
T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

COLLECTION OF METEOROLOGICAL DATA USING THE
MOTT PROTOCOL
SBĚR METEOROLOGICKÝCH DAT POMOCÍ PROTOKOLU MQTT

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Andrii Filippov
AUTOR PRÁCE

SUPERVISOR doc. Ing. Ivo Lattenberg, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

T VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY

TECHNICKÉ A KOMUNIKAČNÍCH

V BRNĚ TECHNOLOGIÍ

B a k a l á ř s k á p r á c e

bakalářský studijní program Telekomunikační a informační systémy

Ústav telekomunikací

Student: Andrii Filippov ID: 189830

Ročník: 3 Akademický rok: 2019/20

NÁZEV TÉMATU:

Sběr meteoro logických dat pomoc í protokolu MQTT

POKYNY PRO VYPRACOVÁNÍ:

Navrhněte a vyrobte dvě meteorologické stanice, které budou měřit teplotu a vlhkost. Zařízení budou napájené

z baterie a změřené hodnoty budou pravidelně posílat přes Wi-Fi modul prostřednictvím MQTT protokolu do

MQTT brokeru. Pro realizaci jedné stanice použijte modul s ESP8266, pro realizaci druhé pak modul ESP32.

Napište jednoduchý program pro PC, který se přihlásí k odběru zpráv z MQTT brokeru a bude graficky

zobrazovat časový průběh změřených hodnot z meteostanic.

DOPORUČENÁ LITERATURA:

[1] BRTNÍK, Bohumil a David MATOUŠEK. Mikroprocesorová technika: [práce s mikrokontroléry řady ATMEL

AVR ATXmega A4]. Praha: BEN - technická literatura, 2011. ISBN 978-80-7300-406-4.

[2] MATOUŠEK, David. Práce s mikrokontroléry ATMEL. 2. vyd. Praha: BEN - technická literatura, 2006. uC &

praxe. ISBN 80-7300-209-4.

Termín zadání: 3.2.2020 Termín odevzdání: 8.6.2020

Vedoucí práce: doc. Ing. Ivo Lattenberg, Ph.D.

prof. Ing. Jiří Mišurec, CSc.
předseda rady studijního programu

UPOZORNĚNÍ:
Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Abstrakt

Cílem této práce je sběr meteorologických dat pomocí protokolu MQTT

ze dvouvytvořených meteorologických stanic založených na mikrokontrolérech typu

ESP32 a ESP8266. Práce pojednává o textovému formátu JSON, jeho struktuře podle

řady kritérií a jeho dalšímu využití při přenosu dat z meteorologické stanice. Další fází

je studium a srovnání hlavních charakteristik mikrokontrolérů ESP32 a ESP8266.

Na základě zadání byly pak vytvořeny autonomní meteorologické stanice. Dále byly

porovnány existující MQTTservery pro sběr, ukládání a přenos meteorologických dat

mezi klientem a serverem. Závěrečnou fází práce byla tvorba programu v jazyce C#,

který generuje grafy na základě hodnot aktuální teploty a relativní vlhkosti přijatých

ze serveru MQTT. Výzkumný projekt se skládá ze dvou autonomních meteorologických

stanic, ze kterých jsou přenášena meteorologická data v reálném čase na server MQTT

prostřednictvím bezdrátového připojení. Server pak dále poskytuje data pro aplikaci

v počítači uživatele, kde program kreslí v reálném čase grafy na základě dat přijatých

z MQTT serveru.

Klíčová slova

MQTT, JSON, ESP32, ESP8266, PCB, arduino

Abstract

The purpose of this thesis is collection of meteorological data using the MQTT protocol

by creating two weather stations based on microcontrollers types ESP32 and ESP8266.

And also their further operation. Another important stage of the study is devoted

to the JSON text format and its structure according to a number of criteria, as well as its

further use in creating a weather station.The next phase of the study is the search and

comparison of the main characteristics of the ESP32 and ESP8266 microcontrollers

based on the task of creating autonomous weather stations, as well as comparing actual

MQTT servers for collecting, storing and transmitting meteorological change data from

client to server and vice versa. The final phase of the study is to write a program in C #

languege that will generate graphs based on temperature and relative humidity changes

received from the MQTT server. The research product consists of two autonomous

meteorological stations, which will transmit real-time data about meteorological

changes to the MQTT server via wireless connection, while the server will transfer data

to the user's computer where the program draws graphs based on data received from the

MQTT server in real time.

Keywords

MQTT, JSON, C#, ESP32, ESP8266, PCB, arduino

ROZŠÍŘENÝ ABSTRAKT

Od starověku mělo počasí obrovský dopad na historii lidstva. Počasí dalo vítězství

v bitvách, pomohlo vyhrát války, stavět státy a mělo klíčový vliv na mentalitu celých

národů.

V dnešní době se lidé nenaučili podrobit počasí, ale dosáhli významného úspěchu

v analýze a předpovídání meteorologických podmínek. Výpočetní technika se vyvinula

z analogových na vysoce přesné digitální procesory, což mělo významný dopad

na vytvoření moderního meteorologického centra. S pomocí moderních digitálních

meteorologických stanic a vysokorychlostního internetu mají lidé na celém světě

příležitost dostávat informace o změnách počasí online. Díky tomu se život lidí stává

pohodlnějším, lepším a bezstarostnějším. Ale co kompaktní meteorologické stanice pro

všeobecné použití? Můžeme například hlídat teplotní hladiny nebo máme požadavek

na rozsah relativní vlhkosti, aby se zabránilo plísním a jiným nepříjemným problémům.

V tomto případě je nutno zakoupit autonomní mini meteorologickou stanici s vysokou

přesností. Většina společností na trhu však neposkytuje produkt požadované kvality.

Tato bakalářská práce nabízí návrh moderní meteorologické stanice využívající vysoce

kvalitní hardware a pokročilé technologie pro přenos dat na internetu. Tato práce

poskytuje srovnání a podrobnou analýzu klíčových charakteristik mikrokontrolérů

ESP32 a ESP8266, jakož i snímačů teploty a relativní vlhkosti. Tyto prvky pak byly

použity k vytvoření moderní autonomní meteorologické stanice. Dále byly analyzovány

moderní protokoly pro přenos textových dat na internetu. Dalším důležitým aspektem

práce je studium přenosového protokolu MQTT a jeho další implementace při tvorbě

projektu přenosné meteorologické stanice. Velká pozornost je věnována textovému

formátu JSON, protože právě tento formát bude využit k přenosu zpráv mezi

koncovými uzly. V rámci vytvoření přenosné meteorologické stanice bylo navrženo

provedení a byly vyrobeny desky s plošnými spoji, aby se meteorologická stanice stala

kompaktnější. Pro návrh PCB byla vybrána platforma EasyEDA, která je analogem

známé Eagle platformy, ale má srozumitelnější rozhraní, které umožňuje začátečníkům

rychle se naučit základní funkce programu. Posledním teoretickým aspektem bylo

srovnání hlavních charakteristik MQTT brokerů a výběr toho nej vhodnějšího, aby byly

splněny požadavky na vysokorychlostní a rozsáhlý přenos dat z meteorologických

stanic pro další použití v uzavřeném systému Meteorologická stanice - MQTT broker -

Koncový uživatel. Po závěrečné teoretické analýze následuje praktická část práce, která

kombinuje analýzu a návrh koncepce připojení meteorologických stanic k brokeru

MQTT pro další ukládání, zpracování a přenos dat o počasí do klientského programu

napsaného pro potřeby práce v jazyce C#. Hlavními požadavky na program byla

schopnost vytvářet grafy časových průběhů relativní vlhkosti a teploty v daném čase

převzaté od MQTT brokeru a také možnost následného uložení těchto dat ve formátu

.csv pro další statistické výpočty. Tato praktická část je také doprovázena podrobnými

ilustracemi výsledků mého výzkumu a ukázkou fragmentů kódu používaných

při programování mikrokontrolérů a tvorbě programu pro zobrazení grafů.

Díky této práci a výzkumu prováděnému v průběhu roku jsem získal praktické

dovednosti při práci s deskami plošných spojů a mikrokontroléry různých typů. Tento

projekt mi také pomohl upevnit moje znalosti v oblasti telekomunikací, programování

a designu. Věřím, že díky mým zkušenostem a dovednostem v oblasti ovládání

mikrokontrolérů jsem se stal všestrannějším specialistou v oblasti telekomunikačních

technologií, což bude mít v budoucnu obrovský dopad na to, abych se stal

profesionálem v této oblasti.

Bibliografická citace

FILIPPOV, ANDRII. Sběr meteorologických dat pomocí protokolu MQTT. Brno, 2020.

Bakalářská práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a

komunikačních technologií. Ústav telekomunikace. Vedoucí práce doc. Ing. Ivo

Lattenberg, Ph.D..

