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ABSTRACT
This doctoral thesis is focused on analyses and assessment of the quality of the frequency
and time-frequency transform of the data and the formulation of recommendations for
working with such methods. When using these methods, the question arises of how to
evaluate which components of the spectrogram are statistically significant and which are
not. In this thesis, we analyze the properties of standard statistical significance tests.
We discuss their advantages and disadvantages taking into account the heteroskedastic
character of data. Based on our experiments we propose two types of improved testing
methods that reduce the negatives standard tests. The final step is creating a framework
for data filtering using our proposed methods.

KEYWORDS
spectrogram, time-frequency analysis, wavelet transform, Fourier transform, autoregres-
sive process, significance testing, co-movement filtering

ABSTRAKT
Přeložená dizertační práce se zabývá analýzou a posouzením kvality odhadu frekvenční
a časově-frekvenční transformace dat a formulaci doporučení pro práci s metodami. Při
použití těchto metod vyvstává otázka, jak vyhodnotit, které složky spektrogramu jsou
statisticky významné a které nikoli. V této práci analyzujeme vlastnosti standardních
testů statistické významnosti. Diskutujeme o jejich výhodách a nevýhodách s ohledem
na heteroskedastický charakter dat. Na základě našich experimentů jsou v práci navrženy
dva typy testovacích metod, které snižují negativní aspekty standardních testů. Práce
jen zakončena vytvořením rámce pro filtrování dat pomocí námi navržených metod.

KLÍČOVÁ SLOVA
spektrogram, časově frekvenční analýza, vlnková transformace, Fourierova transformace,
autoregresivní proces, testování významnosti, filtrování společného pohybu
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INTRODUCTION

Introduction
The need to analyze the data can be found across a variety of scientific disciplines.
Despite the diversity of disciplines, it is a common goal to obtain the maximum
information from data analysis to help solve the tasks set. Concerning the scientific
area, such data are given as observations in the form of time series of input signals.
The standard analytical instruments are given in the time or frequency domain.
Linking of both approaches giving us a more compact view can be done via time-
frequency techniques. The combination of time and frequency tools provides a more
efficient means of data analysis, allowing us a deep look into the signal structure.

The graphical representation of time-frequency analysis is a spectrogram. Its es-
timation can be done via several parametric or nonparametric methods. The most
used are short-time Fourier transform, estimation via the time-frequency varying
autoregressive process, and wavelet transform. While the periodogram is the classic
estimator for stationary signals, multiple windows or short-time Fourier transfor-
mation can be useful for non-stationary signals. The time-frequency varying au-
toregressive process is a simplification of the general autoregressive moving average
model. The signals can be corrupted by noise which can affect the precision of
instantaneous frequency; therefore is good to investigate several types of analyses
methods to reach the required precision.

The key aspect of time-frequency analysis is the precision of the estimated spec-
trogram. For further processing and filtering of data, it is appropriate to specify
which components of the spectrogram are statistically significant and which are not.
There are several test methods for this purpose. One of the most used methods is
based on the identified distribution of background noise, and several requirements
need to be met for its appropriate usage. Other methods work with the use of ge-
ometric and topological changes or simulations of background noise. The obtained
selection of significant regions can then be used for further description and filter-
ing of the data, taking into account the objectives of the analysis, either in time,
frequency, or time-frequency domain.

Considering the current progress in the field and the gap in current research, this
work is focused on describing the framework of analysis from the use of individual
methods, through statistical significance testing of their results, and finally filtering
of data based on these significance tests. The following chapter contains the core
of the dissertation, detailed analyses are included only in the full version of the
dissection.
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CHAPTER 1. STATE OF THE ART

1 State of the Art
The need to describe and analyze the input signal for further use occurs across
all scientific disciplines, from technical to social sciences. In terms of approach,
we can define the analysis in the time domain (TD), frequency domain (FD), and
time-frequency domain (TFD). Fundamental analysis can be performed in the time
domain. Such an analysis deals with the changes in a signal over a span of time,
i.e. variation of the amplitude of the signal with time. In contrast, the frequency
domain describes the behavior of the signal across a given frequency band concerning
a range of frequencies and can include information on phase shift. It is possible to
use time-domain techniques or frequency domain techniques separately; however,
their ability to capture the frequency behavior of the analyzed time series with
respect to the time is somewhat limited. The combination of time and frequency
tools provides a more efficient means of statistical analysis, reflecting the fact that
the time-frequency analysis of input signal is an instrument that has been used in
interdisciplinary analysis for a long time.

Time-frequency (TF) techniques are an instrumental approach, reflecting both
the time and frequency behavior of input time series. These approaches predomi-
nates in the last decade in many fields of science. It is a useful instrument in natural
sciences [1–4], engineering [5, 6], biology or medicine [7–9] or social and economic
sciences.

The time-frequency representation of the signal can be estimated via several
approaches. The most common method is Short Time Fourier Transform (STFT).
The periodogram or its modification, such as the multiple window method using
Slepian sequences [9] can also be used. We can also use estimation via the time-
frequency varying Autoregressive Process (TFAR) [10], wavelet analysis (CWT)
[11,12] or alternatively Modified empirical mode decomposition method [13]. While
the periodogram belongs to the group of the classic estimator for stationary signals,
multiple windows or STFT can be a valuable instrument for non-stationary signals
[9,14–16]. As Jiang and Mahadevan [17] wrote, the advantage of the wavelet analysis
is that it can capture the features of non-stationarity signal due to the simultaneous
time-frequency decomposition of inputs. The TFAR process is a simplification of
the general AutoRegressive Moving Average (ARMA) model.

Among the advantages of Fourier transform and its derivatives, we can include
low computational complexity and a wide range of software and hardware imple-
mentations with a selection of optimal parameters that provide satisfactory results.
AR process used for estimation of signal spectrum representation provides fair re-
sults, especially in very short signals when STFT tends to fail. For longer signals,
it provides good results [18]. In such cases, the variance of insignificant cyclical
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CHAPTER 1. STATE OF THE ART

components that usually take the character of noise has a lower level than in the
case of STFT. This advantage can be useful when we investigate thresholding such
as in [19]. The time-varying representation of the AR process provides a more com-
plex view compared to a simple spectrum estimate in the frequency domain only. It
has time and frequency resolution corresponding to the size of the window and the
size of window overlap, which must be selected. In such a way, it is similar to the
STFT method. Unfortunately, the disadvantage of the method is its accuracy which
strongly depends on the selection of optimal lag order. Therefore, it is good to inves-
tigate various optimization criteria for its optimal selection. Another disadvantage
is that there are not many existing implementations; most are only on a software
level. Continuous wavelet transform is a relatively new method compared to Fourier
transform. As pointed out in [20] or [17], the wavelets have several advantages. It
is applicable to non-stationary data. It also has the ability to uncover the latent
process with changing cyclical patterns. Such features are typical for an economic
time series. Additionally, the wavelet analysis has very good time resolution, and
there is no need to optimize the parameters. There is only discussion about the
mother wavelet and the scale selection.

The need to validate the estimated model arises with the application of TF
methods on real values with respect to the application area (engineering, medicine,
etc.). This leads to the significance testing [21, 22]. The fundamental work in this
field can be found in Torrence and Compo [23]. This paper presents the comparison
of the windowed Fourier transform to the wavelets. The authors also focus on
the relationship between wavelet scale and Fourier frequency and the choice of an
appropriate wavelet basis function. The proposed statistical significance test is given
for wavelet power spectra and is based on theoretical derivation for white and red
noise processes.

