NETWORK SWITCHES 
In the field of computer networking, bridging refers to a means of connecting several 
independent local area networks (LANs) to create a single larger, aggregate network 
(known as a bridged LAN), using a device known as a bridge. These devices allow 
machines connected to networks of different kinds (Ethernet, Token Ring, Wireless) to 
communicate with each other as if they were on a single physical network, as well as 
potentially providing a fallback connection in the case of a failure of network 
components [5]. 

They have also found use in increasing the efficiency of Ethernet networks by 
allowing for configurations where only two machines exist within a single physical 
network at a time. This is called a fully switched network, and it avoids the problem of 
transmission collisions, allowing for full-duplex communication over Ethernet cables. 
The type of bridge used in this scenario is known as a network switch [6]. 

1.1 Level 2 Switches 

This type of switch works by learning the M A C addresses of all of the devices on the 
local network, and transparently passing M A C frames destined for them to the 
appropriate ports. In order to be addressable as an OSI Layer 2 end node, these 
switches have a M A C address assigned to them, while also transparently forwarding 
frames, generally without modification (except perhaps for IEEE 802.1Q V L A N 
tagging). They also come with spanning tree protocol support, in order to avoid loops 
in a network which contains more than one switch. 

Level 2 switches are protocol-independent, since they operate at the OSI Layer 2. 
This does however means that they don't scale well due of broadcasts. To a certain 
extent, V L A N s help to alleviate this problem, but they introduce their own set of 
problems as well , such as making communication between machines within different 
V L A N s less efficient, since the traffic between these machines needs to be directed 
through an external router. This problem is addressed by multilayer switches [7]. 

1.2 Multilayer Switches 

A multilayer switch, sometimes referred to as a Level 3 or Level 4+ switch (based on its 
capabilities), is a network device which in addition to performing M A C bridging also 
examines and utilizes information from packet fields that correspond to higher layers of 
the OSI model. This information can be used for IP routing, as well as for policy-based 
switching, where a priority may be assigned to traffic of different applications based on 
their importance [7], [8], [9]. 

Their model of operation generally involves using algorithms like Open Shortest 
Path First (OSPF) or Routing Information Protocol (RIP) to communicate with other 
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Level 3 routers or switches to build routing tables, and unlike Level 2 switches, they 
tend to modify packet header fields, such as decrementing the Time To Live (TTL) field 
and recalculating header checksum fields. B y performing Level 3 switching, they allow 
for communication between machines in different V L A N s to be efficient [7]. 

1.3 Managed Switches 

Switches that provide a configuration interface are known as managed switches. They 
allow for better control and management of the network traffic within a L A N , allowing 
to segment the network into V L A N s and to set priorities on different types of network 
traffic, as well as providing diagnostic data by monitoring network health [10]. 

The Simple Network Management Protocol (SNMP) is an example of a protocol 
used to manage and configure these types of network switches. Support for the 
OpenFlow protocol is sometimes provided as well , serving as a vendor-independent 
way of providing Software-Defined Networking (SDN) support [11]. The P4Runtime 
specification fulfills a similar purpose for switches that support the P4 language for 
describing packet processing [12]. 
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2 SOFTWARE-DEFINED NETWORKING 
S D N is a network management approach where the control and forwarding functions of 
network management are decoupled. A centralized, global view of the entire network is 
provided, appearing to applications and policy engineers as a single logical switch. This 
allows for the underlying hardware to be abstracted away, and for network control to be 
directly programmable, allowing for dynamic adjustments to network-wide traffic flow 
based on changing needs [11]. 

2.1 The OpenFlow Specification 

The OpenFlow Specification defines an abstract model of a network switch known as an 
OpenFlow Logical Switch, as well as a communication protocol that allows it to be 
configured from a remote machine known as an OpenFlow Controller (Figure 2.1). 

Controller 

o C T 
Controller 

7 
OpenFlow Protocol 

' j -
OpenFlow Switch 

OpenFlow 
Channel 

OpenFlow 
Channel 

Control Channel 

Datapath 

Port 

Port 

Flow Flow Flow Flow Flow Flow 
Table Table Table 

Port 

Pipeline 
Port 

Fig. 2.1: Main components of an OpenFlow switch [13] 

The basis for packet look-up and forwarding within an OpenFlow switch are flow 
tables and a group table. The flow tables contain flow entries, with match fields used 
for selecting packets based on the values of their header fields, counters to measure how 
many packets and bytes a given flow entry had selected, and a list of actions to perform 
on selection, potentially including classification into a group, which in turn results in 
actions described in the group table for the appropriate group to be performed. 

The specification also describes several categories of ports that packets can be 
received from and ultimately redirected to. The most straight-forward are physical 
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ports, which either correspond to hardware interfaces of the switch, or potentially 
to virtual slices corresponding to network interfaces in a virtualized deployment. 

Another category of ports are logical ports, which are a higher-level abstraction 
that may be implemented by non-OpenFlow means. For example, logical ports may 
correspond to physical ports with some extra implementation-defined processing added. 
Some of the possible uses are link aggregation groups, tunnels, and loopback interfaces. 

When no flow entry manages to match on an incoming packet, the action of a spe
cial entry called the table-miss flow entry is invoked (if this entry is not present, the 
packets are discarded). A common use for this entry is to send unclassified packets 
to the controller for inspection. If the switch implements Level 2 switching or Level 3 
routing, these unclassified packets may be sent into a logical port to be processed by 
these technologies. 

Some of the supported actions that an OpenFlow Switch may perform on packets 
are redirection, grouping, discarding, queue id specification (to provide basic QoS 
support), metering, V L A N header manipulation, header field setting and copying, and 
T T L decrementation [13]. 

2.2 Open vSwitch: A Software Implementation 

Open vSwitch is a multilayer software switch written in C, well suited to function as 
a virtual switch in V M environments. It supports multiple virtualization technologies, 
including Xen/XenServer, K V M , and VirtualBox, as well as deployment of a single 
instance across several physical servers. 

Some of the features it provides are support for 802.1Q V L A N , NIC bonding with 
or without L A C P , NetFlow, sFlow, QoS (Quality of Service) configuration, Geneve, 
G R E , V X L A N , STT, LISP tunneling, 802.lag connectivity fault management, a tran
sactional configuration database with C and Python bindings, high-performance 
forwarding using a Linux kernel module, and support for OpenFlow 1.0 with numerous 
extensions. 

Additionally, the Open vSwitch project provides, among other useful tools, a utility 
for querying and controlling OpenFlow switches and controllers, ovs-ofctl. This can be 
used either with ovs-vswitchd (the switch daemon), or with any other OpenFlow 
compatible switch [14]. 

Because a pure-software approach for a network switch would involve a significant 
amount of overhead, there are options for providing hardware acceleration. The two 
officially supported approaches are implementing either an ofproto provider or a dpif 
provider. A n ofproto provider can take full advantage of hardware with support for 
field masking, whereas a dpif provider is usually easier to implement, but it splits 
wildcard rules into exact-match entries, resulting in an inefficient use of T C A M s in 
hardware that support wildcarding [15]. 

Support in O V S for hardware rule offloading via the Linux T C Flower interface is 
currently implemented as a dpif provider [4]. 
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2.3 The P4 Language 

One of the limiting factors of OpenFlow is that the flow tables and group table are 
pre-defined by the standard and by hardware vendors. This means that a network 
administrator can't change the classification mechanisms and the actions that these 
tables support [13]. The P4 language project aims to resolve this issue by developing 
a domain-specific, declarative language that allows network administrators to describe 
how packets are to be classified and processed by the device's pipeline [16]. 

The language itself addresses the configuration of a forwarding element (definition 
of packet headers and parsing, tables, actions, and pipeline layout and control flow), 
which upon being configured may have its tables populated in a similar manner to 
a switch supporting OpenFlow [16]. The P4Runtime specification aims at creating 
a vendor-independent configuration interface for P4-based forwarding elements [12]. 

A n abstract model consisting of a parser and a set of match+action tables split 
between ingress and egress is described by the specification. (Figure 2.2) 

Switch Configuration 

Parse Control Match+Action 
Graph Program Table Confh'g 

Run Time 
Forwarding rules 

Packet Modifications + P a c k e t Modifications 
Egress Selection 

Fig. 2.2: P4 Abstract Forwarding Model [16] 

The parser provides a Parsed Interpretation of each received packet, which is then 
used by the ingress pipeline match+action tables to select packets to perform actions on, 
and to specify the destination ports of the individual packets. This destination is decided 
upon before a packet enters the egress pipeline. Upon reaching the end of the egress 
pipeline, the packet is re-assembled from its potentially modified parsed interpretation 
and sent to the appropriate port [16]. 

Additionally, the P4 language provides support for packet cloning and recircula
tion, which is useful for monitoring purposes (port mirroring) and for implementing 
recursive packet processing policies. 
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Checksum verification and recalculation support is also provided. Generating hash 
or checksum values involves utilizing a selected algorithm to process a set of bytes from 
a packet, defined by a field list, to produce a fixed-width integer result. Checksum fields 
may be verified at ingress and updated at egress using a calculated_field declaration, 
preferably located just after the header instance declaration. Alternatively, the primitive 
action modify_field_with_hash_based_offsetQ may be used to calculate a checksum or 
hash value explicitly [16]. 

The language also provides support for memories which hold their values across 
multiple packets being processed, known as stateful memories, in the form of meters, 
counters, and registers. Meters provide a visual representation of a data rate, outputting 
a red, yellow or green color signal, with the metering algorithm being implementation-
dependent. R F C 2697 and R F C 2698 provide examples of possible metering algorithms. 

Counters provide an exact numeric amount of either packets or the bytes of packets 
that fulfill a certain criterion, such as being processed by a specific match+action rule, 
and registers are stateful memories that can be read and written by actions in a general 
manner, e.g. to verify that a "first packet" of a flow had already been encountered [16]. 

