BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF TELECOMMUNICATIONS

USTAV TELEKOMUNIKACI

COLLECTION OF METEOROLOGICAL DATA USING THE
M@TT PROTOCOL

SBER METEOROLOGICKYCH DAT POMOCI PROTOKOLU MQTT

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR Andrii Filippov

AUTOR PRACE

SUPERVISOR doc. Ing. Ivo Lattenberg, Ph.D.

VEDOUCI PRACE

BRNO 2020

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
VBRNE TECHNOLOGII

Bakalarska prace

bakalarsky studijni program Telekomunika¢ni a informacni systémy

Ustav telekomunikaci
Student: Andrii Filippov ID: 189830
Roc¢nik: 3 Akademicky rok: 2019/20

NAZEV TEMATU:
Sbér meteorologickych dat pomoci protokolu MQTT

POKYNY PRO VYPRACOVANI:

Navrhnéte a vyrobte dvé meteorologické stanice, které budou méfit teplotu a vlhkost. Zafizeni budou napajené
z baterie a zmé&rené hodnoty budou pravidelné posilat pfes Wi-Fi modul prostfednictvim MQTT protokolu do
MQTT brokeru. Pro realizaci jedné stanice pouzijte modul s ESP8266, pro realizaci druhé pak modul ESP32.
NapiSte jednoduchy program pro PC, ktery se pfihlasi k odbéru zprav z MQTT brokeru a bude graficky
zobrazovat ¢asovy prib&h zméienych hodnot z meteostanic.

DOPORUCENA LITERATURA:

[1] BRTNIK, Bohumil a David MATOUSEK. Mikroprocesorova technika: [prace s mikrokontroléry fady ATMEL
AVR ATXmega A4]. Praha: BEN - technicka literatura, 2011. ISBN 978-80-7300-406-4.

[2] MATOUSEK, David. Prace s mikrokontroléry ATMEL. 2. vyd. Praha: BEN - technicka literatura, 2006. uC &
praxe. ISBN 80-7300-209-4.

Termin zadani: 3.2.2020 Termin odevzdani: 8.6.2020

Vedouci prace: doc. Ing. Ivo Lattenberg, Ph.D.

prof. Ing. Jifi MiSurec, CSc.
predseda rady studijniho programu

UPOZORNENI:

Autor bakalarské prace nesmi pfi vytvareni bakalarské prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zplisobem do cizich autorskych prav osobnostnich a musi si byt pIné védom nasledk(poruseni ustanoveni § 11 a nasledujicich autorského
zékona ¢&. 121/2000 Sb., v&etn& moznych trestnépravnich disledkl vyplyvajicich z ustanoveni &asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunikacénich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 /616 00 / Brno

Abstrakt

Cilem této prace je sbér meteorologickych dat pomoci protokolu MQTT
ze dvouvytvorenych meteorologickych stanic zalozenych na mikrokontrolérech typu
ESP32 a ESP8266. Prace pojednava o textovému formatu JSON, jeho struktutfe podle
fady kritérii a jeho dalSimu vyuziti pii pfenosu dat z meteorologické stanice. Dalsi fazi
je studium a srovnani hlavnich charakteristik mikrokontroléra ESP32 a ESP8266.
Na zakladé zadani byly pak vytvoreny autonomni meteorologické stanice. Dédle byly
porovnany existujici MQTTservery pro sbér, ukladani a pfenos meteorologickych dat
mezi klientem a serverem. ZavéreCnou fazi prace byla tvorba programu v jazyce C#,
ktery generuje grafy na zakladé hodnot aktudlni teploty a relativni vlhkosti piijatych
ze serveru MQTT. Vyzkumny projekt se skldda ze dvou autonomnich meteorologickych
stanic, ze kterych jsou prenaSena meteorologicka data v realném Case na server MQTT
prostfednictvim bezdratového piipojeni. Server pak dile poskytuje data pro aplikaci
v pocitaci uzivatele, kde program kresli v realném case grafy na zaklad€ dat prijatych

z MQTT serveru.

Klicova slova

MQTT, JSON, ESP32, ESP8266, PCB, arduino

Abstract

The purpose of this thesis is collection of meteorological data using the MQTT protocol
by creating two weather stations based on microcontrollers types ESP32 and ESP8266.
And also their further operation. Another important stage of the study is devoted
to the JSON text format and its structure according to a number of criteria, as well as its
further use in creating a weather station.The next phase of the study is the search and
comparison of the main characteristics of the ESP32 and ESP8266 microcontrollers
based on the task of creating autonomous weather stations, as well as comparing actual
MQTT servers for collecting, storing and transmitting meteorological change data from
client to server and vice versa. The final phase of the study is to write a program in C #
languege that will generate graphs based on temperature and relative humidity changes
received from the MQTT server. The research product consists of two autonomous
meteorological stations, which will transmit real-time data about meteorological
changes to the MQTT server via wireless connection, while the server will transfer data
to the user's computer where the program draws graphs based on data received from the

MQTT server in real time.

Keywords

MQTT, JSON, C#, ESP32, ESP8266, PCB, arduino

ROZSIRENY ABSTRAKT

Od staroveku meélo pocasi obrovsky dopad na historii lidstva. Pocasi dalo vitézstvi
v bitvach, pomohlo vyhrat valky, stavét staty a mélo klicovy vliv na mentalitu celych

narodu.

V dnesni dobé se lidé nenaucili podrobit pocasi, ale dosahli vyznamného uspéchu
v analyze a pfedpovidani meteorologickych podminek. Vypocetni technika se vyvinula
z analogovych na vysoce presné digitalni procesory, coz mélo vyznamny dopad
na vytvoreni moderniho meteorologického centra. S pomoci modernich digitdlnich
meteorologickych stanic a vysokorychlostniho internetu maji lidé na celém svété
prilezitost dostavat informace o zménach pocasi online. Diky tomu se zivot lidi stava
pohodInéj§im, lep§im a bezstarostn€jsim. Ale co kompaktni meteorologické stanice pro
vSeobecné pouziti? Muzeme napfiklad hlidat teplotni hladiny nebo mame pozadavek
na rozsah relativni vlhkosti, aby se zabranilo plisnim a jinym nepfijemnym problémtm.
V tomto piipad¢€ je nutno zakoupit autonomni mini meteorologickou stanici s vysokou

presnosti. VétSina spolecnosti na trhu vSak neposkytuje produkt pozadované kvality.

Tato bakalarska prace nabizi navrh moderni meteorologické stanice vyuzivajici vysoce
kvalitni hardware a pokrocilé technologie pro pfenos dat na internetu. Tato prace
poskytuje srovnani a podrobnou analyzu klicovych charakteristik mikrokontrolért
ESP32 a ESP8266, jakoz i snimacu teploty a relativni vlhkosti. Tyto prvky pak byly
pouzity k vytvoreni moderni autonomni meteorologické stanice. Dale byly analyzovany
moderni protokoly pro ptfenos textovych dat na internetu. Dalsim dilezitym aspektem
prace je studium pienosového protokolu MQTT a jeho dalsi implementace pii tvorbé
projektu prenosné meteorologické stanice. Velkd pozornost je v€novana textovému
formatu JSON, protoze pravé tento format bude vyuzit k pfenosu zprav mezi
koncovymi uzly. V ramci vytvofeni pfenosné meteorologické stanice bylo navrzeno
provedeni a byly vyrobeny desky s ploSnymi spoji, aby se meteorologicka stanice stala
kompaktné&j§i. Pro navrh PCB byla vybrana platforma EasyEDA, kterd je analogem
znamé Eagle platformy, ale ma srozumitelnéjsi rozhrani, které umoziuje zacateCnikim
rychle se naucit zakladni funkce programu. Poslednim teoretickym aspektem bylo
srovnani hlavnich charakteristik MQTT brokert a vybér toho nejvhodnéjsiho, aby byly

splnény pozadavky na vysokorychlostni a rozsahly prenos dat z meteorologickych

stanic pro dalsi pouziti v uzavieném systému Meteorologicka stanice - MQTT broker -
Koncovy uzivatel. Po zavérecné teoretické analyze nasleduje prakticka Cast prace, ktera
kombinuje analyzu a navrh koncepce pfipojeni meteorologickych stanic k brokeru
MQTT pro dalsi ukladani, zpracovani a prenos dat o pocasi do klientského programu
napsaného pro potieby prace v jazyce C#. Hlavnimi pozadavky na program byla
schopnost vytvaret grafy Casovych prubéhu relativni vlhkosti a teploty v daném Case
prevzaté od MQTT brokeru a také moznost nasledného ulozeni téchto dat ve formatu
.csv pro dalsi statistické vypocCty. Tato prakticka Cast je také doprovazena podrobnymi
ilustracemi vysledki mého vyzkumu a ukazkou fragmentd kodu pouzivanych

pfi programovani mikrokontroléra a tvorbé programu pro zobrazeni grafii.