Motivated by the work of Torrence and Compo [23], Ge [24] proposes significance
testing of wavelet power and wavelet power spectrum. He derived the sampling
distributions for the power spectrum of a Gaussian White Noise (GWN). And also for
the wavelet power of GWN. He proved that the results given by [23] are numerically
accurate when if the sampling period factor is incorporated. Ge [25] uses the same
methodological approach for wavelet cross-spectrum and linear coherence. However,
one of the disadvantages of this test is that it takes into account the variance of the
entire signal. In specific cases where the data exhibit highly variable volatility, the
variance of the whole signal may not be sufficiently descriptive. The question is then
how this affects the accuracy of the test and how to interpret the results.

A similar approach to Torrence and Campo can be found in the work of Schulte
et al. [21]. They use geometric and topological methods for assigning contiguous
significance regions of significant wavelet coefficient with respect to selected noise
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models with application to climatic data. Also, James and Fleming [22] use the
Torrence and Compo approach to identify significant spatial scales of pattern and
spatial boundaries in geo-science.

Model validation of structural dynamics example is proposed by Jiang and Ma-
hadevan [17]. They investigate simulation-based predictions of structural response
on the virtually generated data. The authors use testing with the help of Monte
Carlo simulations to infer whether the model prediction and experimental observa-
tion represent two coherent processes. Wang et al. [26] present another point of view
by introducing the general sequential Monte Carlo method to estimate the probabil-
ity density function and to optimize wavelet transform for extracting bearing fault
features.

Given the above methods, we found that the literature insufficiently describes
several areas. One of these areas is the effect of the character of the data on signifi-
cance testing of time-frequency methods. This character can manifest itself through
structural changes in the data that lead to changes in volatility. This raises the
question of how to interpret the results of standard tests in this case.

A related insufficiently described area is how TFA can be used to provide addi-
tional information that will contribute to subsequent signal analysis.

Most standard methods have been designed to work with technical data. The
physical nature of these types of data is usually known; their description is available,
their behavior and their content are known, and there is knowledge of what their
deterministic components may look like. However, there are scientific areas where
factors, that are often unpredictable, may affect or change the character of the data.
This problem is typical, for example, for economic data, where due to various events
(economic shocks, crises, pandemics, etc.) diverse structural changes may arise, such
as in trend, volatility, growth, etc.

Given the above observations, this work will focus on the analysis of economic,
technical, and simulated data.

4



CHAPTER 2. DISSERTATION OBJECTIVES

2 Dissertation objectives
This dissertation thesis deals with analyses and assessment of the quality of the fre-
quency and time-frequency transform and with the formulation of recommendations
for working with such methods. We take into account how much a priori information
will help to obtain maximum information about the data.

We researched literature and resources and evaluated current progress and gaps
in this field. We found out that the literature does not deal with the influence of the
data character on the significance testing of the time-frequency methods. Most of
the literature focuses on the technical area, where the application of methods and
interpretation of results is facilitated by knowledge or information about the data
character. In some cases, such as the selected photonic Doppler velocimetry data
set, these are rather experimental data, therefore, a priori information may be more
general.

The different types of data in terms of nature are economic data, which are less
informative in terms of technical analysis. The process and mechanism of this data
generation are influenced by factors such as unexpected events, economic shocks,
psychological factors, etc., which are difficult to predict and simulate. This may ap-
pear as structural changes in the data, to which standard methods may not respond
correctly in all cases. For the TFD application and subsequent testing, the question
then arises as to how data with structural changes can be analyzed to obtain rele-
vant results. The third type of data is simulated data used to verify standard and
designed methods.

We focus on the issue of statistical testing of data mentioned above in order
to verify the standard methods and to propose methods for cases where the data
volatility is changing in time. Based on these we defined the following objectives of
the thesis.

Objective I. Is it possible to use and combine different characteristics of indi-
vidual TFA methods to obtain relevant spectrogram?
In Chapter 3 we propose an approach to incorporate advantages
and suppress disadvantages of individual methods in order to bring
out significant components and suppress noise.

Objective II. How can we modify standard tests to eliminate/reduce their disad-
vantages and shortcomings in case of data with changing volatility?
In Chapter 4 we propose adaptive testing approach and recommen-
dation for their usage in case of data with changing volatility.

5



CHAPTER 2. DISSERTATION OBJECTIVES

Objective III. How can we use these modified test methods for subsequent data
filtering?
In some cases, it is useful to work selected spectral components
represented in the time domain. Especially in the case of evaluation
of time-series co-movement. Therefore, in Chapter 5 we propose
co-movement filtering as an instrument for obtaining co-movement
indicator. In its construction and application, the expertise gained
from Objective II. is used.

6
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3 Enhanced TF Representation
Based on analyses of selected TFA methods we analyze and assess the quality of
selected methods and formulate the recommendation for working with such methods.
We formulate recommendations for AR process optimization using the Monte Carlo
method. We list the advantages and disadvantages of selected parametric and non-
parametric TF methods taking into account data character.

To highlight important spectral components we propose combination of several
TF methods. In each method background noise is depict with different character-
istics. However significant spectral components should be captured in most cases.
Based on such assumption we should be able to suppress the noise and highlight
required components by using their combination. The procedure of this method is
shown in Fig. 3.1. This procedure can be perceived as an alternative to significance
tests, which we will discuss in the Chapter 4. The characteristics of input data must
be taken into account. Therefore, we will show the application on different types of
data.

Fig. 3.1: Enhanced modelling of TF spectrograms.

3.1 Combination of TF methods

To obtain the best possible TF representation we combined results from the CWT,
TFAR and STFT approach. Since the main focus was on the amplitude part of the
spectra we have omitted phase part of complex spectra 𝑆CWT and 𝑆STFT. In case of
focus on amplitude and phase components whole signal can be used for subsequent
processing.

Firstly we align time axis (time resolution) of spectral representations 𝑆CWT,
𝑆TFAR and 𝑆STFT so each spectrum would correspond to one another. All three
time vectors have linearly increasing trend so for the time axis alignment the only
requirement was to adjust starting and ending point for each method. We omitted
first and last 15 columns of 𝑆CWT, we denoted this remaining matrix as 𝑆

′
CWT. By

doing tis we ensured corresponding time axis for all three methods.

7



CHAPTER 3. ENHANCED TF REPRESENTATION

Secondly we needed to align the frequency/scale axis of 𝑆
′
CWT, 𝑆TFAR and 𝑆STFT.

The frequency range of 𝑆TFAR and 𝑆STFT was cropped to correspond the range of
𝑆

′
CWT which was 1 year to 10 years cycles. Resulting frequency/business cycles

vectors 𝑓TFAR and 𝑓STFT had a linearly increasing trend however trend of 𝑓CWT was
non linear. To obtain corresponding vectors we matched each point of 𝑓CWT with
one value of 𝑓TFAR/𝑓STFT with 1.4% tolerance:

|𝑓CWT − 𝑓STFT| ≤ 0.014
⃒⃒⃒
max(𝑓CWT; 𝑓STFT)

⃒⃒⃒
,

|𝑓CWT − 𝑓TFAR| ≤ 0.014
⃒⃒⃒
max(𝑓CWT; 𝑓TFAR)

⃒⃒⃒
.

(3.1)

With this step we have gained adjusted TF matrices 𝑆
′
TFAR and 𝑆

′
STFT making

all three methods aligned. For the methods combination we selected simple multi-
plication. We used combination of CWT and TFAR (𝑆CWT,TFAR) and combination
of CWT, TFAR and STFT (𝑆CWT,AR,STFT):

𝑆CWT,TFAR = 𝑆
′
CWT𝑆

′
TFAR,

𝑆CWT,TFAR,STFT = 𝑆
′
CWT𝑆

′
TFAR𝑆

′
STFT.