Actions, also known as compound actions, are imperative functions consisting of 
potentially multiple primitive actions, and are used to manipulate packets in a defined 
manner. A few notable examples of primitive actions are modifyJfieldQ, which is used 
for modifying header field values with optional bit-wise masking; add_header() and 
remove_header(), which are respectively used to add or remove fields from a packet 
(e.g. a V L A N tag); dropQ, which used for dropping (ie. discarding) packets, and actions 
like add(), subtractJfromJfieldO, bit_xor() or shift_left() which perform arithmetic and 
bit-wise operations on packet fields. 

In addition to the previously mentioned registers, which are accessible using the 
primitive actions register_read() and register_write(), compound actions can optionally 
take parameters. The values passed to the actions as parameters are programmed using 
the run-time A P I as a part of the match+action entries which invoke the action [16]. 

The other part of a match+action entry in a table are the match criteria. P4 supports 
matching on exact values of fields, it supports longest prefix matching (1pm) where the 
rule with the longest common prefix with a field is selected (useful for subnets), ternary 
matching where a bitwise mask is applied to a field before comparison, range matching 
where a field's value has to be within a certain numeric range, and valid matching, 
which is used for checking whether the parser had extracted a certain header from 
a given packet or not. 

Each table declaration consists of a set of matching criteria, the applicable actions 
on a match, and table properties like the size, and whether or not it should support time
outs. Whether or not a packet is subject to the match+action rules of a table is decided 
by a control flow program, which may conditionally apply tables to packets, and call 
other control flow functions [16]. 
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3 TC FLOWER AND ITS USE WITH SR-IOV 
SWITCHES 

The standard model for S R - I O V switches in Linux revolves around the concept of each 
virtual function being represented by a netdev. The term netdev refers to an abstract 
object which represents a network port, and within an S R - I O V setup, a netdev for a V F 
is known as a virtual function representer [4], [17]. 

These representers serve a role similar to T A P devices in a paravirtualized network 
setup. Packets sent through the egress of a V F representer appear at the ingress of the 
V F (thus are accessible to a virtual machine), and packets sent through the egress of the 
V F (e.g. by a virtual machine) arrive at the ingress of the appropriate representer. 

Within this model, in order to create a network for virtual machines utilizing V F s , 
their representers are put into a software bridge. This approach is inherently inefficient, 
as all traffic ends up going through the host operating system, but with the use of bridge 
implementations that support hardware acceleration, such as Open vSwitch, it allows for 
a hybrid model where only some network traffic goes through the host operating system 
(e.g. packets needed for M A C address learning and flow identification), and the rest is 
handled by hardware, by traffic control rules installed by the software switch [4]. 

In the case of Open vSwitch on Linux, the TC Classifier-Action subsystem may be 
used for this purpose. In particular, the flower filter (referred to throughout this work as 
T C Flower) was designed as a flexible alternative to the official Open vSwitch kernel 
data-path implementation, with far less code duplication achieved by utilizing existing 
frameworks within the Linux kernel [18]. 

3.1 The TC CA Subsystem 

The Linux kernel contains support for advanced network traffic control. Upon arrival at 
the ingress of a netdev, and before reaching the egress of a netdev, incoming and out
going packets respectively are subject to the Traffic Control Classifier-Action (TC C A ) 
subsystem. 

This subsystem is configurable by user-space applications using the netlink A P I , 
and it revolves around the concept of queuing disciplines (qdiscs), which may reorder 
and limit the flow of packets, and use filters to sort the packets into various different 
classes, allowing them to treat different kinds of packets differently based on the criteria 
observed by the filters. A class may either be a FIFO or another qdisc. Using qdiscs as 
classes within qdiscs allows network administrators to build sophisticated, hierarchical 
chains of traffic control rules. 

The filters, however, are not limited to merely sorting packets into classes. They 
have a wide and easily extensible selection of possible actions they may perform, which 
is the reason behind it being called a Classifier-Action subsystem [17]. 
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3.2 Queuing disciplines on Ingress 

The primary purpose of a queuing discipline is to schedule outgoing network traffic, and 
all netdevs are required to have one, even if it's merely a simple FIFO, attached on their 
egress. This is known as a root qdisc [19]. 

A qdisc can, however, also be attached to the ingress of a netdev. A n ingress qdisc 
is a dummy queuing discipline which exists solely as an object onto which filters may be 
attached (figure 3.1). A typical use for an ingress qdisc is with a policer (a filter which 
performs one action when the data rate is above a specified value, and another when it's 
below) to l imit the amount of traffic accepted on a network interface [19]. 

Fig. 3.1: Ingress and Egress traffic control in Linux [17] 

The ingress qdisc has become especially useful with the introduction of support for 
SR- IOV virtual switches, where it can be used with filters which support hardware rule 
offloading (such as T C Flower) to handle switching rules [4]. 

Its usefulness as an anchor point for classifier-action rules eventually lead to the 
ingress qdisc being generalized into the clsact qdisc, which in addition to the ingress 
also works on the egress of a netdev. The clsact qdisc replaces and is fully backwards 
compatible with the ingress qdisc, but it does not replace the root qdisc on egress. 
Instead, it acts as an anchor point for classifier-action rules that should be applied before 
packets reach the root qdisc (for example, in the case of the root qdisc being classless, 
since classless qdiscs don't support having filters attached to them), and it provides 
a central egress counterpart to the ingress classifier-action rules, allowing for them to 
easily share their driver state [20]. 

3.3 Overview of TC Filters 

Filters look at incoming packet data and/or metadata and perform a defined action when 
applicable. They are kept in a priority-ordered list for each protocol, where the priority 
values with a smaller numeric value represent higher importance. This list is traversed 
for each packet until an appropriate filter is found [17]. 
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Originally, qdiscs used to support having only one such chain of filters, which 
conceptually corresponds to a single flat match+action table, with the option of being 
able to modify and then recirculate packets, making them go through the list of filters 
again to create hierarchical rules (e.g. for encapsulation). Since it's convenient to be able 
to create such rules using a hierarchy of tables instead, and because table hierarchies are 
how such rules are commonly implemented in hardware, multi-chain support was 
eventually introduced to T C C A [21]. 

3.3.1 The "basic" filter 
The basic filter utilizes the extended match infrastructure of the Linux kernel, which 
allows for complex matching rules to be built out of a group of simple rules chained 
together using logic A N D and O R operators, and parentheses [22], [23]. 

The currently supported rules in the extended match infrastructure are cmp, which 
performs arithmetic comparisons of packet data fields at specified offsets (with the 
ability to specify the OSI layer); meta, which does the same for supported metadata 
fields; nbyte, which matches on a sequence of bytes within a packet; ipset, which checks 
whether a packet is a member of an ipset; ipt, which checks for xtables matches; canid, 
which matches on C A N bus frames, and u32, which performs bit-wise masked matching 
on a specific packet field [23]. 

3.3.2 The "flow" filter 
The flow filter, not to be confused with the flower filter, is a filter that serves to extend 
the hashing capabilities of a Stochastic Fairness Queuing (SFQ) qdisc, while avoiding 
the need of hard-coding new hashing functions into said qdisc [24]. 

The SFQ qdisc schedules the transmission of packets based on "flows", trying to 
ensure fairness so that a single application doesn't utilize the entire upload bandwidth 
by making flows transmit data in turns. The term flow refers to a distinct connection or 
conversation between two machines, such as the packets of a T C P session [19], [25]. 

The flow filter supports matching on a set of pre-defined fields, such as the source 
and destination address of the level 3 protocol, the specific level 3 and 4 protocols that 
are used, the priority key ( D S C P / E C N value for IP packets), etc. In addition to these 
fields, flow can utilize the extended match infrastructure used by the basic filter [24]. 

3.3.3 The u32 filter 
The universal 32bit filter, also known as the "ugly" 32bit filter, can be used to match on 
arbitrary bit fields in a packet. It uses values, masks, and offsets, with several 
abstraction directives that provide a higher level for defining matching rules. 

In addition to being able to perform an action or assign packets to classes, the u32 
filter can delegate packets to another filter, and when used with another u32 filter, this 
allows it to be used to build arbitrarily complex match+action policies. 

The filter delegation is typically achieved by using hash tables, with the match field 
providing the key from which a hash value is computed [26]. 
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3.3.4 The BPF filter 
The B P F filter is a fully programmable filter which provides an implementation of the 
Extended Berkeley Packet Filter (eBPF) and the Classic Berkeley Packet Filter (cBPF) 
instruction set architecture. These are minimal instruction sets, which are designed for 
implementing small programs that can be safely executed in the kernel environment. 

The eBPF instruction set is seen as a successor to the classic B P F instruction set, 
providing better run-time performance, with specific design considerations ensuring that 
it works well with JIT compilers. 

Support for these instruction sets means that the user is not limited to any particular 
set of classifiers or actions, as they can write their own specialized classification and 
actions code in a subset of the C language, e.g. using the L L V M framework. Since the 
code is specialized, it can also be remarkably efficient, as it doesn't have to deal with 
unused features that could potentially slow down the classification process [27]. 

3.3.5 The flower filter 
Similarly to the flow filter, the flower filter identifies packets based on them belonging 
to a "flow" by observing the values of well-known packet fields and metadata. Unlike 
the flow filter, which mainly serves to distinguish between packets of different flows, 
the flower filter aims at selecting packets of specific flows and performing specific sets 
of actions on them. 

The flower filter utilizes the Linux flow dissector to extract the fields of interest 
from a packet, which then serve as the packet's matching key. This key is compared to 
the keys in the list of installed match+action rules, and upon a match, the corresponding 
action is performed [28]. 