T VYSOKÉ UCENI FAKULTA ELEKTROTECHNIKY
TECHNICKÉ A KOMUNIKAČNÍCH
V BRNĚ TECHNOLOGIÍ

Prohlášení autora o původnosti díla

Jméno a příjmení studenta: Andrii Filippov

VUT ID studenta: 189830

Typ práce: Bakalářská práce

Akademický rok: 2019/20

Téma závěrečné práce: Sběr meteorologických dat pomocí protokolu MQTT

Prohlašuji, že svou závěrečnou práci jsem vypracoval samostatně pod vedením
vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních
zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.
Jako autor uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této
závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl
nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom
následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb.,
včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI.
díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne:
Podpis autora

Poděkování

V této části bych rád poděkoval vedoucímu své bakalářské práce panu doc. Ing. Ivo
Lattenbergu, Ph.D. za jeho rady, podporu a čas.

CONTENT

INTRODUCTION 10

1 MODERN DIGITAL WEATHER STATION 12

1.1 Measurement of meteorological variables 13

1.1.1 Humidity 13

1.1.2Temperature 14

2 PARTS SELECTION 15

2.1 Microcontroller comparison 15

2.1.1 ESP32 comparison 15

2.1.2 ESP8266 comparison 17

2.2 Sensor comparison 21

2.2.1 DHT11 21

2.2.2 DHT22(AM2302) 22

3 GENESIS OF THE MQTT PROTOCOL 24

3.1 Message Queuing Telemetry Transport Protocol 24

3.1.1 Connecting clients to the MQTT broker 26

3.1.2 MQTT Message Types 26

3.1.3MQTT Message Format 27

4 MQTT BROKER SELECTION 29

4.1 Mosquitto 29

4.2 VerneMQ 30

4.3RabbitMQ 31

4.4 CloudMQTT 32

5 JAVASCRIPT OBJECT NOTATION 35

5.1 Syntax and structure 35

6 MICROCONTROLLERS & SENSOR CONNECTION 38

6.1 EasyEDA 38

6.1.1 NodeMCU ESP-32S connection with DHT22/AM2302 sensor 38

6.1.2 N O D E M C U Lua IoT ESP8266 Wifi Controller Board v3 connection with
DHT22/AM2302 sensor 42

7ArduinoIDE 45

7.1 Features 45

7.2 Libraries 46

8 Program in C# language 49

CONCLUSIONS 53

REFERENCES 55

INTRODUCTION

With meteorology, as with the science of studying atmospheric phenomena, their

properties, state and structure, humanity is familiar from time immemorial.

The word "meteorology" (ancient Greek. Mexeropo-^oyia - "reasoning about celestial

phenomena") is associated with the works of Plato and Aristotle. Meteorology

as a science originated after the invention of the Galileo Galilei thermometer and Otto

von Guericke's barometer in the 17th century. Nowadays, people are faced with

the measurement of meteorological indicators daily. Starting with a choice of winter

clothes for a trip to the mountains and ending with the launch of a spacecraft from

the cosmodrome. To measure the physical quantities associated with the weather use

weather stations.

In the course of this bachelor's thesis, the historical development of meteorology and

weather stations will be studied in detail, the problems of modern weather stations,

the problems of measuring meteorological indicators using analog and digital sensors

and their errors will be investigated. The next step of the project will be to study

the main components for building a modern weather station that meets all

the requirements of the standards. The market for the main manufacturers of ESP32 and

ESP8266 microcontrollers will be studied, and based on price, quality and functionality

comparisons, boards will be selected for the basis of weather stations.

It is also necessary to study the main sensors measuring air temperature and relative

humidity, compare them in terms of accuracy and reliability of measurements, as well

as the price range of these products. This will be followed by an analysis

of the transport protocol MQTT, as the main protocol for communication in the concept

of Internet of Things. Based on the analysis, a text format will be selected for direct

transmission of data on air temperature and relative air humidity using the MQTT

transport protocol from the weather station to the broker using a wireless Wi-Fi

connection.

Further, comparisons will be made of the main MQTT brokers, in order to select

the most convenient and practical broker to work with the data obtained from

the weather station. In the next paragraph of the project, the main development

10

environments for programming and compiling microcontrollers will be presented.

The end point of the project will be the creation of a program in the C # programming

language for building 2D graphs of changes in air temperature and relative humidity

based on data obtained from the MQTT broker.

The end result will be a fully autonomous, customized connection of the weather

stations via Wi-Fi to a broker based on the MQTT network protocol, which in turn will

transmit data based on topic subscriptions to a computer program written in the C#

programming language, which, based on the meteorological data obtained through

the broker, will build graphs of temperature indicators and humidity indicators

in a particular area. Recently, it has become a tradition to use the MQTT network

protocol for such purposes, since most brokers support this particular protocol, and also

because of its simplicity and clarity for the average user. In general, the main goal

of this work is a detailed analysis of all the nuances associated with the MQTT protocol

as well as its further implementation in the concept of the Internet of things (IoT), which

is becoming more and more popular every day and in my opinion is the concept

of the future of smart automation.

I chose the topic of the bachelor thesis because it is a new round in the development of

smart automation and I believe that this topic has very great prospects for development

in the future because the modern world is committed to the rational use of resources and

the maximum efficiency of things improving these things with the help of artificial

intelligence, thereby increasing their economic feasibility and practicality. Also I was

always interested in software and hardware development and I am sure this topic will

help me to improve my knowledge in these areas of science.

11

1 MODERN DIGITAL WEATHER STATION

Modern digital weather stations are portable devices that record weather and climate

conditions using electronic sensors. They are equipped with an L C D display,

which shows the temperature at a specific point in time, air humidity, pressure, and

forecast for the near future. In this capture, we analyze the main types of modern

weather stations as well as the main methods of measuring temperature as well as the

main types of digital sensors, as well as consider and choose the best type of sensors for

the successful completion of the tasks.

The structure of the digital meteorological installation, in addition to the barometer,

thermometer, hygrometer, includes additional devices:

• anemometer and wind vane measuring wind direction and speed,

• rain gauge: determines the amount of precipitation,

• calendar, alarm clock, clock, etc.,

• USB - output for transferring data to a personal computer.

Advantages of digital weather stations:

• a significant set of functions for an adequate assessment of meteorological

conditions and weather forecasting,

• remote controllers analyze weather data from various points to compile the

most accurate picture,

• stylish and modern design,

• compact device.

Disadvantages of digital weather stations:

• required power source,

• incorrect installation of external sensors entails a false data transfer,

• the budget version of the device is not able to accurately display weather

information.

12

1.1 Measurement of meteorological variables

The main meteorological variables used to determine the weather are temperature and

humidity. Each variable is measured by different methods. For processing measured

data meteorological stations are used. Below are brief descriptions of individual

methods for measuring temperature and humidity using electronic sensors,

some of which I used to create my own meteorological station.

1.1.1 Humidity

Humidity indicates how much water vapor contains a given amount of air. Relative

humidity is the ratio between the instantaneous amount of water vapor in the air and

the amount of water vapor that saturated air would have at the same pressure and

temperature. To measure humidity we can use the following methods:

• weight method - It is accurate and consists in comparing the weight of air

before and after drying,

• condensing method - Dew point temperature measurement by cooling

the measuring surface, at the moment of drawing, the temperature

on the surface is equal to the dew point temperature, then the humidity

is determined,

• infrared light method - water vapor absorbs infrared radiation - the less it

passes on the detector, the higher the humidity,

• hygroscopic method - Hygroscopic substances change their geometrical

properties when absorbing moisture from the air (e.g., human hair),

• electric method:

a) capacitance - Capacitor capacitance change, whose dielectric is made

of special polymer, changes in moisture change the properties of the

polymer,

b) resistive - Uses changes in electrolytic conductivity.

The weather station measures humidity using a capacitive method. [1], [3]

13

1.1.2Temperature

Temperature is a scalar physical quantity, directly proportional to the kinetic energy

of the particles. The greater the kinetic energy, the higher the temperature. Temperature

has a direct influence on all living organisms of the planet Earth, therefore, it is one

of the most important meteorological variables. Temperature is also an important

weather indicator.The basic units of temperature measurement are Celsius (°C), Kelvin

(K) and Fahrenheits (F). Temperature is measured using thermometers, which can

be divided into several types:

• expansion thermometers- devices based on the property of bodies to increase

their volume when heated, (for example mercury or alcohol),

• electric thermometers:

a) resistive temperature sensors - these devices are based on the temperature

dependence of the electrical resistance of metals or semiconductors,

b) resistance thermometers - the principle of action is based on the dependence

of the electrical resistance of metals, alloys and semiconductor materials

on temperature,

c) thermoelectric thermometers - at different temperatures at the ends of the

conductor at each end of the conductor there will be a different potential,

d) PN temperature sensor - use the temperature dependence on the voltage

at the PN transition in the permeable direction.

• color temperature indicators - determines the approximate surface temperature

of the body. In contact with the surface of the body there is a chemical reaction

and a change in the color of the indicator,

• contactless thermometers - They are based on capturing the electromagnetic

radiation radiating the bodies.