Diky této praci a vyzkumu provadénému v prabéhu roku jsem ziskal praktické
dovednosti pii praci s deskami plosnych spoji a mikrokontroléry riznych typta. Tento
projekt mi také pomohl upevnit moje znalosti v oblasti telekomunikaci, programovéni
a designu. Veéfim, ze diky mym zkuSenostem a dovednostem v oblasti ovladani
mikrokontrolérii jsem se stal vSestranné€j§im specialistou v oblasti telekomunikacnich
technologii, coz bude mit v budoucnu obrovsky dopad na to, abych se stal

profesiondlem v této oblasti.

Bibliograficka citace

FILIPPOV, ANDRII. Sbér meteorologickych dat pomoci protokolu MQTT. Brno, 2020.
Bakalarska prace. Vysoké uceni technické v Brné, Fakulta elektrotechniky a
komunikaénich technologii. Ustav telekomunikace. Vedouci price doc. Ing. Ivo

Lattenberg, Ph.D..

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY
TECHNICKE A KOMUNIKAENICH
V BRNE TECHNOLOGIi

Prohlaseni autora o puvodnosti dila

Jméno a prijmeni studenta: Andrii Filippov

VUT ID studenta: 189830

Typ prace: Bakaldarskd prdce

Akademicky rok: 2019/20

Téma zavérecné prace: Sbér meteorologickych dat pomoci protokolu MQTT

Prohlasuji, Ze svou zdavérecnou prdaci jsem vypracoval samostatné pod vedenim
vedouci/ho zavérecné prdce a s pouZitim odborné literatury a dalSich informacnich
zdrojii, které jsou vSechny citovdny v prdci a uvedeny v seznamu literatury na konci prdce.
Jako autor uvedené zavérecné prdce ddle prohlasuji, Ze v souvislosti s vytvorenim této
zdvérecné prdce jsem neporusil autorskd prava tretich osob, zejména jsem nezaschl
nedovolenym zpiisobem do cizich autorskych prdv osobnostnich a jsem si plné védom
ndasledku poruSeni ustanoveni § 11 a nasledujicich autorského zakona ¢. 121/2000 Sb.,
vcetné moznych tresméprdavnich diisledkii vyplyvajicich z ustanoveni cdsti druhé, hlavy V1.
dil 4 Trestniho zdakoniku ¢. 40/2009 Sb.

VBmé&€dne:
Podpis autora

Podékovani

V této Casti bych rad podekoval vedoucimu své bakalarské prace panu doc. Ing. Ivo
Lattenbergu, Ph.D. za jeho rady, podporu a Cas.

CONTENT

INTRODUCTION ...cccinvuiiinnssrncsancssnnssasessasssassssssssssesssessssssassssassssssssasssassssssssssssassssssssss

1 MODERN DIGITAL WEATHER STATION

1.1 Measurement of meteorological variables

L1 T HUMIAIEY cvveviieeieciie et sttt et sre e e s s

L. L.2TEMPETALULEecvveeieierie ettt st s eb e saae e e sa e st

2 PARTS SELECTION ...uuuiiiiinicnnensennsnnnsassssecssnessssesssecsascsssssssssssssssassssssssssssssssssssss

2.1 Microcontroller cCOmpariSonc.cceeceseeecsncesanees

2.1.1 ESP32 COMPATISON...cuviiiiiiiiiiiiiiie ittt sttt

2.1.2 ESP8266 COMPATISON......ccvviriiuiiiiiiiiiiiiiieisiestiesreensesesaeessessaessasssassassssssenseens

2.2 Sensor comparison cessssesssssnnsessssnnnens

2800 B D)) 1 8 1 OO R PR
2.2.2 DHT22(AM2302) c.uueeeeiieieiiieeeiiieeniie e siie s siie st saae e saae s nae s srae s nae s naesnae s

3 GENESIS OF THE MQTT PROTOCOL

3.1 Message Queuing Telemetry Transport Protocol

3.1.1 Connecting clients to the MQTT brokercccocovieviniiiiiiiiiinie

3.1.2 MQTT MeSSAZE TYPES wveruviviiriiiiiiiiiiiisiiiiitiit ettt sttt s

3.1.3MQTT Message FOrmatcccovviviiiiiiiiiiiiic i

4 MQTT BROKER SELECTION....cuuiiniineennncssnecsancsaecsancsssssssssssassssssssssssssssssssssssss

4.1 Mosquitto

4.2 VerneMQ

4.3RADDIEMQ cevcervesuncserssrncnssaecsanssnessessacssnssasssessnsssnsssssssessassasssassasessssassssssssssssssssssssses

4.4 CloudMQTT

5 JAVASCRIPT OBJECT NOTATION

5.1 SyNntax and SEIUCIUTE.....ceceeeseeessaessrsssanessaesssncssssessnessascssnssssssssssssassssssssssssassssssssss

6 MICROCONTROLLERS & SENSOR CONNECTION

6.1 EQSYEDA ...uuuiouiiiiiistinnsnnnsnennseecsnessnsssassssnssssesssssssssessasss

6.1.1 NodeMCU ESP-32S connection with DHT22/AM?2302 sensor

12
13
13
14

15
15
15
17
21
21
22

24
24
26
26
27

29
29
30
31
32

35
35

6.1.2 NODEMCU Lua IoT ESP8266 Wifi Controller Board v3 connection with

DHT22/AM2302 SEISOT «eevtuneeeietieeeettaeeeseettaeeseeatasssseansssseanssssennssssesaessseniesssesnns 42

7 Arduino IDE 45
7.1 Features 45
7.2 Libraries 46

8 Program in C# language 49
CONCLUSIONS 53

REFERENCES 55

INTRODUCTION

With meteorology, as with the science of studying atmospheric phenomena, their

properties, state and structure, humanity is familiar from time immemorial.

The word “meteorology” (ancient Greek. Metewpo-Loyia — “reasoning about celestial
phenomena”) is associated with the works of Plato and Aristotle. Meteorology
as a science originated after the invention of the Galileo Galilei thermometer and Otto
von Guericke’s barometer in the 17th century. Nowadays, people are faced with
the measurement of meteorological indicators daily. Starting with a choice of winter
clothes for a trip to the mountains and ending with the launch of a spacecraft from
the cosmodrome. To measure the physical quantities associated with the weather use

weather stations.

In the course of this bachelor’s thesis, the historical development of meteorology and
weather stations will be studied in detail, the problems of modern weather stations,
the problems of measuring meteorological indicators using analog and digital sensors
and their errors will be investigated. The next step of the project will be to study
the main components for building a modern weather station that meets all
the requirements of the standards. The market for the main manufacturers of ESP32 and
ESP8266 microcontrollers will be studied, and based on price, quality and functionality

comparisons, boards will be selected for the basis of weather stations.

It is also necessary to study the main sensors measuring air temperature and relative
humidity, compare them in terms of accuracy and reliability of measurements, as well
as the price range of these products. This will be followed by an analysis
of the transport protocol MQTT, as the main protocol for communication in the concept
of Internet of Things. Based on the analysis, a text format will be selected for direct
transmission of data on air temperature and relative air humidity using the MQTT
transport protocol from the weather station to the broker using a wireless Wi-Fi

connection.

Further, comparisons will be made of the main MQTT brokers, in order to select
the most convenient and practical broker to work with the data obtained from

the weather station. In the next paragraph of the project, the main development

10

environments for programming and compiling microcontrollers will be presented.
The end point of the project will be the creation of a program in the C # programming
language for building 2D graphs of changes in air temperature and relative humidity

based on data obtained from the MQTT broker.

The end result will be a fully autonomous, customized connection of the weather
stations via Wi-Fi to a broker based on the MQTT network protocol, which in turn will
transmit data based on topic subscriptions to a computer program written in the C#
programming language, which, based on the meteorological data obtained through
the broker, will build graphs of temperature indicators and humidity indicators
in a particular area. Recently, it has become a tradition to use the MQTT network
protocol for such purposes, since most brokers support this particular protocol, and also
because of its simplicity and clarity for the average user. In general, the main goal
of this work is a detailed analysis of all the nuances associated with the MQTT protocol
as well as its further implementation in the concept of the Internet of things (IoT), which
is becoming more and more popular every day and in my opinion is the concept

of the future of smart automation.

I chose the topic of the bachelor thesis because it is a new round in the development of
smart automation and I believe that this topic has very great prospects for development
in the future because the modern world is committed to the rational use of resources and
the maximum efficiency of things improving these things with the help of artificial
intelligence, thereby increasing their economic feasibility and practicality. Also I was
always interested in software and hardware development and I am sure this topic will

help me to improve my knowledge in these areas of science.

11

1 MODERN DIGITAL WEATHER STATION

Modern digital weather stations are portable devices that record weather and climate

conditions using electronic sensors. They are equipped with an LCD display,

which shows the temperature at a specific point in time, air humidity, pressure, and

forecast for the near future. In this capture, we analyze the main types of modern

weather stations as well as the main methods of measuring temperature as well as the

main types of digital sensors, as well as consider and choose the best type of sensors for

the successful completion of the tasks.

The structure of the digital meteorological installation, in addition to the barometer,

thermometer, hygrometer, includes additional devices:

anemometer and wind vane measuring wind direction and speed,
rain gauge: determines the amount of precipitation,
calendar, alarm clock, clock, etc.,

USB - output for transferring data to a personal computer.