(3.2)

3.2 Application on Economic Data

3.2.1 Data Describtion

As a representative of economic data with not clearly descriptive background noise,
we use seasonally adjusted quarterly data of GDP. We selected volume index in
OECD reference year 2010 [27] of the United Kingdom (UK) in 1956/01-2016/03
and Group of 7 (G7) in 1961/02-2016/03. All variables are in FODLOG (Fig. 3.2).
G7 countries are: Canada, France, Germany, Italy, Japan, the United Kingdom,
and the United States.

(a) UK
,

(b) G7

Fig. 3.2: GDP of UK and G7 in time domain.

8



CHAPTER 3. ENHANCED TF REPRESENTATION

Our analyses consists from several steps. In the first, we analyse data using
CWT. We set scales to correspond range of 1 year to 10 years, with 257 individual
scales. As mother wavelet we selected complex Morlet with center frequency 𝑓b =
1.5. The complex Morlet wavelet is based on standard Morlet with the advantage
of providing complex results making it possible to obtain phase part (quadrature)
of spectrum. In case of TF estimation via TFAR process we used Burg approach
for coefficient estimates on 30 samples with 29 samples overlay and Hann window.
Optimal value of lag order was based on AIC criteria. Parameters of STFT were
set to correspond TFAR settings (30 samples, 29 samples overlay, Hann window) to
simplify the process of combination of methods.

The data and results for UK and G7 are presented graphically in Fig. 3.2a-b, in
Fig. 3.3a-f and Fig. 3.4a-d. There are four types of figures. Namely time represen-
tation of GDP for UK and G7 (Fig. 3.2a-b), TF transform via CWT (Fig. 3.3a-b),
TF transform via AR (Fig. 3.3c-d), transformation via STFT (Fig. 3.3e-f) and ad-
justment of CWT picture with the help of AR (Fig. 3.4a-b) and with the help of
TFAR+STFT (Fig. 3.4c-d).

3.2.2 Results

After a short analyses of time representation of the data we apply TF approaches.
Firstly we modelled CWT (Fig. 3.3a–b), consequently TFAR (Fig. 3.3c–d) and
STFT (Fig. 3.3e–f). As we expected CWT provides results with very good time
resolution. We can see several important areas across time and frequency. Focusing
on TFAR representation the results are not so clear from time perspective as CWT,
but they give us better information from frequency perspective similarly as STFT.
Therefore, we decided to do adjustment of CWT picture with the help of TFAR and
TFAR+STFT according to the calculation (eq. 3.1,3.2) described in Combination
of TF methods.

3.3 Application on Engineering Data

3.3.1 Data Describtion

Another selected data type was Photonic Doppler Velocimetry Data (PDV) data.
Their parameters are based on physical nature and their structure is thus different
from economic data. As input data we took STFT, TFAR and wavelet spectral
representation of the data. Equations (3.1) and (3.2) were then used. Because the
main focus was on the amplitude part of the spectra we used only the amplitude
part of STFT and wavelets.

9



CHAPTER 3. ENHANCED TF REPRESENTATION

(a) CWT UK (b) CWT G7

(c) TFAR UK (d) TFAR G7

(e) STFT UK (f) STFT G7

Fig. 3.3: Spectrum of GDP of UK and G7.

3.3.2 Results

Resulting modified spectrogram is in Fig. 3.5. We can see that the scatter of
background noise is smoothed and the data signal is more clearly visible. Even
on this type of input data, it was confirmed that the method can highlight the
required components in the spectrogram and therefore provides required advantages
for further processing.

3.4 Chapter Conclusion

If we review results, by combining several TF approaches we were successful in
background noise suppression. Consequently, events of interest became more visible

10
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(a) Enhanced UK (b) Enhanced G7

(c) Enhanced UK (d) Enhanced G7

Fig. 3.4: Adjustment of TF methods.

(a) signal A (b) signal B

Fig. 3.5: Enhanced PDV data (𝑥−axis: time, 𝑦−axis: frequencies).

and their identification in time, as well as in frequency was easier. An example of
the possible use of this identification is the trend detection in a spectrogram. This
approach can also be taken as a supplement to the significance testing with the
investigation of background noise description, which will be described in Chapter 4.

11
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4 Adaptive Significance Tests
Time-frequency transform can give reasonable results of both perspectives, time and
frequency, in one moment. In some branches such engineering the physical nature of
inputs is obvious and give valuable information. We can assume existence of several
harmonic components corresponding to the specific frequency during all time of
given input. Unfortunately, in others such in economy or sociology it may not be
so simple. Applications of TF analyses have been so far limited by the fact that
it was impossible to draw any implications on the statistical significance. Thus,
significance testing of obtained results are welcomed. The original contribution in
the spectrogram testing was provided by Torrence and Compo [23], followed by
Ge [24, 28]. Both provided a framework for testing individual spectrograms as well
as testing of co-movement representation. We denote them both as standard testing
approach (STA). Both testing statistics presented in [23] and [24, 28] are formed
as the power value of the spectrogram of a noise signal normalized by the signal
variance in the time domain. In the case of an input signal with strongly localized
fluctuations of the signal strength, the total variance may not sufficiently describe
the character of the data. It is, therefore, not surprising that high amplitude events,
may have a strong impact causing a suppression of other events. To avoid this
problem, we propose an adaptive form of STA testing named a local-adaptive-based
testing (LAB) and segmentation-adaptive-based testing (SAB). In the case when
the data does not have such problem, the STA, LAB and SAB testing produce same
results.

4.1 Standard Testing
STA significant testing which follows the work of Torrence and Compo [23] for the
special case if the background spectra is Gaussian white noise and power wavelet
cospectra (PWCS) is the 𝑊2 distribution (see also Ge [25,29,30]). The significance
level 𝑍(1 − 𝛼) for the risk 𝛼 can be deduced from 1 − 𝛼 percentile of the 𝑊2

distribution [23,25].
Thus, the mask 𝑀 (see eq. (5.1)) for the HT approach is given by

𝑀(𝑎, 𝑏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |𝑊𝑥𝑦(𝑎, 𝑏)|2 ≥ 𝑡ℎ𝑟

0 |𝑊𝑥𝑦(𝑎, 𝑏)|2 < 𝑡ℎ𝑟

(4.1)

where the threshold 𝑡ℎ𝑟 (given by STA according to TC98)

𝑡ℎ𝑟 = 1
4𝜎2

𝑥𝜎2
𝑦𝑍(1 − 𝛼)

12



CHAPTER 4. ADAPTIVE SIGNIFICANCE TESTS

is a fix scalar number for the risk 𝛼 for all PWCS coefficients. The value of 𝑍(1−𝛼)
is calculated by STA ([23]).

4.2 Segmentation-Adaptive-Based Testing

The SAB testing is suitable if we are able to identify the sub-segments with dif-
ferent volatility in the data. Firstly, for each time series 𝑥(𝑡) and 𝑦(𝑡), we identify
the moments of the change of the time series variance. It can be done by expert
estimate (usually in the case if the data are filtered by the long-term component and
take the form of fluctuation around x-axis) or by statistical testing [31]. Secondly,
we arrange all moments for both time series in the ascending time-order and we
split the time range into the segments (SG) reflecting volatility changes in 𝑥(𝑡) and
𝑦(𝑡). Consequently, we identify the critical value for the significance testing in each
segment by STA.

The proposed SAB masking method is designed as follows:
1. Identify the moments of the variance change of the time series 𝑥(𝑡), 𝑦(𝑡) via

expert estimate or statistical testing.
2. Arrange all identified moments for both time series in the ascending order and

split the time range 𝑡 = 1, . . . , 𝑛 into the segments 𝑆𝐺𝑗, 𝑗 = 1, . . . 𝐽 reflecting
volatility changes in 𝑥(𝑡) and 𝑦(𝑡).