Unlike the other previously mentioned filters, which allow for arbitrary fields to be 
matched, the flower filter operates with a fixed set of supported matching fields, 
although the selection of fields is rather comprehensive. This approach is similar to that 
of OpenFlow, which is one of the main inspirations for the flower filter [18]. 

3.4 Overview of TC Actions 

In order to fulfill their classification purpose, filters within the T C C A subsystem have 
a built-in action that selects an appropriate class for matching packets. Filters may also 
have an arbitrary list of programmed actions attached to them, which allows for the 
passing network traffic to be manipulated in various ways, such as by dropping packets, 
by modifying packet contents, by having packets copied or redirected (stolen) to 
a different network interface, etc. 

The programmable actions are designed in the spirit of the U N I X philosophy, with 
a single action doing just one thing and doing it well , and being able to be combined 
with other actions by attaching the input of one action to the output of another. It is also 
relatively easy to implement a new T C action in case the need arises [17]. 
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3.4.1 The "generic action" 
A core aspect of policy specification in the T C C A subsystem are its pipeline controls, 
known as pipeline opcodes, which are used by programmable actions to control packet 
flow through the pipeline, their existence serving as a form of separation of policy and 
mechanism. 

The generic action, also known as gact, is a programmable action that doesn't do 
anything on its own, existing solely as a vessel for pipeline opcodes, analogous to how 
the ingress and clsact qdiscs exist solely to have filters attached to them [17]. 

The drop opcode causes matching packets to be dropped, the reclassify opcode 
causes classification to restart by jumping to the first filter in the filter chain of a qdisc, 
the continue opcode causes classification to continue by jumping to the next filter in the 
current filter chain, the pipe opcode causes the next action in a list of actions to be 
performed, and the pass opcode causes packet classification to end for a given packet, 
with the qdisc being able to process it afterwards [29]. 

3.4.2 The pedit action 
This action allows for arbitrary packet data to be changed. Either a numeric offset and 
field size (potentially with an offset value retrieved from a separate field of the packet), 
or the name of a commonly recognized header field, can be used to identify the section 
of the packet that should be modified. 

The selected part of the packet may be cleared (set to zero), inverted bit-wise, set to 
a specific value, or have a numeric value added to it [30]. 

3.4.3 The "checksum" action 
Modifying packet fields with pedit might cause the various checksum values stored in 
the packet to become invalidated. The checksum action serves to correct this, triggering 
checksum recalculation of specified header fields. 

A t the time of writing, checksum recalculation is available for the IPv4 header 
checksum, I C M P and I G M P header checksums, as well as TCP, UDP, UDP-Li te and 
SCTP checksums [31]. 

3.4.4 The mirred action 
Packet mirroring and redirection, which is useful for network analysis, and in the case 
of S R - I O V switches with T C Flower offloading, for having the hardware itself redirect 
incoming packets to their correct destinations, is implement by the mirred action. 

The mirred action additionally allows the network administrator to specify whether 
the copied or stolen packets are to appear on the ingress or egress of the specified 
destination network interface. Ingress mirroring is useful if a software application is 
listening on the given destination network interface, whereas egress mirroring is useful 
for sending the packets into external hardware [32]. 
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3.4.5 The "vlan" action 
Manipulation of I E E E 802.1Q and 802.lad tags is provided by the vlan action. It allows 
for V L A N encapsulation and decapsulation, as well as for modifying existing 802.1Q 
tags. Each V L A N tag has a protocol ID, V L A N ID, and priority number, all of which 
can be set using this action [33]. 

3.4.6 The skbedit action 
To modify a packet's associated metadata, the skbedit action is provided. It can be used 
for changing the transmission queue used for a given packet, for changing the packet's 
type (supporting the host, other-host, broadcast and multicast types), for changing 
firewall marks, as well as for overriding classification decisions by either specifying 
a priority or using the Differentiated Services field of IPv4/IPv6 headers [34]. 
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4 THE NDK PLATFORM 
The Ne tCOPE Development Ki t , which is developed by C E S N E T and commercialized 
by Netcope Technologies a.s., is a platform that allows for the rapid development of 
hardware-accelerated network applications using F P G A network cards [35], [36], [37]. 

It consists of a collection of efficient implementations of components useful for 
network cards (network interfaces, timestamp generation, PCIe bus interface, fast D M A , 
etc.), a build system for synthesizing firmware for F P G A chips from both X i l i n x and 
Intel, and drivers, libraries and utilities for interfacing with and manipulating with the 
cards. Figure 4.1 provides a general overview of the architecture [35]. 
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Fig. 4.1: Ne tCOPE Architecture [35] 
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4.1 NetCOPE FPGA Boards 

The term NetCOPE FPGA Board (NFB) generally refers to any FPGA-based network 
card that the N D K platform has been ported to. In addition to C E S N E T ' s C O M B O 
cards, parts of Ne tCOPE have been ported to Intel's programmable acceleration cards, 
such as the Intel F P G A P A C N3000 [38]. 

Within this work, we w i l l restrict ourselves to C E S N E T ' s C O M B O cards, although 
supporting Intel's cards with the proposed T C Flower extension is an eventual goal, 
given how it would allow for the use of unmodified guest OS images on V M s . 

The specific card used throughout this work is the C O M B O - 2 0 0 G 2 Q L (Figure 4.2). 
The main factors that lead to its selection are its fully operational S R - I O V support, and 
the fact that it has two lOOGbps QSFP28 transceivers, which allows for easier testing 
by utilizing one of the transceivers to generate network traffic for the other to receive. 
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Fig. 4.2: The COMBO-200G2QL card 

A t the heart of the C O M B O - 2 0 0 G 2 Q L card is a X i l i n x Virtex UltraScale+ F P G A . 
The card can be configured with either one or two Gen. 3 PCI-Express end-points, with 
16 lanes each, allowing for a 200 Gbps data throughput to R A M [39]. 

4.2 NetCOPE Data Plane 

Network traffic is conventionally processed a packet at a time. Since the overhead of 
processing each packet individually can be substantial when operating with a high data 
throughput, the NetCOPE Data Plane (NDP) provides an alternative that uses buffers 
containing many packets, which are transferred between software and hardware in bulk. 

These buffers are directly accessible to applications via the libnfb library, and allow 
for more efficient implementations of specialized network data analysis and processing 
solutions [38]. 

The software driver communicates with so-called N D P controllers on an N F B card, 
which serve to implement D M A communication channels, with R X channels copying 
packet data into the computer's memory, and T X channels reading packet data from it. 
For each of these channels, the driver maintains a ring buffer, and allows applications to 
"subscribe" to the channels to gain access over the buffer, with it being mapped into the 
application's address space by the mmapQ system call. 

To read received packets, the ndp_rx_burst_get() function can be used to f i l l out an 
array of packet structures, with each member containing a pointer to the packet's data, 
metadata, and the length of these fields. These structures refer to data in the ring buffer, 
and thus, once the application no longer needs them, it needs to notify the N D P driver 
by invoking the ndp_rx_burst_put() function. This w i l l move the read pointer for the 
given subscriber to after the set of packets which was read. The read pointer for the ring 
buffer is set to the value of the read pointer of the subscriber who's read pointer is the 
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farthest away from the write pointer, which means that in order for space to be freed in 
the ring buffer, all active subscribers need to read (or at least acknowledge) all received 
packets on a given R X channel [40]. 

As for transmitting packets, it involves reserving space on the ring buffer of a T X 
channel, copying packet data into it, and then notifying the driver that the data is ready 
to be transmitted. The ndp_tx_burst_copy() function works by copying data from the 
previously defined packet structures into the ring buffer, providing an easy, albeit slow 
way of transmitting packets. 

The ndp_tx_burst_get() function allows for a more efficient approach, by utilizing 
a partially filled packet structure array to reserve space on the ring buffer for a given set 
of packets. It serves as an allocation function, taking the length parameter of each of the 
data and metadata fields, and filling out the buffer parameters with appropriate pointers 
into the ring buffer. The application can then use these pointers to populate the buffer, 
and use the ndp_tx_burst_put() function once it's done to publish the packets. 

4.3 Command-line tools 

In addition to the libnfb library, a set of command-line utilities is provided as a part of 
the N D K Platform [40]. 

nfb-boot is a utility that allows for F P G A firmware manipulation on an N F B card. 
It can be used to upload new firmware to a card, as well as to reboot the card and switch 
between which of the currently loaded firmware images is being used (the cards usually 
have two firmware images, with one of them serving for recovery purposes). 

nfb-info is a tool that displays basic information about an N F B card, including the 
board type, currently loaded firmware and its capabilities, and PCI bus and N U M A node 
information. 

nfb-dma is a tool for querying the status of the individual D M A channel controllers, 
showing information about how many packets were transmitted or received via a D M A 
channel, as well as the current state of its registers. 

nfb-eth is a tool used for configuring and querying information about the network 
transceivers on an N F B card. Similarly to nfb-dma, it shows how many packets were 
transmitted or received via a transceiver and its status information, but it also allows 
the user to enable or disable a transceiver, configure the P C S / P M A , and configure the 
M A C filter of a transceiver. 

nfb-bus is a tool that provides direct access to the MI32 bus of an N F B card. This 
bus is used for communicating with an N F B card outside of packet data transfers, and is 
used by all of the above-mentioned utilities. This makes nfb-bus especially useful when 
working on new hardware features for N F B cards, as it provides a convenient means of 
configuring the newly implemented feature, allowing hardware designers to fully flesh 
out the design before spending time on implementing a proper configuration utility. 

ndp-tool is a utility that performs packet transfers over the NetCOPE Data Plane. 
It supports generating sets of packets and transmitting them, transmitting predefined sets 
of packets from .pcap files, receiving packets and either displaying information about 
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them or storing them into a .pcap file, and re-transmitting any received packets. These 
individual modes of operation can also be accessed via standalone executables, such as 
ndp-generate, ndp-transmit, ndp-read, ndp-receive, ndp-loopback, etc. 