The weather station measures temperature using a thermoelectric temperature sensor.

[2], [3]

14

2 PARTS SELECTION

The key step in the implementation of my project is the selection of the main

microcontrollers that will carry the bulk of the software. The next key device is a sensor

for accurate measurement of meteorological indicators. These microcontrollers must

be able to interact with other devices through some interface, use a wireless connection

to a Wi-Fi network, and must also be able to interact with meteorological sensors.

Therefore, the basic principles in choosing microcontrollers and sensors are the

reliability of the devices, the accuracy of the measurements, as well as the ease of

implementation in practice. It was also decided not to use Arduino microcontrollers

in this project, since at the moment there are a large number of more cost-effective

Chinese counterparts that are not inferior to leading manufacturers as microcontrollers

and contain a large number of detailed instructions and open source code.

2.1 Microcontroller comparison

This project involves the creation of two weather stations based on microcontrollers

ESP32 and ESP8266. Therefore, a comparison of these models of microcontrollers will

be carried out strictly within the framework of the functional advantages of these

models of microcontrollers. The main emphasis in comparisons of these

microcontrollers will be made on the following criteria: reliability, practicality, accuracy

and ease of implementation. There are a large number of microcontrollers of these

models; therefore, comparison of all models is inappropriate and time-consuming;

therefore, in this comparison there are only microcontrollers selected by the author

based on his subjective opinion.

2.1.1 ESP32 comparison

a) ESP32-DevKitC V4

ESP32-DevKitC V4 is a small ESP32 development board manufactured by Espressif.

Almost all I / O pins are split into connectors on both sides for easy pairing with

external devices. Users, if desired, have the ability to connect these contacts to other

peripheral devices. Moreover, standard male headers simplify development, making it

15

more convenient and easy to use. [4]

ESP-WROOM-32 ESP32-WROVER USB-UART
option space Bridge

I
UND» Ii XL IM UühOil 81 i it St » e i <C St 10 60 S|13

" 1 " r t l E 3 S I - 1 * *

Boot

Micro
USB
Port

5V Power
On LED

3V3 EH VP VN 34 35 32 33 25 26 27 14 12 GM) 13 02 03 0 » S V
EN

I/O

Figure 2.1: ESP32-DevKitC V4 with ESP32-WROOM-32 module soldered. [4]

Functional description:

• USB-UART bridge,

• operating voltage is5V,

• ESP32-WROOM-32 chip,

• digital input/output pins (DIO): 32,

• approximate price is 10$.

The board supports various ESP32 modules, including ESP32-WROOM-32 [4].

b) NodeMCU ESP-32S

NodeMCU ESP-32S is one of the newest and most successful development boards

created by NodeMcu to implement the ESP-WROOM-32 module. Its main component

is the ESP32 microcontroller, which among other functions also supports Wi-Fi ,

Bluetooth, Ethernet and low power technologies in one chip. [5], [6]

16

» l - .--fe J H | 1

Figure 2.2: Node MCU ESP-32S with ESP32-WROOM-32 module soldered.[5]

Functional description:

• Wi-Fi : IEEE 802.11 b/g/n/e/I,

• flash memory: 4 M B ,

• operating voltage is 3.3V,

• operating temperature: -40 to +125 (°C),

• network protocols: IPv4, IPv6, SSL, TCP / UDP / FTP / HTTP / MQTT,

• ESP32-WROOM-32 chip,

• digital input/output pins (DIO): 28,

• approximate price is9$.

Conclusion

In general, these microcontrollers do not have big differences. The cost and quality

of each module are also on the same level. Both microcontrollers have enough

power and pins to achieve the objectives of this project. For the project, I decided

to choose the Node M C U ESP-32S, because there are more open sources and

instructions (Connect, Register, Virtualize and Program) than for the ESP32-

DevKitC V4.

2.1.2 ESP8266 comparison

a) NODEMCU Lua IoT ESP8266 WifiController Board v3

17

NodeMCU is a small-size board, based on the cheap Wi-Fi ESP-12E module,

containing a single-chipESP8266 Wi-Fi SoC.NodeMCUas a whole is a set of the most

successful open source firmware and development tools, which undoubtedly provides

the ability to prototype your IoT in several lines of the Lua script. The ESP-12E chip

is considered one of the most advanced and most affordable modules based on the

ESP8266 module; This module is becoming increasingly popular thanks to the built-in

antenna and the screen of the Wi-Fi circuit board. [7]

Figure 2.3: NODEMCU Lua IoT ESP8266 Wifi Controller Board v3.[7]

Functional description:

• include open-source, interactive and programmable,

• antenna,

• Wi-Fi : IEEE 802.11 b/g/n,

• digital input/output pins (DIO): 30,

• approximate price is6$.

The Development Kit based on ESP8266, integrates GPIO, P W M , IIC, 1-Wire and

A D C all in one board. Power the development in the fastest way combination with

NodeMCU Firmware.

18

b) Witty Cloud / GizWits - ESP8266

The Witty Cloud (also named GizWits) development board is very interesting in the fact

that it consists by design of two separate modules, with each module having a USB

connector. Once programmed, only the upper part may be used fully functionally

as programmed by yourself.

Figure 2.4: Witty Cloud development board.

If you tear those modules apart you end up with - the upper module the upper module

Figure 2.5: Upper Witty Cloud module.

holding on the upper side:

• photo resistor,

• antenna,

• multi-color LED,

• ESP-12 module,

• digital input/output pins (DIO): 12.

the lower module with components on the upper side only

19

Figure 2.6: Lower Witty Cloud module.

holding on the lower side:

• voltage regulator,

• micro USB port,

• with its only function to accept a power source,

• the pins to plug into a breadboard.

In general, the module contains:

• two buttons (the left one to set the system into flash mode, the right one to reset

the system),

• micro USB port accepting a power source as well as data exchange with

another device,

• two female header connectors to connect with the second Witty Cloud module

if needed.

Conclusion

Specifications and price of these microcontrollers are about the same. Both

microcontrollers have enough power and pins to achieve the objectives of this project.

The most interesting thing in the design of Witty Cloud / GizWits - ESP8266 module

is that it consists of two separate boards: the controller boards itself and the auxiliary

one used for firmware and communication with the computer. Firmware included.

Moreover, the board comes with a CH40 micro USB module to program it. But on the

other hand a lot of small details make this microcontroller less reliable and overly

complex. In my opinion the N O D E M C U Lua IoT ESP8266 Wifi Controller Board v3

is more comfortable to work with, than Witty Cloud / GizWits - ESP8266.

20

2.2 Sensor comparison

Weather stations to measure atmospheric parameters use high-precision electronic

sensors. The most common temperature and humidity sensors are DHT11 and

DHT22/AM2302 which is a modification of the sensor DHT22. They are famous

for their reliability and measurement accuracy. Below is a detailed comparison of these

sensors. There are a large number of sensors; therefore, comparison of all models

is inappropriate and time-consuming; therefore, in this comparison there are only

sensors selected by the author based on his subjective opinion.

2.2.1 DHT11

DHT11 is a digital temperature and humidity sensor from the category of combined

sensors. DHT11 contains a calibrated digital signal with indicators of temperature and

humidity of a sufficiently high reliability and accuracy of measurements. The sensor

also has resistance to wet components and an NTC temperature measuring device and

is connected to a high-performance 8-bit microcontroller. [8]

DHTll pins

1 vcc
2 DATA

3 NC
4 GND

Figure 2.7: DHTll with pins description (from left to right).[8]

Functional description:

• operating voltage is 3.3- 5.5(V),

• maximum current using during conversion = 0.0025(A),

• perfect for 20-80% humidity readings with 5% accuracy,

• perfect for 0-50°C temperature readings +2 (°C) accuracy,

• sampling rate is no more than 1 Hz (one per second),

21

• regular transmission distanceis 10 miters,

• approximate price is5$.

This sensor is quite popular among developers of IoT, however, for the use in weather

stations of this project, the accuracy of these devices is not enough to achieve the goals.

Also, the operating temperature accuracy of the sensor does not allow this sensor

to be used in extremely low temperatures, which makes it impossible to measure in the

winter season.

2.2.2 DHT22(AM2302)

This model of sensors uses a special modern technology for collecting and processing

a digital signal and moisture detection technology, providing reliability, stability and

accuracy of measurements regardless of weather conditions. Sensitive sensor elements

are connected to an 8-bit single-chip computer. Most sensors of this model provide

temperature compensation and calibration in the calibration chamber, and

the calibration factor is stored in the type of program in the OTP memory, since

the sensor detects this, it will indicate the coefficient from the memory. [9]

I I I i I

DHT22 pins
1 vcc
2 DATA
3 NC
4 GNO

3

v m • w m • — 2

| | M l

Figure 2.8: DHT22(AM2302) with pins description (from top to down). [9]

Functional description:

• operating voltage is3 - 6 (V),

• max current use during conversion is 0.0025A,

• perfect for 0-100% humidity readings with 2-5% accuracy,

• perfect for -40 to 80°C temperature readings +0.5(°C) accuracy,

• maximum 0.5 Hz sampling rate (once every 2 seconds),

• regular transmission distance is 20m,

22

• approximate price is7$.