3. Estimate the PWCS and split it into the segments 𝑃𝑊𝐶𝑆𝑗, 𝑗 = 1, . . . 𝐽 ac-
cording to segments 𝑆𝐺𝑗.

4. Construct the segments of the mask 𝑀𝑗(𝑎, 𝑏) corresponding to the segment
𝑆𝐺𝑗, i.e. calculate 𝑀𝑗(𝑎, 𝑏) in each segment 𝑆𝐺𝑗 according to eq. (4.1) with
respect to the variances of the time series in 𝑗−th segment. That is,

𝑀𝑗(𝑎, 𝑏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |𝑊𝑥𝑦,𝑗(𝑎, 𝑏)|2 ≥ 𝑡ℎ𝑟𝑗

0 |𝑊𝑥𝑦,𝑗(𝑎, 𝑏)|2 < 𝑡ℎ𝑟𝑗

(4.2)

Here, in the 𝑆𝐺𝑗 segment, the threshold

𝑡ℎ𝑟𝑗 = 𝜎2
𝑥,𝑗𝜎

2
𝑦,𝑗0.25𝑍(1 − 𝛼)

is a fixed scalar number, 𝛼 is a risk, 𝜎2
𝑥,𝑗𝜎

2
𝑦,𝑗 are variances for time series 𝑥, 𝑦 in

the time segment 𝑆𝐺𝑗 and |𝑊𝑥𝑦,𝑗(𝑎, 𝑏)|2 is the corresponding part of PWCS.
The value of 𝑍(1 − 𝛼) is calculated by STA test [23]. Compared to the STA,
in the case of SAB masking the threshold is the vector 𝑡ℎ𝑟 = (𝑡ℎ𝑟1, . . . 𝑡ℎ𝑟𝐽)
adaptively changing with respect to the variances in segment.
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5. Construct the mask 𝑀(𝑎, 𝑏) as the composition of the 𝑀𝑗(𝑎, 𝑏), 𝑗 = 1, . . . , 𝐽

mask segments, i.e.

𝑀(𝑎, 𝑏) = (𝑀1(𝑎, 𝜏), . . . 𝑀𝐽(𝑎, 𝑏)) (4.3)

where the 𝑗−th (𝑗 = 1, . . . , 𝐽) segment of the mask 𝑀(𝑎, 𝑏) corresponding to
the time segment 𝑆𝐺𝑗 as described in eq. (4.2).

4.3 Local-Adaptive-Based Testing
The LAB testing is suitable if the variability of the data slowly increases or/and
decreases, once or several times during the time range of the series 𝑥 or/and 𝑦.
Before starting the LAB algorithm, we have to set the value of 𝑙 - the length of
a sliding window. Consequently, we can identify the critical value for a significance
testing in each segment by STA.

The proposed SAB masking method is designed as follows:
1. Select the length 𝑙 of the sliding window as an odd number.
2. Estimate the PWCS for the time series 𝑥(𝑡), 𝑦(𝑡).
3. Calculate the mask 𝑀𝑡(𝑎, 𝑏) in each time 𝑡 = 1, . . . , 𝑛 according to (4.4) with

the variances as described in (4.5), i.e.:

𝑀𝑡(𝑎, 𝑏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |𝑊𝑥𝑦,𝑡(𝑎, 𝑏)|2 ≥ 𝑡ℎ𝑟𝑡

0 |𝑊𝑥𝑦,𝑗(𝑎, 𝑏)|2 < 𝑡ℎ𝑟𝑡

(4.4)

and the threshold
𝑡ℎ𝑟𝑡 = 𝜎2

𝑥,𝑡𝜎
2
𝑦,𝑡0.25𝑍(1 − 𝛼)

is the fixed scalar number in the 𝑡−th sliding window, 𝛼 is a risk. The value
of 𝑍(1 − 𝛼) is calculated by STA test, ([23]). The variance 𝜎2

𝑥,𝑡 is calculated
as follows

𝜎2
𝑥,𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

𝑙−1
∑︀𝑙

𝑖=1 (𝑥(𝑖) − �̄�)2 𝑡 ∈ 1, . . . (𝑙 − 1)/2
𝑡 ∈ 𝑛 − (𝑙 − 1)/2 + 1, . . . , 𝑛

1
𝑙−1

∑︀𝑡+(𝑙−1)/2
𝑖=𝑡−(𝑙−1)/2 (𝑥(𝑖) − �̄�)2 𝑡 ∈ (𝑙 − 1)/2 + 1, . . . , 𝑛 − (𝑙 − 1)/2

(4.5)
where 𝑙 is the odd number representing the sliding window length, �̄� is the
mean value of the time series 𝑥 in the sliding window. The variance 𝜎2

𝑦,𝑡 is
calculated accordingly. Compared to the STA testing, in the case of LAB
masking the threshold is the vector 𝑡ℎ𝑟 = (𝑡ℎ𝑟1, . . . 𝑡ℎ𝑟𝑛) adaptively changing
with respect to the variances in the sliding window.
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4. Construct the mask 𝑀(𝑎, 𝑏) as the composition of the 𝑀𝑡(𝑎, 𝑏), 𝑡 = 1, . . . , 𝑛,
i.e.

𝑀(𝑎, 𝑏) = (𝑀1(𝑎, 𝑏), . . . , 𝑀𝑛(𝑎, 𝑏)) (4.6)

where the 𝑡−th (𝑡 = 1, . . . , 𝑛) part of the mask 𝑀(𝑎, 𝑏) is calculated according
to eq. (4.5).

4.4 Experimental Results
To demonstrate the methods described above we present them both on simulated
signals and on real economic data. In practice, across various non-technical disci-
plines, there are signals or time series for which the exact description of its character
is not as clear as in technical signals [32]. While in the case of engineering, signals
can be simulated as the simplification of the composition of several harmonic com-
ponent, in the case of economic data, their structure is more complicated. Usually,
it contains structural trend-breaks, outliers, cyclical components of close frequen-
cies which can occur or diminish in different time sub-periods (not during the whole
time), or nested cycles with different frequency limited in time [33–36]. Moreover,
the nature of economic indicators play an important role and can influence the char-
acter of the frequency structure, e.g. business cycles, financial cycles etc. Then, it
is quite difficult to simulate the universal behaviour of the economic series and its
noising with a generalized artificial signal.

Therefore, we decided to model an artificial signal as a simplification of basic fea-
tures in economic data. That is, a composition of signals which have co-movement in
time-limited long-term trend (low frequency component), short time-limited middle-
term co-movement with the high amplitude, middle-term co-movement during the
whole time period (i.e. cyclical fluctuations in BC frequencies) and short-term trend
(cyclical fluctuations of high frequency, such as seasonality) in the first half of time-
period.

The quality of the identification of significant co-movement part in co-spectra
(i.e. TF components) is evaluated via two metrics [37]. The first one evaluates how
many TF components were significant and were not identified as significant by the
test, i.e. relevant parts were not identified:

M1 = 𝐹𝑁

𝑇𝑃
. (4.7)

The second metrics evaluates how many TF components were not significant and
were identified as significant by test, i.e. irrelevant parts were identified:

M2 = 𝐹𝑃

𝑇𝑁
. (4.8)
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Here, 𝑇𝑃 (True Positives) is the number of correctly identified TF components in co-
spectra; 𝐹𝑁 is the number of TF components in co-spectra which were significant
but were not identified as significant; 𝐹𝑃 (False Positives) is the number of TF
components in co-spectra which were insignificant but were identified as significant;
and 𝑇𝑁 is the number of TF components in co-spectra which were insignificant and
were identified as insignificant.