Advantages of digital weather stations:

a significant set of functions for an adequate assessment of meteorological

conditions and weather forecasting,

remote controllers analyze weather data from various points to compile the

most accurate picture,
stylish and modern design,

compact device.

Disadvantages of digital weather stations:

required power source,
incorrect installation of external sensors entails a false data transfer,

the budget version of the device is not able to accurately display weather

information.

12

1.1 Measurement of meteorological variables

The main meteorological variables used to determine the weather are temperature and
humidity. Each variable is measured by different methods. For processing measured
data meteorological stations are used. Below are brief descriptions of individual
methods for measuring temperature and humidity using electronic sensors,

some of which I used to create my own meteorological station.
1.1.1 Humidity

Humidity indicates how much water vapor contains a given amount of air. Relative
humidity is the ratio between the instantaneous amount of water vapor in the air and
the amount of water vapor that saturated air would have at the same pressure and

temperature. To measure humidity we can use the following methods:

e weight method — It is accurate and consists in comparing the weight of air

before and after drying,

e condensing method — Dew point temperature measurement by cooling
the measuring surface, at the moment of drawing, the temperature
on the surface is equal to the dew point temperature, then the humidity

1s determined,

e infrared light method — water vapor absorbs infrared radiation - the less it

passes on the detector, the higher the humidity,

e hygroscopic method — Hygroscopic substances change their geometrical

properties when absorbing moisture from the air (e.g., human hair),
e clectric method:

a) capacitance - Capacitor capacitance change, whose dielectric is made
of special polymer, changes in moisture change the properties of the

polymer,
b) resistive - Uses changes in electrolytic conductivity.

The weather station measures humidity using a capacitive method. [1], [3]

13

1.1.2Temperature

Temperature is a scalar physical quantity, directly proportional to the kinetic energy
of the particles. The greater the kinetic energy, the higher the temperature. Temperature
has a direct influence on all living organisms of the planet Earth, therefore, it is one
of the most important meteorological variables. Temperature is also an important
weather indicator.The basic units of temperature measurement are Celsius (°C), Kelvin
(K) and Fahrenheits (F). Temperature is measured using thermometers, which can

be divided into several types:

e expansion thermometers— devices based on the property of bodies to increase

their volume when heated. (for example mercury or alcohol),
e clectric thermometers:

a) resistive temperature sensors — these devices are based on the temperature

dependence of the electrical resistance of metals or semiconductors,

b) resistance thermometers — the principle of action is based on the dependence
of the electrical resistance of metals, alloys and semiconductor materials

on temperature,

¢) thermoelectric thermometers — at different temperatures at the ends of the

conductor at each end of the conductor there will be a different potential,

d) PN temperature sensor — use the temperature dependence on the voltage

at the PN transition in the permeable direction.

e color temperature indicators — determines the approximate surface temperature
of the body. In contact with the surface of the body there is a chemical reaction

and a change in the color of the indicator,

e contactless thermometers — They are based on capturing the electromagnetic

radiation radiating the bodies.

The weather station measures temperature using a thermoelectric temperature sensor.

(2], [3]

14

2 PARTS SELECTION

The key step in the implementation of my project is the selection of the main
microcontrollers that will carry the bulk of the software. The next key device is a sensor
for accurate measurement of meteorological indicators. These microcontrollers must
be able to interact with other devices through some interface, use a wireless connection
to a Wi-Fi network, and must also be able to interact with meteorological sensors.
Therefore, the basic principles in choosing microcontrollers and sensors are the
reliability of the devices, the accuracy of the measurements, as well as the ease of
implementation in practice. It was also decided not to use Arduino microcontrollers
in this project, since at the moment there are a large number of more cost-effective
chinese counterparts that are not inferior to leading manufacturers as microcontrollers

and contain a large number of detailed instructions and open source code.
2.1 Microcontroller comparison

This project involves the creation of two weather stations based on microcontrollers
ESP32 and ESP8266. Therefore, a comparison of these models of microcontrollers will
be carried out strictly within the framework of the functional advantages of these
models of microcontrollers. The main emphasis in comparisons of these
microcontrollers will be made on the following criteria: reliability, practicality, accuracy
and ease of implementation. There are a large number of microcontrollers of these
models; therefore, comparison of all models is inappropriate and time-consuming;
therefore, in this comparison there are only microcontrollers selected by the author

based on his subjective opinion.
2.1.1 ESP32 comparison

a) ESP32-DevKitC V4

ESP32-DevKitC V4 is a small ESP32 development board manufactured by Espressif.
Almost all I / O pins are split into connectors on both sides for easy pairing with
external devices. Users, if desired, have the ability to connect these contacts to other

peripheral devices. Moreover, standard male headers simplify development, making it

15

more convenient and easy to use. [4]

ESP-WROOM-32

CE I L L
ONDEZ ZZ Xt Xy TZ ONO6T BT 5«1 sf ¢ @ Z St 10 e@dD

. 'ii—iuum"——__lﬁTmﬁ‘ E-j

-

ESP32-WROVER USB-UART
option space Bridge
T T

Micro
USB
Port

e L PEELEE]
A
o<
L 183
EO
L

Figure 2.1: ESP32-DevKitC V4 with ESP32-WROOM-32 module soldered. [4]

Functional description:

USB-UART bridge,

operating voltage is5V,
ESP32-WROOM-32 chip,

digital input/output pins (DIO): 32,

approximate price is 10$.

The board supports various ESP32 modules, including ESP32-WROOM-32 [4].

b) NodeMCU ESP-32S

NodeMCU ESP-32S is one of the newest and most successful development boards

created by NodeMcu to implement the ESP-WROOM-32 module. Its main component

is the ESP32 microcontroller, which among other functions also supports Wi-Fi,

Bluetooth, Ethernet and low power technologies in one chip. [5], [6]

16

(@

o7 ahtgar

9 "5

| &
|
<
.

l
|

| &

Figure 2.2: Node MCU ESP-32S with ESP32-WROOM-32 module soldered.[5]

Functional description:
e Wi-Fi: IEEE 802.11 b/g/n/e/l,
e flash memory: 4 MB,
e operating voltage is 3.3V,
e operating temperature: -40 to +125 (°C),
e network protocols: IPv4, IPv6, SSL, TCP / UDP /FTP / HTTP / MQTT,
e ESP32-WROOM-32 chip,
e digital input/output pins (DIO): 28,
e approximate price is9$.

Conclusion

In general, these microcontrollers do not have big differences. The cost and quality
of each module are also on the same level. Both microcontrollers have enough
power and pins to achieve the objectives of this project. For the project, I decided
to choose the Node MCU ESP-32S, because there are more open sources and
instructions (Connect, Register, Virtualize and Program) than for the ESP32-

DevKitC V4.
2.1.2 ESP8266 comparison

a) NODEMCU Lua IoT ESP8266 WifiController Board v3

17

NodeMCU is a small-size board, based on the cheap Wi-Fi ESP-12E module,
containing a single-chipESP8266 Wi-Fi SoC.NodeMCUas a whole is a set of the most

successful open source firmware and development tools, which undoubtedly provides

the ability to prototype your 10T in several lines of the Lua script. The ESP-12E chip

is considered one of the most advanced and most affordable modules based on the

ESP8266 module; This module is becoming increasingly popular thanks to the built-in

antenna and the screen of the Wi-Fi circuit board. [7]

Figure 2.3: NODEMCU Lua IoT ESP8266 Wifi Controller Board v3.[7]

Functional description:

include open-source, interactive and programmable,
antenna,

Wi-Fi: IEEE 802.11 b/g/n,

digital input/output pins (DIO): 30,

approximate price is6$.

The Development Kit based on ESP8266, integrates GPIO, PWM, IIC, 1-Wire and

ADC all in one board. Power the development in the fastest way combination with

NodeMCU Firmware.

18

b) Witty Cloud / GizWits - ESP8266

The Witty Cloud (also named GizWits) development board is very interesting in the fact
that it consists by design of two separate modules, with each module having a USB
connector. Once programmed, only the upper part may be used fully functionally

as programmed by yourself.

Figure 2.4: Witty Cloud development board.

If you tear those modules apart you end up with - the upper module the upper module

Figure 2.5: Upper Witty Cloud module.

holding on the upper side:
e photo resistor,

e antenna,

multi-color LED,

ESP-12 module,

digital input/output pins (DIO): 12.

the lower module with components on the upper side only

19

Figure 2.6: Lower Witty Cloud module.

holding on the lower side:
e voltage regulator,
e micro USB port,
e with its only function to accept a power source,
e the pins to plug into a breadboard.
In general, the module contains:

e two buttons (the left one to set the system into flash mode, the right one to reset

the system),

e micro USB port accepting a power source as well as data exchange with

another device,

e two female header connectors to connect with the second Witty Cloud module

if needed.

Conclusion

Specifications and price of these microcontrollers are about the same. Both
microcontrollers have enough power and pins to achieve the objectives of this project.
The most interesting thing in the design of Witty Cloud / GizWits - ESP8266 module
is that it consists of two separate boards: the controller boards itself and the auxiliary
one used for firmware and communication with the computer. Firmware included.
Moreover, the board comes with a CH40 micro USB module to program it. But on the
other hand a lot of small details make this microcontroller less reliable and overly
complex. In my opinion the NODEMCU Lua IoT ESP8266 Wifi Controller Board v3
is more comfortable to work with, than Witty Cloud / GizWits - ESP8266.