Conclusion

Having analyzed in detail the technical characteristics of these temperature and

humidity measurement sensors, and summing up all the criteria that we can see, we

make the following conclusion - the DHT11 temperature and humidity measurement

sensor, in comparison with the DHT22 (AM2302) temperature and humidity

measurement sensor, is less accurate and less reliable in their measurements. Moreover,

the DHT11 sensor works in a smaller range of temperature and humidity data, since this

sensor measures temperature in the range from 0 0 C to 50 0 C, which makes

it impossible to use it outside the building, which significantly reduces its chances in the

struggle for use in my project. Moreover, the accuracy of the relative humidity of the

DHT11 sensor is ± 5% relative humidity, which is a noticeable difference compared

to the DHT22 (AM2302) + 2% relative humidity sensor. However, both sensors do not

require any additional components, such as a resistor. It is already inside the DHT22

sensor (AM2302) and the DHT11 sensor, but in the framework of this project,

for personal safety reasons, as well as to reduce the risk of overload and further failure

of the sensor, an additional lOKoM resistor is required. Based on the information above,

I conclude that as part of my project it will be more profitable to use a temperature and

humidity sensor DHT22 (AM2302) to achieve the goals of maximum accuracy and

reliability of my weather stations.

23

3 GENESIS OF THE MQTT PROTOCOL

"The Internet of Things (IoT) is a network of physical devices, household appliances,

vehicles, and many other items equipped with smart electronics, sensors, software,

drives, and communication tools that allow these devices to connect, collect, and

exchange data with other devices and servers via the Internet.

The Queuing Telemetry Transport (MQTT) protocol was created in 1999 by Andy

Stanford (IBM) and Aden Nipper (Eurotech) for pipeline management in the oil and gas

industries. Engineers tried to find an easy and reliable protocol for scale production,

however, due to its simplicity, efficiency and low hardware demands, it soon became

used in home automation equipment.

Due to the complicated management in the oil industry engineers decided to develop

a light protocol with basic options, including account confines for narrow nodes,

unreliable connection to the global WAN network and bandwidth limiting with variable

delays. This was the main to choose a client/server structure and publishing /

subscribing based on the TCP / IP architecture. In 2013 it was certified international

OASIS standardization company as an open source protocol suitable for communication

between devices." [10]

3.1 Message Queuing Telemetry Transport Protocol

"Engineers research led to the development and implementation of the Message

Queuing Telemetric Transport Protocol (MQTT).

Message Queuing Telemetry Transport (MQTT) is an ISO standard publish-subscribe-

based messaging protocol. It works on top of the TCP/IP protocol. It is designed for

connections with remote locations where a "small code footprint" is required or the

network bandwidth is limited. " [10]

24

Figure 3.1: MQTT Publish/Subscribe Framework

"An MQTT client can act as a publisher to send data to an MQTT server acting as an

MQTT message broker. The MQTT server receives a network connection along

withapplication messages, such as Temp / RH data, from publishers. Moreover,

it handles the subscription and cancellation process and sends application data

to the MQTT clients acting as subscribers. The application at the bottom of the picture

is an MQTT client, which is a subscriber to the Temp / RH data created by the publisher

or the sensor at the top. This model, in which subscribers want to receive information

from the publisher, is known to many. " [10]

"The MQTT client can optionally subscribe to all data or specific data from

the publisher's data tree. Moreover, the presence of a message broker in MQTT

separates the transfer of data between customers acting as publishers and subscribers.

In fact, publishers and subscribers do not even know about each other. The advantage

of this decoupling is that the MQTT message broker ensures that information can

be buffered and cached in case of network failures. It also means that publishers and

subscribers do not have to be online at the same time. MQTT control packets pass

through TCP transport using port 1883. TCP provides an ordered lossless stream

between the MQTT client and the MQTT server. " [10]

25

3.1.1 Connecting clients to the MQTT broker

Individual clients connect via TCP to the MQTT broker, most often through port 1883.

In the case of an encrypted TLS connection, port 8883 is used. When connecting,

the client sends a CONNECT message, usually with a "clean session" flag, which

ensures that all topics that may have been previously preset are unsubscribed. When the

client successfully connects, the broker acknowledges the client's connection using

a C O N A C K message. After successfully connecting to the broker, the client can

subscribe to certain topics using the SUBSCRIBE message. The broker confirms

the successful setting of the topic subscription with a S U B A C K message. Likewise,

the client can unsubscribe from topics using the UNSUBSCRIBE message. In this case,

the broker also sends a U N S U B A C K confirmation message to the client. To determine

if the client is still active, if it does not generate any messages, it sends PINGREQ

messages at regular intervals, which the broker confirms with a P INGACK message.

3.1.2 MQTT Message Types

Fourteen different types of control packets are specified in MQTT version 3.1.1. Each

of them has a unique value that is coded into the Message Type field. MQTT message

types are summarized in table below.

26

Table 3.1: MQTT Message Types. [10]

Control packet Direction of flow Description

CONNECT Client to Server Client request to connect to Server

CONNACK Server to Client Connect acknowledgment

PUBLISH Client to Server

or

Server to Client

Publish message Client to Server

or

Server to Client

PUBACK Client to Server

or

Server to Client

Publish acknowledgment Client to Server

or

Server to Client

PUBREC Client to Server

or

Server to Client

Publish received Client to Server

or

Server to Client

PUBREL Client to Server

or

Server to Client

Publish release Client to Server

or

Server to Client

PUBCOMP Client to Server

or

Server to Client

Publish complete Client to Server

or

Server to Client

SUBSCRIBE Client to Server Client subscribe request

SUBACK Server to Client Subscribe acknowledgment

UNSUBSCRIBE Client to Server Unsubscribe request

UNSUBACK Server to Client Unsubscribe acknowledgment

PINGREQ Client to Server Ping request

PINGRESP Server to Client Ping response

DISCONNECT Client to Server Client is disconnecting

3.1.3MQTT Message Format

MQTT is a light protocol because each control packet consists of a 2-byte fixed with

optional variable header fields and optional payload.

27

Field length
(bits)

Byte 1

Byte 2

Byte 3

Byte n

Byte n*1

Byte m

Message Type DUP

6

QoS Level RETAIN

Remaining Length (1 -4 bytes)

Optional: Variable Length Header

Optional: Variable Length Message Payload

MQTT fixed
header

Figure 3.2: MQTT Message Format.[10]

MQTT contains a small-size header of 2 bytes .The first MQTT field in the header

is Massage Type, which identifies the kind of MQTT packet within a message.

Conclusion

The protocol is quite reliable due to its simplicity and clear structure. The lightweight

and good architecture of the protocol make it a quit fast and useful to work with the

memory limited microcontrollers like ESP32 or EPS8266. The main advantage of the

MQTT protocol is that for communication and data acquisition it is not necessary

to know the IP address of individual clients, but only the IP address of the MQTT

broker. Forwarding of messages between individual clients can be solved centrally

using a script that connects to the broker as a client. This is more user-friendly than

defining to each client what messages to receive from other clients and how to handle

them. Especially when clients change. A l l current data is stored in one place. In general,

the protocol is ideal for the implementation of my project. Moreover, many brokers

support this protocol, which is a big plus in the implementation of IoT projects of any

complexity.

28

4 MQTT BROKER SELECTION

For the quality of my weather station, you need to find a suitable message broker.

The main goal of the broker is to receive and give messages. You can think of it as a

post office: when you drop a letter in the box, you can be sure that the postman will

deliver it to the addressee sooner or later. In this analogy, the brokers presented in the

paragraph below works like a mailbox, a post office, and a postman at the same time.

At present, there are many brokers of various parameters and functions, with the help

of which it is possible to implement even the most specific projects. However, brokers

in this comparison were selected according to the subjective opinion of the author.

4.1 Mosquitto

Mosquito is an open source message broker (licensed with EPL / EDL) that implements

the MQTT protocol versions 3.1 and 3.1.1 and supports the proposed MQTT v5, which

makes scalability and portability improvements. Mosquitto is lightweight and suitable

for use on all devices, from low-power computers to single-board computers to full

servers. [11]

The MQTT protocol provides an easy and fast messaging method using

the publish/subscribe model. Thanks to this method, the protocol becomes suitable for

messaging over the Internet, for example, with low power sensors or mobile devices

such as telephones, embedded computers or microcontrollers. [11]

The Mosquitto project also provides the C library for implementing MQTT clients,

as well as the very popular MQTT clients mocsquitt pub and mosquittto_sub.

The Mosquittto broker is part of the Eclipse IoT Working group, "industry collaboration

companies that invest and promote open source for IoT". [11]

Advantages:

• easy to setup,

• useful interface,

• verified clients Pub/Sub,

29

• easy integration with ESP32 and ESP8266 microcontrollers.