4.4.1 Simulated Data Description

For testing purposes, we have created four artificial signals, each of the length 1000
samples. Figure 4.1a) illustrates their time domain representation with constant
variance, Figure 4.1b) with segmented variance (changing volatility), each for two
signals. All signals were noised with signal-to-noise (SNR) ratio 𝑆𝑁𝑅 = 10, 3.16, 2.
In the simulation, we tried to approach the behavior of economic time series in the
field of business cycle and synchrony analysis, therefore we selected 𝑆𝑁𝑅 = 10 and
3.16 as stated above.

To be in correspondence with the real data analyses, we use the following settings
during the analyses of artificial signals. For the PWCS, we set the scales in the range
1–10 years divided into 257 individual scales. Further, we use the complex Morlet
with the center frequency 𝑓b = 1.5 as a mother wavelet. The LAB testing is done
according to Sec. 4.3. The sliding window length used in the eq. (4.5) is the same
for both signals (A and B) and is set to 𝑙 = 36 samples, which corresponds to 3
years. The SAB testing is done according to Sec. 4.2. As the scope of this paper
is not to investigate the optimal method for variance segmentation, the number of
𝑆𝐺𝑗 segments is set to match the number of segments in the artificial signals. Thus,
𝑗 = 5 for the signal A and 𝑗 = 6 for the signal B.

To be able to quantify the accuracy of the proposed SAB and LAB methods, we
have created the so called benchmark figure of ideal PWCS ± 𝑠𝑝𝑟𝑒𝑎𝑑 for co-spectral
components (see Fig. 4.2a. This was done to include energy spread in frequency
for each individual wavelet. The size of the frequency spread is set as ±15% from
the maximum in the center frequency of each individual wavelet. As the result, we
can see a wider co-spectral components represented as yellow blocks in the figures
(e.g. Fig. 4.2a). In the next step, we calculate the metrics M1 and M2 using the
benchmark representation and the masked PWCS. Further, we noise all signals as
mentioned in the first paragraph of this subsection and then estimate PWCS of
signals with constant variance and PWCS of signals with segmented variance.

In the following figures (Figs. 4.2–4.5), the 𝑥-axis represents time, the 𝑦-axis
represents specific periods (cycles in years) and the 𝑧-axis represents the values of
spectrogram. The figures show a two-dimensional projection of three-dimensional
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Fig. 4.1: Behaviour of a variance of simulated signals in the time.

charts. The intensity of each contour represents the relative importance of the
different periodicities and time, i.e. from dark blue (low amplitude) to yellow (high
amplitude) colour. The yellow curve denotes the mask in all figures.

4.4.2 Results for Constant Variance

Next, we identify the significant co-movement of PWCS via HT, LAB, SAB masking
for 𝑆𝑁𝑅 = 10 (Figs. 4.2b,c,d) and for 𝑆𝑁𝑅 = 3.16 (Figs. 4.3b,c,d). Then we calcu-
late the metrics 𝐹𝑁, 𝐹𝑃, 𝑀1, 𝑀2, Δ𝑀1, Δ𝑀2 (Tab. 4.1). The metrics Δ𝑀1, Δ𝑀2
describe how the metrics changed for SAB, LAB with respect to HT. As we can see
in Figs. 4.2, 4.3 and Tab. 4.1, there are no big differences between the results for
HT, SAB and LAB masking when the variance of signals is constant. That is, the
metrics Δ𝑀1, Δ𝑀2 are mostly lower than 1%; in the case of LAB (𝑆𝑁𝑅 = 10) the
metric Δ𝑀1 = −1.34 is a little higher than 1%.

4.4.3 Results for Segmented Variance

As for the signals with segmented variance, we also identify the significant co-
movement of estimated PWCS via HT, LAB, SAB masking for 𝑆𝑁𝑅 = 10
(Figs. 4.4b,c,d) and for 𝑆𝑁𝑅 = 3.16 (Figs. 4.5b,c,d). Then we calculate the metrics
𝐹𝑁, 𝐹𝑃, 𝑀1, 𝑀2, Δ𝑀1, Δ𝑀2 (Tab. 4.2). Comparing Figs. 4.4b–d with Fig. 4.4a
we can see that HT masking of PWCS was not able to identify well the frequency
component corresponding to frequency 0.25 in the second half of the time. Moreover,
in the case of 0.40, the frequency component PWCS HT masking covered a wider
range of surrounding components than SAB, LAB masking. This fact is also doc-
umented in Tab. 4.2. The metrics Δ𝑀1, Δ𝑀2 describe how the metrics changed
for SAB, LAB with respect to the HT. As we can see, there are differences between
the results for HT, SAB and LAB masking for segmented variance compared to the

17



CHAPTER 4. ADAPTIVE SIGNIFICANCE TESTS

(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 4.2: PWCS and its estimate for constant variance and 𝑆𝑁𝑅 = 10.

SNR = 10
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 6.44 · 103 12.62 – 5.83 · 104 13.58 –
SAB 6.74 · 103 13.31 −0.60 5.76 · 104 13.42 0.16
LAB 7.12 · 103 13.95 −1.34 5.46 · 104 12.72 0.86

SNR = 3.16
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.25 · 104 32.66 – 5.25 · 104 13.94 –
SAB 1.27 · 104 33.10 −0.43 5.21 · 104 13.80 0.14
LAB 1.28 · 104 33.60 −0.94 5.16 · 104 13.66 0.28

SNR = 2
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.89 · 104 59.13 – 4.65 · 104 12.15 –
SAB 1.89 · 104 58.81 0.32 4.65 · 104 12.14 0.01
LAB 1.89 · 104 58.93 0.19 4.61 · 104 12.02 0.13

Tab. 4.1: Metrics for constant variance- averages of 1000 MC simulations.
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 4.3: PWCS and its estimate for constant variance and 𝑆𝑁𝑅 = 3.16.

constant variance. That is, for the 𝑆𝑁𝑅 = 10, the metric Δ𝑀1 is mostly 11.5%
higher; the metric Δ𝑀2 is mostly 3% higher. For the 𝑆𝑁𝑅 = 3.16, the metric Δ𝑀1
is mostly 0.5-1% higher; the metric Δ𝑀2 is again mostly 3% higher. We can see
that the metric Δ𝑀1 is more sensitive to the noise level. An additional simulation
for SNR=2 confirmed the sensitivity of Δ𝑀1 and the slow decrease of Δ𝑀2. That
is, the growing noise level causes the increase of false negative components and thus
the decrease of the level of improvements measured by Δ𝑀1 in HT, SAB and LAB.
The level of Δ𝑀2 keeps a roughly the same level, which means that the level of
spurious significance given by HT is corrected. Thus we can conclude that in the
case of segmented variance, HT masking can produce worse results and should be
replaced by adaptive masking (SAB, LAB). The graphical comparison is visualized
in Figs. 4.4 and 4.5.
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 4.4: PWCS and its estimate for changing variance and 𝑆𝑁𝑅 = 10.

SNR = 10
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 9.01 · 103 21.75 – 6.49 · 104 17.80 –
SAB 4.73 · 103 10.24 11.50 5.53 · 104 14.79 3.00
LAB 4.70 · 103 10.15 11.60 5.39 · 104 14.36 3.44

SNR = 3.16
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.07 · 104 26.60 – 5.77 · 104 15.54 –
SAB 1.58 · 104 26.23 0.37 4.86 · 104 12.77 2.77
LAB 1.50 · 104 25.85 0.75 4.71 · 104 12.35 3.19

SNR = 2
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.49 · 104 41.50 – 4.85 · 104 12.75 –
SAB 1.85 · 104 57.09 −15.58 4.33 · 104 11.23 1.52
LAB 1.85 · 104 56.87 −15.37 4.20 · 104 10.84 1.91

Tab. 4.2: Metrics for changing variance - averages of 1000 MC simulations.
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 4.5: PWCS and its estimate for changing variance and 𝑆𝑁𝑅 = 3.16.