20

2.2 Sensor comparison

Weather stations to measure atmospheric parameters use high-precision electronic
sensors. The most common temperature and humidity sensors are DHTI11 and
DHT22/AM2302 which is a modification of the sensor DHT22. They are famous
for their reliability and measurement accuracy. Below is a detailed comparison of these
sensors. There are a large number of sensors; therefore, comparison of all models
is inappropriate and time-consuming; therefore, in this comparison there are only

sensors selected by the author based on his subjective opinion.

2.2.1 DHT11

DHT11 is a digital temperature and humidity sensor from the category of combined
sensors. DHT11 contains a calibrated digital signal with indicators of temperature and
humidity of a sufficiently high reliability and accuracy of measurements. The sensor
also has resistance to wet components and an NTC temperature measuring device and

is connected to a high-performance 8-bit microcontroller. [8]

DHT11 pins

vce b‘ » >
DATA .’ ‘. -

NC
GND

& W N -

Figure 2.7: DHT11 with pins description (from left to right).[8]

Functional description:
e operating voltage is 3.3— 5.5(V),
e maximum current using during conversion = 0.0025(A),
e perfect for 20-80% humidity readings with 5% accuracy,
e perfect for 0-50°C temperature readings £2 (°C) accuracy,

e sampling rate is no more than 1 Hz (one per second),

21

e regular transmission distanceis 10 miters,
e approximate price is5$.

This sensor is quite popular among developers of IoT, however, for the use in weather
stations of this project, the accuracy of these devices is not enough to achieve the goals.
Also, the operating temperature accuracy of the sensor does not allow this sensor
to be used in extremely low temperatures, which makes it impossible to measure in the

winter season.
2.2.2 DHT22(AM2302)

This model of sensors uses a special modern technology for collecting and processing
a digital signal and moisture detection technology, providing reliability, stability and
accuracy of measurements regardless of weather conditions. Sensitive sensor elements
are connected to an 8-bit single-chip computer. Most sensors of this model provide
temperature compensation and calibration in the calibration chamber, and
the calibration factor is stored in the type of program in the OTP memory, since
the sensor detects this, it will indicate the coefficient from the memory. [9]

DHT22 pins
1 vee
2 DATA
3 NC

4 GND

te e N

N A EE W
S T EE W
- e
- A EE .

|

|

~

Figure 2.8: DHT22(AM2302) with pins description (from top to down). [9]

Functional description:
e operating voltage is3 — 6 (V),
e max current use during conversion is 0.0025A,
e perfect for 0-100% humidity readings with 2-5% accuracy,
e perfect for -40 to 80°C temperature readings +0.5(°C) accuracy,
e maximum 0.5 Hz sampling rate (once every 2 seconds),

e regular transmission distance is 20m,

22

e approximate price is7$.

Conclusion

Having analyzed in detail the technical characteristics of these temperature and
humidity measurement sensors, and summing up all the criteria that we can see, we
make the following conclusion - the DHT11 temperature and humidity measurement
sensor, in comparison with the DHT22 (AM2302) temperature and humidity
measurement sensor, is less accurate and less reliable in their measurements. Moreover,
the DHT11 sensor works in a smaller range of temperature and humidity data, since this
sensor measures temperature in the range from 0 ° C to 50 ° C, which makes
it impossible to use it outside the building, which significantly reduces its chances in the
struggle for use in my project. Moreover, the accuracy of the relative humidity of the
DHT11 sensor is £ 5% relative humidity, which is a noticeable difference compared
to the DHT22 (AM2302) + 2% relative humidity sensor. However, both sensors do not
require any additional components, such as a resistor. It is already inside the DHT22
sensor (AM2302) and the DHTI1 sensor, but in the framework of this project,
for personal safety reasons, as well as to reduce the risk of overload and further failure
of the sensor, an additional 10KoM resistor is required. Based on the information above,
I conclude that as part of my project it will be more profitable to use a temperature and
humidity sensor DHT22 (AM2302) to achieve the goals of maximum accuracy and

reliability of my weather stations.

23

3 GENESIS OF THE MQTT PROTOCOL

“The Internet of Things (IoT) is a network of physical devices, household appliances,
vehicles, and many other items equipped with smart electronics, sensors, software,
drives, and communication tools that allow these devices to connect, collect, and

exchange data with other devices and servers via the Internet.

The Queuing Telemetry Transport (MQTT) protocol was created in 1999 by Andy
Stanford (IBM) and Arlen Nipper (Eurotech) for pipeline management in the oil and gas
industries. Engineers tried to find an easy and reliable protocol for scale production,
however, due to its simplicity, efficiency and low hardware demands, it soon became

used in home automation equipment.

Due to the complicated management in the oil industry engineers decided to develop
a light protocol with basic options, including account confines for narrow nodes,
unreliable connection to the global WAN network and bandwidth limiting with variable
delays. This was the main to choose a client/server structure and publishing /
subscribing based on the TCP / IP architecture. In 2013 it was certified international
OASIS standardization company as an open source protocol suitable for communication

between devices.” [10]
3.1 Message Queuing Telemetry Transport Protocol
“Engineers research led to the development and implementation of the Message

Queuing Telemetric Transport Protocol (MQTT).

Message Queuing Telemetry Transport (MQTT) is an ISO standard publish-subscribe-
based messaging protocol. It works on top of the TCP/IP protocol. It is designed for
connections with remote locations where a "small code footprint" is required or the

network bandwidth is limited.” [10]

24

L

~ message
3 ~
Publisher ~ ‘
message . ™ Juessage
- ™ ~
K~ MQTT-Broker p |
Subscriber Subscriber

Figure 3.1: MQTT Publish/Subscribe Framework

“An MQTT client can act as a publisher to send data to an MQTT server acting as an
MQTT message broker. The MQTT server receives a network connection along
withapplication messages, such as Temp / RH data, from publishers. Moreover,
it handles the subscription and cancellation process and sends application data
to the MQTT clients acting as subscribers. The application at the bottom of the picture
is an MQTT client, which is a subscriber to the Temp / RH data created by the publisher
or the sensor at the top. This model, in which subscribers want to receive information

from the publisher, is known to many.” [10]

“The MQTT client can optionally subscribe to all data or specific data from
the publisher's data tree. Moreover, the presence of a message broker in MQTT
separates the transfer of data between customers acting as publishers and subscribers.
In fact, publishers and subscribers do not even know about each other. The advantage
of this decoupling is that the MQTT message broker ensures that information can
be buffered and cached in case of network failures. It also means that publishers and
subscribers do not have to be online at the same time. MQTT control packets pass
through TCP transport using port 1883. TCP provides an ordered lossless stream
between the MQTT client and the MQTT server.” [10]

25

3.1.1 Connecting clients to the MQTT broker

Individual clients connect via TCP to the MQTT broker, most often through port 1883.
In the case of an encrypted TLS connection, port 8883 is used. When connecting,
the client sends a CONNECT message, usually with a "clean session" flag, which
ensures that all topics that may have been previously preset are unsubscribed. When the
client successfully connects, the broker acknowledges the client's connection using
a CONACK message. After successfully connecting to the broker, the client can
subscribe to certain topics using the SUBSCRIBE message. The broker confirms
the successful setting of the topic subscription with a SUBACK message. Likewise,
the client can unsubscribe from topics using the UNSUBSCRIBE message. In this case,
the broker also sends a UNSUBACK confirmation message to the client. To determine
if the client is still active, if it does not generate any messages, it sends PINGREQ

messages at regular intervals, which the broker confirms with a PINGACK message.
3.1.2 MQTT Message Types

Fourteen different types of control packets are specified in MQTT version 3.1.1. Each
of them has a unique value that is coded into the Message Type field. MQTT message

types are summarized in table below.

26

Table 3.1: MQTT Message Types. [10]

Control packet Direction of flow Description
CONNECT Client to Server Client request to connect to Server
CONNACK Server to Client Connect acknowledgment
PUBLISH Client to Server Publish message

or

Server to Client
PUBACK Client to Server Publish acknowledgment

or

Server to Client
PUBREC Client to Server Publish received

or

Server to Client
PUBREL Client to Server Publish release

or

Server to Client
PUBCOMP Client to Server Publish complete

or

Server to Client
SUBSCRIBE Client to Server Client subscribe request
SUBACK Server to Client Subscribe acknowledgment
UNSUBSCRIBE | Client to Server Unsubscribe request
UNSUBACK Server to Client Unsubscribe acknowledgment
PINGREQ Client to Server Ping request
PINGRESP Server to Client Ping response
DISCONNECT Client to Server Client is disconnecting

3.1.3MQTT Message Format

MQTT is a light protocol because each control packet consists of a 2-byte fixed with

optional variable header fields and optional payload.

27

Field length o | 1 { 2§ s | a | s | 6 | 7

(bits) H H H H H H H
Byte 1 Message Type | oup | QoS Level RETAIN | | MQTT fixed
Byte 2 Remaining Length (1 - 4 bytes) ader
Byte 3
Optional: Variable Length Header
Byte n
Byte n+1
Optional: Variable Length Message Payload
Bytem

Figure 3.2: MQTT Message Format.[10]

MQTT contains a small-size header of 2 bytes .The first MQTT field in the header
is Massage Type, which identifies the kind of MQTT packet within a message.