4.4 The P4 Compiler 

The N D K Platform provides a compiler capable of generating V H D L architectures from 
P4 descriptions. A t the time of writing, only the P4.14 revision of the P4 language was 
supported, although support for the P4.16 revision was close to being released [41]. 

4.4.1 Compiler description 
The compiler works by creating an internal representation of a forwarding element des
cribed in the P4 language and mapping it to a network device architecture. It uses 
a Parser-Deparser model, where packets are broken down into individual header fields, 
potentially modified by a processing block, and then reconstructed by a deparser. 

The main components of a match+action table in this design are the search engine 
and the action engine (figure 4.3). The purpose of the search engine is to pick the most 
appropriate action for a packet based on its headers and metadata [42]. 

A t the time of writing, search engines of three different kinds were supported. The 
ternary content-addressable memory ( T C A M ) engine is the most versatile, as it is able 
to provide exact, L P M and ternary matching, but it also consumes the most resources 
out of the three. The binary search tree longest prefix match (BST L P M ) engine allows 
for a more efficient implementation of L P M matching, and the Cuckoo hashing engine 
is optimal for exact matching, using the least resources out of the three [41]. 
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Fig. 4.3: Architecture of match+action tables in NDK P4 [42] 
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The action engine performs operations on packet header fields, metadata, as well as 
control information (e.g. drop control), with the output values dependent on the action 
selected by the search engine. Primitive actions are implemented as blocks in parallel 
with each other, with a distribution block assigning them inputs and synchronization 
tags, and a selection block deciding, based on the sync tags, what data to provide on the 
output in order to preserve the sequential logic of the action definition [42]. 
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Within this implementation of P4, packet redirection is performed by modifying the 
egress_port field of the intrinsic metadata structure. This field is an 8-bit value, and it 
refers to network transceiver channels on the range of 0-127, and N D P channels on the 
range of 128-255. B y default, it has the same value as the ingress_port field, which 
means that the default behavior is to return packets to where they came from. 

Some of the notable missing features of the current implementation are support for 
variable-length headers, support for implicit checksum verification, and for recirculation 
and mirroring of packets. Additionally, checksum and hash-value generators can only 
use data from defined headers, use of the payload keyword within field lists for hash 
generators is not yet supported. To partially mitigate this limitation, an extension was 
introduced which calculates a 16-bit one's complement sum of the payload, which can 
be used in T C P and U D P checksum calculations [41], [43], [44]. 

4.4.2 Firmware configuration 
The F P G A architecture generated by the compiler can be synthesized using the build 
system provided by N D K , and once loaded onto an N F B card, can be configured using 
the libp4dev library [41]. 

This library can either be used directly in the case of specialized applications, or it 
may be used as a back-end by a P4Runtime implementation to provide a standardized 
P4 configuration interface. Limited P4Runtime support using the libp4dev library is 
provided in a locally maintained branch of the PI repository [45]. 

The synthesized firmware may contain one or more P4 cores. The 200G2QL card 
contains two P4 cores by default, one for each of the two QSFP28 transceivers, where 
received packets are sent into the P4 core which corresponds to the transceiver. The 
P4 cores do, however, have the ability to send packets anywhere, and the mapping of 
packets transmitted from N D P D M A channels to P4 cores (or transceivers, if one wishes 
to skip all P4 pipelines) is configurable on run-time with the T X Mapper components. 

Within the libp4dev library, a P4 core is represented by a p4device_t structure. 
This structure is meant to be allocated manually (useful for making it a part of a larger 
structure) and initialized to P 4 D E V I C E _ E M P T Y before having p4device_init() invoked 
on it. This function accepts either the path to the card's N F B driver device node in /dev, 
or a device ID from which it can guess this path, as well as a component ID to specify 
which of the card's P4 cores to represent with the newly initialized p4device_t structure. 

Match+action tables are accessed using the p4device_get_table() function, which 
accepts a p4device_t structure and a table name, returning a p4table_t structure. This 
structure can be used with functions like p4table_insert_rule(), p4table_modify_rule(), 
p4table_delete_rule(), and p4table_insert_default_rule() to maintain the matching and 
action rules of the given table. 

Because libp4dev keeps its table information state in memory, and this state is lost 
upon termination, whenever libp4dev opens a P4 core, it does not know about the rules 
which were installed into its tables beforehand. Therefore, the p4device_reset() function 
is provided. It accepts a p4device_t structure, and it fully clears and zeroes out all tables 
and registers within the P4 core. This makes it useful as an extra initialization step for 
cases when knowledge of the exact state of the P4 core is important [41]. 
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5 EXPERIMENTAL PART 
The development process of implementing T C Flower offloading support on the N D K 
Platform was largely a learning experience. While it is open source, some parts of the 
Linux kernel source tree aren't particularly well documented, which means that the most 
effective way to get familiar with certain APIs is to study their code and the code that 
uses them, and to write your own test drivers that interacts with said APIs . This holds 
true for the T C Flower offloading A P I , at least at the time of writing. The Bootlin El ix i r 
Cross Referencer prove to be especially useful for studying the kernel source tree [46]. 

In order to be able to offload T C Flower match+action rules, the driver behind 
a network interface needs to be able to access hardware resources which control packet 
classification in a card. Within the N D K Platform, this is provided by the nfb kernel 
module, which among other things exposes the MI32 bus of the card, which is used for 
configuring match+action rules with the P4 implementation developed by C E S N E T . 

The nfb kernel module itself follows a modular design, where it consists of several 
sub-modules that fulfill different roles, such as a character device driver for granting 
user-space applications access to N F B cards, the N D P driver for packet transfers, the 
boot driver for flashing and booting F P G A designs, and a driver with network interfaces 
linked to N D P ( D M A ) channels. While the nfb kernel module does support SR-IOV, it 
does not come with a sub-module that creates representer network interfaces for virtual 
functions, which is ultimately implemented within this work for use with O V S [40]. 

5.1 Configuring P4 pipelines from within the Linux kernel 

The first roadblock encountered on the journey of implementing T C Flower offloading 
using the N D K P4 implementation was the fact that Ubp4dev, the low-level library used 
for configuring P4 pipelines of F P G A architectures generated by the N D K P4 compiler, 
is a user-space library, not intended to be run in the Linux kernel environment. 

A saving grace in this regard is the fact that the library is written in the standard C 
programming language, and it doesn't depend on any libraries that would be difficult to 
port to the kernel environment. Additionally, the nfb kernel module provides APIs that 
are very similar to the user-space APIs provided by the libnfb library that are ultimately 
used by libp4dev. 

After some negotiations with the developers of Ubp4dev and the nfb kernel module, 
it was decided to introduce compatibility macros into the libp4dev source tree to provide 
functionality usually provided by the standard C library by the equivalent kernel calls 
for cases when the library is compiled in the kernel environment, as well as providing 
macros for logging messages which would either be backed by printfQ or printkQ, 
instead of invoking printfQ function directly. 

These compatibility macros would be introduced by the config.h header file, which 
is typically used to provide macros about detected system characteristics and requested 
features to enable during compilation. This header file is typically included by every 
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code file within the project, so that the macros are always available. A script would then 
be introduced that would create an archive with the libp4dev source tree, and a special 
config.h file that contains not only feature test macros, but also type definitions, and 
macros that replace standard C library calls like mallocQ and strdupQ with their Linux 
kernel environment counterparts. With this file available, all that a libp4dev code file 
needs to do to be able to function in the Linux kernel is to conditionally avoid including 
any standard C library headers, as is shown in listing 5.1. 

#include "config.h" 

#include "p4dev.h" // Include h i g h - l e v e l contents 
#include "firmware/fw.h" // Low-level device implementations 
#include "firmware/dummy.h" // Test implementation 
#include "p4dev_base.h" 
#include "p4dev_msg_logging.h" 

#ifndef KERNEL 
#include <string.h> 
#include <stdlib.h> 
#include <assert.h> 
#include <stdbool.h> 
#include <math.h> 

#endif 

Listing 5.1: Example of include guards introduced into Iibp4dev 

The most significant changes took place in the error reporting code of the library, 
consisting previously of only the p4dev_error.h file, which contained both declarations 
of error types, as well as definitions of inline functions for copying and printing names 
of error codes, as well as a static definition of a table of names for the error codes. 

This original design had a few deficiencies. First off, since the table of error code 
names was defined in a header file as a static array, it meant that a copy of the table was 
placed into every object file which used the headers of libp4dev. Not only was this 
approach inefficient, it also meant that when the library would be updated, applications 
wouldn't have access to the names of any new error codes without recompiling. 

Additionally, a bigger concern for the kernel-space port were the inline functions, 
which required access to the compatibility macros provided by config.h. This header 
file is only meant to be included by code files, as including it in a header file would 
contaminate any application which tried to use is with libp4dev project constants, and 
more disconcertingly, it would contaminate drivers that would use the library with its 
compatibility macros, which could lead to compilation issues. 

Thus, the error reporting header p4dev_error.h was split, creating a new code file, 
p4dev_error.c, which contains the table of names of error codes, as well as the functions 
which were previously defined as inline in the header file. Additionally, a new function, 
p4dev_err_str(), was introduced, which behaves very similar to the standard strerrorQ 
call in that it returns a pointer to an error code name that is not meant to be freed. 

Another notable change was the removal of floating point arithmetic use, since the 
Linux kernel environment doesn't support floating point math. The library used floating 
point division, paired with the standard ceilQ function, to perform integer division with 
upwards rounding. This was easy enough to replace with a macro that in addition to 
division would also check the remainder, which if non-zero would increment the result 
by 1, as is shown in listing 5.2. 
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/*! 
* \ b r i e f This macro performs i n t e g e r d i v i s i o n (unsigned 3 2 - b i t ) with the 
* r e s u l t being incremented by one i f the remainder a f t e r d i v i s i o n i s not zero. 