Conclusion:

Mosquitto is the most common, really light MQTT broker written in C. For Windows

and Mac there are official versions, source codes are also available there. You can also

get source codes from GitHub.

4.2 VerneMQ

VerneMQ is primarily an MQTT message / signature broker whose main protocol is the

MQTT protocol of the OASIS industry standard. Moreover, VerneMQ was created

to accept messaging applications and IoT applications to the next level, offering

a unique set of features related to reliability, simplicity, scalability, and high

performance. To perform all tasks assigned to the broker, VerneMQ is designed from

the ground up to act as a distributed message broker, ensuring continuous operation

in the event of network or node failures and simple horizontal scalability. Fundamental

technology is a proven technology stack of telecommunications technology that

provides a solid foundation for systems that must operate around the clock. It can also

effectively use all available resources as a basis for simple vertical scalability. [12]

VerneMQ uses clustering technology without skill. There are no particular nodes, such

as wizards or slave devices that need to be considered when inevitable changes

in infrastructure or maintenance windows require adding or removing nodes. This

makes the cluster easy and safe. [12]

Advantages:

• MQTT protocol support,

• durable subscriptions on topics,

• TLS Support and Certificate based Authentication,

• detailed instructions for installation and use,

• flexible plug in and integration options,

• VerneMQ is 100% open and free to commercial modification and re-use.

30

Conclusion:

VerneMQ is a relatively new broker MQTT written in the Erlang programming

language. The Erlang language is quite popular in the world of brokerage messages,

as its soft and distributed real-time capabilities. VerneMQ contains many advantages

that areinherent in the best brokers. Full implementation of MQTT 3.1.1, anti-aliasing,

TLS 1.2, and authorization with the database. Can be easily extended with Lua scripts,

has a useful GitHub development team, and pretty good documentation.

4.3RabbitMQ

RabbitMQ is an open source message broker with a wide range of functions. RabbitMQ

was originally designed to implement the Advanced Message Queuing Protocol

(AMQP) and was expanded over time using a plug-in architecture to support Message

Queuing Telemetric Transport (MQTT), Streaming Text-Oriented Messaging Protocol

(STOMP) and other protocols. [13]

The broker's server program is based on the Erlang programming language and is built

on the Open Telecom Platform platform for disaster recovery and clustering.

For interaction with the broker, client libraries are available for all leading programming

languages. [13]

Advantages:

• supports multiple messaging protocols,

• pluggable authentication & authorization,

• supports TLS,

• lightweight and easy to deploy in public and private clouds,

• multiple exchange type.

Conclusion:

RabbitMQ is a very common message broker designed on the platform "Erlang" that

has support for MQTT among other protocols through a plugin. RabbitMQ includes

TLS support, clustering is good, authorization cannot be done using a database directly

because of that reason you should create an HTTP REST wrapper over your database

31

and use it as an authorization backend. The disadvantage of RabbitMQ is that the

MQTT support itself. RabbitMQ supports the A M Q P protocol natively, the MQTT

implementation is missing some important features such as Quality of Service (level 2).

QoS 2 guarantees that a message is received exactly once. This is important in some

cases, for example when commands are sent from the IoT platform to the devices. Lost

or duplicate commands can make some problems, which will have a bad effect on these

scenarios, so QoS2is a must.

4.4 CloudMQTT

CloudMQTT are managed Mosquitto servers in the cloud. CloudMQTT let you focus

on the application instead of spending time on scaling the broker or patching

the platform.The main advantage of this service is that it is not necessary to configure

the Mosquitto software and own the platform on which it would run. This type

of MQTT cloud broker was chosen to avoid errors caused by wrong setup of Mosquitto

software.

Advantages:

• MQTT protocol support

• TLS Support

• Certificate based Authentication

• 5 available connections

Conclusion

I chose CloudMQTT for my project, as this cloud broker has enough number of clients-

brokers connections and has extensive documentation. For my purpose, a free

Mosquitto instance called "Cute Cat" was selected, allowing five clients to connect

at a rate of 10 Kbit / s. Moreover, there are also many forums and video tutorials

dedicated toCloudMQTT, which will greatly help me in the future use of this cloud

broker during my project. This cloud broker is characterized by its simplicity and ease

of use. After registration, the user selects and creates the Mosquitto object. After

opening the Mosquitto object, the data necessary to connect clients to the created

MQTT broker is generated and displayed.

32

For a full cloud broker connection with the client, we need the following values:

Server m24.cloudmqtt.com

User zdoacsor C Restart

Password ETcMIZuhWeEw C

Port 14236

Figure 4.1: CloudMQTT profile information

Server: m24.cloudmqtt.com

Usenzdoacsor

Pas sword: ETcMIZuhWeEw

Port: 14236

We will use these values both in the microcontroller's code and in the program code for

plotting graphs.

const char* Mosquitto_Server = "m24.clcudmqtt.com";
const i n t Mosquitto_port = 14236;
const char* user_mqtt = "zdcacscr";
const char* pass_mqtt = "ETcMIZuhWeEw";

Figure 4.2: CloudMQTT profile information using in Arduino IDE code

CloudMQTT data is exchanged with customers by subscribing to certain topics.

In thiscase, my weather stations send data on temperature and relative humidity of air

under one general topic: esp. CloudMQTT receives data tagged with an "esp" topic,

keeps the information in memory and sends the topic data to users who subscribe to this

newsletter. This client supports all text formats of the MQTT transport protocol,

including JSON.

33

http://m24.cloudmqtt.com
http://m24.cloudmqtt.com

Data in JSON format comes to CloudMQTT in the following form:

Received messages

Topic Message

esp {"temperature":26.3,"humidity":49.2}

esp {"temperature":26.1,"humidity":49.7}

esp {"temperature":26.2,"humidity":47.8}

Figure 4.3: CloudMQTT data receive

34

5 JAVASCRIPT OBJECT NOTATION

JavaScript Object Notation (JSON) is a data transfer format. As you can see, JSON

is a JavaScript based text interchange format, but it is available for use in many

languages, including Python, Ruby, PHP and Java.Like other text formats, JSON is easy

to read by people. JSON itself uses the .json extension. When it is defined in other file

formats, like .html, it appears in quotes as a JSON string or it can be an object assigned

to a variable. This format is easy to transfer between the server and the client

or browser. [10]

5.1 Syntax and structure

A JSON object is a data format with a key rvalue, which is usually rendered in curly

braces. When you work with JSON, you most likely see JSON objects in the .json file,

but they can also exist as a JSON object or string in the context of the program. [10]

This is what a JSON object looks like:

!
"weatherstation" : "1",
"model" : "ESP32",
"temperature" : Tep,
"humidity" : Vlh,
"online" : true

Figure 5.1: JSON object

Although this is a short example, and JSON could be much longer, it shows that this

format is basically set with two curly braces that look like { }, and data with key values

are between them. Most of the data used in JSON is in JSON objects. [10]

Pairs of key values have a colon between themselves, such as here the "key": "value".

Each pair of values is separated by a colon, so the middle of JSON looks like this:

"key": "value", "key": "value", "key": "value". In our example above, the first pair

of key values is "weather_station": "1".

JSON keys on the left side of the colon. They need to be wrapped in parentheses,

as with a "key" it can be any string. In each object, the keys must be unique. Such key

strings may contain spaces, as in "weather station", but such an approach may

35

complicate access to them during the development process, so the best option in such

cases would be to use underscores, like here "weather_station".

JSON values are on the right side of the colon. To be precise, they can be one of six

data types: string, number, object, array, boolean, or null value. At a broader level,

values can also consist of complex data types, such as a JSON object or an array. Each

data type that is passed as a value in JSON will support its own syntax, so the strings

will be in quotes, but the numbers will not. Although in the json files we usually see

the format of several lines, JSON can also be written in one continuous line:

["weathe r s t a t i o n " : "1", "model" : "ESP32", "online" : true, }

Figure 5.2: JSON object string type

Working with JSON in a multi-line format often makes it more readable, especially

when you are trying to handle a large dataset. Since JSON ignores spaces between

its elements, you can separate them with the same spaces to make the data more

readable:

I
"weather
"model"
"online"

I

Figure 5.3: JSON object column type

It is very important to remember that although they are visually similar, but JSON

objects do not have the same format as JavaScript objects, so although you can use

functions inside JavaScript objects, you cannot use them as values in JSON. The most

important feature of JSON is that it can easily be transferred between programming

languages in a format that almost all languages understand. JavaScript objects can only

work directly through the JavaScript language. [10]

Conclusion

JSON is a neutral format for use and it has many implementations for use in many

programming languages. JSON is a lightweight format that allows you to easily share,

store and work with data. As a format, JSON is experiencing growing API support,

s t a t i o n " : "1",
: "ESP32",
: true

36

including the Twitter API. I will not create my own .json files, but I will get them from

other sources, it becomes very important to think less about JSON structure and more

about how to better use it in my work. As planned, the program should connect

to the Wi-Fi network, take readings of the sensor about the current temperature and

relative air humidity, transform the received data into text JSON format and send them

to the broker MQTT.