Conclusion

The protocol is quite reliable due to its simplicity and clear structure. The lightweight
and good architecture of the protocol make it a quit fast and useful to work with the
memory limited microcontrollers like ESP32 or EPS8266. The main advantage of the
MQTT protocol is that for communication and data acquisition it is not necessary
to know the IP address of individual clients, but only the IP address of the MQTT
broker. Forwarding of messages between individual clients can be solved centrally
using a script that connects to the broker as a client. This is more user-friendly than
defining to each client what messages to receive from other clients and how to handle
them. Especially when clients change. All current data is stored in one place. In general,
the protocol is ideal for the implementation of my project. Moreover, many brokers
support this protocol, which is a big plus in the implementation of IoT projects of any

complexity.

28

4 MQTT BROKER SELECTION

For the quality of my weather station, you need to find a suitable message broker.
The main goal of the broker is to receive and give messages. You can think of it as a
post office: when you drop a letter in the box, you can be sure that the postman will
deliver it to the addressee sooner or later. In this analogy, the brokers presented in the
paragraph below works like a mailbox, a post office, and a postman at the same time.
At present, there are many brokers of various parameters and functions, with the help
of which it is possible to implement even the most specific projects. However, brokers

in this comparison were selected according to the subjective opinion of the author.
4.1 Mosquitto

Mosquito is an open source message broker (licensed with EPL / EDL) that implements
the MQTT protocol versions 3.1 and 3.1.1 and supports the proposed MQTT v5, which
makes scalability and portability improvements. Mosquitto is lightweight and suitable
for use on all devices, from low-power computers to single-board computers to full

servers. [11]

The MQTT protocol provides an easy and fast messaging method using
the publish/subscribe model. Thanks to this method, the protocol becomes suitable for
messaging over the Internet, for example, with low power sensors or mobile devices

such as telephones, embedded computers or microcontrollers. [11]

The Mosquitto project also provides the C library for implementing MQTT clients,
as well as the very popular MQTT clients mocsquitt__pub and mosquittto_sub.
The Mosquittto broker is part of the Eclipse [oT Working group, “industry collaboration

companies that invest and promote open source for [oT”. [11]
Advantages:

e casy to setup,

e useful interface,

e verified clients Pub/Sub,

29

e casy integration with ESP32 and ESP8266 microcontrollers.
Conclusion:
Mosquitto is the most common, really light MQTT broker written in C. For Windows
and Mac there are official versions, source codes are also available there. You can also

get source codes from GitHub.
4.2 VerneMQ

VerneMQ is primarily an MQTT message / signature broker whose main protocol is the
MQTT protocol of the OASIS industry standard. Moreover, VerneMQ was created
to accept messaging applications and IoT applications to the next level, offering
a unique set of features related to reliability, simplicity, scalability, and high
performance. To perform all tasks assigned to the broker, VerneMQ is designed from
the ground up to act as a distributed message broker, ensuring continuous operation
in the event of network or node failures and simple horizontal scalability. Fundamental
technology is a proven technology stack of telecommunications technology that
provides a solid foundation for systems that must operate around the clock. It can also

effectively use all available resources as a basis for simple vertical scalability.[12]

VerneMQ uses clustering technology without skill. There are no particular nodes, such
as wizards or slave devices that need to be considered when inevitable changes
in infrastructure or maintenance windows require adding or removing nodes. This

makes the cluster easy and safe. [12]
Advantages:
e MQTT protocol support,
e durable subscriptions on topics,
e TLS Support and Certificate based Authentication,
e detailed instructions for installation and use,
e flexible plug in and integration options,

e VerneMQ is 100% open and free to commercial modification and re-use.

30

Conclusion:

VerneMQ is a relatively new broker MQTT written in the Erlang programming
language. The Erlang language is quite popular in the world of brokerage messages,
as its soft and distributed real-time capabilities. VerneMQ contains many advantages
that areinherent in the best brokers. Full implementation of MQTT 3.1.1, anti-aliasing,
TLS 1.2, and authorization with the database. Can be easily extended with Lua scripts,

has a useful GitHub development team, and pretty good documentation.
4.3RabbitMQ

RabbitMQ is an open source message broker with a wide range of functions. RabbitMQ
was originally designed to implement the Advanced Message Queuing Protocol
(AMQP) and was expanded over time using a plug-in architecture to support Message
Queuing Telemetric Transport (MQTT), Streaming Text-Oriented Messaging Protocol
(STOMP) and other protocols.[13]

The broker's server program is based on the Erlang programming language and is built

on the Open Telecom Platform platform for disaster recovery and clustering.

For interaction with the broker, client libraries are available for all leading programming

languages. [13]
Advantages:

e supports multiple messaging protocols,

pluggable authentication & authorization,

supports TLS,

lightweight and easy to deploy in public and private clouds,

multiple exchange type.
Conclusion:

RabbitMQ is a very common message broker designed on the platform “Erlang” that
has support for MQTT among other protocols through a plugin. RabbitMQ includes
TLS support, clustering is good, authorization cannot be done using a database directly

because of that reason you should create an HTTP REST wrapper over your database

31

and use it as an authorization backend. The disadvantage of RabbitMQ is that the
MQTT support itself. RabbitMQ supports the AMQP protocol natively, the MQTT
implementation is missing some important features such as Quality of Service (level 2).
QoS 2 guarantees that a message is received exactly once. This is important in some
cases, for example when commands are sent from the IoT platform to the devices. Lost
or duplicate commands can make some problems, which will have a bad effect on these

scenarios, so QoS2is a must.

4.4 CloudMQTT

CloudMQTT are managed Mosquitto servers in the cloud. CloudMQTT let you focus
on the application instead of spending time on scaling the broker or patching
the platform.The main advantage of this service is that it is not necessary to configure
the Mosquitto software and own the platform on which it would run. This type
of MQTT cloud broker was chosen to avoid errors caused by wrong setup of Mosquitto

software.
Advantages:
e MQTT protocol support
e TLS Support
e C(Certificate based Authentication
e 5 available connections

Conclusion

I chose CloudMQTT for my project, as this cloud broker has enough number of clients-
brokers connections and has extensive documentation. For my purpose, a free
Mosquitto instance called “Cute Cat” was selected, allowing five clients to connect
at a rate of 10 Kbit / s. Moreover, there are also many forums and video tutorials
dedicated toCloudMQTT, which will greatly help me in the future use of this cloud
broker during my project. This cloud broker is characterized by its simplicity and ease
of use. After registration, the user selects and creates the Mosquitto object. After
opening the Mosquitto object, the data necessary to connect clients to the created

MQTT broker is generated and displayed.

32

For a full cloud broker connection with the client, we need the following values:

Server mZ24.cloudmgtt.com

Password FETcMIZuhWeEw

Q

Port 14236

Figure 4.1: CloudMQTT profile information

Server: m24.cloudmgqtt.com
User:zdoacsor
Password:ETcMIZuhWeEw
Port: 14236

We will use these values both in the microcontroller’s code and in the program code for

plotting graphs.
const char* Mosquitto_Server = "m24.cloudmgtt.com”;
onst int Mosquitto_port = 14236;
const char* user mgtt = "zdoacsor";
onst char* pass_mqtt = "ETcMIZuhWeEw";

Figure 4.2: CloudMQTT profile information using in Arduino IDE code

CloudMQTT data is exchanged with customers by subscribing to certain topics.
In thiscase, my weather stations send data on temperature and relative humidity of air
under one general topic: esp. CloudMQTT receives data tagged with an “esp” topic,
keeps the information in memory and sends the topic data to users who subscribe to this
newsletter. This client supports all text formats of the MQTT transport protocol,

including JSON.

33

http://m24.cloudmqtt.com
http://m24.cloudmqtt.com

Data in JSON format comes to CloudMQTT in the following form:

Received messages

Topic Message

esp {"temperature":26.3,"humidity":49.2}
esp {"temperature":26.1,"humidity":49.7}
esp {"temperature":26.2,"humidity":47.8}

Figure 4.3: CloudMQTT data receive

34

S JAVASCRIPT OBJECT NOTATION

JavaScript Object Notation (JSON) is a data transfer format. As you can see, JSON
is a JavaScript based text interchange format, but it is available for use in many
languages, including Python, Ruby, PHP and Java.Like other text formats, JSON is easy
to read by people. JSON itself uses the .json extension. When it is defined in other file
formats, like .html, it appears in quotes as a JSON string or it can be an object assigned
to a variable. This format is easy to transfer between the server and the client

or browser. [10]
5.1 Syntax and structure

A JSON object is a data format with a key :value, which is usually rendered in curly
braces. When you work with JSON, you most likely see JSON objects in the .json file,

but they can also exist as a JSON object or string in the context of the program.[10]

This is what a JSON object looks like:

{

"weather station™ : "1",
"model"™ : "ESE3Z2",

mwae _ — 1 = n
temperature : Tep,
"humidity" : Vlh,
"online"™ : trus

Figure 5.1: JSON object

Although this is a short example, and JSON could be much longer, it shows that this
format is basically set with two curly braces that look like { }, and data with key values

are between them. Most of the data used in JSON is in JSON objects. [10]

.«

Pairs of key values have a colon between themselves, such as here the “key”: “value”.