4.5 Chapter Conclusion
To summarize the results from the simulation, we can give the following recommen-
dation. Before the significance testing of co-movement measure, an analyst should
identify the behaviour of the time series volatility. If the time series have a constant
variance, then HT masking is a plausible instrument. If one time series, or both,
indicates a changing variance during the time (heteroscedasticity), then adaptive
masking is a proper way how to obtain relevant information. This recommendation
may be particularly useful for time series for which heteroskedasticity is expected,
as in the case of economic time series.
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5 Co-movement Selective Detection Filter
A large number of econometric analysts use filtering when processing data. They are
usually interested in a decomposition into the long-term trend and oscillations. After
that, the filtered time series is taken as an input to further econometric analyses.
Filtering techniques are viewed not only from the perspective of removing the trend
component, but also from the perspective of identifying trend-breaks, outliers, or its
removing ability [38,39].

For a long time, the filtering of time series prevailed in the time-domain repre-
sented by deterministic [40,41] or stochastic methods [42], or their combinations [43].
The time series processing in the time-domain is simple, but is not able to remove
a specific frequency range and, in some cases, is inflexible in the long-term trend
modelling. Unfortunately, time domain approaches are weak in capturing a cyclical
character of the time series and need parameter optimization. Therefore, analysts
began to use methods in the frequency-domain, i.e. low-, high- or band-pass fil-
ters [44–46], or a windowed filter as proposed by [47]. Such approaches are more
flexible and are widely used in the economic area for the business cycle (BC) anal-
yses [48]. An alternative point of view is filtering via eigenvalue-based decompo-
sition [49–51], which allows a decomposition of the time series into the number of
components. Then, some of the components can be removed and the others can
be reconstructed into the time domain. The drawback is an arbitrariness of the
decision what will be removed. This deficiency can be solved by the TF selective
filtering [52].

The use of hard, soft and adaptive threshoding applications in engineering great
popularity of wavelets among economists motivates us to improve our earlier study
[53]. This previous research employed the hard threshold for the co-movement-
selective filter which was applied to filtering out symmetric macroeconomic shocks
from individual time series. There, the hard thresholding was based on the analyst’s
experience, while the current study proposes a more sophisticated approach based
on statistical testing. We apply the approach according to Torrence and Compo
(TC98) [23] who were the first to propose algorithms for significance testing of power
wavelet spectrum, the cross-spectrum and the linear coherence. An improvement of
their work was provided by Ge [25,29]. The algorithm presents several assumptions
to test the significance of the power wavelet cross-spectrum. That is, inputs are
two independent GWN and thus the power wavelet co-spectrum is the product
of two 𝜒2−distributed random variables. Further, using the Bessel function, we
can test whether the power wavelet cross-spectrum coefficients are significant with
respect to the variance of each time series. Notice that the authors of the mentioned
publications work with a constant variance of input time series.
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5.1 The Wavelet Transform, Co-movement Measures
and its Testing

The algorithm for the co-movement selective filtering presented here is designed for
the WT because of its advantages, especially very good time resolution and usability
for non-stationary time series [20,32,54], and for the power wavelet co-spectrum, as
the co-movement measure [23, 46]. It can be modified for the Short Term Fourier
transform and for different co-movement measures such as coherence [23,25,29]. As
these methods are well known, we do not describe them in this paper. Instead, we
focus on the description of testing approaches for the co-movement measure.

5.2 An Algorithm for the Co-movement Selective De-
tection Filter

An algorithm for the co-movement selective detection filter is based on two processes,
i.e. transformation plus analysis and reconstruction. The transformation process
consists of the TF modelling (WS and PWCS analyses) and masking. The recon-
struction process inversely transforms time series from the TF to the time domain.
Figure 5.1 proposes a block diagram describing this algorithm.

5.2.1 An Algorithm for the Co-movement Selective Detection
Filter

The proposed method for the identification of the time series co-movement indicator
or for filtering out a symmetric behaviour is designed as follows:

1. Time-frequency transform
Transform time series 𝑥(𝑡) and 𝑦(𝑡) using CWT resulting in wavelet spec-
trograms 𝑊𝑥(𝑎, 𝑏), 𝑊𝑦(𝑎, 𝑏) and wavelet cross-spectrum 𝑊𝑥𝑦(𝑎, 𝑏) respectively.
Alternatively, another co-movement measure as coherence could be used.

2. Decision about type of thresholding
Decide the method for identifying the threshold of wavelet cross-spectrum
coefficients WCS and find the threshold 𝑡ℎ𝑟, i.e. decide for the method of the
mask 𝑀 design via standard or adaptive thresholding (see Sec. 5.3).

3. Mask design
Divide the wavelet cross-spectrum in power form, i.e. PWCS |𝑊𝑥𝑦(𝑎, 𝑏)|2, into
regions with significant and insignificant co-movement of 𝑥(𝑡) and 𝑦(𝑡) based

23



CHAPTER 5. CO-MOVEMENT SELECTIVE DETECTION FILTER

P
ro

po
se

d 
A

lg
or

it
h

m

Input Signals
x(t), y(t)

S
ta

n
d

ar
d

Te
ch

ni
qu

e
s 1. Time-Frequency Transform

Wavelet 
Spectrum

Wavelet 
Cross-Spectrum

3. Mask Design M(a,b)

5. Masking

HT SAB LAB

Adjusting Co-Movement Indicator

2. Decision About the Tresholding

4. Decision About Desired Application

N
e

w
 R

e
su

lt
s 

in
 T

im
e

-D
o

m
ai

n

6. Transformation to the Time-Domain

Adjusted Time 
Series

Co-Movement 
Indicator

Fig. 5.1: Block diagram of co-movement detection filter algorithm.We use the follow-
ing abbreviations: WS denotes the wavelet spectrogram coeffcient, PWCS denotes
the power wavelet cross-spectrum, HT denotes Hard-Threshold Masking (Sec. 4.1),
SAB denotes Segmentation-Adaptive-Based Masking (Sec. 4.2) and LAB denotes
Local-Adaptive-Based Masking (Sec. 4.3).

on the threshold 𝑡ℎ𝑟. That is, we construct the mask 𝑀 :

𝑀(𝑎, 𝑏) =

⎧⎪⎨⎪⎩
1 (significant co-movement), |𝑊𝑥𝑦(𝑎, 𝑏)|2 ≥ 𝑡ℎ𝑟

0 (insignificant co-movement), |𝑊𝑥𝑦(𝑎, 𝑏)|2 < 𝑡ℎ𝑟
(5.1)

The term "significant co-movement" denotes statistically significant PWCS
values which will be identified via statistical testing. See Sec. 5.3 for a detailed
description of this testing.
The PWCS coefficients are used due to the complex valued cross-spectrum for
the majority of practically used mother wavelet functions.

4. Decision about desired application
Decide what the desired application is. We investigate two cases: i) if the
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application is to remove the co-moved part from the time series, or ii) the
inverse task, i.e. keeping the co-moved part of the time series and remove the
part with distinct cyclical behaviour from the time series.

5. Masking
i) Create a modified wavelet spectrogram (MWS) by masking i.e. co-movement
selective detection filtering (adjusted time-frequency transform)

𝑀𝑊𝑆𝑥(𝑎, 𝑏) = (1 − 𝑀(𝑎, 𝑏)) * 𝑊𝑥(𝑎, 𝑏).

Analogously for the time series 𝑦(𝑡).
ii) Create a modified PWCS (MPWCS) by masking, i.e. selecting the distinct
cyclical behaviour leading to the time-frequency transform of a co-movement
indicator

𝑀𝑃𝑊𝐶𝑆(𝑎, 𝑏) = |𝑊𝑥𝑦(𝑎, 𝑏)|2 * 𝑀(𝑎, 𝑏).