* \param [ i n ] dividend Number to be di v i d e d 
* \param [ i n ] d i v i s o r Number to d i v i d e by 
* / 

#define UINT32_DIV_CEIL(dividend, d i v i s o r ) \ 
( ( u i n t 3 2 _ t ) ( ( ( d i v i d e n d ) / ( d i v i s o r ) ) + ( ( ( ( d i v i d e n d ) % ( d i v i s o r ) ) > 0)? 1 : 0))) 

/* Without the macro: */ 

new_transactions = ( u i n t 3 2 _ t ) c e i l ( ( * b i t _ i n d e x + bi t w i d t h ) / 3 2 . 0 ) ; 

/* With the macro: */ 
new_transactions = UINT32_DIV_CEIL(*bit_index + b i t w i d t h , 32); 

Listing 5.2: The UINT32_DIV_CEIL() macro, with example usage 

The libp4dev library was written in a modular way to allow it to easily work with 
various different drivers for F P G A cards running architectures produced by the N D K P4 
compiler. It has several built-in "firmware backends" that provide the library with the 
means of communicating via the MI32 bus with the P4 application core. The backend 
used with the nfb kernel drivers is provided by fw_nfb.c, support for drivers that provide 
direct address space mapping is handled by fw_map.c, and fw_generic.c allows for the 
use of application-specific callbacks to access the MI32 bus. Which backend should be 
used is decided upon at compile time with the —enable-device= <variant> option of the 
build system's configure script. 

In order to make the code easily usable within various different kernel drivers, the 
generic backend was selected as the backend that would be provided in source archives 
generated by the create-kernel-archive.sh script. Additionally, the script provides a list 
of bundled code files, and a directory with symbolic links to the header files that should 
be publicly available, for ease of integration into the source tree of a kernel driver. 

Because P4-related code developed by C E S N E T is not freely distributable, unlike 
the device driver code, a copy of the libp4dev library is not enclosed in the electronic 
attachment. However, all changes made to libp4dev as a part of this thesis are provided 
in the electronic attachment, in patch form (generated by git format-patch), in the 
source-code/benc-patches/p4base/ directory. This directory contains most changes made 
to the p4base repository, of which libp4dev is a part of, found in the sw/libp4dev/ 
directory. A copy of the create-kernel-archive.sh script is also provided in source-code/ 
in the electronic attachment. 

5.1.1 Gluing it all together 
The libp4dev library does have a few dependencies, such as the flat device tree library 
libfdt, and the APIs required by firmware backends such as libnfb in the case of the nfb 
backend. The nfb kernel module contains within its source tree a copy of the libfdt 
library, and it also provides APIs that are very similar to the libnfb library's A P I , which 
makes incorporating libp4dev into the nfb kernel module a straight-forward process. 

Within the source tree of the nfb kernel module, which is located in the drivers/ 
directory of the swbase repository of the N D K platform, the code is located in the 
kernel/drivers/ sub-directory, categorized into further sub-directories such as fdt for the 
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libfdt library, spi for the X i l l i n x SPI controller driver, and nfb for the source code files 
of the nfb kernel module itself, which contains further sub-directories for sub-modules. 

The natural place where to put libp4dev is into the drivers/kernel/drivers/ directory 
of the swbase repository, next to fdt. However, it is unwise to directly copy the source 
code files and add them into the repository, since these files are already version-
controlled in the p4base repository. A better approach is to either use a git submodule, 
which allows for the nesting of git repositories, or to write a script that clones the 
p4base repository, uses create-kernel-archive.sh to create an archive of libp4dev kernel 
source code files and unpacks it into the drivers/kernel/drivers/libp4dev/ directory. The 
create-kernel-archive.sh script automatically creates a .gitignore file that lists all of the 
files within the archive, to avoid accidentally adding these files into other repositories. 

Two scripts were introduced; unpack-libp4dev.sh, which takes an archive created 
by create-kernel-archive.sh and unpacks it into the nfb kernel module's source tree, and 
retrieve-libp4dev.sh, which performs the above-described steps to copy the libp4dev 
kernel source files from the p4base repository into the nfb kernel module's source tree. 

In addition to .gitignore, a file called libp4dev_csrc_files is created by the create-
kernel-archive.sh script. This file contains a list of all of the C code files (as opposed to 
header files) provided by the archive. This list is intended to be used by the kernel build 
system, as is shown in listing 5.3. 

# Read the l i s t of libp4dev source f i l e s from a separate f i l e 
l i b p 4 d e v - c s r c - l i s t := $(DRIVER_TOPDIR)/kernel/drivers/libp4dev/libp4dev_csrc_files 
libp4dev-csrc := $ ( s h e l l cat $ ( l i b p 4 d e v - c s r c - l i s t ) 2>/dev/null || true) 
$(foreach p4csrc, $ ( l i b p 4 d e v - c s r c ) , $ ( e v a l l i b p 4 d e v - c s r c - r e l += ../Iibp4dev/$(p4csrc))) 
libp4dev-objs := $(li b p 4 d e v - c s r c - r e l : % . c = % . o ) 

# Add glue code: 
libp4dev-objs += ../Iibp4dev/p4lib_nfb_glue.o 

# The l i b r a r y requires C99 to work 
li b p 4 d e v - c f l a g s := -std=gnu99 -Wno-declaration-after-statement -Wno-strict-prototypes \ 

-UPACKAGE_VERSION 

# CFLAGS d e c l a r a t i o n s understood by older kernel versions (e.g. Linux 5.3): 
$(foreach p4obj, $ ( l i b p 4 d e v - o b j s ) , $ ( e v a l CFLAGS_$(shell basename $(p4obj)) := \ 

$ ( l i b p 4 d e v - c f l a g s ) ) ) 

# CFLAGS d e c l a r a t i o n s understood by newer kernel versions (e.g. Linux 5.5): 
$(foreach p4obj, $ ( l i b p 4 d e v - o b j s ) , $ ( e v a l CFLAGS_$(p4obj) := $ ( l i b p 4 d e v - c f l a g s ) ) ) 

# Add the libp4dev g l o b a l mutex (must not have libp4dev CFLAGS a p p l i e d ) : 
libp4dev-objs += ../Iibp4dev/p4lib_nfb_glue_mutex.o 

nfb-$(C0NFIG_NFB_LIBP4DEV) += $( Ubp4dev-obj S) 

Listing 5.3: Makefile snippet for compiling Iibp4dev into the nfb kernel module 

In order to be able to use libp4dev within the nfb kernel module effectively, a small 
amount of glue code is necessary. First off, libp4dev is not thread safe, so it's important 
to provide a global mutex to ensure that no more than one kernel thread uses the library 
at a time. This mutex is defined in a separate file from the rest of the glue code, since 
the glue code uses inline functions from libp4dev headers and thus needs its C F L A G S , 
but whereas libp4dev is designed with the C99 standard in mind, code within the Linux 
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kernel is typically compiled with the -std=gnu89 option of G C C (ANSI C89 with G N U 
extensions), and this mode is necessary for mutex definitions to work. 

The second issue is that libp4dev expects to be passed the path to a device node (or 
possibly other type of directory entry) that corresponds to an F P G A accelerator card. 
Within the nfb kernel module, the struct nfb type is used to identify an accelerator card, 
and a pointer to an instance of this type needs to be passed to the library instead. The 
approach chosen to achieve this was to implement a token structure that would contain 
said pointer and a special text string, where a pointer to this embedded text could be 
passed to the library as a device path, and upon the text being recognized, it would 
know that it's safe to type-cast the embedded text pointer into a pointer of the token type 
and gain access to the struct nfb pointer for the acceleration card. With this mechanism 
implemented, it was trivial to adapt the code from the libp4dev nfb firmware backend, 
fw_nfb.c, to work within the nfb kernel module environment as callback routines to be 
used with p4device_init_callbacksQ with the generic firmware backend selected. 

5.1.2 Testing it with the p4test driver and user-space tool 
While the previous steps have allowed for libp4dev to be compiled as a part of the nfb 
kernel module, it is not enough for a codebase to merely compile for it to be ready for 
use, its functionality needs to be evaluated first, especially when it has never been used 
in a given environment before. 

In order to sufficiently evaluate the libp4dev library in kernel-space, a test driver 
that accepts commands written from user-space into a virtual file in the Iproc directory 
was implemented. This driver, called p4test, creates a file for each P4 application core 
in the lproclp4test/ directory, e.g. Iproclp4testlnfb0-p4cl for the second core of the first 
nfb accelerator card, where each of these files correspond to a p4device_t instance, and 
the commands written into the individual files cause the appropriate libp4dev functions 
to be invoked on the corresponding p4device_t instance. 

Specifically, the reset command invokes the p4device_reset() function, the enable 
and disable commands invoke the p4base_enable() and p4base_disable() functions 
respectively, and the table command adds or removes match+action rules from tables 
using p4table_insert_rule() and p4table_delete_rule(), or similar functions for default 
rule manipulation and addition of rules at specific table indices. 

The table commands accepts sub-commands, with add-rule and del-rule accepting 
a set of matching keys, where add-rule uses the keys, along with an action name and 
parameter list, to construct a p4rule_t instance and insert it into the selected table, 
whereas del-rule uses it to identify the rule to be deleted. The special keyword default, 
when used in place of the key list, makes the command refer to the default rule of a 
table. A simplified del-rule-index sub-command that accepts only the index of the rule 
within the table is also provided. A detailed description of the command syntax, as well 
as examples of usage, are available in the p4test source tree, which is enclosed in the 
electronic attachment in the source-code/swbase-sriov-netdev-tc-flower/drivers/kernel/ 
driverslnfblp4testl directory (see the README file in the directory and in the demo sub
directories for details). The p4test command interpreter code files are not included in 
the electronic attachment, since they could be seen as a contribution to the N D K P4 
project (discussed later), which is currently not freely distributable. 
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Reading the contents of the virtual files produces information about the given 
P4 application core, such as the name of the firmware image, the list of tables, the rule 
format (keys, actions, parameters) accepted by tables, currentiy installed rules, and the 
state of counters. 