Each pair of values is separated by a colon, so the middle of JSON looks like this:

FEINT4 .« FEINT4

“key”: “value”, “key”: “value”, “key”: “value”. In our example above, the first pair

2. “1”

of key values is “weather station”:
JSON keys on the left side of the colon. They need to be wrapped in parentheses,
as with a “key” it can be any string. In each object, the keys must be unique. Such key

(15

strings may contain spaces, as in “weather station”, but such an approach may

35

complicate access to them during the development process, so the best option in such

cases would be to use underscores, like here “weather_station”.

JSON values are on the right side of the colon. To be precise, they can be one of six
data types: string, number, object, array, boolean, or null value. At a broader level,
values can also consist of complex data types, such as a JSON object or an array. Each
data type that is passed as a value in JSON will support its own syntax, so the strings
will be in quotes, but the numbers will not. Although in the .json files we usually see

the format of several lines, JSON can also be written in one continuous line:

{ "weather station"™ : "1", "modsl" : "ESP32", "onlin=" : trus, }

Figure 5.2: JSON object string type

Working with JSON in a multi-line format often makes it more readable, especially
when you are trying to handle a large dataset. Since JSON ignores spaces between
its elements, you can separate them with the same spaces to make the data more

readable:

"weather station™ : "1",
"model"™ : "ESP32",
"online"™ : trus

}

Figure 5.3: JSON object column type

It is very important to remember that although they are visually similar, but JSON
objects do not have the same format as JavaScript objects, so although you can use
functions inside JavaScript objects, you cannot use them as values in JSON. The most
important feature of JSON is that it can easily be transferred between programming
languages in a format that almost all languages understand. JavaScript objects can only

work directly through the JavaScript language. [10]

Conclusion
JSON is a neutral format for use and it has many implementations for use in many
programming languages. JSON is a lightweight format that allows you to easily share,

store and work with data. As a format, JSON is experiencing growing API support,

36

including the Twitter APL I will not create my own .json files, but I will get them from
other sources, it becomes very important to think less about JSON structure and more
about how to better use it in my work. As planned, the program should connect
to the Wi-Fi network, take readings of the sensor about the current temperature and
relative air humidity, transform the received data into text JSON format and send them

to the broker MQTT.

Below is a part of the code, which shows a visual transformation of data into JSON

format and publication to MQTT broker.

Example:
const int jsonSize = JSON_CBJECT_SIZE(2):
StaticdsonDocument<jsonSize> jsonResult;
flocat Tep = Sensor.readTemperature();
float Vlh = Sensor.readHumidity()’

jsonResult["temperature”] = Tep:
jsonResult["humidity™] = Vlh;

char toPublic[128];
serializeJdson(jsonResult, toPublic);
client.publish("esp”, toPublic):;

Figure 5.4: publisher to MQTT broker

37

6 MICROCONTROLLERS & SENSOR CONNECTION

The most important point of this project is proper connection implementation. I have
to make two connections for microcontrollers with sensors. Microcontroller’s
documentation (Pin Mapping) and visual connection schemas are presented in the
following paragraphs. To ensure compactness and maximum autonomy, I decided to
design and create special printed circuit boards (PCB) to replace the universal solder

field.

6.1 EasyEDA

To create printed circuit boards, I used the EasyEDA program, which is an analogue

of the famous Eagle. The program is easy to use and suitable for beginners.

EasyEDA is a web-based EDA tool suite that enables hardware engineers to design,
simulate, share - publicly and privately - and discuss schematics, simulations and
printed circuit boards. EasyEDAallows creation and editing of printed circuit board
layouts and, optionally, the manufacture of printed circuit boards.Registered users can
download Gerber files from the tool free of charge but for a fee, also EasyEDA offers
a PCB fabrication service. This service is also able to accept Gerber file inputs from
third party tools.In the schematic drawings below, you can see the connection diagram

for an autonomous weather stations based on the ESP32 and ESP8266 microcontrollers.

6.1.1 NodeMCU ESP-32S connection with DHT22/AM2302 sensor

The DHT22 / AM2302 digital sensor will be connected to the first ESP32S module.
The sensor will be connected to the microcontroller, as shown in Figure 6.2 from
the official documentation of the sensor and the microcontroller. The first GND pin
(Earth) will be connected to the ground of the NodeMCU ESP-32S module, the second
Vee pin will be connected to a 3.3V power pin, and the last DATA pin will
be connected to the module pin GPIO16, which provides data transfer. VIN pin
is connected to a power supply unit consisting of 3 AA batteries of 1.5V each, forming
a total voltage of 4.5V, which is sufficient and safe for the operation of weather stations

as well as long-term autonomy. For the project of the weather station, an ESP32S

38

controller based on the WROOM-32 processor was selected, as well as a temperature
and humidity sensor DHT22 (AM2302) with high measurement accuracy. To avoid
possible overload and further failure of the DHT22(AM2302) digital sensor, a 10kQ
resistor was connected between the data pin and the power pin. This is not a prerequisite

for the operation of the station, but only the prevention of a possible problem.

@+)esp-wroom32 ¢

Figure 6.1: NodeMCU ESP-32S pinout.[5]

39

- 20

o
-y
B s
(28]

D D0) O s L R
=
o

GND

iy}
DC-003-20A

PP PP | X
kkokskokoksk | kkokok [kkokkokkok

fun
=]
[l S = N v T

- m—

Figure 6.2: NodeMCU ESP-32S connection with DHT22(AM2302) sensor

ANDRIlI FILIPPOV 189830

Figure 6.3: NodeMCU ESP-32S converted to PCB format (Top Layer)

40

Figure 6.4: NodeMCU ESP-32S converted to PCB format (Bottom Layer)

SR G GGG L
BND 623 622 TXD RXD 621 619 618 G5 617 616 64 GO - 62 615 SO1 SO CLK

ANDRII FILIPPQV

Figure 6.5: NodeMCU ESP-32S complete PCB

41

6.1.2 NODEMCU Lua IoT ESP8266 Wifi Controller Board v3 connection
with DHT22/AM2302 sensor

In the schematic drawings below, you can see the connection diagram for
an autonomous weather station based on the NODEMCU Lua IoT ESP8266 Wifi
Controller Board v3 microcontroller. The DHT22 / AM?2302 digital sensor will
be connected to the second ESP8266 module. The sensor will be connected to the
microcontroller, as shown in Figure 6.7 from the official documentation of the sensor
and the microcontroller. The first GND pin (Earth) will be connected to the ground
of the NodeMCU ESP-8266 module, the second Vcc pin will be connected to a 3.3V
power pin, and the last DATA pin will be connected to the module pin GPIO4, which
provides data transfer. VIN pin is connected to a power supply unit consisting of 3 AA
batteries of 1.5V each, forming a total voltage of 4.5V, which is sufficient and safe for
the operation of weather stations as well as long-term autonomy. For the project of the
weather station, an ESP8266 controller based on theESP-12E processor was selected,
as well as a temperature and humidity sensor DHT22 (AM2302) with high measurement
accuracy. To avoid possible overload and further failure of the DHT22(AM2302) digital
sensor, a 10 kQ resistor was connected between the data pin and the power pin.
This is not a prerequisite for the operation of the station, but only the prevention

of a possible problem.

(A= Apco B . < USER J-{WAKE

efefefefofole]e)

¢ ON9 EAE hE EC 24 14

GP1013}—{ RXD2 }-{HMOSI|
GP1015 TXD2 }{ HCs |

(GP103 j={RXDO |

Figure 6.6: NODEMCU Lua ESP8266 v3 pinout.[7]

42

P1 P2
Female-2.54_1x20 Header

»—1] 11—
— 2 2 —x
%13 3 —X
4 4 —
Xx—5 5 —X
—6 6 —x
Ye—127 7
»—8 8 —x
»X—19 9 —X
»— 10 10 —<
2—{id HAR—X
xX— 12 12 —X :lm
x— 14 14 —<
Ye—1S 15—

=i o

DC-005-20A 18 18

2 19 19 25 a2
3 / -
Al 2] 0 20— GND
>

Figure 6.7: NODEMCU Lua ESP8266 v3 connection with DHT22(AM2302) sensor

Figure 6.8: NODEMCU Lua ESP8266 v3 converted to PCB format (Top Layer)

43

00000000000000000000

0000000000000 0000000

Figure 6.9: NODEMCU Lua ESP8266 v3 converted to PCB format (Bottom Layer)

-
-
-
—
v

Cl” éoggz-&&samsoam)
(-‘

o (

: (I g R R R —

-~
-
-~
-
e
-
-~

-

Figure 6.10: NODEMCU Lua ESP8266 v3 complete PCB

44

7 Arduino IDE

For programming microcontrollers, the Arduino IDE platform (version 1.8.9) was
chosen. The choice of this platform was primarily due to the fact that the Arduino IDE
is widely distributed among IoT developers, as well as the large amount
of documentation and the availability of libraries necessary for effective open access
on GitHub. Version 1.8.9 was not chosen by chance. This is the most developed and

reliable version.