6. Transforming to the time domain
Transform inversely product of masking from the previous step via inverse
continuous wavelet transform (ICWT). We can obtain: i) adjusted time series
in the time domain)

̃︀𝑥adj(𝑡) = 𝐼𝐶𝑊𝑇{𝑀𝑊𝑆𝑥(𝑎, 𝑏)}.

Analogously for the time series 𝑦(𝑡), we can get ̃︀𝑦adj(𝑡).
ii) the co-movement indicator represented in the time domain

̃︀𝑥𝑐(𝑡) = 𝐼𝐶𝑊𝑇{𝑀𝑃𝑊𝐶𝑆(𝑎, 𝑏)}.

That is, we can construct the time representation of the co-movement in-
dicator. Or, we inversely transform the pre-defined frequency region (e.g.
a sub-part of MPWCS in BC frequencies) of this product into the time do-
main to construct the time representation of the co-movement sub-indicator
corresponding to the pre-defined frequency region.

5.3 Mask Design
Let us consider the PWCS coefficients for the time series 𝑥(𝑡) and 𝑦(𝑡). Based on
the TC98 significance testing of PWCS we are going to design the mask. We follow
two basic approaches. One is based on the hard threshold given by the testing via
STA leading to the so called hard-threshold (HT) masking. The other is based on
the adaptive threshold identification leading to two possibilities, i.e. local-adaptive-
based (LAB) threshold and segmentation-adaptive-based (SAB) threshold. This
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adaptivity is in time. In both adaptive cases, we propose an improvement of STA
in the adaptive form.

If an analyst focuses on the time series adjustment about the co-moved part, or
on the construction of the co-movement indicator with respect to the full time range
in order to identify the most important events in the time series, we recommend the
use of HT masking, i.e. STA.

The idea of SAB and LAB testing considers the situation when the variance
of the time series 𝑥 or/and 𝑦 in the TD may vary for some sub-period, even for
a short duration. In this case, the adaptive masking may be more suitable, because
there may exist events (such as the financial crisis in 2008) having a higher level of
amplitude in the co-spectrum, which may suppress the significance of other events.
These events can be usually visible in the time representation of the data (structural
breaks, outlier or cause changes in the volatility of the data).

5.3.1 Real Data Description

To demonstrate the proposed methodology we use the seasonally adjusted monthly
data of IPI from the OECD [27] database which are commonly used among econom-
ists for business cycle modelling as the macroeconomic indicator of country economy.
With respect to the globalisation of economies we focused on the EA and selected
G8 countries [27]: the US, Japan, Russia, and the UK. The sample period starts
with July 1975 and ends in December 2017 for all countries except Russia. In the
case of Russia, the available data are in the range from January 1993 to December
2017. This selection was motivated by the following facts: the US was, for a long
time, the leading world economy causing the crisis in 2008; the EA is taken as
a representative of 19 European economies; The UK was preselected because of
Brexit; Japan is an Asia Pacific representative economy; and Russian is taken as
an East European Asia Country. We examine TF selective filtering based on co-
movement between the growth cycles of the US and the selected countries. The data
were transformed to FODLOG values which represent the growth business cycles [55]
of selected countries.

Figure 5.2 displayes these business cycles (data in levels) in the time domain.
Further, the data are transformed into the growth business cycles (i.e. fluctuation
around a potential product) and are used for the synchrony analysis via wavelets as
usual by economists [20,33,36,56,57].

As a preliminary analysis, assuming the existence of synchrony between the US
and selected countries, we calculate the correlation coefficients of business cycles of
selected countries. The synchronization among countries during the economic crisis
in 2008 is also illustrated in Fig. 5.2. Here we can see the tendency of the curves to
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Fig. 5.2: Industrial production index of selected countries (in the levels).

US Levels FOD transform
1978-2017 1993-2017 2002-2014 1993-2017 2002-2014 2008-2009

Japan 0.7546*** 0.3459*** 0.6255*** 0.1825*** 0.1904** 0.3599**
UK 0.7605*** −0.0365 0.0607 0.1390** 0.1540* 0.2131
EA19 0.9721*** 0.9312*** 0.7268*** 0.2963*** 0.3732*** 0.4090**
Russia 0.6483*** 0.6669*** 0.0781 0.1621** 0.

Note: statistically significant at: ***1%, **5%, *10%

Tab. 5.1: Correlation coefficients between US and selected countries.

converge especially arround 2008–2009 time window, which is caused by a structural
symmetric economic shock, i.e. the global financial crisis. Comparing correlation
coefficients in the overview given in Tab. 5.1, we can see the influence of the sample
size on levels of the data and on the FOD transform (growth business cycle). We
focused on the difference between the time period around the crisis, i.e. 2002–2014,
and the available sample size. As we can see from the FOD transform, the selected
countries represent situations with a generally stable correlation during the crisis
time in 12-year window (Japan, EA), with an increase (Russia) as well as a decrease
(UK) in the correlation significance. The table also briefly compares the correlations
for the data without any transform (in the levels).

5.3.2 Settings for Implementation

During the analyses, we use the following settings. For the PWCS calculation, we
set wavelet scales corresponding to the range of 1 year to 10 years divided into 257
individual scales. We select the complex Morlet wavelet with the center frequency
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𝑓𝑏 = 1.5 as mother wavelet. For LAB testing we set a sliding window for 3 years,
i.e. 36 samples, with 1 sample step ahead. The choice of Morlet wavelet was
motivated by the fact that it is a widely used wavelet for the co-movement analysis by
economists. For the SAB testing, we will describe the number of segments during the
presentation of particular results. After masking the country wavelet spectrogram,
we use its inverse transform to obtain filtered time series. In such a way, the inverse
transform of the whole wavelet spectrogram works as a band-pass filter with respect
to the scales setting.

5.3.3 Demonstration of the Proposed Mask Construction

For the demonstration of the proposed approaches, we choose the US and EA coun-
tries. We concentrate on the removal of all co-movements with the US from the
EA data. The TF representation re-calculated into the time-scale form is given in
the PWCS figures (Fig. 5.3(a),(b),(c)). After the testing of the obtained PWCS via
STA (Fig. 5.3a)), via SAB (Fig. 5.3b)) and LAB testing (Fig. 5.3c)) we construct
the masks. Then, we partition the TF plane into two regions, with and without sig-
nificant co-movement. In all figures, the border is highlighted as a yellow solid-line
curve. After the EA spectrogram masking, we inversely transform wavelet coeffi-
cients which correspond to the part without a co-movement. The obtained time
series, for all three masks, are depicted in Fig. 5.4. The dotted black line is the
original time series ̃︀𝑥 (i.e. growth business cycle) obtained via ICWT, the green line
represents the adjustment via HT, the red line represents the adjustment via LAB,
the blue line represents the adjustment via SAB. To ensure a better visibility of the
detected areas, we zoomed the figure to a shorter time range i.e. 2006–2012 (the
shape of the curves are the same before 2006 and after 2012). In this way we obtain
time series adjusted for significant co-movement parts with the reference (the US)
country.

As presented in Fig. 5.3, we identify the mask via three approaches leading to
three adjusted time series. The HT masking produce the mask covering cycles of
the range 5–0.7 years. The most energy of co-spectrum is concentrated in the cycles
5–1.5 years; thus, the adjustment via the HT masking removes mainly long and
business cycles, as well as part of short and very short cycles, from the original
EA data. As a result, the EA’s time series will reduce the fluctuations in the time
around the crisis. In other words, due to the fact that the mutual movement of
the countries manifested itself in many different periods then the removal of these
components from the time series results in its greater smoothness with respect to
the temporal localization of the co-movement. Next, the HT masking is constructed
as a selection of a co-movement of countries relative to the full time range. Thus, if
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a significant event occurs, such as the 2008 crisis (which is reflected by a significantly
higher amplitude in the spectral and co-spectral component) and if we evaluate co-
movement in the whole time range, the significance of other spectral components
will be significantly lower.