In addition to the kernel driver, a user-space variant of p4test was implemented, 
which runs as a regular application, and accepts the same format of commands on its 
standard input, allowing for back-to-back testing of the kernel-space version of libp4dev 
with the user-space version, as is shown on figure 5.1. The user-space version of p4test 
has shown to be generally useful, so it's been integrated into the p4base repository, into 
the swlp4tes\J directory. 

The user-space variant of p4test supports an additional command, status, which 
prints the information that the user would acquire from the kernel version by reading 
from the virtual files in lproclp4testl onto its standard output. 

user-space 
p4test 

write() 

user space 
^3 

Iibp4dev 

p4test 
commands 

libnfb 
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nfb kernel module 

hardware 

kernel-space 
p4test 

Iibp4de 

nfb kernel module 

NFB Accelerator 
Card 

± ± 
NFB Accelerator 

Card 
Fig. 5.1: Block diagram of the user-space and kernel-space p4test variants 

To aid with the testing, a small python script that uses the scapy library to generate 
a set of packets with pre-defined header field values and stores them in the .pcap format 
was written. This script, packet_generate.py, is based on the hypothetical IPv7 packet 
generation script, but instead of the header configuration and field values being a part of 
the program text, they are stored in a structure, for ease of creating packets with specific 
properties without having to modify the code itself. The script supports generating IPv4 
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and IPv6 packets with up to two V L A N tags, utilizing either the T C P or U D P transport 
layer. 

These .pcap packet sets can be sent through an N F B card's P4 pipeline using the 
ndp-transmit tool, and the processed packets can be collected using ndp-receive. The 
results can then be analyzed using either the companion script packet_examine.py, or 
a more sophisticated tool like wireshark. Both scripts are in the p4test source directory, 
in examples/general-demo/ for the user-space variant, and in general-demo/ for the 
kernel-space variant. This directory also contains the P4 program that was mainly used 
during this phase of testing, and a set of p4test commands to populate the tables of an 
N F B card running firmware generated from said P4 program. 

Using p4test, several bugs in libp4dev, as well as the newly introduced glue code, 
were discovered and fixed. The electronic attachment contains most of the alterations 
made to the N D K git repositories as a part of this thesis in source-code/benc-patches/, 
with p4test code files redacted due to licensing concerns. The most significant bug 
fixed in libp4dev was one which prevented the use of the second P4 application core on 
N F B cards, caused by incorrect iteration over the card's device tree structure, and 
incorrect resource locking. 

The evaluation process was ultimately a success, the library ended up operating in 
the same way in both the kernel environment and user-space environment. The act of 
writing the two p4test variants and the example P4 programs and their corresponding 
p4test command sets was useful in its own right as a learning experience in becoming 
more familiar with both the P4 language and the N D K tools and P4 compiler. 
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5.2 Extending the existing ndp_netdev driver 

Within the nfb kernel module exists the ndp_netdev network interface driver. This driver 
creates a network interface (netdev) for each of the card's N D P channels, as is shown on 
figure 5.2. Packets sent through the egress of an ndp_netdev interface are sent into the 
card through the corresponding N D P channel, and a copy of all packets received from 
an N D P channel appear on the ingress of the corresponding ndp_netdev interface. 

nfb kernel module 

register manipulation DMA transfers 

ethernet 

Fig. 5.2: Block diagram describing the ndp_netdev driver 

This driver is generic, meaning that it can be used for various different purposes in 
different applications. We can use the ndp_netdev driver as a test bed for T C Flower 
offloading development by pretending that the individual N D P channels correspond to 
SR- IOV virtual functions and implementing T C Flower offloading on top of their 
netdevs, which act as virtual function representers in this model. 

The default behavior of the N D K P4 implementation is to return packets to where 
they came from, as discussed in chapter 4.4.1. Using this default behavior, we have 
a test model where the mock V F s always perform packet loopback, e.g. any packets sent 
through the egress of nfb0d2 w i l l end up appearing back on its ingress. This behavior 
can be overridden for specific packets with a match+action rule that changes the 
egress_port in the intrinsic_metadata, allowing us to model the redirection of packets 
into a different mock V F . 
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In order to provide T C Flower offloading for a netdev, the N E T I F _ F _ H W _ T C bit 
needs to be set in its feature mask, and an ndo_tc_setup() callback routine that sets up 
TC flow blocks, configuring callbacks to handle the management of hardware offloaded 
filters attached to either an ingress or clsact qdisc, needs to be provided. The caller 
specifies whether to set up a TC flow block on the ingress or egress of the netdev. In our 
case, filter offloading on ingress has been implemented, attempting to perform filter 
offload on egress w i l l result in an "operation not supported" error. 

The enum tc_setup_type type is used to specify what kind of T C element is to be 
configured. The callback function that is installed during the TC fow block setup in our 
driver supports the T C _ S E T U P _ C L S F L O W E R variant when T C Flower offloading is 
enabled in the driver and supported by hardware, otherwise it returns an "operation not 
supported" error. In the case of T C Flower, the function handles the installation and 
removal of match+action rules from hardware, as well as querying information about 
how many packets and bytes a given rule in hardware had processed. 

The individual offloaded rules are all identified by a unique numeric cookie value, 
which may be used as a hash table key for fast lookup. Additionally, a priority number 
and chain number are provided. 

The software implementation of T C Flower uses the Linux flow dissector to extract 
the desired fields from packets, which it then compares with the fields of match+action 
rules, utilizing a hash table search to locate any matching rule and to perform the action 
associated with it. This means that the matching key data is stored in the flow dissector 
format as well , and it's passed in this format to hardware offload drivers as well . 

This key format can be understood as a wide key with optional fields. A n analogy 
in P4 would be a table with a long list of ternary matching keys. It was decided that for 
the sake of simplicity, the flow dissector key would be directly converted into a P4 key 
for such a table, which is performed by nfbjtcfl_parse_keys(). 

While this approach is simple, it is not ideal from a resource usage point of view, as 
with the current N D K P4 compiler implementation, it uses expensive T C A M memory, 
significantly restricting the number of rules that can be offloaded, especially when used 
in combination with O V S , for which the T C Flower support is implemented as a dpif 
provider (as discussed in chapter 2.2), meaning that it doesn't make good use of T C A M 
memory. This w i l l eventually be addressed by introducing wide-key optimizations into 
the P4 compiler, and by using an acceleration card with external memories, but that is 
outside of the scope of this thesis. 

With this approach, a set of supported matching keys had to be decided upon. It is 
an eventual goal to create a script that would generate a P4 firmware image that would 
support matching keys based on a description, so that users would be able to specify the 
kind of fields they want to match on to make better use of limited hardware resources. 
This script could work by deleting unwanted parsing steps and table keys from the P4 
program, reducing the size of the key. Additionally, multiple tables could be specified, 
each supporting different matching criteria. 

With this in mind, it was decided that the default P4 program would have a single 
table for match+action rule offloading, with its key being as wide as possible, since the 
key can always be shortened, and the T C Flower offload driver can simply provide 
a zero mask for any parts of the wide key that weren't specified in the rule. This way, 
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we could have a universal firmware image that supports all keys, but can't hold many 
rules. This image would not only be useful for developing the T C Flower offloading 
code, but also for examining the kinds of rules that get installed by solutions like O V S . 

For the ndp_netdev T C Flower implementation, the P4 program used for generating 
such a firmware image is enclosed in source-code/swbase-ndp-netdev-tc-flower/drivers/ 
tc-flower-offload-p4-prog/ in the electronic attachment, currently supporting matching 
on IPv4 and IPv6 packets with up to two V L A N tags and either a TCP, UDP, or SCTP 
transport layer. The firmware does not support fragmented IPv4 packets, or packets 
with optional IP header fields (both IPv4 and IPv6) due to limitations of the current 
N D K P4 compiler implementation. 

A useful property of the T C A M search engine implementation used by the N D K P4 
compiler is that the priority of rules within tables is well defined, with the rule index 
specifying the priority - rules with a higher index number have a higher priority. This 
property can be exploited to implement priority handling for offloaded rules, the driver 
keeps a priority-ordered linked list of offloaded match+action rules, and a new function 
was introduced into the libp4dev library, p4table_insert_rule_next_to(), which allows 
for the insertion of a rule in-between existing rules, pushing them to the side to free up 
space for the new rule if necessary, maintaining a desired ordering. 

This list is also useful in error recovery. If an inconsistency is either suspected or 
detected between the information the driver keeps about the offloaded rules and the 
actual rules offloaded in hardware, e.g. as a consequence of a failed MI32 bus write, the 
driver temporarily shuts down the P4 pipeline and re-configures the tables, able to 
traverse the linked list of offloaded rules to quickly re-populate the match+action tables. 

For the actions of match+action rules, a conceptual incompatibility exists between 
T C and P4. While a T C C A rule can have an arbitrary combination of actions, the P4 
language allows only a single pre-defined compound action per match+action rule. This 
lead to the implementation of a universal action that performs a variety of optional sub-
actions specified by its parameters, and the parameters are generated by interpreting the 
manner in which a set of T C actions would modify a packet. Analogous to the keys, 
there could later be a script that would cut this action down into less capable variants 
according to the needs of the user, with the driver then examining the actions available 
in hardware and picking the optimal variant for a particular rule. 