7.1 Features

Arduino is a programming environment that specializes in programming simple
automation and robotics systems, focused on amateur-level programmers. Arduino
software consists of a free IDE shell for writing and compiling sketches, and

programming microcontrollers and adjacent components. [14]

Use the functions of the Arduino made in the following cases: to create autonomous
robotics objects, to work with software on a computer using standard wired and wireless
interfaces. Work in the Arduino is fully implemented through the IDE shell, which is
freely available. Arduino IDE consists of: Project Manager text editor compiler
preprocessor compilation tools The shell is written in Java. Available on Windows,
Linux, Mac OS. A set of standard Arduino libraries is used. The Arduino programming
language is a classic C ++ with some features that make it even easier for novice

programmers to write a work program. [14]

Arduino saves program code in files with the * .ino extension. These files are processed
by the Arduino preprocessor. The flexibility of the program allows, if desired, to create
and connect standard C ++ files to the project. Arduino code contains two mandatory
functions: setup () and loop (). setup () is executed once at startup. In this part of the
code, it is customary to enter constant values of functions (login / password, network
connection procedure, initialization of sensors and other additional components,
connection port, program speed). loop () performs a loop repeatedly an infinite number

of times. [14]

In the text of the sketch is not necessary to enter the header files of standard libraries.

45

These files will automatically be added to the Arduino preprocessor in accordance with
the project configuration. Custom libraries must be specified. The mechanism of adding
libraries by the Arduino IDE project manager is rather non-standard. As source texts,
libraries in standard C ++ are added to the working folder in the IDE directory.
But the library name is added to the library list, which is accessible via the IDE menu

bar. The user can select the desired libraries, and they are added to the compilation list.

Arduino IDE does not configure the compiler and minimizes the settings of other
components, which greatly simplifies the use of the program by beginners and reduces
the likelihood of problems. Microcontrollers for working with the Arduino IDE should
have a pre-patched bootloader. This bootloader allows the user to load his program into

the microcontroller without using standard individual hardware programmers. [14]

The program download algorithm into the microcontroller is carried out in three ways:
using a USB cable, using an RS-232 interface, and using Ethernet, depending on the
connector connector of the microcontroller used. In some microcontrollers (mainly
made in China) for downloading a program to the microcontroller, you may need
an additional adapter. Bootloader support is built into the Arduino IDE and runs in one

click. [14]

Due to its simplicity and openness of the Arduino IDE, additional tools have been
created on the basis of this development environment, which make it even easier
to work with the code. A prime example of such tools is the graphical development
environment - Miniblog. In essence, this is a graphical code generator with some
Arduino IDE functions. The main purpose of Minibloq is assisted in learning
programming. This development environment is very common among specialized

schools of robotic and computational bias. [14]

7.2 Libraries

The capabilities of the Arduino IDE programming environment can be enhanced
through the use of libraries. Libraries extend the functionality of programs and carry
additional functions, for example, to work with a wireless Wi-Fi network or work with
a particular data format. Standard libraries are installed automatically with the

development environment, but it is possible to download or create your own libraries.

46

To connect the library to the program, select it from the Sketch menu> Import Library.
Standard libraries:
e EEPROM - read and write to "permanent" memory,

e Ethernet - to connect to the Internet through the Arduino Ethernet expansion

card,

e Firmata - for interaction with applications on a computer using a standard serial

protocol,
e GSM - to connect to the GSM / GRPS network via the GSM expansion card,
e LiquidCrystal- for working with liquid crystal displays (LCD),
e SD - to read and write data to the SD memory card,
e Servo - to control servomotors,
e SPI - for interfacing with peripheral devices via the SPI serial interface,
e SoftwareSerial - to implement serial interfaces on any digital outputs,
e Stepper - to control stepper motors,

e TFT - to display text, images and graphics primitives on the Arduino TFT

screen,
e WiFi - to connect to the Internet through the Arduino WiFi expansion card,

e Wire - to work with a two-wire interface that allows you to receive or send data
between a network of devices or sensors.
For effective interaction of the microcontroller with the sensor and, in consequence,

the server, I used the following Arduino IDE libraries:
e ArduinoJson.h (JSON support library),
e PubSubClient.h (publish / subscribe MQTT support library),
e DHT.h (operations with temperature and humidity sensor DHT22 (AM2302)),

e WIFLh (standard ESP32 library for working via WIFI connection).

47

During the installation of libraries, I encountered some difficulties associated with

a large number of obsolete inefficient and low-quality libraries to work effectively.

48

8 Program in C# language

The next important step in my bachelor's thesis was the creation of an application for
a graphic illustration of the change in temperature and relative humidity based on the

data obtained from the weather station.

According to the requirements of my project, this application must be written in the C #
development environment. The program should be a comfortable and understandable
interface in which there will be two coordinate planes for building graphs of changes
in air temperature and relative humidity in real time.The program also contains buttons
for clearing graphs upon completion of the necessary measurements, as well as buttons
for saving data received from a broker in CSV (Comma-Separated Values) format - a
text format responsible for the presentation of tabular data. Two buttons on each chart,

respectively.

The main problem I encountered while writing this project in C # is the transformation
of data received in JSON format, as well as the correct setting of the connection to the
MQTT broker. The development environment is Microsoft Visual Studio 2015. Since it
is this version in my opinion is the most developed, successful and comfortable for
programming. In writing the program, I was guided by the logic “brevity - a sign
of excellence”, so I decided to use minimalism in the software interface and also in the
construction of graphs. Libraries were chosen standard windows forms, as in my
opinion it is ideal for working with classic 2D graphics.

In general, during the course of this task, the author improved skills in working with

the C# language and, in general, a simple program was created with a comfortable and

intuitive interface for users of all levels to work with weather station data.

A fragment of code is presented below; it is possible to see how the program processes

MQTT messages for further graphing.

49

private bool PublishArrived(object sender, PublishArrivedArgs e)

{

string payload = e.Payload;
Addvalues(payload);

return true;

delegate void AddvaluesCallback(String payload);

private void AddValues(String payload)

{

if (this.temperatureChart.InvokeRequired ||this.humidityChart.InvokeRequired)
{
AddValuesCallback add = new AddValuesCallback(Addvalues);
this.Invoke(add, new object[] { payload });

else

JObject json = JObject.Parse(payload);
double temperature =Double.Parse(json.SelectToken("temperature").ToString());
double humidity = Double.Parse(json.SelectToken("humidity").ToString());
temperatureSeries.Points.AddXY(DateTime.Now.ToString("hh:mm"), temperature);
temperatureChart.Update();
humidityeSeries.Points.AddXY(DateTime.Now.ToString("hh:mm"), humidity);
humidityChart.Update();

}

50

The figure below shows the program interface at the time of immediate work.

Graphs are updated at intervals of 10 seconds:

s Weatherstation

30

20

100
25 <m\ 80
\ ~ 60 O

40
10 =

5 20

0 0
& = 8 5 & = & 5
= = g = g g = =

= Temperature ('C) w— Humidity (%)
Save temperature Clean temperature Save humidity Clean humidity

Status: CONNECTED

Figure 8.1: Processing received data in the program

After pressing the “Save temperature” or “Save humidity” buttons, the save window

opens:

Figure 8.2: Exel save window

51

8 Coxpanerve X
L ¥ I wa > 3vorkomnbtotep > Hoswii om (D) > v 0 Mowck: Hoewiit Tom (D »r
Ynopsgounts ¥ Hoeas nanka S ow
> -‘ 3arpysku N Nma Hara usmenenun Tun Pasmep
> [Vsobpaxeting adobe pro acrobat 17.08.2017 14:11 Manka c daiinamm
) Myzeika Fonts Manka ¢ daitnamm
» _J) O6vemtbie 06w GTAV 19.05.2020 11:42 Manka c darnamm
> [Pabouwii cron install 05.08.2016 21:32 Manka ¢ dpainamm
" - Manka c paitnam
» e NloKansHbIf ANC Launcher anka c pannamu
S D NeighboursFromHell1 Manka c dpainamm
NEW ART Manka c dainamu
b . Tnn stat Manka c painamn
> @ RECOVERY (G)) Streamline Manka c daitnamm
» s RECOVERY (G)) Visual Studio 2015 Manka ¢ daitnamm v
v < >
Wmsa daiina: | temperature.csv VJ
Tun danna: CSV v
A CkpbiTh nankm Otmena

This is how the .csv file looks like with saved data:

Do)\ H 9-© H temperature - Microsoft Excel
> CnaeHan Bcraeka PazmeTka cTpaHuubl Dopmynsl JaHHble PeLeHanpoBaHme Bua HaacTtpoiiku KomaHaa
j * Buipesars calibri BT (== §\|@u_- =} Neperioc Texcra OB = ijg
53 KonupoeaTtb
EUEvBMTh # vopuar o ofpasyy | K A 2 || EL A G- A = || 53 O6neanHuts u nomectnTs & uentpe - | (28~ %% 000 || %3 58 qmp:aC:;;:s;we |
Bytep obmMeHa LLpugt] BLIpaEHHEZHIE] Yucno]
549 ~(5|
A B D E F G H K