Below is a part of the code, which shows a visual transformation of data into JSON

format and publication to MQTT broker.

Example:

const i n t jsonSize = JS0N_0BJECT_SI2E(2);
StaticJsonDocument<jsonSize> jsonResult;
f l o a t Tep = Sensor.readTemperature();
f l o a t Vlh = Sensor.readHumidity();
iscnResult["temperature"] = Tep;
jsonResult["humidity"] = Vlh;
char toPublic[128] ;
serializeJ a o n(jsonResult,tcPublic);
client.publish("esp", toPublic);

Figure 5.4: publisher to MQTT broker

37

6 MICROCONTROLLERS & SENSOR CONNECTION

The most important point of this project is proper connection implementation. I have

to make two connections for microcontrollers with sensors. Microcontroller's

documentation (Pin Mapping) and visual connection schemas are presented in the

following paragraphs. To ensure compactness and maximum autonomy, I decided to

design and create special printed circuit boards (PCB) to replace the universal solder

field.

6.1 EasyEDA

To create printed circuit boards, I used the EasyEDA program, which is an analogue

of the famous Eagle. The program is easy to use and suitable for beginners.

EasyEDA is a web-based E D A tool suite that enables hardware engineers to design,

simulate, share - publicly and privately - and discuss schematics, simulations and

printed circuit boards. EasyEDAallows creation and editing of printed circuit board

layouts and, optionally, the manufacture of printed circuit boards.Registered users can

download Gerber files from the tool free of charge but for a fee, also EasyEDA offers

a PCB fabrication service. This service is also able to accept Gerber file inputs from

third party tools.In the schematic drawings below, you can see the connection diagram

for an autonomous weather stations based on the ESP32 and ESP8266 microcontrollers.

6.1.1 NodeMCU ESP-32S connection with DHT22/AM2302 sensor

The DHT22 / AM2302 digital sensor will be connected to the first ESP32S module.

The sensor will be connected to the microcontroller, as shown in Figure 6.2 from

the official documentation of the sensor and the microcontroller. The first GND pin

(Earth) will be connected to the ground of the NodeMCU ESP-32S module, the second

Vcc pin will be connected to a 3.3V power pin, and the last D A T A pin will

be connected to the module pin GPI016, which provides data transfer. VEST pin

is connected to a power supply unit consisting of 3 A A batteries of 1.5V each, forming

a total voltage of 4.5V, which is sufficient and safe for the operation of weather stations

as well as long-term autonomy. For the project of the weather station, an ESP32S

38

controller based on the WROOM-32 processor was selected, as well as a temperature

and humidity sensor DHT22 (AM2302) with high measurement accuracy. To avoid

possible overload and further failure of the DHT22(AM2302) digital sensor, a lOkQ

resistor was connected between the data pin and the power pin. This is not a prerequisite

for the operation of the station, but only the prevention of a possible problem.

GPI039 GPI039
GPI034

Figure 6.1: NodeMCU ESP-32S pinout.[5]

39

• HT22
] • • • • £] • • • • £
p e n c e • r p e n c e 1 L p e n c e

]C
J
•

'-J
•> d z: •.

J
•

— r . A *
R1 10K

J 1_

F1
D2

1 :: -X
2 is = 3 15 =
- 17 -5 15 -i IE -X 7 14 -X
8 13 ? 12 -X - C 11 -X g:
II i : -X
i : ; -X
i : 5 14 7 -X

- IE 5 -It E = I" 4 =
- T i ' IE : -X

i 1 = 2 -X
c —If --.

1 =

i -X c 2 1 A 1 2 1

Figure 6.2: NodeMCU ESP-32S connection with DHT22(AM2302) sensor

Figure 6.3: NodeMCU ESP-32S converted to PCB format (Top Layer)

40

Figure 6.5: NodeMCU ESP-32S complete PCB

41

6.1.2 NODEMCU Lua IoT ESP8266 Wifi Controller Board v3 connection

with DHT22/AM2302 sensor

In the schematic drawings below, you can see the connection diagram for

an autonomous weather station based on the N O D E M C U Lua IoT ESP8266 Wifi

Controller Board v3 microcontroller. The DHT22 / AM2302 digital sensor will

be connected to the second ESP8266 module. The sensor will be connected to the

microcontroller, as shown in Figure 6.7 from the official documentation of the sensor

and the microcontroller. The first GND pin (Earth) will be connected to the ground

of the NodeMCU ESP-8266 module, the second Vcc pin will be connected to a 3.3V

power pin, and the last D A T A pin will be connected to the module pin GPI04, which

provides data transfer. V I N pin is connected to a power supply unit consisting of 3 A A

batteries of 1.5V each, forming a total voltage of 4.5V, which is sufficient and safe for

the operation of weather stations as well as long-term autonomy. For the project of the

weather station, an ESP8266 controller based on theESP-12E processor was selected,

as well as a temperature and humidity sensor DHT22 (AM2302) with high measurement

accuracy. To avoid possible overload and further failure of the DHT22(AM2302) digital

sensor, a 10 kfi resistor was connected between the data pin and the power pin.

This is not a prerequisite for the operation of the station, but only the prevention

of a possible problem.

GPIQ16J-f USER H"WAKE | • ADCO

(

S D D 3 —{GPIOIO
S D D 2

S D D 1

Hifflffl-l rs
H "ISO

S D C L K —1 SCLK

L_EN_
I RST 1

GPIOO '—("FLASH I
GPIQ2 ̂ TXDl I

GPIQ14J
I |GPIQ12| |HMISO|
|-|GPI013"|—I RXD2)-|HMOSI|

GPI015H T X D 2 H H C S I
GPIQ3 \-\ RXDO I
GPIOl H TXDO I

Figure 6.6: NODEMCU Lua ESP8266 v3 pinout.[7]

42

U2
DHT22

P1
Female-2.54 1x20

DC1
DC-005-20A

- n i

i 2

9
10
11
12
13
14

X 1 15

17
1 18

19
20

P2
Header

1
2
3
4
5
6
7
8
9

6
7
8
9

6
7
8
9

10
11
12
13
14

11
12
13
14
15
16
17
18
19
20

15
16
17
18
19
20

15
16
17
18
19
20

• • • • I
• • • • I
• • • • I
• • • •
u < u > Q Z

CN

0 R1
10K

GXD

Figure 6.7: NODEMCU Lua ESP8266 v3 connection with DHT22(AM2302) sensor

I M . i . i . i . i . i . i . i . i . i . i . i . i . i . i . i . r a s i s i

H E

Figure 6.8: NODEMCU Lua ESP8266 v3 converted to PCB format (Top Layer)

43

Figure 6.9: NODEMCU Lua ESP8266 v3 converted to PCB format (Bottom Layer)

7 Arduino IDE

For programming microcontrollers, the Arduino IDE platform (version 1.8.9) was

chosen. The choice of this platform was primarily due to the fact that the Arduino IDE

is widely distributed among IoT developers, as well as the large amount

of documentation and the availability of libraries necessary for effective open access

on GitHub. Version 1.8.9 was not chosen by chance. This is the most developed and

reliable version.

7.1 Features

Arduino is a programming environment that specializes in programming simple

automation and robotics systems, focused on amateur-level programmers. Arduino

software consists of a free IDE shell for writing and compiling sketches, and

programming microcontrollers and adjacent components. [14]

Use the functions of the Arduino made in the following cases: to create autonomous

robotics objects, to work with software on a computer using standard wired and wireless

interfaces. Work in the Arduino is fully implemented through the IDE shell, which is

freely available. Arduino IDE consists of: Project Manager text editor compiler

preprocessor compilation tools The shell is written in Java. Available on Windows,

Linux, Mac OS. A set of standard Arduino libraries is used. The Arduino programming

language is a classic C ++ with some features that make it even easier for novice

programmers to write a work program. [14]

Arduino saves program code in files with the * .ino extension. These files are processed

by the Arduino preprocessor. The flexibility of the program allows, if desired, to create

and connect standard C ++ files to the project. Arduino code contains two mandatory

functions: setup () and loop (). setup () is executed once at startup. In this part of the

code, it is customary to enter constant values of functions (login / password, network

connection procedure, initialization of sensors and other additional components,

connection port, program speed), loop () performs a loop repeatedly an infinite number

of times. [14]

In the text of the sketch is not necessary to enter the header files of standard libraries.

45

These files will automatically be added to the Arduino preprocessor in accordance with

the project configuration. Custom libraries must be specified. The mechanism of adding

libraries by the Arduino IDE project manager is rather non-standard. As source texts,

libraries in standard C ++ are added to the working folder in the IDE directory.

But the library name is added to the library list, which is accessible via the IDE menu

bar. The user can select the desired libraries, and they are added to the compilation list.