The universal action consists of a set of modifyJfieldO invocations, making use of 
the mask field to only perform the modifications on demand. In order to add or remove 
V L A N tags, a metadata bit is set, and the actual addition or removal is done by separate 
actions that are invoked by the control flow program when the corresponding metadata 
bits are set. In order to achieve this behavior in P4.14, helper tables that have only 
a default rule and always perform this single rule are provided. These tables can be 
applied conditionally from within the flow control program, and as long as the runtime 
environment ensures that the default rules are actually configured, the behavior of 
directly invoking actions is achieved. Within the ndp_netdev T C Flower driver, the 
default rule installation is handled by the nfb_tcfl_set_default_rules() function. 

The action that required the most effort to implement was pedit, as it manipulates 
raw packet data at given offsets, either from the start of a packet or from headers. The 
header-based variant was implemented, interpreting the provided modification bitmask 
data and using it to construct the correct set of parameters for the universal action. 
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It's important to note that while this T C Flower implementation does support IPv4 
header checksum recalculation, which is performed implicitly by the hardware after the 
t_ipv4_output_csum_calc helper table is configured, it does not support transport layer 
header checksum recalculation. The primary reason is that the N D K P4 compiler does 
not support the payload keyword for specifying that the data beyond the parsed headers 
should be included in the data set used to calculate a checksum, and while there is an 
extension that provides a limited alternative that can be used for T C P and UDP, it is 
non-standard, and for this test driver, the disadvantage of the P4 program not being 
conformant to the P4.14 standard is greater than the advantage of having the checksum 
recalculation, since the modified packets are not used by any actual applications for 
networking, they're merely looped back by the hardware for testing. 

To keep track of the amount of bytes and packets that a match+action rule handled, 
a P4 counter is provided. This counter is bound to the offloading table statically, which 
means that each rule specifies the counter cell that it should be tracked by. This allows 
for greater flexibility compared to direct binding, for which the counters track the rules 
based on their indices, since the indices of existing rules can change as a consequence of 
new rule insertion. This does, however, mean that the driver itself needs to implement 
the allocation of counter cell identifiers for rules. Since the identifiers are all of the 
same size, a simple bitmap-based allocator was implemented. The counter ID bitmap is 
stored as a part of the flow chain information within the driver. Each rule is assigned 
a counter cell identifier, and it's passed to the card as an action parameter. 

The actual testing of the ndp_netdev T C Flower driver was performed similarly to 
the testing of p4test, using the packet_generate.py script, ndp-transmit and ndp-receive. 
N D P channels can have multiple readers and writers (as described in chapter 4.2), so the 
regular N D P tools can be used as an alternative to the kernel network interface. The 
kernel network interface itself was tested as well , using tcpdump and Bit-Twist. In order 
to install T C Flower rules, the tc utility provided by the iproute2 project can be used, as 
shown on listing 5.4. 

# modprobe mdio 
# insmod nfb.ko ndp_netdev_enable=yes ndp_netdev_carrier=yes \ 

ndp_netdev_tc_flower_offload=yes 

# i p l i n k set dev nfb0d5 up 
# tc qdisc add dev nfb0d5 ingre s s 

# tc f i l t e r add dev nfb0d5 \ 
p r o t o c o l i p parent f f f f : \ 
flower skip_sw \ 
s r c _ i p 192.168.2.0/24 \ 
a c t i o n drop 

# tc f i l t e r show dev nfb0d5 ingre s s 
f i l t e r p r o t o c o l i p pref 49152 flower 
f i l t e r p r o t o c o l i p pref 49152 flower handle 0x1 

eth_type ipv4 
s r c _ i p 192.168.2.0/24 
skip_sw 
in_hw 

a c t i o n order 1: gact a c t i o n drop 
random type none pass v a l 0 
index 1 r e f 1 bind 1 

# tc f i l t e r d e l e te dev nfb0d5 ingre s s p r i o 49152 

Listing 5.4: Example of using the ndp_netdevTC Flower driver 
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The code for this driver is available in the feat-benc-tc-flower-demo branch of the 
N D K swbase repository, in the drivers/kernel/drivers/nfb/ndp_netdev/ directory, a copy 
of the files from this branch is in source-code/swbase-ndp-netdev-tc-flower/ in the 
electronic attachment. In order to compile this driver, a Linux kernel of the version 5.3 
or newer is necessary, libp4dev files need to be added as described in chapter 5.1.1, and 
T C Flower offloading needs to be enabled in the drivers/Makefile.conffile. The driver 
can then be compiled using either the autotools-based or cmake-based build system, and 
used as shown in listing 5.4. 

5.3 The sriov_netdev driver and Open vSwitch 

While the above described driver does provide a functional implementation of T C 
Flower hardware offloading using a C O M B O card, it's not particularly useful, since the 
network interfaces that the rules may be attached to only ever perform packet loopback. 
The bigger picture in which T C Flower plays a major role is in the context of virtual 
network switches, such as Open vSwitch, for which it provides a means of accelerating 
their function by allowing for some of their operations to be performed by hardware. 

In the context of the C O M B O series of cards and the N D K , the most useful way to 
utilize T C Flower and Open vSwitch is with N V F (network function virtualization), of 
which the S R - I O V variant is currently supported. Figure 5.3 shows a conceptual layout 
of an N F B card being used together with Open vSwitch to act as a network switch for 
virtual machines, with T C Flower making it possible for Open vSwitch to alter the paths 
of packets in the P4 core. 

user space 

kernel space 

hardware 

Open vSwitch 

J Bridge J 
Virtual Machine 
user interface 

Fig. 5.3: Block diagram showing a use case of the sriov_netdev driver 
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The layout shown in figure 5.3 was chosen because it would be easy to implement 
using a modified version of the ndp_netdev driver. This modified driver would create 
network interfaces for communicating with individual virtual functions or with ethernet 
ports, configuring the P4 core to facilitate this communication, and allow for the default 
packet paths (the dotted lines in the P4 core) to be overridden by T C Flower using the 
mirred action (egress redirect mode), as described in chapter 3.4.4. 

Originally, this modified driver, sriov_netdev, used only a single N D P channel for 
all packet communication with the card, since with Open vSwitch, only the first packets 
of a flow would reach the driver, and it would leave more N D P channels available for 
use with virtual functions. While this approach worked, it introduced an extra metadata 
header that would be difficult to work with in the eventual port to Intel acceleration 
cards, and it was therefore decided to set aside 2 N D P channels for each virtual function 
and ethernet port, and to set up a default mapping between the pairs. 

This mapping is handled by the t_redirect P4 table, which is set up by the driver on 
initialization. The driver analyzes the card's device tree, checking how many SR- IOV 
virtual functions it supports and how many N D P channels it has set aside for them, and 
uses this information to populate the t_redirect P4 table and to create the corresponding 
netdevs. Since the amount of virtual functions that are currently enabled is configurable 
on runtime using sysfs, a notification mechanism was added into the nfb kernel module 
to allows drivers such as sriov_netdev to be notified about changes in the current virtual 
function count, which is used by the sriov_netdev driver to maintain the correct amount 
of netdevs, creating or destroying them as necessary. 

The N D K P4 synthesis tools create two P4 cores on the C O M B O - 2 0 0 G 2 Q L cards 
by default, to help achieve better data throughput when both of its lOOGbps QSFP28 
transceivers are used. Since we do not plan on using this card in the long term, due to 
its high manufacturing costs and lack of external memory support, we've decided not to 
fully exploit its design, and use only one P4 core for T C Flower offloading. It's possible 
to modify the N D K P4 synthesis tools to generate only one P4 core for this card to 
reclaim the resources that the unused second core takes up, but currendy, it's merely set 
up to drop all of the packets it receives. It can be used, however, together with the 
second PCIe end-point that the card offers, for testing, acting almost as a second N F B 
card that can generate a stream of packets to be processed by the first P4 core. 

The P4 firmware adapted for the sriov_netdev driver additionally supports T C P and 
U D P checksum recalculation, implemented using non-standard P4 extensions, although 
it's easy to comment out the non-standard parts and uncomment the corresponding lines 
that adhere to the P4.14 standard in case the N D K P4 compiler eventually implements 
the payload keyword in field_list declarations. This feature is important since the data 
used for these checksum calculations includes not just the packet payload and the fields 
from the respective transport layer headers, but also from the IP header, particularly the 
source and destination IP addresses [43][44] [47] [48], and not being able to recalculate 
the level 4 checksum would disallow the hardware from changing IP addresses of 
packets, an operation that is commonly performed as a part of level 3 packet routing. 

The code for this driver is available in the feat-benc-sriov-ovs-demo branch of the 
N D K swbase repository, in the drivers/kernel/drivers/nfb/shov_netdev/ directory, with 
the p4-program sub-directory containing the firmware P4 description. A copy of the 
files from this branch is in source-code/swbase-sriov-netdev-tc-flower/ in the electronic 
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attachment. The P4 program requires a special version of the N D K P4 compiler, as per 
the instructions in the README file located in the p4-program directory. 

Once the kernel module is built, the sriov_netdev driver can be enabled by passing 
the sriov_netdev_enable=yes argument to the module (e.g. using insmod). Once it 
starts up and creates the necessary netdevs, which can be verified using the dmesg and 
ip -a commands, Open vSwitch can be set up as per the instructions in [49], substituting 
the names of the network interfaces in that guide for the names used by sriov_netdev. 

For the actual virtual machines themselves, they need a copy of the N F B drivers 
themselves, since the virtual functions appear as limited-use N F B cards, currently with 
just a single N D P channel for each. This N D P channel can be used either with the libnfb 
library, with tools such as ndp-receive and ndp-transmit, or the ndp_netdev driver can be 
used to provide a regular system network interface, allowing unmodified applications to 
use it for networking, as is shown in figure 5.4. 