1 Temperature 07.06.2020 22:39 283 C

2 Temperature 07.06.2020 22:39 283 C

3 Temperature 07.06.2020 22:39 283 C

4 Temperature 07.06.2020 22:39 283 C

5 Temperature 07.06.2020 22:39 283 C

6 Temperature 07.06.2020 22:39 283 C

7 Temperature 07.06.2020 22:39 28,2 C

8 Temperature 07.06.2020 22:40 29 C

9 Temperature 07.06.2020 22:40 28 C

10 Temperature 07.06.2020 22:40 281 C

11 Temperature 07.06.2020 22:40 28 C

12 Temperature 07.06.2020 22:40 28 C

13 Temperature 07.06.2020 22:40 27,8 C

14 Temperature 07.06.2020 22:40 27,6 C

15 Temperature 07.06.2020 22:40 274 C

16 Temperature 07.06.2020 22:40 27,3 C

17 Temperature 07.06.2020 22:40 27,2 C

18 Temperature 07.06.2020 22:40 27 C

19 Temperature 07.06.2020 22:40 259 C

20 Temperature 07.06.2020 22:41 24,1 C

21 Temperature 07.06.2020 22:41 221 C

22 Temperature 07.06.2020 22:41 20,2 C

23 Temperature 07.06.2020 22:41 18,7 C

24 Temperature 07.06.2020 22:41 18,2 C

Figure 8.3: the .csv file with saved data

52

CONCLUSIONS

The main goal of the Bachelor thesis was a detailed study of the basic properties and
functions of the MQTT network protocol, as well as the possibility of using the protocol
for practical purposes for collecting, processing and transmitting meteorological data.

The next part of the study was to analyze the functionality of the JSON text format and
the further possibility of implementing the format for practical purposes for transmitting
meteorological data. Further research consists in a detailed comparison of the leading
ESP8266 and ESP32 microcontrollers and digital sensors for the implementation of my
project to create autonomous weather stations. In the practical part of the work,
a practical scheme of connection and interaction all the components of the project was
developed. The final stage of research is devoted to the implementation of a program for

processing meteorological data in the C # programming language.

Certain MQTT brokers for transferring data from IoT devices have been described and
compared to make the right choice of a broker whose functionality will allow to realize

the objectives of this project.

The theoretical rationale for the selection of sensory data and microcontrollers is given
in the Chapter 2 of my project. Chapter 3 is devoted to a detailed theoretical analysis
of the basic properties and functions of the MQTT network protocol. The use of this
network protocol in my project is due primarily to the main theme of the project, and
also because of the high efficiency and prevalence of this protocol in the market
of weather stations and IoT devices. The final product of my thesis is a fully
autonomous, customizable wireless model data exchange: weather station —broker —

program, based on the MQTT network protocol using thematic subscriptions.

During the implementation of this thesis, I improved my understanding of transport
protocols, as well as their formats. I learned to use them in programming languages,
convert and translate. This project also helped me improve my knowledge
of microcontrollers and digital sensors, as well as the IoT industry in general. I have
repeatedly improved programming skills and logic. In general, this project helped me to
better understand the nature of the MQTT protocol, to get acquainted with its main

advantages in practice. This protocol has established itself as a very reliable and easy to

53

implement, which proved its indispensability in IoT development. The following
benefits of this work I would like to highlight my acquaintance with microcontrollers, as
well as the practical application of my programming knowledge to create weather
stations based on microcontrollers. It was a pleasant experience with many challenges.
During work on the project, the author came up with a couple of possible business
ideas, which is evidence that this area of development is very promising, primarily in

the commercial plan. In general, the author is pleased with the work done.

Work on this bachelor's thesis was a valuable and useful experience for me as a student
in the telecommunication area. I started work on this project last year and thanks to this
project I improved my knowledge in the field of telecommunications and, in general,
expanded the range of my skills to further perfect my professionalism.

The topic is quite new but rapidly developing, therefore this direction is very promising

and this project can serve in future as a good basis for writing a master's thesis.

54

REFERENCES

[1] Department of Atmospheric Sciences (DAS). Meteorology: Clouds and
precipitation: Relative humidity. University of Illinois at Urbana—Champaign
[online]. Urbana and Champaign, USA: Department of Atmospheric Sciences
(DAS), 1999 [cit. 2020-04-21]. Available from:
http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/dvlp/rh.rxml

[2] World Meteorological Organization. Guide to Meteorological Instruments and
Methods of Observation: Measurement of temperature [online]. Secretariat of
the World Meteorological Organization. Geneva, Switzerland: World
Meteorological Organization (WMO), 2008 [cit. 2020-04-22]. ISBN 978-92-
63-100085. Available from:
https://www.weather.gov/media/epz/mesonet/CWOP-WMOS.pdf

[3] Wylie R.G., LalasT. Measurement of Temperature and Humidity:Specification,
Construction, Properties and Use of the WMO Reference Psychrometer.
Secretariat of the World Meteorological Organization, Geneva, Switzerland:
World Meteorological Organization (WMO), 1992 [cit. 2020-04-22]. Technical
Note No. 194 (WMO-No. 759).

[4] Espressif Systems (Shanghai) Co., Ltd. ESP32-DevKitC V4 Getting Started
Guide. Espressif [online]. Shanghai, China: Espressif Systems (Shanghai) Co.,
2016 [cit. 2020-04-21]. Available from: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html

[5] Espressif Systems (Shanghai) Co., Ltd. NodeMCU ESP-32S Started Guide.
Zerynth [online]. Shanghai, China: Espressif Systems (Shanghai) Co., 2018
[cit. 2020-04-21]. Available from:
https://docs.zerynth.com/latest/official/board.zerynth.nodemcu_esp32/docs/ind

ex.html

55

http://ww2010.atmos.uiuc
https://www.weather.gov/media/epz/mesonet/CWOP-WM08.pdf
https://docs.espressif.com/projects/esp-
https://docs.zerynth.com/latest/official/board.zerynth.nodemcu_esp32/docs/ind

[6] Espressif Systems (Shanghai) Co., Ltd. ESP32-WROOM-32 Datasheet.
Espressif [online]. Shanghai, China: Espressif Systems (Shanghai) Co., 2019
[cit. 2020-04-22]. Available from:
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-

32_datasheet_en.pdf

[7] SYNACORP TRADING & SERVICES. NODEMCU Lolin Lua IoT ESP8266
Wifi Controller Board v3 with CH340 Guide. SYNACORP [online].
Guangzhou, China: SYNACORP TRADING & SERVICES, 2016 [cit. 2020-
04-22]. Available from: http://synacorp.my/v3/en/internet-of-things-iot-/1747 -

arduino-interface-shield.html

[8] Aosong(Guangzhou) Electronics Co.,Ltd. Temperature and humidity module:
DHT11Product Manual. Akizukidenshi [online]. Guangzhou, China:
Aosong(Guangzhou) Electronics Co., 2017 [cit. 2020-04-21]. Available from:
https://akizukidenshi.com/download/ds/aosong/DHT11.pdf

[9] Aosong(Guangzhou) Electronics Co.,Ltd. Temperature and humidity module:
AM?2302 Product Manual. Akizukidenshi [online]. Guangzhou, China:
Aosong(Guangzhou) Electronics Co., 2017 [cit. 2020-04-21]. Available from:
https://akizukidenshi.com/download/ds/aosong/AM2302.pdf

[10]HANES D., SALGUEIRO G., BARTON R. IoT Fundamentals: Networking
Technologies, Protocols, and Use Cases for the Internet of Things. Cisco
Systems, Inc. Indianapolis, IN 46240 USA: Cisco Press, 2017. ISBN
1587144565.

[11] Eclipse Mosquitto. Mosquitto [online]. New York, USA: Eclipse Foundation,
2001 [cit. 2020-04-21]. Available from: https://mosquitto.org/

[12] VerneMQ. VerneMQ [online]. Zurich, Switzerland: VerneMQ, 2007 [cit. 2020-
04-21]. Available from: https://vernemq.com/

[13]RabbitMQ. RabbitMQ [online]. San Francisco, USA: Pivotal Software, 2007
[cit. 2020-04-21]. Available from: https://www.rabbitmqg.com/

56

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-
http://synacorp.my/v3/en/internet-of-things-iot-/1747-
https://akizukidenshi.com/download/ds/aosong/DHTl
https://akizukidenshi.com/download/ds/aosong/AM2302.pdf
https://mosquitto.org/
https://vernemq.com/
https://www.rabbitmq.com/

[14] Arduino Software. Arduino. Arduino: Introduction [online]. Ivrea, Italy:
Arduino, 2003 [cit. 2020-04-22]. Available

from:https://www.arduino.cc/en/guide/introduction

57

List of attachments

Attachment 1 - Contents of the enclosed CD............... ..

58

Attachment 1 - Contents of the enclosed CD

The folder contains the executable program Weatherstantion.sln and all associated parts
for processing meteorological data. The folder also contains the codes ESP32S.ino and
ESP8266.ino for compilation in weather stations, one code per station model ESP32 and
ESP8266.

59