Arduino IDE does not configure the compiler and minimizes the settings of other

components, which greatly simplifies the use of the program by beginners and reduces

the likelihood of problems. Microcontrollers for working with the Arduino IDE should

have a pre-patched bootloader. This bootloader allows the user to load his program into

the microcontroller without using standard individual hardware programmers. [14]

The program download algorithm into the microcontroller is carried out in three ways:

using a USB cable, using an RS-232 interface, and using Ethernet, depending on the

connector connector of the microcontroller used. In some microcontrollers (mainly

made in China) for downloading a program to the microcontroller, you may need

an additional adapter. Bootloader support is built into the Arduino IDE and runs in one

click. [14]

Due to its simplicity and openness of the Arduino IDE, additional tools have been

created on the basis of this development environment, which make it even easier

to work with the code. A prime example of such tools is the graphical development

environment - Minibloq. In essence, this is a graphical code generator with some

Arduino IDE functions. The main purpose of Minibloq is assisted in learning

programming. This development environment is very common among specialized

schools of robotic and computational bias. [14]

7.2 Libraries

The capabilities of the Arduino IDE programming environment can be enhanced

through the use of libraries. Libraries extend the functionality of programs and carry

additional functions, for example, to work with a wireless Wi-Fi network or work with

a particular data format. Standard libraries are installed automatically with the

development environment, but it is possible to download or create your own libraries.

46

To connect the library to the program, select it from the Sketch menu> Import Library.

Standard libraries:

• EEPROM - read and write to "permanent" memory,

• Ethernet - to connect to the Internet through the Arduino Ethernet expansion

card,

• Firmata - for interaction with applications on a computer using a standard serial

protocol,

• G S M - to connect to the G S M / GRPS network via the G S M expansion card,

• LiquidCrystal- for working with liquid crystal displays (LCD),

• SD - to read and write data to the SD memory card,

• Servo - to control servomotors,

• SPI - for interfacing with peripheral devices via the SPI serial interface,

• SoftwareSerial - to implement serial interfaces on any digital outputs,

• Stepper - to control stepper motors,

• TFT - to display text, images and graphics primitives on the Arduino TFT

screen,

• WiFi - to connect to the Internet through the Arduino WiFi expansion card,

• Wire - to work with a two-wire interface that allows you to receive or send data

between a network of devices or sensors.

For effective interaction of the microcontroller with the sensor and, in consequence,

the server, I used the following Arduino IDE libraries:

• ArduinoJson.h (JSON support library),

• PubSubClient.h (publish / subscribe MQTT support library),

• DHT.h (operations with temperature and humidity sensor DHT22 (AM2302)),

• WIFI.h (standard ESP32 library for working via WIFI connection).

47

During the installation of libraries, I encountered some difficulties associated with

a large number of obsolete inefficient and low-quality libraries to work effectively.

48

8 Program in C# language

The next important step in my bachelor's thesis was the creation of an application for

a graphic illustration of the change in temperature and relative humidity based on the

data obtained from the weather station.

According to the requirements of my project, this application must be written in the C #

development environment. The program should be a comfortable and understandable

interface in which there will be two coordinate planes for building graphs of changes

in air temperature and relative humidity in real time.The program also contains buttons

for clearing graphs upon completion of the necessary measurements, as well as buttons

for saving data received from a broker in CSV (Comma-Separated Values) format - a

text format responsible for the presentation of tabular data. Two buttons on each chart,

respectively.

The main problem I encountered while writing this project in C # is the transformation

of data received in JSON format, as well as the correct setting of the connection to the

MQTT broker. The development environment is Microsoft Visual Studio 2015. Since it

is this version in my opinion is the most developed, successful and comfortable for

programming. In writing the program, I was guided by the logic "brevity - a sign

of excellence", so I decided to use minimalism in the software interface and also in the

construction of graphs. Libraries were chosen standard windows forms, as in my

opinion it is ideal for working with classic 2D graphics.

In general, during the course of this task, the author improved skills in working with

the C# language and, in general, a simple program was created with a comfortable and

intuitive interface for users of all levels to work with weather station data.

A fragment of code is presented below; it is possible to see how the program processes

MQTT messages for further graphing.

49

private bool PublishArrived(object sender., PublishArrivedArgs e)
{

s t r i n g payload = e.Payload;
AddValues(payload);
return true;

}

delegate void AddValuesCallback(String payload);

private void AddValues(String payload)
{

i f (this.temperatureChart.InvokeRequired ||this.humidityChart.InvokeRequired)
{

AddValuesCallback add = new AddValuesCallback(AddValues);
this.Invoke(addj new object[] { payload });

}

else
{

DObject json = DObject.Parse(payload);
double temperature =Double.Parse(json.SelectToken("temperature").ToString());
double humidity = Double.Parse(json.SelectToken("humidity").ToString());
temperatureSeries.Points.AddXY(DateTime.Now.ToString("hh:mm"), temperature);
temperatureChart.Update();
humidityeSeries.Points.AddXY(DateTime.Now.ToString("hh:mm"), humidity);
humidityChart.Update();
}

50

The figure below shows the program interface at the time of immediate work.

Graphs are updated at intervals of 10 seconds:

' Weatherstation

Temperature (*C)

Status: CONNECTED

Clean temperature

Humidity ("'.)

Save humidity Oean humidity

Figure 8.1: Processing received data in the program

After pressing the "Save temperature" or "Save humidity" buttons, the save window
opens:

CoxpaHeHne
9 tot KOMribtOTep > HoBbiň tom (D:) >

^ CicpbiTb nariKH

rioHcic HoflbtM TOM (DO

m ynopflÄO^MTb • Hoaafi nanica

> 4- 3arpy3KH
•A

Hmh AaTd M3MeHeHHH Tun

> |C] M3o6paxeHMtt adobe pro acrobat 17.08.201714:11 rianica c 4>aitnaMM

> Ji My3biita Fonts 13.07.201713:59 r ianKa c (pati / iarm

0 06 -beMHbie o6-b GTAV 19.05202011:42 rianica c cfiaM/iaMK

> • PaöoMuü cTo/i install 05.08.201621:32 rianica c c^aň / iaMn

> /lOKa/lbMWH AMC Launcher

NeighboursFromHelll

NEW ART

stat

Streamline

19.05.202011:51

09.06.2019 15:30

09.11.2019 20:08

25.11201819:47

08.08.201618:34

rianica c cfcaňjiaMM

r ianKa c <f>aitnaMn

rtanKa c t̂ aii/iawn

rianica c c$>aii.naMn

FlanKa c c f iaň / iaMU

— HoBblH TOM (D:)

Launcher

NeighboursFromHelll

NEW ART

stat

Streamline

19.05.202011:51

09.06.2019 15:30

09.11.2019 20:08

25.11201819:47

08.08.201618:34

rianica c cfcaňjiaMM

r ianKa c <f>aitnaMn

rtanKa c t̂ aii/iawn

rianica c c$>aii.naMn

FlanKa c c f iaň / iaMU

— ZtOKa/lbMblM flMC

_ RECOVERY (G:)

Launcher

NeighboursFromHelll

NEW ART

stat

Streamline

19.05.202011:51

09.06.2019 15:30

09.11.2019 20:08

25.11201819:47

08.08.201618:34

rianica c cfcaňjiaMM

r ianKa c <f>aitnaMn

rtanKa c t̂ aii/iawn

rianica c c$>aii.naMn

FlanKa c c f iaň / iaMU

_ RECOVERY (G:) Visual Studio 2015 16.02.2020 21:31 rianica c c f iaünaMM

V

Pa3Mep

[temperature.csv -1
CSV v l

I CoxpaMMTb OTMeiia

Figure 8.2: Exel save window

51

This is how the .csv file looks like with saved data:

IH *) - - ") T temperature - Microsoft Excel

f/iaBHafi BcrasKa Pa3M6TKa CTpammbi QopMy/ibi flawibie PeueHatiposaHHe Bv\fl HaflcrpoMKH KoMaĤ a

^ BhipeaaTt,

-L̂ KonnpoBaTh Q ^ BhipeaaTt,

-L̂ KonnpoBaTh
Calibri -In - I A* A " 5 nepeHoc TGKcra 0 6 U 4 H H

^ BhipeaaTt,

-L̂ KonnpoBaTh

.? tDopMaT no oopajU' * K 3 -|| EE -I 1* *1 i DGteflHHHT ii noMeanTh B Mempe - ^ - v. oooi 15g yC/lOBHOP