Because several identical V M s may be attached to the virtual switch, and there isn't 
currently a hardware solution in the N F B cards for passing M A C addresses from the 
host system to guest systems, which could lead to there being several end nodes with the 
same M A C address within a single level 2 network, the ndp_netdev driver had to be 
tweaked for use in such scenarios by implementing the ndo_set_mac_address() callback 
function. The implementation is identical to the one present in sriov_netdev, and it only 
sets the M A C address in software, which is sufficient for our purposes. This feature can 
be seen in use in figure 5.4. 

Fig. 5.4: Demonstration of communication between VMs on an NFB virtual switch 

In order to automate the deployment process, a script that creates a libvirt virtual 
machine running CentOS with the N F B tools and drivers installed was written. This 
script, enclosed in the electronic attachment as demo-sriov-tcfl-vm/vm-create.sh, accepts 
a name for the new virtual machine and whether or not to enable ndp_netdev by default, 
and uses the virt-builder and virt-customize tools to create the virtual machine. A part of 
the routine is a full system package update, installation of kernel headers, configuring 
the grub boot loader to optionally enable ndp_netdev, enabling automatic root login on 
the serial console for quicker debugging, and installation of the N D P tools and drivers 
themselves, in the form of the netcope-common package. The vm-data/ directory next 
to the script contains the needed helper files, including the modified netcope-common 
package, with source code included (the netcope-common-6.6.1-l.tar.gz file). 
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5.4 Evaluation of the achieved results 

The primary purpose of a hardware-accelerated virtual switch is to reduce the amount of 
C P U time spent on sorting and distributing packets between virtual machines. We were 
able to achieve this goal by combining Open vSwitch with the N D K P4 technology with 
a custom device driver supporting the T C Flower interface. 

During initial testing of the setup, with a Linux 5.2 kernel, there were some issues 
related to the PCI configuration space with this older kernel version, which resulted in 
only one of the virtual functions being able to transmit packet data over N D P This 
made testing more difficult, but not impossible, since the representer for the QSFP28 
transceiver was fully operational, and it allowed for the virtual machine to be connected 
using the virtual switch to a lOOGbps optical network. 

We did not have access to a lOOGbps optical internet connection where the server 
that this virtual switch was developed on was located (at the C E S N E T offices in the IT 
faculty of B U T ) , but we did have access to another server with the same type of card 
installed, as well as an optical cable that could be used to connect the two machines. 
This allowed for one of the machines to act as a gateway to the internet for the other. 

Using this configuration, we were able to successfully transfer packet data between 
the virtual machine and the gateway. Additionally, once the gateway was configured to 
perform IP forwarding, we were able to connect the virtual machine to the internet, and 
using the ovs-ofctl tool for administering OpenFlow switches, we were able to add rules 
to block various websites. B y observing the kernel logs with dmesg, the netdev packet 
counters with ip, and the T C Flower rules with tc, we were able to see the classification 
offloading process in action. Only a handful of packets ever reached the kernel network 
interfaces on the host system, the rest were directly transferred between the gateway and 
the virtual machine as per the classification rules set by Open vSwitch. These rules are 
maintained by dpif(datapath interface), and by watching the debugging messages in the 
kernel log, we could see how dpif checks all of the offloaded rules twice a second to see 
if the individual rules had handled any packets, and when a rule hasn't handled any in 10 
seconds, we could see it being being removed to make space for other rules. 

The few packets that do end up reaching the kernel network interfaces are either the 
first packets of a flow, or packets of a protocol that currently isn't supported by the P4 
firmware's parser, such as the A R P and I C M P protocols, which we were able to verify 
using the tcpdump utility. These packets are transferred via the "slow path" by the 
default redirection table. While this typically doesn't present much of an issue, as these 
particular protocols aren't used for the transfer of bulk data, a similar problem exists for 
packets that use a different transport layer protocol than TCP, UDP, or SCTP, or 
a different level 3 protocol such as IPX. In these cases, the P4 firmware and the T C 
Flower driver would need to be extended to ensure that the packets use the "fast path". 

While the T C Flower driver is easy to expand, the current N D K P4 implementation 
is rather constrained in what it can do. For example, SCTP checksum recalculation is 
not implemented, so while SCTP packets can be classified and redirected, they must not 
be modified in any way, since not only does the SCTP protocol use a CRC32c checksum, 
an algorithm not supported by the non-standard Ne tCOPE P4 checksum extensions, but 
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the S C T P checksum calculation additionally uses the entire packet (with the checksum 
field zeroed out) as its input data [50], which would result in a lot of separate field_list 
declarations being necessary in order to properly handle packets with V L A N tags, a lot 
of extra conditional steps would be required in in the control program, and the resulting 
firmware would be sub-optimal. A similar problem exists for implementing support for 
packets with optional IP header fields, since the N D K P4 implementation does not 
support variable-length fields, and while it's technically possible to write a parser in P4 
that extracts the optional fields into separate header structures, this adds a lot of extra 
complexity into the P4 program and the corresponding generated firmware. 

For this reason, and because of the G P L incompatibility of the libp4dev library 
(which currendy prevents the drivers written as a part of this thesis from being 
deployed, since the Linux kernel is released under the terms of the G N U G P L license, 
although this issue might get resolved in the future if libp4dev becomes open source), it 
is planned to use a more flexible H L S approach for the firmware of the acceleration 
card. The architecture of the drivers wouldn't change, but libp4dev would need to be 
replaced with a runtime configuration library that would provide similar features to 
libp4dev, but would instead work with the new H L S firmware. 

As for the actual network performance, on the hardware we were testing, we were 
able to achieve a transfer rate of roughly lGbps with ndp_netdev running on the virtual 
machines, as can be seen on figure 5.4. The main limiting factor is related to the C P U 
overhead of processing the packets in the virtual machines, the ndp_netdev driver 
processes packets going through an N D P channel serially, and if the overhead of packet 
processing reaches a point where the C P U core running ndp_netdev reaches full usage, 
the driver simply can't keep up. This problem can be mitigated by adding queue support 
into ndp_netdev and dedicating more than just a single N D P channel for V F s . A quick 
and dirty solution would be to pass several V F s to a single virtual machine, although the 
software configuration would need to be more complicated to fully make use of the 
extra ndp_netdev interfaces. 

The biggest limitation of the current design is by far the small amount of rules that 
can be offloaded into the acceleration card, 64 rules are currently supported, but in order 
to be useful in a data center, thousands of rules need to be supported. Usage of external 
memories is currently the planned way to overcome this limitation. 
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6 CONCLUSION 
This thesis provides an overview of some of the technologies that can be used for the 
purposes of providing efficient network access to virtual machines where a high data 
throughput is desired, and where conventional network driver para-virtualization would 
result in substantial amounts of overhead. 

The C O M B O line of acceleration cards are useful for a large number of different 
tasks thanks to their programmable F P G A chips. With support for S R - I O V having been 
recently introduced to the cards, it makes it possible for them to be used as network 
switches for virtual machines. The aim of this thesis is to develop a concrete application 
where a C O M B O card fulfills this task. 

The flower filter of the Linux T C C A subsystem was chosen as the mechanism that 
would be used for installing match+action rules onto the card, thanks to its similarity to 
OpenFlow, which allows projects like Open vSwitch to utilize it to manage the network 
traffic between virtual machines. Unlike the other filters in the T C C A subsystem, the 
flower filter (TC Flower) was specifically designed with hardware offloading of flow 
rules in mind, which makes it easy to implement support for it in network accelerators. 

In the experimental part of the thesis, an extension of the N F B device drivers was 
proposed and implemented, using the P4 compiler developed at C E S N E T as a part of 
the Ne tCOPE Development K i t for generating H D L code from a high-level networking 
description for generating the C O M B O card's firmware. This required that the libp4dev 
library would be ported into the Linux kernel environment, where it could be used by 
the extended driver. 

This endeavor ended up being successful, allowing us to directly connect virtual 
machines to a lOOGbps optical network, with the vast majority of the data transferred 
between them and the outside network being handled by the card itself, with only a few 
packets ending up reaching the host operating system, mainly for the purpose of setting 
up the flow rules in the acceleration card's application core. 

However, while the technology developed as a part of this thesis does work, it's not 
yet in a state where it can be commercially used. First off, the C O M B O series of cards 
is simply way too expensive to be used for this purpose, a cheaper alternative where this 
technology could be ported to needs to be found, with the Intel PAC-N3000 being the 
most likely candidate. Additionally, the current firmware is rather inflexible, and scripts 
need to be introduced to customize it for a particular use case in order to make better 
use of limited F P G A resources. The underlying technology might also need to be 
changed, since the N D K P4 technology itself is quite inflexible, both in terms of its 
capabilities and in terms of licensing, with packet classification based on H L S (high-
level synthesis) being the most likely replacement. 

Over all, this project has been a success. While it didn't result in a commercially 
viable hardware-accelerated virtual switch being created, it is an important stepping 
stone on the journey of creating one. 
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I E E E Institute of Electrical and Electronics Engineers 
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K V M Kernel virtual machine 
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N V F Network Function Virtualization 
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OSI Open Systems Interconnection 
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PF Physical function 

PI Program Independent 

P M A Physical Medium Attachment 

Qdisc Queuing discipline 

QoS Qality of Service 
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SCTP Stream Control Transmission Protocol 

S D N Software-Defined Networking 
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S N M P Simple Network Management Protocol 

SPI Serial Peripheral Interface 

SR- IOV Single-root input/output virtualization 

T C Traffic Control 

T C A M Ternary content-addressable memory 

T T L Time to live 
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V F Virtual Function 

V H D L Very High Speed Integrated Circuit Hardware Description Language 

V L A N Virtual Local Area Network 

V M Virtual Machine 

V M M Virtual Machine Monitor 
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