If we use the LAB or SAB masking, we evaluate the significance in the win-
dow that adaptively calculates the variance. Thus, it marks the components that
contribute to the overall variance as significant. Because of this, some spectral com-
ponents in other areas are not suppressed, and thus gain in significance. In the case
of the US and EA, the LAB and SAB masking concentrates most of the PWCS
energy into long cycles and shows that the most important co-movement is in long
and business cycles, while the HT masking shows also very short cycles. As the
result of the adaptability, the high-frequency components are not removed from the
EA, which results in a lower volatility reduction in the crisis period.

To validate the results of SAB, LAB masking, we provide MC simulations (the
red line in Fig. 5.3). We can see the proximity of SAB, LAB masking with MC
simulations for presented volatile data. Thus, the difference in the significant region
identified via STA testing (i.e. HT masking) and MC simulations confirmed the
influence of the volatility on the testing. The detailed description of MC simulation
can be found in [17,26].

If we assess the EA data, adjusted by the HT masking about the co-movement
with the US, then we can see that the fluctuation in industrial production without
a linking to the US is smaller. Conversely, the local effect of interdependence during
the crisis period (using adaptive masking) results in a greater fall in the index
value than in the long-term time horizon (using HT masking). Furthermore, the
adjustment of the local co-movement in relation to the unadjusted data points to
a larger drop in values, i.e. a larger structural break. Thus, the interdependence
with the US economy led to a deepening of the structural breakdown of the crisis (a
high correlation has given a reason to believe that there will be a significant reaction
and deepening).

5.4 Chapter Conclusion
This chapter presents time-frequency selective filtering for the time series adjustment
based on the time series co-movement measure. We propose a mask which can be
used for selective filtering (adjustment) on statistical basis. The adjustment means
removing common components from time series with respect to the reference time
series. We investigate two approaches, via hard thresholding based on the 𝜒2 testing
and via adaptive thresholding considering the data character. As the result of the
co-movement selective filtering (which includes masking and inverse transform) we
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(a) PWCS of EA: HT masking. (b) PWCS of EA: SAB masking.

(c) PWCS of EA: LAB masking.

Fig. 5.3: Power wavelet co-spectra. The yellow curve denotes the respective mask
and the red curve denotes MC simulations.

Fig. 5.4: IPI of EA adjusted of co-movement with US.
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obtain two time series, i.e. the time series adjusted about the co-moved part and the
time series containing just the co-moved part. The adjusted time series can be then
used for consequent econometric analyses. The validation of the proposed method
is done in MATLAB on the application of symmetric shock removal from selected
G8 countries with the US as the reference country.

Considering the type of mask construction, our research leads to the following
recommendations. If an analyst focuses on the time series adjustment about the co-
moved part with respect to the full time range in order to identify the most important
events in the time series, we recommend the use of hard-threshold masking, i.e. STA.
If an analyst is interested in the adjustment of economic event with respect to its
lead/lag influence, especially in the case when this event causes changes in the data
volatility, then the adaptive masking (SAB or LAB) is a valuable instrument. The
choice between the LAB and SAB approaches depends on the evolution of data
volatility.

The presented approaches are able to provide an in-depth analysis of the time se-
ries. This can be done via adjustment for the significant symmetric shocks measured
in the TF domain. In this way, we can investigate the global and regional country
specific cyclical behaviour. It can be also done via investigating the time series
representation of adjusted part as an inverse transform of significant co-movement
regions leading to the construction of a co-movement indicator.

As can be seen in literature, a large number of economic studies uses TF domain,
especially wavelets, for an individual time series analysis as well as for a co-movement
analysis. Thus, the presented approach for the time-frequency selective filtering, or
for the construction of the co-movement indicator, can be applicable and can reveal
additional information about the investigated problem focusing on adjusted time
series.
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Conclusion
The doctoral thesis is focused on the current problems and shortcomings of time-
frequency analysis and subsequent significance testing. The presented literature
review shows current progress and gaps in this field. We found that the literature
does not deal with the influence of the data character, i.e. data volatility, on the
significance testing of the time-frequency methods. To include and encompass this
required data character we selected three types of data. The technical data were
chosen as a signal with known parameters, economic data as a signal where factors
that are often unpredictable may affect or change the character of the data, and
simulated data for verification. Using these types of data we focus on the issue of
statistical testing of selected data in order to verify the standard methods and to
propose methods for cases where the data volatility is changing over time. Chap-
ters 3–5 represent the core of the dissertation and each of the chapters deals with a
corresponding dissertation objective. Additional analyses necessary for the proper
design of individual methods are included only in the full version of the dissection.

In Chapter 3, we propose an approach for the enhancement of TF representation
leading to background noise suppression. We denote this approach as ”Enhanced
TF representation”. The core of this method is the combination/multiplication of
several TF approaches. Thus, based on this, we can easily identify important areas
in the TF representation. In specific cases, such as economic data the application of
the designed methodology allows a more straightforward interpretation from time
and frequency perspectives. Moreover, it can also be taken as a supplement to the
significance testing or simulations of background noise levels.

By evaluating standard tests, we find that the standard method may fail in
some cases (detailed analyses are included only in the full version of the dissection).
In the case of an input signal with strongly localized fluctuations of the signal
strength, the total variance may not sufficiently describe the character of the data.
In Chapter 4, we propose two modified methods of significance testing. We denote
them as segmentation adaptive based (SAB) and local adaptive based (LAB) testing.
Both of these methods take into account the possibility of changing the volatility of
input data and adapting to it. The SAB method proposes segmentation of the data
according to its levels of variance and thus providing better results when the changes
in data variance have step character. The LAB method uses a sliding window and
is, therefore, better when the variance change is gradual. We also confirm that in
the case of different volatility levels in inputs, the significance testing needs a more
careful interpretation of the results.
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Chapter 5 uses significance tests for subsequent data filtering. We use the statis-
tically significant part of the power wavelet co-spectrum to construct a co-movement
selective detection filter suitable for assessing the synchrony between two signals. We
propose a mask construction that can be used for selective filtering, i.e. adjustment,
on a statistical basis. The adjustment means removing common components from
the time series with respect to the reference time series. We investigate approaches
based on standard and newly proposed SAB and LAB testing. The advantage of
the proposed co-movement selective detection filter is no loss of observations (such
as correlation). Moreover, it is possible to construct sub-indicators that correspond
to the predefined frequency range. In such a way, we can obtain a decomposition of
the (total) co-movement indicator, which covers the full range of frequencies, into
the required range.
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LIST OF ABBREVIATIONS LIST OF ABBREVIATIONS

List of Abbreviations
BC Business Cycle

CWT Continuous Wavelet Analysis

FODLOG First-Order Difference of Natural Logarithms

GDP Gross Domestic Product

GWN Gaussian White Noise

HT Hard Threshold

IPI Industrial Production Index

LAB Local Adaptive Based Testing

MSE Mean Square Error

PDV Photonic Doppler Velocimetry

PWCS Power Wavelet Cross-Spectrum

SAB Segmentation Adaptive Based Testing

SNR Signal-to-Noise Ratio

STA Standard Testing Approach

STFT Short Time Fourier Transformation

TF Time-Frequency

TFA Time-Frequency Analysis

TFAR Time-Frequency Varying Autoregressive Process
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