'^u |_-|-, Id 1 U|_-urJ
Bycpep oQMeHa LUpucfrr r; BhipaEHHEaHue

S49 " (
A B C E F H ! K

1 Tempera tu re 07.06.2020 22:39 28,3 c
2 Tempera tu re 07.06.2020 22:39 28,3 c
3 Tempera tu re 07.06.2020 22:39 28,3 c
4 Tempera tu re 07.06.2020 22:39 28,3 c
5 Tempera tu re 07.06.2020 22:39 28,3 c
6 Tempera tu re 07.06.2020 22:39 28,3 c
7 Tempera tu re 07.06.2020 22:39 28,2 c
8 Tempera tu re 07.06.2020 22:4D 29 c
9 Tempera tu re 07.06.2020 22:40 28 c
10 Tempera tu re 07.06.2020 22:40 28,1 c
11 Tempera tu re 07.06.2020 22:40 28 c
12 Tempera tu re 07.06.2020 22:40 28 c
13 Tempera tu re 07.06.2020 22:4D 27,8 c
14 Tempera tu re 07.06.2020 22:40 27,6 c
15 Tempera tu re 07.06.2020 22:40 27,4 c
16 Tempera tu re 07.06.2020 22:40 27,3 c
17 Tempera tu re 07.06.2020 22:40 27,2 c
18 Tempera tu re 07.06.2020 22:4D 27 c
19 Tempera tu re 07.06.2020 22:40 25,9 c
20 Tempera tu re 07.06.2020 22:41 24,1 c
21 Tempera tu re 07.06.2020 22:41 22,1 c
22 Tempera tu re 07.06.2020 22:41 20,2 c
23 Tempera tu re 07.06.2020 22:41 18,7 c
24 Tempera tu re 07.06.2020 22:41 18,2 c

Figure 8.3: the xsv file with saved data

52

CONCLUSIONS

The main goal of the Bachelor thesis was a detailed study of the basic properties and

functions of the MQTT network protocol, as well as the possibility of using the protocol

for practical purposes for collecting, processing and transmitting meteorological data.

The next part of the study was to analyze the functionality of the IS ON text format and

the further possibility of implementing the format for practical purposes for transmitting

meteorological data. Further research consists in a detailed comparison of the leading

ESP8266 and ESP32 microcontrollers and digital sensors for the implementation of my

project to create autonomous weather stations. In the practical part of the work,

a practical scheme of connection and interaction all the components of the project was

developed. The final stage of research is devoted to the implementation of a program for

processing meteorological data in the C # programming language.

Certain MQTT brokers for transferring data from IoT devices have been described and

compared to make the right choice of a broker whose functionality will allow to realize

the objectives of this project.

The theoretical rationale for the selection of sensory data and microcontrollers is given

in the Chapter 2 of my project. Chapter 3 is devoted to a detailed theoretical analysis

of the basic properties and functions of the MQTT network protocol. The use of this

network protocol in my project is due primarily to the main theme of the project, and

also because of the high efficiency and prevalence of this protocol in the market

of weather stations and IoT devices. The final product of my thesis is a fully

autonomous, customizable wireless model data exchange: weather station -broker -

program, based on the MQTT network protocol using thematic subscriptions.

During the implementation of this thesis, I improved my understanding of transport

protocols, as well as their formats. I learned to use them in programming languages,

convert and translate. This project also helped me improve my knowledge

of microcontrollers and digital sensors, as well as the IoT industry in general. I have

repeatedly improved programming skills and logic. In general, this project helped me to

better understand the nature of the MQTT protocol, to get acquainted with its main

advantages in practice. This protocol has established itself as a very reliable and easy to

53

implement, which proved its indispensability in IoT development. The following

benefits of this work I would like to highlight my acquaintance with microcontrollers, as

well as the practical application of my programming knowledge to create weather

stations based on microcontrollers. It was a pleasant experience with many challenges.

During work on the project, the author came up with a couple of possible business

ideas, which is evidence that this area of development is very promising, primarily in

the commercial plan. In general, the author is pleased with the work done.

Work on this bachelor's thesis was a valuable and useful experience for me as a student

in the telecommunication area. I started work on this project last year and thanks to this

project I improved my knowledge in the field of telecommunications and, in general,

expanded the range of my skills to further perfect my professionalism.

The topic is quite new but rapidly developing, therefore this direction is very promising

and this project can serve in future as a good basis for writing a master's thesis.

54

REFERENCES

[1] Department of Atmospheric Sciences (DAS). Meteorology: Clouds and

precipitation: Relative humidity. University of Illinois at Urbana-Champaign

[online]. Urbana and Champaign, USA: Department of Atmospheric Sciences

(DAS), 1999 [cit. 2020-04-21]. Available from:

http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/dvlp/rh.rxml

[2] World Meteorological Organization. Guide to Meteorological Instruments and

Methods of Observation: Measurement of temperature [online]. Secretariat of

the World Meteorological Organization. Geneva, Switzerland: World

Meteorological Organization (WMO), 2008 [cit. 2020-04-22]. ISBN 978-92-

63-100085. Available from:

https://www.weather.gov/media/epz/mesonet/CWOP-WM08.pdf

[3] Wylie R.G., LalasT. Measurement of Temperature and Humidity .'Specification,

Construction, Properties and Use of the WMO Reference Psychrometer.

Secretariat of the World Meteorological Organization, Geneva, Switzerland:

World Meteorological Organization (WMO), 1992 [cit. 2020-04-22]. Technical

Note No. 194 (WMO-No. 759).

[4] Espressif Systems (Shanghai) Co., Ltd. ESP32-DevKitC V4 Getting Started

Guide. Espressif [online]. Shanghai, China: Espressif Systems (Shanghai) Co.,

2016 [cit. 2020-04-21]. Available from: https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html

[5] Espressif Systems (Shanghai) Co., Ltd. NodeMCU ESP-32S Started Guide.

Zerynth [online]. Shanghai, China: Espressif Systems (Shanghai) Co., 2018

[cit. 2020-04-21]. Available from:

https://docs.zerynth.com/latest/official/board.zerynth.nodemcu_esp32/docs/ind

ex.html

55

http://ww2010.atmos.uiuc
https://www.weather.gov/media/epz/mesonet/CWOP-WM08.pdf
https://docs.espressif.com/projects/esp-
https://docs.zerynth.com/latest/official/board.zerynth.nodemcu_esp32/docs/ind

[6] Espressif Systems (Shanghai) Co., Ltd. ESP32-WROOM-32 Datasheet.

Espressif [online]. Shanghai, China: Espressif Systems (Shanghai) Co., 2019

[cit. 2020-04-22]. Available from:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-

32_datasheet_en.pdf

[7] SYNACORP TRADING & SERVICES. N O D E M C U Lolin Lua IoT ESP8266

Wifi Controller Board v3 with CH340 Guide. SYNACORP [online].

Guangzhou, China: SYNACORP TRADING & SERVICES, 2016 [cit. 2020-

04-22]. Available from: http://synacorp.my/v3/en/internet-of-things-iot-/1747-

arduino-interface-shield.html

[8] Aosong(Guangzhou) Electronics Co.,Ltd. Temperature and humidity module:

DHT11 Product Manual. Akizukidenshi [online]. Guangzhou, China:

Aosong(Guangzhou) Electronics Co., 2017 [cit. 2020-04-21]. Available from:

https://akizukidenshi.com/download/ds/aosong/DHTl 1 .pdf

[9] Aosong(Guangzhou) Electronics Co.,Ltd. Temperature and humidity module:

AM2302 Product Manual. Akizukidenshi [online]. Guangzhou, China:

Aosong(Guangzhou) Electronics Co., 2017 [cit. 2020-04-21]. Available from:

https://akizukidenshi.com/download/ds/aosong/AM2302.pdf

[10]HANES D., SALGUEIRO G., B A R T O N R. IoT Fundamentals: Networking

Technologies, Protocols, and Use Cases for the Internet of Things. Cisco

Systems, Inc. Indianapolis, IN 46240 USA: Cisco Press, 2017. ISBN

1587144565.

[11] Eclipse Mosquitto. Mosquitto [online]. New York, USA: Eclipse Foundation,

2001 [cit. 2020-04-21]. Available from: https://mosquitto.org/

[12] VerneMQ. VerneMQ [online]. Zurich, Switzerland: VerneMQ, 2007 [cit. 2020-

04-21]. Available from: https://vernemq.com/

[13] RabbitMQ. RabbitMQ [online]. San Francisco, USA: Pivotal Software, 2007

[cit. 2020-04-21]. Available from: https://www.rabbitmq.com/

56

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-
http://synacorp.my/v3/en/internet-of-things-iot-/1747-
https://akizukidenshi.com/download/ds/aosong/DHTl
https://akizukidenshi.com/download/ds/aosong/AM2302.pdf
https://mosquitto.org/
https://vernemq.com/
https://www.rabbitmq.com/

[14] Arduino Software. Arduino. Arduino: Introduction [online]. Ivrea, Italy:

Arduino, 2003 [cit. 2020-04-22]. Available

from: https ://w w w. arduino. cc/en/guide/introduction

57

List of attachments

Attachment 1 - Contents of the enclosed CD

58

Attachment 1 - Contents of the enclosed CD

The folder contains the executable program Weatherstantion. sin and all associated parts
for processing meteorological data. The folder also contains the codes ESP32S.ino and
ESP8266.ino for compilation in weather stations, one code per station model ESP32 and
ESP8266.

59

